forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_bayesian_mixture.py
888 lines (729 loc) · 32.7 KB
/
_bayesian_mixture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
"""Bayesian Gaussian Mixture Model."""
# Author: Wei Xue <[email protected]>
# Thierry Guillemot <[email protected]>
# License: BSD 3 clause
import math
from numbers import Real
import numpy as np
from scipy.special import betaln, digamma, gammaln
from ..utils import check_array
from ..utils._param_validation import Interval, StrOptions
from ._base import BaseMixture, _check_shape
from ._gaussian_mixture import (
_check_precision_matrix,
_check_precision_positivity,
_compute_log_det_cholesky,
_compute_precision_cholesky,
_estimate_gaussian_parameters,
_estimate_log_gaussian_prob,
)
def _log_dirichlet_norm(dirichlet_concentration):
"""Compute the log of the Dirichlet distribution normalization term.
Parameters
----------
dirichlet_concentration : array-like of shape (n_samples,)
The parameters values of the Dirichlet distribution.
Returns
-------
log_dirichlet_norm : float
The log normalization of the Dirichlet distribution.
"""
return gammaln(np.sum(dirichlet_concentration)) - np.sum(
gammaln(dirichlet_concentration)
)
def _log_wishart_norm(degrees_of_freedom, log_det_precisions_chol, n_features):
"""Compute the log of the Wishart distribution normalization term.
Parameters
----------
degrees_of_freedom : array-like of shape (n_components,)
The number of degrees of freedom on the covariance Wishart
distributions.
log_det_precision_chol : array-like of shape (n_components,)
The determinant of the precision matrix for each component.
n_features : int
The number of features.
Return
------
log_wishart_norm : array-like of shape (n_components,)
The log normalization of the Wishart distribution.
"""
# To simplify the computation we have removed the np.log(np.pi) term
return -(
degrees_of_freedom * log_det_precisions_chol
+ degrees_of_freedom * n_features * 0.5 * math.log(2.0)
+ np.sum(
gammaln(0.5 * (degrees_of_freedom - np.arange(n_features)[:, np.newaxis])),
0,
)
)
class BayesianGaussianMixture(BaseMixture):
"""Variational Bayesian estimation of a Gaussian mixture.
This class allows to infer an approximate posterior distribution over the
parameters of a Gaussian mixture distribution. The effective number of
components can be inferred from the data.
This class implements two types of prior for the weights distribution: a
finite mixture model with Dirichlet distribution and an infinite mixture
model with the Dirichlet Process. In practice Dirichlet Process inference
algorithm is approximated and uses a truncated distribution with a fixed
maximum number of components (called the Stick-breaking representation).
The number of components actually used almost always depends on the data.
.. versionadded:: 0.18
Read more in the :ref:`User Guide <bgmm>`.
Parameters
----------
n_components : int, default=1
The number of mixture components. Depending on the data and the value
of the `weight_concentration_prior` the model can decide to not use
all the components by setting some component `weights_` to values very
close to zero. The number of effective components is therefore smaller
than n_components.
covariance_type : {'full', 'tied', 'diag', 'spherical'}, default='full'
String describing the type of covariance parameters to use.
Must be one of::
'full' (each component has its own general covariance matrix),
'tied' (all components share the same general covariance matrix),
'diag' (each component has its own diagonal covariance matrix),
'spherical' (each component has its own single variance).
tol : float, default=1e-3
The convergence threshold. EM iterations will stop when the
lower bound average gain on the likelihood (of the training data with
respect to the model) is below this threshold.
reg_covar : float, default=1e-6
Non-negative regularization added to the diagonal of covariance.
Allows to assure that the covariance matrices are all positive.
max_iter : int, default=100
The number of EM iterations to perform.
n_init : int, default=1
The number of initializations to perform. The result with the highest
lower bound value on the likelihood is kept.
init_params : {'kmeans', 'k-means++', 'random', 'random_from_data'}, \
default='kmeans'
The method used to initialize the weights, the means and the
covariances.
String must be one of:
'kmeans' : responsibilities are initialized using kmeans.
'k-means++' : use the k-means++ method to initialize.
'random' : responsibilities are initialized randomly.
'random_from_data' : initial means are randomly selected data points.
