PostgreSQL 7.1 Reference Manual

The PostgreSQL Global Development Group

PostgreSQL 7.1 Reference Manual
by The PostgreSQL Global Development Group
Copyright © 1996-2001 by PostgreSQL Global Development Group

Legal Notice

PostgreSQL

is Copyright © 1996-2001 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the University of
California below.

Postgres95

is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED
HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTAINANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Table of CONtENtS e e e i
. SOQL COmMMaANdS. . . .ot e e e e e 1
AB O R T L 2
ALTER GROUP .. e e 3
ALTER TABLE ... i e e e 4
ALTER USER ..o e 7
BEGIN . e 9
CHE CK POINT .ot e e e e e e e e 11
CLOSE . 12
CLUST ER . e e e 13
COMMENT o e 15
COMMIT o e e 16
COPY i 18
CREATE AGGREGATE .. i e e e e e e e e e 24
CREATE CONSTRAINT TRIGGER e 26
CREATE DAT ABASE .. i e e e e e e e e 27
CREATE FUNCTION .. e e e e e e e e 31
CREATE GROUP .. o e e e e 35
CREATE INDEX ..\ttt e e e e e e e e e e 36
CREATE LANGUAGE e e 39
CREATE OPERATOR ..o e e e e e e e e 43
CREATE RULE i e e e e e e e e e 48
CREATE SEQUENCE it e e e e e e e 50
CREATE TABLE ... e e e e e e 54
CREATE TABLE AS . .o e e e e e e e e e 76
CREATE TRIGGER e e e e e e e e 77
CREATE TYPE . . i e e e e e e e 79
CREATE USER .. i e e e 83
CREATE VIEW . o e e e e e e 85
DEC L ARE ..o 87
DELETE ..o i e 90
DROP AGGREGATE ... e e 91
DROP DA T ABASE ..o e 93
DROP FUNCTION ..o e e e e e e e e e e 95
DROP GROUP . . 96
DROP INDEX it e 97
DROP LANGUAGE ... e e e 98
DROP OPERAT OR .o e e 99
DROP RULE .. e 101
DROP SEQUENCEt e e e e e e e 103
DROP TABLE . .o 104
DROP TRIGGER ... e e 105
DROP TY PE i e e e 107
DROP USER .. e 108
DROP VIEW i e 109
EN D .. 111
EXPL AIN o 112
FET CH . e e 114

INSE R T o 122
L ST EN L 124
L A DD o 126
L O CK ot 127
MOV E o 132
NOT L RY e e 133
REINDEX . .\t e e e e e 135
RESE T o 137
REV OKE o 138
ROL L BA CK e 141
SEL E T o 143
SELECT INT O .t e e e 154
SE T 156
SET CONST RAINT S . .o e 160
SET TRANSACTION . . e e e 161
SH O . o 162
TRUN CATE . . e e e e e e 163
UNLISTEN .. e e e e e 164
UPD AT E o 166
VA CUUM 168
[1. PostgreSQL Client Applications.ttt 170
Createdl .. o 171
oS LS 1= 173
0 [0 To | o 175
0 [0 11 = 177
< oo o 179
POBCCESS. . . . ittt et e e e e e 183
POAAMIN L 186
PO CON I, .« ettt e e e 187
PO UMD o 188
PO AUMPAl . e 192
0 = o = 194
61 | 200
POLC SN L 221
PO SN L 221
VaCUUMAD . . 222
[11. PostgreSQL Server AppliCations.ottt e 225
(o= 1= =1 o o 226
(o oo =T o 227
NIEAD . 229
INIEIOCALIONo e 231
0o ot o 232
POt et 232
PO PASOV. ot ittt et e e e e e e e e 235
POSION S, . . et 236
POSIMASL O 239

l. SOL Commands

This is reference information for the SQL commands supported by Postgres.

ABORT

Name

ABORT Aborts the current transaction

Synopsis

ABORT [WORK | TRANSACTI ON]

Inputs

None.

Outputs

ROLLBACK

Message returned if successful.

NOTI CE: ROLLBACK: no transaction in progress

If there is not any transaction currently in progress.

Description

ABORT rolls back the current transaction and causes all the updates made by the transaction to be
discarded. This command is identical in behavior to the SQL92 command ROLLBACK, and is present
only for historical reasons.

Notes

Use COMMIT to successfully terminate a transaction.
Usage

To abort all changes:

ABORT WCRK;

QL Commands

Compatibility

SQL92

This command is a Postgres extension present for historical reasons. ROLLBACK is the SQL92
equivalent command.

ALTER GROUP

Name

ALTER GROUP Add users to a group, remove users from a group

Synopsis
ALTER GROUP name ADD USER usernane [, ...]
ALTER GROUP nane DROP USER usernanme [, ...]

Inputs

nanme

The name of the group to modify.

user nane

Users which are to be added or removed from the group. The user names must exist.

Outputs

ALTER GROUP

Message returned if the alteration was successful.

Description

ALTER GROUP is used to add or remove users from a group. Only database superusers can use this
command. Adding a user to a group does not create the user. Similarly, removing a user from a group
does not drop the user itself.

Use CREATE GROUP to create a new group and DROP GROUP to remove a group.

QL Commands

Usage

Add users to a group:

ALTER GROUP staff ADD USER karl, john
Remove a user from a group:

ALTER GROUP wor kers DROP USER bet h

Compatibility

SQL92
There is no ALTER GROUP statement in SQL92. The concept of roles is similar.

ALTER TABLE

Name

ALTER TABLE Modifies table properties

Synopsis

ALTER TABLE [ONLY] table [*]

ADD [COLUWN] columm type
ALTER TABLE [ONLY] table [*]

ALTER [COLUW] colum { SET DEFAULT val ue | DROP DEFAULT }
ALTER TABLE table [*]

RENAME [COLUMN] colum TO newcol um
ALTER TABLE tabl e

RENAME TO newt abl e
ALTER TABLE tabl e

ADD tabl e constraint definition
ALTER TABLE tabl e

OMER TO new owner

Inputs

tabl e

The name of an existing table to alter.

col um

Name of a new or existing column.

QL Commands

type
Type of the new column.

newcol umm

New name for an existing column.

newt abl e

New name for the table.

tabl e constraint definition

New table constraint for the table

New user

The user name of the new owner of the table.

Outputs

ALTER

Message returned from column or table renaming.

ERROR

Message returned if table or column is not available.

Description

ALTER TABLE changes the definition of an existing table. The ADD COLUWN form adds a new
column to the table using the same syntax as CREATE TABLE. The ALTER COLUMN form allows you to
set or remove the default for the column. Note that defaults only apply to newly inserted rows. The
RENAME clause causes the name of a table or column to change without changing any of the data
contained in the affected table. Thus, the table or column will remain of the same type and size after this
command is executed. The ADD t abl e constraint definition clause adds a new constraint
to the table using the same syntax as CREATE TABLE. The OWNER clause chnages the owner of the
table to the user new user.

You must own the table in order to change its schema.

Notes

The keyword COLUWN is noise and can be omitted.

In the current implementation, default and constraint clauses for the new column will be ignored. You
can use the SET DEFAULT form of ALTER TABLE to set the default later. (You will also have to
update the already existing rows to the new default value, using UPDATE.)

QL Commands

In the current implementation, only FOREIGN KEY constraints can be added to a table. To create or
remove a unique constraint, create a unique index (see CREATE INDEX). To add check constraints you
need to recreate and reload the table, using other parameters to the CREATE TABLE command.

You must own the table in order to change it. Renaming any part of the schema of a system catalog is
not permitted. The PostgreSQL User’s Guide has further information on inheritance.

Refer to CREATE TABLE for a further description of valid arguments.

Usage
To add a column of type VARCHAR to a table:

ALTER TABLE di stri butors ADD COLUWN address VARCHAR(30);

To rename an existing column:

ALTER TABLE di stributors RENAME COLUWN address TO city;

To rename an existing table:

ALTER TABLE di stributors RENAME TO suppliers;

To add a foreign key constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address)
REFERENCES addr esses(address) MATCH FULL

Compatibility

SQL92

The ADD COLUMN form is compliant with the exception that it does not support defaults and constraints,
as explained above. The ALTER COLUWN form is in full compliance.

SQL92 specifies some additional capabilities for ALTER TABLE statement which are not yet directly
supported by Postgres:

ALTER TABLE tabl e DROP CONSTRAI NT constraint { RESTRICT | CASCADE }

QL Commands

Removes a table constraint (such as a check constraint, unique constraint, or foreign key
constraint). To remove a unique constraint, drop a unique index. To remove other kinds of
constraints you need to recreate and reload the table, using other parameters to the CREATE
TABLE command.

For example, to drop any constraints on a table di stri but ors:

CREATE TABLE tenp AS SELECT * FROM di stri butors;
DROP TABLE di stributors;

CREATE TABLE distributors AS SELECT * FROM tenp;
DROP TABLE t enp;

ALTER TABLE table DROP [COLUMN] col urm { RESTRICT | CASCADE }

Removes a column from a table. Currently, to remove an existing column the table must be
recreated and reloaded:

CREATE TABLE tenp AS SELECT did, city FROM di stri butors;
DROP TABLE di stributors;
CREATE TABLE distributors (
did DECI MAL(3) DEFAULT 1,
name VARCHAR(40) NOT NULL
)
| NSERT I NTO di stributors SELECT * FROM tenp;
DROP TABLE t enp;

The clauses to rename columns and tables are Postgres extensions from SQL92.

ALTER USER

Name

ALTER USER Modifies user account information

Synopsis

ALTER USER user nane
[WTH PASSWORD ' password’]
[CREATEDB | NOCREATEDB] [CREATEUSER | NOCREATEUSER]
[VALID UNTIL "abstinme’]

QL Commands

Inputs

user nane

The name of the user whose details are to be altered.

passwor d

The new password to be used for this account.
CREATEDB
NOCREATEDB

These clauses define a user’s ability to create databases. If CREATEDB is specified, the user
being defined will be allowed to create his own databases. Using NOCREATEDB will deny a user
the ability to create databases.

CREATEUSER
NOCREATEUSER

These clauses determine whether a user will be permitted to create new users himself. This option
will also make the user a superuser who can override all access restrictions.

abstine

The date (and, optionally, the time) at which this user’s password is to expire.

Outputs

ALTER USER

Message returned if the alteration was successful.

ERROR: ALTER USER: user "usernane" does not exi st

Error message returned if the specified user is not known to the database.

Description

ALTER USER is used to change the attributes of a user’s Postgres account. Only a database superuser
can change privileges and password expiration with this command. Ordinary users can only change their
own password.

Use CREATE USER to create a new user and DROP USER to remove a user.

Usage

Change a user password:

QL Commands

ALTER USER davi de W TH PASSWORD ' hu8j m3’ ;
Change a user’s valid until date:
ALTER USER nmanuel VALID UNTIL *Jan 31 2030 ;

Change a user’s valid until date, specifying that his authorization should expire at midday on 4th May
1998 using the time zone which is one hour ahead of UTC:

ALTER USER chris VALID UNTIL 'May 4 12:00: 00 1998 +1';
Give a user the ability to create other users and new databases:

ALTER USER mi ri am CREATEUSER CREATEDB;

Compatibility

SQL92

There is no ALTER USER statement in SQL92. The standard leaves the definition of users to the
implementation.

BEGIN

Name

BEG N Begins a transaction in chained mode

Synopsis
BEG N [WORK | TRANSACTI ON]

Inputs

WORK
TRANSACTION

Optional keywords. They have no effect.

QL Commands

Outputs

BEG N

This signifies that a new transaction has been started.

NOTI CE: BEA N. already a transaction in progress

This indicates that a transaction was already in progress. The current transaction is not affected.

Description

By default, Postgres executes transactions in unchained mode (also known as autocommit in other
database systems). In other words, each user statement is executed in its own transaction and a commit
is implicitly performed at the end of the statement (if execution was successful, otherwise a rollback is
done). BEGIN initiates a user transaction in chained mode, i.e., all user statements after BEGIN
command will be executed in a single transaction until an explicit COMMIT, ROLLBACK, or execution
abort. Statements in chained mode are executed much faster, because transaction start/commit requires
significant CPU and disk activity. Execution of multiple statements inside a transaction is also required
for consistency when changing several related tables.

The default transaction isolation level in Postgres is READ COMMITTED, where queries inside the
transaction see only changes committed before query execution. So, you have to use SET
TRANSACTION ISOLATION LEVEL SERIALIZABLE just after BEGIN if you need more
rigorous transaction isolation. In SERIALIZABLE mode queries will see only changes committed
before the entire transaction began (actually, before execution of the first DML statement in a
serializable transaction).

If the transaction is committed, Postgres will ensure either that all updates are done or else that none of
them are done. Transactions have the standard ACID (atomic, consistent, isolatable, and durable)

property.
Notes

Refer to LOCK for further information about locking tables inside a transaction.
Use COMMIT or ROLLBACK to terminate a transaction.

Usage
To begin a user transaction:

BEG N WORK;

10

QL Commands

Compatibility

SQL92

BEGIN is a Postgres language extension. There is no explicit BEGIN command in SQL92; transaction
initiation is always implicit and it terminates either witha COMMIT or ROLLBACK statement.

Note: Many relational database systems offer an autocommit feature as a convenience.

Incidentally, the BEG N keyword is used for a different purpose in embedded SQL. You are advised to
be careful about the transaction semantics when porting database applications.

SQL92 also requires SERIALIZABLE to be the default transaction isolation level.

CHECKPOINT

Name

CHECKPQO NT Force transaction log checkpoint

Synopsis

CHECKPO NT

Description

Write-Ahead Logging (WAL) puts a checkpoint in the transaction log every so often. (To adjust the
automatic checkpoint interval, see the run-time configuration options CHECKPO NT_SEGVENTS and
CHECKPO NT_TI MEQUT.) The CHECKPOINT command forces an immediate checkpoint when the
command is issued, without waiting for a scheduled checkpoint.

A checkpoint is a point in the transaction log sequence at which all data files have been updated to
reflect the information in the log. All data files will be flushed to disk. Refer to the PostgreSQL
Administrator’s Guide for more information about the WAL system.

Only superusers may call CHECKPOINT. The command is not intended for use during normal
operation.

See Also

PostgreSQL Administrator’s Guide

Compatibility

The CHECKPOINT command is a PostgreSQL language extension.

11

QL Commands

CLOSE

Name

CLGCSE Close a cursor

Synopsis

CLCSE cursor

Inputs

cursor

The name of an open cursor to close.

Outputs

CLCSE

Message returned if the cursor is successfully closed.

NOTI CE PerfornPortal C ose: portal "cursor" not found

This warning is given if cur sor is not declared or has already been closed.

Description

CLOSE frees the resources associated with an open cursor. After the cursor is closed, no subsequent
operations are allowed on it. A cursor should be closed when it is no longer needed.

An implicit close is executed for every open cursor when a transaction is terminated by COMMIT or
ROLLBACK.

Notes

Postgres does not have an explicit OPEN cursor statement; a cursor is considered open when it is
declared. Use the DECL ARE statement to declare a cursor.

Usage
Close the cursor liahona:

CLGCSE | i ahona;

12

QL Commands

Compatibility

SQL92
CLOSE is fully compatible with SQL92.

CLUSTER

Name

CLUSTER Gives storage clustering advice to the server

Synopsis

CLUSTER i ndexnanme ON t abl enane

Inputs

i ndexnane

The name of an index.

tabl e

The name of a table.

Outputs

CLUSTER

The clustering was done successfully.

ERROR relation <tablerelation_nunber> inherits "table"

* Thisis not documented anywhere. It seems not to be possible to cluster a table that isinherited.

ERROR: Rel ation table does not exist!

* The specified relation was not shown in the error message, which contained a random string instead of the relation name.

13

QL Commands

Description

CLUSTER instructs Postgres to cluster the table specified by t abl e approximately based on the index
specified by i ndexnane. The index must already have been defined on t abl enane.

When a table is clustered, it is physically reordered based on the index information. The clustering is

static. In other words, as the table is updated, the changes are not clustered. No attempt is made to keep
new instances or updated tuples clustered. If one wishes, one can re-cluster manually by issuing the
command again.

Notes

The table is actually copied to a temporary table in index order, then renamed back to the original
name. For this reason, all grant permissions and other indexes are lost when clustering is performed.

In cases where you are accessing single rows randomly within a table, the actual order of the data in the
heap table is unimportant. However, if you tend to access some data more than others, and there is an
index that groups them together, you will benefit from using CLUSTER.

Another place where CLUSTER is helpful is in cases where you use an index to pull out several rows
from a table. If you are requesting a range of indexed values from a table, or a single indexed value that
has multiple rows that match, CLUSTER will help because once the index identifies the heap page for
the first row that matches, all other rows that match are probably already on the same heap page, saving
disk accesses and speeding up the query.

There are two ways to cluster data. The first is with the CLUSTER command, which reorders the
original table with the ordering of the index you specify. This can be slow on large tables because the
rows are fetched from the heap in index order, and if the heap table is unordered, the entries are on
random pages, so there is one disk page retrieved for every row moved. Postgres has a cache, but the
majority of a big table will not fit in the cache.

Another way to cluster data is to use

SELECT columlist | NTO TABLE newt abl e
FROM t abl e ORDER BY col umml i st

which uses the Postgres sorting code in the ORDER BY clause to match the index, and which is much

faster for unordered data. You then drop the old table, use ALTER TABLE/RENAME to rename
t enp to the old name, and recreate any indexes. The only problem is that OIDs will not be preserved.
From then on, CLUSTER should be fast because most of the heap data has already been ordered, and
the existing index is used.

Usage
Cluster the employees relation on the basis of its salary attribute:

CLUSTER enp_i nd ON enp;

14

QL Commands

Compatibility

SQL92
There is no CLUSTER statement in SQL92.

COMMENT

Name

COMMVENT Add comment to an object

Synopsis

COMMENT ON

[
[DATABASE | INDEX | RULE | SEQUENCE | TABLE | TYPE | VIEW]

obj ect _nane |
COLUW t abl e_nane. col utm_nane|
AGGREGATE agg_nane agg_type|
FUNCTI ON func_name (argl, arg2, ...)|
OPERATOR op (Il eftoperand_type rightoperand_type) |
TRI GGER trigger_nanme ON tabl e_nane
] IS text’

Inputs

obj ect _nane, t abl e_nane, col umm_nane, agg_nane, func_nane, op,
trigger_nane

The name of the object to be be commented.

t ext

The comment to add.

Outputs

COMVENT
Message returned if the table is successfully commented.

15

QL Commands

Description

COMMENT adds a comment to an object that can be easily retrieved with psqgl’s \dd, \d+, or \I+
commands. To remove a comment, use NULL. Comments are automatically dropped when the object is
dropped.

Usage
Comment the table nyt abl e:

COVMMENT ON nytable IS 'This is ny table.’;

Some more examples:

COWMENT ON DATABASE ny_dat abase | S ' Devel opnent Dat abase’;

COVMENT ON | NDEX ny_index IS 'Enforces uniqueness on enployee id;
COVMMENT ON RULE ny_rule IS 'Logs UPDATES of enpl oyee records’;
COMMENT ON SEQUENCE ny_sequence |S 'Used to generate prinary keys’;
COWMENT ON TABLE ny_table IS ' Enpl oyee Information’;

COMMENT ON TYPE ny_type IS ' Conpl ex Nunber support’;

COMMENT ON VIEW nny_view IS ' Vi ew of departnental costs’;

COMMENT ON COLUWN ny_table.ny_field IS ' Enpl oyee | D nunber’;

COMMENT ON AGGREGATE ny_aggregate (double precision) |S ’'Conputes sanple
vari ance’ ;

COVMMENT ON FUNCTION ny_function (tinestanp) IS ' Returns Roman Nuneral’;
COVMENT ON OPERATOR " (text, text) IS 'Perforns intersection of two text’;
COVMMENT ON TRIGGER nmy_trigger ON nmy_table IS "Used for R1.";

Compatibility

SQL92
There isno COMMENT in SQL92.

COMMIT

Name

COMM T Commits the current transaction

Synopsis

COW T [WORK | TRANSACTI ON]

16

QL Commands

Inputs

WORK
TRANSACTION

Optional keywords. They have no effect.

Outputs

coOw T

Message returned if the transaction is successfully committed.

NOTICE: COW T: no transaction in progress

If there is no transaction in progress.

Description

COMMIT commits the current transaction. All changes made by the transaction become visible to
others and are guaranteed to be durable if a crash occurs.

Notes

The keywords WORK and TRANSACTION are noise and can be omitted.
Use ROLLBACK to abort a transaction.

Usage
To make all changes permanent:

COMWM T WVORK;

Compatibility

SQL92

SQL92 only specifies the two forms COM T and COWM T WORK. Otherwise full compatibility.

17

QL Commands

COPY

Name

COPY Copies data between files and tables

Synopsis

COPY [BINARY] table [WTH O DS]
FROM { 'filenane’ | stdin }
[[USING DELIMTERS 'delimter’]
[WTH NULL AS "'null string’]
COPY [BINARY] table [WTH QI DS]
TO{ 'filenane’ | stdout }
[[USING DELIMTERS 'delimter’]
[WTH NULL AS 'null string’ 1]

Inputs

BINARY

Changes the behavior of field formatting, forcing all data to be stored or read in binary format
rather than as text. The DELIMITERS and WITH NULL options are irrelevant for binary format.

t abl e

The name of an existing table.

WITH OIDS

Specifies copying the internal unique object id (OID) for each row.

fil ename

The absolute Unix pathname of the input or output file.

stdin

Specifies that input comes from the client application.

st dout

Specifies that output goes to the client application.

delimter

The character that separates fields within each row (line) of the file.

null string

18

QL Commands

The string that represents a NULL value. The default is \ N (backslash-N). You might prefer an
empty string, for example.

Note: On a copy in, any data item that matches this string will be stored as a NULL value, so
you should make sure that you use the same string as you used on copy out.

Outputs

CcorPY

The copy completed successfully.

ERROR: reason

The copy failed for the reason stated in the error message.

Description

COPY moves data between Postgres tables and standard file-system files. COPY TO copies the entire
contents of a table to a file, while COPY FROM copies data from a file to a table (appending the data
to whatever is in the table already).

COPY instructs the Postgres backend to directly read from or write to a file. If a file name is specified,
the file must be accessible to the backend and the name must be specified from the viewpoint of the
backend. If st di n or st dout is specified, data flows through the client frontend to the backend.

Tip: Do not confuse COPY with the psql instruction \copy. \copy invokes COPY FROM stdin or
COPY TO stdout, and then fetches/stores the data in a file accessible to the psql client. Thus, file
accessibility and access rights depend on the client rather than the backend when \copy is used.

Notes

The BINARY keyword will force all data to be stored/read as binary format rather than as text. It is
somewhat faster than the normal copy command, but a binary copy file is not portable across machine
architectures.

By default, a text copy uses a tab ("\t") character as a delimiter between fields. The field delimiter may
be changed to any other single character with the keyword phrase USING DELIMITERS. Characters in
data fields which happen to match the delimiter character will be backslash quoted. Note that the
delimiter is always a single character. If multiple characters are specified in the delimiter string, only the
first character is used.

You must have select access on any table whose values are read by COPY, and either insert or update
access to a table into which values are being inserted by COPY. The backend also needs appropriate
Unix permissions for any file read or written by COPY .

19

QL Commands

COPY TO neither invokes rules nor acts on column defaults. It does invoke triggers and check
constraints.

COPY stops operation at the first error. This should not lead to problems in the event of a COPY
FROM, but the target relation will already have received earlier rows in a COPY TO. These rows will
not be visible or accessible, but they still occupy disk space. This may amount to a considerable amount
of wasted disk space if the failure happened well into a large copy operation. You may wish to invoke
VACUUM to recover the wasted space.

Files named in a COPY command are read or written directly by the backend, not by the client
application. Therefore, they must reside on or be accessible to the database server machine, not the
client. They must be accessible to and readable or writable by the Postgres user (the userid the backend
runs as), not the client. COPY naming a file is only allowed to database superusers, since it allows
writing on any file that the backend has privileges to write on.

Tip: The psqgl instruction \copy reads or writes files on the client machine with the client's
permissions, so it is not restricted to superusers.

It is recommended that the filename used in COPY always be specified as an absolute path. This is
enforced by the backend in the case of COPY TO, but for COPY FROM you do have the option of
reading from a file specified by a relative path. The path will be interpreted relative to the backend’s
working directory (somewhere below $PGDATA), not the client’s working directory.

File Formats

Text Format

When COPY TO is used without the BINARY option, the file generated will have each row (instance)
on a single line, with each column (attribute) separated by the delimiter character. Embedded delimiter
characters will be preceded by a backslash character ("\"). The attribute values themselves are strings
generated by the output function associated with each attribute type. The output function for a type
should not try to generate the backslash character; this will be handled by COPY itself.

The actual format for each instance is

<attrl><separator><attr2><separator>...<separator><attrn><new i ne>

Note that the end of each row is marked by a Unix-style newline ("\n"). COPY FROM will not behave
as desired if given a file containing DOS- or Mac-style newlines.

The OID is emitted as the first column if WITH OIDS is specified.

If COPY TO is sending its output to standard output instead of a file, after the last row it will send a
backslash ("\") and a period (".") followed by a newline. Similarly, if COPY FROM is reading from
standard input, it will expect a backslash ("\") and a period (".") followed by a newline, as the first three
characters on a line to denote end-of-file. However, COPY FROM will terminate correctly (followed

by the backend itself) if the input connection is closed before this special end-of-file pattern is found.

The backslash character has other special meanings. A literal backslash character is represented as two
consecutive backslashes ("\\"). A literal tab character is represented as a backslash and a tab. (If you are

20

QL Commands

using something other than tab as the column delimiter, backslash that delimiter character to include it
in data.) A literal newline character is represented as a backslash and a newline. When loading text data
not generated by Postgres, you will need to convert backslash characters ("\") to double-backslashes
("\'") to ensure that they are loaded properly.

Binary Format

The file format used for COPY BINARY changed in Postgres v7.1. The new format consists of a file
header, zero or more tuples, and a file trailer.

File Header

The file header consists of 24 bytes of fixed fields, followed by a variable-length header extension area.
The fixed fields are:

Signature

12-byte sequence "PGBCOPY\n\377\r\n\0" --- note that the null is a required part of the signature.
(The signature is designed to allow easy identification of files that have been munged by a
non-8-bit-clean transfer. This signature will be changed by newline-translation filters, dropped
nulls, dropped high bits, or parity changes.)

Integer layout field

int32 constant 0x01020304 in source’s byte order. Potentially, a reader could engage in
byte-flipping of subsequent fields if the wrong byte order is detected here.

Flags field

int32 bit mask to denote important aspects of the file format. Bits are numbered from 0 (LSB) to 31
(MSB) --- note that this field is stored with source’s endianness, as are all subsequent integer fields.
Bits 16-31 are reserved to denote critical file format issues; a reader should abort if it finds an
unexpected bit set in this range. Bits 0-15 are reserved to signal backwards-compatible format
issues; a reader should simply ignore any unexpected bits set in this range. Currently only one flag
bit is defined, and the rest must be zero:

Bit 16
if 1, OIDs are included in the dump; if 0, not

Header extension area length

int32 length in bytes of remainder of header, not including self. In the initial version this will be
zero, and the first tuple follows immediately. Future changes to the format might allow additional
data to be present in the header. A reader should silently skip over any header extension data it does
not know what to do with.

The header extension area is envisioned to contain a sequence of self-identifying chunks. The flags field
is not intended to tell readers what is in the extension area. Specific design of header extension contents
is left for a later release.

21

QL Commands

This design allows for both backwards-compatible header additions (add header extension chunks, or
set low-order flag bits) and non-backwards-compatible changes (set high-order flag bits to signal such
changes, and add supporting data to the extension area if needed).

Tuples

Each tuple begins with an int16 count of the number of fields in the tuple. (Presently, all tuples in a table
will have the same count, but that might not always be true.) Then, repeated for each field in the tuple,
there is an int16 typlen word possibly followed by field data. The typlen field is interpreted thus:

Zero

Field is NULL. No data follows.

>0
Field is a fixed-length datatype. Exactly N bytes of data follow the typlen word.

Field is a varlena datatype. The next four bytes are the varlena header, which contains the total
value length including itself.
<-1

Reserved for future use.

For non-NULL fields, the reader can check that the typlen matches the expected typlen for the
destination column. This provides a simple but very useful check that the data is as expected.

There is no alignment padding or any other extra data between fields. Note also that the format does not
distinguish whether a datatype is pass-by-reference or pass-by-value. Both of these provisions are
deliberate: they might help improve portability of the files (although of course endianness and
floating-point-format issues can still keep you from moving a binary file across machines).

If OIDs are included in the dump, the OID field immediately follows the field-count word. It is a normal
field except that it’s not included in the field-count. In particular it has a typlen --- this will allow
handling of 4-byte vs 8-byte OIDs without too much pain, and will allow OIDs to be shown as NULL if
we someday allow OIDs to be optional.

File Trailer

The file trailer consists of an int16 word containing -1. This is easily distinguished from a tuple’s
field-count word.

A reader should report an error if a field-count word is neither -1 nor the expected number of columns.
This provides an extra check against somehow getting out of sync with the data.

Usage
The following example copies a table to standard output, using a vertical bar (|) as the field delimiter:

COPY country TO stdout USI NG DELIM TERS ' |’ ;

22

QL Commands

To copy data from a Unix file into a table country:

COPY country FROM ' /usrl/proj/bray/sqgl/country data’;

Here is a sample of data suitable for copying into a table from stdin (so it has the termination

sequence on the last line):

AF AFGHANI STAN
AL ALBANI A

(D4 ALGERI A

ZM ZAMBI A

ZW ZI NBABVEE

\.

Note that the white space on each line is actually a TAB.

The following is the same data, output in binary format on a Linux/i586 machine. The data is shown
after filtering through the Unix utility od -c. The table has three fields; the first is char (2) , the second

is t ext, and the third is i nt eger . All the rows have a null value in the third field.

0000000 P G B C O P Y \n 377 \r \n \0 004 003 002 001
0000020 \0 \0 V0 \0 V0 \0 V0 \0 003 \O 377 377 006 \0 \0 \O

0000040 A F 377 377 017 \0 \0 \O A F G H A N I S
0000060 T A N V0 \0 003 \0 377 377 006 \0 \0 \O A L 377
0000100 377 \v \0 \0 \O A L B A N I A \0 \0 003 \O
0000120 377 377 006 \0 \0 \O D 2z 377 377 \v \0 \0 \O A L
0000140 G E R | A \0 \0 003 \O0 377 377 006 \0 \0O \O V4
0000160 M 377 377 \n \0 \0 \O Z A M B I A \0 \0 003
0000200 \0 377 377 006 \0 \0 \O Z W377 377 \f \0 \0 \O 4
0000220 | M B A B W E \0 \0 377 377

Compatibility

SQL92

There is no COPY statement in SQL92.

23

QL Commands

CREATE AGGREGATE

Name

CREATE AGCREGATE Defines a new aggregate function

Synopsis

CREATE AGGREGATE nanme (BASETYPE = input_data_type,
SFUNC = sfunc, STYPE = state_type
[. FINALFUNC = ffunc]
[, INTCOND = initial _condition])

Inputs

nane

The name of an aggregate function to create.

i nput _dat a_t ype

The input data type on which this aggregate function operates. This can be specified as ANY for
an aggregate that does not examine its input values (an example is count (*)).

sfunc

The name of the state transition function to be called for each input data value. This is normally a

function of two arguments, the first being of type state_type and the second of type
i nput _dat a_t ype. Alternatively, for an aggregate that does not examine its input values, the
function takes just one argument of type st at e_t ype. In either case the function must return a
value of type st at e_t ype. This function takes the current state value and the current input data
item, and returns the next state value.

state_type
The data type for the aggregate’s state value.

ffunc

The name of the final function called to compute the aggregate’s result after all input data has been
traversed. The function must take a single argument of type st at e_t ype. The output data type of
the aggregate is defined as the return type of this function. If f f unc is not specified, then the
ending state value is used as the aggregate’s result, and the output type is st at e_t ype.

initial _condition

The initial setting for the state value. This must be a literal constant in the form accepted for the
data type st at e_t ype. If not specified, the state value starts out NULL.

24

QL Commands

Outputs

CREATE

Message returned if the command completes successfully.

Description

CREATE AGGREGATE allows a user or programmer to extend Postgres functionality by defining

new aggregate functions. Some aggregate functions for base types such as min(integer) and
avg(doubl e precision) are already provided in the base distribution. If one defines new types or
needs an aggregate function not already provided, then CREATE AGGREGATE can be used to
provide the desired features.

An aggregate function is identified by its name and input data type. Two aggregates can have the same
name if they operate on different input types. To avoid confusion, do not make an ordinary function of
the same name and input data type as an aggregate.

An aggregate function is made from one or two ordinary functions: a state transition function sf unc,
and an optional final calculation function f f unc. These are used as follows:

sfunc(internal-state, next-data-item) ---> next-internal-state
ffunc(internal-state) ---> aggregate-val ue

Postgres creates a temporary variable of data type st ype to hold the current internal state of the
aggregate. At each input data item, the state transition function is invoked to calculate a new internal
state value. After all the data has been processed, the final function is invoked once to calculate the
aggregate’s output value. If there is no final function then the ending state value is returned as-is.

An aggregate function may provide an initial condition, that is, an initial value for the internal state
value. This is specified and stored in the database as a field of type t ext , but it must be a valid external
representation of a constant of the state value data type. If it is not supplied then the state value starts out
NULL.

If the state transition function is declared "strict" in pg_proc, then it cannot be called with NULL inputs.

With such a transition function, aggregate execution behaves as follows. NULL input values are ignored
(the function is not called and the previous state value is retained). If the initial state value is NULL,
then the first non-NULL input value replaces the state value, and the transition function is invoked
beginning with the second non-NULL input value. This is handy for implementing aggregates like max.
Note that this behavior is only available when st at e _t ype is the same as i nput _dat a_t ype.
When these types are different, you must supply a non-NULL initial condition or use a non-strict
transition function.

If the state transition function is not strict, then it will be called unconditionally at each input value, and
must deal with NULL inputs and NULL transition values for itself. This allows the aggregate author to
have full control over the aggregate’s handling of NULLSs.

25

QL Commands

If the final function is declared "strict", then it will not be called when the ending state value is NULL;
instead a NULL result will be output automatically. (Of course this is just the normal behavior of strict
functions.) In any case the final function has the option of returning NULL. For example, the final
function for avg returns NULL when it sees there were zero input tuples.

Notes

Use DROP AGGREGATE to drop aggregate functions.

The parameters of CREATE AGGREGATE can be written in any order, not just the order illustrated
above.

Usage

Refer to the chapter on aggregate functions in the PostgreSQL Programmer’s Guide for complete
examples of usage.

Compatibility

SQL92

CREATE AGGREGATE is a Postgres language extension. There is no CREATE AGGREGATE in
SQL92.

CREATE CONSTRAINT TRIGGER

Name

CREATE CONSTRAI NT TRI GGER Create a trigger to support a constraint

Synopsis
CREATE CONSTRAI NT TRI GGER nane
AFTER events ON

relation constraint attributes
FOR EACH ROW EXECUTE PROCEDURE func ' (' args ')’

Inputs

nane

The name of the constraint trigger.

events

The event categories for which this trigger should be fired.

26

QL Commands

rel ation

Table name of the triggering relation.

constrai nt

Actual onstraint specification.

attributes

Constraint attributes.

func(args)

Function to call as part of the trigger processing.

Outputs

CREATE CONSTRAI NT

Message returned if successful.

Description

CREATE CONSTRAINT TRIGGER is used from inside of CREATE/ALTER TABLE and by
pg_dump to create the special triggers for referential integrity.

It is not intended for general use.

27

QL Commands

CREATE DATABASE

Name

CREATE DATABASE Creates a new database

Synopsis
CREATE DATABASE nane
[WTH [LOCATION = '"dbpath’]
[TEMPLATE = tenplate]
[ENCODI NG = encoding]]

Inputs

nanme

The name of a database to create.

dbpat h
An alternate filesystem location in which to store the new database, specified as a string literal; or
DEFAULT to use the default location.

tenmpl ate
Name of template from which to create the new database, or DEFAULT to use the default template
(tenpl at el)

encodi ng

Multibyte encoding method to use in the new database. Specify a string literal name (e.g.,
" SQL_ASCI | "), or an integer encoding number, or DEFAULT to use the default encoding.

Outputs

CREATE DATABASE

Message returned if the command completes successfully.

ERROR user ’'usernane’ is not allowed to create/drop databases
You must have the special CREATEDB privilege to create databases. See CREATE USER.

ERROR createdb: database "name" al ready exists

This occurs if a database with the nare specified already exists.

28

QL Commands

ERROR dat abase path nay not contain single quotes

The database location dbpat h cannot contain single quotes. This is required so that the shell
commands that create the database directory can execute safely.

ERROR. CREATE DATABASE: may not be called in a transacti on bl ock
If you have an explicit transaction block in progress you cannot call CREATE DATABASE. You

must finish the transaction first.

ERROR Unabl e to create database directory 'path’.
ERROR: Could not initialize database directory.

These are most likely related to insufficient permissions on the data directory, a full disk, or other
file system problems. The user under which the database server is running must have access to the
location.

Description

CREATE DATABASE creates a new Postgres database. The creator becomes the owner of the new
database.

An alternate location can be specified in order to, for example, store the database on a different disk.
The path must have been prepared with the initlocation command.

