forked from Refefer/cloverleaf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathio.rs
323 lines (273 loc) · 9.95 KB
/
io.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
//! The beginnings of a refactor of load/save methods currently defined within lib.rs
use crate::graph::NodeID;
use std::fs::File;
use std::io::{Write,BufWriter,Result as IOResult,BufReader,BufRead};
use std::convert::AsRef;
use std::collections::HashSet;
use fast_float::parse;
use flate2::Compression;
use flate2::read::GzDecoder;
use flate2::write::GzEncoder;
use itertools::Itertools;
use pyo3::exceptions::{PyValueError,PyKeyError,PyIOError};
use pyo3::prelude::{PyResult,PyErr};
use rayon::prelude::*;
use ryu::Buffer;
use crate::vocab::Vocab;
use crate::embeddings::EmbeddingStore;
use crate::distance::Distance;
use crate::graph::CumCSR;
use crate::{CSR,EdgeType};
/// Streaming writer for NodeEmbeddings. Since Embeddings are often gigantic, creating them adhoc
/// then streaming them to disk is beneficial.
pub struct EmbeddingWriter<'a> {
vocab: &'a Vocab,
output: Box<dyn Write>,
buffer: String
}
impl <'a> EmbeddingWriter<'a> {
pub fn new(path: &str, vocab: &'a Vocab, comp_level: Option<u32>) -> IOResult<Self> {
let encoder = open_file_for_writing(path, comp_level)?;
let s = String::new();
Ok(EmbeddingWriter {
vocab,
output: encoder,
buffer: s
})
}
pub fn stream<A: AsRef<[f32]>>(
&mut self,
it: impl Iterator<Item=(NodeID, A)>
) -> IOResult<()> {
let mut formatter = Buffer::new();
for (node_id, emb) in it {
let (node_type, name) = self.vocab.get_name(node_id)
.expect("Programming error!");
// Build the embedding to string
self.buffer.clear();
// Write out embedding quickly
EmbeddingWriter::format_embedding(&mut formatter, &mut self.buffer, emb.as_ref());
// Spit it out
writeln!(&mut self.output, "{}\t{}\t[{}]", node_type, name, self.buffer)?
}
Ok(())
}
fn format_embedding(buff: &mut Buffer, output: &mut String, emb: &[f32]) {
for (idx, wi) in emb.iter().enumerate() {
if idx > 0 {
output.push_str(",");
}
output.push_str(buff.format(*wi));
}
}
}
struct RecordReader {
chunk_size: usize,
skip: usize
}
impl RecordReader {
pub fn new(chunk_size: usize, skip: usize) -> Self {
RecordReader { chunk_size, skip }
}
pub fn read<F: Sync,D,A:Send + Sync,E>(
&self,
mut it: impl Iterator<Item=String>,
mapper: F,
mut drain: D
) -> Result<(),E>
where F: Fn(usize, String) -> Option<A>,
D: FnMut(usize, A) -> Result<(),E>
{
// Skip records, such as headers of tsvs
(&mut it).take(self.skip).for_each(|_|{});
let mut i = 0;
if self.chunk_size <= 1 {
for (i, line) in it.enumerate() {
if let Some(record) = mapper(i, line) {
drain(i, record)?
}
}
} else {
let mut buffer = Vec::with_capacity(self.chunk_size);
let mut p_buffer = Vec::with_capacity(self.chunk_size);
for chunk in &(it).chunks(self.chunk_size) {
buffer.clear();
// Read lines into a buffer for parallelizing
chunk.for_each(|l| buffer.push(l));
buffer.par_drain(..).enumerate().map(|(idx, line)| {
mapper(i+idx, line)
}).collect_into_vec(&mut p_buffer);
for r in p_buffer.drain(..) {
if let Some(record) = r {
drain(i, record)?;
}
i += 1;
}
}
}
Ok(())
}
}
pub struct EmbeddingReader;
impl EmbeddingReader {
pub fn load(
path: &str,
distance: Distance,
filter_type: &Option<&HashSet<String>>,
chunk_size: Option<usize>,
skip_rows: Option<usize>
) -> PyResult<(Vocab, EmbeddingStore)> {
// Convert filter types to something more efficient
let ft_strs = filter_type
.map(|hs| hs.iter().map(|s| s.as_str()).collect());
let ft_refs = ft_strs.as_ref();
let num_embeddings = count_lines(path, ft_refs)
.map_err(|e| PyIOError::new_err(format!("{:?}", e)))?;
let reader = open_file_for_reading(path)
.map_err(|e| PyIOError::new_err(format!("{:?}", e)))?;
let mut vocab = Vocab::new();
// Place holder
let mut es = EmbeddingStore::new(0, 0, Distance::Cosine);
let rr = RecordReader::new(chunk_size.unwrap_or(1_000), skip_rows.unwrap_or(0));
let mut i = 0;
rr.read(reader.lines().map(|l| l.unwrap()),
|_, line| {