.. versionchanged:: v1.1
`init_params` now accepts 'random_from_data' and 'k-means++' as
initialization methods.
weight_concentration_prior_type : {'dirichlet_process', 'dirichlet_distribution'}, \
default='dirichlet_process'
String describing the type of the weight concentration prior.
weight_concentration_prior : float or None, default=None
The dirichlet concentration of each component on the weight
distribution (Dirichlet). This is commonly called gamma in the
literature. The higher concentration puts more mass in
the center and will lead to more components being active, while a lower
concentration parameter will lead to more mass at the edge of the
mixture weights simplex. The value of the parameter must be greater
than 0. If it is None, it's set to ``1. / n_components``.
mean_precision_prior : float or None, default=None
The precision prior on the mean distribution (Gaussian).
Controls the extent of where means can be placed. Larger
values concentrate the cluster means around `mean_prior`.
The value of the parameter must be greater than 0.
If it is None, it is set to 1.
mean_prior : array-like, shape (n_features,), default=None
The prior on the mean distribution (Gaussian).
If it is None, it is set to the mean of X.
degrees_of_freedom_prior : float or None, default=None
The prior of the number of degrees of freedom on the covariance
distributions (Wishart). If it is None, it's set to `n_features`.
covariance_prior : float or array-like, default=None
The prior on the covariance distribution (Wishart).
If it is None, the emiprical covariance prior is initialized using the
covariance of X. The shape depends on `covariance_type`::
(n_features, n_features) if 'full',
(n_features, n_features) if 'tied',
(n_features) if 'diag',
float if 'spherical'
random_state : int, RandomState instance or None, default=None
Controls the random seed given to the method chosen to initialize the
parameters (see `init_params`).
In addition, it controls the generation of random samples from the
fitted distribution (see the method `sample`).
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
warm_start : bool, default=False
If 'warm_start' is True, the solution of the last fitting is used as
initialization for the next call of fit(). This can speed up
convergence when fit is called several times on similar problems.
See :term:`the Glossary <warm_start>`.
verbose : int, default=0
Enable verbose output. If 1 then it prints the current
initialization and each iteration step. If greater than 1 then
it prints also the log probability and the time needed
for each step.
verbose_interval : int, default=10
Number of iteration done before the next print.
Attributes
----------
weights_ : array-like of shape (n_components,)
The weights of each mixture components.
means_ : array-like of shape (n_components, n_features)
The mean of each mixture component.
covariances_ : array-like
The covariance of each mixture component.
The shape depends on `covariance_type`::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
precisions_ : array-like
The precision matrices for each component in the mixture. A precision
matrix is the inverse of a covariance matrix. A covariance matrix is
symmetric positive definite so the mixture of Gaussian can be
equivalently parameterized by the precision matrices. Storing the
precision matrices instead of the covariance matrices makes it more
efficient to compute the log-likelihood of new samples at test time.
The shape depends on ``covariance_type``::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
precisions_cholesky_ : array-like
The cholesky decomposition of the precision matrices of each mixture
component. A precision matrix is the inverse of a covariance matrix.
A covariance matrix is symmetric positive definite so the mixture of
Gaussian can be equivalently parameterized by the precision matrices.
Storing the precision matrices instead of the covariance matrices makes
it more efficient to compute the log-likelihood of new samples at test
time. The shape depends on ``covariance_type``::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
converged_ : bool
True when convergence was reached in fit(), False otherwise.
n_iter_ : int
Number of step used by the best fit of inference to reach the
convergence.
lower_bound_ : float
Lower bound value on the model evidence (of the training data) of the
best fit of inference.
weight_concentration_prior_ : tuple or float
The dirichlet concentration of each component on the weight
distribution (Dirichlet). The type depends on
``weight_concentration_prior_type``::
(float, float) if 'dirichlet_process' (Beta parameters),
float if 'dirichlet_distribution' (Dirichlet parameters).
The higher concentration puts more mass in
the center and will lead to more components being active, while a lower
concentration parameter will lead to more mass at the edge of the
simplex.
weight_concentration_ : array-like of shape (n_components,)
The dirichlet concentration of each component on the weight
distribution (Dirichlet).
mean_precision_prior_ : float
The precision prior on the mean distribution (Gaussian).
Controls the extent of where means can be placed.
Larger values concentrate the cluster means around `mean_prior`.
If mean_precision_prior is set to None, `mean_precision_prior_` is set
to 1.
mean_precision_ : array-like of shape (n_components,)
The precision of each components on the mean distribution (Gaussian).
mean_prior_ : array-like of shape (n_features,)
The prior on the mean distribution (Gaussian).
degrees_of_freedom_prior_ : float
The prior of the number of degrees of freedom on the covariance
distributions (Wishart).
degrees_of_freedom_ : array-like of shape (n_components,)
The number of degrees of freedom of each components in the model.
covariance_prior_ : float or array-like
The prior on the covariance distribution (Wishart).
