forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathv0.13.1.txt
286 lines (192 loc) · 9.01 KB
/
v0.13.1.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
.. _whatsnew_0131:
v0.13.1 (February 3, 2014)
--------------------------
This is a minor release from 0.13.0 and includes a small number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
Highlights include:
- Added ``infer_datetime_format`` keyword to ``read_csv/to_datetime`` to allow speedups for homogeneously formatted datetimes.
- Will intelligently limit display precision for datetime/timedelta formats.
- Enhanced Panel :meth:`~pandas.Panel.apply` method.
- Suggested tutorials in new :ref:`Tutorials<tutorials>` section.
- Our pandas ecosystem is growing, We now feature related projects in a new :ref:`Pandas Ecosystem<ecosystem>` section.
- Much work has been taking place on improving the docs, and a new :ref:`Contributing<contributing>` section has been added.
- Even though it may only be of interest to devs, we <3 our new CI status page: `ScatterCI <http://scatterci.github.io/pydata/pandas>`__.
.. warning::
0.13.1 fixes a bug that was caused by a combination of having numpy < 1.8, and doing
chained assignment on a string-like array. Please review :ref:`the docs<indexing.view_versus_copy>`,
chained indexing can have unexpected results and should generally be avoided.
This would previously segfault:
.. ipython:: python
df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
df['A'].iloc[0] = np.nan
df
The recommended way to do this type of assignment is:
.. ipython:: python
df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
df.ix[0,'A'] = np.nan
df
Output Formatting Enhancements
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- df.info() view now display dtype info per column (:issue:`5682`)
- df.info() now honors the option ``max_info_rows``, to disable null counts for large frames (:issue:`5974`)
.. ipython:: python
max_info_rows = pd.get_option('max_info_rows')
df = DataFrame(dict(A = np.random.randn(10),
B = np.random.randn(10),
C = date_range('20130101',periods=10)))
df.iloc[3:6,[0,2]] = np.nan
.. ipython:: python
# set to not display the null counts
pd.set_option('max_info_rows',0)
df.info()
.. ipython:: python
# this is the default (same as in 0.13.0)
pd.set_option('max_info_rows',max_info_rows)
df.info()
- Add ``show_dimensions`` display option for the new DataFrame repr to control whether the dimensions print.
.. ipython:: python
df = DataFrame([[1, 2], [3, 4]])
pd.set_option('show_dimensions', False)
df
pd.set_option('show_dimensions', True)
df
- The ``ArrayFormatter`` for ``datetime`` and ``timedelta64`` now intelligently
limit precision based on the values in the array (:issue:`3401`)
Previously output might look like:
.. code-block:: python
age today diff
0 2001-01-01 00:00:00 2013-04-19 00:00:00 4491 days, 00:00:00
1 2004-06-01 00:00:00 2013-04-19 00:00:00 3244 days, 00:00:00
Now the output looks like:
.. ipython:: python
df = DataFrame([ Timestamp('20010101'),
Timestamp('20040601') ], columns=['age'])
df['today'] = Timestamp('20130419')
df['diff'] = df['today']-df['age']
df
API changes
~~~~~~~~~~~
- Add ``-NaN`` and ``-nan`` to the default set of NA values (:issue:`5952`).
See :ref:`NA Values <io.na_values>`.
- Added ``Series.str.get_dummies`` vectorized string method (:issue:`6021`), to extract
dummy/indicator variables for separated string columns:
.. ipython:: python
s = Series(['a', 'a|b', np.nan, 'a|c'])
s.str.get_dummies(sep='|')
- Added the ``NDFrame.equals()`` method to compare if two NDFrames are
equal have equal axes, dtypes, and values. Added the
``array_equivalent`` function to compare if two ndarrays are
equal. NaNs in identical locations are treated as
equal. (:issue:`5283`) See also :ref:`the docs<basics.equals>` for a motivating example.
.. ipython:: python
df = DataFrame({'col':['foo', 0, np.nan]}).sort()
df2 = DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0])
df.equals(df)
import pandas.core.common as com
com.array_equivalent(np.array([0, np.nan]), np.array([0, np.nan]))
np.array_equal(np.array([0, np.nan]), np.array([0, np.nan]))
- ``DataFrame.apply`` will use the ``reduce`` argument to determine whether a
``Series`` or a ``DataFrame`` should be returned when the ``DataFrame`` is
empty (:issue:`6007`).