If the path name does not contain a slash, it is interpreted as an environment variable name, which must
be known to the server process. This way the database administrator can exercise control over locations
in which databases can be created. (A customary choice is, e.g., 'PGDATAZ2’.) If the server is compiled
with ALLOW ABSCOLUTE_DBPATHS (not so by default), absolute path names, as identified by a leading
slash (e.g., ’/ usr/ | ocal / pgsql / dat a’), are allowed as well.

By default, the new database will be created by cloning the standard system database t enpl at el. A
different template can be specified by writing TEMPLATE = nane. In particular, by writing TEMPLATE
= tenpl at e0, you can create a virgin database containing only the standard objects predefined by your
version of Postgres. This is useful if you wish to avoid copying any installation-local objects that may
have been added to templatel.

The optional encoding parameter allows selection of the database encoding, if your server was
compiled with multibyte encoding support. When not specified, it defaults to the encoding used by the
selected template database.

Optional parameters can be written in any order, not only the order illustrated above.

Notes

CREATE DATABASE is a Postgres language extension.
Use DROP DATABASE to remove a database.

The program createdb is a shell script wrapper around this command, provided for convenience.

29

QL Commands

There are security and data integrity issues involved with using alternate database locations specified
with absolute path names, and by default only an environment variable known to the backend may be
specified for an alternate location. See the Administrator’s Guide for more information.

Although it is possible to copy a database other than templatel by specifying its name as the template,
this is not (yet) intended as a general-purpose COPY DATABASE facility. In particular, it is essential
that the source database be idle (no data-altering transactions in progress) for the duration of the copying
operation. CREATE DATABASE will check that no backend processes (other than itself) are connected
to the source database at the start of the operation, but this does not guarantee that changes cannot be
made while the copy proceeds. Therefore, we recommend that databases used as templates be treated as
read-only.

Two useful flags exist in pg_dat abase for each database: dati st enpl ate and dat al | owconn.
dati stenpl ate may be set to indicate that a database is intended as a template for CREATE
DATABASE. If this flag is set, the database may be cloned by any user with CREATEDB privileges; if
it is not set, only superusers and the owner of the database may clone it. If dat al | owconn is false, then
no new connections to that database will be allowed (but existing sessions are not killed simply by
setting the flag false). The t enpl at e0 database is normally marked this way to prevent modification of
it.

Usage
To create a new database:

ol ly=> create database | usi adas;

To create a new database in an alternate area ~/ pri vat e_db:

$ nkdir private_db
$ initlocation ~/private_db
Creating Postgres database systemdirectory /hone/olly/private_db/base

$ psql olly
Wel come to psql, the PostgreSQ interactive termnal.

Type: \copyright for distribution terns
\h for help with SQL comrands
\? for help on internal slash comands
\g or termnate with sem colon to execute query
\g to quit

ol ly=> CREATE DATABASE el sewhere W TH LOCATION = '/ hone/ol ly/private_db’;
CREATE DATABASE

30

QL Commands

Compatibility

SQL92

There is no CREATE DATABASE statement in SQL92. Databases are equivalent to catalogs whose
creation is implementation-defined.

CREATE FUNCTION

Name

CREATE FUNCTI ON Defines a new function

Synopsis

CREATE FUNCTION name ([ftype [, ...1 1)
RETURNS rtype
AS definition
LANGUAGE ' | angnarne’
[WTH (attribute [, ...1) 1]
CREATE FUNCTION nane ([ftype [, ...1 1)
RETURNS rtype
AS obj _file , link_synbol
LANGUAGE ' | angnane’
[WTH (attribute [, ...]) 1]

Inputs

nanme

The name of a function to create.

ftype

The data type(s) of the function’s arguments, if any. The input types may be base or complex
types, or opaque. Opaque indicates that the function accepts arguments of a non-SQL type such as
char *.

rtype

The return data type. The output type may be specified as a base type, complex type, set of
type, or opaque. The set of modifier indicates that the function will return a set of items, rather
than a single item.

attribute

An optional piece of information about the function, used for optimization. See below for details.

31

QL Commands

definition
A string defining the function; the meaning depends on the language. It may be an internal
function name, the path to an object file, an SQL query, or text in a procedural language.
obj file,link_synbol
This form of the AS clause is used for dynamically linked, C language functions when the function
name in the C language source code is not the same as the name of the SQL function. The string
obj _fil e isthe name of the file containing the dynamically loadable object, and | i nk_symnbol
is the object’s link symbol, that is the name of the function in the C language source code.
| angnane

May be ’sql ’, 'C’, ’internal ’, or ’pl nane’, where ’pl nane’ is the name of a created
procedural language. See CREATE LANGUAGE for details.

Outputs

CREATE

This is returned if the command completes successfully.

Description

CREATE FUNCTION allows a Postgres user to register a function with the database. Subsequently,
this user is considered the owner of the function.

Function Attributes

The following items may appear in the WITH clause:

iscachable

I scachabl e indicates that the function always returns the same result when given the same
argument values (i.e., it does not do database lookups or otherwise use information not directly
present in its parameter list). The optimizer uses i scachabl e to know whether it is safe to
pre-evaluate a call of the function.

isstrict

i sstrict indicates that the function always returns NULL whenever any of its arguments are
NULL. If this attribute is specified, the function is not executed when there are NULL arguments;
instead a NULL result is assumed automatically. When i sstri ct is not specified, the function
will be called for NULL inputs. It is then the function author’s responsibility to check for NULLs if
necessary and respond appropriately.

32

QL Commands

Notes

Refer to the chapter in the PostgreSQL Programmer’s Guide on the topic of extending Postgres via
functions for further information on writing external functions.

Use DROP FUNCTION to remove user-defined functions.

The full SQL92 type syntax is allowed for input arguments and return value. However, some details of

the type specification (e.g., the precision field for nuneric types) are the responsibility of the
underlying function implementation and are silently swallowed (i.e., not recognized or enforced) by the
CREATE FUNCTION command.

Postgres allows function "overloading"; that is, the same name can be used for several different
functions so long as they have distinct argument types. This facility must be used with caution for
internal and C-language functions, however.

Two i nternal functions cannot have the same C name without causing errors at link time. To get
around that, give them different C names (for example, use the argument types as part of the C names),
then specify those names in the AS clause of CREATE FUNCTION. If the AS clause is left empty,
then CREATE FUNCTION assumes the C name of the function is the same as the SQL name.

Similarly, when overloading SQL function names with multiple C-language functions, give each
C-language instance of the function a distinct name, then use the alternative form of the AS clause in the
CREATE FUNCTION syntax to select the appropriate C-language implementation of each overloaded
SQL function.

Usage
To create a simple SQL function:

CREATE FUNCTI ON one() RETURNS int4
AS ' SELECT 1 AS RESULT
LANGUAGE 'sql ' ;

SELECT one() AS answer;

This example creates a C function by calling a routine from a user-created shared library. This
particular routine calculates a check digit and returns TRUE if the check digit in the function parameters
is correct. It is intended for use in a CHECK contraint.

CREATE FUNCTI ON ean_checkdi gi t (bpchar, bpchar) RETURNS bool ean
AS ' /usrl/proj/bray/sql/funcs.so’” LANGUAGE 'c’;

33

QL Commands

CREATE TABLE product (
id char (8) PRI MARY KEY,
eanprefix char(8) CHECK (eanprefix ~ '[0-9]{2}-[0-9]{5}")
REFERENCES br andnane(ean_prefi x),
eancode char (6) CHECK (eancode ~ '[0-9]{6}"),
CONSTRAI NT ean CHECK (ean_checkdi gi t (eanprefix, eancode))

This example creates a function that does type conversion between the user-defined type complex, and

the internal type point. The function is implemented by a dynamically loaded object that was compiled
from C source. For Postgres to find a type conversion function automatically, the sgl function has to
have the same name as the return type, and so overloading is unavoidable. The function name is
overloaded by using the second form of the AS clause in the SQL definition:

CREATE FUNCTI ON poi nt (conpl ex) RETURNS poi nt
AS '/ hone/ berni e/ pgsql /1i b/ conpl ex.so’, 'conplex_to_point’
LANGUAGE 'c’;

The C declaration of the function is:
Point * conplex_to_point (Conplex *z)
{

Poi nt *p;

= (Point *) palloc(sizeof(Point));
X = z->X;

p
p_
p-=y = z->y;

>
>

return p;

Compatibility
SQL92
CREATE FUNCTION is a Postgres language extension.

SQL/PSM

Note: PSM stands for Persistent Stored Modules. It is a procedural language and it was originally
hoped that PSM would be ratified as an official standard by late 1996. As of mid-1998, this has not
yet happened, but it is hoped that PSM will eventually become a standard.

SQL/PSM CREATE FUNCTION has the following syntax:

CREATE FUNCTI ON nane
([[INJ OQJT] INOUT] type [, ...]])
RETURNS rtype
LANGUACE ' | angnane’
ESPECI FI C routi ne
SQL- st at enent

CREATE GROUP

Name

CREATE GROUP Creates a new group

Synopsis
CREATE CGROUP nane
[WTH

[SYSID gid]
[USER wusername [, ...]] 1

Inputs

nanme

The name of the group.

gid

QL Commands

The SYSI Dclause can be used to choose the Postgres group id of the new group. It is not necessary

to do so, however.

If this is not specified, the highest assigned group id plus one, starting at 1, will be used as default.

user nane

A list of users to include in the group. The users must already exist.

35

QL Commands

Outputs

CREATE GRCOUP

Message returned if the command completes successfully.

Description

CREATE GROUP will create a new group in the database installation. Refer to the adminstrator’s
guide for information about using groups for authentication. You must be a database superuser to use
this command.

Use ALTER GROUP to change a group’s membership, and DROP GROUP to remove a group.

Usage
Create an empty group:

CREATE GROUP st af f

Create a group with members:

CREATE GROUP nar keting WTH USER j onat han, david

Compatibility

SQL92
There is no CREATE GROUP statement in SQL92. Roles are similar in concept to groups.

CREATE INDEX

Name

CREATE | NDEX Constructs a secondary index

Synopsis
CREATE [UNIQUE] I NDEX i ndex_name ON table
[USING acc_nane] (colum [ops_nanme] [, ...])
CREATE [UNI QUE] | NDEX index_name ON table
[USING acc_nane] (func_nane(colum [, ...]) [ops_nane])

36

QL Commands

Inputs

UNIQUE

Causes the system to check for duplicate values in the table when the index is created (if data
already exist) and each time data is added. Attempts to insert or update data which would result in
duplicate entries will generate an error.

i ndex_nane

The name of the index to be created.

tabl e
The name of the table to be indexed.

acc_name

The name of the access method to be used for the index. The default access method is BTREE.
Postgres provides three access methods for indexes:

BTREE

an implementation of Lehman-Yao high-concurrency btrees.

RTREE

implements standard rtrees using Guttman’s quadratic split algorithm.

HASH

an implementation of Litwin’s linear hashing.

col um

The name of a column of the table.

ops_nane
An associated operator class. See below for details.

func_nane

A function, which returns a value that can be indexed.

Outputs

CREATE
The message returned if the index is successfully created.

37

QL Commands

ERROR Cannot create index: 'index_nanme’ already exists.

This error occurs if it is impossible to create the index.

Description
CREATE INDEX constructs an index i ndex_nan®e on the specified t abl e.

Tip: Indexes are primarily used to enhance database performance. But inappropriate use will result
in slower performance.

In the first syntax shown above, the key field(s) for the index are specified as column names. Multiple
fields can be specified if the index access method supports multi-column indexes.

In the second syntax shown above, an index is defined on the result of a user-specified function
f unc_nane applied to one or more columns of a single table. These functional indices can be used to
obtain fast access to data based on operators that would normally require some transformation to apply
them to the base data.

Postgres provides btree, rtree and hash access methods for indices. The btree access method is an
implementation of Lehman-Yao high-concurrency btrees. The rtree access method implements standard
rtrees using Guttman’s quadratic split algorithm. The hash access method is an implementation of
Litwin’s linear hashing. We mention the algorithms used solely to indicate that all of these access
methods are fully dynamic and do not have to be optimized periodically (as is the case with, for
example, static hash access methods).

Use DROP INDEX to remove an index.

Notes

The Postgres query optimizer will consider using a btree index whenever an indexed attribute is
involved in a comparison using one of: <, <=, =, >=, >

The Postgres query optimizer will consider using an rtree index whenever an indexed attribute is
involved in a comparison using one of: <<, &<, &>, >>, @, ~=, &&

The Postgres query optimizer will consider using a hash index whenever an indexed attribute is
involved in a comparison using the = operator.

Currently, only the btree access method supports multi-column indexes. Up to 16 keys may be specified
by default (this limit can be altered when building Postgres).

An operator class can be specified for each column of an index. The operator class identifies the
operators to be used by the index for that column. For example, a btree index on four-byte integers
would use the i nt 4_ops class; this operator class includes comparison functions for four-byte integers.
In practice the default operator class for the field’s data type is usually sufficient. The main point of
having operator classes is that for some data types, there could be more than one meaningful ordering.
For example, we might want to sort a complex-number data type either by absolute value or by real part.
We could do this by defining two operator classes for the data type and then selecting the proper class
when making an index. There are also some operator classes with special purposes:

38

QL Commands

The operator classes box_ops and bi gbox_ops both support rtree indices on the box data type. The
difference between them is that bi gbox_ops scales box coordinates down, to avoid floating-point
exceptions from doing multiplication, addition, and subtraction on very large floating-point
coordinates. If the field on which your rectangles lie is about 20,000 units square or larger, you should
use bi gbox_ops.

The following query shows all defined operator classes:

SELECT am ammane AS acc_nane,
opc. opcnanme AS ops_nane,
opr.oprnanme AS ops_conp
FROM pg_am am pg_anop anop,
pg_opcl ass opc, pg_operator opr
WHERE anop. anopid = amoid AND
anmop. anopcl aid = opc.oid AND
anmop. anopopr = opr.oid
ORDER BY acc_nane, ops_nanme, ops_conp

Usage
To create a btree index on the field ti t| e in the table fi | ns:

CREATE UNI QUE | NDEX title_idx
ON filns (title);
Compatibility

SQL92
CREATE INDEX is a Postgres language extension.
There is no CREATE INDEX command in SQL92.

CREATE LANGUAGE

Name

CREATE LANGUAGE Defines a new language for functions
Synopsis
CREATE [TRUSTED] [PROCEDURAL] LANGUACE ' | angnane’

HANDLER cal | _handl er
LANCOWPI LER ’ conment’

39

QL Commands

Inputs

TRUSTED

TRUSTED specifies that the call handler for the language is safe; that is, it offers an unprivileged
user no functionality to bypass access restrictions. If this keyword is omitted when registering the
language, only users with the Postgres superuser privilege can use this language to create new
functions.

| angnane

The name of the new procedural language. The language name is case insensitive. A procedural
language cannot override one of the built-in languages of Postgres.

HANDLER cal | _handl er

cal I _handl er is the name of a previously registered function that will be called to execute the
PL procedures.

coment

The LANCOVPI LER argument is the string that will be inserted in the LANCOVPI LER attribute of the
new pg_| anguage entry. At present, Postgres does not use this attribute in any way.

Outputs

CREATE

This message is returned if the language is successfully created.

ERROR: PL handl er function funcname() doesn’'t exist

This error is returned if the function f uncnarme() is not found.

Description

Using CREATE LANGUAGE, a Postgres user can register a new language with Postgres.
Subsequently, functions and trigger procedures can be defined in this new language. The user must have
the Postgres superuser privilege to register a new language.

Writing PL handlers

Note: In Postgres 7.1 and later, call handlers must adhere to the "version 1" function manager
interface, not the old-style interface.

The call handler for a procedural language must be written in a compiled language such as C and
registered with Postgres as a function taking no arguments and returning the opaque type, a placeholder

QL Commands

for unspecified or undefined types. This prevents the call handler from being called directly as a
function from queries. (However, arguments may be supplied in the actual call when a PL function in
the language offered by the handler is to be executed.)

The call handler is called in the same way as any other function: it receives a pointer to a
FunctionCallinfoData struct containing argument values and information about the called function, and
it is expected to return a Datum result (and possibly set the i snul | field of the FunctionCallinfoData
struct, if it wishes to return an SQL NULL result). The difference between a call handler and an ordinary
callee function is that the fIi nf o->f n_oi d field of the FunctionCallinfoData struct will contain the
OID of the PL function to be called, not of the call handler itself. The call handler must use this field to
determine which function to execute. Also, the passed argument list has been set up according to the
declaration of the target PL function, not of the call handler.

It’s up to the call handler to fetch the pg_pr oc entry and to analyze the argument and return types of
the called procedure. The AS clause from the CREATE FUNCTION of the procedure will be found in
the pr osr c attribute of the pg_pr oc table entry. This may be the source text in the procedural language
itself (like for PL/Tcl), a pathname to a file, or anything else that tells the call handler what to do in
detail.

Often, the same function is called many times per SQL statement. A call handler can avoid repeated
lookups of information about the called function by using the f1i nf o->f n_ext ra field. This will
initially be NULL, but can be set by the call handler to point at information about the PL function. On
subsequent calls, if f1i nf o- >f n_extra is already non-NULL then it can be used and the information
lookup step skipped. The call handler must be careful that fIi nf o->f n_extra is made to point at
memory that will live at least until the end of the current query, since an Fmgrinfo data structure could
be kept that long. One way to do this is to allocate the extra data in the memory context specified by
f1info->fn_nmcxt; such data will normally have the same lifespan as the Fmgrinfo itself. But the
handler could also choose to use a longer-lived context so that it can cache function definition
information across queries.

When a PL function is invoked as a trigger, no explicit arguments are passed, but the
FunctionCallinfoData’s cont ext field points at a TriggerData node, rather than being NULL as it is in
a plain function call. A PL handler should provide mechanisms for PL functions to get at the trigger
information.

Notes
Use CREATE FUNCTION to create a function.
Use DROP LANGUAGE to drop procedural languages.

Refer to the table pg_| anguage for further information:

Tabl e "pg_l anguage"

Attribute | Type | Modifier
_______________ e S
| annane | nane
| ani spl | bool ean
lanpltrusted | bool ean
lanplcallfoid | oid |
I anconpi | er | text |
| annanme | lanispl | lanpltrusted | lanplcallfoid | |anconpiler

41

QL Commands

------------- TR gy
i nt ernal | f | f | 0] nla

C | f | f | 0| /bin/cc

sql | f | f | 0 | postgres

The call handler for a procedural language must normally be written in C and registered as ’internal’ or
’C’ language, depending on whether it is linked into the backend or dynamically loaded. The call
handler cannot use the old-style *C” function interface.

At present, the definitions for a procedural language cannot be changed once they have been created.

Usage

This is a template for a PL handler written in C:

#i ncl ude "executor/spi.h"

#i ncl ude "comrands/trigger. h"
#i nclude "utils/el og. h"

#i ncl ude "fngr. h"

#i ncl ude "access/heapam h"

#i nclude "util s/syscache. h"
#i ncl ude "cat al og/ pg_proc. h"
#i ncl ude "catal og/ pg_type. h"

PG_FUNCTI ON_I NFO V1(pl sanpl e_cal | _handl er);

Dat um
pl sanpl e_cal | _handl er (PG_FUNCTI ON_ARGS)
{

Dat um retval ;

i f (CALLED_AS_TRI GGER(fcinfo))
{
/*
* Called as a trigger procedure
>/
Tri gger Dat a *trigdata = (TriggerData *) fcinfo->context;

retval = ...
} else {
/*
* Called as a function
*/

retval = ...

}

return retval;

42

QL Commands

Only a few thousand lines of code have to be added instead of the dots to complete the PL call handler.
See CREATE FUNCTION for information on how to compile it into a loadable module.

The following commands then register the sample procedural language:

CREATE FUNCTI ON pl sanpl e_cal | _handl er () RETURNS opaque
AS ' /usr/local /pgsql/lib/plsanple.so’
LANGUAGE ' C ;
CREATE PROCEDURAL LANGUACE '’ pl sanpl e’
HANDLER pl sanpl e_cal | _handl er
LANCOWPI LER ' PL/ Sanpl e’ ;

Compatibility

SQL92

CREATE LANGUAGE is a Postgres extension. There is no CREATE LANGUAGE statement in
SQL92.

CREATE OPERATOR

Name

CREATE OPERATOR Defines a new user operator

Synopsis

CREATE OPERATOR nane (PROCEDURE = func_nane
[, LEFTARG = typel] [, RICHTARG = type2]
[, COMWUTATOR = comop] [, NEGATOR = neg_op]
[, RESTRICT = res_proc] [, JON = join_proc]
[, HASHES] [, SORT1 = left_sort_op] [, SORT2 = right_sort_op])

Inputs

nanme

The operator to be defined. See below for allowable characters.

func_nane

The function used to implement this operator.

typel

QL Commands

The type of the left-hand argument of the operator, if any. This option would be omitted for a
left-unary operator.

type2
The type of the right-hand argument of the operator, if any. This option would be omitted for a
right-unary operator.

com op

The commutator of this operator.

neg_op
The negator of this operator.

res_proc
The restriction selectivity estimator function for this operator.

join_proc
The join selectivity estimator function for this operator.

HASHES

Indicates this operator can support a hash join.

left_sort_op
If this operator can support a merge join, the operator that sorts the left-hand data type of this
operator.

right _sort_op

If this operator can support a merge join, the operator that sorts the right-hand data type of this
operator.

Outputs

CREATE

Message returned if the operator is successfully created.

Description

CREATE OPERATOR defines a new operator, name. The user who defines an operator becomes its
owner.

The operator nanne is a sequence of up to NAMEDATALEN-1 (31 by default) characters from the

QL Commands

following list:

<>~ 1@EBN&|?S

There are a few restrictions on your choice of name:

"$" cannot be defined as a single-character operator, although it can be part of a multi-character
operator name.

"--"and "/*" cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

A multi-character operator name cannot end in "+" or "-", unless the name also contains at least one
of these characters:

~1@Q#%N"N&|°?$

For example, @ is an allowed operator name, but *- is not. This restriction allows Postgres to parse
SQL-compliant queries without requiring spaces between tokens.

Note: When working with non-SQL-standard operator names, you will usually need to separate
adjacent operators with spaces to avoid ambiguity. For example, if you have defined a left-unary
operator named "@", you cannot write X* @; you must write X* @ to ensure that Postgres reads it
as two operator names not one.

The operator "1=" is mapped to "<>" on input, so these two names are always equivalent.

At least one of LEFTARG and RIGHTARG must be defined. For binary operators, both should be
defined. For right unary operators, only LEFTARG should be defined, while for left unary operators
only RIGHTARG should be defined.

The f unc_name procedure must have been previously defined using CREATE FUNCTION and
must be defined to accept the correct number of arguments (either one or two) of the indicated types.

The commutator operator should be identified if one exists, so that Postgres can reverse the order of the
operands if it wishes. For example, the operator area-less-than, <<<, would probably have a commutator
operator, area-greater-than, >>>. Hence, the query optimizer could freely convert:

box ' ((0,0), (1,1))’ >>> MYBOXES. description

to

MYBOXES. descri ption <<< box '((0,0), (1,1))’

This allows the execution code to always use the latter representation and simplifies the query optimizer
somewhat.

45

QL Commands

Similarly, if there is a negator operator then it should be identified. Suppose that an operator,

area-equal, ===, exists, as well as an area not equal, !==. The negator link allows the query optimizer to
simplify

NOT MYBOXES. descri ption === box ' ((0,0), (1,1))’

to

MYBOXES. description !'== box ’'((0,0), (1,1))’

If a commutator operator name is supplied, Postgres searches for it in the catalog. If it is found and it
does not yet have a commutator itself, then the commutator’s entry is updated to have the newly created
operator as its commutator. This applies to the negator, as well. This is to allow the definition of two
operators that are the commutators or the negators of each other. The first operator should be defined
without a commutator or negator (as appropriate). When the second operator is defined, name the first as
the commutator or negator. The first will be updated as a side effect. (As of Postgres 6.5, it also works to
just have both operators refer to each other.)

The HASHES, SORT1, and SORT2 options are present to support the query optimizer in performing
joins. Postgres can always evaluate a join (i.e., processing a clause with two tuple variables separated by
an operator that returns a boolean) by iterative substitution [WONG76]. In addition, Postgres can use a
hash-join algorithm along the lines of [SHAP86]; however, it must know whether this strategy is
applicable. The current hash-join algorithm is only correct for operators that represent equality tests;
furthermore, equality of the data type must mean bitwise equality of the representation of the type. (For
example, a data type that contains unused bits that don’t matter for equality tests could not be
hashjoined.) The HASHES flag indicates to the query optimizer that a hash join may safely be used with
this operator.

Similarly, the two sort operators indicate to the query optimizer whether merge-sort is a usable join
strategy and which operators should be used to sort the two operand classes. Sort operators should only
be provided for an equality operator, and they should refer to less-than operators for the left and right
side data types respectively.

If other join strategies are found to be practical, Postgres will change the optimizer and run-time system
to use them and will require additional specification when an operator is defined. Fortunately, the
research community invents new join strategies infrequently, and the added generality of user-defined
join strategies was not felt to be worth the complexity involved.

The RESTRICT and JOIN options assist the query optimizer in estimating result sizes. If a clause of the
form:

MYBOXES. descri ption <<< box ' ((0,0), (1,1))’

is present in the qualification, then Postgres may have to estimate the fraction of the instances in
MYBOXES that satisfy the clause. The function r es_pr oc must be a registered function (meaning it
is already defined using CREATE FUNCTION) which accepts arguments of the correct data types and

46

QL Commands

returns a floating point number. The query optimizer simply calls this function, passing the parameter
((0,0), (1,1)) and multiplies the result by the relation size to get the expected number of instances.

Similarly, when the operands of the operator both contain instance variables, the query optimizer must
estimate the size of the resulting join. The function join_proc will return another floating point number
which will be multiplied by the cardinalities of the two tables involved to compute the expected result
size.

The difference between the function

ny_procedure_1 (MYBOXES. description, box '((0,0), (1,1))")

and the operator

MYBOXES. descri ption === box ' ((0,0), (1,1))’

is that Postgres attempts to optimize operators and can decide to use an index to restrict the search
space when operators are involved. However, there is no attempt to optimize functions, and they are
performed by brute force. Moreover, functions can have any number of arguments while operators are
restricted to one or two.

Notes

Refer to the chapter on operators in the PostgreSQL User’s Guide for further information. Refer to
DROP OPERATOR to delete user-defined operators from a database.

Usage
The following command defines a new operator, area-equality, for the BOX data type:

CREATE OPERATOR ===
LEFTARG = box,
Rl GHTARG = box,
PROCEDURE = area_equal _procedure,
COVMWUTATOR = ===,
NEGATOR = ! ==,
RESTRI CT = area_restriction_procedure,
JO N = area_j oi n_procedure,
HASHES,
SORT1 = <<<,
SORT2 = <<

)

Compatibility

SQL92

CREATE OPERATOR is a Postgres extension. There is no CREATE OPERATOR statement in
SQL92.

47

QL Commands

CREATE RULE

Name

CREATE RULE Defines a new rule

Synopsis

CREATE RULE nane AS ON event
TO obj ect [WHERE condi tion]
DO [INSTEAD] action

where action can be

NOTHI NG

I

query

I

(query ; query ...)
I

[query ; query ...]

Inputs

nanme

The name of a rule to create.

event

Event is one of SELECT, UPDATE, DELETE or | NSERT.

obj ect

Object is either t abl e or tabl e.col utm. (Currently, only the t abl e form is actually
implemented.)

condi tion

Any SQL boolean-condition expression. The condition expression may not refer to any tables
except newand ol d.

query

The query or queries making up the act i on can be any SQL SELECT, | NSERT, UPDATE, DELETE,
or NOTI FY statement.

QL Commands

Within the condi ti on and act i on, the special table names new and ol d may be used to refer to
values in the referenced table (the obj ect). new is valid in ON INSERT and ON UPDATE rules to
refer to the new row being inserted or updated. ol d is valid in ON SELECT, ON UPDATE, and ON
DELETE rules to refer to the existing row being selected, updated, or deleted.

Outputs

CREATE

Message returned if the rule is successfully created.

Description

The Postgres rule system allows one to define an alternate action to be performed on inserts, updates, or
deletions from database tables. Rules are used to implement table views as well.

The semantics of a rule is that at the time an individual instance (row) is accessed, inserted, updated, or
deleted, there is an old instance (for selects, updates and deletes) and a new instance (for inserts and
updates). All the rules for the given event type and the given target object (table) are examined, in an
unspecified order. If the condi t i on specified in the WHERE clause (if any) is true, the act i on part
of the rule is executed. The act i on is done instead of the original query if INSTEAD is specified,;
otherwise it is done before the original query is performed. Within both the condi ti on and act i on,
values from fields in the old instance and/or the new instance are substituted for
ol d. attri but e- nane and new. attri but e- nane.

The act i on part of the rule can consist of one or more queries. To write multiple queries, surround
them with either parentheses or square brackets. Such queries will be performed in the specified order
(whereas there are no guarantees about the execution order of multiple rules for an object). The act i on
can also be NOTHING indicating no action. Thus, a DO INSTEAD NOTHING rule suppresses the
original query from executing (when its condition is true); a DO NOTHING rule is useless.

The act i on part of the rule executes with the same command and transaction identifier as the user
command that caused activation.

Notes

Presently, ON SELECT rules must be unconditional INSTEAD rules and must have actions that consist
of a single SELECT query. Thus, an ON SELECT rule effectively turns the object table into a view,
whose visible contents are the rows returned by the rule’s SELECT query rather than whatever had been
stored in the table (if anything). It is considered better style to write a CREATE VIEW command than to
create a table and define an ON SELECT rule for it.

You must have rule definition access to a table in order to define a rule on it. Use GRANT and
REVOKE to change permissions.

It is very important to take care to avoid circular rules. For example, though each of the following two
rule definitions are accepted by Postgres, the select command will cause Postgres to report an error
because the query cycled too many times:

49

QL Commands

Example 1. Example of acircular rewrite rule combination:

CREATE RULE bad_rul e_conbi nation_1 AS
ON SELECT TO enp
DO | NSTEAD
SELECT * FROM t oyenp;

CREATE RULE bad_rul e_conbi nati on_2 AS
ON SELECT TO toyenp
DO | NSTEAD
SELECT * FROM enp;

This attempt to select from EMP will cause Postgres to issue an error because the queries cycled too
many times:
SELECT * FROM enp;

Compatibility

SQL92

CREATE RULE statement is a Postgres language extension. There is no CREATE RULE statement
in SQL92.

CREATE SEQUENCE

Name

CREATE SEQUENCE Creates a new sequence humber generator

Synopsis
CREATE SEQUENCE segname [| NCREMENT i ncrenent]

[MNVALUE minvalue] [MAXVALUE maxval ue]
[START start] [CACHE cache] [CYCLE]

Inputs

segnane

The name of a sequence to be created.

i ncr ement

The I NCREMENT i ncrement clause is optional. A positive value will make an ascending
sequence, a negative one a descending sequence. The default value is one (1).

50

QL Commands

m nval ue
The optional clause M NVALUE mi nval ue determines the minimum value a sequence can
generate. The defaults are 1 and -2147483647 for ascending and descending sequences,
respectively.

maxval ue
The optional clause MAXVALUE maxval ue determines the maximum value for the sequence. The
defaults are 2147483647 and -1 for ascending and descending sequences, respectively.

start
The optional START start cl ause enables the sequence to begin anywhere. The default starting
value is m nval ue for ascending sequences and maxval ue for descending ones.

cache
The CACHE cache option enables sequence numbers to be preallocated and stored in memory for
faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no cache)
and this is also the default.

CYCLE

The optional CYCLE keyword may be used to enable the sequence to wrap around when the

nmaxval ue or m nval ue has been reached by an ascending or descending sequence respectively.
If the limit is reached, the next number generated will be the mi nval ue or maxval ue,
respectively.

Outputs

CREATE

Message returned if the command is successful.

ERROR Rel ation 'segnane’ already exists

If the sequence specified already exists.

ERROR Defi neSequence: M NVALUE (start) can’'t be >= MAXVALUE (max)

If the specified starting value is out of range.

ERROR Defi neSequence: START value (start) can’t be < M NVALUE (m n)

If the specified starting value is out of range.

ERROR DefineSequence: M NVALUE (min) can’t be >= MAXVALUE (nax)

If the minimum and maximum values are inconsistent.

51

QL Commands

Description

CREATE SEQUENCE will enter a new sequence number generator into the current data base. This
involves creating and initializing a new single-row table with the name segnarme. The generator will be
owned by the user issuing the command.

After a sequence is created, you may use the function next val (* segnane’) to get a new number
from the sequence. The function cur rval (* segname’) may be used to determine the number returned
by the last call to next val (* segnane’) for the specified sequence in the current session. The function
setval (* seqnane’, newal ue) may be used to set the current value of the specified sequence. The
next call to next val (* seqname’) will return the given value plus the sequence increment.

Use a query like

SELECT * FROM segnane;

to examine the parameters of a sequence. As an alternative to fetching the parameters from the original
definition as above, you can use

SELECT | ast _val ue FROM segnane;

to obtain the last value allocated by any backend.

To avoid blocking of concurrent transactions that obtain numbers from the same sequence, a nextval
operation is never rolled back; that is, once a value has been fetched it is considered used, even if the
transaction that did the nextval later aborts. This means that aborted transactions may leave unused
"holes" in the sequence of assigned values. setval operations are never rolled back, either.

Caution

Unexpected results may be obtained if a cache setting greater than one is used for a
sequence object that will be used concurrently by multiple backends. Each backend will
allocate and cache successive sequence values during one access to the sequence object
and increase the sequence object’s last_value accordingly. Then, the next cache-1 uses of
nextval within that backend simply return the preallocated values without touching the shared
object. So, numbers allocated but not used in the current session will be lost. Furthermore,
although multiple backends are guaranteed to allocate distinct sequence values, the values
may be generated out of sequence when all the backends are considered. (For example, with
a cache setting of 10, backend A might reserve values 1..10 and return nextval=1, then
backend B might reserve values 11..20 and return nextval=11 before backend A has
generated nextval=2.) Thus, with a cache setting of one it is safe to assume that nextval
values are generated sequentially; with a cache setting greater than one you should only
assume that the nextval values are all distinct, not that they are generated purely sequentially.
Also, last_value will reflect the latest value reserved by any backend, whether or not it has yet
been returned by nextval. Another consideration is that a setval executed on such a sequence
will not be noticed by other backends until they have used up any preallocated values they
have cached.

Notes

52

QL Commands

Use DROP SEQUENCE to remove a sequence.

Each backend uses its own cache to store preallocated numbers. Numbers that are cached but not used
in the current session will be lost, resulting in "holes” in the sequence.

Usage
Create an ascending sequence called seri al , starting at 101:

CREATE SEQUENCE serial START 101;

Select the next number from this sequence:
SELECT NEXTVAL (’'serial’);

next val

Use this sequence in an INSERT:

I NSERT | NTO di stributors VALUES (NEXTVAL(' serial’),’ nothing');

Set the sequence value after a COPY FROM:

CREATE FUNCTI ON di stributors_id_max() RETURNS | NT4
AS ' SELECT max(id) FROM distributors’
LANGUAGE 'sql ' ;
BEG N;
COPY distributors FROM "input_file’;
SELECT setval ("serial’, distributors_id_max());
END;

Compatibility

SQL92

CREATE SEQUENCE is a Postgres language extension. There is no CREATE SEQUENCE
statement in SQL92.

53

QL Commands

CREATE TABLE

Name

CREATE TABLE Creates a new table

Synopsis

CREATE [TEMPORARY | TEMP] TABLE tabl e_nane (
{ colum_name type [colum_constraint [...]]
| table_constraint } [, ...]
) [INHERITS (inherited_table [, ...])]

where col um_constrai nt can be:
[CONSTRAI NT constraint_nane]
{ NOT NULL | NULL | UNIQUE | PRIMARY KEY | DEFAULT value | CHECK (condition)
I
REFERENCES table [(colum)] [MATCH FULL | MATCH PARTI AL]
[ON DELETE action] [ON UPDATE action]
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | | NI TIALLY | MVEDI ATE

and tabl e_constraint can be:
[CONSTRAI NT constraint_nane]

{ UNQUE (colum_name [, ...]) |
PRI MARY KEY (columm_name [, ...]) |
CHECK (condition) |
FOREI GN KEY (colum_nane [, ...]) REFERENCES table [(colum [, ...])

[MATCH FULL | MATCH PARTIAL] [ON DELETE action] [ON UPDATE action]
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INI TIALLY | MVEDI ATE

Inputs

TEMPORARY or TEMP

If specified, the table is created only for this session, and is automatically dropped on session exit.
Existing permanent tables with the same name are not visible (in this session) while the temporary
table exists. Any indexes created on a temporary table are automatically temporary as well.

t abl e_nane

The name of the new table to be created.

QL Commands

col um_nane

The name of a column to be created in the new table.

type
The type of the column. This may include array specifiers. Refer to the PostgreSQL User’s Guide
for further information about data types and arrays.

i nherited table

The optional INHERITS clause specifies a list of table names from which this table automatically
inherits all fields. If any inherited field name appears more than once, Postgres reports an error.
Postgres automatically allows the created table to inherit functions on tables above it in the
inheritance hierarchy.

constrai nt _nane

An optional name for a column or table constraint. If not specified, the system generates a name.

val ue

A default value for a column. See the DEFAULT clause for more information.

condi tion

CHECK clauses specify integrity constraints or tests which new or updated rows must satisfy for
an insert or update operation to succeed. Each constraint must be an expression producing a
boolean result. A condition appearing within a column definition should reference that column’s
value only, while a condition appearing as a table constraint may reference multiple columns.

tabl e

The name of an existing table to be referenced by a foreign key constraint.

col umm

The name of a column in an existing table to be referenced by a foreign key constraint. If not
specified, the primary key of the existing table is assumed.

action
A keyword indicating the action to take when a foreign key constraint is violated.

