-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathParseNode.h
2302 lines (1960 loc) · 76.3 KB
/
ParseNode.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef frontend_ParseNode_h
#define frontend_ParseNode_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include <iterator>
#include <stddef.h>
#include <stdint.h>
#include "frontend/FunctionSyntaxKind.h" // FunctionSyntaxKind
#include "frontend/Stencil.h"
#include "frontend/Token.h"
#include "js/RootingAPI.h"
#include "vm/BytecodeUtil.h"
#include "vm/Scope.h"
#include "vm/ScopeKind.h"
#include "vm/StringType.h"
// [SMDOC] ParseNode tree lifetime information
//
// - All the `ParseNode` instances MUST BE explicitly allocated in the context's
// `LifoAlloc`. This is typically implemented by the `FullParseHandler` or it
// can be reimplemented with a custom `new_`.
//
// - The tree is bulk-deallocated when the parser is deallocated. Consequently,
// references to a subtree MUST NOT exist once the parser has been
// deallocated.
//
// - This bulk-deallocation DOES NOT run destructors.
//
// - Instances of `LexicalScope::Data` MUST BE allocated as instances of
// `ParseNode`, in the same `LifoAlloc`. They are bulk-deallocated alongside
// the rest of the tree.
//
// - Instances of `JSAtom` used throughout the tree (including instances of
// `PropertyName`) MUST be kept alive by the parser. This is done through an
// instance of `AutoKeepAtoms` held by the parser.
//
// - Once the parser is deallocated, the `JSAtom` instances MAY be
// garbage-collected.
struct JSContext;
namespace JS {
class BigInt;
}
namespace js {
class GenericPrinter;
class LifoAlloc;
class RegExpObject;
namespace frontend {
class ParseContext;
struct CompilationInfo;
class ParserSharedBase;
class FullParseHandler;
class FunctionBox;
#define FOR_EACH_PARSE_NODE_KIND(F) \
F(EmptyStmt, NullaryNode) \
F(ExpressionStmt, UnaryNode) \
F(CommaExpr, ListNode) \
F(ConditionalExpr, ConditionalExpression) \
F(PropertyDefinition, PropertyDefinition) \
F(Shorthand, BinaryNode) \
F(PosExpr, UnaryNode) \
F(NegExpr, UnaryNode) \
F(PreIncrementExpr, UnaryNode) \
F(PostIncrementExpr, UnaryNode) \
F(PreDecrementExpr, UnaryNode) \
F(PostDecrementExpr, UnaryNode) \
F(PropertyNameExpr, NameNode) \
F(DotExpr, PropertyAccess) \
F(ElemExpr, PropertyByValue) \
F(OptionalDotExpr, OptionalPropertyAccess) \
F(OptionalChain, UnaryNode) \
F(OptionalElemExpr, OptionalPropertyByValue) \
F(OptionalCallExpr, BinaryNode) \
F(ArrayExpr, ListNode) \
F(Elision, NullaryNode) \
F(StatementList, ListNode) \
F(LabelStmt, LabeledStatement) \
F(ObjectExpr, ListNode) \
F(CallExpr, BinaryNode) \
F(Arguments, ListNode) \
F(Name, NameNode) \
F(ObjectPropertyName, NameNode) \
F(PrivateName, NameNode) \
F(ComputedName, UnaryNode) \
F(NumberExpr, NumericLiteral) \
F(BigIntExpr, BigIntLiteral) \
F(StringExpr, NameNode) \
F(TemplateStringListExpr, ListNode) \
F(TemplateStringExpr, NameNode) \
F(TaggedTemplateExpr, BinaryNode) \
F(CallSiteObj, CallSiteNode) \
F(RegExpExpr, RegExpLiteral) \
F(TrueExpr, BooleanLiteral) \
F(FalseExpr, BooleanLiteral) \
F(NullExpr, NullLiteral) \
F(RawUndefinedExpr, RawUndefinedLiteral) \
F(ThisExpr, UnaryNode) \
F(Function, FunctionNode) \
F(Module, ModuleNode) \
F(IfStmt, TernaryNode) \
F(SwitchStmt, SwitchStatement) \
F(Case, CaseClause) \
F(WhileStmt, BinaryNode) \
F(DoWhileStmt, BinaryNode) \
F(ForStmt, ForNode) \
F(BreakStmt, BreakStatement) \
F(ContinueStmt, ContinueStatement) \
F(VarStmt, ListNode) \
F(ConstDecl, ListNode) \
