-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathappend-k-integers-with-minimal-sum.html
32 lines (25 loc) · 1.44 KB
/
append-k-integers-with-minimal-sum.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
<p>You are given an integer array <code>nums</code> and an integer <code>k</code>. Append <code>k</code> <strong>unique positive</strong> integers that do <strong>not</strong> appear in <code>nums</code> to <code>nums</code> such that the resulting total sum is <strong>minimum</strong>.</p>
<p>Return<em> the sum of the</em> <code>k</code> <em>integers appended to</em> <code>nums</code>.</p>
<p> </p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,4,25,10,25], k = 2
<strong>Output:</strong> 5
<strong>Explanation:</strong> The two unique positive integers that do not appear in nums which we append are 2 and 3.
The resulting sum of nums is 1 + 4 + 25 + 10 + 25 + 2 + 3 = 70, which is the minimum.
The sum of the two integers appended is 2 + 3 = 5, so we return 5.</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,6], k = 6
<strong>Output:</strong> 25
<strong>Explanation:</strong> The six unique positive integers that do not appear in nums which we append are 1, 2, 3, 4, 7, and 8.
The resulting sum of nums is 5 + 6 + 1 + 2 + 3 + 4 + 7 + 8 = 36, which is the minimum.
The sum of the six integers appended is 1 + 2 + 3 + 4 + 7 + 8 = 25, so we return 25.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= k <= 10<sup>8</sup></code></li>
</ul>