Outputs

CREATE

Message returned if table is successfully created.

55

QL Commands

ERROR

Message returned if table creation failed. This is usually accompanied by some descriptive text,
such as: ERROR. Rel ation ’table’ already exists ,which occurs at runtime if the table
specified already exists in the database.

Description

CREATE TABLE will enter a new, initially empty table into the current database. The table will be
"owned" by the user issuing the command.

Each t ype may be a simple type, a complex type (set) or an array type. Each attribute may be specified
to be non-null and each may have a default value, specified by the DEFAULT Clause.

Note: Consistent array dimensions within an attribute are not enforced. This will likely change in a
future release.

CREATE TABLE also automatically creates a data type that represents the tuple type (structure type)
corresponding to one row of the table. Therefore, tables can’t have the same name as any existing
datatype.

The optional INHERITS clause specifies a collection of table names from which this table
automatically inherits all fields. If any inherited field name appears more than once, Postgres reports an
error. Postgres automatically allows the created table to inherit functions on tables above it in the
inheritance hierarchy. Inheritance of functions is done according to the conventions of the Common Lisp
Object System (CLOS).

A table can have no more than 1600 columns (in practice, the effective limit is lower because of
tuple-length constraints). A table cannot have the same name as a system catalog table.

DEFAULT Clause

DEFAULT val ue

The DEFAULT clause assigns a default data value for the column whose column definition it appears
within. The value is any variable-free expression (note that sub-selects and cross-references to other
columns in the current table are not supported). The data type of a default value must match the column
definition’s data type.

The DEFAULT expression will be used in any INSERT operation that does not specify a value for the
column. If there is no DEFAULT clause, then the default is NULL.

56

QL Commands

Usage

CREATE TABLE distributors (
name VARCHAR(40) DEFAULT 'luso filns’,
did | NTEGCER DEFAULT NEXTVAL(' distributors_serial’),
nodtime Tl MESTAMP DEFAULT now()

The above assigns a literal constant default value for the column nane, and arranges for the default
value of column di d to be generated by selecting the next value of a sequence object. The default value
of modt i e will be the time at which the row is inserted.

It is worth remarking that

nodtinme Tl MESTAMP DEFAULT ' now

would produce a result that is probably not the intended one: the string ' now will be coerced to a
timestamp value immediately, and so the default value of nodt i me will always be the time of table
creation. This difficulty is avoided by specifying the default value as a function call.

Column Constraints

[CONSTRAI NT constraint_name] {
NULL | NOT NULL | UNIQUE | PRI MARY KEY | CHECK condition |
REFERENCES reftable [(refcolum)]
[MATCH mat chtype]
[ON DELETE action]
[ON UPDATE action]
[[NOT | DEFERRABLE]
[INITIALLY checktine] }

Inputs

constrai nt _nane

An arbitrary name given to a constraint clause.

NULL

The column is allowed to contain NULL values. This is the default.

57

QL Commands

NOT NULL
The column is not allowed to contain NULL values. This is equivalent to the column constraint
CHECK (col um NOT NULL).
UNIQUE
The column must have unique values. In Postgres this is enforced by automatic creation of a
unique index on the column.
PRIMARY KEY

This column is a primary key, which implies that other tables may rely on this column as a unique
identifier for rows. Both UNIQUE and NOT NULL are implied by PRIMARY KEY. See
PRIMARY KEY for more information.

condition

An arbitrary boolean-valued constraint condition.

Description

The optional constraint clauses specify constraints or tests which new or updated rows must satisfy for
an insert or update operation to succeed.

A constraint is a named rule: an SQL object which helps define valid sets of values by putting limits on
the results of INSERT, UPDATE or DELETE operations performed on a table.

There are two ways to define integrity constraints: table constraints, covered later, and column
constraints, covered here.

A column constraint is an integrity constraint defined as part of a column definition, and logically
becomes a table constraint as soon as it is created. The column constraints available are:

PRIMARY KEY
REFERENCES
UNIQUE
CHECK

NOT NULL

NOT NULL Constraint

[CONSTRAINT name] NOT NULL

The NOT NULL constraint specifies a rule that a column may contain only non-null values. This is a
column constraint only, and not allowed as a table constraint.

58

QL Commands

Outputs

st at us

ERROR ExecAppend: Fail to add null value in not null attribute "colum".

This error occurs at runtime if one tries to insert a null value into a column which has a NOT
NULL constraint.

Description

Usage

Define two NOT NULL column constraints on the table di stri but ors, one of which is explicitly
given a name:

CREATE TABLE distributors (
did DECI MAL(3) CONSTRAI NT no_nul | NOT NULL,
name VARCHAR(40) NOT NULL

)

UNIQUE Constraint

[CONSTRAI NT constraint_name] UN QUE

Inputs

constrai nt_nane

An arbitrary name given to a constraint clause.

59

QL Commands

Outputs

st at us

ERROR Cannot insert a duplicate key into a unique index.

This error occurs at runtime if one tries to insert a duplicate value into a column.

Description

The UNIQUE constraint specifies a rule that a group of one or more distinct columns of a table may
contain only unique values.

The column definitions of the specified columns do not have to include a NOT NULL constraint to be
included in a UNIQUE constraint. Having more than one null value in a column without a NOT NULL
constraint, does not violate a UNIQUE constraint. (This deviates from the SQL92 definition, but is a
more sensible convention. See the section on compatibility for more details.)

Each UNIQUE column constraint must name a column that is different from the set of columns named
by any other UNIQUE or PRIMARY KEY constraint defined for the table.

Note: Postgres automatically creates a unique index for each UNIQUE constraint, to assure data
integrity. See CREATE INDEX for more information.

Usage
Defines a UNIQUE constraint for the name column:
CREATE TABLE distributors (

di d DECI MAL(3),
name VARCHAR(40) UNI QUE

which is equivalent to the following specified as a table constraint:

CREATE TABLE distributors (

did DECI MAL(3),
nane VARCHAR(40) ,
UNI QUE(nane)

)

The CHECK Constraint

[CONSTRAI NT constraint_name] CHECK (condition)

60

QL Commands

Inputs

constrai nt _nane

An arbitrary name given to a constraint clause.

condi tion

Any valid conditional expression evaluating to a boolean result.

Outputs

st at us

ERROR ExecAppend: rejected due to CHECK constraint "constraint_nane".

This error occurs at runtime if one tries to insert an illegal value into a column subject to a
CHECK constraint.

Description

The CHECK constraint specifies a generic restriction on allowed values within a column. The CHECK
constraint is also allowed as a table constraint.

CHECK specifies a general boolean expression involving one or more columns of a table. A new row
will be rejected if the boolean expression evaluates to FALSE when applied to the row’s values.

Currently, CHECK expressions cannot contain sub-selects nor refer to variables other than fields of the
current row.

The SQL92 standard says that CHECK column constraints may only refer to the column they apply to;
only CHECK table constraints may refer to multiple columns. Postgres does not enforce this restriction.
It treats column and table CHECK constraints alike.

PRIMARY KEY Constraint

[CONSTRAI NT constraint_nanme] PRI MARY KEY

61

QL Commands

Inputs

constrai nt _nane

An arbitrary name given to a constraint clause.

Outputs

ERROR Cannot insert a duplicate key into a unique index.
This occurs at runtime if one tries to insert a duplicate value into a column subject to a PRIMARY
KEY constraint.

Description

The PRIMARY KEY column constraint specifies that a column of a table may contain only unique
(non-duplicate), non-NULL values. The definition of the specified column does not have to include an
explicit NOT NULL constraint to be included in a PRIMARY KEY constraint.

Only one PRIMARY KEY can be specified for a table, whether as a column constraint or a table
constraint.
Notes

Postgres automatically creates a unique index to assure data integrity (see CREATE INDEX statement).

The PRIMARY KEY constraint should name a set of columns that is different from other sets of
columns named by any UNIQUE constraint defined for the same table, since it will result in duplication
of equivalent indexes and unproductive additional runtime overhead. However, Postgres does not
specifically disallow this.

REFERENCES Constraint

[CONSTRAI NT constraint_name] REFERENCES reftable [(refcolum)]
[MATCH mat chtype]
[ON DELETE action]
[ON UPDATE action]
[[NOT | DEFERRABLE]
[INITIALLY checktime]

The REFERENCES constraint specifies a rule that a column value is checked against the values of
another column. REFERENCES can also be specified as part of a FOREIGN KEY table constraint.

Inputs

constrai nt_nane

An arbitrary name given to a constraint clause.

62

QL Commands

reftabl e

The table that contains the data to check against.

ref col um
The column in r ef t abl e to check the data against. If this is not specified, the PRIMARY KEY
of ther ef t abl e is used.

MATCH nat cht ype

There are three match types: MATCH FULL, MATCH PARTIAL, and a default match type if
none is specified. MATCH FULL will not allow one column of a multi-column foreign key to be
NULL unless all foreign key columns are NULL. The default MATCH type allows some foreign
key columns to be NULL while other parts of the foreign key are not NULL. MATCH PARTIAL is
currently not supported.

ON DELETE acti on

The action to do when a referenced row in the referenced table is being deleted. There are the
following actions.

NO ACTION

Produce error if foreign key violated. This is the default.

RESTRICT
Same as NO ACTION.

CASCADE

Delete any rows referencing the deleted row.

SET NULL

Set the referencing column values to NULL.

SET DEFAULT

Set the referencing column values to their default value.

ON UPDATE acti on

The action to do when a referenced column in the referenced table is being updated to a new value.
If the row is updated, but the referenced column is not changed, no action is done. There are the
following actions.

NO ACTION

Produce error if foreign key violated. This is the default.

RESTRICT
Same as NO ACTION.

63

QL Commands

CASCADE

Update the value of the referencing column to the new value of the referenced column.
SET NULL

Set the referencing column values to NULL.

SET DEFAULT

Set the referencing column values to their default value.

[NOT] DEFERRABLE

This controls whether the constraint can be deferred to the end of the transaction. If
DEFERRABLE, SET CONSTRAINTS ALL DEFERRED will cause the foreign key to be checked
only at the end of the transaction. NOT DEFERRABLE is the default.

INITIALLY checkti ne
checkt i me has two possible values which specify the default time to check the constraint.

DEFERRED

Check constraint only at the end of the transaction.

IMMEDIATE

Check constraint after each statement. This is the default.

Outputs

status

ERROR name referential integrity violation - key referenced from table
not found in reftable

This error occurs at runtime if one tries to insert a value into a column which does not have a
matching column in the referenced table.

Description

The REFERENCES column constraint specifies that a column of a table must only contain values
which match against values in a referenced column of a referenced table.

QL Commands

A value added to this column is matched against the values of the referenced table and referenced
column using the given match type. In addition, when the referenced column data is changed, actions are
run upon this column’s matching data.

Notes

Currently Postgres only supports MATCH FULL and a default match type. In addition, the referenced
columns are supposed to be the columns of a UNIQUE constraint in the referenced table, however
Postgres does not enforce this.

Table Constraints

[CONSTRAINT name] { PRIMARY KEY | UNIQUE } (colum [, ...])
[CONSTRAINT name] CHECK (constraint)
[CONSTRAINT nane] FOREIGN KEY (colum [, ...])

REFERENCES reftable [(refcolum [, ...]) 1]

[MATCH mat chtype]

[ON DELETE action]

[ON UPDATE action]

[[NOT] DEFERRABLE]
[INITIALLY checktinme]

Inputs

constrai nt_nane

An arbitrary name given to a constraint clause.

colum [, ...]

The column name(s) for which to define a unique index and, for PRIMARY KEY, a NOT NULL
constraint.

CHECK (constrai nt)

A boolean expression to be evaluated as the constraint.

Outputs

The possible outputs for the table constraint clause are the same as for the corresponding portions of the
column constraint clause.

Description

65

QL Commands

A table constraint is an integrity constraint defined on one or more columns of a table. The four
variations of "Table Constraint™ are:

UNIQUE
CHECK

PRIMARY KEY
FOREIGN KEY

UNIQUE Constraint

[CONSTRAINT constraint_name] UNTQUE (colum [, ...])

Inputs

constrai nt_nane

An arbitrary name given to a constraint clause.

col umm

A name of a column in a table.

Outputs

st at us

ERROR: Cannot insert a duplicate key into a unique index

This error occurs at runtime if one tries to insert a duplicate value into a column.

Description

The UNIQUE constraint specifies a rule that a group of one or more distinct columns of a table may
contain only unique values. The behavior of the UNIQUE table constraint is the same as that for column
constraints, with the additional capability to span multiple columns.

See the section on the UNIQUE column constraint for more details.

66

QL Commands

Usage

Prevent duplicate rows in the table distributors:

CREATE TABLE distributors (
did DECI MAL(3),
name VARCHAR(40) ,
UNI QUE(di d, nan®)

PRIMARY KEY Constraint

[CONSTRAI NT constraint_name] PRIMARY KEY (colum [, ...])

Inputs

constrai nt _name

An arbitrary name given to a constraint clause.

colum [, ...]

The names of one or more columns in the table.

Outputs

status

ERROR: Cannot insert a duplicate key into a unique index.

This occurs at run-time if one tries to insert a duplicate value into a column subject to a
PRIMARY KEY constraint.

Description

The PRIMARY KEY constraint specifies a rule that a group of one or more distinct columns of a table
may contain only unique (nonduplicate), non-null values. The column definitions of the specified
columns do not have to include a NOT NULL constraint to be included in a PRIMARY KEY constraint.

The PRIMARY KEY table constraint is similar to that for column constraints, with the additional
capability of encompassing multiple columns.

67

QL Commands

Refer to the section on the PRIMARY KEY column constraint for more information.
REFERENCES Constraint

[CONSTRAINT constraint_name] FOREIGN KEY (colum [, ...])
REFERENCES reftable [(refcolum [, ...])]
[MATCH nmat chtype]
[ON DELETE action]
[ON UPDATE action]
[[NOT | DEFERRABLE]
[INITIALLY checktime]

The REFERENCES constraint specifies a rule that a column value or set of column values is checked
against the values in another table.

Inputs

constrai nt _nane

An arbitrary name given to a constraint clause.

columi, ...]

The names of one or more columns in the table.

reftabl e

The table that contains the data to check against.

referenced columf[,...]
One or more columns in the r ef t abl e to check the data against. If this is not specified, the
PRIMARY KEY of ther ef t abl e is used.

MATCH nat cht ype

There are three match types: MATCH FULL, MATCH PARTIAL, and a default match type if
none is specified. MATCH FULL will not allow one column of a multi-column foreign key to be
NULL unless all foreign key columns are NULL. The default MATCH type allows some foreign
key columns to be NULL while other parts of the foreign key are not NULL. MATCH PARTIAL is
currently not supported.

ON DELETE act i on

The action to do when a referenced row in the referenced table is being deleted. There are the
following actions.

NO ACTION

Produce error if foreign key violated. This is the default.

68

QL Commands

RESTRICT
Same as NO ACTION.

CASCADE

Delete any rows referencing the deleted row.

SET NULL

Set the referencing column values to NULL.

SET DEFAULT

Set the referencing column values to their default value.

ON UPDATE acti on

The action to do when a referenced column in the referenced table is being updated to a new value.
If the row is updated, but the referenced column is not changed, no action is done. There are the
following actions.

NO ACTION

Produce error if foreign key violated. This is the default.

RESTRICT

Disallow update of row being referenced.

CASCADE

Update the value of the referencing column to the new value of the referenced column.

SET NULL

Set the referencing column values to NULL.

SET DEFAULT

Set the referencing column values to their default value.

[NOT] DEFERRABLE

This controls whether the constraint can be deferred to the end of the transaction. If
DEFERRABLE, SET CONSTRAINTS ALL DEFERRED will cause the foreign key to be checked
only at the end of the transaction. NOT DEFERRABLE is the default.

INITIALLY checkti me

checkt i me has two possible values which specify the default time to check the constraint.

IMMEDIATE

Check constraint after each statement. This is the default.

69

QL Commands

DEFERRED

Check constraint only at the end of the transaction.

Outputs

st at us

ERROR: nane referential integrity violation - key referenced from table
not found in reftable

This error occurs at runtime if one tries to insert a value into a column which does not have a
matching column in the referenced table.

Description

The FOREIGN KEY constraint specifies a rule that a group of one or more distinct columns of a table
is related to a group of distinct columns in the referenced table.

The FOREIGN KEY table constraint is similar to that for column constraints, with the additional
capability of encompassing multiple columns.

Refer to the section on the FOREIGN KEY column constraint for more information.
Usage
Create table films and table distributors:

CREATE TABLE films (

code CHARACTER(5) CONSTRAI NT firstkey PRI MARY KEY,
title CHARACTER VARYI NG 40) NOT NULL,

did DECI MAL(3) NOT NULL,

dat e_prod DATE,

ki nd CHAR(10),

I en I NTERVAL HOUR TO M NUTE

CREATE TABLE distributors (
did DECI MAL(3) PRI MARY KEY DEFAULT NEXTVAL('serial'),
nane VARCHAR(40) NOT NULL CHECK (name <> ')

)

70

QL Commands

Create a table with a 2-dimensional array:

CREATE TABLE array (
vector INT[][]

)

Define a UNIQUE table constraint for the table films. UNIQUE table constraints can be defined on one
or more columns of the table:

CREATE TABLE films (

code CHAR(5),

title VARCHAR(40) ,

did DECI MAL(3),

dat e_prod DATE,

ki nd CHAR(10),

I en | NTERVAL HOUR TO M NUTE,

CONSTRAI NT producti on UNI QUE(dat e_pr od)

Define a CHECK column constraint:

CREATE TABLE distributors (
did DECI MAL(3) CHECK (did > 100),
nane VARCHAR(40)

)

Define a CHECK table constraint:

CREATE TABLE distributors (
did DECI MAL(3),
nane VARCHAR(40)
CONSTRAI NT conl CHECK (did > 100 AND nanme > ')

)

Define a PRIMARY KEY table constraint for the table films. PRIMARY KEY table constraints can be

71

QL Commands

defined on one or more columns of the table:

CREATE TABLE films (

code CHAR(5),

title VARCHAR(40) ,

did DECI MAL(3),

dat e_prod DATE,

ki nd CHAR(10),

| en | NTERVAL HOUR TO M NUTE,

CONSTRAI NT code_title PRI MARY KEY(code,title)

Defines a PRIMARY KEY column constraint for table distributors. PRIMARY KEY column
constraints can only be defined on one column of the table (the following two examples are equivalent):

CREATE TABLE distributors (
did DECI MAL(3),
nane CHAR VARYI N& 40),
PRI MARY KEY(di d)

)

CREATE TABLE distributors (

di d DECI MAL(3) PRI MARY KEY,
name VARCHAR(40)

)

Compatibility

SQL92

In addition to the locally visible temporary table, SQL92 also defines a CREATE GLOBAL
TEMPORARY TABLE statement, and optionally an ON COMMIT clause:

CREATE GLOBAL TEMPORARY TABLE table (columm type [
DEFAULT value] [CONSTRAINT colum_constraint] [, ...])
[CONSTRAINT table_constraint] [ON COWM T { DELETE | PRESERVE } ROWS]

For temporary tables, the CREATE GLOBAL TEMPORARY TABLE statement nhames a new table
visible to other clients and defines the table’s columns and constraints.

The optional ON COMMIT clause of CREATE TEMPORARY TABLE specifies whether or not the
temporary table should be emptied of rows whenever COMMIT is executed. If the ON COMMIT clause

72

QL Commands

is omitted, SQL92 specifies that the default is ON COMMIT DELETE ROWS. However, Postgres’
behavior is always like ON COMMIT PRESERVE ROWS.

UNIQUE clause
SQL92 specifies some additional capabilities for UNIQUE:

Table Constraint definition:

[CONSTRAINT constraint_name] UNTQUE (colum [, ...])
[{ INITIALLY DEFERRED | | NI TIALLY | MVEDI ATE }]
[[NOT | DEFERRABLE]

Column Constraint definition:

[CONSTRAI NT constraint_name] UN QUE
[{INITIALLY DEFERRED | I NI TI ALLY | MVEDI ATE}]
[[NOT] DEFERRABLE]

NULL clause

The NULL "constraint” (actually a non-constraint) is a Postgres extension to SQL92 that is included for
symmetry with the NOT NULL clause (and for compatibility with some other RDBMSes). Since it is
the default for any column, its presence is simply noise.

[CONSTRAI NT constraint_nanme] NULL

NOT NULL clause
SQL92 specifies some additional capabilities for NOT NULL:

[CONSTRAI NT constraint_name] NOT NULL
[{INITIALLY DEFERRED | | NI TIALLY | MVEDI ATE}]
[[NOT] DEFERRABLE]

CONSTRAINT clause

SQL92 specifies some additional capabilities for constraints, and also defines assertions and domain
constraints.

Note: Postgres does not yet support either domains or assertions.

73

QL Commands

An assertion is a special type of integrity constraint and shares the same namespace as other constraints.
However, an assertion is not necessarily dependent on one particular table as constraints are, so SQL-92
provides the CREATE ASSERTION statement as an alternate method for defining a constraint:

CREATE ASSERTI ON nanme CHECK (condition)

Domain constraints are defined by CREATE DOMAIN or ALTER DOMAIN statements:

Domain constraint:

[CONSTRAI NT constraint_name] CHECK constraint
[{INITIALLY DEFERRED | I NI TI ALLY | MVEDI ATE}]
[[NOT] DEFERRABLE]

Table constraint definition:

[CONSTRAINT constraint_nane] { PRIMARY KEY (colum, ...) | FOREIGN KEY
constraint | UNIQUE constraint | CHECK constraint }

[{INITIALLY DEFERRED | | NI TI ALLY | MVEDI ATE}]

[[NOT] DEFERRABLE]

Column constraint definition:

[CONSTRAINT constraint_name] { NOT NULL | PRIMARY KEY | FOREIGN KEY
constraint | UNIQUE | CHECK constraint }

[{INITIALLY DEFERRED | | NI TIALLY | MVEDI ATE}]

[[NOT | DEFERRABLE]

A CONSTRAINT definition may contain one deferment attribute clause and/or one initial constraint
mode clause, in any order.
NOT DEFERRABLE
The constraint must be checked at the end of each statement. SET CONSTRAINTS ALL
DEFERRED will have no effect on this type of constraint.
DEFERRABLE

This controls whether the constraint can be deferred to the end of the transaction. If SET
CONSTRAINTS ALL DEFERRED is used or the constraint is set to INITIALLY DEFERRED,
this will cause the foreign key to be checked only at the end of the transaction.

Note: SET CONSTRAINTS changes the foreign key constraint mode only for the current
transaction.

74

QL Commands

INITIALLY IMMEDIATE

Check constraint after each statement. This is the default.

INITIALLY DEFERRED

Check constraint only at the end of the transaction.

CHECK clause

SQL92 specifies some additional capabilities for CHECK in either table or column constraints.
table constraint definition:

[CONSTRAI NT constraint_name] CHECK (VALUE condition)

[{INITIALLY DEFERRED | I NI TIALLY | MVEDI ATE}]
[[NOT | DEFERRABLE]

column constraint definition:

[CONSTRAINT constraint_nanme] CHECK (VALUE condition)

[{INITIALLY DEFERRED | |INI TIALLY | MVEDI ATE}]
[[NOT | DEFERRABLE]

PRIMARY KEY clause

SQL92 specifies some additional capabilities for PRIMARY KEY:
Table Constraint definition:

[CONSTRAI NT constraint_nane]
[{INITIALLY DEFERRED |
[[NOT | DEFERRABLE]

PRI MARY KEY (col um [,

1)
I NI TIALLY | MVEDI ATE}]

Column Constraint definition:

[CONSTRAI NT constraint_name]
[{INITIALLY DEFERRED |
[[NOT] DEFERRABLE]

PRI MARY KEY
I NI TI ALLY | MVEDI ATE}]

75

QL Commands

Inheritance

Multiple inheritance via the INHERITS clause is a Postgres language extension. SQL99 (but not
SQL92) defines single inheritance using a different syntax and different semantics. SQL99-style
inheritance is not yet supported by Postgres.

CREATE TABLE AS

Name

CREATE TABLE AS Creates a new table from the results of a SELECT
Synopsis

CREATE [TEMPORARY | TEMP | TABLE table [(colum [, ...]) 1]
AS sel ect _cl ause

Inputs

TEMPORARY or TEMP

If specified, the table is created only within this session, and is automatically dropped on session
exit. Existing permanent tables with the same name are not visible (in this session) while the
temporary table exists. Any indexes created on a temporary table are automatically temporary as
well.

tabl e

The name of the new table to be created. This table must not already exist. However, a temporary

table can be created that has the same name as an existing permanent table.

col umm

The name of a column. Multiple column names can be specified using a comma-delimited list of
column names. If column names are not provided, they are taken from the output column names of
the SELECT query.

sel ect _cl ause

A valid query statement. Refer to SELECT for a description of the allowed syntax.

Outputs
Refer to CREATE TABLE and SELECT for a summary of possible output messages.

76

QL Commands

Description

CREATE TABLE AS creates a table and fills it with data computed by a SELECT command. The
table columns have the names and datatypes associated with the output columns of the SELECT
(except that you can override the SELECT column names by giving an explicit list of column names).

CREATE TABLE AS bears some resemblance to creating a view, but it is really quite different: it
creates a new table and evaluates the SELECT just once to fill the new table initially. The new table
will not track subsequent changes to the source tables of the SELECT. In contrast, a view re-evaluates
the given SELECT whenever queried.

This command is functionally equivalent to SELECT INTO, but it is preferred since it is less likely to be
confused with other uses of the SELECT ... INT O syntax.

CREATE TRIGGER

Name

CREATE TRI GGER Creates a new trigger

Synopsis
CREATE TRI GGER nane { BEFORE | AFTER } { event [OR...] }

ON tabl e FOR EACH { ROW| STATEMENT }
EXECUTE PROCEDURE func (argunents)

Inputs

nane

The name of an existing trigger.

tabl e

The name of a table.

event
One of INSERT, DELETE or UPDATE.

func

A user-supplied function.

77

QL Commands

Outputs

CREATE

This message is returned if the trigger is successfully created.

Description
CREATE TRIGGER will enter a new trigger into the current data base. The trigger will be associated
with the relation t abl e and will execute the specified function f unc.

The trigger can be specified to fire either before BEFORE the operation is attempted on a tuple (before
constraints are checked and the INSERT, UPDATE or DELETE is attempted) or AFTER the operation
has been attempted (e.g., after constraints are checked and the INSERT, UPDATE or DELETE has
completed). If the trigger fires before the event, the trigger may skip the operation for the current tuple,
or change the tuple being inserted (for INSERT and UPDATE operations only). If the trigger fires after
the event, all changes, including the last insertion, update, or deletion, are "visible" to the trigger.

Refer to the chapters on SPI and Triggers in the PostgreSQL Programmer’s Guide for more
information.

Notes

CREATE TRIGGER is a Postgres language extension.

Only the relation owner may create a trigger on this relation.

As of the current release (v7.0), STATEMENT triggers are not implemented.
Refer to DROP TRIGGER for information on how to remove triggers.

Usage

Check if the specified distributor code exists in the distributors table before appending or updating a
row in the table films:

CREATE TRI GGER i f_di st_exists
BEFORE | NSERT OR UPDATE ON fil ns FOR EACH ROW
EXECUTE PROCEDURE check_primary_key ('did, 'distributors’, "did);

Before cancelling a distributor or updating its code, remove every reference to the table films:

CREATE TRIGCER if_filmexists
BEFORE DELETE OR UPDATE ON distributors FOR EACH ROW
EXECUTE PROCEDURE check _foreign_key (1, 'CASCADE, 'did, ’'filns’,
'did);

78

QL Commands

Compatibility

SQL92
There isno CREATE TRIGGER in SQL92.

The second example above may also be done by using a FOREIGN KEY constraint as in:

CREATE TABLE distributors (
did DECI MAL(3),
name VARCHAR(40) ,
CONSTRAINT if _fil mexists
FOREI GN KEY(di d) REFERENCES fil ns
ON UPDATE CASCADE ON DELETE CASCADE

CREATE TYPE

Name

CREATE TYPE Defines a new base data type

Synopsis

CREATE TYPE typenane (I NPUT = input_function, OUTPUT = output_function
, I NTERNALLENGTH = { internallength | VAR ABLE }

, EXTERNALLENGTH = { externallength | VAR ABLE }]

, DEFAULT = "defaul t"]

, ELEMENT = element] [, DELIMTER = delimter]

SEND = send_function] [, RECEIVE = receive_function]

, PASSEDBYVALUE]

, ALI GNMENT = al i gnnent]

, STORAGE = storage]

—_———————

Inputs

t ypename

The name of a type to be created.

internal | ength

A literal value, which specifies the internal length of the new type.

79

QL Commands

external | ength

A literal value, which specifies the external (displayed) length of the new type.

i nput _function
The name of a function, created by CREATE FUNCTION, which converts data from its external
form to the type’s internal form.

out put _function
The name of a function, created by CREATE FUNCTION, which converts data from its internal
form to a form suitable for display.

el enent

The type being created is an array; this specifies the type of the array elements.

delimter

The delimiter character for the array elements.

def aul t
The default value for the data type. Usually this is omitted, so that the default is NULL.

send_function
The name of a function, created by CREATE FUNCTION, which converts data of this type into a
form suitable for transmission to another machine.

recei ve_function
The name of a function, created by CREATE FUNCTION, which converts data of this type from
a form suitable for transmission from another machine to internal form.

al i gnment
Storage alignment requirement of the data type. If specified, must be ’i nt 4’ or "doubl e’; the
defaultis "i nt 4.

st or age

Storage technique for the data type. If specified, must be ’pl ai n’, ext er nal ’, ’ext ended’, or
’mai n’; the default is ’pl ai n’.

Outputs

CREATE

Message returned if the type is successfully created.

80

QL Commands

Description

CREATE TYPE allows the user to register a new user data type with Postgres for use in the current
data base. The user who defines a type becomes its owner. t ypenamne is the name of the new type and
must be unique within the types defined for this database.

CREATE TYPE requires the registration of two functions (using create function) before defining the
type. The representation of a new base type is determined by i nput _f uncti on, which converts the
type’s external representation to an internal representation usable by the operators and functions defined
for the type. Naturally, out put _f uncti on performs the reverse transformation. Both the input and
output functions must be declared to take one or two arguments of type "opaque".

New base data types can be fixed length, in which case i nt er nal | engt h is a positive integer, or
variable length, in which case Postgres assumes that the new type has the same format as the
Postgres-supplied data type, "t ext ". To indicate that a type is variable length, seti nt er nal | engt h
to VARI ABLE. The external representation is similarly specified using the ext er nal | engt h keyword.

To indicate that a type is an array and to indicate that a type has array elements, indicate the type of the
array element using the element keyword. For example, to define an array of 4-byte integers (“int4"),

specify

ELEMENT = int4

To indicate the delimiter to be used on arrays of this type, del i m t er can be set to a specific
character. The default delimiter is the comma (*, ™).

A default value is optionally available in case a user wants some specific bit pattern to mean “data not
present." Specify the default with the DEFAULT keyword.
* How does the user specify that bit pattern and associate it with the fact that the data is not present>

The optional arguments send_f uncti on and r ecei ve_f unct i on are used when the application
program requesting Postgres services resides on a different machine. In this case, the machine on which
Postgres runs may use a format for the data type different from that used on the remote machine. In this
case it is appropriate to convert data items to a standard form when sending from the server to the client
and converting from the standard format to the machine specific format when the server receives the
data from the client. If these functions are not specified, then it is assumed that the internal format of the
type is acceptable on all relevant machine architectures. For example, single characters do not have to be
converted if passed from a Sun-4 to a DECstation, but many other types do.

The optional flag, PASSEDBYVALUE, indicates that operators and functions which use this data type
should be passed an argument by value rather than by reference. Note that you may not pass by value
types whose internal representation is more than four bytes.

The st or age keyword allows selection of storage strategies for variable-length data types (only
pl ai n is allowed for fixed-length types). pl ai n disables TOAST for the data type: it will always be
stored in-line and not compressed. ext ended gives full TOAST capability: the system will first try to
compress a long data value, and will move the value out of the main table row if it’s still too long.
ext er nal allows the value to be moved out of the main table, but the system will not try to compress it.
mai n allows compression, but discourages moving the value out of the main table. (Data items with this

81

QL Commands

storage method may still be moved out of the main table if there is no other way to make a row fit, but
they will be kept in the main table preferentially over ext ended and ext er nal items.)

For new base types, a user can define operators, functions and aggregates using the appropriate
facilities described in this section.

Array Types

Two generalized built-in functions, array_in and array_out, exist for quick creation of variable-length
array types. These functions operate on arrays of any existing Postgres type.

Examples
This command creates the box data type and then uses the type in a table definition:

CREATE TYPE box (1 NTERNALLENGTH = 8,
I NPUT = ny_procedure_1, OUTPUT = ny_procedure_2);
CREATE TABLE nyboxes (id | NT4, description box);

This command creates a variable length array type with integer elements:

CREATE TYPE intdarray (INPUT = array_in, OUTPUT = array_out,
| NTERNALLENGTH = VARI ABLE, ELEMENT = int4);
CREATE TABLE nyarrays (id int4, nunbers intdarray);

This command creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (INPUT = lo_filein, QUTPUT = lo_fileout,
| NTERNALLENGTH = VARI ABLE) ;
CREATE TABLE big_objs (id int4, obj bigobj);

Notes

Type names cannot begin with the underscore character (*_") and can only be 31 characters long. This
is because Postgres silently creates an array type for each base type with a name consisting of the base
type’s name prepended with an underscore.

Refer to DROP TY PE to remove an existing type.

See also CREATE FUNCTION, CREATE OPERATOR and the chapter on Large Objects in the
PostgreSQL Programmer’s Guide.

82

QL Commands

Compatibility

SQL3
CREATE TYPE is an SQL3 statement.

CREATE USER

Name

CREATE USER Creates a new database user

Synopsis

CREATE USER user nane
[WTH
[SYSID uid]
[PASSWORD ' password’]]
[CREATEDB | NOCREATEDB | [CREATEUSER | NOCREATEUSER]
[I'N GROUP groupnanme [, ...]]
[VALID UNTIL 'abstinme’]

Inputs

user nane
The name of the user.

uid
The SYSI D clause can be used to choose the Postgres user id of the user that is being created. It is

not at all necessary that those match the UNIX user ids, but some people choose to keep the
numbers the same.

If this is not specified, the highest assigned user id plus one will be used as default.

passwor d

Sets the user’s password. If you do not plan to use password authentication you can omit this
option, otherwise the user won’t be able to connect to a password-authenticated server. See the
chapter on client authentication in the Administrator’s Guide for details on how to set up
authentication mechanisms.

CREATEDB
NOCREATEDB

These clauses define a user’s ability to create databases. If CREATEDB is specified, the user
being defined will be allowed to create his own databases. Using NOCREATEDB will deny a user
the ability to create databases. If this clause is omitted, NOCREATEDB is used by default.

83

QL Commands

CREATEUSER
NOCREATEUSER

These clauses determine whether a user will be permitted to create new users himself. This option
will also make the user a superuser who can override all access restrictions. Omitting this clause
will set the user’s value of this attribute to be NOCREATEUSER.

gr oupnane

A name of a group into which to insert the user as a new member.

absti ne

The VALID UNTIL clause sets an absolute time after which the user’s password is no longer
valid. If this clause is omitted the login will be valid for all time.

Outputs

CREATE USER

Message returned if the command completes successfully.

Description

CREATE USER will add a new user to an instance of Postgres. Refer to the administrator’s guide for
information about managing users and authentication. You must be a database superuser to use this
command.

Use ALTER USER to change a user’s password and privileges, and DROP USER to remove a user. Use
ALTER GROUP to add or remove the user from other groups. Postgres comes with a script createuser
which has the same functionality as this command (in fact, it calls this command) but can be run from
the command shell.

Usage
Create a user with no password:

CREATE USER j onat han

Create a user with a password:

CREATE USER davi de W TH PASSVWORD ' j w8s0F4’

Create a user with a password, whose account is valid until the end of 2001. Note that after one second
has ticked in 2002, the account is not valid:

QL Commands

CREATE USER niriam W TH PASSWORD ' j w8sOF4' VALID UNTIL "Jan 1 2002’

Create an account where the user can create databases:

CREATE USER manuel W TH PASSWORD ' j wBsOF4' CREATEDB

Compatibility
SQL92

There is no CREATE USER statement in SQL92.

CREATE VIEW

Name
CREATE VI EW Constructs a virtual table
Synopsis

CREATE VI EWvi ew AS SELECT query

Inputs

Vi ew

The name of a view to be created.

query
An SQL query which will provide the columns and rows of the view.

Refer to the SELECT statement for more information about valid arguments.
Outputs
CREATE

The message returned if the view is successfully created.

ERROR Relation 'view already exists

This error occurs if the view specified already exists in the database.