F(WithStmt, BinaryNode) \
F(ReturnStmt, UnaryNode) \
F(NewExpr, BinaryNode) \
/* Delete operations. These must be sequential. */ \
F(DeleteNameExpr, UnaryNode) \
F(DeletePropExpr, UnaryNode) \
F(DeleteElemExpr, UnaryNode) \
F(DeleteOptionalChainExpr, UnaryNode) \
F(DeleteExpr, UnaryNode) \
F(TryStmt, TernaryNode) \
F(Catch, BinaryNode) \
F(ThrowStmt, UnaryNode) \
F(DebuggerStmt, DebuggerStatement) \
F(Generator, NullaryNode) \
F(InitialYield, UnaryNode) \
F(YieldExpr, UnaryNode) \
F(YieldStarExpr, UnaryNode) \
F(LexicalScope, LexicalScopeNode) \
F(LetDecl, ListNode) \
F(ImportDecl, BinaryNode) \
F(ImportSpecList, ListNode) \
F(ImportSpec, BinaryNode) \
F(ExportStmt, UnaryNode) \
F(ExportFromStmt, BinaryNode) \
F(ExportDefaultStmt, BinaryNode) \
F(ExportSpecList, ListNode) \
F(ExportSpec, BinaryNode) \
F(ExportBatchSpecStmt, NullaryNode) \
F(ForIn, TernaryNode) \
F(ForOf, TernaryNode) \
F(ForHead, TernaryNode) \
F(ParamsBody, ListNode) \
F(Spread, UnaryNode) \
F(MutateProto, UnaryNode) \
F(ClassDecl, ClassNode) \
F(ClassMethod, ClassMethod) \
F(ClassField, ClassField) \
F(ClassMemberList, ListNode) \
F(ClassNames, ClassNames) \
F(NewTargetExpr, BinaryNode) \
F(PosHolder, NullaryNode) \
F(SuperBase, UnaryNode) \
F(SuperCallExpr, BinaryNode) \
F(SetThis, BinaryNode) \
F(ImportMetaExpr, BinaryNode) \
F(CallImportExpr, BinaryNode) \
F(InitExpr, BinaryNode) \
\
/* Unary operators. */ \
F(TypeOfNameExpr, UnaryNode) \
F(TypeOfExpr, UnaryNode) \
F(VoidExpr, UnaryNode) \
F(NotExpr, UnaryNode) \
F(BitNotExpr, UnaryNode) \
F(AwaitExpr, UnaryNode) \
\
/* \
* Binary operators. \
* This list must be kept in the same order in several places: \
* - The binary operators in ParseNode.h \
* - the binary operators in TokenKind.h \
* - the precedence list in Parser.cpp \
* - the JSOp code list in BytecodeEmitter.cpp \
*/ \
F(PipelineExpr, ListNode) \
F(CoalesceExpr, ListNode) \
F(OrExpr, ListNode) \
F(AndExpr, ListNode) \
F(BitOrExpr, ListNode) \
F(BitXorExpr, ListNode) \
F(BitAndExpr, ListNode) \
F(StrictEqExpr, ListNode) \
F(EqExpr, ListNode) \
F(StrictNeExpr, ListNode) \
F(NeExpr, ListNode) \
F(LtExpr, ListNode) \
F(LeExpr, ListNode) \
F(GtExpr, ListNode) \
F(GeExpr, ListNode) \
F(InstanceOfExpr, ListNode) \
F(InExpr, ListNode) \
F(LshExpr, ListNode) \
F(RshExpr, ListNode) \
F(UrshExpr, ListNode) \
F(AddExpr, ListNode) \
F(SubExpr, ListNode) \
F(MulExpr, ListNode) \
F(DivExpr, ListNode) \
F(ModExpr, ListNode) \
F(PowExpr, ListNode) \
\
/* Assignment operators (= += -= etc.). */ \
/* AssignmentNode::test assumes all these are consecutive. */ \
F(AssignExpr, AssignmentNode) \
F(AddAssignExpr, AssignmentNode) \
F(SubAssignExpr, AssignmentNode) \
F(CoalesceAssignExpr, AssignmentNode) \
F(OrAssignExpr, AssignmentNode) \
F(AndAssignExpr, AssignmentNode) \
F(BitOrAssignExpr, AssignmentNode) \
F(BitXorAssignExpr, AssignmentNode) \
F(BitAndAssignExpr, AssignmentNode) \
F(LshAssignExpr, AssignmentNode) \
F(RshAssignExpr, AssignmentNode) \
F(UrshAssignExpr, AssignmentNode) \
F(MulAssignExpr, AssignmentNode) \
F(DivAssignExpr, AssignmentNode) \
F(ModAssignExpr, AssignmentNode) \
F(PowAssignExpr, AssignmentNode)
/*
* Parsing builds a tree of nodes that directs code generation. This tree is
* not a concrete syntax tree in all respects (for example, || and && are left
* associative, but (A && B && C) translates into the right-associated tree
* <A && <B && C>> so that code generation can emit a left-associative branch
* around <B && C> when A is false). Nodes are labeled by kind.
