-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtest_array_object.py
341 lines (295 loc) · 11.9 KB
/
test_array_object.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import cmath
import math
from itertools import product
from typing import List, Sequence, Tuple, Union, get_args
import pytest
from hypothesis import assume, given, note
from hypothesis import strategies as st
from . import _array_module as xp
from . import dtype_helpers as dh
from . import hypothesis_helpers as hh
from . import pytest_helpers as ph
from . import shape_helpers as sh
from . import xps
from .typing import DataType, Index, Param, Scalar, ScalarType, Shape
def scalar_objects(
dtype: DataType, shape: Shape
) -> st.SearchStrategy[Union[Scalar, List[Scalar]]]:
"""Generates scalars or nested sequences which are valid for xp.asarray()"""
size = math.prod(shape)
return st.lists(hh.from_dtype(dtype), min_size=size, max_size=size).map(
lambda l: sh.reshape(l, shape)
)
def normalize_key(key: Index, shape: Shape) -> Tuple[Union[int, slice], ...]:
"""
Normalize an indexing key.
* If a non-tuple index, wrap as a tuple.
* Represent ellipsis as equivalent slices.
"""
_key = tuple(key) if isinstance(key, tuple) else (key,)
if Ellipsis in _key:
nonexpanding_key = tuple(i for i in _key if i is not None)
start_a = nonexpanding_key.index(Ellipsis)
stop_a = start_a + (len(shape) - (len(nonexpanding_key) - 1))
slices = tuple(slice(None) for _ in range(start_a, stop_a))
start_pos = _key.index(Ellipsis)
_key = _key[:start_pos] + slices + _key[start_pos + 1 :]
return _key
def get_indexed_axes_and_out_shape(
key: Tuple[Union[int, slice, None], ...], shape: Shape
) -> Tuple[Tuple[Sequence[int], ...], Shape]:
"""
From the (normalized) key and input shape, calculates:
* indexed_axes: For each dimension, the axes which the key indexes.
* out_shape: The resulting shape of indexing an array (of the input shape)
with the key.
"""
axes_indices = []
out_shape = []
a = 0
for i in key:
if i is None:
out_shape.append(1)
else:
side = shape[a]
if isinstance(i, int):
if i < 0:
i += side
axes_indices.append((i,))
else:
indices = range(side)[i]
axes_indices.append(indices)
out_shape.append(len(indices))
a += 1
return tuple(axes_indices), tuple(out_shape)
@given(shape=hh.shapes(), dtype=hh.all_dtypes, data=st.data())
def test_getitem(shape, dtype, data):
zero_sided = any(side == 0 for side in shape)
if zero_sided:
x = xp.zeros(shape, dtype=dtype)
else:
obj = data.draw(scalar_objects(dtype, shape), label="obj")
x = xp.asarray(obj, dtype=dtype)
note(f"{x=}")
key = data.draw(xps.indices(shape=shape, allow_newaxis=True), label="key")
out = x[key]
ph.assert_dtype("__getitem__", in_dtype=x.dtype, out_dtype=out.dtype)
_key = normalize_key(key, shape)
axes_indices, expected_shape = get_indexed_axes_and_out_shape(_key, shape)
ph.assert_shape("__getitem__", out_shape=out.shape, expected=expected_shape)
out_zero_sided = any(side == 0 for side in expected_shape)
if not zero_sided and not out_zero_sided:
out_obj = []
for idx in product(*axes_indices):
val = obj
for i in idx:
val = val[i]
out_obj.append(val)
out_obj = sh.reshape(out_obj, expected_shape)
expected = xp.asarray(out_obj, dtype=dtype)
ph.assert_array_elements("__getitem__", out=out, expected=expected)
@pytest.mark.unvectorized
@given(
shape=hh.shapes(),
dtypes=hh.oneway_promotable_dtypes(dh.all_dtypes),
data=st.data(),
)
def test_setitem(shape, dtypes, data):