85

QL Commands

NOTI CE create: attribute named "col um" has an unknown type

The view will be created having a column with an unknown type if you do not specify it. For
example, the following command gives a warning:

CREATE VI EWvista AS SELECT 'Hello World’

whereas this command does not:

CREATE VI EWvista AS SELECT text 'Hello Wrld

Description

CREATE VIEW will define a view of a table. This view is not physically materialized. Specifically, a
query rewrite retrieve rule is automatically generated to support retrieve operations on views.

Notes
Currently, views are read only.
Use the DROP VIEW statement to drop views.
Usage
Create a view consisting of all Comedy films:
CREATE VI EW ki nds AS
SELECT *
FROM fil s
WHERE ki nd = ' Conedy’ ;
SELECT * FROM ki nds;
code | title | did | date_prod | kind | len
UA502 | Bananas | 105 | 1971-07-13 | Conedy | 01:22

C 701 | There's a Grl in ny Soup | 107 | 1970-06-11 | Conedy | 01:36
(2 rows)

Compatibility

SQL92
SQL92 specifies some additional capabilities for the CREATE VIEW statement:

CREATE VIEWview [colum [, ...]]

86

QL Commands

AS SELECT expression [AS colnane] [, ...]
FROM t abl e [WHERE condi tion]
[WTH [CASCADE | LOCAL] CHECK OPTI ON]

The optional clauses for the full SQL92 command are:

CHECK OPTION

This option is to do with updatable views. All INSERTs and UPDATEs on the view will be
checked to ensure data satisfy the view-defining condition. If they do not, the update will be
rejected.

LOCAL

Check for integrity on this view.

CASCADE

Check for integrity on this view and on any dependent view. CASCADE is assumed if neither
CASCADE nor LOCAL is specified.

DECLARE

Name

DECLARE Defines a cursor for table access

Synopsis

DECLARE cursorname [BINARY | [INSENSITIVE] [SCROLL]
CURSOR FOR query
[FOR{ READ ONLY | UPDATE [OF colum [, ...] 1]

Inputs

cur sor nane

The name of the cursor to be used in subsequent FETCH operations.

BINARY

Causes the cursor to fetch data in binary rather than in text format.

INSENSITIVE

SQL92 keyword indicating that data retrieved from the cursor should be unaffected by updates
from other processes or cursors. Since cursor operations occur within transactions in Postgres this
is always the case. This keyword has no effect.

87

QL Commands

SCROLL

SQL92 keyword indicating that data may be retrieved in multiple rows per FETCH operation.
Since this is allowed at all times by Postgres this keyword has no effect.

query
An SQL query which will provide the rows to be governed by the cursor. Refer to the SELECT

statement for further information about valid arguments.
READ ONLY
SQL92 keyword indicating that the cursor will be used in a read only mode. Since this is the only
cursor access mode available in Postgres this keyword has no effect.
UPDATE
SQL92 keyword indicating that the cursor will be used to update tables. Since cursor updates are
not currently supported in Postgres this keyword provokes an informational error message.
col um

Column(s) to be updated. Since cursor updates are not currently supported in Postgres the
UPDATE clause provokes an informational error message.

Outputs

SELECT

The message returned if the SELECT is run successfully.

NOTI CE: O osing pre-existing portal "cursornane"
This message is reported if the same cursor name was already declared in the current transaction
block. The previous definition is discarded.

ERROR: DECLARE CURSCR may only be used in begin/end transaction bl ocks

This error occurs if the cursor is not declared within a transaction block.

Description

DECLARE allows a user to create cursors, which can be used to retrieve a small number of rows at a
time out of a larger query. Cursors can return data either in text or in binary format using FETCH.

Normal cursors return data in text format, either ASCII or another encoding scheme depending on how
the Postgres backend was built. Since data is stored natively in binary format, the system must do a
conversion to produce the text format. In addition, text formats are often larger in size than the
corresponding binary format. Once the information comes back in text form, the client application may

88

QL Commands

need to convert it to a binary format to manipulate it. BINARY cursors give you back the data in the
native binary representation.

As an example, if a query returns a value of one from an integer column, you would get a string of *1’
with a default cursor whereas with a binary cursor you would get a 4-byte value equal to control-A
(A,

BINARY cursors should be used carefully. User applications such as psql are not aware of binary
cursors and expect data to come back in a text format.

String representation is architecture-neutral whereas binary representation can differ between different
machine architectures. Postgres does not resolve byte ordering or representation issues for binary
cursors. Therefore, if your client machine and server machine use different representations (e.g.,
"big-endian" versus "little-endian"), you will probably not want your data returned in binary format.
However, binary cursors may be a little more efficient since there is less conversion overhead in the
server to client data transfer.

Tip: If you intend to display the data in ASCII, getting it back in ASCII will save you some effort on
the client side.

Notes

Cursors are only available in transactions. Use to BEGIN, COMMIT and ROLLBACK to define a
transaction block.

In SQL92 cursors are only available in embedded SQL (ESQL) applications. The Postgres backend
does not implement an explicit OPEN cursor statement; a cursor is considered to be open when it is
declared. However, ecpg, the embedded SQL preprocessor for Postgres, supports the SQL92 cursor
conventions, including those involving DECLARE and OPEN statements.

Usage
To declare a cursor:

DECLARE | i ahona CURSOR
FOR SELECT * FROM fi |l ns;

Compatibility

SQL92

SQL92 allows cursors only in embedded SQL and in modules. Postgres permits cursors to be used
interactively. SQL92 allows embedded or modular cursors to update database information. All Postgres
cursors are read only. The BINARY keyword is a Postgres extension.

89

QL Commands

DELETE

Name

DELETE Removes rows from a table

Synopsis

DELETE FROM[ONLY] table [WHERE condition]

Inputs

tabl e

The name of an existing table.

condi tion
This is an SQL selection query which returns the rows which are to be deleted.

Refer to the SELECT statement for further description of the WHERE clause.

Outputs

DELETE count
Message returned if items are successfully deleted. The count is the number of rows deleted.

If count is 0, no rows were deleted.

Description

DEL ETE removes rows which satisfy the WHERE clause from the specified table.

If the condition (WHERE clause) is absent, the effect is to delete all rows in the table. The result is a
valid, but empty table.

Tip: TRUNCATE is a Postgres extension which provides a faster mechanism to remove all rows
from a table.

By default DELETE will delete tuples in the table specified and all its sub-tables. If you wish to only
update the specific table mentioned, you should use the ONLY clause.

90

QL Commands

You must have write access to the table in order to modify it, as well as read access to any table whose

values are read in the condi t i on.

Usage
Remove all films but musicals:

DELETE FROM fil ms WHERE ki nd <> ' Musical’;
SELECT * FROM fil ns;

code | title | did | date_prod ki nd | len

------- T T 22 T
UA501 | West Side Story | 105 | 1961-01-03 | Musical | 02:32
TCO01 | The King and | | 109 | 1956-08-11 | Musical | 02:13
WD101 | Bed Knobs and Broonsticks | 111 | Musi cal | 01:57

(3 rows)

Clear the table fi | ns:

DELETE FROM fi | ns;
SELECT * FROM fi | mrs;

code | title | did | date_prod | kind | len
------ T T T

Compatibility
SQL92
SQL92 allows a positioned DELETE statement:

DELETE FROM t abl e WHERE
CURRENT OF cursor

where cur sor identifies an open cursor. Interactive cursors in Postgres are read-only.

91

QL Commands

DROP AGGREGATE

Name
DROP AGGREGATE Removes the definition of an aggregate function

Synopsis

DROP AGGREGATE nane type

Inputs

nanme

The name of an existing aggregate function.

type
The input datatype of an existing aggregate function, or * if the function accepts any input type.
(Refer to the PostgreSQL User’s Guide for further information about data types.)
* This should become a cross-reference rather than a hard-coded chapter number

Outputs

DROP

Message returned if the command is successful.

ERROR. RenpveAggregate: aggregate 'agg’ for 'type' does not exist
This message occurs if the aggregate function specified does not exist in the database.

Description

DROP AGGREGATE will remove all references to an existing aggregate definition. To execute this
command the current user must be the owner of the aggregate.

Notes
Use CREATE AGGREGATE to create aggregate functions.

92

QL Commands

Usage
To remove the nyavg aggregate for type i nt 4:

DROP AGGREGATE nyavg i nt 4;

Compatibility

SQL92

There is no DROP AGGREGATE statement in SQL92; the statement is a Postgres language

extension.

DROP DATABASE

Name

DROP DATABASE Removes an existing database

Synopsis

DROP DATABASE nane

Inputs

nane

The name of an existing database to remove.

Outputs

DROP DATABASE
This message is returned if the command is successful.

ERROR user ’'username’ is not allowed to create/drop databases

You must have the special CREATEDB privilege to drop databases. See CREATE USER.

ERROR dropdb: cannot be executed on the tenpl ate database

The t enpl at el database cannot be removed. It’s not in your interest.

93

QL Commands

ERROR: dropdb: cannot be executed on an open dat abase

You cannot be connected to the database your are about to remove. Instead, you could connect to
t enpl at el or any other database and run this command again.

ERROR: dropdb: database 'nane’ does not exi st

This message occurs if the specified database does not exist.

ERROR: dropdb: database 'nanme’ is not owned by you

You must be the owner of the database. Being the owner usually means that you created it as well.

ERROR: dropdb: May not be called in a transaction bl ock.

You must finish the transaction in progress before you can call this command.

NOTI CE: The dat abase directory 'xxx' could not be renoved

The database was dropped (unless other error messages came up), but the directory where the data
is stored could not be removed. You must delete it manually.

Description

DROP DATABASE removes the catalog entries for an existing database and deletes the directory
containing the data. It can only be executed by the database owner (usually the user that created it).

Notes

This command cannot be executed while connected to the target database. Thus, it might be more
convenient to use the shell script dropdb, which is a wrapper around this command, instead.

Refer to CREATE DATABASE for information on how to create a database.
Compatibility

SQL92

DROP DATABASE statement is a Postgres language extension; there is no such command in SQL92.

94

QL Commands

DROP FUNCTION

Name

DROP FUNCTI ON Removes a user-defined C function

Synopsis

DROP FUNCTION name ([type [, ...]1 1)

Inputs

nanme

The name of an existing function.

type
The type of function parameters.

Outputs

DROP

Message returned if the command completes successfully.

NOTI CE RenobveFunction: Function "nane" ("types") does not exi st

This message is given if the function specified does not exist in the current database.

Description

DROP FUNCTION will remove references to an existing C function. To execute this command the user
must be the owner of the function. The input argument types to the function must be specified, as only
the function with the given name and argument types will be removed.

Notes

Refer to CREATE FUNCTION for information on creating aggregate functions.

No checks are made to ensure that types, operators or access methods that rely on the function have
been removed first.

Usage

95

This command removes the square root function;

DROP FUNCTI ON sqrt(int4);

Compatibility

SQL92
DROP FUNCTION is a Postgres language extension.

SQL/PSM

QL Commands

SQL/PSM is a proposed standard to enable function extensibility. The SQL/PSM DROP FUNCTION

statement has the following syntax:

DROP [SPECI FIC] FUNCTI ON name { RESTRICT | CASCADE }

DROP GROUP

Name
DROP GROUP Removes a group

Synopsis

DROP GROUP nane

Inputs

nane

The name of an existing group.

Outputs

DROP GROUP
The message returned if the group is successfully deleted.

96

QL Commands

Description

DROP GROUP removes the specified group from the database. The users in the group are not deleted.

Use CREATE GROUP to add new groups, and ALTER GROUP to change a group’s membership.

Usage
To drop a group:

DROP GROUP st aff;

Compatibility
SQL92

There is no DROP GROUP in SQL92.

DROP INDEX

Name

DROP | NDEX Removes existing indexes from a database
Synopsis

DROP | NDEX i ndex_name [, ...]

Inputs

i ndex_nane

The name of an index to remove.

Outputs

DROP
The message returned if the command completes successfully.

ERROR: i ndex "index_nane" does not exist

This message occurs if i ndex_narme is not an index in the database.

97

QL Commands

Description

DROP INDEX drops an existing index from the database system. To execute this command you must
be the owner of the index.

Notes

DROP INDEX is a Postgres language extension.
Refer to CREATE INDEX for information on how to create indexes.

Usage
This command will remove the ti t1 e_i dx index:

DROP I NDEX title_idx;

Compatibility

SQL92

SQL92 defines commands by which to access a generic relational database. Indexes are an
implementation-dependent feature and hence there are no index-specific commands or definitions in the

SQL92 language.

DROP LANGUAGE

Name
DROP LANGUAGE Removes a user-defined procedural language

Synopsis

DROP [PROCEDURAL] LANGUAGE ' nane’

Inputs

nane
The name of an existing procedural language.

98

QL Commands

Outputs

DROP

This message is returned if the language is successfully dropped.

ERROR: Language "nanme" doesn’'t exi st

This message occurs if a language called nane is not found in the database.

Description

DROP PROCEDURAL LANGUAGE will remove the definition of the previously registered
procedural language called nane.

Notes

The DROP PROCEDURAL LANGUAGE statement is a Postgres language extension.
Refer to CREATE LANGUAGE for information on how to create procedural languages.

No checks are made if functions or trigger procedures registered in this language still exist. To
re-enable them without having to drop and recreate all the functions, the pg_proc’s prolang attribute of
the functions must be adjusted to the new object ID of the recreated pg_language entry for the PL.

Usage
This command removes the PL/Sample language:

DROP PROCEDURAL LANGUAGE ' pl sanpl e’ ;

Compatibility

SQL92
There is no DROP PROCEDURAL LANGUAGE in SQL92.

99

QL Commands

DROP OPERATOR

Name

DROP OPERATOR Removes an operator from the database

Synopsis

DROP OPERATOR id (lefttype | NONE , righttype | NONE)

Inputs

The identifier of an existing operator.

lefttype
The type of the operator’s left argument; write NONE if the operator has no left argument.

righttype
The type of the operator’s right argument; write NONE if the operator has no right argument.

Outputs

DROP

The message returned if the command is successful.
ERROR: RenpveQperator: binary operator 'oper’ taking 'type’ and ’'type2 does
not exi st

This message occurs if the specified binary operator does not exist.

ERROR. RenoveQperator: left wunary operator ’'oper’ taking ’'type’ does not
exi st

This message occurs if the left unary operator specified does not exist.

ERROR. RenoveQperator: right unary operator 'oper’ taking ’'type’ does not
exi st

This message occurs if the right unary operator specified does not exist.

100

QL Commands

Description

DROP OPERATOR drops an existing operator from the database. To execute this command you must
be the owner of the operator.

The left or right type of a left or right unary operator, respectively, must be specified as NONE.

Notes

The DROP OPERATOR statement is a Postgres language extension.
Refer to CREATE OPERATOR for information on how to create operators.

It is the user’s responsibility to remove any access methods and operator classes that rely on the deleted
operator.

Usage
Remove power operator a*n for i nt 4:

DROP OPERATOR ” (int4, int4);

Remove left unary negation operator (! b) for booleans:

DROP OPERATOR ! (none, bool);

Remove right unary factorial operator (i !) fori nt 4:

DROP OPERATOR ! (int4, none);

Compatibility

SQL92
There is no DROP OPERATOR in SQL92.

101

QL Commands

DROP RULE

Name

DROP RULE Removes existing rules from the database

Synopsis

DROP RULE nane [, ...]

Inputs

nanme

The name of an existing rule to drop.

Outputs

DROP

Message returned if successful.

ERROR: Rul e or view "nane" not found

This message occurs if the specified rule does not exist.

Description

DROP RULE drops a rule from the specified Postgres rule system. Postgres will immediately cease
enforcing it and will purge its definition from the system catalogs.

Notes

The DROP RULE statement is a Postgres language extension.

Refer to CREATE RULE for information on how to create rules.

Once a rule is dropped, access to historical information the rule has written may disappear.
Usage

To drop the rewrite rule newr ul e:

DROP RULE new ul €;

102

QL Commands

Compatibility

SQL92
There is no DROP RULE in SQL92.

DROP SEQUENCE

Name

DROP SEQUENCE Removes existing sequences from a database
Synopsis

DROP SEQUENCE nane [, ...]

Inputs

nane

The name of a sequence.
Outputs

DROP

The message returned if the sequence is successfully dropped.

ERROR: sequence "nane" does not exi st

This message occurs if the specified sequence does not exist.

Description

DROP SEQUENCE removes sequence number generators from the data base. With the current
implementation of sequences as special tables it works just like the DROP TABLE statement.

Notes

The DROP SEQUENCE statement is a Postgres language extension.
Refer to the CREATE SEQUENCE statement for information on how to create a sequence.

103

QL Commands

Usage
To remove sequence seri al from database:

DROP SEQUENCE seri al ;

Compatibility

SQL92
There is no DROP SEQUENCE in SQL92.

DROP TABLE

Name

DROP TABLE Removes existing tables from a database

Synopsis

DROP TABLE nane [, ...]

Inputs

nanme

The name of an existing table to drop.

Outputs

DROP

The message returned if the command completes successfully.

ERROR: table "nane" does not exist

If the specified table does not exist in the database.

104

QL Commands

Description

DROP TABLE removes tables from the database. Only its owner may destroy a table. A table may be
emptied of rows, but not destroyed, by using DELETE.

If a table being destroyed has secondary indexes on it, they will be removed first. The removal of just a
secondary index will not affect the contents of the underlying table.

Notes
Refer to CREATE TABLE and ALTER TABLE for information on how to create or modify tables.

Usage
To destroy two tables, fi | ns and di stri butors:

DROP TABLE fil nms, distributors;

Compatibility
SQL92
SQL92 specifies some additional capabilities for DROP TABLE:

DROP TABLE tabl e { RESTRI CT | CASCADE }

RESTRICT
Ensures that only a table with no dependent views or integrity constraints can be destroyed.

CASCADE

Any referencing views or integrity constraints will also be dropped.

Tip: At present, to remove a referenced view you must drop it explicitly.

105

QL Commands

DROP TRIGGER

Name

DROP TRI GGER Removes the definition of a trigger

Synopsis

DROP TRI GGER nane ON tabl e

Inputs

nanme

The name of an existing trigger.

tabl e

The name of a table.

Outputs

DROP

The message returned if the trigger is successfully dropped.

ERROR: DropTrigger: there is no trigger nanme on relation "table"

This message occurs if the trigger specified does not exist.

Description

DROP TRIGGER will remove all references to an existing trigger definition. To execute this
command the current user must be the owner of the trigger.

Notes

DROP TRIGGER is a Postgres language extension.
Refer to CREATE TRIGGER for information on how to create triggers.

Usage
Destroy the i f _di st _exi st s trigger on table fi | ms:

DROP TRI GGER i f _di st_exists ON fil ns;

106

QL Commands

Compatibility
SQL92

There is no DROP TRIGGER statement in SQL92.

DROP TYPE

Name
DROP TYPE Removes user-defined types from the system catalogs
Synopsis

DROP TYPE typenane [, ...]

Inputs

t ypenane

The name of an existing type.

Outputs

DROP

The message returned if the command is successful.

ERROR RenpbveType: type 'typenane’ does not exi st

This message occurs if the specified type is not found.

Description

DROP TYPE will remove a user type from the system catalogs.

Only the owner of a type can remove it.

Notes

DROP TYPE statement is a Postgres language extension.

107

QL Commands

Refer to CREATE TY PE for information on how to create types.

It is the user’s responsibility to remove any operators, functions, aggregates, access methods, subtypes,
and tables that use a deleted type.

If a built-in type is removed, the behavior of the backend is unpredictable.

Usage
To remove the box type:

DROP TYPE box;

Compatibility

SQL3
DROP TYPE is a SQL3 statement.

DROP USER

Name

DROP USER Removes a user

Synopsis

DROP USER nane

Inputs

nanme

The name of an existing user.

Outputs

DROP USER

The message returned if the user is successfully deleted.

108

QL Commands

ERROR: DROP USER: user "nanme" does not exi st

This message occurs if the username is not found.

DROP USER: user "nanme" owns dat abase "nane", cannot be renoved

You must drop the database first or change its ownership.

Description

DROP USER remaves the specified user from the database. It does not remove tables, views, or other
objects owned by the user. If the user owns any database you get an error.

Use CREATE USER to add new users, and ALTER USER to change a user’s properties. Postgres comes
with a script dropuser which has the same functionality as this command (in fact, it calls this command)
but can be run from the command shell.

Usage
To drop a user account:

DROP USER j onat han;

Compatibility

SQL92
There is no DROP USER in SQL92.

DROP VIEW

Name

DROP VI EW Removes existing views from a database

Synopsis

DROP VI EW nane [, ...]

Inputs

nanme

The name of an existing view.

109

QL Commands

Outputs

DROP
The message returned if the command is successful.

ERROR: vi ew nane does not exi st

This message occurs if the specified view does not exist in the database.

Description

DROP VIEW drops an existing view from the database. To execute this command you must be the
owner of the view.

Notes

Refer to CREATE VIEW for information on how to create views.
Usage

This command will remove the view called ki nds:

DROP VI EW ki nds;

Compatibility

SQL92
SQL92 specifies some additional capabilities for DROP VIEW:

DROP VI EW vi ew { RESTRI CT | CASCADE }

Inputs

RESTRICT

Ensures that only a view with no dependent views or integrity constraints can be destroyed.

CASCADE

Any referencing views and integrity constraints will be dropped as well.

110

END

Notes

QL Commands

At present, to remove a referenced view from a Postgres database, you must drop it explicitly.

Name

END Commits the current transaction

Synopsis

END [WORK | TRANSACTI ON]

Inputs

WORK
TRANSACTION

Optional keywords. They have no effect.
Outputs
COW T

Message returned if the transaction is successfully committed.

NOTICE: COW T: no transaction in progress

If there is no transaction in progress.

Description

END is a Postgres extension, and is a synonym for the SQL92-compatible COMMIT.

Notes

The keywords WORK and TRANSACTION are noise and can be omitted.
Use ROLLBACK to abort a transaction.

111

QL Commands

Usage
To make all changes permanent:

END WWORK;

Compatibility
SQL92

END is a PostgreSQL extension which provides functionality equivalent to COMMIT.

EXPLAIN

Name
EXPLAI N Shows statement execution plan
Synopsis

EXPLAI N [VERBOSE] query

Inputs

VERBOSE
Flag to show detailed query plan.

query
Any query.

Outputs
NOTI CE: QUERY PLAN: pl an

Explicit query plan from the Postgres backend.

EXPLAI N

Flag sent after query plan is shown.

112

QL Commands

Description

This command displays the execution plan that the Postgres planner generates for the supplied query.
The execution plan shows how the table(s) referenced by the query will be scanned---by plain sequential
scan, index scan, etc.---and if multiple tables are referenced, what join algorithms will be used to bring
together the required tuples from each input table.

The most critical part of the display is the estimated query execution cost, which is the planner’s guess
at how long it will take to run the query (measured in units of disk page fetches). Actually two numbers
are shown: the start-up time before the first tuple can be returned, and the total time to return all the
tuples. For most queries the total time is what matters, but in contexts such as an EXISTS sub-query the
planner will choose the smallest start-up time instead of the smallest total time (since the executor will
stop after getting one tuple, anyway). Also, if you limit the number of tuples to return with a LIMIT
clause, the planner makes an appropriate interpolation between the endpoint costs to estimate which
plan is really the cheapest.

The VERBOSE option emits the full internal representation of the plan tree, rather than just a summary
(and sends it to the postmaster log file, too). Usually this option is only useful for debugging Postgres.

Notes

There is only sparse documentation on the optimizer’s use of cost information in Postgres. General
information on cost estimation for query optimization can be found in database textbooks. Refer to the
Programmer’s Guide in the chapters on indexes and the genetic query optimizer for more information.

Usage
To show a query plan for a simple query on a table with a single i nt 4 column and 128 rows:

EXPLAI N SELECT * FROM f oo;
NOTI CE: QUERY PLAN:

Seq Scan on foo (cost=0.00..2.28 rows=128 wi dt h=4)

EXPLAI N

For the same table with an index to support an equijoin condition on the query, EXPLAIN will show a
different plan:

EXPLAI N SELECT * FROM foo WHERE i = 4;
NOTI CE: QUERY PLAN:

I ndex Scan using fi on foo (cost=0.00..0.42 rows=1 wi dt h=4)

EXPLAI N

113

QL Commands

And finally, for the same table with an index to support an equijoin condition on the query, EXPLAIN
will show the following for a query using an aggregate function:

EXPLAI N SELECT sun(i) FROM foo WHERE i = 4;
NOTI CE: QUERY PLAN:

Aggregate (cost=0.42..0.42 rows=1 wi dt h=4)
-> Index Scan using fi on foo (cost=0.00..0.42 rows=1 w dth=4)

Note that the specific numbers shown, and even the selected query strategy, may vary between Postgres
releases due to planner improvements.

Compatibility

SQL92
There is no EXPLAIN statement defined in SQL92.

FETCH

Name

FETCH Gets rows using a cursor

Synopsis
FETCH [direction] [count] { IN| FROM} cursor

FETCH [FORWARD | BACKWARD | RELATIVE | [# | ALL | NEXT | PRROR] { IN |
FROM } cursor

Inputs

direction

sel ect or defines the fetch direction. It can be one of the following:

FORWARD

fetch next row(s). This is the default if sel ect or is omitted.

BACKWARD

fetch previous row(s).

114

QL Commands

RELATIVE
Noise word for SQL92 compatibility.

count

count determines how many rows to fetch. It can be one of the following:

#

A signed integer that specifies how many rows to fetch. Note that a negative integer is
equivalent to changing the sense of FORWARD and BACKWARD.

ALL

Retrieve all remaining rows.

NEXT

Equivalent to specifying a count of 1.

PRIOR

Equivalent to specifying a count of -1.

cursor

An open cursor’s name.

Outputs

FET CH returns the results of the query defined by the specified cursor. The following messages will be
returned if the query fails:

NOTI CE: PerfornPortal Fetch: portal "cursor" not found

If cur sor is not previously declared. The cursor must be declared within a transaction block.

NOTI CE: FETCH ABSOLUTE not supported, using RELATIVE

Postgres does not support absolute positioning of cursors.

ERROR FETCH RELATI VE at current position is not supported
SQL92 allows one to repetitively retrieve the cursor at its "current position” using the syntax
FETCH RELATI VE 0 FROM cur sor.

Postgres does not currently support this notion; in fact the value zero is reserved to indicate that all
rows should be retrieved and is equivalent to specifying the ALL keyword. If the RELATIVE

115

QL Commands

keyword has been used, Postgres assumes that the user intended SQL92 behavior and returns this
error message.

Description

FETCH allows a user to retrieve rows using a cursor. The number of rows retrieved is specified by #.

If the number of rows remaining in the cursor is less than #, then only those available are fetched.
Substituting the keyword ALL in place of a number will cause all remaining rows in the cursor to be
retrieved. Instances may be fetched in both FORWARD and BACKWARD directions. The default
direction is FORWARD.

Tip: Negative numbers are allowed to be specified for the row count. A negative number is
equivalent to reversing the sense of the FORWARD and BACKWARD keywords. For example,
FORWARD -1 is the same as BACKWARD 1.

Notes

Note that the FORWARD and BACKWARD keywords are Postgres extensions. The SQL92 syntax is
also supported, specified in the second form of the command. See below for details on compatibility
issues.

Updating data in a cursor is not supported by Postgres, because mapping cursor updates back to base
tables is not generally possible, as is also the case with VIEW updates. Consequently, users must issue
explicit UPDATE commands to replace data.

Cursors may only be used inside of transactions because the data that they store spans multiple user
queries.

Use MOVE to change cursor position. DECLARE will define a cursor. Refer to BEGIN, COMMIT, and
ROLLBACK for further information about transactions.

Usage
The following examples traverses a table using a cursor.
-- Set up and use a cursor:

BEG N WORK;
DECLARE | i ahona CURSOR FOR SELECT * FROM fil ns;

116

QL Commands

-- Fetch first 5 rows in the cursor |iahona:
FETCH FORWARD 5 | N |i ahona;

code | title | did | date_prod | kind | len
------- LT T L L L T Tr SIS
BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44
BL102 | The African Queen | 101 | 1951-08-11 | Ronantic | 01:43
JL201 | Une Ferme est une Fermme | 102 | 1961-03-12 | Romantic | 01:25
P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08
P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28
-- Fetch previous row

FETCH BACKWARD 1 I N |iahona;

code | title | did | date_prod | kind | len

------- T T S ST

P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08
-- close the cursor and commt work:

CLCSE i ahonag;
COW T WORK;

Compatibility

SQL92

Note: The non-embedded use of cursors is a Postgres extension. The syntax and usage of cursors
is being compared against the embedded form of cursors defined in SQL92.

SQL92 allows absolute positioning of the cursor for FETCH, and allows placing the results into explicit
variables:

FETCH ABSCOLUTE #
FROM cur sor
INTO :variable [, ...]

ABSOLUTE

The cursor should be positioned to the specified absolute row number. All row numbers in
Postgres are relative numbers so this capability is not supported.

vari abl e

Target host variable(s).

117

QL Commands

GRANT

Name

GRANT Grants access privilege to a user, a group or all users

Synopsis

GRANT privilege [, ...] ONobject [, ...]
TO { PUBLIC | GROUP group | usernane }

Inputs

privilege

The possible privileges are:

SELECT

Access all of the columns of a specific table/view.

INSERT

Insert data into all columns of a specific table.

UPDATE

Update all columns of a specific table.

DELETE

Delete rows from a specific table.

RULE
Define rules on the table/view (See CREATE RULE statement).

ALL

Grant all privileges.

obj ect

The name of an object to which to grant access. The possible objects are:
table
view
sequence

118

QL Commands

PUBLIC

A short form representing all users.

GROUP gr oup

A gr oup to whom to grant privileges.

user nane

The name of a user to whom to grant privileges. PUBLIC is a short form representing all users.

Outputs

CHANGE

Message returned if successful.

ERROR: ChangeAcl: class "object" not found

Message returned if the specified object is not available or if it is impossible to give privileges to
the specified group or users.

Description

GRANT allows the creator of an object to give specific permissions to all users (PUBLIC) or to a
certain user or group. Users other than the creator don’t have any access permission unless the creator
GRANTS permissions, after the object is created.

Once a user has a privilege on an object, he is enabled to exercise that privilege. There is no need to
GRANT privileges to the creator of an object, the creator automatically holds ALL privileges, and can
also drop the object.

Notes

Currently, to grant privileges in Postgres to only a few columns, you must create a view having desired
columns and then grant privileges to that view.

Use psgl \z for further information about permissions on existing objects:

Dat abase = lusitania
oo o e e e +
| Relation | G ant / Revoke Perni ssions |
B o e mmm e +
| nytable | {"=rw',"mrianFarwR', "group todos=rw'} |
B o e m e mem e +

119

QL Commands

Legend:
unane=arwR -- privileges granted to a user
group gnane=arwR -- privileges granted to a GROUP
=arwRk -- privileges granted to PUBLIC

r -- SELECT
w -- UPDATE/ DELETE
a -- | NSERT
R -- RULE
arwk -- ALL

Refer to REVOKE statements to revoke access privileges.

Usage
Grant insert privilege to all users on table films:

GRANT | NSERT ON films TO PUBLI C,

Grant all privileges to user manuel on view kinds:

GRANT ALL ON ki nds TO manuel ;

Compatibility

SQL92

The SQL92 syntax for GRANT allows setting privileges for individual columns within a table, and

allows setting a privilege to grant the same privileges to others:

GRANT privilege [, ...]
ON object [(colum [, ...1)1 [, ...]
TO{ PUBLIC | username [, ...] } [WTH GRANT OPTI ON]

Fields are compatible with those in the Postgres implementation, with the following additions:

privilege

SQL92 permits additional privileges to be specified:

SELECT

120

QL Commands

REFERENCES

Allowed to reference some or all of the columns of a specific table/view in integrity
constraints.

USAGE

Allowed to use a domain, character set, collation or translation. If an object specifies anything
other than a table/view, pri vi | ege must specify only USAGE.

obj ect

[TABLE]t abl e
SQL92 allows the additional non-functional keyword TABLE.

CHARACTER SET

Allowed to use the specified character set.

COLLATION

Allowed to use the specified collation sequence.

TRANSLATION

Allowed to use the specified character set translation.

DOMAIN

Allowed to use the specified domain.

WITH GRANT OPTION

Allowed to grant the same privilege to others.

121

QL Commands

INSERT

Name

| NSERT Inserts new rows into a table

Synopsis
INSERT INTOtable [(colum [, ...])]
{ DEFAULT VALUES | VALUES (expression [, ...]) | SELECT query }
Inputs
tabl e

The name of an existing table.

col umm

The name of acolumnint abl e.

DEFAULT VALUES

All columns will be filled by NULLs or by values specified when the table was created using
DEFAULT clauses.

expr essi on

A valid expression or value to assign to col umm.

query
A valid query. Refer to the SELECT statement for a further description of valid arguments.

Outputs

I NSERT oid 1

Message returned if only one row was inserted. oi d is the numeric OID of the inserted row.

I NSERT 0 #

Message returned if more than one rows were inserted. # is the number of rows inserted.

122

QL Commands

Description

INSERT allows one to insert new rows into a table. One can insert a single row at a time or several
rows as a result of a query. The columns in the target list may be listed in any order.

Each column not present in the target list will be inserted using a default value, either a declared
DEFAULT value or NULL. Postgres will reject the new column if a NULL is inserted into a column
declared NOT NULL.

If the expression for each column is not of the correct data type, automatic type coercion will be
attempted.

You must have insert privilege to a table in order to append to it, as well as select privilege on any table
specified in a WHERE clause.

Usage
Insert a single row into table fi | ns:

I NSERT I NTO fil nms VALUES
(" UA502' , ' Bananas’, 105, 1971-07-13",’ Cormedy’ , | NTERVAL ' 82 minute’);

In this second example the last column | en is omitted and therefore it will have the default value of
NULL:

INSERT INTO filns (code, title, did, date_prod, kind)
VALUES (' T_601', 'Yojimbo', 106, DATE '1961-06-16', 'Drams’);

Insert a single row into table distributors; note that only column nane is specified, so the omitted
column di d will be assigned its default value:

I NSERT I NTO di stributors (name) VALUES ('British Lion');

Insert several rows into table films from table t np:

I NSERT I NTO filnms SELECT * FROM t np;

123

QL Commands

Insert into arrays (refer to the PostgreSQL User’s Guide for further information about arrays):
-- Create an enmpty 3x3 ganmeboard for noughts-and-crosses
-- (all of these queries create the sane board attribute)
I NSERT INTO tictactoe (gane, board[1:3][1:3])
VALUES (1,°{{"","",""}. {}. {"".""}}');
I NSERT INTO tictactoe (gane, board[3][3])
VALUES (2, {}");
I NSERT INTO tictactoe (gane, board)
VALUES (3,"{{..}.{..}.{,.}}");

Compatibility

SQL92

INSERT is fully compatible with SQL92. Possible limitations in features of the query clause are
documented for SELECT.

LISTEN

Name

LI STEN Listen for a response on a notify condition

Synopsis

LI STEN nane

Inputs

nanme

Name of notify condition.
Outputs
LI STEN

Message returned upon successful completion of registration.

NOTI CE Async_Listen: W are already |istening on nane

If this backend is already registered for that notify condition.

124

QL Commands

Description

LISTEN registers the current Postgres backend as a listener on the notify condition nane.

Whenever the command NOTIFY nane is invoked, either by this backend or another one connected to
the same database, all the backends currently listening on that notify condition are notified, and each
will in turn notify its connected frontend application. See the discussion of NOTIFY for more
information.

A backend can be unregistered for a given notify condition with the UNLISTEN command. Also, a
backend’s listen registrations are automatically cleared when the backend process exits.

The method a frontend application must use to detect notify events depends on which Postgres
application programming interface it uses. With the basic libpg library, the application issues LISTEN
as an ordinary SQL command, and then must periodically call the routine PQnoti fi es to find out
whether any notify events have been received. Other interfaces such as libpgtcl provide higher-level
methods for handling notify events; indeed, with libpgtcl the application programmer should not even
issue LISTEN or UNLISTEN directly. See the documentation for the library you are using for more
details.

NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Notes

nane can be any string valid as a name; it need not correspond to the name of any actual table. If
not i f yname is enclosed in double-quotes, it need not even be a syntactically valid name, but can be
any string up to 31 characters long.

In some previous releases of Postgres, name had to be enclosed in double-quotes when it did not
correspond to any existing table name, even if syntactically valid as a name. That is no longer required.

Usage
Configure and execute a listen/notify sequence from psql:

LI STEN vi rtual ;
NOTI FY vi rtual ;

Asynchronous NOTIFY ’'virtual’ from backend with pid '8448" received.
Compatibility

SQL92
There isno LISTEN in SQL92.

125

QL Commands

LOAD

Name

LQAD Dynamically loads an object file

Synopsis

LOAD 'fil enane’

Inputs

filenane

Obiject file for dynamic loading.

Outputs

LOAD

Message returned on successful completion.

ERROR: LOAD: could not open file 'fil enang’

Message returned if the specified file is not found. The file must be visible to the Postgres
backend, with the appropriate full path name specified, to avoid this message.

Description

Loads an object (or ".0") file into the Postgres backend address space. Once a file is loaded, all
functions in that file can be accessed. This function is used in support of user-defined types and
functions.

If a file is not loaded using L OAD, the file will be loaded automatically the first time the function is
called by Postgres. LOAD can also be used to reload an object file if it has been edited and recompiled.
Only objects created from C language files are supported at this time.