*
* The long comment after this enum block describes the kinds in detail.
*/
enum class ParseNodeKind : uint16_t {
// These constants start at 1001, the better to catch
LastUnused = 1000,
#define EMIT_ENUM(name, _type) name,
FOR_EACH_PARSE_NODE_KIND(EMIT_ENUM)
#undef EMIT_ENUM
Limit,
Start = LastUnused + 1,
BinOpFirst = ParseNodeKind::PipelineExpr,
BinOpLast = ParseNodeKind::PowExpr,
AssignmentStart = ParseNodeKind::AssignExpr,
AssignmentLast = ParseNodeKind::PowAssignExpr,
};
inline bool IsDeleteKind(ParseNodeKind kind) {
return ParseNodeKind::DeleteNameExpr <= kind &&
kind <= ParseNodeKind::DeleteExpr;
}
inline bool IsTypeofKind(ParseNodeKind kind) {
return ParseNodeKind::TypeOfNameExpr <= kind &&
kind <= ParseNodeKind::TypeOfExpr;
}
/*
* <Definitions>
* Function (FunctionNode)
* funbox: ptr to js::FunctionBox
* body: ParamsBody or null for lazily-parsed function, ordinarily;
* ParseNodeKind::LexicalScope for implicit function in genexpr
* syntaxKind: the syntax of the function
* ParamsBody (ListNode)
* head: list of formal parameters with
* * Name node with non-empty name for SingleNameBinding without
* Initializer
* * AssignExpr node for SingleNameBinding with Initializer
* * Name node with empty name for destructuring
* expr: Array or Object for BindingPattern without
* Initializer, Assign for BindingPattern with
* Initializer
* followed by either:
* * StatementList node for function body statements
* * ReturnStmt for expression closure
* count: number of formal parameters + 1
* Spread (UnaryNode)
* kid: expression being spread
* ClassDecl (ClassNode)
* kid1: ClassNames for class name. can be null for anonymous class.
* kid2: expression after `extends`. null if no expression
* kid3: either of
* * ClassMemberList, if anonymous class
* * LexicalScopeNode which contains ClassMemberList as scopeBody,
* if named class
* ClassNames (ClassNames)
* left: Name node for outer binding, or null if the class is an expression
* that doesn't create an outer binding
* right: Name node for inner binding
* ClassMemberList (ListNode)
* head: list of N ClassMethod or ClassField nodes
* count: N >= 0
* ClassMethod (ClassMethod)
* name: propertyName
* method: methodDefinition
* Module (ModuleNode)
* body: statement list of the module
*
* <Statements>
* StatementList (ListNode)
* head: list of N statements
* count: N >= 0
* IfStmt (TernaryNode)
* kid1: cond
* kid2: then
* kid3: else or null
* SwitchStmt (SwitchStatement)
* left: discriminant
* right: LexicalScope node that contains the list of Case nodes, with at
* most one default node.
* hasDefault: true if there's a default case
* Case (CaseClause)
* left: case-expression if CaseClause, or null if DefaultClause
* right: StatementList node for this case's statements
* WhileStmt (BinaryNode)
* left: cond
* right: body
* DoWhileStmt (BinaryNode)
* left: body
* right: cond
* ForStmt (ForNode)
* left: one of
* * ForIn: for (x in y) ...
* * ForOf: for (x of x) ...
* * ForHead: for (;;) ...
