.. currentmodule:: pandas
.. ipython:: python :suppress: from pandas import * options.display.max_rows=15
In this section, we will discuss missing (also referred to as NA) values in pandas.
.. ipython:: python :suppress: import numpy as np; randn = np.random.randn; randint =np.random.randint from pandas import * import matplotlib.pyplot as plt from pandas.compat import lrange
Note
The choice of using NaN
internally to denote missing data was largely
for simplicity and performance reasons. It differs from the MaskedArray
approach of, for example, :mod:`scikits.timeseries`. We are hopeful that
NumPy will soon be able to provide a native NA type solution (similar to R)
performant enough to be used in pandas.
See the :ref:`cookbook<cookbook.missing_data>` for some advanced strategies
Some might quibble over our usage of missing. By "missing" we simply mean null or "not present for whatever reason". Many data sets simply arrive with missing data, either because it exists and was not collected or it never existed. For example, in a collection of financial time series, some of the time series might start on different dates. Thus, values prior to the start date would generally be marked as missing.
In pandas, one of the most common ways that missing data is introduced into a data set is by reindexing. For example
.. ipython:: python df = DataFrame(randn(5, 3), index=['a', 'c', 'e', 'f', 'h'], columns=['one', 'two', 'three']) df['four'] = 'bar' df['five'] = df['one'] > 0 df df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) df2
As data comes in many shapes and forms, pandas aims to be flexible with regard
to handling missing data. While NaN
is the default missing value marker for
reasons of computational speed and convenience, we need to be able to easily
detect this value with data of different types: floating point, integer,
boolean, and general object. In many cases, however, the Python None
will
arise and we wish to also consider that "missing" or "null".
Prior to version v0.10.0 inf
and -inf
were also
considered to be "null" in computations. This is no longer the case by
default; use the mode.use_inf_as_null
option to recover it.
To make detecting missing values easier (and across different array dtypes),
pandas provides the :func:`~pandas.core.common.isnull` and
:func:`~pandas.core.common.notnull` functions, which are also methods on
Series
objects:
.. ipython:: python df2['one'] isnull(df2['one']) df2['four'].notnull()
Summary: NaN
and None
(in object arrays) are considered
missing by the isnull
and notnull
functions. inf
and
-inf
are no longer considered missing by default.
For datetime64[ns] types, NaT
represents missing values. This is a pseudo-native
sentinel value that can be represented by numpy in a singular dtype (datetime64[ns]).
pandas objects provide intercompatibility between NaT
and NaN
.
.. ipython:: python df2 = df.copy() df2['timestamp'] = Timestamp('20120101') df2 df2.ix[['a','c','h'],['one','timestamp']] = np.nan df2 df2.get_dtype_counts()
You can insert missing values by simply assigning to containers. The actual missing value used will be chosen based on the dtype.
For example, numeric containers will always use NaN
regardless of
the missing value type chosen:
.. ipython:: python s = Series([1, 2, 3]) s.loc[0] = None s
Likewise, datetime containers will always use NaT
.
For object containers, pandas will use the value given:
.. ipython:: python s = Series(["a", "b", "c"]) s.loc[0] = None s.loc[1] = np.nan s
Missing values propagate naturally through arithmetic operations between pandas objects.
.. ipython:: python :suppress: df = df2.ix[:, ['one', 'two', 'three']] a = df2.ix[:5, ['one', 'two']].fillna(method='pad') b = df2.ix[:5, ['one', 'two', 'three']]
.. ipython:: python a b a + b
The descriptive statistics and computational methods discussed in the :ref:`data structure overview <basics.stats>` (and listed :ref:`here <api.series.stats>` and :ref:`here <api.dataframe.stats>`) are all written to account for missing data. For example:
- When summing data, NA (missing) values will be treated as zero
- If the data are all NA, the result will be NA
- Methods like cumsum and cumprod ignore NA values, but preserve them in the resulting arrays
.. ipython:: python df df['one'].sum() df.mean(1) df.cumsum()
NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example.
pandas objects are equipped with various data manipulation methods for dealing with missing data.
The fillna function can "fill in" NA values with non-null data in a couple of ways, which we illustrate:
Replace NA with a scalar value
.. ipython:: python df2 df2.fillna(0) df2['four'].fillna('missing')
Fill gaps forward or backward
Using the same filling arguments as :ref:`reindexing <basics.reindexing>`, we can propagate non-null values forward or backward:
.. ipython:: python df df.fillna(method='pad')
Limit the amount of filling
If we only want consecutive gaps filled up to a certain number of data points, we can use the limit keyword:
.. ipython:: python :suppress: df.ix[2:4, :] = np.nan
.. ipython:: python df df.fillna(method='pad', limit=1)
To remind you, these are the available filling methods:
Method | Action |
---|---|
pad / ffill | Fill values forward |
bfill / backfill | Fill values backward |
With time series data, using pad/ffill is extremely common so that the "last known value" is available at every time point.
