-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy patharray.cpp
1026 lines (841 loc) · 38.1 KB
/
array.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// File: ARRAY.CPP
//
//
// File which contains a bunch of array related things.
//
#include "common.h"
#include "clsload.hpp"
#include "method.hpp"
#include "class.h"
#include "object.h"
#include "field.h"
#include "util.hpp"
#include "excep.h"
#include "siginfo.hpp"
#include "threads.h"
#include "stublink.h"
#include "stubcache.h"
#include "dllimport.h"
#include "gcdesc.h"
#include "jitinterface.h"
#include "eeconfig.h"
#include "log.h"
#include "cgensys.h"
#include "array.h"
#include "typestring.h"
#include "sigbuilder.h"
#define MAX_SIZE_FOR_VALUECLASS_IN_ARRAY 0xffff
#define MAX_PTRS_FOR_VALUECLASSS_IN_ARRAY 0xffff
/*****************************************************************************************/
LPCUTF8 ArrayMethodDesc::GetMethodName()
{
LIMITED_METHOD_DAC_CONTRACT;
switch (GetArrayFuncIndex())
{
case ARRAY_FUNC_GET:
return "Get";
case ARRAY_FUNC_SET:
return "Set";
case ARRAY_FUNC_ADDRESS:
return "Address";
default:
return COR_CTOR_METHOD_NAME; // ".ctor"
}
}
/*****************************************************************************************/
DWORD ArrayMethodDesc::GetAttrs()
{
LIMITED_METHOD_CONTRACT;
return (GetArrayFuncIndex() >= ARRAY_FUNC_CTOR) ? (mdPublic | mdRTSpecialName) : mdPublic;
}
#ifndef DACCESS_COMPILE
/*****************************************************************************************/
//
// Generate a short sig (descr) for an array accessors
//
VOID ArrayClass::GenerateArrayAccessorCallSig(
DWORD dwRank,
DWORD dwFuncType, // Load, store, or <init>
PCCOR_SIGNATURE *ppSig,// Generated signature
DWORD * pcSig, // Generated signature size
LoaderAllocator *pLoaderAllocator,
AllocMemTracker *pamTracker,
BOOL fForStubAsIL
)
{
CONTRACTL {
STANDARD_VM_CHECK;
PRECONDITION(dwRank >= 1 && dwRank < 0x3ffff);
} CONTRACTL_END;
PCOR_SIGNATURE pSig;
PCOR_SIGNATURE pSigMemory;
DWORD dwCallSigSize = dwRank;
DWORD dwArgCount = (dwFuncType == ArrayMethodDesc::ARRAY_FUNC_SET) ? dwRank+1 : dwRank;
DWORD i;
switch (dwFuncType)
{
// <callconv> <argcount> VAR 0 I4 , ... , I4
case ArrayMethodDesc::ARRAY_FUNC_GET:
dwCallSigSize += 4;
break;
// <callconv> <argcount> VOID I4 , ... , I4
case ArrayMethodDesc::ARRAY_FUNC_CTOR:
dwCallSigSize += 3;
break;
// <callconv> <argcount> VOID I4 , ... , I4 VAR 0
case ArrayMethodDesc::ARRAY_FUNC_SET:
dwCallSigSize += 5;
break;
// <callconv> <argcount> BYREF VAR 0 I4 , ... , I4
case ArrayMethodDesc::ARRAY_FUNC_ADDRESS:
dwCallSigSize += 5;
if(fForStubAsIL) {dwArgCount++; dwCallSigSize++;}
break;
}
// If the argument count is larger than 127 then it will require 2 bytes for the encoding
if (dwArgCount > 0x7f)
dwCallSigSize++;
pSigMemory = (PCOR_SIGNATURE)pamTracker->Track(pLoaderAllocator->GetHighFrequencyHeap()->AllocMem(S_SIZE_T(dwCallSigSize)));
pSig = pSigMemory;
BYTE callConv = IMAGE_CEE_CS_CALLCONV_DEFAULT + IMAGE_CEE_CS_CALLCONV_HASTHIS;
if (dwFuncType == ArrayMethodDesc::ARRAY_FUNC_ADDRESS && !fForStubAsIL)
{
callConv |= CORINFO_CALLCONV_PARAMTYPE; // Address routine needs special hidden arg
}
*pSig++ = callConv;
pSig += CorSigCompressData(dwArgCount, pSig); // Argument count
switch (dwFuncType)
{
case ArrayMethodDesc::ARRAY_FUNC_GET:
*pSig++ = ELEMENT_TYPE_VAR;
*pSig++ = 0; // variable 0
break;
case ArrayMethodDesc::ARRAY_FUNC_CTOR:
*pSig++ = (BYTE) ELEMENT_TYPE_VOID; // Return type
break;
case ArrayMethodDesc::ARRAY_FUNC_SET:
*pSig++ = (BYTE) ELEMENT_TYPE_VOID; // Return type
break;
case ArrayMethodDesc::ARRAY_FUNC_ADDRESS:
*pSig++ = (BYTE) ELEMENT_TYPE_BYREF; // Return type
*pSig++ = ELEMENT_TYPE_VAR;
*pSig++ = 0; // variable 0
break;
}
#ifndef TARGET_X86
if(dwFuncType == ArrayMethodDesc::ARRAY_FUNC_ADDRESS && fForStubAsIL)
{
*pSig++ = ELEMENT_TYPE_I;
}
#endif
for (i = 0; i < dwRank; i++)
*pSig++ = ELEMENT_TYPE_I4;
if (dwFuncType == ArrayMethodDesc::ARRAY_FUNC_SET)
{
*pSig++ = ELEMENT_TYPE_VAR;
*pSig++ = 0; // variable 0
}
#ifdef TARGET_X86
else if(dwFuncType == ArrayMethodDesc::ARRAY_FUNC_ADDRESS && fForStubAsIL)
{
*pSig++ = ELEMENT_TYPE_I;
}
#endif
// Make sure the sig came out exactly as large as we expected
_ASSERTE(pSig == pSigMemory + dwCallSigSize);
*ppSig = pSigMemory;
*pcSig = (DWORD)(pSig-pSigMemory);
}
//
// Allocate a new MethodDesc for a fake array method.