* right: body
* ForIn (TernaryNode)
* kid1: declaration or expression to left of 'in'
* kid2: null
* kid3: object expr to right of 'in'
* ForOf (TernaryNode)
* kid1: declaration or expression to left of 'of'
* kid2: null
* kid3: expr to right of 'of'
* ForHead (TernaryNode)
* kid1: init expr before first ';' or nullptr
* kid2: cond expr before second ';' or nullptr
* kid3: update expr after second ';' or nullptr
* ThrowStmt (UnaryNode)
* kid: thrown exception
* TryStmt (TernaryNode)
* kid1: try block
* kid2: null or LexicalScope for catch-block with scopeBody pointing to a
* Catch node
* kid3: null or finally block
* Catch (BinaryNode)
* left: Name, Array, or Object catch var node
* (Array or Object if destructuring),
* or null if optional catch binding
* right: catch block statements
* BreakStmt (BreakStatement)
* label: label or null
* ContinueStmt (ContinueStatement)
* label: label or null
* WithStmt (BinaryNode)
* left: head expr
* right: body
* VarStmt, LetDecl, ConstDecl (ListNode)
* head: list of N Name or AssignExpr nodes
* each name node has either
* atom: variable name
* expr: initializer or null
* or
* atom: variable name
* each assignment node has
* left: pattern
* right: initializer
* count: N > 0
* ReturnStmt (UnaryNode)
* kid: returned expression, or null if none
* ExpressionStmt (UnaryNode)
* kid: expr
* EmptyStmt (NullaryNode)
* (no fields)
* LabelStmt (LabeledStatement)
* atom: label
* expr: labeled statement
* ImportDecl (BinaryNode)
* left: ImportSpecList import specifiers
* right: String module specifier
* ImportSpecList (ListNode)
* head: list of N ImportSpec nodes
* count: N >= 0 (N = 0 for `import {} from ...`)
* ImportSpec (BinaryNode)
* left: import name
* right: local binding name
* ExportStmt (UnaryNode)
* kid: declaration expression
* ExportFromStmt (BinaryNode)
* left: ExportSpecList export specifiers
* right: String module specifier
* ExportSpecList (ListNode)
* head: list of N ExportSpec nodes
* count: N >= 0 (N = 0 for `export {}`)
* ExportSpec (BinaryNode)
* left: local binding name
* right: export name
* ExportDefaultStmt (BinaryNode)
* left: export default declaration or expression
* right: Name node for assignment
*
* <Expressions>
* The `Expr` suffix is used for nodes that can appear anywhere an expression
* could appear. It is not used on a few weird kinds like Arguments and
* CallSiteObj that are always the child node of an expression node, but which
* can't stand alone.
*
* All left-associated binary trees of the same type are optimized into lists
* to avoid recursion when processing expression chains.
*
* CommaExpr (ListNode)
* head: list of N comma-separated exprs
* count: N >= 2
* AssignExpr (BinaryNode)
* left: target of assignment
* right: value to assign
* AddAssignExpr, SubAssignExpr, CoalesceAssignExpr, OrAssignExpr,
* AndAssignExpr, BitOrAssignExpr, BitXorAssignExpr, BitAndAssignExpr,
* LshAssignExpr, RshAssignExpr, UrshAssignExpr, MulAssignExpr, DivAssignExpr,
* ModAssignExpr, PowAssignExpr (AssignmentNode)
* left: target of assignment
* right: value to assign
* ConditionalExpr (ConditionalExpression)
* (cond ? thenExpr : elseExpr)
* kid1: cond
* kid2: thenExpr
* kid3: elseExpr
* PipelineExpr, CoalesceExpr, OrExpr, AndExpr, BitOrExpr, BitXorExpr,
* BitAndExpr, StrictEqExpr, EqExpr, StrictNeExpr, NeExpr, LtExpr, LeExpr,
* GtExpr, GeExpr, InstanceOfExpr, InExpr, LshExpr, RshExpr, UrshExpr, AddExpr,
* SubExpr, MulExpr, DivExpr, ModExpr, PowExpr (ListNode)
* head: list of N subexpressions
* All of these operators are left-associative except Pow which is
* right-associative, but still forms a list (see comments in
* ParseNode::appendOrCreateList).
* count: N >= 2
* PosExpr, NegExpr, VoidExpr, NotExpr, BitNotExpr, TypeOfNameExpr,
* TypeOfExpr (UnaryNode)
* kid: unary expr
* PreIncrementExpr, PostIncrementExpr, PreDecrementExpr,
* PostDecrementExpr (UnaryNode)
* kid: member expr
* NewExpr (BinaryNode)
* left: ctor expression on the left of the '('
* right: Arguments
* DeleteNameExpr, DeletePropExpr, DeleteElemExpr, DeleteExpr (UnaryNode)
* kid: expression that's evaluated, then the overall delete evaluates to
* true; can't be a kind for a more-specific ParseNodeKind::Delete*
* unless constant folding (or a similar parse tree manipulation) has
* occurred
* * DeleteNameExpr: Name expr
* * DeletePropExpr: Dot expr
* * DeleteElemExpr: Elem expr
* * DeleteOptionalChainExpr: Member expr
* * DeleteExpr: Member expr
* DeleteOptionalChainExpr (UnaryNode)
* kid: expression that's evaluated, then the overall delete evaluates to
* true; If constant folding occurs, Elem expr may become Dot expr.
* OptionalElemExpr does not get folded into OptionalDot.
* OptionalChain (UnaryNode)
* kid: expression that is evaluated. Contains optional nodes such as
* OptionalElemExpr, OptionalDotExpr, and OptionalCall, which
* shortcircuit and return Undefined without evaluating the rest of the
* expression of the node is nullish. Also can contain nodes such as
* DotExpr, ElemExpr, NameExpr CallExpr, etc. These are evaluated
* normally.