The ffill()
function is equivalent to fillna(method='ffill')
and bfill()
is equivalent to fillna(method='bfill')
.. versionadded:: 0.12
You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series must match the columns of the frame you wish to fill. The use case of this is to fill a DataFrame with the mean of that column.
.. ipython:: python dff = DataFrame(np.random.randn(10,3),columns=list('ABC')) dff.iloc[3:5,0] = np.nan dff.iloc[4:6,1] = np.nan dff.iloc[5:8,2] = np.nan dff dff.fillna(dff.mean()) dff.fillna(dff.mean()['B':'C'])
.. versionadded:: 0.13
Same result as above, but is aligning the 'fill' value which is a Series in this case.
.. ipython:: python dff.where(notnull(dff),dff.mean(),axis='columns')
You may wish to simply exclude labels from a data set which refer to missing data. To do this, use the dropna method:
.. ipython:: python :suppress: df['two'] = df['two'].fillna(0) df['three'] = df['three'].fillna(0)
.. ipython:: python df df.dropna(axis=0) df.dropna(axis=1) df['one'].dropna()
Series.dropna is a simpler method as it only has one axis to consider. DataFrame.dropna has considerably more options than Series.dropna, which can be examined :ref:`in the API <api.dataframe.missing>`.
.. versionadded:: 0.13.0 :meth:`~pandas.DataFrame.interpolate`, and :meth:`~pandas.Series.interpolate` have revamped interpolation methods and functionaility.
Both Series and Dataframe objects have an interpolate
method that, by default,
performs linear interpolation at missing datapoints.
.. ipython:: python :suppress: np.random.seed(123456) idx = date_range('1/1/2000', periods=100, freq='BM') ts = Series(randn(100), index=idx) ts[1:20] = np.nan ts[60:80] = np.nan ts = ts.cumsum()
.. ipython:: python ts ts.count() ts.interpolate().count() plt.figure() @savefig series_interpolate.png ts.interpolate().plot()
Index aware interpolation is available via the method
keyword:
.. ipython:: python :suppress: ts2 = ts[[0, 1, 30, 60, 99]]
.. ipython:: python ts2 ts2.interpolate() ts2.interpolate(method='time')
For a floating-point index, use method='values'
:
.. ipython:: python :suppress: idx = [0., 1., 10.] ser = Series([0., np.nan, 10.], idx)
.. ipython:: python ser ser.interpolate() ser.interpolate(method='values')
You can also interpolate with a DataFrame:
.. ipython:: python df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8], 'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]}) df df.interpolate()
The method
argument gives access to fancier interpolation methods.
If you have scipy installed, you can set pass the name of a 1-d interpolation routine to method
.
You'll want to consult the full scipy interpolation documentation and reference guide for details.
The appropriate interpolation method will depend on the type of data you are working with.
For example, if you are dealing with a time series that is growing at an increasing rate,
method='quadratic'
may be appropriate. If you have values approximating a cumulative
distribution function, then method='pchip'
should work well.
Warning
These methods require scipy
.
.. ipython:: python df.interpolate(method='barycentric') df.interpolate(method='pchip')
When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation:
.. ipython:: python df.interpolate(method='spline', order=2) df.interpolate(method='polynomial', order=2)
Compare several methods:
.. ipython:: python np.random.seed(2) ser = Series(np.arange(1, 10.1, .25)**2 + np.random.randn(37)) bad = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29]) ser[bad] = np.nan methods = ['linear', 'quadratic', 'cubic'] df = DataFrame({m: ser.interpolate(method=m) for m in methods}) plt.figure() @savefig compare_interpolations.png df.plot()
Another use case is interpolation at new values.
Suppose you have 100 observations from some distribution. And let's suppose
that you're particularly interested in what's happening around the middle.
You can mix pandas' reindex
and interpolate
methods to interpolate
at the new values.
.. ipython:: python ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index + Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]) interp_s = ser.reindex(new_index).interpolate(method='pchip') interp_s[49:51]
Like other pandas fill methods, interpolate
accepts a limit
keyword
argument. Use this to limit the number of consecutive interpolations, keeping
NaN
values for interpolations that are too far from the last valid
observation:
.. ipython:: python ser = Series([1, 3, np.nan, np.nan, np.nan, 11]) ser.interpolate(limit=2)
Often times we want to replace arbitrary values with other values. New in v0.8
is the replace
method in Series/DataFrame that provides an efficient yet
flexible way to perform such replacements.