//
// Based on code in class.cpp.
//
void ArrayClass::InitArrayMethodDesc(
ArrayMethodDesc *pNewMD,
PCCOR_SIGNATURE pShortSig,
DWORD cShortSig,
DWORD dwVtableSlot,
AllocMemTracker *pamTracker)
{
STANDARD_VM_CONTRACT;
// Note: The method desc memory is zero initialized
pNewMD->SetMemberDef(0);
pNewMD->SetSlot((WORD) dwVtableSlot);
pNewMD->SetStoredMethodSig(pShortSig, cShortSig);
_ASSERTE(!pNewMD->MayHaveNativeCode());
pNewMD->SetTemporaryEntryPoint(pamTracker);
#ifdef _DEBUG
_ASSERTE(pNewMD->GetMethodName() && GetDebugClassName());
pNewMD->m_pszDebugMethodName = pNewMD->GetMethodName();
pNewMD->m_pszDebugClassName = GetDebugClassName();
pNewMD->m_pDebugMethodTable = pNewMD->GetMethodTable();
#endif // _DEBUG
}
/*****************************************************************************************/
MethodTable* Module::CreateArrayMethodTable(TypeHandle elemTypeHnd, CorElementType arrayKind, unsigned Rank, AllocMemTracker *pamTracker)
{
CONTRACTL {
STANDARD_VM_CHECK;
PRECONDITION(Rank > 0);
} CONTRACTL_END;
MethodTable * pElemMT = elemTypeHnd.GetMethodTable();
CorElementType elemType = elemTypeHnd.GetSignatureCorElementType();
// Shared EEClass if there is one
MethodTable * pCanonMT = NULL;
// Arrays of reference types all share the same EEClass.
//
// We can't share nested SZARRAYs because they have different
// numbers of constructors.
//
// Unfortunately, we cannot share more because of it would affect user visible System.RuntimeMethodHandle behavior
if (CorTypeInfo::IsObjRef(elemType) && elemType != ELEMENT_TYPE_SZARRAY && pElemMT != g_pObjectClass)
{
// This is loading the canonical version of the array so we can override
OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOADED);
pCanonMT = ClassLoader::LoadArrayTypeThrowing(TypeHandle(g_pObjectClass), arrayKind, Rank).AsMethodTable();
}
BOOL containsPointers = CorTypeInfo::IsObjRef(elemType);
if (elemType == ELEMENT_TYPE_VALUETYPE && pElemMT->ContainsGCPointers())
containsPointers = TRUE;
// this is the base for every array type
MethodTable *pParentClass = g_pArrayClass;
_ASSERTE(pParentClass); // Must have already loaded the System.Array class
_ASSERTE(pParentClass->IsFullyLoaded());
DWORD numCtors = 2; // ELEMENT_TYPE_ARRAY has two ctor functions, one with and one without lower bounds
if (arrayKind == ELEMENT_TYPE_SZARRAY)
{
numCtors = 1;
TypeHandle ptr = elemTypeHnd;
while (ptr.GetInternalCorElementType() == ELEMENT_TYPE_SZARRAY) {
numCtors++;
ptr = ptr.GetArrayElementTypeHandle();
}
}
/****************************************************************************************/
// Parent class is the top level array
// The vtable will have all of top level class's methods, plus any methods we have for array classes
DWORD numVirtuals = pParentClass->GetNumVirtuals();
DWORD numNonVirtualSlots = (pCanonMT == NULL) ? numCtors + 3: 0; // 3 for the proper rank Get, Set, Address
size_t cbMT = sizeof(MethodTable);
cbMT += MethodTable::GetNumVtableIndirections(numVirtuals) * sizeof(MethodTable::VTableIndir_t);
// GC info
size_t cbCGCDescData = 0;
if (containsPointers)
{
cbCGCDescData += CGCDesc::ComputeSize(1);
if (elemType == ELEMENT_TYPE_VALUETYPE)
{
size_t nSeries = CGCDesc::GetCGCDescFromMT(pElemMT)->GetNumSeries();
cbCGCDescData += (nSeries - 1)*sizeof (val_serie_item);
_ASSERTE(cbCGCDescData == CGCDesc::ComputeSizeRepeating(nSeries));
}
}
// Allocate space for optional members
// We always have a non-virtual slot array, see assert at end
cbMT += MethodTable::GetOptionalMembersAllocationSize(true /* hasInterfaceMap */);
// This is the offset of the beginning of the interface map
size_t imapOffset = cbMT;
// This is added after we determine the offset of the interface maps
// because the memory appears before the pointer to the method table
cbMT += cbCGCDescData;
// Inherit top level class's interface map
cbMT += pParentClass->GetNumInterfaces() * sizeof(InterfaceInfo_t);
size_t cbArrayClass = 0;
if (pCanonMT == NULL)
{
// Allocate ArrayClass, MethodTable, and class name in one alloc.