The shape depends on `covariance_type`::
(n_features, n_features) if 'full',
(n_features, n_features) if 'tied',
(n_features) if 'diag',
float if 'spherical'
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
GaussianMixture : Finite Gaussian mixture fit with EM.
References
----------
.. [1] `Bishop, Christopher M. (2006). "Pattern recognition and machine
learning". Vol. 4 No. 4. New York: Springer.
<https://www.springer.com/kr/book/9780387310732>`_
.. [2] `Hagai Attias. (2000). "A Variational Bayesian Framework for
Graphical Models". In Advances in Neural Information Processing
Systems 12.
<https://citeseerx.ist.psu.edu/doc_view/pid/ee844fd96db7041a9681b5a18bff008912052c7e>`_
.. [3] `Blei, David M. and Michael I. Jordan. (2006). "Variational
inference for Dirichlet process mixtures". Bayesian analysis 1.1
<https://www.cs.princeton.edu/courses/archive/fall11/cos597C/reading/BleiJordan2005.pdf>`_
Examples
--------
>>> import numpy as np
>>> from sklearn.mixture import BayesianGaussianMixture
>>> X = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [12, 4], [10, 7]])
>>> bgm = BayesianGaussianMixture(n_components=2, random_state=42).fit(X)
>>> bgm.means_
array([[2.49... , 2.29...],
[8.45..., 4.52... ]])
>>> bgm.predict([[0, 0], [9, 3]])
array([0, 1])
"""
_parameter_constraints: dict = {
**BaseMixture._parameter_constraints,
"covariance_type": [StrOptions({"spherical", "tied", "diag", "full"})],
"weight_concentration_prior_type": [
StrOptions({"dirichlet_process", "dirichlet_distribution"})
],
"weight_concentration_prior": [
None,
Interval(Real, 0.0, None, closed="neither"),
],
"mean_precision_prior": [None, Interval(Real, 0.0, None, closed="neither")],
"mean_prior": [None, "array-like"],
"degrees_of_freedom_prior": [None, Interval(Real, 0.0, None, closed="neither")],
"covariance_prior": [
None,
"array-like",
Interval(Real, 0.0, None, closed="neither"),
],
}
def __init__(
self,
*,
n_components=1,
covariance_type="full",
tol=1e-3,
reg_covar=1e-6,
max_iter=100,
n_init=1,
init_params="kmeans",
weight_concentration_prior_type="dirichlet_process",
weight_concentration_prior=None,
mean_precision_prior=None,
mean_prior=None,
degrees_of_freedom_prior=None,
covariance_prior=None,
random_state=None,
warm_start=False,
verbose=0,
verbose_interval=10,
):
super().__init__(
n_components=n_components,
tol=tol,
reg_covar=reg_covar,
max_iter=max_iter,
n_init=n_init,
init_params=init_params,
random_state=random_state,
warm_start=warm_start,
verbose=verbose,
verbose_interval=verbose_interval,
)
self.covariance_type = covariance_type
self.weight_concentration_prior_type = weight_concentration_prior_type
self.weight_concentration_prior = weight_concentration_prior
self.mean_precision_prior = mean_precision_prior
self.mean_prior = mean_prior
self.degrees_of_freedom_prior = degrees_of_freedom_prior
self.covariance_prior = covariance_prior
def _check_parameters(self, X):
"""Check that the parameters are well defined.
Parameters
----------
X : array-like of shape (n_samples, n_features)
"""
self._check_weights_parameters()
self._check_means_parameters(X)
self._check_precision_parameters(X)
self._checkcovariance_prior_parameter(X)
def _check_weights_parameters(self):
"""Check the parameter of the Dirichlet distribution."""
if self.weight_concentration_prior is None:
self.weight_concentration_prior_ = 1.0 / self.n_components
else:
self.weight_concentration_prior_ = self.weight_concentration_prior
def _check_means_parameters(self, X):
"""Check the parameters of the Gaussian distribution.
Parameters
----------
X : array-like of shape (n_samples, n_features)
"""
_, n_features = X.shape
if self.mean_precision_prior is None:
self.mean_precision_prior_ = 1.0
else:
self.mean_precision_prior_ = self.mean_precision_prior
if self.mean_prior is None:
self.mean_prior_ = X.mean(axis=0)
else:
self.mean_prior_ = check_array(
self.mean_prior, dtype=[np.float64, np.float32], ensure_2d=False
)
_check_shape(self.mean_prior_, (n_features,), "means")
def _check_precision_parameters(self, X):
"""Check the prior parameters of the precision distribution.