Notes

Functions in loaded object files should not call functions in other object files loaded through the LOAD
command. For example, all functions in file A should call each other, functions in the standard or math
libraries, or in Postgres itself. They should not call functions defined in a different loaded file B. This is

126

QL Commands

because if B is reloaded, the Postgres loader is not able to relocate the calls from the functions in A into
the new address space of B. If B is not reloaded, however, there will not be a problem.

Object files must be compiled to contain position independent code. For example, on DECstations you
must use /bin/cc with the - G 0 option when compiling object files to be loaded.

Note that if you are porting Postgres to a new platform, L OAD will have to work in order to support
ADTs.

Usage
Load the file / usr/ post gres/ deno/ circl e. o:

LOAD '/ usr/ postgres/deno/circle.o’

Compatibility
SQL92

There isno LOAD in SQL92.

LOCK

Name

LOCK Explicitly lock a table inside a transaction

Synopsis

LOCK [TABLE] nane
LOCK [TABLE] name IN[ROW| ACCESS] { SHARE | EXCLUSIVE } MODE
LOCK [TABLE] name | N SHARE ROW EXCLUSI VE MODE

Inputs

nanme

The name of an existing table to lock.

127

QL Commands

ACCESS SHARE MODE

Note: This lock mode is acquired automatically over tables being queried.

This is the least restrictive lock mode. It conflicts only with ACCESS EXCLUSIVE mode. It is
used to protect a table from being modified by concurrent ALTER TABLE, DROP TABLE and
VACUUM commands.

ROW SHARE MODE

Note: Automatically acquired by SELECT...FOR UPDATE. While it is a shared lock, may be
upgraded later to a ROW EXCLUSIVE lock.

Conflicts with EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

ROW EXCLUSIVE MODE

Note: Automatically acquired by UPDATE, DELETE, and INSERT statements.

Conflicts with SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE and ACCESS EXCLUSIVE
modes.

SHARE MODE

Note: Automatically acquired by CREATE INDEX. Share-locks the entire table.

Conflicts with ROW EXCLUSIVE, SHARE ROW EXCLUSIVE, EXCLUSIVE and ACCESS
EXCLUSIVE modes. This mode protects a table against concurrent updates.

SHARE ROW EXCLUSIVE MODE

Note: This is like EXCLUSIVE MODE, but allows SHARE ROW locks by others.

Conflicts with ROW EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE and
ACCESS EXCLUSIVE modes.

EXCLUSIVE MODE

Note: This mode is yet more restrictive than SHARE ROW EXCLUSIVE. It blocks all concurrent
ROW SHARE/SELECT...FOR UPDATE queries.

Conflicts with ROW SHARE, ROW EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE and ACCESS EXCLUSIVE modes.

128

QL Commands

ACCESS EXCLUSIVE MODE

Note: Automatically acquired by ALTER TABLE, DROP TABLE, VACUUM statements. This is the
most restrictive lock mode which conflicts with all other lock modes and protects a locked table
from any concurrent operations.

Note: This lock mode is also acquired by an unqualified LOCK TABLE (i.e., the command
without an explicit lock mode option).

Outputs

LOCK TABLE

The lock was successfully applied.

ERROR nane: Tabl e does not exist.

Message returned if nane does not exist.

Description

LOCK TABLE controls concurrent access to a table for the duration of a transaction. Postgres always
uses the least restrictive lock mode whenever possible. LOCK TABLE provides for cases when you
might need more restrictive locking.

RDBMS locking uses the following terminology:

EXCLUSIVE

Exclusive lock that prevents other locks from being granted.

SHARE
Allows others to share lock. Prevents EXCLUSIVE locks.

ACCESS

Locks table schema.

ROW

Locks individual rows.

Note: If EXCLUSIVE or SHARE are not specified, EXCLUSIVE is assumed. Locks exist for the
duration of the transaction.

129

QL Commands

For example, an application runs a transaction at READ COMMITTED isolation level and needs to
ensure the existence of data in a table for the duration of the transaction. To achieve this you could use
SHARE lock mode over the table before querying. This will protect data from concurrent changes and
provide any further read operations over the table with data in their actual current state, because SHARE
lock mode conflicts with any ROW EXCLUSIVE one acquired by writers, and your LOCK TABLE
nane IN SHARE MODE statement will wait until any concurrent write operations commit or rollback.

Note: To read data in their real current state when running a transaction at the SERIALIZABLE
isolation level you have to execute a LOCK TABLE statement before executing any DML statement,
when the transaction defines what concurrent changes will be visible to itself.

In addition to the requirements above, if a transaction is going to change data in a table, then SHARE
ROW EXCLUSIVE lock mode should be acquired to prevent deadlock conditions when two concurrent
transactions attempt to lock the table in SHARE mode and then try to change data in this table, both
(implicitly) acquiring ROW EXCLUSIVE lock mode that conflicts with a concurrent SHARE lock.

To continue with the deadlock (when two transaction wait for one another) issue raised above, you
should follow two general rules to prevent deadlock conditions:

Transactions have to acquire locks on the same objects in the same order.

For example, if one application updates row R1 and than updates row R2 (in the same transaction)
then the second application shouldn’t update row R2 if it’s going to update row R1 later (in a single
transaction). Instead, it should update rows R1 and R2 in the same order as the first application.

Transactions should acquire two conflicting lock modes only if one of them is self-conflicting (i.e.,
may be held by one transaction at time only). If multiple lock modes are involved, then transactions
should always acquire the most restrictive mode first.

An example for this rule was given previously when discussing the use of SHARE ROW
EXCLUSIVE mode rather than SHARE mode.

Note: Postgres does detect deadlocks and will rollback at least one waiting transaction to resolve
the deadlock.

Notes

LOCK is a Postgres language extension.

Except for ACCESS SHARE/EXCLUSIVE lock modes, all other Postgres lock modes and the LOCK
TABLE syntax are compatible with those present in Oracle.

L OCK works only inside transactions.

130

QL Commands

Usage
Illustrate a SHARE lock on a primary key table when going to perform inserts into a foreign key table:

BEA N WORK;
LOCK TABLE filnms | N SHARE MODE;
SELECT id FROM fil ns
WHERE nanme = ' Star Wars: Episode | - The Phant om Menace’;
-- Do ROLLBACK if record was not returned
I NSERT INTO fil ns_user_comments VALUES
(_id_, "CGREAT! | was waiting for it for so long!’');
COW T WORK;

Take a SHARE ROW EXCLUSIVE lock on a primary key table when going to perform a delete
operation:

BEG N WORK;

LOCK TABLE filns | N SHARE ROW EXCLUSI VE MCDE;

DELETE FROM fil ns_user _comrents WHERE id IN
(SELECT id FROM films WHERE rating < 5);

DELETE FROM fil ms WHERE rating < 5;

COW T WORK;

Compatibility

SQL92

There is no LOCK TABLE in SQL92, which instead uses SET TRANSACTION to specify
concurrency levels on transactions. We support that too; see SET TRANSACTION for details.

131

QL Commands

MOVE

Name

MOVE Moves cursor position

Synopsis

MOVE [direction] [count]
{ IN| FROM} cursor

Description
MOVE allows a user to move cursor position a specified number of rows. MOVE works like the
FETCH command, but only positions the cursor and does not return rows.

Refer to FETCH for details on syntax and usage.

Notes

MOVE is a Postgres language extension.

Refer to FETCH for a description of valid arguments. Refer to DECLARE to define a cursor. Refer to
BEGIN, COMMIT, and ROLLBACK for further information about transactions.

Usage
Set up and use a cursor:

BEGA N WORK;

DECLARE | i ahona CURSOR FOR SELECT * FROM fil ns;
-- Skip first 5 rows:

MOVE FORWARD 5 I N |i ahona;

MOVE

-- Fetch 6th rowin the cursor |iahona:

FETCH 1 I N |i ahona;

FETCH

code | title | did | date_prod | kind | len
------- T L S T T T T S,
P 303 | 48 Hrs | 103 | 1982-10-22| Action | 01:37
(1 row)

-- close the cursor |iahona and commit work:
CLGCSE | i ahona;
COM T WORK;

Compatibility

132

QL Commands

SQL92

There is no SQL92 MOVE statement. Instead, SQL92 allows one to FETCH rows from an absolute
cursor position, implicitly moving the cursor to the correct position.

NOTIFY

Name

NOTI FY Signals all frontends and backends listening on a notify condition

Synopsis

NOTI FY nane

Inputs

noti f ynane

Notify condition to be signaled.

Outputs

NOTI FY

Acknowledgement that notify command has executed.

Notify events

Events are delivered to listening frontends; whether and how each frontend application reacts
depends on its programming.

Description
The NOTIFY command sends a notify event to each frontend application that has previously executed
LISTEN not i f ynane for the specified notify condition in the current database.

The information passed to the frontend for a notify event includes the notify condition name and the
notifying backend process’s PID. It is up to the database designer to define the condition names that will
be used in a given database and what each one means.

Commonly, the notify condition name is the same as the name of some table in the database, and the
notify event essentially means "I changed this table, take a look at it to see what’s new". But no such

133

QL Commands

association is enforced by the NOTIFY and LISTEN commands. For example, a database designer
could use several different condition names to signal different sorts of changes to a single table.

NOTIFY provides a simple form of signal or IPC (interprocess communication) mechanism for a
collection of processes accessing the same Postgres database. Higher-level mechanisms can be built by
using tables in the database to pass additional data (beyond a mere condition name) from notifier to
listener(s).

When NOTIFY is used to signal the occurrence of changes to a particular table, a useful programming

technique is to put the NOTIFY in a rule that is triggered by table updates. In this way, notification
happens automatically when the table is changed, and the application programmer can’t accidentally
forget to do it.

NOTIFY interacts with SQL transactions in some important ways. Firstly, if a NOTIFY is executed
inside a transaction, the notify events are not delivered until and unless the transaction is committed.
This is appropriate, since if the transaction is aborted we would like all the commands within it to have
had no effect, including NOTIFY. But it can be disconcerting if one is expecting the notify events to be
delivered immediately. Secondly, if a listening backend receives a notify signal while it is within a
transaction, the notify event will not be delivered to its connected frontend until just after the transaction
is completed (either committed or aborted). Again, the reasoning is that if a notify were delivered within
a transaction that was later aborted, one would want the notification to be undone somehow---but the
backend cannot "take back™ a notify once it has sent it to the frontend. So notify events are only
delivered between transactions. The upshot of this is that applications using NOTIFY for real-time
signaling should try to keep their transactions short.

NOTIFY behaves like Unix signals in one important respect: if the same condition name is signaled
multiple times in quick succession, recipients may get only one notify event for several executions of
NOTIFY. So it is a bad idea to depend on the number of notifies received. Instead, use NOTIFY to
wake up applications that need to pay attention to something, and use a database object (such as a
sequence) to keep track of what happened or how many times it happened.

It is common for a frontend that sends NOTIFY to be listening on the same notify name itself. In that
case it will get back a notify event, just like all the other listening frontends. Depending on the
application logic, this could result in useless work---for example, re-reading a database table to find the
same updates that that frontend just wrote out. In Postgres 6.4 and later, it is possible to avoid such extra
work by noticing whether the notifying backend process’s PID (supplied in the notify event message) is
the same as one’s own backend’s PID (available from libpg). When they are the same, the notify event
is one’s own work bouncing back, and can be ignored. (Despite what was said in the preceding
paragraph, this is a safe technique. Postgres keeps self-notifies separate from notifies arriving from other
backends, so you cannot miss an outside notify by ignoring your own notifies.)

Notes

narre can be any string valid as a name; it need not correspond to the name of any actual table. If nanme
is enclosed in double-quotes, it need not even be a syntactically valid name, but can be any string up to
31 characters long.

In some previous releases of Postgres, name had to be enclosed in double-quotes when it did not
correspond to any existing table name, even if syntactically valid as a name. That is no longer required.

134

QL Commands

In Postgres releases prior to 6.4, the backend PID delivered in a notify message was always the PID of
the frontend’s own backend. So it was not possible to distinguish one’s own notifies from other clients’
notifies in those earlier releases.

Usage
Configure and execute a listen/notify sequence from psql:
LI STEN virtual ;

NOTI FY vi rtual ;
Asynchronous NOTIFY "virtual’ from backend with pid '8448" received.

Compatibility

SQL92
There is no NOTIFY statement in SQL92.

REINDEX

Name

REI NDEX Recover corrupted system indexes under stand-alone Postgres

Synopsis

REI NDEX { TABLE | DATABASE | INDEX } nane [FORCE]

Inputs

TABLE

Recreate all indexes of a specified table.

DATABASE

Recreate all system indexes of a specified database.

INDEX

Recreate a specified index.

nanme

The name of the specific table/database/index to be be reindexed.

135

QL Commands

FORCE

Recreate indexes forcedly. Without this keyword REINDEX does nothing unless target indexes are
invalidated.

Outputs

REI NDEX

Message returned if the table is successfully reindexed.

Description

REINDEX is used to recover corrupted system indexes. In order to run REINDEX command,
postmaster must be shut down and stand-alone Postgres should be started instead with options -O and -P
(an option to ignore system indexes). Note that we couldn’t rely on system indexes for the recovery of
system indexes.

Usage
Recreate the table nyt abl e:

REI NDEX TABLE nyt abl e;

Some more examples:

REI NDEX DATABASE ny_dat abase FORCE;
REI NDEX | NDEX ny_i ndex;

Compatibility

SQL92
There is no REINDEX in SQL92.

136

QL Commands

RESET

Name

RESET Restores run-time parameters to default values

Synopsis

RESET vari abl e

Inputs

vari abl e

The name of a run-time parameter. See SET for a list.

Description

RESET restores run-time parameters to their default values. Refer to SET for details. RESET is an
alternate form for

SET variable TO DEFAULT

Diagnostics

See under the SET command.

Examples
Set DateStyle to its default value:

RESET Dat eStyl e;

Set Geqo to its default value:

RESET GEQO,

137

QL Commands

Compatibility

RESET is a Postgres extension.

REVOKE

Name

REVOKE Revokes access privilege from a user, a group or all users.

Synopsis
REVOKE privilege [, ...]

ON object [, ...]
FROM { PUBLIC | CGROUP groupname | usernamne }

Inputs

privilege
The possible privileges are:

SELECT

Privilege to access all of the columns of a specific table/view.

INSERT

Privilege to insert data into all columns of a specific table.

UPDATE

Privilege to update all columns of a specific table.

DELETE

Privilege to delete rows from a specific table.

RULE
Privilege to define rules on table/view. (See CREATE RULE).

ALL

Rescind all privileges.

138

QL Commands

obj ect

The name of an object from which to revoke access. The possible objects are:
table
view
sequence

group
The name of a group from whom to revoke privileges.

user nane

The name of a user from whom revoke privileges. Use the PUBLIC keyword to specify all users.

PUBLIC

Rescind the specified privilege(s) for all users.

Outputs

CHANGE

Message returned if successfully.

ERROR

Message returned if object is not available or impossible to revoke privileges from a group or
users.

Description

REVOKE allows creator of an object to revoke permissions granted before, from all users (via
PUBLIC) or a certain user or group.

Notes

Refer to psgl \z command for further information about permissions on existing objects:

Dat abase = lusitania

o e e e e aa oo ! +
| Relation | G ant/ Revoke Permi ssions |
e e e e e o e o oo o +
| mytable | {"=rw',"mrianFarwR', "group todos=rw'} |
o e aaa) +

139

QL Commands

Legend:
unane=arwR -- privileges granted to a user
group gnane=arwR -- privileges granted to a GROUP
=arwR -- privileges granted to PUBLIC

r -- SELECT

w -- UPDATE/ DELETE
a -- | NSERT

R -- RULE

arwk -- ALL

Tip: Currently, to create a GROUP you have to insert data manually into table pg_group as:

I NSERT | NTO pg_group VALUES (’'todos’);
CREATE USER miriam | N GROUP todos;

Usage
Revoke insert privilege from all users on table fi | ns:

REVOKE | NSERT ON fil ns FROM PUBLI C,

Revoke all privileges from user manuel on view ki nds:

REVOKE ALL ON ki nds FROM manuel ;

Compatibility

SQL92

The SQL92 syntax for REVOKE has additional capabilities for rescinding privileges, including those
on individual columns in tables:

REVOKE { SELECT | DELETE | USAGE | ALL PRIVILEGES } [, ...]
ON obj ect
FROM { PUBLIC | usernane [, ...] } { RESTRICT | CASCADE }
REVOKE { INSERT | UPDATE | REFERENCES } [, ...]1 [(colum [, ...])]
ON obj ect
FROM { PUBLIC | username [, ...] } { RESTRICT | CASCADE }

140

QL Commands

Refer to GRANT for details on individual fields.

REVOKE GRANT OPTION FOR privilege [, ...]
ON obj ect
FROM { PUBLIC | usernane [, ...] } { RESTRICT | CASCADE }

Rescinds authority for a user to grant the specified privilege to others. Refer to GRANT for details
on individual fields.

The possible objects are:

[TABLE] table/view
CHARACTER SET character-set
COLLATION collation
TRANSLATION translation
DOMAIN domain

If userl gives a privilege WITH GRANT OPTION to user2, and user2 gives it to user3 then userl can
revoke this privilege in cascade using the CASCADE keyword.

If userl gives a privilege WITH GRANT OPTION to user2, and user2 gives it to user3, then if userl
tries to revoke this privilege it fails if he specify the RESTRICT keyword.

ROLLBACK

Name

ROLLBACK Aborts the current transaction
Synopsis

ROLLBACK [WORK | TRANSACTI ON]

Inputs

None.

Outputs

ABORT
Message returned if successful.

141

QL Commands

NOTI CE: ROLLBACK: no transaction in progress

If there is not any transaction currently in progress.

Description

ROLLBACK rolls back the current transaction and causes all the updates made by the transaction to be
discarded.

Notes
Use COMMIT to successfully terminate a transaction. ABORT is a synonym for ROLLBACK.

Usage
To abort all changes:

ROLLBACK WORK;

Compatibility

SQL92
SQL92 only specifies the two forms ROLLBACK and ROLLBACK WORK. Otherwise full compatibility.

142

QL Commands

SELECT

Name

SELECT Retrieves rows from a table or view

Synopsis
SELECT [ALL | DISTINCT [ON (expression [, ...]) 11
* | expression [AS output_name] [, ...]
[FROMfromitem|[, ...]]
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[{ UNNON | INTERSECT | EXCEPT [ALL] } select]
[ORDER BY expression [ASC | DESC | USING operator 1 [, ...]]
[FOR UPDATE [OF tablename [, ...]] 1]
[LIMT { count | ALL } [{ OFFSET | , } start]]

where from.itemcan be:

[ONLY] table_nane [*]
[[AS] alias [(colum_alias_list)]]

I
(select)
[AS] alias [(colum_alias_list)]

I
fromitem[NATURAL] join_type fromitem
[ONjoin_condition | USING (join_colum_list)]

Inputs

expr essi on

The name of a table’s column or an expression.

out put _nane

Specifies another name for an output column using the AS clause. This name is primarily used to
label the column for display. It can also be used to refer to the column’s value in ORDER BY and
GROUP BY clauses. But the out put _nan®e cannot be used in the WHERE or HAVING clauses;
write out the expression instead.

fromitem
A table reference, sub-SELECT, or JOIN clause. See below for details.

143

QL Commands

condi tion

A boolean expression giving a result of true or false. See the WHERE and HAVING clause
descriptions below.

sel ect

A select statement with all features except the ORDER BY, FOR UPDATE, and LIMIT clauses
(even those can be used when the select is parenthesized).

FROM items can contain:

t abl e_nane

The name of an existing table or view. If ONLY is specified, only that table is scanned. If ONLY
is not specified, the table and all its descendant tables (if any) are scanned. * can be appended to
the table name to indicate that descendant tables are to be scanned, but as of Postgres 7.1 this is the
default behavior. (In releases before 7.1, ONLY was the default behavior.)

alias

A substitute name for the preceding t abl e_name. An alias is used for brevity or to eliminate
ambiguity for self-joins (where the same table is scanned multiple times). If an alias is written, a
column alias list can also be written to provide substitute names for one or more columns of the
table.

sel ect

A sub-SELECT can appear in the FROM clause. This acts as though its output were created as a
temporary table for the duration of this single SELECT command. Note that the sub-SELECT must
be surrounded by parentheses, and an alias must be provided for it.

join_type
One of [INNER] JOIN, LEFT [OUTER] JOIN, RIGHT [OUTER] JOIN, FULL [
OUTER] JOIN, or CROSS JOIN. For INNER and OUTER join types, exactly one of
NATURAL, ON j oi n_condi tion, or USING (j oi n_col unm_Ii st) must appear. For
CROSS JOIN, none of these items may appear.

join_condition

A qualification condition. This is similar to the WHERE condition except that it only applies to the
two from_items being joined in this JOIN clause.

join_colum_li st

A USING column list (a, b, ...) is shorthand for the ON condition left_table.a = right _table.a
AND left_table.b = right_table.b ...

144

QL Commands

Outputs

Rows

The complete set of rows resulting from the query specification.

count

The count of rows returned by the query.

Description

SELECT will return rows from one or more tables. Candidates for selection are rows which satisfy the
WHERE condition; if WHERE is omitted, all rows are candidates. (See WHERE Clause.)

Actually, the returned rows are not directly the rows produced by the FROM/WHERE/GROUP
BY/HAVING clauses; rather, the output rows are formed by computing the SELECT output expressions
for each selected row. * can be written in the output list as a shorthand for all the columns of the
selected rows. Also, one can write t abl e_name.* as a shorthand for the columns coming from just
that table.

DISTINCT will eliminate duplicate rows from the result. ALL (the default) will return all candidate
rows, including duplicates.

DISTINCT ON eliminates rows that match on all the specified expressions, keeping only the first row
of each set of duplicates. The DISTINCT ON expressions are interpreted using the same rules as for
ORDER BY items; see below. Note that "the first row" of each set is unpredictable unless ORDER BY
is used to ensure that the desired row appears first. For example,

SELECT DI STINCT ON (location) |ocation, time, report
FROM weat her Reports
ORDER BY | ocation, tine DESC,

retrieves the most recent weather report for each location. But if we had not used ORDER BY to force
descending order of time values for each location, we’d have gotten a report of unpredictable age for
each location.

The GROUP BY clause allows a user to divide a table into groups of rows that match on one or more
values. (See GROUP BY Clause.)

The HAVING clause allows selection of only those groups of rows meeting the specified condition.
(See HAVING Clause.)

The ORDER BY clause causes the returned rows to be sorted in a specified order. If ORDER BY is not
given, the rows are returned in whatever order the system finds cheapest to produce. (See ORDER BY
Clause)

SELECT queries can be combined using UNION, INTERSECT, and EXCEPT operators. Use
parentheses if necessary to determine the ordering of these operators.

145

QL Commands

The UNION operator computes the collection of rows returned by the queries involved. Duplicate rows
are eliminated unless ALL is specified. (See UNION Clause.)

The INTERSECT operator computes the rows that are common to both queries. Duplicate rows are
eliminated unless ALL is specified. (See INTERSECT Clause.)

The EXCEPT operator computes the rows returned by the first query but not the second query.
Duplicate rows are eliminated unless ALL is specified. (See EXCEPT Clause.)

The FOR UPDATE clause allows the SELECT statement to perform exclusive locking of selected
rows.

The LIMIT clause allows a subset of the rows produced by the query to be returned to the user. (See
LIMIT Clause)

You must have SELECT privilege to a table to read its values (See the GRANT/REVOKE
statements).

FROM Clause

The FROM clause specifies one or more source tables for the SELECT. If multiple sources are
specified, the result is conceptually the Cartesian product of all the rows in all the sources --- but usually
qualification conditions are added to restrict the returned rows to a small subset of the Cartesian product.

When a FROM item is a simple table name, it implicitly includes rows from sub-tables (inheritance
children) of the table. ONLY will suppress rows from sub-tables of the table. Before Postgres 7.1, this
was the default result, and adding sub-tables was done by appending * to the table name. This old
behaviour is available via the command SET SQL _Inheritance TO OFF;

A FROM item can also be a parenthesized sub-SELECT (note that an alias clause is required for a
sub-SELECT!). This is an extremely handy feature since it’s the only way to get multiple levels of
grouping, aggregation, or sorting in a single query.

Finally, a FROM item can be a JOIN clause, which combines two simpler FROM items. (Use
parentheses if necessary to determine the order of nesting.)

A CROSS JOIN or INNER JOIN is a simple Cartesian product, the same as you get from listing the two
items at the top level of FROM. CROSS JOIN is equivalent to INNER JOIN ON (TRUE), that is, no
rows are removed by qualification. These join types are just a notational convenience, since they do
nothing you couldn’t do with plain FROM and WHERE.

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined rows that
pass its ON condition), plus one copy of each row in the left-hand table for which there was no
right-hand row that passed the ON condition. This left-hand row is extended to the full width of the
joined table by inserting NULLs for the right-hand columns. Note that only the JOIN’s own ON or
USING condition is considered while deciding which rows have matches. Outer ON or WHERE
conditions are applied afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each unmatched
right-hand row (extended with nulls on the left). This is just a notational convenience, since you could
convert it to a LEFT OUTER JOIN by switching the left and right inputs.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand row
(extended with nulls on the right), plus one row for each unmatched right-hand row (extended with nulls
on the left).

146

QL Commands

For all the JOIN types except CROSS JOIN, you must write exactly one of ON j oi n_condi ti on,

USING (join_colum_list), or NATURAL. ON is the most general case: you can write any
qualification expression involving the two tables to be joined. A USING column list (a, b, ...) is
shorthand for the ON condition left_table.a = right_table.a AND left_table.b = right_table.b ... Also,
USING implies that only one of each pair of equivalent columns will be included in the JOIN output,
not both. NATURAL is shorthand for a USING list that mentions all similarly-named columns in the
tables.

WHERE Clause

The optional WHERE condition has the general form:

VWHERE bool ean_expr

bool ean_expr can consist of any expression which evaluates to a boolean value. In many cases, this
expression will be:

expr cond_op expr

or

| og_op expr

where cond_op can be one of: =, <, <=, >, >= or <>, a conditional operator like ALL, ANY, IN,
LIKE, or a locally defined operator, and | og_op can be one of: AND, OR, NOT. SELECT will ignore
all rows for which the WHERE condition does not return TRUE.

GROUP BY Clause
GROUP BY specifies a grouped table derived by the application of this clause:

GROUP BY expression [, ...]

GROUP BY will condense into a single row all selected rows that share the same values for the
grouped columns. Aggregate functions, if any, are computed across all rows making up each group,
producing a separate value for each group (whereas without GROUP BY, an aggregate produces a single
value computed across all the selected rows). When GROUP BY is present, it is not valid for the
SELECT output expression(s) to refer to ungrouped columns except within aggregate functions, since
there would be more than one possible value to return for an ungrouped column.

A GROUP BY item can be an input column name, or the name or ordinal number of an output column
(SELECT expression), or it can be an arbitrary expression formed from input-column values. In case of
ambiguity, a GROUP BY name will be interpreted as an input-column name rather than an output
column name.

147

QL Commands

HAVING Clause
The optional HAVING condition has the general form:

HAVI NG bool ean_expr

where bool ean_expr is the same as specified for the WHERE clause.

HAVING specifies a grouped table derived by the elimination of group rows that do not satisfy the
bool ean_expr. HAVING is different from WHERE: WHERE filters individual rows before
application of GROUP BY, while HAVING filters group rows created by GROUP BY.

Each column referenced in bool ean_expr shall unambiguously reference a grouping column, unless
the reference appears within an aggregate function.

ORDER BY Clause

ORDER BY expression [ASC| DESC | USING operator] [, ...]

An ORDER BY item can be the name or ordinal number of an output column (SELECT expression), or
it can be an arbitrary expression formed from input-column values. In case of ambiguity, an ORDER BY
name will be interpreted as an output-column name.

The ordinal number refers to the ordinal (left-to-right) position of the result column. This feature makes
it possible to define an ordering on the basis of a column that does not have a proper name. This is never
absolutely necessary because it is always possible to assign a name to a result column using the AS
clause, e.g.:

SELECT title, date_prod + 1 AS new en FROM fil ns ORDER BY new en;

It is also possible to ORDER BY arbitrary expressions (an extension to SQL92), including fields that do
not appear in the SELECT result list. Thus the following statement is legal:

SELECT nanme FROM di stributors ORDER BY code;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION,
INTERSECT, or EXCEPT query may only specify an output column name or number, not an
expression.

Note that if an ORDER BY item is a simple name that matches both a result column name and an input
column name, ORDER BY will interpret it as the result column name. This is the opposite of the choice
that GROUP BY will make in the same situation. This inconsistency is mandated by the SQL92
standard.

Optionally one may add the keyword DESC (descending) or ASC (ascending) after each column name
in the ORDER BY clause. If not specified, ASC is assumed by default. Alternatively, a specific ordering
operator name may be specified. ASC is equivalent to USING < and DESC is equivalent to USING >.

148

QL Commands

UNION Clause

table_query UNTFON [ALL] table_query
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[LIMT { count | ALL } [{ OFFSET | , } start]]

where t abl e_query specifies any select expression without an ORDER BY, FOR UPDATE, or
LIMIT clause. (ORDER BY and LIMIT can be attached to a sub-expression if it is enclosed in
parentheses. Without parentheses, these clauses will be taken to apply to the result of the UNION, not to
its right-hand input expression.)

The UNION operator computes the collection (set union) of the rows returned by the queries involved.
The two SELECTS that represent the direct operands of the UNION must produce the same number of
columns, and corresponding columns must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is specified. ALL
prevents elimination of duplicates.

Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise
indicated by parentheses.

Currently, FOR UPDATE may not be specified either for a UNION result or for the inputs of a
UNION.

INTERSECT Clause

tabl e_query INTERSECT [ALL] table_query
[ORDER BY expression [ASC | DESC | USING operator 1 [, ...]]
[LIMT { count | ALL } [{ OFFSET | , } start]]

where t abl e_query specifies any select expression without an ORDER BY, FOR UPDATE, or
LIMIT clause.

INTERSECT is similar to UNION, except that it produces only rows that appear in both query outputs,
rather than rows that appear in either.

The result of INTERSECT does not contain any duplicate rows unless the ALL option is specified.
With ALL, a row that has m duplicates in L and n duplicates in R will appear min(m,n) times.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless
parentheses dictate otherwise. INTERSECT binds more tightly than UNION --- that is, A UNION B
INTERSECT C will be read as A UNION (B INTERSECT C) unless otherwise specified by
parentheses.

149

QL Commands

EXCEPT Clause

tabl e_query EXCEPT [ALL] table_query
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[LIMT { count | ALL } [{ OFFSET | , } start]]

where t abl e_query specifies any select expression without an ORDER BY, FOR UPDATE, or
LIMIT clause.

EXCEPT is similar to UNION, except that it produces only rows that appear in the left query’s output
but not in the right query’s output.

The result of EXCEPT does not contain any duplicate rows unless the ALL option is specified. With
ALL, a row that has m duplicates in L and n duplicates in R will appear max(m-n,0) times.

Multiple EXCEPT operators in the same SELECT statement are evaluated left to right, unless
parentheses dictate otherwise. EXCEPT binds at the same level as UNION.

LIMIT Clause

LIMT { count | ALL } [{ OFFSET | , } start]
OFFSET start

where count specifies the maximum number of rows to return, and st art specifies the number of
rows to skip before starting to return rows.

LIMIT allows you to retrieve just a portion of the rows that are generated by the rest of the query. If a
limit count is given, no more than that many rows will be returned. If an offset is given, that many rows
will be skipped before starting to return rows.

When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows---you may be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? You don’t know
what ordering, unless you specified ORDER BY.

As of Postgres 7.0, the query optimizer takes LIMIT into account when generating a query plan, so you
are very likely to get different plans (yielding different row orders) depending on what you give for
LIMIT and OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query
result will give inconsistent results unless you enforce a predictable result ordering with ORDER BY.
This is not a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the
results of a query in any particular order unless ORDER BY is used to constrain the order.

150

QL Commands

Usage
To join the table f i | ms with the table di stri butors:

SELECT f.title, f.did, d.nane, f.date_prod, f.kind
FROM di stributors d, films f
VWHERE f.did = d.did

title | did | nane | date_prod | kind
--------------------------- T T Ty
The Third Man | 101 | British Lion | 1949-12-23 | Dranm
The African Queen | 101 | British Lion | 1951-08-11 | Romantic
Une Femme est une Feme | 102 | Jean Luc Godard | 1961-03-12 | Romantic
Vertigo | 103 | Paranount | 1958-11-14 | Action
Becket | 103 | Paranount | 1964-02-03 | Dranm
48 Hrs | 103 | Paranount | 1982-10-22 | Action
War and Peace | 104 | Mosfilm | 1967-02-12 | Dranma
West Side Story | 105 | United Artists | 1961-01-03 | Musi cal
Bananas | 105 | United Artists | 1971-07-13 | Conedy
Yoj i nho | 106 | Toho | 1961-06-16 | Dranmm
There’s a Grl in ny Soup | 107 | Col unbia | 1970-06-11 | Conedy
Taxi Driver | 107 | Col unbia | 1975-05-15 | Action
Absence of Malice | 107 | Col unbia | 1981-11-15 | Action
Storia di una donna | 108 | Westward | 1970-08-15 | Romantic
The King and | | 109 | 20th Century Fox | 1956-08-11 | Musi cal
Das Boot | 110 | Bavaria Atelier | 1981-11-11 | Dranm
Bed Knobs and Broonsticks | 111 | Walt Di sney | | Musi cal
(17 rows)

To sum the column | en of all films and group the results by ki nd:

SELECT kind, SUMIen) AS total FROMfilns GROUP BY ki nd;

ki nd | total

__________ .

Acti on | 07:34

Conedy | 02:58

Dr ama | 14:28

Musi cal | 06:42

Romantic | 04:38
(5 rows)

To sum the column | en of all films, group the results by ki nd and show those group totals that are less

151

than 5 hours:

SELECT ki nd, SUM I en) AS total

FROM fi | ms
GROUP BY ki nd

HAVI NG SUM | en) < INTERVAL '5 hour’;

ki nd | total
__________ o=
Conedy | 02:58
Romantic | 04:38
(2 rows)

QL Commands

The following two examples are identical ways of sorting the individual results according to the

contents of the second column (nane):

SELECT *

SELECT *

did | nane

_____ e e e e e e e e - =
109 | 20th Century Fox
110 | Bavaria Atelier
101 | British Lion
107 | Col unbi a

102 | Jean Luc Godard
113 | Luso filns

104 | Mosfilm

103 | Paranount

106 | Toho

105 | United Artists
111 | walt Disney

112 | Warner Bros.

108 | Westward

(13 rows)

FROM di stri but ors ORDER BY nane;
FROM di stri butors ORDER BY 2;

This example shows how to obtain the union of the tables di st ri but or s and act or s, restricting the
results to those that begin with letter W in each table. Only distinct rows are wanted, so the ALL
keyword is omitted:

distributors:

did | name
_____ e
108 | Westward
111 | walt Disney
112 | Warner Bros.

Woody Al l en
Warren Beatty

152

QL Commands

SELECT di stri butors. nanme

FROM distributors

WHERE distributors. name LI KE ' Wh
UNI ON
SELECT actors. nane

FROM actors

WHERE actors. nane LIKE W%

Wal't Di sney
Wal ter Matthau
War ner Bros.
VWArren Beatty
West war d

Woody All en

Compatibility

Extensions

Postgres allows one to omit the FROM clause from a query. This feature was retained from the original
PostQuel query language. It has a straightforward use to compute the results of simple constant
expressions:

SELECT 2+2;

Some other DBMSes cannot do this except by introducing a dummy one-row table to do the select from.
A less obvious use is to abbreviate a normal select from one or more tables:

SELECT distributors.* WHERE nane = 'Westward’ ;
did | nane
108 | Westward

This works because an implicit FROM item is added for each table that is referenced in the query but
not mentioned in FROM. While this is a convenient shorthand, it’s easy to misuse. For example, the

query

SELECT distributors.* FROM di stributors d;

153

QL Commands

is probably a mistake; most likely the user meant

SELECT d.* FROM di stri butors d;

rather than the unconstrained join

SELECT distributors.* FROM distributors d, distributors distributors;

that he will actually get. To help detect this sort of mistake, Postgres 7.1 and later will warn if the
implicit-FROM feature is used in a query that also contains an explicit FROM clause.

SQL92

SELECT Clause

In the SQL92 standard, the optional keyword "AS" is just noise and can be omitted without affecting
the meaning. The Postgres parser requires this keyword when renaming output columns because the type
extensibility features lead to parsing ambiguities in this context. "AS" is optional in FROM items,
however.

The DISTINCT ON phrase is not part of SQL92. Nor are LIMIT and OFFSET.

In SQL92, an ORDER BY clause may only use result column names or numbers, while a GROUP BY
clause may only use input column names. Postgres extends each of these clauses to allow the other
choice as well (but it uses the standard’s interpretation if there is ambiguity). Postgres also allows both
clauses to specify arbitrary expressions. Note that names appearing in an expression will always be
taken as input-column names, not as result-column names.

UNION/INTERSECT/EXCEPT Clause

The SQL92 syntax for UNION/INTERSECT/EXCEPT allows an additional CORRESPONDING BY
option:

tabl e_query UNI ON [ALL]
[CORRESPONDI NG [BY (colum [,...])]]
tabl e_query

The CORRESPONDING BY clause is not supported by Postgres.