zero_sided = any(side == 0 for side in shape)
if zero_sided:
x = xp.zeros(shape, dtype=dtypes.result_dtype)
else:
obj = data.draw(scalar_objects(dtypes.result_dtype, shape), label="obj")
x = xp.asarray(obj, dtype=dtypes.result_dtype)
note(f"{x=}")
key = data.draw(xps.indices(shape=shape), label="key")
_key = normalize_key(key, shape)
axes_indices, out_shape = get_indexed_axes_and_out_shape(_key, shape)
value_strat = hh.arrays(dtype=dtypes.result_dtype, shape=out_shape)
if out_shape == ():
# We can pass scalars if we're only indexing one element
value_strat |= hh.from_dtype(dtypes.result_dtype)
value = data.draw(value_strat, label="value")
res = xp.asarray(x, copy=True)
res[key] = value
ph.assert_dtype("__setitem__", in_dtype=x.dtype, out_dtype=res.dtype, repr_name="x.dtype")
ph.assert_shape("__setitem__", out_shape=res.shape, expected=x.shape, repr_name="x.shape")
f_res = sh.fmt_idx("x", key)
if isinstance(value, get_args(Scalar)):
msg = f"{f_res}={res[key]!r}, but should be {value=} [__setitem__()]"
if cmath.isnan(value):
assert xp.isnan(res[key]), msg
else:
assert res[key] == value, msg
else:
ph.assert_array_elements("__setitem__", out=res[key], expected=value, out_repr=f_res)
unaffected_indices = set(sh.ndindex(res.shape)) - set(product(*axes_indices))
for idx in unaffected_indices:
ph.assert_0d_equals(
"__setitem__",
x_repr=f"old {f_res}",
x_val=x[idx],
out_repr=f"modified {f_res}",
out_val=res[idx],
)
@pytest.mark.unvectorized
@pytest.mark.data_dependent_shapes
@given(hh.shapes(), st.data())
def test_getitem_masking(shape, data):
x = data.draw(hh.arrays(hh.all_dtypes, shape=shape), label="x")
mask_shapes = st.one_of(
st.sampled_from([x.shape, ()]),
st.lists(st.booleans(), min_size=x.ndim, max_size=x.ndim).map(
lambda l: tuple(s if b else 0 for s, b in zip(x.shape, l))
),
hh.shapes(),
)
key = data.draw(hh.arrays(dtype=xp.bool, shape=mask_shapes), label="key")
if key.ndim > x.ndim or not all(
ks in (xs, 0) for xs, ks in zip(x.shape, key.shape)
):
with pytest.raises(IndexError):
x[key]
return
out = x[key]
ph.assert_dtype("__getitem__", in_dtype=x.dtype, out_dtype=out.dtype)
if key.ndim == 0:
expected_shape = (1,) if key else (0,)
expected_shape += x.shape
else:
size = int(xp.sum(xp.astype(key, xp.uint8)))
expected_shape = (size,) + x.shape[key.ndim :]
ph.assert_shape("__getitem__", out_shape=out.shape, expected=expected_shape)
if not any(s == 0 for s in key.shape):
assume(key.ndim == x.ndim) # TODO: test key.ndim < x.ndim scenarios
out_indices = sh.ndindex(out.shape)
for x_idx in sh.ndindex(x.shape):
if key[x_idx]:
out_idx = next(out_indices)
ph.assert_0d_equals(
"__getitem__",
x_repr=f"x[{x_idx}]",
x_val=x[x_idx],
out_repr=f"out[{out_idx}]",
out_val=out[out_idx],
)
@pytest.mark.unvectorized
@given(hh.shapes(), st.data())
def test_setitem_masking(shape, data):
x = data.draw(hh.arrays(hh.all_dtypes, shape=shape), label="x")
key = data.draw(hh.arrays(dtype=xp.bool, shape=shape), label="key")
value = data.draw(
hh.from_dtype(x.dtype) | hh.arrays(dtype=x.dtype, shape=()), label="value"
)
res = xp.asarray(x, copy=True)
res[key] = value
ph.assert_dtype("__setitem__", in_dtype=x.dtype, out_dtype=res.dtype, repr_name="x.dtype")
ph.assert_shape("__setitem__", out_shape=res.shape, expected=x.shape, repr_name="x.dtype")
scalar_type = dh.get_scalar_type(x.dtype)
for idx in sh.ndindex(x.shape):
if key[idx]:
if isinstance(value, get_args(Scalar)):