Parameters
----------
X : array-like of shape (n_samples, n_features)
"""
_, n_features = X.shape
if self.degrees_of_freedom_prior is None:
self.degrees_of_freedom_prior_ = n_features
elif self.degrees_of_freedom_prior > n_features - 1.0:
self.degrees_of_freedom_prior_ = self.degrees_of_freedom_prior
else:
raise ValueError(
"The parameter 'degrees_of_freedom_prior' "
"should be greater than %d, but got %.3f."
% (n_features - 1, self.degrees_of_freedom_prior)
)
def _checkcovariance_prior_parameter(self, X):
"""Check the `covariance_prior_`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
"""
_, n_features = X.shape
if self.covariance_prior is None:
self.covariance_prior_ = {
"full": np.atleast_2d(np.cov(X.T)),
"tied": np.atleast_2d(np.cov(X.T)),
"diag": np.var(X, axis=0, ddof=1),
"spherical": np.var(X, axis=0, ddof=1).mean(),
}[self.covariance_type]
elif self.covariance_type in ["full", "tied"]:
self.covariance_prior_ = check_array(
self.covariance_prior, dtype=[np.float64, np.float32], ensure_2d=False
)
_check_shape(
self.covariance_prior_,
(n_features, n_features),
"%s covariance_prior" % self.covariance_type,
)
_check_precision_matrix(self.covariance_prior_, self.covariance_type)
elif self.covariance_type == "diag":
self.covariance_prior_ = check_array(
self.covariance_prior, dtype=[np.float64, np.float32], ensure_2d=False
)
_check_shape(
self.covariance_prior_,
(n_features,),
"%s covariance_prior" % self.covariance_type,
)
_check_precision_positivity(self.covariance_prior_, self.covariance_type)
# spherical case
else:
self.covariance_prior_ = self.covariance_prior
def _initialize(self, X, resp):
"""Initialization of the mixture parameters.
Parameters
----------
X : array-like of shape (n_samples, n_features)
resp : array-like of shape (n_samples, n_components)
"""
nk, xk, sk = _estimate_gaussian_parameters(
X, resp, self.reg_covar, self.covariance_type
)
self._estimate_weights(nk)
self._estimate_means(nk, xk)
self._estimate_precisions(nk, xk, sk)
def _estimate_weights(self, nk):
"""Estimate the parameters of the Dirichlet distribution.
Parameters
----------
nk : array-like of shape (n_components,)
"""
if self.weight_concentration_prior_type == "dirichlet_process":
# For dirichlet process weight_concentration will be a tuple
# containing the two parameters of the beta distribution
self.weight_concentration_ = (
1.0 + nk,
(
self.weight_concentration_prior_
+ np.hstack((np.cumsum(nk[::-1])[-2::-1], 0))
),
)
else:
# case Variational Gaussian mixture with dirichlet distribution
self.weight_concentration_ = self.weight_concentration_prior_ + nk
def _estimate_means(self, nk, xk):
"""Estimate the parameters of the Gaussian distribution.
Parameters
----------
nk : array-like of shape (n_components,)
xk : array-like of shape (n_components, n_features)
"""
self.mean_precision_ = self.mean_precision_prior_ + nk
self.means_ = (
self.mean_precision_prior_ * self.mean_prior_ + nk[:, np.newaxis] * xk
) / self.mean_precision_[:, np.newaxis]
def _estimate_precisions(self, nk, xk, sk):
"""Estimate the precisions parameters of the precision distribution.
Parameters
----------
nk : array-like of shape (n_components,)
xk : array-like of shape (n_components, n_features)
sk : array-like
The shape depends of `covariance_type`:
'full' : (n_components, n_features, n_features)
'tied' : (n_features, n_features)
'diag' : (n_components, n_features)
'spherical' : (n_components,)
"""
{
"full": self._estimate_wishart_full,
"tied": self._estimate_wishart_tied,
"diag": self._estimate_wishart_diag,
"spherical": self._estimate_wishart_spherical,
}[self.covariance_type](nk, xk, sk)
self.precisions_cholesky_ = _compute_precision_cholesky(
self.covariances_, self.covariance_type
)
def _estimate_wishart_full(self, nk, xk, sk):
"""Estimate the full Wishart distribution parameters.