* * OptionalDotExpr: Dot expr with jump
* * OptionalElemExpr: Elem expr with jump
* * OptionalCallExpr: Call expr with jump
* * DotExpr: Dot expr without jump
* * ElemExpr: Elem expr without jump
* * CallExpr: Call expr without jump
* PropertyNameExpr (NameNode)
* atom: property name being accessed
* DotExpr (PropertyAccess)
* left: MEMBER expr to left of '.'
* right: PropertyName to right of '.'
* ElemExpr (PropertyByValue)
* left: MEMBER expr to left of '['
* right: expr between '[' and ']'
* CallExpr (BinaryNode)
* left: callee expression on the left of the '('
* right: Arguments
* Arguments (ListNode)
* head: list of arg1, arg2, ... argN
* count: N >= 0
* ArrayExpr (ListNode)
* head: list of N array element expressions
* holes ([,,]) are represented by Elision nodes,
* spread elements ([...X]) are represented by Spread nodes
* count: N >= 0
* ObjectExpr (ListNode)
* head: list of N nodes, each item is one of:
* * MutateProto
* * PropertyDefinition
* * Shorthand
* * Spread
* count: N >= 0
* PropertyDefinition (PropertyDefinition)
* key-value pair in object initializer or destructuring lhs
* left: property id
* right: value
* Shorthand (BinaryNode)
* Same fields as PropertyDefinition. This is used for object literal
* properties using shorthand ({x}).
* ComputedName (UnaryNode)
* ES6 ComputedPropertyName.
* kid: the AssignmentExpression inside the square brackets
* Name (NameNode)
* atom: name, or object atom
* StringExpr (NameNode)
* atom: string
* TemplateStringListExpr (ListNode)
* head: list of alternating expr and template strings
* TemplateString [, expression, TemplateString]+
* there's at least one expression. If the template literal contains
* no ${}-delimited expression, it's parsed as a single TemplateString
* TemplateStringExpr (NameNode)
* atom: template string atom
* TaggedTemplateExpr (BinaryNode)
* left: tag expression
* right: Arguments, with the first being the call site object, then
* arg1, arg2, ... argN
* CallSiteObj (CallSiteNode)
* head: an Array of raw TemplateString, then corresponding cooked
* TemplateString nodes
* Array [, cooked TemplateString]+
* where the Array is
* [raw TemplateString]+
* RegExpExpr (RegExpLiteral)
* regexp: RegExp model object
* NumberExpr (NumericLiteral)
* value: double value of numeric literal
* BigIntExpr (BigIntLiteral)
* compilationInfo: script compilation struct
* index: index into the script compilation's |bigIntData| vector
* TrueExpr, FalseExpr (BooleanLiteral)
* NullExpr (NullLiteral)
* RawUndefinedExpr (RawUndefinedLiteral)
*
* ThisExpr (UnaryNode)
* kid: '.this' Name if function `this`, else nullptr
* SuperBase (UnaryNode)
* kid: '.this' Name
* SuperCallExpr (BinaryNode)
* left: SuperBase
* right: Arguments
* SetThis (BinaryNode)
* left: '.this' Name
* right: SuperCall
*
* LexicalScope (LexicalScopeNode)
* scopeBindings: scope bindings
* scopeBody: scope body
* Generator (NullaryNode)
* InitialYield (UnaryNode)
* kid: generator object
* YieldExpr, YieldStarExpr, AwaitExpr (UnaryNode)
* kid: expr or null
*/
// FIXME: Remove `*Type` (bug 1489008)
#define FOR_EACH_PARSENODE_SUBCLASS(MACRO) \
MACRO(BinaryNode, BinaryNodeType, asBinary) \
MACRO(AssignmentNode, AssignmentNodeType, asAssignment) \
MACRO(CaseClause, CaseClauseType, asCaseClause) \
MACRO(ClassMethod, ClassMethodType, asClassMethod) \
MACRO(ClassField, ClassFieldType, asClassField) \
MACRO(PropertyDefinition, PropertyDefinitionType, asPropertyDefinition) \
MACRO(ClassNames, ClassNamesType, asClassNames) \
MACRO(ForNode, ForNodeType, asFor) \
MACRO(PropertyAccess, PropertyAccessType, asPropertyAccess) \
MACRO(PropertyByValue, PropertyByValueType, asPropertyByValue) \
MACRO(OptionalPropertyAccess, OptionalPropertyAccessType, \
asOptionalPropertyAccess) \
MACRO(OptionalPropertyByValue, OptionalPropertyByValueType, \
OptionalasPropertyByValue) \