154

QL Commands

SELECT INTO

Name

SELECT | NTO Creates a new table from the results of a SELECT

Synopsis
SELECT [ALL | DISTINCT [ON (expression [, ...]) 11
* | expression [AS output_name] [, ...]
INTO[TEMPORARY | TEMP] [TABLE] new_table
[FROMfromitem[, ...]]
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[{ UNNON | INTERSECT | EXCEPT [ALL] } select]
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[FOR UPDATE [OF tablename [, ...]] 1]
[

LIMT { count | ALL } [{ OFFSET | , } start]]

where from.item can be:

[ONLY] table_nane [*]
[[AS] alias [(colum_alias_list)]]

I
(select)
[AS] alias [(colum_alias_list)]

I
fromitem[NATURAL | join_type fromitem
[ONjoin_condition | USING (join_colum_list)]

Inputs

TEMPORARY
TEMP

If TEMPORARY or TEMP is specified, the output table is created only within this session, and is
automatically dropped on session exit. Existing permanent tables with the same name are not
visible (in this session) while the temporary table exists. Any indexes created on a temporary table
are automatically temporary as well.

new_t abl e

The name of the new table to be created. This table must not already exist. However, a temporary
table can be created that has the same name as an existing permanent table.

All other inputs are described in detail for SELECT.

155

SET

QL Commands

Outputs
Refer to CREATE TABLE and SELECT for a summary of possible output messages.

Description

SELECT INTO creates a new table and fills it with data computed by a query. The data is not returned
to the client, as it is with a normal SELECT. The new table’s columns have the names and datatypes
associated with the output columns of the SELECT.

Note: CREATE TABLE AS is functionally equivalent to SELECT INTO. CREATE TABLE AS is the
recommended syntax, since SELECT INTO is not standard. In fact, this form of SELECT INTO is
not available in PL/pgSQL or ecpg, because they interpret the INTO clause differently.

Compatibility

SQL92 uses SELECT ... INTO to represent selecting values into scalar variables of a host program,
rather than creating a new table. This indeed is the usage found in PL/pgSQL and ecpg. The Postgres
usage of SELECT INTO to represent table creation is historical. It’s best to use CREATE TABLE AS
for this purpose in new code. (CREATE TABLE AS isn’t standard either, but it’s less likely to cause
confusion.)

Name

SET Set run-time parameters

Synopsis
SET variable { TO| =} { value | ’'value' | DEFAULT }
SET TIME ZONE { 'tinezone’ | LOCAL | DEFAULT }

Inputs

vari abl e

A settable run-time parameter.

val ue

New value of parameter. DEFAULT can be used to specify resetting the parameter to its default
value. Lists of strings are allowed, but more complex constructs may need to be single or double
quoted.

156

QL Commands

Description

The SET command changes run-time configuration parameters. The following parameters can be
altered:

CLIENT_ENCODING
NAMES
Sets the multibyte client encoding. The specified encoding must be supported by the backend.

This option is only available if Postgres is build with multibyte support.

DATESTYLE

Choose the date/time representation style. Two separate settings are made: the default date/time
output and the interpretation of ambiguous input.

The following are date/time output styles:

ISO
Use ISO 8601-style dates and times (YYYY- MMt DD HH: MM SS). This is the default.

SQL

Use Oracle/Ingres-style dates and times. Note that this style has nothing to do with SQL
(which mandates ISO 8601 style), the naming of this option is a historical accident.

Postgres

Use traditional Postgres format.

German

Use dd. nm yyyy for numeric date representations.

The following two options determine both a substyle of the SQL and Postgres output formats and
the preferred interpretation of ambiguous date input.

European

Use dd/ mm yyyy for numeric date representations.

NonEuropean
us

Use n dd/ yyyy for numeric date representations.

A value for SET DATESTYLE can be one from the first list (output styles), or one from the
second list (substyles), or one from each separated by a comma.

157

QL Commands

Date format initialization may be done by:

Setting the PGDATESTYLE environment variable. If PGDATESTYLE is set in the frontend

environment of a client based on libpq, libpg will automatically set DATESTYLE to the value of
PGDATESTYLE during connection start-up.

Running postmaster using the option - o - e to set dates to the Eur opean convention.

The Dat eSt yl e option is really only intended for porting applications. To format your date/time
values to choice, use the t o_char family of functions.

SEED

Sets the internal seed for the random number generator.

val ue

The value for the seed to be used by the r andomfunction. Allowed values are floating point
numbers between 0 and 1, which are then multiplied by 2731-1. This product will silently
overflow if a number outside the range is used.

The seed can also be set by invoking the set seed SQL function:
SELECT set seed(val ue);

SERVER_ENCODING
Sets the multibyte server encoding.
This option is only available if Postgres was built with multibyte support.

TIME ZONE
TIMEZONE

The possible values for time zone depends on your operating system. For example, on Linux
/ usr/ shar e/ zonei nf o contains the database of time zones.

Here are some valid values for time zone:

PST8PDT

Set the time zone for California.

Portugal

Set time zone for Portugal.

’Europe/Rome’

Set time zone for Italy.

158

QL Commands

LOCAL
DEFAULT

Set the time zone to your local time zone (the one that your operating system defaults to).

If an invalid time zone is specified, the time zone becomes GMT (on most systems anyway).

If the PGTZ environment variable is set in the frontend environment of a client based on libpq,
libpg will automatically set TIMEZONE to the value of PGTZ during connection start-up.

An extended list of other run-time parameters can be found in the Administrator’s Guide.

Use SHOW to show the current setting of a parameters.

Diagnostics

SET VARI ABLE
Message returned if successful.

ERROR not a valid option nane: nane

The parameter you tried to set does not exist.

ERROR: permni ssion denied
You must be a superuser to have access to certain settings.

ERROR nanme can only be set at start-up

Some parameters are fixed once the server is started.

Examples

Set the style of date to traditional Postgres with European conventions:
SET DATESTYLE TO Post gr es, Eur opean;

Set the time zone for Berkeley, California, using double quotes to preserve the uppercase attributes of
the time zone specifier (note that the date/time format is ISO here):

SET TI ME ZONE " PST8PDT";
SELECT CURRENT_TI MESTAMP AS t oday;

1998-03-31 07:41:21-08

159

QL Commands

Set the time zone for Italy (note the required single or double quotes to handle the special characters):

SET TI ME ZONE '’ Eur ope/ Rone’ ;
SELECT CURRENT_TI MESTAMP AS t oday;

1998-03-31 17:41:31+02

Compatibility

SQL92

The second syntax shown above (SET TI ME ZONE) attempts to mimic SQL92. However, SQL allows
only numeric time zone offsets. All other parameter settings as well as the first syntax shown above are
a Postgres extension.

SET CONSTRAINTS

Name

SET CONSTRAI NTS Set the constraint mode of the current SQL-transaction

Synopsis

SET CONSTRAINTS { ALL | constraint [, ...] } { DEFERRED | | MVEDI ATE }

Description

SET CONSTRAINTS sets the behavior of constraint evaluation in the current transaction. In
| MVEDI ATE mode, constraints are checked at the end of each statement. In DEFERRED mode, constraints
are not checked until transaction commit.

Upon creation, a constraint is always give one of three characteristics: | NI TI ALLY DEFERRED,
I NI TIALLY | MVEDI ATE DEFERRABLE, or I NI TIALLY | MVEDI ATE NOT DEFERRABLE. The third
class is not affected by the SET CONSTRAINTS command.

Currently, only foreign key constraints are affected by this setting. Check and unique constraints are
always effectively initially immediate not deferrable.

Compatibility

SQL92, SQL99
SET CONSTRAINT is defined in SQL92 and SQL99.

160

QL Commands

SET TRANSACTION

Name

SET TRANSACTI ON Set the characteristics of the current SQL-transaction

Synopsis

SET TRANSACTI ON | SOLATI ON LEVEL { READ COW TTED | SERI ALl ZABLE }
SET SESSI ON CHARACTERI STI CS AS TRANSACTI ON | SOLATI ON LEVEL { READ COW TTED |
SERI AL| ZABLE }

Description

This command sets the transaction isolation level. The SET TRANSACTION command sets the
characteristics for the current SQL-transaction. It has no effect on any subsequent transactions. This
command cannot be used after the first DML statement (SELECT, INSERT, DELETE, UPDATE,
FETCH, COPY) of a transaction has been executed. SET SESSION CHARACTERISTICS sets the
default transaction isolation level for each transaction for a session. SET TRANSACTION can override
it for an individual transaction.

The isolation level of a transaction determines what data the transaction can see when other transactions
are running concurrently.
READ COMMITTED

A statement can only see rows committed before it began. This is the default.

SERIALIZABLE
The current transaction can only see rows committed before first DML statement was executed in
this transaction.

Tip: Intuitively, serializable means that two concurrent transactions will leave the database in
the same state as if the two has been executed strictly after one another in either order.

Compatibility

SQL92, SQL99

SERIALIZABLE is the default level in SQL. Postgres does not provide the isolation levels READ
UNCOWM TTED and REPEATABLE READ. Because of multi-version concurrency control, the serializable
level is not truly serializable. See the User’s Guide for details.

In SQL there are two other transaction characteristics that can be set with these commands: whether the
transaction is read-only and the size of the diagnostics area. Neither of these concepts are supported in
Postgres.

161

QL Commands

SHOW

Name

SHOW Shows run-time parameters

Synopsis

SHOW nane

Inputs

nanme

The name of a run-time parameter. See SET for a list.

Description

SHOW will display the current setting of a run-time parameter. These variables can be set using the
SET statement or are determined at server start.

Diagnostics

ERROR. not a valid option nane: nane

Message returned if var i abl e does not stand for an existing parameter.

ERROR: perm ssion denied

You must be a superuser to be allowed to see certain settings.

NOTI CE: Tinme zone is unknown

If the TZ or PGTZ environment variable is not set.

Examples
Show the current Dat eSt yl e setting:

SHOW Dat eSt yl e;
NOTI CE: DateStyle is 1SOw th US (NonEuropean) conventions

162

QL Commands

Show the current genetic optimizer (geqo) setting:

SHOW GEQO,
NOTI CE: geqo = true

Compatibility

The SHOW command is a Postgres extension.

TRUNCATE

Name

TRUNCATE Empty atable
Synopsis

TRUNCATE [TABLE] nane

Inputs

nanme

The name of the table to be truncated.

Outputs

TRUNCATE

Message returned if the table is successfully truncated.

Description

TRUNCATE quickly removes all rows from a table. It has the same effect as an unqualified DELETE
but since it does not actually scan the table it is faster. This is most effective on large tables.

Usage
Truncate the table bi gt abl e:

TRUNCATE TABLE bi gt abl e;

163

QL Commands

Compatibility

SQL92
There isno TRUNCATE in SQL92.

UNLISTEN

Name

UNLI STEN Stop listening for notification

Synopsis

UNLI STEN { notifynarme | * }

Inputs

noti f ynanme

Name of previously registered notify condition.

All current listen registrations for this backend are cleared.

Outputs

UNLI STEN

Acknowledgment that statement has executed.

Description

UNLISTEN is used to remove an existing NOTIFY registration. UNLISTEN cancels any existing
registration of the current Postgres session as a listener on the notify condition not i f yname. The
special condition wildcard "*" cancels all listener registrations for the current session.

NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

164

QL Commands

Notes

not i f ynane need not be a valid class name but can be any string valid as a name up to 32 characters
long.

The backend does not complain if you UNLISTEN something you were not listening for. Each backend
will automatically execute UNLISTEN * when exiting.

Usage

To subscribe to an existing registration:

LI STEN virtual ;

LI STEN

NOTI FY virtual;

NOTI FY

Asynchronous NOTIFY 'virtual’ from backend with pid ’'8448" received

Once UNLISTEN has been executed, further NOTIFY commands will be ignored:

UNLI STEN vi rtual ;

UNLI STEN

NOTI FY virtual ;

NOTI FY

-- notice no NOTIFY event is received

Compatibility

SQL92
There isno UNLISTEN in SQL92.

165

QL Commands

UPDATE

Name

UPDATE Replaces values of columns in a table

Synopsis
UPDATE [ONLY] table SET col = expression [, ...]

[FROM fromist]
[WHERE condition]

Inputs

tabl e

The name of an existing table.

col umm

The name of acolumnint abl e.

expr essi on

A valid expression or value to assign to column.

fromi st

A Postgres non-standard extension to allow columns from other tables to appear in the WHERE
condition.

condi tion
Refer to the SELECT statement for a further description of the WHERE clause.

Outputs

UPDATE #

Message returned if successful. The # means the number of rows updated. If # is 0 no rows are
updated.

166

QL Commands

Description

UPDATE changes the values of the columns specified for all rows which satisfy condition. Only the
columns to be modified need appear as columns in the statement.

Aurray references use the same syntax found in SELECT. That is, either single array elements, a range of
array elements or the entire array may be replaced with a single query.

You must have write access to the table in order to modify it, as well as read access to any table whose
values are mentioned in the WHERE condition.

By default UPDATE will update tuples in the table specified and all its sub-tables. If you wish to only
update the specific table mentioned, you should use the ONLY clause.

Usage
Change word "Drama" with "Dramatic" on column kind:

UPDATE fil ns

SET kind = 'Dramatic’

WHERE kind = ’'Drang’;

SELECT *

FROM fil s

WHERE kind = "Dramatic’ OR kind = 'Drana’;

code | title | did | date_prod | ki nd | len
------- e T e
BL101 | The Third Man | 101 | 1949-12-23 | Dramatic | 01:44
P_302 | Becket | 103 | 1964-02-03 | Dramatic | 02:28
M 401 | War and Peace | 104 | 1967-02-12 | Dramatic | 05:57
T_601 | Yojinbo | 106 | 1961-06-16 | Dramatic | 01:50
DA101 | Das Boot | 110 | 1981-11-11 | Dramatic | 02:29
Compatibility

SQL92

SQL92 defines a different syntax for the positioned UPDATE statement:
UPDATE t abl e SET columm = expression [, ...]
WHERE CURRENT OF cursor

where cur sor identifies an open cursor.

167

QL Commands

VACUUM

Name

VACUUM Clean and analyze a Postgres database

Synopsis

VACUUM [VERBOSE | [ANALYZE] [table]
VACUUM [VERBOSE | ANALYZE [table [(colum [, ...1)] 1]

Inputs

VERBOSE

Prints a detailed vacuum activity report for each table.

ANALYZE
Updates column statistics used by the optimizer to determine the most efficient way to execute a
query.

tabl e

The name of a specific table to vacuum. Defaults to all tables.

col umm

The name of a specific column to analyze. Defaults to all columns.

Outputs

VACUUM

The command has been accepted and the database is being cleaned.

NOTI CE: --Rel ation table--
The report header for t abl e.
NOTI CE: Pages 98: Changed 25, Reapped 74, Enpty 0, New O0; Tup 1000: Vac 3000,

Crash 0, UnUsed 0O, MnLen 188, MaxLen 188; Re-using: Free/Avail. Space
586952/ 586952; EndEnpty/Avail. Pages 0/74. Elapsed 0/0 sec.

The analysis for t abl e itself.

168

QL Commands

NOTI CE: | ndex index: Pages 28; Tuples 1000: Deleted 3000. El apsed 0/0 sec.

The analysis for an index on the target table.

Description

VACUUM serves two purposes in Postgres as both a means to reclaim storage and also a means to
collect information for the optimizer.

VACUUM opens every table in the database, cleans out records from rolled back transactions, and
updates statistics in the system catalogs. The statistics maintained include the number of tuples and
number of pages stored in all tables.

VACUUM ANALY ZE collects statistics representing the dispersion of the data in each column. This
information is valuable when several query execution paths are possible.

Running VACUUM periodically will increase the speed of the database in processing user queries.

Notes
The open database is the target for VACUUM.

We recommend that active production databases be VACUUM -ed nightly, in order to remove expired
rows. After copying a large table into Postgres or after deleting a large number of records, it may be a
good idea to issue a VACUUM ANALY ZE query. This will update the system catalogs with the results
of all recent changes, and allow the Postgres query optimizer to make better choices in planning user
queries.

Usage
The following is partial example from running VACUUM on a table in the regression database:

regressi on=> vacuum ver bose anal yze onek;
NOTI CE: --Rel ati on onek- -
NOTI CE: Pages 98: Changed 25, Reapped 74, Enpty O, New O;
Tup 1000: Vac 3000, Crash 0, UnUsed 0, MnLen 188, MaxLen 188;
Re-using: Free/Avail. Space 586952/586952; EndEnpty/Avail. Pages
0/ 74.
El apsed 0/0 sec.
NOTI CE: I ndex onek_stringul: Pages 28; Tuples 1000: Deleted 3000. El apsed
0/ 0 sec.
VACUUM

Compatibility

SQL92
There is no VACUUM statement in SQL92.

169

Il. PostgreSQL Client Applications

This is reference information for Postgres client applications and utilities.

createdb

Name

creat edb Create a new Postgres database
Synopsis
createdb [opt i ons...] [dbname] [descri pti on]

Inputs

-h, --host host
Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.
-p, --port por t
Specifies the Internet TCP/IP port or the local Unix domain socket file extension on which the
postmaster is listening for connections.
-U, --username user nane

Username to connect as.

-W, --password

Force password prompt.

-e, --echo

Echo the queries that createdb generates and sends to the backend.

-q, --quiet

Do not display a response.

-D, --location dat adi r

Specifies the alternative location for the database. See also initlocation.

-T, --template t enpl at e

Specifies the template database from which to build this database.

-E, --encoding encodi ng

Specifies the character encoding scheme to be used in this database.

171

PostgreSQL Client Applications

dbnane

Specifies the name of the database to be created. The name must be unique among all Postgres
databases in this installation. The default is to create a database with the same name as the current
system user.

description
This optionally specifies a comment to be associated with the newly created database.

The options - h, -p, - U, -W and - e are passed on literally to psgl. The options - D, - T, and - E are
converted into options for the underlying SQL command CREATE DATABASE; see there for more
information about them.

Outputs

CREATE DATABASE

The database was successfully created.

creat edb: Database creation fail ed.

(Saysitall.)

createdb: Comment creation failed. (Database was created.)

The comment/description for the database could not be created. The database itself will have been
created already. You can use the SQL command COMMENT ON DATABASE to create the
comment later on.

If there is an error condition, the backend error message will be displayed. See CREATE DATABASE
and psql for possibilities.

Description

createdb creates a new Postgres database. The user who executes this command becomes the database
owner.

createdb is a shell script wrapper around the SQL command CREATE DATABASE via the Postgres
interactive terminal psql. Thus, there is nothing special about creating databases via this or other
methods. This means that the psgl program must be found by the script and that a database server must
be running at the targeted port. Also, any default settings and environment variables available to psql
and the libpg front-end library will apply.

Usage

To create the database deno using the default database server:

$ createdb deno

CREATE DATABASE

The response is the same as you would have gotten from running the CREATE DATABASE SQL
command.

172

PostgreSQL Client Applications

To create the database deno using the postmaster on host eden, port 5000, using the LATI N1 encoding
scheme with a look at the underlying query:

$ createdb -p 5000 -h eden -E LATINL -e denp

CREATE DATABASE "denp” W TH ENCODI NG = ' LATI N1’

CREATE DATABASE

createuser

Name

creat euser Create a new Postgres user

Synopsis
createuser [opt i ons...] [user nane]

Inputs

-h, --host host

Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-p, --port por t

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.

-e, --echo

Echo the queries that createdb generates and sends to the backend.

-, --quiet

Do not display a response.

-d, --createdb

Allows the new user to create databases.

-D, --no-createdb

Forbids the new user to create databases.

-a, --adduser

Allows the new user to create other users.

-A, --no-adduser

Forbids the new user to create other users.

173

PostgreSQL Client Applications

-P, --pwprompt
If given, createuser will issue a prompt for the password of the new user. This is not necessary if
you do not plan on using password authentication.
-i, --sysid ui d
Allows you to pick a non-default user id for the new user. This is not necessary, but some people
like it.
user nane

Specifies the name of the Postgres user to be created. This name must be unique among all
Postgres users.

You will be prompted for a name and other missing information if it is not specified on the command
line.

The options - h, - p, and - e, are passed on literally to psql. The psql options - U and - Ware available as
well, but their use can be confusing in this context.

Outputs

CREATE USER

All is well.

createuser: creation of user "usernane" failed
Something went wrong. The user was not created.

If there is an error condition, the backend error message will be displayed. See CREATE USER and psql
for possibilities.

Description

createuser creates a new Postgres user. Only users with usesuper set in the pg_shadow table can
create new Postgres users.

createuser is a shell script wrapper around the SQL command CREATE USER via the Postgres
interactive terminal psql. Thus, there is nothing special about creating users via this or other methods.
This means that the psql must be found by the script and that a database server is running at the targeted
host. Also, any default settings and environment variables available to psgl and the libpg front-end
library do apply.

Usage

To create a user j oe on the default database server:

$ createuser joe

Is the new user allowed to create databases? (y/n) n

Shal | the new user be allowed to create nore new users? (y/n) n
CREATE USER

174

PostgreSQL Client Applications

To create the same user j oe using the postmaster on host eden, port 5000, avoiding the prompts and
taking a look at the underlying query:

$ createuser -p 5000 -h eden -D -A -e joe

CREATE USER "j oe" NOCREATEDB NOCREATEUSER

CREATE USER

dropdb

Name

dr opdb Remove an existing Postgres database

Synopsis
dropdb [opt i ons...] dbnane

Inputs

-h, --host host
Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.
-p, --port por t
Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.
-U, --username user name

Username to connect as.

-W, --password

Force password prompt.

-e, --echo

Echo the queries that dropdb generates and sends to the backend.

-, --quiet

Do not display a response.

-i, --interactive

Issues a verification prompt before doing anything destructive.

175

PostgreSQL Client Applications

dbnane

Specifies the name of the database to be removed. The database must be one of the existing
Postgres databases in this installation.

The options - h, - p, - U, - Wand - e are passed on literally to psql.

Outputs

DROP DATABASE

The database was successfully removed.

dropdb: Dat abase renoval fail ed.
Something didn’t work out.

If there is an error condition, the backend error message will be displayed. See DROP DATABASE and
psql for possibilities.

Description

dropdb destroys an existing Postgres database. The user who executes this command must be a database
superuser or the owner of the database.

dropdb is a shell script wrapper around the SQL command DROP DATABASE via the Postgres
interactive terminal psgl. Thus, there is nothing special about dropping databases via this or other
methods. This means that the psql must be found by the script and that a database server is running at
the targeted host. Also, any default settings and environment variables available to psql and the libpg
front-end library do apply.

Usage

To destroy the database deno on the default database server:
$ dropdb deno
DROP DATABASE

To destroy the database deno using the postmaster on host eden, port 5000, with verification and a peek
at the underlying query:

$ dropdb -p 5000 -h eden -i -e deno

Dat abase "denp" wi |l be permanently del eted.

Are you sure? (y/n) Yy

DROP DATABASE "denp"

DROP DATABASE

176

PostgreSQL Client Applications

dropuser

Name

dr opuser Drops (removes) a Postgres user
Synopsis
dropuser [opt i ons...] [user nane]

Inputs

-h, --host host
Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.
-p, --port por t
Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.
-e, --echo

Echo the queries that createdb generates and sends to the backend.

-q, --quiet

Do not display a response.

-i, --interactive

Prompt for confirmation before actually removing the user.

user nane

Specifies the name of the Postgres user to be removed. This name must exist in the Postgres
installation. You will be prompted for a name if none is specified on the command line.

The options - h, - p, and - e, are passed on literally to psql. The psql options - U and - Ware available as
well, but they can be confusing in this context.

Outputs

DROP USER

All is well.

177

PostgreSQL Client Applications

dropuser: del etion of user "usernane" failed

Something went wrong. The user was not removed.

If there is an error condition, the backend error message will be displayed. See DROP USER and psql
for possibilities.

Description

dropuser removes an existing Postgres user and the databases which that user owned. Only users with
usesuper set in the pg_shadowtable can destroy Postgres users.

dropuser is a shell script wrapper around the SQL command DROP USER via the Postgres interactive
terminal psql. Thus, there is nothing special about removing users via this or other methods. This means
that the psgl must be found by the script and that a database server is running at the targeted host. Also,
any default settings and environment variables available to psgl and the libpq front-end library do apply.

Usage

To remove user j oe from the default database server:
$ dropuser joe
DROP USER

To remove user j oe using the postmaster on host eden, port 5000, with verification and a peek at the
underlying query:

$ dropuser -p 5000 -h eden -i -e joe

User "joe" and any owned databases will be pernmanently del eted.

Are you sure? (y/n) Yy

DROP USER "j oe"

DROP USER

178

PostgreSQL Client Applications

Name

ecpg Embedded SQL C preprocessor

Synopsis

ecpg [-v] [-t] [-I include-path] [-o outfile] filel [file2] [
]

Inputs

ecpg accepts the following command line arguments:

-V
Print version information.

-t
Turn off auto-transaction mode.

-l path
Specify an additional include path. Defaults are ., / usr/1 ocal /i ncl ude, the Postgres include
path which is defined at compile time (default: / usr/ 1 ocal / pgsql / 1i b), and / usr/i ncl ude.

-0
Specifies that ecpg should write all its output to outfile. If no such option is given the output is
written to nane. ¢, assuming the input file was named nane. pgc. If the input file does have the
expected . pgc suffix, then the output file will have . pgc appended to the input file name.

file
The files to be processed.

Outputs

ecpg will create a file or write to st dout .

return val ue

ecpg returns 0 to the shell on successful completion, -1 for errors.

179

PostgreSQL Client Applications

Description

ecpg is an embedded SQL preprocessor for the C language and the Postgres. It enables development of
C programs with embedded SQL code.

Linus Tolke (<li nus@pact.se>) was the original author of ecpg (up to version 0.2). Michael
Meskes (<nmeskes@lebi an. org>) is the current author and maintainer of ecpg. Thomas Good
(<tomg@8. nrnet . or g>) is the author of the last revision of the ecpg man page, on which this
document is based.

Usage

Preprocessing for Compilation

An embedded SQL source file must be preprocessed before compilation:
ecpg [-d] [-ofile] file.pgc

where the optional - d flag turns on debugging. The . pgc extension is an arbitrary means of denoting
ecpg source.

You may want to redirect the preprocessor output to a log file.

Compiling and Linking

Assuming the Postgres binaries are in / usr/ | ocal / pgsql , you will need to compile and link your
preprocessed source file:

gcc -g -1 lusr/local/pgsql/include [-o file] file.c -L /usr/local/pgsql/lib
-lecpg -1pq

Grammar
Libraries
The preprocessor will prepend two directives to the source:

#i ncl ude <ecpgtype. h>
#i ncl ude <ecpglib. h>

Variable Declaration

Variables declared within ecpg source code must be prepended with;

EXEC SQL BEG N DECLARE SECTI ON

180

PostgreSQL Client Applications

Similarly, variable declaration sections must terminate with:

EXEC SQL END DECLARE SECTI ON;

Note: Prior to version 2.1.0, each variable had to be declared on a separate line. As of version
2.1.0 multiple variables may be declared on a single line:

char foo(16), bar(16);

Error Handling

The SQL communication area is defined with:

EXEC SQL | NCLUDE sql ca;

Note: The sgl ca is in lowercase. While SQL convention may be followed, i.e., using uppercase to
separate embedded SQL from C statements, sglca (which includes the sqglca.h header file) MUST
be lowercase. This is because the EXEC SQL prefix indicates that this INCLUDE will be parsed by
ecpg. ecpg observes case sensitivity (SQLCA.h will not be found). EXEC SQL INCLUDE can be
used to include other header files as long as case sensitivity is observed.

The sqglprint command is used with the EXEC SQL WHENEVER statement to turn on error handling
throughout the program:

EXEC SQL WHENEVER sql error sql print;

and

EXEC SQL WHENEVER not found sql print;

Note: This is not an exhaustive example of usage for the EXEC SQL WHENEVER statement.
Further examples of usage may be found in SQL manuals (e.g., ‘The LAN TIMES Guide to SQL’ by
Groff and Weinberg).

181

PostgreSQL Client Applications

Connecting to the Database Server

One connects to a database using the following:

EXEC SQL CONNECT TO dbnane;

where the database name is not quoted. Prior to version 2.1.0, the database name was required to be
inside single quotes.

Specifying a server and port name in the connect statement is also possible. The syntax is:

dbnane[@erver][: port]

or

<t cp| uni x>: postgresql ://server[:port][/dbname] [?opti ons]

Queries

In general, SQL queries acceptable to other applications such as psql can be embedded into your C
code. Here are some examples of how to do that.

Create Table:
EXEC SQL CREATE TABLE foo (number int4, ascii char(16));

EXEC SQL CREATE UNI QUE i ndex numl on foo(nunber);
EXEC SQL COW T;

Insert:

EXEC SQL | NSERT | NTO foo (nunber, ascii) VALUES (9999, ’'doodad);
EXEC SQL COW T;

Delete:

EXEC SQL DELETE FROM f oo WHERE nunber = 9999;
EXEC SQL COWI T,

Singleton Select:

EXEC SQL SELECT foo INTO : FooBar FROM tabl el WHERE ascii = ’'doodad’;

182

PostgreSQL Client Applications

Select using Cursors:
EXEC SQL DECLARE foo_bar CURSOR FOR
SELECT nunber, ascii FROM foo
ORDER BY asci i ;
EXEC SQL FETCH foo_bar | NTO : FooBar, DooDad;

EXEC SQL CLCSE foo_bar;
EXEC SQL COW T;

Updates:
EXEC SQL UPDATE f oo
SET ascii = 'foobar’

VWHERE nunber = 9999;
EXEC SQL COW T,

Notes

There is no EXEC SQL PREPARE statement.
The complete structure definition MUST be listed inside the declare section.

See the TODOfile in the source for some more missing features.

pgaccess

Name

pgaccess PostgreSQL graphical client
Synopsis

pgaccess [dbnane]

Options

dbnane

The name of an existing database to access.

183

PostgreSQL Client Applications

Description

pgaccess provides a graphical interface for Postgres wherein you can manage your tables, edit them,
define queries, sequences and functions.

pgaccess can:
Open any database on a specified host at the specified port, username, and password.
Execute VACUUM.
Save preferences in the ~/ . pgaccessr c file.

For tables, pgaccess can:
Open multiple tables for viewing, with a configurable number of rows shown.
Resize columns by dragging the vertical grid lines.
Wrap text in cells.
Dynamically adjust row height when editing.
Save table layout for every table.
Import/export to external files (SDF, CSV).
Use filter capabilities; enter filters like pri ce > 3. 14.
Specify sort order; enter manually the sort field(s).
Edit in place; double click the text you want to change.
Delete records; point to the record, press Delete key.
Add new records; save new row with right-button click.
Create tables with an assistant.
Rename and delete (drop) tables.
Retrieve information on tables, including owner, field information, indices.

For queries, pgaccess can:
Define, edit and store user-defined queries.
Save view layouts.
Store queries as views.
Execute with optional user input parameters, e.g.,

select * frominvoi ces where year=[paraneter "Year of selection"]

View any select query result.
Run action queries (insert, update, delete).
Construct queries using a visual query builder with drag & drop support, table aliasing.

For sequences, pgaccess can:
Define new instances.
Inspect existing instances.
Delete.

184

For views, pgaccess can:
Define them by saving queries as views.

View them, with filtering and sorting capabilities.

Design new views.
Delete (drop) existing views.

For functions, pgaccess can:
Define.
Inspect.
Delete.

For reports, pgaccess can:

Generate simple reports from a table (beta stage).

Change font, size, and style of fields and labels.
Load and save reports from the database.
Preview tables, sample Postscript print.

For forms, pgaccess can:
Open user-defined forms.
Use a form design module.
Access record sets using a query widget.

For scripts, pgaccess can:
Define.
Modify.
Call user defined scripts.

Notes

PostgreSQL Client Applications

pgaccess is written in Tcl/TK. Your PostgreSQL installation needs to be built with Tcl support for

pgaccess to be available.

185

PostgreSQL Client Applications

pgadmin

Name

pgadm n Postgres database management and design tool for Windows 95/98/NT

Synopsis

pgadmi n [datasourcename [username [password]]]

Inputs

dat asour cenane

The name of an existing Postgres ODBC System or User Data Source.

user nane

A valid username for the specified dat asour cenane.

passwor d

A valid password for the specified dat asour cenane and user nane.

Outputs

Description

pgadmin is a general purpose tool for designing, maintaining, and administering Postgres databases. It
runs under Windows 95/98 and NT.

Features include:
Arbitrary SQL entry.

Info Browsers and ’Creators’ for databases, tables, indexes, sequences, views, triggers, functions and
languages.

User, Group and Privilege configuration dialogues.
Revision tracking with upgrade script generation.
Configuration of Microsoft MSysConf table.

Data Import and Export Wizards.

Database Migration Wizard.

Predefined reports on databases, tables, indexes, sequences, languages and views.

186

PostgreSQL Client Applications

pgadmin is distributed separately from Postgres and may be downloaded from
http://www.pgadmin.freeserve.co.uk

pg_config

Name

pg_confi g Provides information about the installed version of PostgreSQL

Synopsis

pg_config {--bindir | --includedir | --libdir | --configure | --version...}

Description

The pg_config utility provides configuration parameters of the currently installed version of
PostgreSQL. It is intended, for example, to be used by software packages that want to interface to
PostgreSQL in order to find the respective header files and libraries.

To use pg_config, supply one or more of the following options:

--bindir
Print the location of user executables. Use this, for example, to find the psql program. This is
normally also the location where the pg_conf i g program resides.
--includedir

Print the location of C and C++ header files.

--libdir

Print the location of object code libraries.

--configure

Print the options that were given to the confi gur e script when PostgreSQL was configured for
building. This can be used to reproduce the identical configuration, or to find out with what options
a binary package was built. (Note however that binary packages often contain vendor-specific
custom patches.)
--version
Print the version of PostgreSQL and exit.

If more than one option (except for - - ver si on) is given, the information is printed in that order, one
item per line.

187

PostgreSQL Client Applications

pg_dump

Name

pg_dunp Extract a Postgres database into a script file or other archive file
Synopsis

pg_dump [-a | -s] [-b] [-c] [-C] [-d | -D] [-f file] [-F format] [-i] [-n | -N] [-0] [-O] [-R] [-S] [-t
tabl e][-v] ['X][-Z 0. .. 9] [-h host] [-p por t] [-u] dbnane

Description

pg_dump is a utility for dumping out a Postgres database into a script or archive file containing query

commands. The script files are in text format and can be used to reconstruct the database, even on other
machines and other architectures. The archive files, new with version 7.1, contain enough information
for pg_restore to rebuild the database, but also allow pg_restore to be selective about what is restored,
or even to reorder the items prior to being restored. The archive files are also designed to be portable
across architectures.

pg_dump will produce the queries necessary to re-generate all user-defined types, functions, tables,
indices, aggregates, and operators. In addition, all the data is copied out in text format so that it can be
readily copied in again, as well as imported into tools for editing.

pg_dump is useful for dumping out the contents of a database to move from one Postgres installation to
another. After running pg_dump, one should examine the output for any warnings, especially in light of
the limitations listed below.

When used with one of the alternate file formats and combined with pg_restore, it provides a flexible
archival and transfer mechanism. pg_dump can be used to backup an entire database, then pg_restore
can be used to examine the archive and/or select which parts of the database are to be restored. See the
pg_restore documentation for details.

Options
pg_dump accepts the following command line arguments. (Long option forms are only available on
some platforms.)
dbnamne
Specifies the name of the database to be extracted.
-a
--data-only
Dump only the data, not the schema (definitions).
-b
--blobs
Dump data and BLOB data.

188

PostgreSQL Client Applications

-C
--clean

Dump commands to clean (drop) the schema prior to (the commands for) creating it.
-C
--create
For plain text (script) output, include commands to create the database itself.
-d
--inserts
Dump data as proper INSERT commands (hot COPY). This will make restoration very slow.
-D
--attribute-inserts

Dump data as INSERT commands with explicit column names. This will make restoration very

slow.
ffile
--file=fil e

Send output to the specified file.

-F f or nat
--format=f or mat

Format can be one of the following:

p
output a plain text SQL script file (default)
t
output a t ar archive suitable for input into pg_restore. Using this archive format allows
reordering and/or exclusion of schema elements at the time the database is restored. It is also
possible to limit which data is reloaded at restore time.
c

output a custom archive suitable for input into pg_restore. This is the most flexible format in
that it allows reordering of data load as well as schema elements. This format is also
compressed by default.

-i
--ignore-version
Ignore version mismatch between pg_dump and the database server. Since pg_dump knows a
great deal about system catalogs, any given version of pg_dump is only intended to work with the

corresponding release of the database server. Use this option if you need to override the version
check (and if pg_dump then fails, don’t say you weren’t warned).

189

PostgreSQL Client Applications

-n
--no-quotes
Suppress double quotes around identifiers unless absolutely necessary. This may cause trouble
loading this dumped data if there are reserved words used for identifiers. This was the default
behavior for pg_dump prior to version 6.4.
-N
--quotes
Include double quotes around identifiers. This is the default.
-0
--0ids
Dump object identifiers (OIDs) for every table.
-0
--no-owner
In plain text output mode, do not set object ownership to match the original database. Typically,
pg_dump issues (psql-specific) \connect statements to set ownership of schema elements.
-R

--no-reconnect

In plain text output mode, prohibit pg_dump from issuing any \connect statements.
-S
--schema-only

Dump only the schema (definitions), no data.
-Suser nane
--superuser=user nanme

Specify the superuser user name to use when disabling triggers and/or setting ownership of schema

elements.
-ttabl e
--table=t abl e

Dump data for t abl e only.
-V
--verbose

Specifies verbose mode.
-X
--no-acl

Prevent dumping of ACLs (grant/revoke commands) and table ownership information.