// Remember to pad allocation size for ArrayClass portion to ensure MethodTable is pointer aligned.
cbArrayClass = ALIGN_UP(sizeof(ArrayClass), sizeof(void*));
}
// ArrayClass already includes one void*
LoaderAllocator* pAllocator= this->GetLoaderAllocator();
BYTE* pMemory = (BYTE *)pamTracker->Track(pAllocator->GetHighFrequencyHeap()->AllocMem(S_SIZE_T(cbArrayClass) +
S_SIZE_T(cbMT)));
// Note: Memory allocated on loader heap is zero filled
// memset(pMemory, 0, sizeof(ArrayClass) + cbMT);
ArrayClass* pClass = NULL;
if (pCanonMT == NULL)
{
pClass = ::new (pMemory) ArrayClass();
}
// Head of MethodTable memory (starts after ArrayClass), this points at the GCDesc stuff in front
// of a method table (if needed)
BYTE* pMTHead = pMemory + cbArrayClass + cbCGCDescData;
MethodTable* pMT = (MethodTable *) pMTHead;
// Allocate the private data block ("private" during runtime in the ngen'ed case).
pMT->AllocateAuxiliaryData(pAllocator, this, pamTracker, MethodTableStaticsFlags::None, static_cast<WORD>(numNonVirtualSlots));
pMT->SetLoaderAllocator(pAllocator);
pMT->SetModule(elemTypeHnd.GetModule());
pMT->GetAuxiliaryDataForWrite()->SetIsNotFullyLoadedForBuildMethodTable();
// Fill in pClass
if (pClass != NULL)
{
pClass->SetInternalCorElementType(arrayKind);
pClass->SetAttrClass (tdPublic | tdSerializable | tdSealed); // This class is public, serializable, sealed
pClass->SetRank (Rank);
pClass->SetMethodTable (pMT);
// Fill In the method table
pClass->SetNumMethods(static_cast<WORD>(numVirtuals + numNonVirtualSlots));
pClass->SetNumNonVirtualSlots(static_cast<WORD>(numNonVirtualSlots));
}
pMT->SetNumVirtuals(static_cast<WORD>(numVirtuals));
pMT->SetParentMethodTable(pParentClass);
// Method tables for arrays of generic type parameters are needed for type analysis.
// No instances will be created, so we can use 0 as element size.
DWORD dwComponentSize = CorTypeInfo::IsGenericVariable(elemType) ?
0 :
elemTypeHnd.GetSize();
if (elemType == ELEMENT_TYPE_VALUETYPE || elemType == ELEMENT_TYPE_VOID)
{
// The only way for dwComponentSize to be large is to be part of a value class. If this changes
// then the check will need to be moved outside valueclass check.
if(dwComponentSize > MAX_SIZE_FOR_VALUECLASS_IN_ARRAY) {
StackSString ssElemName;
elemTypeHnd.GetName(ssElemName);
elemTypeHnd.GetAssembly()->ThrowTypeLoadException(ssElemName.GetUTF8(), IDS_CLASSLOAD_VALUECLASSTOOLARGE);
}
}
if (pClass != NULL)
{
pMT->SetClass(pClass);
}
else
{
pMT->SetCanonicalMethodTable(pCanonMT);
}
pMT->SetIsArray(arrayKind);
pMT->SetArrayElementTypeHandle(elemTypeHnd);
_ASSERTE(FitsIn<WORD>(dwComponentSize));
pMT->SetComponentSize(static_cast<WORD>(dwComponentSize));
pMT->SetModule(elemTypeHnd.GetModule());
if (elemTypeHnd.ContainsGenericVariables())
pMT->SetContainsGenericVariables();
#ifdef FEATURE_TYPEEQUIVALENCE
if (elemTypeHnd.HasTypeEquivalence())
{
// propagate the type equivalence flag
pMT->SetHasTypeEquivalence();
}
#endif // FEATURE_TYPEEQUIVALENCE
pMT->SetClassInited();
// Set BaseSize to be size of non-data portion of the array
DWORD baseSize = ARRAYBASE_BASESIZE;
if (arrayKind == ELEMENT_TYPE_ARRAY)
baseSize += Rank*sizeof(DWORD)*2;
#if !defined(TARGET_64BIT) && (DATA_ALIGNMENT > 4)
if (dwComponentSize >= DATA_ALIGNMENT)
baseSize = (DWORD)ALIGN_UP(baseSize, DATA_ALIGNMENT);
#endif // !defined(TARGET_64BIT) && (DATA_ALIGNMENT > 4)
pMT->SetBaseSize(baseSize);
// Because of array method table persisting, we need to copy the map
for (unsigned index = 0; index < pParentClass->GetNumInterfaces(); ++index)
{
InterfaceInfo_t *pIntInfo = (InterfaceInfo_t *) (pMTHead + imapOffset + index * sizeof(InterfaceInfo_t));
pIntInfo->SetMethodTable((pParentClass->GetInterfaceMap() + index)->GetMethodTable());
}
pMT->SetInterfaceMap((WORD)pParentClass->GetNumInterfaces(), (InterfaceInfo_t *)(pMTHead + imapOffset));
// Copy down flags for these interfaces as well. This is simplified a bit since we know that System.Array
// only has a few interfaces and the flags will fit inline into the MethodTable's optional members.