Previously, calling ``DataFrame.apply`` an empty ``DataFrame`` would return
either a ``DataFrame`` if there were no columns, or the function being
applied would be called with an empty ``Series`` to guess whether a
``Series`` or ``DataFrame`` should be returned:
.. ipython:: python
def applied_func(col):
print("Apply function being called with: ", col)
return col.sum()
empty = DataFrame(columns=['a', 'b'])
empty.apply(applied_func)
Now, when ``apply`` is called on an empty ``DataFrame``: if the ``reduce``
argument is ``True`` a ``Series`` will returned, if it is ``False`` a
``DataFrame`` will be returned, and if it is ``None`` (the default) the
function being applied will be called with an empty series to try and guess
the return type.
.. ipython:: python
empty.apply(applied_func, reduce=True)
empty.apply(applied_func, reduce=False)
Prior Version Deprecations/Changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are no announced changes in 0.13 or prior that are taking effect as of 0.13.1
Deprecations
~~~~~~~~~~~~
There are no deprecations of prior behavior in 0.13.1
Enhancements
~~~~~~~~~~~~
- ``pd.read_csv`` and ``pd.to_datetime`` learned a new ``infer_datetime_format`` keyword which greatly
improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken
for rapidly implementing. (:issue:`5490`, :issue:`6021`)
If ``parse_dates`` is enabled and this flag is set, pandas will attempt to
infer the format of the datetime strings in the columns, and if it can
be inferred, switch to a faster method of parsing them. In some cases
this can increase the parsing speed by ~5-10x.
.. code-block:: python
# Try to infer the format for the index column
df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
infer_datetime_format=True)
- ``date_format`` and ``datetime_format`` keywords can now be specified when writing to ``excel``
files (:issue:`4133`)
- ``MultiIndex.from_product`` convenience function for creating a MultiIndex from
the cartesian product of a set of iterables (:issue:`6055`):
.. ipython:: python
shades = ['light', 'dark']
colors = ['red', 'green', 'blue']
MultiIndex.from_product([shades, colors], names=['shade', 'color'])
- Panel :meth:`~pandas.Panel.apply` will work on non-ufuncs. See :ref:`the docs<basics.apply_panel>`.
.. ipython:: python
import pandas.util.testing as tm
panel = tm.makePanel(5)
panel
panel['ItemA']
Specifying an ``apply`` that operates on a Series (to return a single element)
.. ipython:: python
panel.apply(lambda x: x.dtype, axis='items')
A similar reduction type operation
.. ipython:: python
panel.apply(lambda x: x.sum(), axis='major_axis')
This is equivalent to
.. ipython:: python
panel.sum('major_axis')
A transformation operation that returns a Panel, but is computing
the z-score across the major_axis
.. ipython:: python
result = panel.apply(
lambda x: (x-x.mean())/x.std(),
axis='major_axis')
result
result['ItemA']
- Panel :meth:`~pandas.Panel.apply` operating on cross-sectional slabs. (:issue:`1148`)
.. ipython:: python
f = lambda x: ((x.T-x.mean(1))/x.std(1)).T
result = panel.apply(f, axis = ['items','major_axis'])
result
result.loc[:,:,'ItemA']
This is equivalent to the following
.. ipython:: python
result = Panel(dict([ (ax,f(panel.loc[:,:,ax]))
for ax in panel.minor_axis ]))
result
result.loc[:,:,'ItemA']
Performance
~~~~~~~~~~~
Performance improvements for 0.13.1
- Series datetime/timedelta binary operations (:issue:`5801`)
- DataFrame ``count/dropna`` for ``axis=1``
- Series.str.contains now has a `regex=False` keyword which can be faster for plain (non-regex) string patterns. (:issue:`5879`)
- Series.str.extract (:issue:`5944`)
- ``dtypes/ftypes`` methods (:issue:`5968`)
- indexing with object dtypes (:issue:`5968`)
- ``DataFrame.apply`` (:issue:`6013`)
- Regression in JSON IO (:issue:`5765`)
- Index construction from Series (:issue:`6150`)
Experimental
~~~~~~~~~~~~
There are no experimental changes in 0.13.1
Bug Fixes
~~~~~~~~~
See :ref:`V0.13.1 Bug Fixes<release.bug_fixes-0.13.1>` for an extensive list of bugs that have been fixed in 0.13.1.
See the :ref:`full release notes
<release>` or issue tracker
on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.