190

PostgreSQL Client Applications

-20..9
--compress=0. . 9

Specify the compression level to use in archive formats that support compression (currently only
the custom archive format supports compression).

pg_dump also accepts the following command line arguments for connection parameters:
-h host
--host=host

Specifies the host name of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=por t

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections. The port number defaults to 5432, or the value of the
PGPORT environment variable (if set).

Use password authentication. Prompts for user nane and passwor d.

Diagnostics

Connection to database 'tenplatel failed.
connectDBStart() -- connect() failed: No such file or directory
I's the postnmaster running locally
and accepting connections on Unix socket '/tnp/.s.PGSQL.5432'?

pg_dump could not attach to the postmaster process on the specified host and port. If you see this
message, ensure that the postmaster is running on the proper host and that you have specified the
proper port.

dunpSequence(table): SELECT failed
You do not have permission to read the database. Contact your Postgres site administrator.

Note: pg_dump internally executes SELECT statements. If you have problems running pg_dump,
make sure you are able to select information from the database using, for example, psql.

Notes

pg_dump has a few limitations. The limitations mostly stem from difficulty in extracting certain
meta-information from the system catalogs.

When dumping a single table or as plain text, pg_dump does not handle large objects. Large objects
must be dumped in their entirety using one of the binary archive formats.

191

PostgreSQL Client Applications

When doing a data only dump, pg_dump emits queries to disable triggers on user tables before
inserting the data and queries to re-enable them after the data has been inserted. If the restore is
stopped in the middle, the system catalogs may be left in the wrong state.

Examples
To dump a database:

$ pg_dunp nydb > db. out

To reload this database:

$ psqgl -d database -f db. out

To dump a database called mydb that contains BLOBsto at ar file:

$ pg_dunp -Ft -b nydb > db.tar

To reload this database (with BLOBS) to an existing database called newdb:

$ pg_restore -d newdb db.tar

See Also

pg_dumpall, pg_restore , psgl, PostgreSQL Administrator’s Guide

pg_dumpall

Name

pg_dunpal | Extract all databases into a script file
Synopsis

pg_dumpall [-c | --clean] [-h host] [-p por t] [-g | --globals-only]

Description

pg_dumpall is a utility for writing out (dumping) all Postgres databases of a cluster into one script file.
The script file contains SQL commands that can be used as input to psql to restore the databases. It does
this by calling pg_dump for each database in a cluster. pg_dumpall also dumps global objects that are

192

PostgreSQL Client Applications

common to all databases. (pg_dump does not save these objects.) This currently includes the
information about database users and groups.

Thus, pg_dumpall is an integrated solution for backing up your databases.

Since pg_dumpall reads tables from all databases you will most likely have to connect as a database
superuser in order to produce a complete dump. Also you will need superuser privileges to execute the
saved script in order to be allowed to add users and groups, and to create databases.

The SQL script will be written to the standard ouput. Shell operators should be used to redirect it into a
file.

Options
pg_dumpall accepts the following command line arguments:

-c, --clean

Clean (drop) database before creating schema.

-h host

Specifies the hostname of the machine on which the database server is running. If host begins with
a slash, it is used as the directory for the Unix domain socket. The default is taken from the
PGHOST environment variable, if set, else a Unix domain socket connection is attempted.

-p port

The port number on which the server is listening. Defaults to the PGPORT environment variable,
if set, or a compiled-in default.

-g, --globals-only

Only dump global objects (users and groups), no databases.

Any other command line parameters are passed to the underlying pg_dump calls. This is useful to
control some aspects of the output format, but some options such as - f, -t, and dbname should be
avoided.

Usage
To dump all databases:

$ pg_dunpal | > db. out

To reload this database use, for example:
$ psqgl -f db.out tenplatel

(It is not important to which database you connect here since the script file created by pg_dumpall will
contain the appropriate commands to create and connect to the saved databases.)

193

PostgreSQL Client Applications

See Also

pg_dump , psgl. Check there for details on possible error conditions.

pg_restore

Name

pg_rest ore Restore a Postgres database from an archive file created by pg_dump

Synopsis

pg restore [-a][-c][-C][-ddbnane][-farchive-file][-Fformat J[-iindex][-I]]
-L contents-file][-N|-0|-r][-O][-Pfunction-name][-R][-s][-S][-ttable][-T
trigger J[-v][-x][-hhost J[-pport J[-u][archive-file]

Description

pg restore is a utility for restoring a Postgres database dumped by pg_dump in one of the
non-plain-text formats.

The archive files, new with the 7.1 release, contain enough information for pg_restore to rebuild the
database, but also allow pg_restore to be selective about what is restored, or even to reorder the items
prior to being restored. The archive files are designed to be portable across architectures. pg_dump will
produce the queries necessary to re-generate all user-defined types, functions, tables, indices,
aggregates, and operators. In addition, all the data is copied out (in text format for scripts) so that it can
be readily copied in again.

pg_restore reads the archive file and outputs the appropriate SQL in the required order based on the
command parameters. Obviously, it can not restore information that is not present in the dump file; so if
the dump is made using the dump data as INSERTSs option, pg_restore will not be able to load the data
using COPY statements.

The most flexible output file format is the custom format (- Fc). It allows for selection and reordering of
all archived items, and is compressed by default. The t ar format (- Ft) is not compressed and it is not
possible to reorder data when loading, but it is otherwise quite flexible.

To reorder the items, it is first necessary to dump the contents of the archive:
$ pg_restore archive.file -1 > archive.list

This file consists of a header and one line for each item, e.g.,

;. Archive created at Fri Jul 28 22:28:36 2000
; dbnane: birds
TOC Entries: 74
Conpression: 0
; Dump Version: 1.4-0
; Format: CUSTOM

194

PostgreSQL Client Applications

Sel ected TOC Entri es:

145344 TABLE species postgres

145344 ACL speci es

145359 TABLE nt _header postgres
145359 ACL nt _header

145402 TABLE speci es_records postgres
145402 ACL speci es_records

145416 TABLE ss_ol d postgres

145416 ACL ss_old

10; 145433 TABLE nmp_resol utions postgres
11; 145433 ACL map_resol utions

12; 145443 TABLE hs_ol d postgres

13; 145443 ACL hs_ol d

N R LN

L

Semi-colons are comment delimiters, and the numbers at the start of lines refer to the internal archive
ID assigned to each item.

Lines in the file can be commented out, deleted, and reordered. For example,

10; 145433 TABLE map_resol utions postgres
; 2; 145344 TABLE speci es postgres

; 4; 145359 TABLE nt _header postgres

6; 145402 TABLE species_records postgres
; 8; 145416 TABLE ss_old postgres

could be used as input to pg_restore and would only restore items 10 and 6, in that order.

$ pg_restore archive.file -L archive.list

Options
pg_restore accepts the following command line arguments. (Long option forms are only available on
some platforms.)
ar chi ve- nane
Specifies the location of the archive file to be restored. If not specified, and no -f option is
specified, then the standard input is used.
-a
--data-only
Restore only the data, no schema (definitions).
-C
--clean

Clean (drop) schema prior to create.

195

PostgreSQL Client Applications

-C
--Create

Include SQL to create the schema.
-d dbnarne
--dbname=dbnarne
Connect to database dbnamne and restore directly into the database. BLOBs can only be restored
by using a direct database connection.
-ffil enane
--file=f i | ename
Specify output file for generated script. (Use with the -1 option.) Default is the standard output.
-F f or mat
--format=f or nat
Specify format of the archive. It is not necessary to specify the format, since pg_restore will
determine the format automatically. If specified, it can be one of the following:
t

Archive is a t ar archive. Using this archive format allows reordering and/or exclusion of
schema elements at the time the database is restored. It is also possible to limit which data is
reloaded at restore time.

c
Archive is in the custom format of pg_dump. This is the most flexible format in that it allows
reordering of data load as well as schema elements. This format is also compressed by default.
-ii ndex
--index=i ndex

Restore definition for named i ndex only.
-l
--list
List the contents of the archive. The output of this command can be used with the - L option to
restrict and reorder the items that are restored.
-Llist-file
--use-list=l i st-file

Restore elements in [i st-fil e only, and in the order they appear in the file. Lines can be
moved and may also be commented out by placing a ’;’ at the start of the line.

196

PostgreSQL Client Applications

-N

--orig-order
Restore items in the original dump order. By default pg dump will dump items in an order
convenient to pg_dump, then save the archive in a modified OID order. This option overrides the
OID ordering.

-0

--oid-order
Restore items in the OID order. By default pg_dump will dump items in an order convenient to
pg_dump, then save the archive in a modified OID order. This option enforces strict OID ordering.

-0

--no-owner

Prevent any attempt to restore original object ownership. Objects will be owned by the user name
used to attach to the database.

-Pfuncti on- nane
--function=f unct i on- nane
Specify a procedure or function to be restored.
-r
--rearrange

Restore items in modified OID order. By default pg_dump will dump items in an order convenient
to pg_dump, then save the archive in a modified OID order. Most objects will be restored in OID
order, but some things (e.g., rules and indices) will be restored at the end of the process irrespective
of their OIDs. This option is the default.

-R
--no-reconnect
Prohibit pg_restor e from issuing any
\ connect
statements or reconnecting to the database if directly connected.
-S
--schema-only
Restore the schema (definitions), no data. Sequence values will be reset.
-Suser name
--superuser=user name

Specify the superuser user name to use when disabling triggers and/or setting ownership of schema
elements. By default, pg_restore will use the current user name if it is a superuser.

197

PostgreSQL Client Applications

-ttabl e
--table=t abl e

Restore schema/data for t abl e only.
-Ttrigger
--trigger=t r i gger

Restore definition of t ri gger only.
-V
--verbose

Specifies verbose mode.
-X
--no-acl

Prevent restoration of ACLs (grant/revoke commands).

pg_restorealso accepts the following command line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port=por t
Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections. The port number defaults to 5432, or the value of the
PGPORT environment variable (if set).

Use password authentication. Prompts for user name and password.

Diagnostics

Connection to database 'tenplatel failed.
connectDBStart() -- connect() failed: No such file or directory
I's the postnaster running locally
and accepting connections on Unix socket '/tnp/.s.PGSQL.5432' ?

pg_restore could not attach to the postmaster process on the specified host and port. If you see
this message, ensure that the postmaster is running on the proper host and that you have specified
the proper port. If your site uses an authentication system, ensure that you have obtained the
required authentication credentials.

198

PostgreSQL Client Applications

Note: When a direct database connection is specified using the -d option, pg_restore internally
executes SQL statements. If you have problems running pg_restore, make sure you are able to
select information from the database using, for example, psql.

Notes

The limitations of pg_restore are detailed below.

When restoring data to a table, pg_restore emits queries to disable triggers on user tables before
inserting the data then emits queries to re-enable them after the data has been inserted. If the restore is
stopped in the middle, the system catalogs may be left in the wrong state.

pg_restore will not restore BLOBSs for a single table. If an archive contains BLOBSs, then all BLOBs
will be restored.

See the pg_dump documentation for details on limitation of pg_dump.

Examples
To dump a database:

$ pg_dunp nydb > db. out

To reload this database:

$ psqgl -d database -f db. out

To dump a database called mydb that contains BLOBsto at ar file:

$ pg_dunp -Ft -b nydb > db.tar

To reload this database (with BLOBS) to an existing database called newdb:

$ pg_restore -d newdb db.tar

See Also
pg_dump , pg_dumpall, psgl, PostgreSQL Administrator’s Guide

199

psql

PostgreSQL Client Applications

Name

psql Postgres interactive terminal

Synopsis
psql [options] [dbname [user]]

Summary

psql is a terminal-based front-end to Postgres. It enables you to type in queries interactively, issue them

to Postgres, and see the query results. Alternatively, input can be from a file. In addition, it provides a
number of meta-commands and various shell-like features to facilitate writing scripts and automating a
wide variety of tasks.

Description

Connecting To A Database

psqgl is a regular Postgres client application. In order to connect to a database you need to know the
name of your target database, the hostname and port number of the server and what user name you want
to connect as. psgl can be told about those parameters via command line options, namely -d, - h, - p,
and - U respectively. If an argument is found that does not belong to any option it will be interpreted as
the database name (or the user name, if the database name is also given). Not all these options are
required, defaults do apply. If you omit the host name psqgl will connect via a Unix domain socket to a
server on the local host. The default port number is compile-time determined. Since the database server
uses the same default, you will not have to specify the port in most cases. The default user name is your
Unix username, as is the default database name. Note that you can’t just connect to any database under
any username. Your database administrator should have informed you about your access rights. To save
you some typing you can also set the environment variables PGDATABASE, PGHOST, PGPORT and
PGUSER to appropriate values.

If the connection could not be made for any reason (e.g., insufficient privileges, postmaster is not
running on the server, etc.), psql will return an error and terminate.

Entering Queries

In normal operation, psgl provides a prompt with the name of the database to which psql is currently

200

PostgreSQL Client Applications

connected, followed by the string "=>". For example,

$ psqgl testdb
Wel come to psql, the PostgreSQ interactive termnal.

Type: \copyright for distribution terns
\h for help with SQL conmands
\? for help on internal slash conmands
\g or termnate with senicolon to execute query
\g to quit

t est db=>

At the prompt, the user may type in SQL queries. Ordinarily, input lines are sent to the backend when a
query-terminating semicolon is reached. An end of line does not terminate a query! Thus queries can be
spread over several lines for clarity. If the query was sent and without error, the query results are
displayed on the screen.

Whenever a query is executed, psql also polls for asynchronous notification events generated by
LISTEN and NOTIFY.

psqgl Meta-Commands

Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that is
processed by psql itself. These commands are what makes psql interesting for administration or
scripting. Meta-commands are more commonly called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command verb, then any
arguments. The arguments are separated from the command verb and each other by any number of
whitespace characters.

To include whitespace into an argument you must quote it with a single quote. To include a single quote
into such an argument, precede it by a backslash. Anything contained in single quotes is furthermore
subject to C-like substitutions for \ n (new line), \'t (tab),\ di gi ts,\0di gits, and\0xdi gi ts (the
character with the given decimal, octal, or hexadecimal code).

If an unquoted argument begins with a colon (:), it is taken as a variable and the value of the variable is
taken as the argument instead.

Arguments that are quoted in backticks (*) are taken as a command line that is passed to the shell. The
output of the command (with a trailing newline removed) is taken as the argument value. The above
escape sequences also apply in backticks.

Some commands take the name of an SQL identifier (such as a table name) as argument. These
arguments follow the syntax rules of SQL regarding double quotes: an identifier without double quotes
is coerced to lower-case. For all other commands double quotes are not special and will become part of
the argument.

Parsing for arguments stops when another unquoted backslash occurs. This is taken as the beginning of
a new meta-command. The special sequence \\ (two backslashes) marks the end of arguments and
continues parsing SQL queries, if any. That way SQL and psgl commands can be freely mixed on a line.
But in any case, the arguments of a meta-command cannot continue beyond the end of the line.

201

PostgreSQL Client Applications

The following meta-commands are defined:

\a
If the current table output format is unaligned, switch to aligned. If it is not unaligned, set it to
unaligned. This command is kept for backwards compatibility. See \pset for a general solution.
\C[title]

Set the title of any tables being printed as the result of a query or unset any such title. This
command is equivalent to \pset title title. (The name of this command derives from
caption , as it was previously only used to set the caption in an HTML table.)

\ connect (or\c)[dbnane [usernane]]

Establishes a connection to a new database and/or under a user name. The previous connection is
closed. If dbnane is - the current database name is assumed.

If user nane is omitted the current user name is assumed.

As a special rule, \connect without any arguments will connect to the default database as the
default user (as you would have gotten by starting psql without any arguments).

If the connection attempt failed (wrong username, access denied, etc.), the previous connection
will be kept if and only if psgl is in interactive mode. When executing a non-interactive script,
processing will immediately stop with an error. This distinction was chosen as a user convenience
against typos on the one hand, and a safety mechanism that scripts are not accidentally acting on
the wrong database on the other hand.

\copy table [with oids] { from|to } filename | stdin | stdout [using delinmiters
’characters’][with null as’string’]

Performs a frontend (client) copy. This is an operation that runs an SQL COPY command, but
instead of the backend’s reading or writing the specified file, and consequently requiring backend
access and special user privilege, as well as being bound to the file system accessible by the
backend, psql reads or writes the file and routes the data between the backend and the local file
system.

The syntax of the command is similar to that of the SQL COPY command (see its description for
the details). Note that, because of this, special parsing rules apply to the \copy command. In
particular, the variable substitution rules and backslash escapes do not apply.

Tip: This operation is not as efficient as the SQL COPY command because all data must pass
through the client/server IP or socket connection. For large amounts of data the other
technique may be preferable.

Note: Note the difference in interpretation of st di n and st dout between frontend and backend
copies: in a frontend copy these always refer to psql's input and output stream. On a backend
copy stdi n comes from wherever the COPY itself came from (for example, a script run with
the - f option), and st dout refers to the query output stream (see \o meta-command below).

\ copyri ght
Shows the copyright and distribution terms of Postgres.

202

PostgreSQL Client Applications

\drel ation

Shows all columns of r el at i on (which could be a table, view, index, or sequence), their types,
and any special attributes such as NOT NULL or defaults, if any. If the relation is, in fact, a table,
any defined indices are also listed. If the relation is a view, the view definition is also shown.

The command form \ d+ is identical, but any comments associated with the table columns are
shown as well.

Note: If \d is called without any arguments, it is equivalent to \dtvs which will show a list of all
tables, views, and sequences. This is purely a convenience measure.

\da[pattern]

Lists all available aggregate functions, together with the data type they operate on. If patt ern (a
regular expression) is specified, only matching aggregates are shown.

\dd [obj ect]

\ df

Shows the descriptions of obj ect (which can be a regular expression), or of all objects if no
argument is given. (Object covers aggregates, functions, operators, types, relations (tables, views,
indices, sequences, large objects), rules, and triggers.) For example:

=> \dd version
hj ect descriptions

Narme | What [Description
_________ o
version | function | PostgreSQ version string
(1 row

Descriptions for objects can be generated with the COMMENT ON SQL command.

Note: Postgres stores the object descriptions in the pg_description system table.

[pattern]

Lists available functions, together with their argument and return types. If patt ern (a regular
expression) is specified, only matching functions are shown. If the form \ df + is used, additional
information about each function, including language and description, is shown.

\distvS [pattern]

\dl

This is not the actual command name: The letters i, s, t, v, S stand for index, sequence, table, view,
and system table, respectively. You can specify any or all of them in any order to obtain a listing of
them, together with who the owner is.

If pat t er n is specified, it is a regular expression that restricts the listing to those objects whose
name matches. If one appends a +to the command name, each object is listed with its associated
description, if any.

This is an alias for \lo_list, which shows a list of large objects.

203

PostgreSQL Client Applications

\do [nane]
Lists available operators with their operand and return types. If name is specified, only operators
with that name will be shown.
\dp[pattern]

This is an alias for \z which was included for its greater mnemonic value (display permissions).

\dT [pattern]
Lists all data types or only those that match pat t er n. The command form \ dT+ shows extra
information.

\edit (or\e)[fil enane]

If fi | enane is specified, the file is edited; after the editor exits, its content is copied back to the
query buffer. If no argument is given, the current query buffer is copied to a temporary file which is
then edited in the same fashion.

The new query buffer is then re-parsed according to the normal rules of psqgl, where the whole
buffer is treated as a single line. (Thus you cannot make scripts this way. Use \i for that.) This
means also that if the query ends with (or rather contains) a semicolon, it is immediately executed.
In other cases it will merely wait in the query buffer.

Tip: psql searches the environment variables PSQL_EDITOR, EDITOR, and VISUAL (in that
order) for an editor to use. If all of them are unset, / bi n/ vi is run.

\echotext [..]

Prints the arguments to the standard output, separated by one space and followed by a newline.
This can be useful to intersperse information in the output of scripts. For example:

=> \echo ‘date’
Tue Cct 26 21:40:57 CEST 1999

If the first argument is an unquoted - n the the trailing newline is not written.

Tip: If you use the \o command to redirect your query output you may wish to use \qecho
instead of this command.

\ encodi ng [encodi ng]
Sets the client encoding, if you are using multibyte encodings. Without an argument, this
command shows the current encoding.
\f [string]

Sets the field separator for unaligned query output. The default is pipe (|). See also \pset for a
generic way of setting output options.

\g[{fil enanme||conmand }]

Sends the current query input buffer to the backend and optionally saves the output in f i | ename
or pipes the output into a separate Unix shell to execute comand. A bare \ g is virtually
equivalent to a semicolon. A\ g with argument is a one-shot alternative to the \o command.

204

PostgreSQL Client Applications

\ hel p (or\ h) [conmand]

Give syntax help on the specified SQL command. If conmrand is not specified, then psgl will list
all the commands for which syntax help is available. If conmrand is an asterisk (*), then syntax
help on all SQL commands is shown.

Note: To simplify typing, commands that consists of several words do not have to be quoted.
Thusitis finetotype \ hel p alter table.
\H

Turns on HTML query output format. If the HTML format is already on, it is switched back to the
default aligned text format. This command is for compatibility and convenience, but see \pset
about setting other output options.

\i fil enane

Reads input from the file f i | ename and executes it as though it had been typed on the keyboard.

Note: If you want to see the lines on the screen as they are read you must set the variable
ECHOtoal | .
\l (or\list)

List all the databases in the server as well as their owners. Append a +to the command name to
see any descriptions for the databases as well. If your Postgres installation was compiled with
multibyte encoding support, the encoding scheme of each database is shown as well.

\lo_export loidfil enanme

Reads the large object with OID | oi d from the database and writes it to f i | enane. Note that
this is subtly different from the server function | o_export, which acts with the permissions of the
user that the database server runs as and on the server’s file system.

Tip: Use \lo_list to find out the large object’'s OID.

Note: See the description of the LO_TRANSACTION variable for important information
concerning all large object operations.

\lo_inport fil ename [coment]

Stores the file into a Postgres large object . Optionally, it associates the given comment with the
object. Example:

foo=> \lo_inport ’'/home/peter/pictures/photo.xcf’ "a picture of ne’
| o_inmport 152801

The response indicates that the large object received object id 152801 which one ought to
remember if one wants to access the object ever again. For that reason it is recommended to always
associate a human-readable comment with every object. Those can then be seen with the \lo_list
command.

Note that this command is subtly different from the server-side | o_i nport because it acts as the
local user on the local file system, rather than the server’s user and file system.

205

PostgreSQL Client Applications

Note: See the description of the LO_TRANSACTION variable for important information
concerning all large object operations.
\lo_ list

Shows a list of all Postgres large objects currently stored in the database, along with any comments
provided for them.

\lo unlinkloid

Deletes the large object with OID | oi d from the database.
Tip: Use \lo_list to find out the large object’s OID.

Note: See the description of the LO_TRANSACTION variable for important information
concerning all large object operations.
\o[{fil enane || command}]

Saves future query results to the file f i | enan®e or pipes future results into a separate Unix shell
to execute comand. If no arguments are specified, the query output will be reset to st dout .

Query results includes all tables, command responses, and notices obtained from the database
server, as well as output of various backslash commands that query the database (such as \d), but
not error messages.

Tip: To intersperse text output in between query results, use \gecho.

\p
Print the current query buffer to the standard output.

\ pset paraneter [val ue]

This command sets options affecting the output of query result tables. par anet er describes
which option is to be set. The semantics of val ue depend thereon.

Adjustable printing options are:

f or mat

Sets the output format to one of unaligned, aligned, htm, or |atex. Unique
abbreviations are allowed. (That would mean one letter is enough.)

Unaligned writes all fields of a tuple on a line, separated by the currently active field
separator. This is intended to create output that might be intended to be read in by other
programs (tab-separated, comma-separated). Aligned mode is the standard, human-readable,
nicely formatted text output that is default. The HTML and LaTeX modes put out tables that
are intended to be included in documents using the respective mark-up language. They are not
complete documents! (This might not be so dramatic in HTML, but in LaTeX you must have a
complete document wrapper.)

bor der

The second argument must be a number. In general, the higher the number the more borders
and lines the tables will have, but this depends on the particular format. In HTML mode, this

206

PostgreSQL Client Applications

will translate directly into the bor der =. . . attribute, in the others only values 0 (no border), 1
(internal dividing lines), and 2 (table frame) make sense.
expanded (or x)

Toggles between regular and expanded format. When expanded format is enabled, all output
has two columns with the field name on the left and the data on the right. This mode is useful
if the data wouldn’t fit on the screen in the normal horizontal mode.

Expanded mode is supported by all four output modes.

nul |
The second argument is a string that should be printed whenever a field is null. The default is
not to print anything, which can easily be mistaken for, say, an empty string. Thus, one might
choose to write \ pset nul|l ' (null)’.

fieldsep
Specifies the field separator to be used in unaligned output mode. That way one can create,
for example, tab- or comma-separated output, which other programs might prefer. To set a tab
as field separator, type \ pset fieldsep '\t’. The default field separator is ' |’ (a pipe
symbol).

recordsep

Specifies the record (line) separator to use in unaligned output mode. The default is a newline
character.
tupl es_only (ort)

Toggles between tuples only and full display. Full display may show extra information such
as column headers, titles, and various footers. In tuples only mode, only actual table data is
shown.

title[text]
Sets the table title for any subsequently printed tables. This can be used to give your output
descriptive tags. If no argument is given, the title is unset.

Note: This formerly only affected HTML mode. You can now set titles in any output
format.
tableattr (orT) [t ext]

Allows you to specify any attributes to be placed inside the HTML table tag. This could for
example be cel | paddi ng or bgcol or . Note that you probably don’t want to specify bor der
here, as that is already taken care of by \ pset bor der.

pager

Toggles the list of a pager to do table output. If the environment variable PAGER is set, the
output is piped to the specified program. Otherwise nor e is used.

In any case, psgl only uses the pager if it seems appropriate. That means among other things
that the output is to a terminal and that the table would normally not fit on the screen. Because

207

PostgreSQL Client Applications

of the modular nature of the printing routines it is not always possible to predict the number of
lines that will actually be printed. For that reason psgl might not appear very discriminating
about when to use the pager and when not to.

Ilustrations on how these different formats look can be seen in the Examples section.
Tip: There are various shortcut commands for \pset. See \a, \C, \H, \t, \T, and \x.

Note: It is an error to call \pset without arguments. In the future this call might show the
current status of all printing options.
\q
Quit the psql program.
\gechotext [..]
This command is identical to \echo except that all output will be written to the query output
channel, as set by \o.
\r

Resets (clears) the query buffer.

\s[filenane]

Print or save the command line history to fi | ename. If fi | enane is omitted, the history is
written to the standard output. This option is only available if psql is configured to use the GNU
history library.

Note: As of psql version 7.0 it is no longer necessary to save the command history, since that
will be done automatically on program termination. The history is also loaded automatically
every time psql starts up.

\set [narme [val ue[..]]]

Sets the internal variable name to val ue or, if more than one value is given, to the concatenation
of all of them. If no second argument is given, the variable is just set with no value. To unset a
variable, use the \unset command.

Valid variable names can contain characters, digits, and underscores. See the section about psql
variables for details.

Although you are welcome to set any variable to anything you want, psql treats several variables
as special. They are documented in the section about variables.

Note: This command is totally separate from the SQL command SET.

\t

Toggles the display of output column name headings and row count footer. This command is
equivalentto\ pset tupl es_only and is provided for convenience.

\Ttabl e_options

Allows you to specify options to be placed within the table tag in HTML tabular output mode. This
command is equivalent to\ pset tableattr table_options.

208

PostgreSQL Client Applications

\w{fil enane || comand}
Outputs the current query buffer to the file fil enanme or pipes it to the Unix command
comand.

\ x

Toggles extended row format mode. As such it is equivalent to \ pset expanded.

\z[pattern]

Produces a list of all tables in the database with their appropriate access permissions listed. If an
argument is given it is taken as a regular expression which limits the listing to those tables which

match it.

test=> \z

Access pernmi ssions for database "test"
Rel ation | Access perni ssions

__________ de m e m e —e—m——————
my_table | {"=r","joe=arwR', "group staff=ar"}
(1 row)

Read this as follows:
"=r":PUBLI Chas read (SELECT) permission on the table.

"j oe=arwR': User j oe has read, write (UPDATE, DELETE), append (INSERT) permissions,
and permission to create rules on the table.

"group staff=ar":Groupstaff has SELECT and INSERT permission.

The commands GRANT and REVOKE are used to set access permissions.

\! [conmand]

Escapes to a separate Unix shell or executes the Unix command conmand. The arguments are not
further interpreted, the shell will see them as is.

\?

Get help information about the backslash (\) commands.

Command-line Options

If so configured, psql understands both standard Unix short options, and GNU-style long options. The
latter are not available on all systems.

-a, --echo-all

Print all the lines to the screen as they are read. This is more useful for script processing rather
than interactive mode. This is equivalent to setting the variable ECHO to al | .

209

PostgreSQL Client Applications

-A, --no-align

Switches to unaligned output mode. (The default output mode is otherwise aligned.)

-c, --command query

Specifies that psqgl is to execute one query string, query, and then exit. This is useful in shell
scripts.

guery must be either a query string that is completely parseable by the backend (i.e., it contains
no psql specific features), or it is a single backslash command. Thus you cannot mix SQL and psql
meta-commands. To achieve that, you could pipe the string into psql, like this: echo "\ x \\
select * fromfoo;" | psql.

-d, --dbname dbnane
Specifies the name of the database to connect to. This is equivalent to specifying dbnan®e as the
first non-option argument on the command line.

-e, --echo-queries
Show all queries that are sent to the backend. This is equivalent to setting the variable ECHO to
queri es.

-E, --echo-hidden

Echoes the actual queries generated by \d and other backslash commands. You can use this if you
wish to include similar functionality into your own programs. This is equivalent to setting the
variable ECHO_HIDDEN from within psql.

-f, -filefi | enane

Use the file f i | enane as the source of queries instead of reading queries interactively. After the
file is processed, psql terminates. This is in many ways equivalent to the internal command \i.

Using this option is subtly different from writing psql < fil ename. In general, both will do
what you expect, but using -f enables some nice features such as error messages with line
numbers. There is also a slight chance that using this option will reduce the start-up overhead. On
the other hand, the variant using the shell’s input redirection is (in theory) guaranteed to yield
exactly the same output that you would have gotten had you entered everything by hand.

-F, --field-separator separ at or

Use separ at or as the field separator. This is equivalent to \pset fieldsep or \f.

-h, --host host nane

Specifies the host name of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-H, --html

Turns on HTML tabular output. This is equivalentto\ pset format htnl or the \H command.

210

PostgreSQL Client Applications

-1, --list
Lists all available databases, then exits. Other non-connection options are ignored. This is similar
to the internal command \list.
-0, --output f i | enane

Put all query output into file f i | enarre. This is equivalent to the command \o.

-p, --port por t
Specifies the TCP/IP port or, by omission, the local Unix domain socket file extension on which
the postmaster is listening for connections. Defaults to the value of the PGPORT environment
variable or, if not set, to the port specified at compile time, usually 5432.

-P, --pset assi gnment

Allows you to specify printing options in the style of \pset on the command line. Note that here
you have to separate name and value with an equal sign instead of a space. Thus to set the output
format to LaTeX, you could write - P f or mat =I at ex.

Specifies that psql should do its work quietly. By default, it prints welcome messages and various
informational output. If this option is used, none of this happens. This is useful with the - c option.
Within psgl you can also set the QUIET variable to achieve the same effect.

-R, --record-separator separ at or

Use separ at or as the record separator. This is equivalent to the \pset recor dsep command.

-s, --single-step

Run in single-step mode. That means the user is prompted before each query is sent to the
backend, with the option to cancel execution as well. Use this to debug scripts.

-S, --single-line
Runs in single-line mode where a newline terminates a query, as a semicolon does.

Note: This mode is provided for those who insist on it, but you are not necessarily encouraged
to use it. In particular, if you mix SQL and meta-commands on a line the order of execution
might not always be clear to the inexperienced user.

-t, --tuples-only

Turn off printing of column names and result row count footers, etc. It is completely equivalent to
the \t meta-command.

-T, --table-attr t abl e_opti ons

Allows you to specify options to be placed within the HTML table tag. See \pset for details.

Makes psgl prompt for the user name and password before connecting to the database.

211

PostgreSQL Client Applications

This option is deprecated, as it is conceptually flawed. (Prompting for a hon-default user name and
prompting for a password because the backend requires it are really two different things.) You are
encouraged to look at the - Uand - Woptions instead.

-U, --username user nane

Connects to the database as the user user nane instead of the default. (You must have permission
to do so, of course.)

-v, --variable, --set assi gnnent

Performs a variable assignment, like the \set internal command. Note that you must separate name
and value, if any, by an equal sign on the command line. To unset a variable, leave off the equal
sign. To just set a variable without a value, use the equal sign but leave off the value. These
assignments are done during a very early stage of start-up, so variables reserved for internal
purposes might get overwritten later.

-V, --version

Shows the psgl version.

-W, --password

Requests that psgl should prompt for a password before connecting to a database. This will remain

set for the entire session, even if you change the database connection with the meta-command
\connect.

As of version 7.0, psql automatically issues a password prompt whenever the backend requests
password authentication. Because this is currently based on a hack, the automatic recognition might
mysteriously fail, hence this option to force a prompt. If no password prompt is issued and the
backend requires password authentication the connection attempt will fail.

-X, --expanded

Turns on extended row format mode. This is equivalent to the command \x.

-X, --no-psqlrc

Do not read the start-up file ~/ . psql rc.

-?, --help

Shows help about psgl command line arguments.

Advanced features

Variables

psqgl provides variable substitution features similar to common Unix command shells. This feature is
new and not very sophisticated, yet, but there are plans to expand it in the future. Variables are simply
name/value pairs, where the value can be any string of any length. To set variables, use the psql

212

PostgreSQL Client Applications

meta-command \set:
testdb=> \set foo bar

sets the variable foo to the value bar.To retrieve the content of the variable, precede the name with a
colon and use it as the argument of any slash command:

testdb=> \echo :foo
bar

Note: The arguments of \set are subject to the same substitution rules as with other commands.
Thus you can construct interesting references such as \set :foo 'something’ and get softlinks
or variablevariables of Perl or PHP fame, respectively. Unfortunately (or fortunately?), there is no
way to do anything useful with these constructs. On the other hand, \ set bar :foo is a perfectly
valid way to copy a variable.

If you call \set without a second argument, the variable is simply set, but has no value. To unset (or
delete) a variable, use the command \unset.

psgl’s internal variable names can consist of letters, numbers, and underscores in any order and any
number of them. A number of regular variables are treated specially by psgl. They indicate certain
option settings that can be changed at runtime by altering the value of the variable or represent some
state of the application. Although you can use these variables for any other purpose, this is not
recommended, as the program behavior might grow really strange really quickly. By convention, all
specially treated variables consist of all upper-case letters (and possibly numbers and underscores). To
ensure maximum compatibility in the future, avoid such variables. A list of all specially treated
variables follows.

DBNAME
The name of the database you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

ECHO

If set to al | ,all lines entered or from a script are written to the standard output before they are
parsed or executed. To specify this on program start-up, use the switch - a. If set to queri es, psql
merely prints all queries as they are sent to the backend. The option for this is - e.

ECHO_HIDDEN

When this variable is set and a backslash command queries the database, the query is first shown.
This way you can study the Postgres internals and provide similar functionality in your own
programs. If you set the variable to the value noexec, the queries are just shown but are not actually
sent to the backend and executed.

ENCODING

The current client multibyte encoding. If you are not set up to use multibyte characters, this
variable will always contain SQL_ASCII .

213

PostgreSQL Client Applications

HISTCONTROL

If this variable is set to i gnor espace, lines which begin with a space are not entered into the
history list. If set to a value of i gnor edups, lines matching the previous history line are not
entered. A value of i gnor ebot h combines the two options. If unset, or if set to any other value
than those above, all lines read in interactive mode are saved on the history list.

Note: This feature was shamelessly plagiarized from bash.

HISTSIZE

The number of commands to store in the command history. The default value is 500.

Note: This feature was shamelessly plagiarized from bash.

HOST

The database server host you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

IGNOREEOF

If unset, sending an EOF character (usually Control-D) to an interactive session of psgl will
terminate the application. If set to a numeric value, that many EOF characters are ignored before
the application terminates. If the variable is set but has no numeric value, the default is 10.

Note: This feature was shamelessly plagiarized from bash.

LASTOID

The value of the last affected oid, as returned from an INSERT or lo_insert command. This
variable is only guaranteed to be valid until after the result of the next SQL command has been
displayed.

LO_TRANSACTION

If you use the Postgres large object interface to specially store data that does not fit into one tuple,
all the operations must be contained in a transaction block. (See the documentation of the large
object interface for more information.) Since psgl has no way to tell if you already have a
transaction in progress when you call one of its internal commands (\lo_export, \lo_import,
\lo_unlink) it must take some arbitrary action. This action could either be to roll back any
transaction that might already be in progress, or to commit any such transaction, or to do nothing at
all. In the last case you must provide your own BEGIN TRANSACTION/COMMIT block or the
results will be unpredictable (usually resulting in the desired action’s not being performed in any
case).

To choose what you want to do you set this variable to one of rollback, commit, or nothing. The
default is to roll back the transaction. If you just want to load one or a few objects this is fine.
However, if you intend to transfer many large objects, it might be advisable to provide one explicit
transaction block around all commands.