_ASSERTE(MethodTable::GetExtraInterfaceInfoSize(pParentClass->GetNumInterfaces()) == 0);
pMT->InitializeExtraInterfaceInfo(NULL);
for (UINT32 i = 0; i < pParentClass->GetNumInterfaces(); i++)
{
if (pParentClass->IsInterfaceDeclaredOnClass(i))
pMT->SetInterfaceDeclaredOnClass(i);
}
// The type is sufficiently initialized for most general purpose accessor methods to work.
// Mark the type as restored to avoid asserts.
pMT->GetAuxiliaryDataForWrite()->SetIsRestoredForBuildArrayMethodTable();
{
// Fill out the vtable indirection slots
MethodTable::VtableIndirectionSlotIterator it = pMT->IterateVtableIndirectionSlots();
while (it.Next())
{
// Share the parent chunk
it.SetIndirectionSlot(pParentClass->GetVtableIndirections()[it.GetIndex()]);
}
}
#ifdef _DEBUG
StackSString debugName;
TypeString::AppendType(debugName, TypeHandle(pMT));
const char* pDebugNameUTF8 = debugName.GetUTF8();
S_SIZE_T safeLen = S_SIZE_T(strlen(pDebugNameUTF8))+S_SIZE_T(1);
if(safeLen.IsOverflow()) COMPlusThrowHR(COR_E_OVERFLOW);
size_t len = safeLen.Value();
char * name = (char*) pamTracker->Track(pAllocator->
GetHighFrequencyHeap()->
AllocMem(safeLen));
strcpy_s(name, len, pDebugNameUTF8);
if (pClass != NULL)
pClass->SetDebugClassName(name);
pMT->SetDebugClassName(name);
#endif // _DEBUG
if (pClass != NULL)
{
// Count the number of method descs we need so we can allocate chunks.
DWORD dwMethodDescs = numCtors
+ 3; // for rank specific Get, Set, Address
MethodDescChunk * pChunks = MethodDescChunk::CreateChunk(pAllocator->GetHighFrequencyHeap(),
dwMethodDescs, mcArray, FALSE /* fNonVtableSlot*/, FALSE /* fNativeCodeSlot */,
pMT, pamTracker);
pClass->SetChunks(pChunks);
MethodTable::IntroducedMethodIterator it(pMT);
DWORD dwMethodIndex = 0;
for (; it.IsValid(); it.Next())
{
ArrayMethodDesc* pNewMD = (ArrayMethodDesc *) it.GetMethodDesc();
_ASSERTE(pNewMD->GetClassification() == mcArray);
DWORD dwFuncRank;
DWORD dwFuncType;
if (dwMethodIndex < ArrayMethodDesc::ARRAY_FUNC_CTOR)
{
// Generate a new stand-alone, Rank Specific Get, Set and Address method.
dwFuncRank = Rank;
dwFuncType = dwMethodIndex;
}
else
{
if (arrayKind == ELEMENT_TYPE_SZARRAY)
{
// For SZARRAY arrays, set up multiple constructors.
