-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeautiful-towers-ii.html
60 lines (46 loc) · 2.7 KB
/
beautiful-towers-ii.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
<p>You are given a <strong>0-indexed</strong> array <code>maxHeights</code> of <code>n</code> integers.</p>
<p>You are tasked with building <code>n</code> towers in the coordinate line. The <code>i<sup>th</sup></code> tower is built at coordinate <code>i</code> and has a height of <code>heights[i]</code>.</p>
<p>A configuration of towers is <strong>beautiful</strong> if the following conditions hold:</p>
<ol>
<li><code>1 <= heights[i] <= maxHeights[i]</code></li>
<li><code>heights</code> is a <strong>mountain</strong> array.</li>
</ol>
<p>Array <code>heights</code> is a <strong>mountain</strong> if there exists an index <code>i</code> such that:</p>
<ul>
<li>For all <code>0 < j <= i</code>, <code>heights[j - 1] <= heights[j]</code></li>
<li>For all <code>i <= k < n - 1</code>, <code>heights[k + 1] <= heights[k]</code></li>
</ul>
<p>Return <em>the <strong>maximum possible sum of heights</strong> of a beautiful configuration of towers</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> maxHeights = [5,3,4,1,1]
<strong>Output:</strong> 13
<strong>Explanation:</strong> One beautiful configuration with a maximum sum is heights = [5,3,3,1,1]. This configuration is beautiful since:
- 1 <= heights[i] <= maxHeights[i]
- heights is a mountain of peak i = 0.
It can be shown that there exists no other beautiful configuration with a sum of heights greater than 13.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> maxHeights = [6,5,3,9,2,7]
<strong>Output:</strong> 22
<strong>Explanation:</strong> One beautiful configuration with a maximum sum is heights = [3,3,3,9,2,2]. This configuration is beautiful since:
- 1 <= heights[i] <= maxHeights[i]
- heights is a mountain of peak i = 3.
It can be shown that there exists no other beautiful configuration with a sum of heights greater than 22.</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> maxHeights = [3,2,5,5,2,3]
<strong>Output:</strong> 18
<strong>Explanation:</strong> One beautiful configuration with a maximum sum is heights = [2,2,5,5,2,2]. This configuration is beautiful since:
- 1 <= heights[i] <= maxHeights[i]
- heights is a mountain of peak i = 2.
Note that, for this configuration, i = 3 can also be considered a peak.
It can be shown that there exists no other beautiful configuration with a sum of heights greater than 18.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n == maxHeights <= 10<sup>5</sup></code></li>
<li><code>1 <= maxHeights[i] <= 10<sup>9</sup></code></li>
</ul>