-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModelMimics.py
213 lines (171 loc) · 8.52 KB
/
ModelMimics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from collections import defaultdict
from torch.utils.data import DataLoader, Dataset
from transformers import AlbertTokenizer, AlbertModel, AlbertForSequenceClassification
from transformers.optimization import get_linear_schedule_with_warmup, AdamW
from sklearn import metrics
import math
import pandas as pd
import pickle
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from MimicsDataset import MimicsDataset, MimicsDatasetNrez
from IPython import embed
class ModelMimics(pl.LightningModule):
def __init__(self, hparams):
super(ModelMimics, self).__init__()
self.hparams = hparams
self.tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
self.albert = AlbertModel.from_pretrained('albert-base-v2')
self.dropout = nn.Dropout(hparams.classifier_dropout_prob)
self.classifier = nn.Linear(self.albert.config.hidden_size, 1)
print('Loaded model')
def forward(self, input_ids, attention_mask, token_type_ids, output_attentions=False):
out = self.albert(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions)
if output_attentions:
last_hidden, pooled_output, attentions = out
else:
last_hidden, pooled_output = out
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
if output_attentions:
return logits, attentions[-1]
else:
return logits
def configure_optimizers(self):
# not_albert_params = [p for name, p in filter(
# lambda t: not t[0].startswith('albert'),
# self.named_parameters())]
optimizer = AdamW([
{'params': self.albert.parameters(),
'lr': 1e-6},
{'params': self.classifier.parameters()}],
lr=self.hparams.lr,
betas=(0.9, 0.999), weight_decay=0.01)
# scheduler = {'scheduler': get_linear_schedule_with_warmup(optimizer,
# self.hparams.num_warmup_steps,
# self.hparams.num_training_steps),
# 'interval': 'step',
# 'name': 'linear_with_warmup'}
return optimizer
# return [optimizer], [scheduler]
def train_dataloader(self):
dataset = MimicsDataset(
tokenizer=self.tokenizer,
args=self.hparams,
mode='train'
)
sampler = None
self.train_dataloader_object = DataLoader(
dataset, batch_size=self.hparams.data_loader_bs,
shuffle=(sampler is None),
num_workers=self.hparams.num_workers, sampler=sampler,
collate_fn=ModelMimics.collate_fn
)
return self.train_dataloader_object
def val_dataloader(self):
dataset = MimicsDataset(
tokenizer=self.tokenizer,
args=self.hparams,
mode='dev'
)
sampler = None
self.val_dataloader_object = DataLoader(
dataset, batch_size=self.hparams.val_data_loader_bs,
shuffle=False,
num_workers=self.hparams.num_workers, sampler=sampler,
collate_fn=ModelMimics.collate_fn
)
return self.val_dataloader_object
def test_dataloader(self):
dataset = MimicsDataset(
tokenizer=self.tokenizer,
args=self.hparams,
mode='dev'
)
sampler = None
self.test_dataloader_object = DataLoader(
dataset, batch_size=self.hparams.val_data_loader_bs,
shuffle=False,
num_workers=self.hparams.num_workers, sampler=sampler,
collate_fn=ModelMimics.collate_fn
)
return self.test_dataloader_object
def training_step(self, batch, batch_nb):
input_ids, attention_mask, token_type_ids, labels, idxs = batch
output = self.forward(input_ids, attention_mask, token_type_ids)
loss = F.mse_loss(output, labels)
if self.logger:
self.logger.log_metrics({'train_loss': loss.item()})
return {'loss': loss}
def validation_step(self, batch, batch_nb):
input_ids, attention_mask, token_type_ids, labels, idxs = batch
output = self.forward(input_ids, attention_mask, token_type_ids)
loss = F.mse_loss(output, labels)
if self.logger:
self.logger.log_metrics({'val_loss': loss.item()})
return {'loss': loss, 'pred': output, 'idxs': idxs, 'labels': labels}
def validation_epoch_end(self, outputs):
"""
outputs: dict of outputs of validation_step (or validation_step_end in dp/ddp2)
outputs['loss'] --> losses of all the batches
outputs['pred'] --> scores for each example
outputs['idxs'] --> indexes in Dataset to connect with scores
"""
avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
pred = torch.cat([x['pred'] for x in outputs])
labels = torch.cat([x['labels'] for x in outputs])
loss = F.mse_loss(pred, labels)
# if self.logger:
# self.logger.log_metrics(scores)
scores = self.evaluate(labels, pred)
r2 = torch.Tensor([scores['r2']])
print(f"\nDEV:: avg-LOSS: {avg_loss} || {loss}", scores)
# return {'val_epoch_loss': avg_loss, 'scores':scores, 'r2': torch.Tensor([scores['r2']])}
return {'val_epoch_loss': avg_loss, 'scores':scores, 'r2': r2}
def evaluate(self, y, y_pred):
y = y.squeeze().cpu().numpy()
y_pred = y_pred.squeeze().cpu().numpy()
ret_d = {}
for name, metric in zip(['mae', 'mse', 'r2'], [metrics.mean_absolute_error, metrics.mean_squared_error, metrics.r2_score]):
val = metric(y, y_pred)
ret_d[name] = val
return ret_d
@staticmethod
def collate_fn(batch):
input_ids = torch.stack([x['input_ids'] for x in batch])
token_type_ids = torch.stack([x['token_type_ids'] for x in batch])
attention_mask = torch.stack([x['attention_mask'] for x in batch])
label = torch.stack([x['label'] for x in batch])
idx = torch.stack([x['idx'] for x in batch])
return (input_ids, attention_mask, token_type_ids, label, idx)
def test_step(self, batch, batch_nb):
input_ids, attention_mask, token_type_ids, labels, idxs = batch
output, attentions = self.forward(input_ids, attention_mask, token_type_ids, output_attentions=True)
# embed()
return {'pred': output, 'idxs': idxs, 'labels': labels}
# return {'pred': output, 'idxs': idxs, 'labels': labels, 'attentions': attentions.cpu()}
def test_epoch_end(self, outputs):
"""
outputs: dict of outputs of test_step (or test_step_end in dp/ddp2)
outputs['pred'] --> scores for each example
outputs['idxs'] --> indexes in Dataset to connect with scores
"""
pred = torch.cat([x['pred'] for x in outputs])
labels = torch.cat([x['labels'] for x in outputs])
# if self.hparams.save_attentions:
# attentions = torch.cat([x['attentions'] for i, x in enumerate(outputs) if i < 3]).cpu()
# idxs = torch.cat([x['idxs'] for i, x in enumerate(outputs) if i < 3]).cpu()
# pickle.dump(attentions, open(f'/scratch/sekulic/mimics/attentions-{self.hparams.text_input}.pickle', 'wb'))
# pickle.dump(idxs, open(f'/scratch/sekulic/mimics/idxs-{self.hparams.text_input}.pickle', 'wb'))
scores = self.evaluate(labels, pred)
idxs = torch.cat([x['idxs'] for x in outputs]).cpu().tolist()
pred = pred.cpu().tolist()
df = self.test_dataloader_object.dataset.X.iloc[idxs]
df['pred'] = sum(pred, [])
df.to_csv(f'/scratch/sekulic/mimics/results-final-{self.hparams.text_input}-{self.hparams.n_serp_elems}.tsv', sep='\t', header=False, index=False)
return {}