Parameters
----------
X : array-like of shape (n_samples, n_features)
nk : array-like of shape (n_components,)
xk : array-like of shape (n_components, n_features)
sk : array-like of shape (n_components, n_features, n_features)
"""
_, n_features = xk.shape
# Warning : in some Bishop book, there is a typo on the formula 10.63
# `degrees_of_freedom_k = degrees_of_freedom_0 + Nk` is
# the correct formula
self.degrees_of_freedom_ = self.degrees_of_freedom_prior_ + nk
self.covariances_ = np.empty((self.n_components, n_features, n_features))
for k in range(self.n_components):
diff = xk[k] - self.mean_prior_
self.covariances_[k] = (
self.covariance_prior_
+ nk[k] * sk[k]
+ nk[k]
* self.mean_precision_prior_
/ self.mean_precision_[k]
* np.outer(diff, diff)
)
# Contrary to the original bishop book, we normalize the covariances
self.covariances_ /= self.degrees_of_freedom_[:, np.newaxis, np.newaxis]
def _estimate_wishart_tied(self, nk, xk, sk):
"""Estimate the tied Wishart distribution parameters.
Parameters
----------
X : array-like of shape (n_samples, n_features)
nk : array-like of shape (n_components,)
xk : array-like of shape (n_components, n_features)
sk : array-like of shape (n_features, n_features)
"""
_, n_features = xk.shape
# Warning : in some Bishop book, there is a typo on the formula 10.63
# `degrees_of_freedom_k = degrees_of_freedom_0 + Nk`
# is the correct formula
self.degrees_of_freedom_ = (
self.degrees_of_freedom_prior_ + nk.sum() / self.n_components
)
diff = xk - self.mean_prior_
self.covariances_ = (
self.covariance_prior_
+ sk * nk.sum() / self.n_components
+ self.mean_precision_prior_
/ self.n_components
* np.dot((nk / self.mean_precision_) * diff.T, diff)
)
# Contrary to the original bishop book, we normalize the covariances
self.covariances_ /= self.degrees_of_freedom_
def _estimate_wishart_diag(self, nk, xk, sk):
"""Estimate the diag Wishart distribution parameters.
Parameters
----------
X : array-like of shape (n_samples, n_features)
nk : array-like of shape (n_components,)
xk : array-like of shape (n_components, n_features)
sk : array-like of shape (n_components, n_features)
"""
_, n_features = xk.shape
# Warning : in some Bishop book, there is a typo on the formula 10.63
# `degrees_of_freedom_k = degrees_of_freedom_0 + Nk`
# is the correct formula
self.degrees_of_freedom_ = self.degrees_of_freedom_prior_ + nk
diff = xk - self.mean_prior_
self.covariances_ = self.covariance_prior_ + nk[:, np.newaxis] * (
sk
+ (self.mean_precision_prior_ / self.mean_precision_)[:, np.newaxis]
* np.square(diff)
)
# Contrary to the original bishop book, we normalize the covariances
self.covariances_ /= self.degrees_of_freedom_[:, np.newaxis]
def _estimate_wishart_spherical(self, nk, xk, sk):
"""Estimate the spherical Wishart distribution parameters.
Parameters
----------
X : array-like of shape (n_samples, n_features)
nk : array-like of shape (n_components,)
xk : array-like of shape (n_components, n_features)
sk : array-like of shape (n_components,)
"""
_, n_features = xk.shape
# Warning : in some Bishop book, there is a typo on the formula 10.63
# `degrees_of_freedom_k = degrees_of_freedom_0 + Nk`
# is the correct formula
self.degrees_of_freedom_ = self.degrees_of_freedom_prior_ + nk
diff = xk - self.mean_prior_
self.covariances_ = self.covariance_prior_ + nk * (
sk
+ self.mean_precision_prior_
/ self.mean_precision_
* np.mean(np.square(diff), 1)
)
# Contrary to the original bishop book, we normalize the covariances
self.covariances_ /= self.degrees_of_freedom_
def _m_step(self, X, log_resp):
"""M step.
Parameters
----------
X : array-like of shape (n_samples, n_features)
log_resp : array-like of shape (n_samples, n_components)
Logarithm of the posterior probabilities (or responsibilities) of
the point of each sample in X.
