.. currentmodule:: pandas
.. ipython:: python :suppress: from datetime import datetime import numpy as np np.random.seed(123456) from pandas import * options.display.max_rows=15 randn = np.random.randn randint = np.random.randint np.set_printoptions(precision=4, suppress=True) from dateutil.relativedelta import relativedelta from pandas.tseries.api import * from pandas.tseries.offsets import * import matplotlib.pyplot as plt plt.close('all') options.display.mpl_style='default' from pandas.compat import lrange
Pandas users rely on a variety of environments for using pandas: scripts, terminal, IPython qtconsole/ notebook, (IDLE, spyder, etc'). Each environment has it's own capabilities and limitations: HTML support, horizontal scrolling, auto-detection of width/height. To appropriately address all these environments, the display behavior is controlled by several options, which you're encouraged to tweak to suit your setup.
As of 0.13, these are the relevant options, all under the display namespace,
(e.g. display.width
, etc.):
- notebook_repr_html: if True, IPython frontends with HTML support will display dataframes as HTML tables when possible.
- large_repr (default 'truncate'): when a :class:`~pandas.DataFrame` exceeds max_columns or max_rows, it can be displayed either as a truncated table or, with this set to 'info', as a short summary view.
- max_columns (default 20): max dataframe columns to display.
- max_rows (default 60): max dataframe rows display.
Two additional options only apply to displaying DataFrames in terminals, not to the HTML view:
- expand_repr (default True): when the frame width cannot fit within the screen, the output will be broken into multiple pages.
- width: width of display screen in characters, used to determine the width of lines when expand_repr is active. Setting this to None will trigger auto-detection of terminal width.
IPython users can use the IPython startup file to import pandas and set these options automatically when starting up.
Pandas is a powerful tool and already has a plethora of data manipulation operations implemented, most of them are very fast as well. It's very possible however that certain functionality that would make your life easier is missing. In that case you have several options:
Open an issue on Github , explain your need and the sort of functionality you would like to see implemented.
Fork the repo, Implement the functionality yourself and open a PR on Github.
Write a method that performs the operation you are interested in and Monkey-patch the pandas class as part of your IPython profile startup or PYTHONSTARTUP file.
For example, here is an example of adding an
just_foo_cols()
method to the dataframe class:
.. ipython:: python import pandas as pd def just_foo_cols(self): """Get a list of column names containing the string 'foo' """ return [x for x in self.columns if 'foo' in x] pd.DataFrame.just_foo_cols = just_foo_cols # monkey-patch the DataFrame class df = pd.DataFrame([list(range(4))], columns=["A","foo","foozball","bar"]) df.just_foo_cols() del pd.DataFrame.just_foo_cols # you can also remove the new method
Monkey-patching is usually frowned upon because it makes your code less portable and can cause subtle bugs in some circumstances. Monkey-patching existing methods is usually a bad idea in that respect. When used with proper care, however, it's a very useful tool to have.
Starting with pandas 0.8.0, users of scikits.timeseries should have all of the features that they need to migrate their code to use pandas. Portions of the scikits.timeseries codebase for implementing calendar logic and timespan frequency conversions (but not resampling, that has all been implemented from scratch from the ground up) have been ported to the pandas codebase.
The scikits.timeseries notions of Date
and DateArray
are responsible
for implementing calendar logic:
In [16]: dt = ts.Date('Q', '1984Q3') # sic In [17]: dt Out[17]: <Q-DEC : 1984Q1> In [18]: dt.asfreq('D', 'start') Out[18]: <D : 01-Jan-1984> In [19]: dt.asfreq('D', 'end') Out[19]: <D : 31-Mar-1984> In [20]: dt + 3 Out[20]: <Q-DEC : 1984Q4>
Date
and DateArray
from scikits.timeseries have been reincarnated in
pandas Period
and PeriodIndex
:
.. ipython:: python pnow('D') # scikits.timeseries.now() Period(year=2007, month=3, day=15, freq='D') p = Period('1984Q3') p p.asfreq('D', 'start') p.asfreq('D', 'end') (p + 3).asfreq('T') + 6 * 60 + 30 rng = period_range('1990', '2010', freq='A') rng rng.asfreq('B', 'end') - 3
scikits.timeseries | pandas | Notes |
---|---|---|
Date | Period | A span of time, from yearly through to secondly |
DateArray | PeriodIndex | An array of timespans |
convert | resample | Frequency conversion in scikits.timeseries |
convert_to_annual | pivot_annual | currently supports up to daily frequency, see :issue:`736` |
The scikits.timeseries DateArray
had a number of information
properties. Here are the pandas equivalents:
scikits.timeseries | pandas | Notes |
---|---|---|
get_steps | np.diff(idx.values) |
|
has_missing_dates | not idx.is_full |
|
is_full | idx.is_full |
|
is_valid | idx.is_monotonic and idx.is_unique |
|
is_chronological | is_monotonic |
|
arr.sort_chronologically() |
idx.order() |
Frequency conversion is implemented using the resample
method on TimeSeries
and DataFrame objects (multiple time series). resample
also works on panels
(3D). Here is some code that resamples daily data to montly with
scikits.timeseries:
.. ipython:: python import scikits.timeseries as ts data = ts.time_series(np.random.randn(50), start_date='Jan-2000', freq='M') data data.convert('A', func=np.mean)
Here is the equivalent pandas code:
.. ipython:: python rng = period_range('Jan-2000', periods=50, freq='M') data = Series(np.random.randn(50), index=rng) data data.resample('A', how=np.mean)
Much of the plotting functionality of scikits.timeseries has been ported and adopted to pandas's data structures. For example:
.. ipython:: python rng = period_range('1987Q2', periods=10, freq='Q-DEC') data = Series(np.random.randn(10), index=rng) @savefig skts_ts_plot.png plt.figure(); data.plot()
Use the to_timestamp
and to_period
instance methods.