dwFuncRank = 1 + (dwMethodIndex - ArrayMethodDesc::ARRAY_FUNC_CTOR);
}
else
{
// ELEMENT_TYPE_ARRAY has two constructors, one without lower bounds and one with lower bounds
_ASSERTE((dwMethodIndex == ArrayMethodDesc::ARRAY_FUNC_CTOR) || (dwMethodIndex == ArrayMethodDesc::ARRAY_FUNC_CTOR+1));
dwFuncRank = (dwMethodIndex == ArrayMethodDesc::ARRAY_FUNC_CTOR) ? Rank : 2 * Rank;
}
dwFuncType = ArrayMethodDesc::ARRAY_FUNC_CTOR;
}
PCCOR_SIGNATURE pSig;
DWORD cSig;
pClass->GenerateArrayAccessorCallSig(dwFuncRank, dwFuncType, &pSig, &cSig, pAllocator, pamTracker, FALSE);
pClass->InitArrayMethodDesc(pNewMD, pSig, cSig, numVirtuals + dwMethodIndex, pamTracker);
dwMethodIndex++;
}
_ASSERTE(dwMethodIndex == dwMethodDescs);
}
// Set up GC information
if (CorTypeInfo::IsObjRef(elemType) ||
((elemType == ELEMENT_TYPE_VALUETYPE) && pElemMT->IsAllGCPointers()))
{
pMT->SetContainsGCPointers();
// This array is all GC Pointers
CGCDesc::GetCGCDescFromMT(pMT)->Init( pMT, 1 );
CGCDescSeries* pSeries = CGCDesc::GetCGCDescFromMT(pMT)->GetHighestSeries();
int offsetToData = ArrayBase::GetDataPtrOffset(pMT);
// For arrays, the size is the negative of the BaseSize (the GC always adds the total
// size of the object, so what you end up with is the size of the data portion of the array)
pSeries->SetSeriesSize(-(SSIZE_T)(offsetToData + sizeof(size_t)));
pSeries->SetSeriesOffset(offsetToData);
}
else if (elemType == ELEMENT_TYPE_VALUETYPE)
{
// If it's an array of value classes, there is a different format for the GCDesc if it contains pointers
if (pElemMT->ContainsGCPointers())
{
pMT->SetContainsGCPointers();
CGCDescSeries* pElemSeries = CGCDesc::GetCGCDescFromMT(pElemMT)->GetHighestSeries();
// negative series has a special meaning, indicating a different form of GCDesc
SSIZE_T nSeries = (SSIZE_T) CGCDesc::GetCGCDescFromMT(pElemMT)->GetNumSeries();
CGCDesc::GetCGCDescFromMT(pMT)->InitValueClassSeries(pMT, nSeries);
CGCDescSeries* pSeries = CGCDesc::GetCGCDescFromMT(pMT)->GetHighestSeries();
#if _DEBUG
// GC series must be sorted by the offset
// we will validate that here just in case.
size_t prevOffset = pElemSeries[0].GetSeriesOffset();
for (int index = 1; index < nSeries; index++)
{
size_t offset = pElemSeries[-index].GetSeriesOffset();
_ASSERTE((offset - prevOffset) > 0);
prevOffset = offset;
}
#endif // _DEBUG
// Offset of the first pointer in the array
// This equals the offset of the first pointer if this were an array of entirely pointers, plus the offset of the
// first pointer in the value class
pSeries->SetSeriesOffset(ArrayBase::GetDataPtrOffset(pMT)
+ (pElemSeries[0].GetSeriesOffset()) - OBJECT_SIZE);
for (int index = 0; index < nSeries; index ++)
{
size_t numPtrsInBytes = pElemSeries[-index].GetSeriesSize()
+ pElemMT->GetBaseSize();
size_t currentOffset;
size_t skip;
currentOffset = pElemSeries[-index].GetSeriesOffset()+numPtrsInBytes;
if (index != nSeries-1)
{
skip = pElemSeries[-(index+1)].GetSeriesOffset()-currentOffset;
}
else if (index == 0)
{
skip = pElemMT->GetNumInstanceFieldBytes() - numPtrsInBytes;
}
else
{
skip = pElemSeries[0].GetSeriesOffset() + pElemMT->GetBaseSize()
- OBJECT_BASESIZE - currentOffset;
}
_ASSERTE(!"Module::CreateArrayMethodTable() - unaligned GC info" || IS_ALIGNED(skip, TARGET_POINTER_SIZE));
unsigned short NumPtrs = (unsigned short) (numPtrsInBytes / TARGET_POINTER_SIZE);
if(skip > MAX_SIZE_FOR_VALUECLASS_IN_ARRAY || numPtrsInBytes > MAX_PTRS_FOR_VALUECLASSS_IN_ARRAY) {
StackSString ssElemName;
elemTypeHnd.GetName(ssElemName);
elemTypeHnd.GetAssembly()->ThrowTypeLoadException(ssElemName.GetUTF8(),
IDS_CLASSLOAD_VALUECLASSTOOLARGE);
}
// pSeries->val_serie is a fixed sized array.
// Use pointer arithmetic instead of direct array access to avoid compilers, specifically GCC,
// to discover undefined behavior and generate unintended code when optimization is turned on.