"""
n_samples, _ = X.shape
nk, xk, sk = _estimate_gaussian_parameters(
X, np.exp(log_resp), self.reg_covar, self.covariance_type
)
self._estimate_weights(nk)
self._estimate_means(nk, xk)
self._estimate_precisions(nk, xk, sk)
def _estimate_log_weights(self):
if self.weight_concentration_prior_type == "dirichlet_process":
digamma_sum = digamma(
self.weight_concentration_[0] + self.weight_concentration_[1]
)
digamma_a = digamma(self.weight_concentration_[0])
digamma_b = digamma(self.weight_concentration_[1])
return (
digamma_a
- digamma_sum
+ np.hstack((0, np.cumsum(digamma_b - digamma_sum)[:-1]))
)
else:
# case Variational Gaussian mixture with dirichlet distribution
return digamma(self.weight_concentration_) - digamma(
np.sum(self.weight_concentration_)
)
def _estimate_log_prob(self, X):
_, n_features = X.shape
# We remove `n_features * np.log(self.degrees_of_freedom_)` because
# the precision matrix is normalized
log_gauss = _estimate_log_gaussian_prob(
X, self.means_, self.precisions_cholesky_, self.covariance_type
) - 0.5 * n_features * np.log(self.degrees_of_freedom_)
log_lambda = n_features * np.log(2.0) + np.sum(
digamma(
0.5
* (self.degrees_of_freedom_ - np.arange(0, n_features)[:, np.newaxis])
),
0,
)
return log_gauss + 0.5 * (log_lambda - n_features / self.mean_precision_)
def _compute_lower_bound(self, log_resp, log_prob_norm):
"""Estimate the lower bound of the model.
The lower bound on the likelihood (of the training data with respect to
the model) is used to detect the convergence and has to increase at
each iteration.
Parameters
----------
X : array-like of shape (n_samples, n_features)
log_resp : array, shape (n_samples, n_components)
Logarithm of the posterior probabilities (or responsibilities) of
the point of each sample in X.
log_prob_norm : float
Logarithm of the probability of each sample in X.
Returns
-------
lower_bound : float
"""
# Contrary to the original formula, we have done some simplification
# and removed all the constant terms.
(n_features,) = self.mean_prior_.shape
# We removed `.5 * n_features * np.log(self.degrees_of_freedom_)`
# because the precision matrix is normalized.
log_det_precisions_chol = _compute_log_det_cholesky(
self.precisions_cholesky_, self.covariance_type, n_features
) - 0.5 * n_features * np.log(self.degrees_of_freedom_)
if self.covariance_type == "tied":
log_wishart = self.n_components * np.float64(
_log_wishart_norm(
self.degrees_of_freedom_, log_det_precisions_chol, n_features
)
)
else:
log_wishart = np.sum(
_log_wishart_norm(
self.degrees_of_freedom_, log_det_precisions_chol, n_features
)
)
if self.weight_concentration_prior_type == "dirichlet_process":
log_norm_weight = -np.sum(
betaln(self.weight_concentration_[0], self.weight_concentration_[1])
)
else:
log_norm_weight = _log_dirichlet_norm(self.weight_concentration_)
return (
-np.sum(np.exp(log_resp) * log_resp)
- log_wishart
- log_norm_weight
- 0.5 * n_features * np.sum(np.log(self.mean_precision_))
)
def _get_parameters(self):
return (
self.weight_concentration_,
self.mean_precision_,
self.means_,
self.degrees_of_freedom_,
self.covariances_,
self.precisions_cholesky_,
)
def _set_parameters(self, params):
(
self.weight_concentration_,
self.mean_precision_,
self.means_,
self.degrees_of_freedom_,
self.covariances_,
self.precisions_cholesky_,
) = params
# Weights computation
if self.weight_concentration_prior_type == "dirichlet_process":
weight_dirichlet_sum = (
self.weight_concentration_[0] + self.weight_concentration_[1]
)
tmp = self.weight_concentration_[1] / weight_dirichlet_sum
self.weights_ = (
self.weight_concentration_[0]
/ weight_dirichlet_sum
* np.hstack((1, np.cumprod(tmp[:-1])))
)
self.weights_ /= np.sum(self.weights_)
else:
self.weights_ = self.weight_concentration_ / np.sum(
self.weight_concentration_
)
# Precisions matrices computation
if self.covariance_type == "full":
self.precisions_ = np.array(
[
np.dot(prec_chol, prec_chol.T)
for prec_chol in self.precisions_cholesky_
]
)
elif self.covariance_type == "tied":
self.precisions_ = np.dot(
self.precisions_cholesky_, self.precisions_cholesky_.T
)
else:
self.precisions_ = self.precisions_cholesky_**2