forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframe_methods.py
125 lines (91 loc) · 3.6 KB
/
frame_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from vbench.api import Benchmark
from datetime import datetime
common_setup = """from pandas_vb_common import *
"""
#----------------------------------------------------------------------
# lookup
setup = common_setup + """
df = DataFrame(np.random.randn(10000, 8), columns=list('abcdefgh'))
df['foo'] = 'bar'
row_labels = list(df.index[::10])[:900]
col_labels = list(df.columns) * 100
row_labels_all = np.array(list(df.index) * len(df.columns), dtype='object')
col_labels_all = np.array(list(df.columns) * len(df.index), dtype='object')
"""
frame_fancy_lookup = Benchmark('df.lookup(row_labels, col_labels)', setup,
start_date=datetime(2012, 1, 12))
frame_fancy_lookup_all = Benchmark('df.lookup(row_labels_all, col_labels_all)',
setup,
start_date=datetime(2012, 1, 12))
#----------------------------------------------------------------------
# fillna in place
setup = common_setup + """
df = DataFrame(randn(10000, 100))
df.values[::2] = np.nan
"""
frame_fillna_inplace = Benchmark('df.fillna(0, inplace=True)', setup,
start_date=datetime(2012, 4, 4))
#----------------------------------------------------------------------
# reindex both axes
setup = common_setup + """
df = DataFrame(randn(1000, 1000))
idx = np.arange(400, 700)
"""
frame_reindex_axis0 = Benchmark('df.reindex(idx)', setup)
frame_reindex_axis1 = Benchmark('df.reindex(columns=idx)', setup)
frame_reindex_both_axes = Benchmark('df.reindex(index=idx, columns=idx)',
setup, start_date=datetime(2011, 1, 1))
frame_reindex_both_axes_ix = Benchmark('df.ix[idx, idx]', setup,
start_date=datetime(2011, 1, 1))
#----------------------------------------------------------------------
# boolean indexing
setup = common_setup + """
df = DataFrame(randn(10000, 100))
bool_arr = np.zeros(10000, dtype=bool)
bool_arr[:1000] = True
"""
frame_boolean_row_select = Benchmark('df[bool_arr]', setup,
start_date=datetime(2011, 1, 1))
#----------------------------------------------------------------------
# iteritems (monitor no-copying behaviour)
setup = common_setup + """
df = DataFrame(randn(10000, 100))
def f():
if hasattr(df, '_item_cache'):
df._item_cache.clear()
for name, col in df.iteritems():
pass
def g():
for name, col in df.iteritems():
pass
"""
# as far back as the earliest test currently in the suite
frame_iteritems = Benchmark('f()', setup,
start_date=datetime(2010, 6, 1))
frame_iteritems_cached = Benchmark('g()', setup,
start_date=datetime(2010, 6, 1))
#----------------------------------------------------------------------
# to_string
setup = common_setup + """
df = DataFrame(randn(100, 10))
"""
frame_to_string_floats = Benchmark('df.to_string()', setup,
start_date=datetime(2010, 6, 1))
# insert many columns
setup = common_setup + """
N = 1000
def f(K=500):
df = DataFrame(index=range(N))
new_col = np.random.randn(N)
for i in range(K):
df[i] = new_col
"""
frame_insert_500_columns = Benchmark('f()', setup,
start_date=datetime(2011, 1, 1))
#----------------------------------------------------------------------
# strings methods, #2602
setup = common_setup + """
s = Series(['abcdefg', np.nan]*500000)
"""
series_string_vector_slice = Benchmark('s.str[:5]', setup,
start_date=datetime(2012, 8, 1))