val_serie_item *val_item = pSeries->val_serie - index;
val_item->set_val_serie_item (NumPtrs, (unsigned short)skip);
}
}
}
// If we get here we are assuming that there was no truncation. If this is not the case then
// an array whose base type is not a value class was created and was larger then 0xffff (a word)
_ASSERTE(dwComponentSize == pMT->GetComponentSize());
return(pMT);
} // Module::CreateArrayMethodTable
class ArrayOpLinker : public ILStubLinker
{
ILCodeStream * m_pCode;
ArrayMethodDesc * m_pMD;
SigTypeContext m_emptyContext;
public:
ArrayOpLinker(ArrayMethodDesc * pMD)
: ILStubLinker(pMD->GetModule(), pMD->GetSignature(), &m_emptyContext, pMD, (ILStubLinkerFlags)(ILSTUB_LINKER_FLAG_STUB_HAS_THIS | ILSTUB_LINKER_FLAG_TARGET_HAS_THIS))
{
m_pCode = NewCodeStream(kDispatch);
m_pMD = pMD;
}
void EmitStub()
{
MethodTable *pMT = m_pMD->GetMethodTable();
BOOL fHasLowerBounds = pMT->GetInternalCorElementType() == ELEMENT_TYPE_ARRAY;
DWORD dwTotalLocalNum = NewLocal(ELEMENT_TYPE_I4);
DWORD dwLengthLocalNum = NewLocal(ELEMENT_TYPE_I4);
mdToken tokRawData = GetToken(CoreLibBinder::GetField(FIELD__RAW_DATA__DATA));
ILCodeLabel * pRangeExceptionLabel = NewCodeLabel();
ILCodeLabel * pRangeExceptionLabel1 = NewCodeLabel();
ILCodeLabel * pCheckDone = NewCodeLabel();
ILCodeLabel * pNotSZArray = NewCodeLabel();
ILCodeLabel * pTypeMismatchExceptionLabel = NULL;
UINT rank = pMT->GetRank();
UINT firstIdx = 0;
UINT hiddenArgIdx = rank;
_ASSERTE(rank>0);
#ifndef TARGET_X86
if(m_pMD->GetArrayFuncIndex() == ArrayMethodDesc::ARRAY_FUNC_ADDRESS)
{
firstIdx = 1;
hiddenArgIdx = 0;
}
#endif
CorElementType sigElementType = pMT->GetArrayElementType();
if (CorTypeInfo::IsObjRef(sigElementType))
{
// Type Check
if(m_pMD->GetArrayFuncIndex() == ArrayMethodDesc::ARRAY_FUNC_SET)
{
ILCodeLabel * pTypeCheckOK = NewCodeLabel();
m_pCode->EmitLDARG(rank); // load value to store
m_pCode->EmitBRFALSE(pTypeCheckOK); //Storing NULL is OK
m_pCode->EmitLDARG(rank); // return param
m_pCode->EmitLDFLDA(tokRawData);
m_pCode->EmitLDC(Object::GetOffsetOfFirstField());
m_pCode->EmitSUB();
m_pCode->EmitLDIND_I(); // TypeHandle
m_pCode->EmitLoadThis();
m_pCode->EmitLDFLDA(tokRawData);
m_pCode->EmitLDC(Object::GetOffsetOfFirstField());
m_pCode->EmitSUB();
m_pCode->EmitLDIND_I(); // Array MT
m_pCode->EmitLDC(MethodTable::GetOffsetOfArrayElementTypeHandle());
m_pCode->EmitADD();
m_pCode->EmitLDIND_I();
m_pCode->EmitCEQ();
m_pCode->EmitBRTRUE(pTypeCheckOK); // Same type is OK
// Call type check helper
m_pCode->EmitLDARG(rank);
m_pCode->EmitLoadThis();
m_pCode->EmitCALL(METHOD__CASTHELPERS__ARRAYTYPECHECK,2,0);
m_pCode->EmitLabel(pTypeCheckOK);
}
else if(m_pMD->GetArrayFuncIndex() == ArrayMethodDesc::ARRAY_FUNC_ADDRESS)
{
// Check that the hidden param is same type
ILCodeLabel *pTypeCheckPassed = NewCodeLabel();
pTypeMismatchExceptionLabel = NewCodeLabel();
m_pCode->EmitLDARG(hiddenArgIdx); // hidden param
m_pCode->EmitBRFALSE(pTypeCheckPassed);
m_pCode->EmitLDARG(hiddenArgIdx);
m_pCode->EmitLoadThis();
m_pCode->EmitLDFLDA(tokRawData);
m_pCode->EmitLDC(Object::GetOffsetOfFirstField());
m_pCode->EmitSUB();
m_pCode->EmitLDIND_I(); // Array MT
m_pCode->EmitCEQ();
m_pCode->EmitBRFALSE(pTypeMismatchExceptionLabel); // throw exception if not same
m_pCode->EmitLabel(pTypeCheckPassed);
}
}
if(rank == 1 && fHasLowerBounds)
{
// check if the array is SZArray.