214

PostgreSQL Client Applications

ON_ERROR_STOP

By default, if non-interactive scripts encounter an error, such as a malformed SQL query or
internal meta-command, processing continues. This has been the traditional behavior of psql but it
is sometimes not desirable. If this variable is set, script processing will immediately terminate. If
the script was called from another script it will terminate in the same fashion. If the outermost
script was not called from an interactive psql session but rather using the - f option, psql will return
error code 3, to distinguish this case from fatal error conditions (error code 1).

PORT

The database server port to which you are currently connected. This is set every time you connect

to a database (including program start-up), but can be unset.
PROMPT1, PROMPT2, PROMPT3

These specify what the prompt psql issues is supposed to look like. See Prompting below.

QUIET

This variable is equivalent to the command line option - q. It is probably not too useful in
interactive mode.

SINGLELINE

This variable is set by the command line option - S. You can unset or reset it at run time.

SINGLESTEP

This variable is equivalent to the command line option - s.

USER

The database user you are currently connected as. This is set every time you connect to a database
(including program start-up), but can be unset.

SQL Interpolation
An additional useful feature of psql variables is that you can substitute (interpolate) them into regular
SQL statements. The syntax for this is again to prepend the variable name with a colon ().

testdb=> \set foo ’ny_table’
t est db=> SELECT * FROM :f oo;

would then query the table my_t abl e. The value of the variable is copied literally, so it can even
contain unbalanced quotes or backslash commands. You must make sure that it makes sense where you
put it. Variable interpolation will not be performed into quoted SQL entities.

A popular application of this facility is to refer to the last inserted OID in subsequent statements to
build a foreign key scenario. Another possible use of this mechanism is to copy the contents of a file

215

PostgreSQL Client Applications

into a field. First load the file into a variable and then proceed as above.

testdb=> \set content '\'’' ‘cat ny_file.txt' "\’
t est db=> I NSERT | NTO ny_t abl e VALUES (:content);

One possible problem with this approach is that ny_fi | e. t xt might contain single quotes. These need
to be escaped so that they don’t cause a syntax error when the third line is processed. This could be done
with the program sed:

testdb=> \set content ‘sed -e "s/'/\\\\\\"/g" < ny_file. txt’

Observe the correct number of backslashes (6)! You can resolve it this way: After psgl has parsed this
line, it passes sed -e "s/’/\\\'/g" < ny_file.txt tothe shell. The shell will do its own thing
inside the double quotes and execute sed with the arguments - e and s/’ /\\ ' / g. When sed parses this
it will replace the two backslashes with a single one and then do the substitution. Perhaps at one point
you thought it was great that all Unix commands use the same escape character. And this is ignoring the
fact that you might have to escape all backslashes as well because SQL text constants are also subject to
certain interpretations. In that case you might be better off preparing the file externally.

Since colons may legally appear in queries, the following rule applies: If the variable is not set, the
character sequence colon+name is not changed. In any case you can escape a colon with a backslash to
protect it from interpretation. (The colon syntax for variables is standard SQL for embedded query
languages, such as ecpg. The colon syntax for array slices and type casts are Postgres extensions, hence
the conflict.)

Prompting

The prompts psql issues can be customized to your preference. The three variables PROMPT1,
PROMPT2, and PROMPT3 contain strings and special escape sequences that describe the appearance of
the prompt. Prompt 1 is the normal prompt that is issued when psqgl requests a new query. Prompt 2 is
issued when more input is expected during query input because the query was not terminated with a
semicolon or a quote was not closed. Prompt 3 is issued when you run an SQL COPY command and
you are expected to type in the tuples on the terminal.

The value of the respective prompt variable is printed literally, except where a percent sign (%) is
encountered. Depending on the next character, certain other text is substituted instead. Defined
substitutions are:

9
The full hostname (with domain name) of the database server (or localhost if hostname information
is not available).

%m

The hostname of the database server, truncated after the first dot.

%

The port number at which the database server is listening.

%

The username you are connected as (not your local system user name).

216

PostgreSQL Client Applications

%

The name of the current database.

%-

Like 94 , but the output is ~ (tilde) if the database is your default database.

Y6t

If the current user is a database superuser, then a #, otherwise a >.

IR
In prompt 1 normally =,but ~if in single-line mode, and !if the session is disconnected from the
database (which can happen if \connect fails). In prompt 2 the sequence is replaced by -, *,a single
quote, or a double quote, depending on whether psql expects more input because the query wasn’t
terminated yet, because you are inside a/* ... */ comment, or because you are inside a quote.
In prompt 3 the sequence doesn’t resolve to anything.
udigits
If di gi ts starts with 0x the rest of the characters are interpreted as a hexadecimal digit and the
character with the corresponding code is substituted. If the first digit is 0 the characters are
interpreted as on octal number and the corresponding character is substituted. Otherwise a decimal
number is assumed.
% name:

The value of the psgl, variable name. See the section Variables for details.

% conmand'
The output of conmrand, similar to ordinary back-tick substitution.

To insert a percent sign into your prompt, write %86 The default prompts are equivalent to * % %404 °
for prompts 1 and 2, and’ >> * for prompt 3.

Note: This feature was shamelessly plagiarized from tcsh.

Miscellaneous

psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own (out of memory, file not
found) occurs, 2 if the connection to the backend went bad and the session is not interactive, and 3 if an
error occurred in a script and the variable ON_ERROR_STOP was set.

Before starting up, psqgl attempts to read and execute commands from the file $HOME/ . psql r c. It could
be used to set up the client or the server to taste (using the \set and SET commands).

GNU readline

psql supports the readline and history libraries for convenient line editing and retrieval. The command
history is stored in a file named . psql _hi st ory in your home directory and is reloaded when psql
starts up. Tab-completion is also supported, although the completion logic makes no claim to be an SQL
parser. When available, psql is automatically built to use these features. If for some reason you do not

217

PostgreSQL Client Applications

like the tab completion, you can turn if off by putting this in a file named . i nputrc in your home
directory:

$if psql
set di sabl e-conpl etion on
$endi f

(This is not a psql but a readline feature. Read its documentation for further details.)

If you have the readline library installed but psql does not seem to use it, you must make sure that
Postgres’s top-level configure script finds it. configure needs to find both the library
l'i breadline.a (or ashared library equivalent) and the header files r eadl i ne. h and hi st ory. h (or
readline/readline.h and readline/history.h) in appropriate directories. If you have the
library and header files installed in an obscure place you must tell conf i gur e about them, for example:

$./configure --w th-includes=/opt/gnu/include --with-libs=/opt/gnu/lib

Then you have to recompile psql (not necessarily the entire code tree).

The GNU readline library can be obtained from the GNU project’s FTP server at ftp://ftp.gnu.org.

Examples

Note: This section only shows a few examples specific to psql. If you want to learn SQL or get
familiar with Postgres, you might wish to read the Tutorial that is included in the distribution.

The first example shows how to spread a query over several lines of input. Notice the changing prompt:

t est db=> CREATE TABLE ny_table (

testdb(> first integer not null default O,
testdb(> second text

testdb->);

CREATE

Now look at the table definition again:

testdb=> \d ny_table
Tabl e "ny_tabl e"

Attribute | Type | Modi fi er
___________ e
first | integer | not null default O
second | text |

At this point you decide to change the prompt to something more interesting:

t estdb=> \set PROVPT1 ' % @6 %904 '
pet er @ocal host testdb=>

218

PostgreSQL Client Applications

Let’s assume you have filled the table with data and want to take a look at it:

pet er @ ocal host testdb=> SELECT * FROM ny_t abl e;
first | second

_______ .
1| one
2| tw
3| three
4 | four

(4 rows)

You can make this table look differently by using the \pset command:

pet er @ocal host testdb=> \pset border 2
Border style is 2.
pet er @ ocal host testdb=> SELECT * FROM ny_t abl e;

Fomm o B +
| first | second |
Fomm o Fomm e e e +
| 1| one |
I 2| two I
| 3| three |
| 4 | four |
Fomm e Fommm e m o m +
(4 rows)

peter @ocal host testdb=> \pset border 0

Border style is O.

pet er @ocal host testdb=> SELECT * FROM ny_t abl e;
first second

pet er @ocal host testdb=> \pset border 1

Border style is 1.

pet er @ocal host testdb=> \pset format unaligned
Qut put format is unaligned.

pet er @ocal host testdb=> \pset fieldsep ","
Field separator is ","

pet er @ocal host testdb=> \pset tuples_only
Showi ng only tuples.

pet er @ ocal host testdb=> SELECT second, first FROM ny_tabl e;
one, 1

two, 2

three, 3

four, 4

219

PostgreSQL Client Applications

Alternatively, use the short commands:

peter @ocal host testdb=> \a \t \x

Qutput format is aligned.

Tuples only is off.

Expanded di splay is on.

pet er @ ocal host testdb=> SELECT * FROM ny_t abl e;

-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3] -
first | 3
second | three
-[RECORD 4] -
first | 4

second | four

Appendix

Bugs and Issues

In some earlier life psql allowed the first argument to start directly after the (single-letter) command.
For compatibility this is still supported to some extent but | am not going to explain the details here as
this use is discouraged. But if you get strange messages, keep this in mind. For example

testdb=> \foo
Field separator is "oo0"

which is perhaps not what one would expect.

psqgl only works smoothly with servers of the same version. That does not mean other combinations
will fail outright, but subtle and not-so-subtle problems might come up.

Pressing Control-C during a copy in (data sent to the server) doesn’t show the most ideal of
behaviors. If you get a message such as PQexec: you gotta get out of a COPY state yourself , simply
reset the connection by entering\c - -.

220

PostgreSQL Client Applications

pgtclsh

Name

pgt cl sh PostgreSQL Tcl shell client
Synopsis
pgtclsh [f i | enane [ar gunent s...]]

Description

pgatclsh is a Tcl shell interface extended with Postgres database access functions. (Essentially, it is tclsh
with | i bpgt cl loaded.) Like with the regular Tcl shell, the first command line argument is a script file,
any remaining arguments are passed to the script. If no script file is named, the shell is interactive.

A Tcl shell with Tk and Postgres functions is available as pgtksh .

See Also
pgtksh , PostgreSQL Programmer’s Guide (description of | i bpgt cl), tclsh

pgtksh

Name
pgt ksh PostgreSQL Tcl/Tk shell client

Synopsis
patksh [f i | ename [ar gunent s...]]

Description

pgtksh is a Tcl/Tk shell interface extended with Postgres database access functions. (Essentially, it is
wish with I i bpgt cl loaded.) Like with wish, the regular Tcl/Tk shell, the first command line argument
is a script file, any remaining arguments are passed to the script. Special options may be processed by
the X Window System libraries instead. If no script file is named, the shell is interactive.

A plain Tcl shell with Postgres functions is available as pgtclsh .

See Also

pgtclsh , PostgreSQL Programmer’s Guide (description of | i bpgt cl), tclsh , wish

221

PostgreSQL Client Applications

vacuumdb

Name

vacuundb Clean and analyze a Postgres database
Synopsis

vacuumdb [connecti on-options..] [[-d] dbname] [--analyze | -z] [--verbose | -v] [--table
table[(colum[,...])]"]
vacuumdb [connect i on- opti ons...] [--all | -a] [--analyze | -z] [--verbose | -]

Inputs

vacuumdb accepts the following command line arguments:
-d dbnane
--dbname dbnane
Specifies the name of the database to be cleaned or analyzed.
-z
--analyze
Calculate statistics on the database for use by the optimizer.
-a
--alldb
Vacuum all databases.
-V
--verbose
Print detailed information during processing.
-ttable[(colum[,..])]
--tablet abl e [(col um [,...])]

Clean or analyze t abl e only. Column names may be specified only in conjunction with the
--anal yze option.

Tip: If you specify columns to vacuum, you probably have to escape the parentheses from the
shell.

222

PostgreSQL Client Applications

vacuumdb also accepts the following command line arguments for connection parameters:
-h host
--host host

Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-p port
--port por t
Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.
-U user nane
--username user name
Username to connect as.
-W
--password
Force password prompt.
-e
--echo
Echo the commands that vacuumdb generates and sends to the backend.
-q
--quiet

Do not display a response.

Outputs

VACUUM

Everything went well.

vacuundb: Vacuum fai |l ed.

Something went wrong. vacuumdb is only a wrapper script. See VACUUM and psql for a detailed
discussion of error messages and potential problems.

223

PostgreSQL Client Applications

Description
vacuumdb is a utility for cleaning a Postgres database. vacuumdb will also generate internal statistics
used by the Postgres query optimizer.

vacuumdb is a shell script wrapper around the backend command VACUUM via the Postgres interactive

terminal psql. There is no effective difference between vacuuming databases via this or other methods.
psgl must be found by the script and a database server must be running at the targeted host. Also, any
default settings and environment variables available to psgl and the libpg front-end library do apply.

Usage

To clean the database t est :
$ vacuundb test

To analyze for the optimzer a database named bi gdb:
$ vacuundb --anal yze bi gdb

To analyze a single column bar in table f oo in a database named xyzzy for the optimizer:
$ vacuumdb --analyze --verbose --table 'foo(bar)’ xyzzy

224

Ill. PostgreSQL Server Applications

This is reference information for Postgres server applications and support utilities.

createlang

Name

creat el ang Add a new programming language to a Postgres database
Synopsis

createlang [connect i on- opti ons...] [angnane] dbnane
createlang [connect i on- opti ons...] --list| -l dbnane

Inputs
createlang accepts the following command line arguments:

| angnane

Specifies the name of the backend programming language to be defined. createlang will prompt for
| angnane if it is not specified on the command line.

-d, --dbname dbnane
Specifies which database the language should be added.
-1, --list

Shows a list of already installed languages in the target database (which must be specified).

createlang also accepts the following command line arguments for connection parameters:

-h, --host host
Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.
-p, --port por t
Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.
-U, --username user name

Username to connect as.

-W, --password

Force password prompt.

226

PostgreSQL Server Applications

Outputs

Most error messages are self-explanatory. If not, run createlang with the - - echo option and see under
the respective SQL command for details. Check also under psqgl for more possibilities.

Description

createlang is a utility for adding a new programming language to a Postgres database. createlang
currently accepts several languages, pl pgsql, pltcl, pltclu, andpl perl.

Although backend programming languages can be added directly using several SQL commands, it is
recommended to use createlang because it performs a number of checks and is much easier to use. See
CREATE LANGUAGE for more.

Notes

Use droplang to remove a language.

Usage

Toinstall pl t cl into the database t enpl at el:
$ createlang pltcl tenplatel

droplang

Name

dr opl ang Remove a programming language from a Postgres database
Synopsis

droplang [connecti on- opti ons...] [| angnane] dbnane
droplang [connect i on- opti ons...] --list| -l dbnane

Inputs
droplang accepts the following command line arguments:

| angnane

Specifies the name of the backend programming language to be removed. droplang will prompt for
| angnane if it is not specified on the command line.

[-d, --dbname] dbnane

Specifies from which database the language should be removed.

-1, --list

Shows a list of already installed languages in the target database (which must be specified).

227

PostgreSQL Server Applications

droplang also accepts the following command line arguments for connection parameters:

-h, --host host

Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-p, --port por t

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.

-U, --username user nane

Username to connect as.

-W, --password

Force password prompt.

Outputs

Most error messages are self-explanatory. If not, run droplang with the - - echo option and see under
the respective SQL command for details. Check also under psql for more possibilities.

Description

droplang is a utility for removing an existing programming language from a Postgres database. droplang
currently accepts two languages, pl sql and pl tcl.

Although backend programming languages can be removed directly using several SQL commands, it is
recommended to use droplang because it performs a number of checks and is much easier to use. See
DROP LANGUAGE for more.

Notes

Use createlang to add a language.

Usage

Toremovepltcl:
$ droplang pltcl

228

initdb

PostgreSQL Server Applications

Name

i nitdb Create a new Postgres database cluster
Synopsis

initdb --pgdata | -D dbdi r [--sysid | -i sysi d] [--pwprompt | -W] [--encoding | -E encodi ng] [-L
di r ect or y] [--noclean | -n] [--debug | -d]

Description

initdb creates a new Postgres database cluster or system. A database cluster is a collection of databases
that are managed by a single postmaster.

Creating a database system consists of creating the directories in which the database data will live,
generating the shared catalog tables (tables that belong to the whole cluster rather than to any particular
database), and creating the t enpl at el database. When you create a new database, everything in the
t enpl at el database is copied. It contains catalog tables filled in for things like the built-in types.

You must not execute initdb as root; it must be run by the Unix user account that will run the database
server. This is because you cannot run the database server as root either, but the server needs to have
access to the files initdb creates. Furthermore, during the initialization phase, when there are no users
and no access controls installed, Postgres will only connect with the name of the current Unix user, so
you must log in under the account that will own the server process.

Although initdb will attempt to create the specified data directory, often it won’t have permission to do
so, since the parent of the desired data directory is often a root-owned directory. To set up an
arrangement like this, create an empty data directory as root, then use chown to hand over ownership of
that directory to the database user account, then su to become the database user, and finally run initdb as
the database user.

Options

--pgdata=dbdi r
-Ddbdir

This option specifies where in the file system the database should be stored. This is the only
information required by initdb, but you can avoid writing it by setting the PGDATA environment
variable, which can be convenient since the database server (post mast er) can find the database
directory later by the same variable.

229

PostgreSQL Server Applications

--sysid=sysi d
-isysid
Selects the system id of the database superuser. This defaults to the effective user id of the user

running initdb. It is really not important what the superuser’s sysid is, but one might choose to start
the numbering at some number like 1.

--pwprompt
-W

Makes initdb prompt for a password to give the database superuser. If you don’t plan on using
password authentication, this is not important. Otherwise you won’t be able to use password
authentication until you have a password set up.

--encoding=encodi ng
-E encodi ng

Selects the multibyte encoding of the template database. This will also be the default encoding of
any database you create later, unless you override it there. To use the multibyte encoding feature,
you must specify so at build time, at which time you also select the default for this option.

Other, less commonly used, parameters are also available:

-Ldirectory
Specifies where initdb should find its input files to initialize the database system. This is normally
not necessary. You will be told if you need to specify their location explicitly.

--noclean

-n

By default, when initdb determines that an error prevented it from completely creating the
database system, it removes any files it may have created before discovering that it can’t finish the
job. This option inhibits tidying-up and is thus useful for debugging.

--debug
-d

Print debugging output from the bootstrap backend and a few other messages of lesser interest for
the general public. The bootstrap backend is the program initdb uses to create the catalog tables.
This option generates a tremendous amount of extremely boring output.

See also

PostgreSQL Administrator’s Guide

230

PostgreSQL Server Applications

initlocation

Name

i nitlocation Create asecondary Postgres database storage area
Synopsis
initlocation di r ect ory

Description

initlocation creates a new Postgres secondary database storage area. See the discussion under CREATE
DATABASE about how to manage and use secondary storage areas. If the argument does not contain a
slash and is not valid as a path, it is assumed to be an environment variable, which is referenced. See the
examples at the end.

In order to use this command you must be logged in (using ’su’, for example) as the database superuser.

Usage

To create a database in an alternate location, using an environment variable:
$ export PCDATA2=/ opt/ postgres/ data
Stop and start postmaster so it sees the PGDATAZ2 environment variable. The system must be
configured so the postmaster sees PGDATAZ every time it starts. Finally:
$ initlocation PGDATA2
$ createdb -D PGDATA2 testdb

Alternatively, if you allow absolute paths you could write:
$ initlocation /opt/postgres/data
$ createdb -D /opt/postgres/data/testdb testdb

231

PostgreSQL Server Applications

ipcclean

Name

i pccl ean Clean up shared memory and semaphores from aborted backends

Synopsis
ipcclean

Description

ipcclean cleans up shared memory and semaphore space from aborted backends by deleting all
instances owned by user post gr es. Only the DBA should execute this program as it can cause bizarre
behavior (i.e., crashes) if run during multi-user execution. This program should be executed if messages
such as senget: No space left on device are encountered when starting up the postmaster or
the backend server.

If this command is executed while postmaster is running, the shared memory and semaphores allocated
by the postmaster will be deleted. This will result in a general failure of the backend servers started by
that postmaster.

This script is a hack, but in the many years since it was written, no one has come up with an equally
effective and portable solution. Suggestions are welcome.

The script makes assumption about the format of output of the ipcs utility which may not be true across
different operating systems. Therefore, it may not work on your particular OS.

pg_ctl

Name

pg_ct| Starts, stops, or restarts postmaster

Synopsis

pg_ctl start [-w] [-D dat adi r] [-I fi | enane] [-0 opt i ons] [-p pat h]

pg_ctl stop [-W] [-D dat adi r] [-m s[mart] | f[ast] | ifmmediate]]

pg_ctl restart [-w] [-D dat adi r] [-m s[mart] | f[ast] | iimmediate]] [-0 opt i ons]
pg_ctl status [-D dat adi r]

Description

pg_ctl is a utility for starting, stopping, or restarting postmaster, the PostgreSQL backend server, or

displaying the status of a running postmaster. Although the postmaster can be started manually, pg_ctl
encapulates tasks such as redirecting log output, properly detaching from the terminal and process
group, and additionally provides an option for controlled shut down.

232

PostgreSQL Server Applications

In start mode, a new postmaster is launched. The server is started in the background, the standard
input attached to / dev/ nul | . The standard output and standard error are either appended to a log file, if
the -1 option is used, or are redirected to pg_ctl’s standard output (not standard error). If no log file is
chosen, the standard output of pg_ctl should be redirected to a file or piped to another process, for
example a log rotating program, otherwise the postmaster will write its output the the controlling
terminal (from the background) and will not leave the shell’s process group.

In st op mode, the postmaster that is running on the specified data directory is shut down. Three
different shutdown methods can be selected with the - moption: Smart mode waits for all the clients to
disconnect. This is the default. Fast mode does not wait for clients to disconnect. All active transactions
will be rolled back. Immediate mode will abort without complete shutdown. This will lead to a recovery
run on restart. By the default, stop mode waits for the shutdown to complete.

rest art mode effectively executes a stop followed by a start. This allows the changing of postmaster
command line options.

st at us mode checks whether a postmaster is running and if so displays the PID and the command line
options that were used to invoke it.

Options

-Ddat adi r
Specifies the file system location of the database files. If this is omitted, the environment variable
PGDATA is used.
-Ifil enane
Append the server log output to f i | enane. If the file does not exist, it is created. The umask is
set to 077, so access to the log file from other users is disallowed by default.
-m node
Specifies the shutdown mode. nbde may be smart, f ast, ori medi at e, or the first letter of one
of these three.
-ooptions
Specifies options to be passed directly to postmaster.
The parameters are usually surrounded by single or double quotes to ensure that they are passed
through as a group.
-ppath

Specifies the location of the post mast er executable. By default the postmaster is taken from the
same directory as pg_ctl, or failing that, the hard-wired installation directory. It is not necessary to
use this option unless you are doing something unusual and get errors that the postmaster was not
found.

233

PostgreSQL Server Applications

Wait for the start or stutdown to complete. Times out after 60 seconds. This is the default for

shutdowns.
-w

Do not wait for start or shutdown to complete. This is the default for starts and restarts.
Files

If the file post mast er. opt s. def aul t exists in the data directory, the contents of the file will be
passed as options to the postmaster, unless overridden by the - o option.

Examples
Starting the postmaster
To start up postmaster:

$ pg_ctl start

An example of starting the postmaster, blocking until postmaster comes up is:

$ pg_ctl -wstart

For a postmaster using port 5433, and running without f sync, use:

$ pg_ctl -0 "-F -p 5433" start

Stopping the postmaster
$ pg_ctl stop
stops postmaster. Using the - mswitch allows one to control how the backend shuts down.

Restarting the postmaster

This is almost equivalent to stopping the postmaster then starting it again except that pg_ctl saves and
reuses the command line options that were passed to the previously running instance. To restart
postmaster in the simplest form:

$ pg_ctl restart

To restart postmaster, waiting for it to shut down and to come up:

$ pg_ctl -wrestart

234

PostgreSQL Server Applications

To restart using port 5433 and disabling fsync after restarting:

$ pg_ctl -0 "-F -p 5433" restart

Showing postmaster status

Here is a sample status output from pg_ctl:

$ pg_ctl status

pg_ctl: postmaster is running (pid: 13718)

Command |ine was

lusr/1ocal /pgsql/bin/postmaster '-D ’'/usr/local/pgsql/data’ '-p’ '5433" '-B 128

This is the command line that would be invoked in restart mode.

Bugs

Waiting for complete start is not a well-defined operation and may fail if access control is set up in way
that a local client cannot connect without manual interaction. It should be avoided.

See Also

postmaster, PostgreSQL Administrator’s Guide

pg_passwd

Name

pg_passwd Manipulate a text password file

Synopsis
pg_passwd fi | ename

Description

pg_passwd is a tool to manipulate a flat text password file for the purpose of using that file to control
client authentication of the PostgreSQL server. More information about setting up this authentication
mechanism can be found in the Administrator’s Guide.

The form of a text password file is one entry per line; the fields of each entry are separated by colons.
The first field is the user name, the second field is the encrypted password. Other fields are ignored (to
allow password files to be shared between applications that use similar formats). The functionality of the
pg_passwd utility is to enable a user to interactively add entries to such a file, to alter passwords of
existing entries, and to take care of encrypting the passwords.

235

PostgreSQL Server Applications

Supply the name of the password file as argument to the pg_passwd command. To be of use for client
authentication the file needs to be located in the server’s data directory, and the base name of the file
needs to be specified in the pg_hba. conf access control file.

$ pg_passwd /usr/ Il ocal / pgsql / dat a/ passwor ds

File "/usr/local/pgsql/datalpasswords" does not exist. Create? (y/n): Yy
User nane: guest

Passwor d:

Re- enter password:

where the Passwor d: and Re-ent er passwor d: prompts require the same password input which is
not displayed on the terminal. Note that the password is limited to eight useful characters by restrictions
of the standard crypt(3) library routine.

The original password file is renamed to passwor ds. bk.

To make use of this password file, put a line like the following in pg_hba. conf :
host nydb 133. 65. 96. 250 255. 255. 255. 255 password passwords

which would allow access to database mydb from host 133.65.96.250 using the passwords listed in the
passwor ds file (and only to the users listed in that file).

Note: It is also useful to have entries in a password file with an empty password field. (This is
different from an empty password.) These entries cannot be managed by pg_passwd, but it is
always possible to edit password files manually.

See also

PostgreSQL Administrator’s Guide

postgres

Name

post gres Run a PostgreSQL single-user backend

Synopsis

postgres [-A 0| 1] [-B nbuf f er s] [-c name=val ue] [-d debug- | evel] [-D dat adi r] [-e] [-E]
[-fs]i|tin|m|h][-FI[-][-L][-N][-ofil e-nane] [-O] [-P] [-s|-tpa]|pl|ex][-Ssort-neni
[-W seconds] dat abase

postgres [-A 0| 1] [-B nbuf f er s] [-c nane=val ue] [-d debug- | evel] [-D dat adi r] [-e] [-fs |
i|tn|m]|h]I[-F][-][-L] [-0file-nane] [-O] [-p dat abase] [-P] [-s| -t pa|pl|ex][-S
sort-nen][-vprotocol -versi on] [-W seconds]

Description

The post gr es executable is the actual PostgreSQL server process that processes queries. It is normally
not called directly; instead a postmaster multi-user server is started.

236

PostgreSQL Server Applications

The second form above is how postgres is invoked by the postmaster (only conceptually, since both
post mast er and post gr es are in fact the same program); it should not be invoked directly this way.
The first form invokes the server directly in interactive mode. The primary use for this mode is for
bootstrapping by initdb.

When invoked in interactive mode from the shell, the user can enter queries and the results will be
printed to the screen, but in a form that is more useful for developers than end users. But note that
running a single-user backend is not truly suitable for debugging the server since no realistic
inter-process communication and locking will happen.

When running a stand-alone backend the session user name will automatically be set to the current
effective Unix user name. If that user does not exist the server will not start.

Options
When postgres is started by a postmaster then it inherits all options set by the latter. Additionally,
postgres-specific options can be passed from the postmaster with the - o switch.

You can avoid having to type these options by setting up a configuration file. See the Administrator’s
Guide for details. Some (safe) options can also be set from the connecting client in an
application-dependent way. For example, if the environment variable PGOPTIONS is set, then
libpg-based clients will pass that string to the server, which will interpret it as postgres command-line
options.

General Purpose

The options - A, - B, - c, - d, - D, and - F have the same meaning as with the postmaster.

-€

Sets the default date style to European, which means that the day before month (rather than month
before day) rule is used to interpret ambiguous date input, and that the day is printed before the
month in certain date output formats. See the PostgreSQL User’s Guide for more information.

-ofil e-nane

Sends all debugging and error output to Qut put Fi | e. If the backend is running under the
postmaster, error messages are still sent to the frontend process as well as to Qut put Fi | e, but
debugging output is sent to the controlling tty of the postmaster (since only one file descriptor can
be sent to an actual file).

Ignore system indexes to scan/update system tuples. The REINDEX command for system
tables/indexes requires this option to be used.

Print time information and other statistics at the end of each query. This is useful for
benchmarking or for use in tuning the number of buffers.

-Ssort-nem

Specifies the amount of memory to be used by internal sorts and hashes before resorting to
temporary disk files. The value is specified in kilobytes, and defaults to 512 kilobytes. Note that for

237

PostgreSQL Server Applications

a complex query, several sorts and/or hashes might be running in parallel, and each one will be
allowed to use as much as sor t - nemkilobytes before it starts to put data into temporary files.

Options for stand-alone mode

dat abase

Specifies the name of the database to be accessed. If it is omitted it defaults to the user name.

Echo all queries.

Disables use of newline as a query delimiter.

Semi-internal Options

There are several other options that may be specified, used mainly for debugging purposes. These are
listed here only for the use by PostgreSQL system developers. Use of any of these options is highly
discouraged. Furthermore, any of these options may disappear or change in a future release without
notice.

f{sli|m|n|h}

Forbids the use of particular scan and join methods: s and i disable sequential and index scans
respectively, while n, m and h disable nested-loop, merge and hash joins respectively.

Note: Neither sequential scans nor nested-loop joins can be disabled completely; the -fs and -fn
options simply discourage the optimizer from using those plan types if it has any other
alternative.

Prevents query execution, but shows the plan tree.

-L

Turns off the locking system.
-0

Allows the structure of system tables to be modified. This is used by initdb.
-p dat abase

Indicates that this server has been started by a postmaster and makes different assumptions about
buffer pool management, file descriptors, etc.

-t pa[rser] | pl[anner] | e[xecutor]

Print timing statistics for each query relating to each of the major system modules. This option
cannot be used together with the - s option.

238

PostgreSQL Server Applications

-v pr ot ocol
Specifies the version number of the frontend/backend protocol to be used for this particular
session.

-W seconds

As soon as this option is encountered, the process sleeps for the specified amount of seconds. This
gives developers time to attach a debugger to the backend process.

See also

initdb, ipcclean, postmaster

postmaster

Name

post mast er PostgreSQL multi-user database server
Synopsis

postmaster [-A 0| 1][-B nbuf f er s][-c name=val ue] [-d debug-| evel][-D dat adi r] [-F] [-h
host nane] [-i] [-k di rect ory] [-I] [-N nmax- connecti ons] [-0 extra- opti ons] [-p port]

[-S1[-n|-s]

Description

postmaster is the PostgreSQL multi-user database server. In order for a client application to access a
database it connects (over a network or locally) to a running postmaster. The postmaster then starts a
separate server process (postgres) to handle the connection. The postmaster also manages the
communication among server processes.

By default the postmaster starts in the foreground and prints log messages to the standard output. In
practical applications the postmaster should be started as a background process, perhaps at boot time.

One postmaster always manages the data from exactly one database cluster. A database cluster is a
collection of databases that is stored at a common file system location. When the postmaster starts it
needs to know the location of the database cluster files (data area). This is done with the - D invocation
option or the PGDATA environment variable; there is no default. More than one postmaster process can
run on a system at one time, as long as they use different data areas and different communication ports
(see below). A data area is created with initdb.

Options

postmaster accepts the following command line arguments. For a detailed discussion of the options
consult the Administrator’s Guide. You can also save typing most of these options by setting up a

239

PostgreSQL Server Applications

configuration file.

-A 0|1
Enables run-time assert checks, which is a debugging aid to detect programming mistakes. This is
only available if it was enabled during compilation. If so, the default is on.
-Bnbuffers
Sets the number of shared buffers for use by the server processes. This value defaults to 64 buffers,
where each buffer is 8 kB.
-c nane=val ue

Sets a named run-time parameter. Consult the Administrator’s Guide for a list and descriptions.
Most of the other command line options are in fact short forms of such a parameter assignment.

On some systems it is also possible to equivalently use GNU-style long options in the form -
- name=val ue.
-d debug- | evel
Sets the debug level. The higher this value is set, the more debugging output is written to the
server log. The default is 0, which means no debugging. Values up to 4 make sense.
-Ddatadir

Specifies the file system location of the data directory. See discussion above.

-F
Disables f sync calls for performance improvement at the risk of data corruption. Read the
detailed documentation before using this!
-h host nane
Specifies the TCP/IP hostname or address on which the postmaster is to listen for connections
from client applications. Defaults to listening on all configured addresses (including localhost).
-i
Allows clients to connect via TCP/IP (Internet domain) connections. Without this option, only
local Unix domain socket connections are accepted.
-kdirectory

Specifies the directory of the Unix-domain socket on which the postmaster is to listen for
connections from client applications. The default is normally / t np, but can be changed at build
time.

Enables secure connections using SSL. The -i option is also required. You must have compiled
with SSL enabled to use this option.

-N max- connecti ons

240

PostgreSQL Server Applications

Sets the maximum number of client connections that this postmaster will accept. By default, this
value is 32, but it can be set as high as 1024 if your system will support that many processes. (Note
that - B is required to be at least twice - N.)

-oextra-options

The command line-style options specified in ext r a- opt i ons are passed to all backend server
processes started by this postmaster. See postgres for possibilities. If the option string contains any
spaces, the entire string must be quoted.

-p port

Specifies the TCP/IP port or local Unix domain socket file extension on which the postmaster is to
listen for connections from client applications. Defaults to the value of the PGPORT environment
variable, or if PGPORT is not set, then defaults to the value established during compilation
(normally 5432). If you specify a port other than the default port, then all client applications must
specify the same port using either command-line options or PGPORT.

Specifies that the postmaster process should start up in silent mode. That is, it will disassociate
from the user’s (controlling) terminal, start its own process group, and redirect its standard output
and standard error to / dev/ nul | .

Using this switch discards all logging output, which is probably not what you want, since it makes
it very difficult to troubleshoot problems. See below for a better way to start the postmaster in the
background.

Two additional command line options are available for debugging problems that cause a backend to die
abnormally. These options control the behavior of the postmaster in this situation, and neither option is
intended for use in ordinary operation.

The ordinary strategy for this situation is to notify all other backends that they must terminate and then
reinitialize the shared memory and semaphores. This is because an errant backend could have corrupted
some shared state before terminating.

These special-case options are:

-Nn

postmaster will not reinitialize shared data structures. A knowledgeable system programmer can
then use a debugger to examine shared memory and semaphore state.

postmaster will stop all other backend processes by sending the signal SI GSTOP, but will not cause
them to terminate. This permits system programmers to collect core dumps from all backend
processes by hand.

241

PostgreSQL Server Applications

Outputs

senget: No space left on device

If you see this message, you should run the ipcclean command. After doing so, try starting
postmaster again. If this still doesn’t work, you probably need to configure your kernel for shared
memory and semaphores as described in the installation notes. If you run multiple instances of
postmaster on a single host, or have a kernel with particularly small shared memory and/or
semaphore limits, you may have to reconfigure your kernel to increase its shared memory or
semaphore parameters.

Tip: You may be able to postpone reconfiguring your kernel by decreasing -B to reduce Postgres’
shared memory consumption, and/or by reducing -N to reduce Postgres’ semaphore
consumption.

StreantServerPort: cannot bind to port

If you see this message, you should make certain that there is no other postmaster process already
running on the same port number. The easiest way to determine this is by using the command

$ ps ax | grep postmaster
or

$ ps -e | grep postmaster
depending on your system.

If you are sure that no other postmaster processes are running and you still get this error, try
specifying a different port using the - p option. You may also get this error if you terminate the
postmaster and immediately restart it using the same port; in this case, you must simply wait a few
seconds until the operating system closes the port before trying again. Finally, you may get this
error if you specify a port number that your operating system considers to be reserved. For
example, many versions of Unix consider port numbers under 1024 to be trusted and only permit
the Unix superuser to access them.

Notes

If at all possible, do not use SI GKI LL to kill the postmaster. This will prevent postmaster from freeing
the system resources (e.g., shared memory and semaphores) that it holds before terminating.

To terminate the postmaster normally, the signals SI GTERM SI G NT, or SI GQUI T can be used. The
first will wait for all clients to terminate before quitting, the second will forcefully disconnect all clients,
and the third will quit immediately without lengthy shutdown, resulting in a recovery run during restart.

The utility command pg_ctl can be used to start and shut down the postmaster safely and comfortably.

242

PostgreSQL Server Applications

Usage
To start postmaster in the background using default values, type:

$ nohup postmaster >l ogfile 2>&1 </dev/null &

To start postmaster with a specific port:
$ postrmaster -p 1234

This command will start up postmaster communicating through the port 1234. In order to connect to
this postmaster using psql, you would need to run it as

$ psql -p 1234
or set the environment variable PGPORT:

$ export PGPORT=1234
$ psql

243