MACRO(SwitchStatement, SwitchStatementType, asSwitchStatement) \
\
MACRO(FunctionNode, FunctionNodeType, asFunction) \
MACRO(ModuleNode, ModuleNodeType, asModule) \
\
MACRO(LexicalScopeNode, LexicalScopeNodeType, asLexicalScope) \
\
MACRO(ListNode, ListNodeType, asList) \
MACRO(CallSiteNode, CallSiteNodeType, asCallSite) \
MACRO(CallNode, CallNodeType, asCallNode) \
MACRO(CallNode, OptionalCallNodeType, asOptionalCallNode) \
\
MACRO(LoopControlStatement, LoopControlStatementType, \
asLoopControlStatement) \
MACRO(BreakStatement, BreakStatementType, asBreakStatement) \
MACRO(ContinueStatement, ContinueStatementType, asContinueStatement) \
\
MACRO(NameNode, NameNodeType, asName) \
MACRO(LabeledStatement, LabeledStatementType, asLabeledStatement) \
\
MACRO(NullaryNode, NullaryNodeType, asNullary) \
MACRO(BooleanLiteral, BooleanLiteralType, asBooleanLiteral) \
MACRO(DebuggerStatement, DebuggerStatementType, asDebuggerStatement) \
MACRO(NullLiteral, NullLiteralType, asNullLiteral) \
MACRO(RawUndefinedLiteral, RawUndefinedLiteralType, asRawUndefinedLiteral) \
\
MACRO(NumericLiteral, NumericLiteralType, asNumericLiteral) \
MACRO(BigIntLiteral, BigIntLiteralType, asBigIntLiteral) \
\
MACRO(RegExpLiteral, RegExpLiteralType, asRegExpLiteral) \
\
MACRO(TernaryNode, TernaryNodeType, asTernary) \
MACRO(ClassNode, ClassNodeType, asClass) \
MACRO(ConditionalExpression, ConditionalExpressionType, \
asConditionalExpression) \
MACRO(TryNode, TryNodeType, asTry) \
\
MACRO(UnaryNode, UnaryNodeType, asUnary) \
MACRO(ThisLiteral, ThisLiteralType, asThisLiteral)
#define DECLARE_CLASS(typeName, longTypeName, asMethodName) class typeName;
FOR_EACH_PARSENODE_SUBCLASS(DECLARE_CLASS)
#undef DECLARE_CLASS
enum class AccessorType { None, Getter, Setter };
static inline bool IsConstructorKind(FunctionSyntaxKind kind) {
return kind == FunctionSyntaxKind::ClassConstructor ||
kind == FunctionSyntaxKind::DerivedClassConstructor;
}
static inline bool IsMethodDefinitionKind(FunctionSyntaxKind kind) {
return IsConstructorKind(kind) || kind == FunctionSyntaxKind::Method ||
kind == FunctionSyntaxKind::FieldInitializer ||
kind == FunctionSyntaxKind::Getter ||
kind == FunctionSyntaxKind::Setter;
}
// To help diagnose sporadic crashes in the frontend, a few assertions are
// enabled in early beta builds. (Most are not; those still use MOZ_ASSERT.)
// See bug 1547561.
#if defined(EARLY_BETA_OR_EARLIER)
# define JS_PARSE_NODE_ASSERT MOZ_RELEASE_ASSERT
#else
# define JS_PARSE_NODE_ASSERT MOZ_ASSERT
#endif
class ParseNode {
const ParseNodeKind pn_type; /* ParseNodeKind::PNK_* type */
bool pn_parens : 1; /* this expr was enclosed in parens */
bool pn_rhs_anon_fun : 1; /* this expr is anonymous function or class that
* is a direct RHS of ParseNodeKind::Assign or
* ParseNodeKind::PropertyDefinition of property,
* that needs SetFunctionName. */
ParseNode(const ParseNode& other) = delete;
void operator=(const ParseNode& other) = delete;
public:
explicit ParseNode(ParseNodeKind kind)
: pn_type(kind),
pn_parens(false),
pn_rhs_anon_fun(false),
pn_pos(0, 0),
pn_next(nullptr) {
JS_PARSE_NODE_ASSERT(ParseNodeKind::Start <= kind);
JS_PARSE_NODE_ASSERT(kind < ParseNodeKind::Limit);
}
ParseNode(ParseNodeKind kind, const TokenPos& pos)
: pn_type(kind),
pn_parens(false),
pn_rhs_anon_fun(false),
pn_pos(pos),
pn_next(nullptr) {
JS_PARSE_NODE_ASSERT(ParseNodeKind::Start <= kind);
JS_PARSE_NODE_ASSERT(kind < ParseNodeKind::Limit);
}
ParseNodeKind getKind() const {
JS_PARSE_NODE_ASSERT(ParseNodeKind::Start <= pn_type);
JS_PARSE_NODE_ASSERT(pn_type < ParseNodeKind::Limit);
return pn_type;
}
bool isKind(ParseNodeKind kind) const { return getKind() == kind; }
protected:
size_t getKindAsIndex() const {
return size_t(getKind()) - size_t(ParseNodeKind::Start);
}
// Used to implement test() on a few ParseNodes efficiently.