if let Some(node_types) = ft_refs {
if !is_node_type(&line, node_types) {
return None
}
}
Some(line_to_embedding(&line)
.ok_or_else(|| PyValueError::new_err(format!("Error parsing line: {}", line))))
},
|_, record| {
let (node_type, node_name, emb) = record?;
if i == 0 {
es = EmbeddingStore::new(num_embeddings, emb.len(), distance);
}
let node_id = vocab.get_or_insert(node_type, node_name);
if node_id < i {
return Err(PyKeyError::new_err(format!("found duplicate node at {}!", i)));
}
let m = es.get_embedding_mut(node_id);
if m.len() != emb.len() {
return Err(PyValueError::new_err("Embeddings have different sizes!"));
}
m.copy_from_slice(&emb);
i += 1;
Ok(())
})?;
Ok((vocab, es))
}
}
pub fn open_file_for_reading(path: &str) -> IOResult<Box<dyn BufRead>> {
let f = File::open(path)?;
let f = BufReader::new(f);
let result: Box<dyn BufRead> = if path.ends_with(".gz") {
let decoder = BufReader::new(GzDecoder::new(f));
Box::new(decoder)
} else {
Box::new(f)
};
Ok(result)
}
pub fn open_file_for_writing(path: &str, compression: Option<u32>) -> IOResult<Box<dyn Write>> {
let comp_level = compression.map(|l| Compression::new(l));
let f = File::create(path)?;
let bw = BufWriter::new(f);
let encoder: Box<dyn Write> = if path.ends_with(".gz") {
let e = GzEncoder::new(bw, comp_level.unwrap_or(Compression::fast()));
Box::new(e)
} else {
Box::new(bw)
};
Ok(encoder)
}
fn is_node_type(line: &str, filter_types: &HashSet<&str>) -> bool {
match line.find('\t') {
Some(idx) => filter_types.contains(&line[..idx]),
None => false
}
}
/// Count the number of lines in an embeddings file so we only have to do one allocation. If
/// NodeEmbeddings internal memory structure changes, such as using slabs, this might be less
/// relevant.
fn count_lines(path: &str, node_type: Option<&HashSet<&str>>) -> IOResult<usize> {
let reader = open_file_for_reading(path)?;
let mut count = 0;
if let Some(fts) = node_type.as_ref() {
for line in reader.lines() {
let line = line?;
if is_node_type(&line, fts) { count += 1}
}
} else {
for line in reader.lines() {
line?;
count += 1;
}
}
Ok(count)
}
/// Reads a line and converts it to a node type, node name, and embedding.
/// Blows up if it doesn't meet the formatting.
fn line_to_embedding(line: &String) -> Option<(String,String,Vec<f32>)> {
let pieces:Vec<_> = line.split('\t').collect();
if pieces.len() != 3 {
return None
}
let node_type = pieces[0];
let name = pieces[1];
let e = pieces[2];
let emb: Result<Vec<f32>,_> = e[1..e.len() - 1].split(',')
.map(|wi| parse(wi.trim())).collect();
emb.ok().map(|e| (node_type.to_string(), name.to_string(), e))
}
pub struct GraphReader;
impl GraphReader {
pub fn load(
path: &str,
edge_type: EdgeType,
chunk_size: usize,
skip_rows: usize,
weighted: bool,
deduplicate: bool
) -> PyResult<(Vocab,CumCSR)> {
let reader = open_file_for_reading(path)
.map_err(|e| PyIOError::new_err(format!("{:?}", e)))?
.lines().map(|l| l.unwrap());
let mut vocab = Vocab::new();
let mut edges = Vec::new();
let rr = RecordReader::new(chunk_size, skip_rows);
rr.read(reader,
|i, line| {
let pieces: Vec<_> = line.split('\t').collect();
if pieces.len() != 5 {
return Some(Err(PyValueError::new_err(format!("{}: Malformed graph file: Expected 5 fields!", i))))
}
let from_node = (pieces[0].to_string(), pieces[1].to_string());
let to_node = (pieces[2].to_string(), pieces[3].to_string());
let w = if weighted {
let w = pieces[4].parse::<f32>();
match w {
Err(e) => return Some(Err(PyValueError::new_err(format!("{}: Malformed graph file! {} - {:?}", i, e, pieces[4])))),
Ok(w) => w
}
} else {
1f32
};
Some(Ok((from_node, to_node, w)))
},
|_i, record| {
let (from_node, to_node, w) = record?;
let f_id = vocab.get_or_insert(from_node.0, from_node.1);
let t_id = vocab.get_or_insert(to_node.0, to_node.1);
edges.push((f_id, t_id, w));
if matches!(edge_type, EdgeType::Undirected) {
edges.push((t_id, f_id, w));
}
Ok::<(), PyErr>(())
})?;
let csr = CSR::construct_from_edges(edges, deduplicate);
Ok((vocab, CumCSR::convert(csr)))
}
}