forked from Refefer/cloverleaf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembeddings.rs
239 lines (197 loc) · 6.73 KB
/
embeddings.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//! The main Embedding class. This defines both distance metrics as well as access to the
//! embeddings.
use rayon::prelude::*;
use rand::prelude::*;
use crate::graph::NodeID;
use crate::bitset::BitSet;
use crate::hogwild::Hogwild;
use crate::algos::graph_ann::{TopK,NodeDistance};
use crate::distance::Distance;
/// Entity allows for adhoc embeddings versus looking up by NodeID within the embedding set
#[derive(Clone,Copy,Debug)]
pub enum Entity<'a> {
/// Use the embedding defined at NodeID
Node(NodeID),
/// Use an adhoc embedding
Embedding(&'a [f32])
}
/// The core Embedding Store used everywhere.
#[derive(Clone)]
pub struct EmbeddingStore {
/// Dimensions of each embedding
dims: usize,
/// The embeddings are a congiuous vector, wrapped in a Hogwild algorithm so they can be
/// updated in parallal.
embeddings: Hogwild<Vec<f32>>,
/// Bitfield measuring if an embedding has been set
bitfield: BitSet,
/// distance metric to use
distance: Distance,
/// Number of nodes in the Embedding Store
nodes: usize
}
impl EmbeddingStore {
pub fn new(nodes: usize, dims: usize, distance: Distance) -> Self {
EmbeddingStore {
dims,
distance,
bitfield: BitSet::new(nodes),
embeddings: Hogwild::new(vec![0.; nodes * dims]),
nodes
}
}
pub fn new_with_vec(
nodes: usize,
dims: usize,
distance: Distance,
vec: Vec<f32>
) -> Option<Self> {
if vec.len() != nodes * dims {
None
} else {
//
let mut bitfield = BitSet::new(nodes);
(0..nodes).for_each(|node_id| bitfield.set_bit(node_id));
let es = EmbeddingStore {
dims,
distance,
bitfield: bitfield,
embeddings: Hogwild::new(vec),
nodes
};
Some(es)
}
}
pub fn dims(&self) -> usize {
self.dims
}
pub fn is_set(&self, node_id: NodeID) -> bool {
self.bitfield.is_set(node_id)
}
pub fn len(&self) -> usize {
self.nodes
}
pub fn distance(&self) -> Distance {
self.distance
}
pub fn set_embedding(&mut self, node_id: NodeID, embedding: &[f32]) {
self.get_embedding_mut(node_id).iter_mut().zip(embedding.iter()).for_each(|(ei, wi)| {
*ei = *wi;
});
self.bitfield.set_bit(node_id);
}
pub fn get_embedding(&self, node_id: NodeID) -> &[f32] {
let start = node_id * self.dims;
&self.embeddings[start..start+self.dims]
}
pub fn get_embedding_mut(&mut self, node_id: NodeID) -> &mut [f32] {
let start = node_id * self.dims;
self.bitfield.set_bit(node_id);
&mut self.embeddings[start..start+self.dims]
}
pub fn get_embedding_mut_hogwild(&self, node_id: NodeID) -> &mut [f32] {
let start = node_id * self.dims;
&mut self.embeddings.get()[start..start+self.dims]
}
pub fn set_bit(&mut self, node_id: NodeID) {
self.bitfield.set_bit(node_id);
}
fn extract_vec<'a>(&'a self, n: &Entity<'a>) -> &'a [f32] {
match n {
Entity::Node(node_id) => self.get_embedding(*node_id),
Entity::Embedding(vec) => vec
}
}
pub fn compute_distance<'a>(&self, n1: &Entity<'a>, n2: &Entity<'a>) -> f32 {
let e1 = self.extract_vec(n1);
let e2 = self.extract_vec(n2);
self.distance.compute(e1, e2)
}
pub fn score_all<'a>(
&self,
q: &Entity<'a>
) -> EmbeddingStore {
let es = EmbeddingStore::new(self.len(), 1, self.distance.clone());
let query_emb = self.extract_vec(q);
(0..self.len()).into_par_iter().for_each(|node_id| {
let e2 = self.get_embedding(node_id);
es.get_embedding_mut_hogwild(node_id)[0] = self.distance.compute(query_emb, e2);
});
es
}
pub fn nearest_neighbor<'a,F>(
&self,
q: &Entity<'a>,
k: usize,
filter: F
) -> Vec<NodeDistance>
where F: Sync + Fn(NodeID) -> bool
{
let query_emb = self.extract_vec(q);
(0..self.len()).into_par_iter().map(|node_id| {
let dist = if filter(node_id) {
let node_emb = self.get_embedding(node_id);
self.distance.compute(query_emb, node_emb)
} else {
std::f32::MAX
};
(node_id, dist)
}).fold(|| TopK::new(k), |mut acc, (node_id, dist)| {
acc.push(node_id, dist);
acc
}).reduce(|| TopK::new(k),|mut tk1, tk2| {
tk1.extend(tk2);
tk1
}).into_sorted()
}
}
/// Randomize embeddings.
pub fn randomize_embedding_store(es: &mut EmbeddingStore, rng: &mut impl Rng) {
for idx in 0..es.len() {
let e = es.get_embedding_mut(idx);
let mut norm = 0f32;
e.iter_mut().for_each(|ei| {
*ei = 2f32 * rng.gen::<f32>() - 1f32;
norm += ei.powf(2f32);
});
norm = norm.sqrt();
e.iter_mut().for_each(|ei| *ei /= norm);
}
}
#[cfg(test)]
mod embedding_tests {
use super::*;
#[test]
fn test_embeddings() {
let mut es = EmbeddingStore::new(100, 2, Distance::Euclidean);
assert_eq!(es.is_set(0), false);
es.set_embedding(0, &[0., 1.]);
assert_eq!(es.is_set(0), true);
assert_eq!(es.is_set(35), false);
es.set_embedding(35, &[2., 3.]);
assert_eq!(es.is_set(35), true);
es.set_embedding(1, &[1., 2.]);
assert_eq!(es.get_embedding(0), &[0., 1.]);
assert_eq!(es.get_embedding(1), &[1., 2.]);
assert_eq!(es.get_embedding(35), &[2., 3.]);
assert_eq!(es.compute_distance(&Entity::Node(0), &Entity::Node(1)), 2f32.sqrt());
assert_eq!(es.compute_distance(&Entity::Node(0), &Entity::Node(35)), 8f32.sqrt());
}
#[test]
fn test_distances() {
let alt_d = Distance::ALT.compute(&[1., 2., 1.], &[3., 2., 4.]);
assert_eq!(alt_d, 3.);
let cosine_d = Distance::Cosine.compute(&[1., 2., 1.], &[3., 2., 4.]);
let dot = 3. + 4. + 4.;
let n1 = (1f32 + 4. + 1.).sqrt();
let n2 = (9f32 + 4. + 16.).sqrt();
let cosine_score = dot / (n1 * n2);
assert_eq!(cosine_d, -cosine_score + 1.);
let euclidean_d = Distance::Euclidean.compute(&[1., 2., 1.], &[3., 2., 4.]);
assert_eq!(euclidean_d, (4f32 + 0. + 9.).sqrt());
let hamming_d = Distance::Hamming.compute(&[1., 2., 1.], &[3., 2., 4.]);
assert_eq!(hamming_d, 2./3.);
let overlap_d = Distance::Jaccard.compute(&[1., 2., -1.], &[2., 4., 5.]);
assert_eq!(overlap_d, 1. - 1. / 4.);
}
}