// (This enum doesn't fully reflect the ParseNode class hierarchy,
// so don't use it for anything else.)
enum class TypeCode : uint8_t {
Nullary,
Unary,
Binary,
Ternary,
List,
Name,
Other
};
// typeCodeTable[getKindAsIndex()] is the type code of a ParseNode of kind
// pnk.
static const TypeCode typeCodeTable[];
private:
#ifdef DEBUG
static const size_t sizeTable[];
#endif
public:
TypeCode typeCode() const { return typeCodeTable[getKindAsIndex()]; }
bool isBinaryOperation() const {
ParseNodeKind kind = getKind();
return ParseNodeKind::BinOpFirst <= kind &&
kind <= ParseNodeKind::BinOpLast;
}
inline bool isName(PropertyName* name) const;
/* Boolean attributes. */
bool isInParens() const { return pn_parens; }
bool isLikelyIIFE() const { return isInParens(); }
void setInParens(bool enabled) { pn_parens = enabled; }
bool isDirectRHSAnonFunction() const { return pn_rhs_anon_fun; }
void setDirectRHSAnonFunction(bool enabled) { pn_rhs_anon_fun = enabled; }
TokenPos pn_pos; /* two 16-bit pairs here, for 64 bits */
ParseNode* pn_next; /* intrinsic link in parent PN_LIST */
public:
/*
* If |left| is a list of the given kind/left-associative op, append
* |right| to it and return |left|. Otherwise return a [left, right] list.
*/
static ParseNode* appendOrCreateList(ParseNodeKind kind, ParseNode* left,
ParseNode* right,
FullParseHandler* handler,
ParseContext* pc);
/* True if pn is a parsenode representing a literal constant. */
bool isLiteral() const {
return isKind(ParseNodeKind::NumberExpr) ||
isKind(ParseNodeKind::BigIntExpr) ||
isKind(ParseNodeKind::StringExpr) ||
isKind(ParseNodeKind::TrueExpr) ||
isKind(ParseNodeKind::FalseExpr) ||
isKind(ParseNodeKind::NullExpr) ||
isKind(ParseNodeKind::RawUndefinedExpr);
}
// True iff this is a for-in/of loop variable declaration (var/let/const).
inline bool isForLoopDeclaration() const;
inline bool isConstant();
template <class NodeType>
inline bool is() const {
return NodeType::test(*this);
}
/* Casting operations. */
template <class NodeType>
inline NodeType& as() {
MOZ_ASSERT(NodeType::test(*this));
return *static_cast<NodeType*>(this);
}
template <class NodeType>
inline const NodeType& as() const {
MOZ_ASSERT(NodeType::test(*this));
return *static_cast<const NodeType*>(this);
}
#ifdef DEBUG
// Debugger-friendly stderr printer.
void dump();
void dump(GenericPrinter& out);
void dump(GenericPrinter& out, int indent);
// The size of this node, in bytes.
size_t size() const { return sizeTable[getKindAsIndex()]; }
#endif
};
// Remove a ParseNode, **pnp, from a parse tree, putting another ParseNode,
// *pn, in its place.
//
// pnp points to a ParseNode pointer. This must be the only pointer that points
// to the parse node being replaced. The replacement, *pn, is unchanged except
// for its pn_next pointer; updating that is necessary if *pn's new parent is a
// list node.