Unlike scikits.timeseries, pandas data structures are not based on NumPy's
MaskedArray
object. Missing data is represented as NaN
in numerical
arrays and either as None
or NaN
in non-numerical arrays. Implementing
a version of pandas's data structures that use MaskedArray is possible but
would require the involvement of a dedicated maintainer. Active pandas
developers are not interested in this.
resample
has a kind
argument which allows you to resample time series
with a DatetimeIndex to PeriodIndex:
.. ipython:: python rng = date_range('1/1/2000', periods=200, freq='D') data = Series(np.random.randn(200), index=rng) data[:10] data.index data.resample('M', kind='period')
Similarly, resampling from periods to timestamps is possible with an optional
interval ('start'
or 'end'
) convention:
.. ipython:: python rng = period_range('Jan-2000', periods=50, freq='M') data = Series(np.random.randn(50), index=rng) resampled = data.resample('A', kind='timestamp', convention='end') resampled.index
Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. To deal with this issue you should convert the underlying NumPy array to the native system byte order before passing it to Series/DataFrame/Panel constructors using something similar to the following:
.. ipython:: python x = np.array(list(range(10)), '>i4') # big endian newx = x.byteswap().newbyteorder() # force native byteorder s = Series(newx)
See the NumPy documentation on byte order for more details.
There is experimental support for visualizing DataFrames in PyQt4 and PySide applications. At the moment you can display and edit the values of the cells in the DataFrame. Qt will take care of displaying just the portion of the DataFrame that is currently visible and the edits will be immediately saved to the underlying DataFrame
To demonstrate this we will create a simple PySide application that will switch
between two editable DataFrames. For this will use the DataFrameModel
class
that handles the access to the DataFrame, and the DataFrameWidget
, which is
just a thin layer around the QTableView
.
import numpy as np
import pandas as pd
from pandas.sandbox.qtpandas import DataFrameModel, DataFrameWidget
from PySide import QtGui, QtCore
# Or if you use PyQt4:
# from PyQt4 import QtGui, QtCore
class MainWidget(QtGui.QWidget):
def __init__(self, parent=None):
super(MainWidget, self).__init__(parent)
# Create two DataFrames
self.df1 = pd.DataFrame(np.arange(9).reshape(3, 3),
columns=['foo', 'bar', 'baz'])
self.df2 = pd.DataFrame({
'int': [1, 2, 3],
'float': [1.5, 2.5, 3.5],
'string': ['a', 'b', 'c'],
'nan': [np.nan, np.nan, np.nan]
}, index=['AAA', 'BBB', 'CCC'],
columns=['int', 'float', 'string', 'nan'])
# Create the widget and set the first DataFrame
self.widget = DataFrameWidget(self.df1)
# Create the buttons for changing DataFrames
self.button_first = QtGui.QPushButton('First')
self.button_first.clicked.connect(self.on_first_click)
self.button_second = QtGui.QPushButton('Second')
self.button_second.clicked.connect(self.on_second_click)
# Set the layout
vbox = QtGui.QVBoxLayout()
vbox.addWidget(self.widget)
hbox = QtGui.QHBoxLayout()
hbox.addWidget(self.button_first)
hbox.addWidget(self.button_second)
vbox.addLayout(hbox)
self.setLayout(vbox)
def on_first_click(self):
'''Sets the first DataFrame'''
self.widget.setDataFrame(self.df1)
def on_second_click(self):
'''Sets the second DataFrame'''
self.widget.setDataFrame(self.df2)
if __name__ == '__main__':
import sys
# Initialize the application
app = QtGui.QApplication(sys.argv)
mw = MainWidget()
mw.show()
app.exec_()