For a Series, you can replace a single value or a list of values by another value:
.. ipython:: python ser = Series([0., 1., 2., 3., 4.]) ser.replace(0, 5)
You can replace a list of values by a list of other values:
.. ipython:: python ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
You can also specify a mapping dict:
.. ipython:: python ser.replace({0: 10, 1: 100})
For a DataFrame, you can specify individual values by column:
.. ipython:: python df = DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]}) df.replace({'a': 0, 'b': 5}, 100)
Instead of replacing with specified values, you can treat all given values as missing and interpolate over them:
.. ipython:: python ser.replace([1, 2, 3], method='pad')
Note
Python strings prefixed with the r
character such as r'hello world'
are so-called "raw" strings. They have different semantics regarding
backslashes than strings without this prefix. Backslashes in raw strings
will be interpreted as an escaped backslash, e.g., r'\' == '\\'
. You
should read about them
if this is unclear.
Replace the '.' with nan
(str -> str)
.. ipython:: python :suppress: from numpy.random import rand, randn from numpy import nan from pandas import DataFrame
.. ipython:: python d = {'a': list(range(4)), 'b': list('ab..'), 'c': ['a', 'b', nan, 'd']} df = DataFrame(d) df.replace('.', nan)
Now do it with a regular expression that removes surrounding whitespace (regex -> regex)
.. ipython:: python df.replace(r'\s*\.\s*', nan, regex=True)
Replace a few different values (list -> list)
.. ipython:: python df.replace(['a', '.'], ['b', nan])
list of regex -> list of regex
.. ipython:: python df.replace([r'\.', r'(a)'], ['dot', '\1stuff'], regex=True)
Only search in column 'b'
(dict -> dict)
.. ipython:: python df.replace({'b': '.'}, {'b': nan})
Same as the previous example, but use a regular expression for searching instead (dict of regex -> dict)
.. ipython:: python df.replace({'b': r'\s*\.\s*'}, {'b': nan}, regex=True)
You can pass nested dictionaries of regular expressions that use regex=True
.. ipython:: python df.replace({'b': {'b': r''}}, regex=True)
or you can pass the nested dictionary like so
.. ipython:: python df.replace(regex={'b': {r'\s*\.\s*': nan}})
You can also use the group of a regular expression match when replacing (dict of regex -> dict of regex), this works for lists as well
.. ipython:: python df.replace({'b': r'\s*(\.)\s*'}, {'b': r'\1ty'}, regex=True)
You can pass a list of regular expressions, of which those that match will be replaced with a scalar (list of regex -> regex)
.. ipython:: python df.replace([r'\s*\.\s*', r'a|b'], nan, regex=True)
All of the regular expression examples can also be passed with the
to_replace
argument as the regex
argument. In this case the value
argument must be passed explicitly by name or regex
must be a nested
dictionary. The previous example, in this case, would then be
.. ipython:: python df.replace(regex=[r'\s*\.\s*', r'a|b'], value=nan)
This can be convenient if you do not want to pass regex=True
every time you
want to use a regular expression.
Note
Anywhere in the above replace
examples that you see a regular expression
a compiled regular expression is valid as well.
Similar to DataFrame.fillna
.. ipython:: python :suppress: from numpy.random import rand, randn from numpy import nan from pandas import DataFrame from pandas.util.testing import assert_frame_equal
.. ipython:: python df = DataFrame(randn(10, 2)) df[rand(df.shape[0]) > 0.5] = 1.5 df.replace(1.5, nan)
Replacing more than one value via lists works as well
.. ipython:: python df00 = df.values[0, 0] df.replace([1.5, df00], [nan, 'a']) df[1].dtype
You can also operate on the DataFrame in place
.. ipython:: python df.replace(1.5, nan, inplace=True)
Warning
When replacing multiple bool
or datetime64
objects, the first
argument to replace
(to_replace
) must match the type of the value
being replaced type. For example,
s = Series([True, False, True])
s.replace({'a string': 'new value', True: False}) # raises
TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'
will raise a TypeError
because one of the dict
keys is not of the
correct type for replacement.
However, when replacing a single object such as,
.. ipython:: python s = Series([True, False, True]) s.replace('a string', 'another string')
the original NDFrame
object will be returned untouched. We're working on
unifying this API, but for backwards compatibility reasons we cannot break
the latter behavior. See :issue:`6354` for more details.
While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data. Until we can switch to using a native NA type in NumPy, we've established some "casting rules" when reindexing will cause missing data to be introduced into, say, a Series or DataFrame. Here they are:
data type | Cast to |
---|---|
integer | float |
boolean | object |
float | no cast |
object | no cast |
For example:
.. ipython:: python s = Series(randn(5), index=[0, 2, 4, 6, 7]) s > 0 (s > 0).dtype crit = (s > 0).reindex(list(range(8))) crit crit.dtype
Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector contains NAs, an exception will be generated:
.. ipython:: python :okexcept: reindexed = s.reindex(list(range(8))).fillna(0) reindexed[crit]
However, these can be filled in using fillna and it will work fine:
.. ipython:: python reindexed[crit.fillna(False)] reindexed[crit.fillna(True)]