m_pCode->EmitLoadThis();
m_pCode->EmitLDFLDA(tokRawData);
m_pCode->EmitLDC(Object::GetOffsetOfFirstField());
m_pCode->EmitSUB();
m_pCode->EmitLDIND_I();
m_pCode->EmitLDC(MethodTable::GetOffsetOfFlags());
m_pCode->EmitADD();
m_pCode->EmitLDIND_I4();
m_pCode->EmitLDC(MethodTable::GetIfArrayThenSzArrayFlag());
m_pCode->EmitAND();
m_pCode->EmitBRFALSE(pNotSZArray); // goto multi-dimmArray code if not szarray
// it is SZArray
// bounds check
m_pCode->EmitLoadThis();
m_pCode->EmitLDFLDA(tokRawData);
m_pCode->EmitLDC(ArrayBase::GetOffsetOfNumComponents() - Object::GetOffsetOfFirstField());
m_pCode->EmitADD();
m_pCode->EmitLDIND_I4();
m_pCode->EmitLDARG(firstIdx);
m_pCode->EmitBLE_UN(pRangeExceptionLabel);
m_pCode->EmitLoadThis();
m_pCode->EmitLDFLDA(tokRawData);
m_pCode->EmitLDC(ArrayBase::GetBoundsOffset(pMT) - Object::GetOffsetOfFirstField());
m_pCode->EmitADD();
m_pCode->EmitLDARG(firstIdx);
m_pCode->EmitBR(pCheckDone);
m_pCode->EmitLabel(pNotSZArray);
}
for (UINT i = 0; i < rank; i++)
{
// Cache length
m_pCode->EmitLoadThis();
m_pCode->EmitLDFLDA(tokRawData);
m_pCode->EmitLDC((ArrayBase::GetBoundsOffset(pMT) - Object::GetOffsetOfFirstField()) + i*sizeof(DWORD));
m_pCode->EmitADD();
m_pCode->EmitLDIND_I4();
m_pCode->EmitSTLOC(dwLengthLocalNum);
// Fetch index
m_pCode->EmitLDARG(firstIdx + i);
if (fHasLowerBounds)
{
// Load lower bound
m_pCode->EmitLoadThis();
m_pCode->EmitLDFLDA(tokRawData);
m_pCode->EmitLDC((ArrayBase::GetLowerBoundsOffset(pMT) - Object::GetOffsetOfFirstField()) + i*sizeof(DWORD));
m_pCode->EmitADD();
m_pCode->EmitLDIND_I4();
// Subtract lower bound
m_pCode->EmitSUB();
}
// Compare with length
m_pCode->EmitDUP();
m_pCode->EmitLDLOC(dwLengthLocalNum);
m_pCode->EmitBGE_UN(pRangeExceptionLabel1);
// Add to the running total if we have one already
if (i > 0)
{
m_pCode->EmitLDLOC(dwTotalLocalNum);
m_pCode->EmitLDLOC(dwLengthLocalNum);
m_pCode->EmitMUL();
m_pCode->EmitADD();
}
m_pCode->EmitSTLOC(dwTotalLocalNum);
}
// Compute element address
m_pCode->EmitLoadThis();
m_pCode->EmitLDFLDA(tokRawData);
m_pCode->EmitLDC(ArrayBase::GetDataPtrOffset(pMT) - Object::GetOffsetOfFirstField());
m_pCode->EmitADD();
m_pCode->EmitLDLOC(dwTotalLocalNum);
m_pCode->EmitLabel(pCheckDone);
m_pCode->EmitCONV_U();
SIZE_T elemSize = pMT->GetComponentSize();
if (elemSize != 1)
{
m_pCode->EmitLDC(elemSize);
m_pCode->EmitMUL();
}
m_pCode->EmitADD();
LocalDesc elemType(pMT->GetArrayElementTypeHandle().GetInternalCorElementType());
switch (m_pMD->GetArrayFuncIndex())
{
case ArrayMethodDesc::ARRAY_FUNC_GET:
if(elemType.ElementType[0]==ELEMENT_TYPE_VALUETYPE)
{
m_pCode->EmitLDOBJ(GetToken(pMT->GetArrayElementTypeHandle()));
}
else
m_pCode->EmitLDIND_T(&elemType);
break;
case ArrayMethodDesc::ARRAY_FUNC_SET:
// Value to store into the array
m_pCode->EmitLDARG(rank);
if(elemType.ElementType[0]==ELEMENT_TYPE_VALUETYPE)
{
m_pCode->EmitSTOBJ(GetToken(pMT->GetArrayElementTypeHandle()));
}
else
m_pCode->EmitSTIND_T(&elemType);
break;
case ArrayMethodDesc::ARRAY_FUNC_ADDRESS:
break;
default:
_ASSERTE(!"Unknown ArrayFuncIndex");
}
m_pCode->EmitRET();
m_pCode->EmitLDC(0);
m_pCode->EmitLabel(pRangeExceptionLabel1); // Assumes that there is one "int" pushed on the stack
m_pCode->EmitPOP();
mdToken tokIndexOutOfRangeCtorExcep = GetToken((CoreLibBinder::GetException(kIndexOutOfRangeException))->GetDefaultConstructor());
m_pCode->EmitLabel(pRangeExceptionLabel);
m_pCode->EmitNEWOBJ(tokIndexOutOfRangeCtorExcep, 0);
m_pCode->EmitTHROW();
if(pTypeMismatchExceptionLabel != NULL)
{
mdToken tokTypeMismatchExcepCtor = GetToken((CoreLibBinder::GetException(kArrayTypeMismatchException))->GetDefaultConstructor());
m_pCode->EmitLabel(pTypeMismatchExceptionLabel);
m_pCode->EmitNEWOBJ(tokTypeMismatchExcepCtor, 0);
m_pCode->EmitTHROW();
}
}
};
Stub *GenerateArrayOpStub(ArrayMethodDesc* pMD)
{
STANDARD_VM_CONTRACT;
ArrayOpLinker sl(pMD);
sl.EmitStub();
PCCOR_SIGNATURE pSig;
DWORD cbSig;
AllocMemTracker amTracker;
if (pMD->GetArrayFuncIndex() == ArrayMethodDesc::ARRAY_FUNC_ADDRESS)
{
// The stub has to have signature with explicit hidden argument instead of CORINFO_CALLCONV_PARAMTYPE.
// Generate a new signature for the stub here.