inline void ReplaceNode(ParseNode** pnp, ParseNode* pn) {
pn->pn_next = (*pnp)->pn_next;
*pnp = pn;
}
class NullaryNode : public ParseNode {
public:
NullaryNode(ParseNodeKind kind, const TokenPos& pos) : ParseNode(kind, pos) {
MOZ_ASSERT(is<NullaryNode>());
}
static bool test(const ParseNode& node) {
return node.typeCode() == TypeCode::Nullary;
}
static constexpr TypeCode classTypeCode() { return TypeCode::Nullary; }
template <typename Visitor>
bool accept(Visitor& visitor) {
return true;
}
#ifdef DEBUG
void dumpImpl(GenericPrinter& out, int indent);
#endif
};
class NameNode : public ParseNode {
JSAtom* atom_; /* lexical name or label atom */
public:
NameNode(ParseNodeKind kind, JSAtom* atom, const TokenPos& pos)
: ParseNode(kind, pos), atom_(atom) {
MOZ_ASSERT(is<NameNode>());
}
static bool test(const ParseNode& node) {
return node.typeCode() == TypeCode::Name;
}
static constexpr TypeCode classTypeCode() { return TypeCode::Name; }
template <typename Visitor>
bool accept(Visitor& visitor) {
return true;
}
#ifdef DEBUG
void dumpImpl(GenericPrinter& out, int indent);
#endif
JSAtom* atom() const { return atom_; }
PropertyName* name() const {
MOZ_ASSERT(isKind(ParseNodeKind::Name) ||
isKind(ParseNodeKind::PrivateName));
return atom()->asPropertyName();
}
void setAtom(JSAtom* atom) { atom_ = atom; }
};
inline bool ParseNode::isName(PropertyName* name) const {
return getKind() == ParseNodeKind::Name && as<NameNode>().name() == name;
}
class UnaryNode : public ParseNode {
ParseNode* kid_;
public:
UnaryNode(ParseNodeKind kind, const TokenPos& pos, ParseNode* kid)
: ParseNode(kind, pos), kid_(kid) {
MOZ_ASSERT(is<UnaryNode>());
}
static bool test(const ParseNode& node) {
return node.typeCode() == TypeCode::Unary;
}
static constexpr TypeCode classTypeCode() { return TypeCode::Unary; }
template <typename Visitor>
bool accept(Visitor& visitor) {
if (kid_) {
if (!visitor.visit(kid_)) {
return false;
}
}
return true;
}
#ifdef DEBUG
void dumpImpl(GenericPrinter& out, int indent);
#endif
ParseNode* kid() const { return kid_; }
/*
* Non-null if this is a statement node which could be a member of a
* Directive Prologue: an expression statement consisting of a single
* string literal.
*
* This considers only the node and its children, not its context. After
* parsing, check the node's prologue flag to see if it is indeed part of
* a directive prologue.
*
* Note that a Directive Prologue can contain statements that cannot
* themselves be directives (string literals that include escape sequences
* or escaped newlines, say). This member function returns true for such
* nodes; we use it to determine the extent of the prologue.
*/
JSAtom* isStringExprStatement() const {
if (isKind(ParseNodeKind::ExpressionStmt)) {
if (kid()->isKind(ParseNodeKind::StringExpr) && !kid()->isInParens()) {
return kid()->as<NameNode>().atom();
}
}
return nullptr;
}
// Methods used by FoldConstants.cpp.
ParseNode** unsafeKidReference() { return &kid_; }
};
class BinaryNode : public ParseNode {
ParseNode* left_;
ParseNode* right_;
public:
BinaryNode(ParseNodeKind kind, const TokenPos& pos, ParseNode* left,
ParseNode* right)
: ParseNode(kind, pos), left_(left), right_(right) {
MOZ_ASSERT(is<BinaryNode>());
}
BinaryNode(ParseNodeKind kind, ParseNode* left, ParseNode* right)
: ParseNode(kind, TokenPos::box(left->pn_pos, right->pn_pos)),
left_(left),
right_(right) {
MOZ_ASSERT(is<BinaryNode>());
}
static bool test(const ParseNode& node) {
return node.typeCode() == TypeCode::Binary;
}
static constexpr TypeCode classTypeCode() { return TypeCode::Binary; }
template <typename Visitor>
bool accept(Visitor& visitor) {
if (left_) {
if (!visitor.visit(left_)) {
return false;
}
}
if (right_) {
if (!visitor.visit(right_)) {
return false;
}
}
return true;
}
#ifdef DEBUG
void dumpImpl(GenericPrinter& out, int indent);
#endif
ParseNode* left() const { return left_; }
ParseNode* right() const { return right_; }
// Methods used by FoldConstants.cpp.
// callers are responsible for keeping the list consistent.
ParseNode** unsafeLeftReference() { return &left_; }
ParseNode** unsafeRightReference() { return &right_; }
};
class AssignmentNode : public BinaryNode {
public:
AssignmentNode(ParseNodeKind kind, ParseNode* left, ParseNode* right)
: BinaryNode(kind, TokenPos(left->pn_pos.begin, right->pn_pos.end), left,
right) {}
static bool test(const ParseNode& node) {
ParseNodeKind kind = node.getKind();
bool match = ParseNodeKind::AssignmentStart <= kind &&
kind <= ParseNodeKind::AssignmentLast;
MOZ_ASSERT_IF(match, node.is<BinaryNode>());
return match;
}
};
class ForNode : public BinaryNode {
unsigned iflags_; /* JSITER_* flags */