forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathio_bench.py
149 lines (116 loc) · 4.95 KB
/
io_bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from vbench.api import Benchmark
from datetime import datetime
common_setup = """from pandas_vb_common import *
"""
#----------------------------------------------------------------------
# read_csv
setup1 = common_setup + """
index = tm.makeStringIndex(10000)
df = DataFrame({'float1' : randn(10000),
'float2' : randn(10000),
'string1' : ['foo'] * 10000,
'bool1' : [True] * 10000,
'int1' : np.random.randint(0, 100000, size=10000)},
index=index)
df.to_csv('__test__.csv')
"""
read_csv_standard = Benchmark("read_csv('__test__.csv')", setup1,
start_date=datetime(2011, 9, 15))
#----------------------------------
# skiprows
setup1 = common_setup + """
index = tm.makeStringIndex(20000)
df = DataFrame({'float1' : randn(20000),
'float2' : randn(20000),
'string1' : ['foo'] * 20000,
'bool1' : [True] * 20000,
'int1' : np.random.randint(0, 200000, size=20000)},
index=index)
df.to_csv('__test__.csv')
"""
read_csv_skiprows = Benchmark("read_csv('__test__.csv', skiprows=10000)", setup1,
start_date=datetime(2011, 9, 15))
#----------------------------------------------------------------------
# write_csv
setup2 = common_setup + """
index = tm.makeStringIndex(10000)
df = DataFrame({'float1' : randn(10000),
'float2' : randn(10000),
'string1' : ['foo'] * 10000,
'bool1' : [True] * 10000,
'int1' : np.random.randint(0, 100000, size=10000)},
index=index)
"""
write_csv_standard = Benchmark("df.to_csv('__test__.csv')", setup2,
start_date=datetime(2011, 9, 15))
#----------------------------------
setup = common_setup + """
df = DataFrame(np.random.randn(3000, 30))
"""
frame_to_csv = Benchmark("df.to_csv('__test__.csv')", setup,
start_date=datetime(2011, 1, 1))
#----------------------------------
setup = common_setup + """
df=DataFrame({'A':range(50000)})
df['B'] = df.A + 1.0
df['C'] = df.A + 2.0
df['D'] = df.A + 3.0
"""
frame_to_csv2 = Benchmark("df.to_csv('__test__.csv')", setup,
start_date=datetime(2011, 1, 1))
#----------------------------------
setup = common_setup + """
from pandas import concat, Timestamp
def create_cols(name):
return [ "%s%03d" % (name,i) for i in xrange(5) ]
df_float = DataFrame(np.random.randn(5000, 5),dtype='float64',columns=create_cols('float'))
df_int = DataFrame(np.random.randn(5000, 5),dtype='int64',columns=create_cols('int'))
df_bool = DataFrame(True,index=df_float.index,columns=create_cols('bool'))
df_object = DataFrame('foo',index=df_float.index,columns=create_cols('object'))
df_dt = DataFrame(Timestamp('20010101'),index=df_float.index,columns=create_cols('date'))
# add in some nans
df_float.ix[30:500,1:3] = np.nan
df = concat([ df_float, df_int, df_bool, df_object, df_dt ], axis=1)
"""
frame_to_csv_mixed = Benchmark("df.to_csv('__test__.csv')", setup,
start_date=datetime(2012, 6, 1))
#----------------------------------------------------------------------
# parse dates, ISO8601 format
setup = common_setup + """
rng = date_range('1/1/2000', periods=1000)
data = '\\n'.join(rng.map(lambda x: x.strftime("%Y-%m-%d %H:%M:%S")))
"""
stmt = ("read_csv(StringIO(data), header=None, names=['foo'], "
" parse_dates=['foo'])")
read_parse_dates_iso8601 = Benchmark(stmt, setup,
start_date=datetime(2012, 3, 1))
setup = common_setup + """
rng = date_range('1/1/2000', periods=1000)
data = DataFrame(rng, index=rng)
"""
stmt = ("data.to_csv('__test__.csv', date_format='%Y%m%d')")
frame_to_csv_date_formatting = Benchmark(stmt, setup,
start_date=datetime(2013, 9, 1))
#----------------------------------------------------------------------
# infer datetime format
setup = common_setup + """
rng = date_range('1/1/2000', periods=1000)
data = '\\n'.join(rng.map(lambda x: x.strftime("%Y-%m-%d %H:%M:%S")))
"""
stmt = ("read_csv(StringIO(data), header=None, names=['foo'], "
" parse_dates=['foo'], infer_datetime_format=True)")
read_csv_infer_datetime_format_iso8601 = Benchmark(stmt, setup)
setup = common_setup + """
rng = date_range('1/1/2000', periods=1000)
data = '\\n'.join(rng.map(lambda x: x.strftime("%Y%m%d")))
"""
stmt = ("read_csv(StringIO(data), header=None, names=['foo'], "
" parse_dates=['foo'], infer_datetime_format=True)")
read_csv_infer_datetime_format_ymd = Benchmark(stmt, setup)
setup = common_setup + """
rng = date_range('1/1/2000', periods=1000)
data = '\\n'.join(rng.map(lambda x: x.strftime("%m/%d/%Y %H:%M:%S.%f")))
"""
stmt = ("read_csv(StringIO(data), header=None, names=['foo'], "
" parse_dates=['foo'], infer_datetime_format=True)")
read_csv_infer_datetime_format_custom = Benchmark(stmt, setup)