((ArrayClass*)(pMD->GetMethodTable()->GetClass()))->GenerateArrayAccessorCallSig(pMD->GetMethodTable()->GetRank(),
ArrayMethodDesc::ARRAY_FUNC_ADDRESS,
&pSig,
&cbSig,
pMD->GetLoaderAllocator(),
&amTracker,
1);
}
else
{
pMD->GetSig(&pSig,&cbSig);
}
amTracker.SuppressRelease();
static const ILStubTypes stubTypes[3] = { ILSTUB_ARRAYOP_GET, ILSTUB_ARRAYOP_SET, ILSTUB_ARRAYOP_ADDRESS };
_ASSERTE(pMD->GetArrayFuncIndex() <= ARRAY_SIZE(stubTypes));
NDirectStubFlags arrayOpStubFlag = (NDirectStubFlags)stubTypes[pMD->GetArrayFuncIndex()];
MethodDesc * pStubMD = ILStubCache::CreateAndLinkNewILStubMethodDesc(pMD->GetLoaderAllocator(),
pMD->GetMethodTable(),
arrayOpStubFlag,
pMD->GetModule(),
pSig, cbSig,
NULL,
&sl);
return Stub::NewStub(JitILStub(pStubMD));
}
//---------------------------------------------------------------------
// This method returns TRUE if pInterfaceMT could be one of the interfaces
// that are implicitly implemented by SZArrays
BOOL IsImplicitInterfaceOfSZArray(MethodTable *pInterfaceMT)
{
LIMITED_METHOD_CONTRACT;
PRECONDITION(pInterfaceMT->IsInterface());
PRECONDITION(pInterfaceMT->HasInstantiation());
// Is target interface Anything<T> in CoreLib?
if (!pInterfaceMT->HasInstantiation() || !pInterfaceMT->GetModule()->IsSystem())
return FALSE;
unsigned rid = pInterfaceMT->GetTypeDefRid();
// Is target interface IList<T> or one of its ancestors, or IReadOnlyList<T>?
return (rid == CoreLibBinder::GetExistingClass(CLASS__ILISTGENERIC)->GetTypeDefRid() ||
rid == CoreLibBinder::GetExistingClass(CLASS__ICOLLECTIONGENERIC)->GetTypeDefRid() ||
rid == CoreLibBinder::GetExistingClass(CLASS__IENUMERABLEGENERIC)->GetTypeDefRid() ||
rid == CoreLibBinder::GetExistingClass(CLASS__IREADONLYCOLLECTIONGENERIC)->GetTypeDefRid() ||
rid == CoreLibBinder::GetExistingClass(CLASS__IREADONLYLISTGENERIC)->GetTypeDefRid());
}
//----------------------------------------------------------------------------------
// Calls to (IList<T>)(array).Meth are actually implemented by SZArrayHelper.Meth<T>
// This workaround exists for two reasons:
//
// - For working set reasons, we don't want insert these methods in the array hierarchy
// in the normal way.
// - For platform and devtime reasons, we still want to use the C# compiler to generate
// the method bodies.
//
// (Though it's questionable whether any devtime was saved.)
//
// This method takes care of the mapping between the two. Give it a method
// IList<T>.Meth, and it will return SZArrayHelper.Meth<T>.
//----------------------------------------------------------------------------------
MethodDesc* GetActualImplementationForArrayGenericIListOrIReadOnlyListMethod(MethodDesc *pItfcMeth, TypeHandle theT)
{
CONTRACTL
{
THROWS;
GC_TRIGGERS;
INJECT_FAULT(COMPlusThrowOM());
}
CONTRACTL_END
int slot = pItfcMeth->GetSlot();
// We need to pick the right starting method depending on the depth of the inheritance chain
static const BinderMethodID startingMethod[] = {
METHOD__SZARRAYHELPER__GETENUMERATOR, // First method of IEnumerable`1
METHOD__SZARRAYHELPER__GET_COUNT, // First method of ICollection`1/IReadOnlyCollection`1
METHOD__SZARRAYHELPER__GET_ITEM // First method of IList`1/IReadOnlyList`1
};
// Subtract one for the non-generic IEnumerable that the generic enumerable inherits from
unsigned int inheritanceDepth = pItfcMeth->GetMethodTable()->GetNumInterfaces() - 1;
PREFIX_ASSUME(0 <= inheritanceDepth && inheritanceDepth < ARRAY_SIZE(startingMethod));
MethodDesc *pGenericImplementor = CoreLibBinder::GetMethod((BinderMethodID)(startingMethod[inheritanceDepth] + slot));
// The most common reason for this assert is that the order of the SZArrayHelper methods in
// corelib.h does not match the order they are implemented on the generic interfaces.
_ASSERTE(pGenericImplementor == MemberLoader::FindMethodByName(g_pSZArrayHelperClass, pItfcMeth->GetName()));
// OPTIMIZATION: For any method other than GetEnumerator(), we can safely substitute
// "Object" for reference-type theT's. This causes fewer methods to be instantiated.
if (startingMethod[inheritanceDepth] != METHOD__SZARRAYHELPER__GETENUMERATOR &&
!theT.IsValueType())
{
theT = TypeHandle(g_pObjectClass);
}
MethodDesc *pActualImplementor = MethodDesc::FindOrCreateAssociatedMethodDesc(pGenericImplementor,
g_pSZArrayHelperClass,
FALSE,
Instantiation(&theT, 1),
FALSE // allowInstParam
);
_ASSERTE(pActualImplementor);
return pActualImplementor;
}