ph.assert_scalar_equals(
"__setitem__",
type_=scalar_type,
idx=idx,
out=scalar_type(res[idx]),
expected=value,
repr_name="modified x",
)
else:
ph.assert_0d_equals(
"__setitem__",
x_repr="value",
x_val=value,
out_repr=f"modified x[{idx}]",
out_val=res[idx]
)
else:
ph.assert_0d_equals(
"__setitem__",
x_repr=f"old x[{idx}]",
x_val=x[idx],
out_repr=f"modified x[{idx}]",
out_val=res[idx]
)
# ### Fancy indexing ###
@pytest.mark.min_version("2024.12")
@pytest.mark.unvectorized
@pytest.mark.parametrize("idx_max_dims", [1, None])
@given(shape=hh.shapes(min_dims=2), data=st.data())
def test_getitem_arrays_and_ints_1(shape, data, idx_max_dims):
# min_dims=2 : test multidim `x` arrays
# index arrays are 1D for idx_max_dims=1 and multidim for idx_max_dims=None
_test_getitem_arrays_and_ints(shape, data, idx_max_dims)
@pytest.mark.min_version("2024.12")
@pytest.mark.unvectorized
@pytest.mark.parametrize("idx_max_dims", [1, None])
@given(shape=hh.shapes(min_dims=1), data=st.data())
def test_getitem_arrays_and_ints_2(shape, data, idx_max_dims):
# min_dims=1 : favor 1D `x` arrays
# index arrays are 1D for idx_max_dims=1 and multidim for idx_max_dims=None
_test_getitem_arrays_and_ints(shape, data, idx_max_dims)
def _test_getitem_arrays_and_ints(shape, data, idx_max_dims):
assume((len(shape) > 0) and all(sh > 0 for sh in shape))
dtype = xp.int32
obj = data.draw(scalar_objects(dtype, shape), label="obj")
x = xp.asarray(obj, dtype=dtype)
# draw a mix of ints and index arrays
arr_index = [data.draw(st.booleans()) for _ in range(len(shape))]
assume(sum(arr_index) > 0)
# draw shapes for index arrays: max_dims=1 ==> 1D indexing arrays ONLY
# max_dims=None ==> multidim indexing arrays
if sum(arr_index) > 0:
index_shapes = data.draw(
hh.mutually_broadcastable_shapes(
sum(arr_index), min_dims=1, max_dims=idx_max_dims, min_side=1
)
)
index_shapes = list(index_shapes)
# prepare the indexing tuple, a mix of integer indices and index arrays
key = []
for i,typ in enumerate(arr_index):
if typ:
# draw an array index
this_idx = data.draw(
xps.arrays(
dtype,
shape=index_shapes.pop(),
elements=st.integers(0, shape[i]-1)
)
)
key.append(this_idx)
else:
# draw an integer
key.append(data.draw(st.integers(-shape[i], shape[i]-1)))
key = tuple(key)
out = x[key]
arrays = [xp.asarray(k) for k in key]
bcast_shape = sh.broadcast_shapes(*[arr.shape for arr in arrays])
bcast_key = [xp.broadcast_to(arr, bcast_shape) for arr in arrays]
for idx in sh.ndindex(bcast_shape):
tpl = tuple(k[idx] for k in bcast_key)
assert out[idx] == x[tpl], f"failing at {idx = } w/ {key = }"
def make_scalar_casting_param(
method_name: str, dtype: DataType, stype: ScalarType
) -> Param:
dtype_name = dh.dtype_to_name[dtype]
return pytest.param(
method_name, dtype, stype, id=f"{method_name}({dtype_name})"
)
@pytest.mark.parametrize(
"method_name, dtype, stype",
[make_scalar_casting_param("__bool__", xp.bool, bool)]
+ [make_scalar_casting_param("__int__", n, int) for n in dh.all_int_dtypes]
+ [make_scalar_casting_param("__index__", n, int) for n in dh.all_int_dtypes]
+ [make_scalar_casting_param("__float__", n, float) for n in dh.real_float_dtypes],
)
@given(data=st.data())
def test_scalar_casting(method_name, dtype, stype, data):
x = data.draw(hh.arrays(dtype, shape=()), label="x")
method = getattr(x, method_name)
out = method()
assert isinstance(
out, stype
), f"{method_name}({x})={out}, which is not a {stype.__name__} scalar"