
PostgreSQL 7.1 Reference Manual

The PostgreSQL Global Development Group

PostgreSQL 7.1 Reference Manual
by The PostgreSQL Global Development Group
Copyright © 1996-2001 by PostgreSQL Global Development Group

Legal Notice

PostgreSQL

 is Copyright © 1996-2001 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the University of

California below.

Postgres95

 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement

is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE

AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED

HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE

MAINTAINANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

i

Table of Contents

Table of Contents . i
I. SQL Commands. 1

 ABORT . 2
 ALTER GROUP . 3
 ALTER TABLE . 4
 ALTER USER . 7
 BEGIN . 9
CHECKPOINT . 11
 CLOSE . 12
 CLUSTER . 13
 COMMENT . 15
 COMMIT . 16
 COPY . 18
 CREATE AGGREGATE . 24
 CREATE CONSTRAINT TRIGGER . 26
 CREATE DATABASE . 27
 CREATE FUNCTION . 31
 CREATE GROUP . 35
 CREATE INDEX . 36
 CREATE LANGUAGE . 39
 CREATE OPERATOR . 43
 CREATE RULE . 48
 CREATE SEQUENCE . 50
 CREATE TABLE . 54
 CREATE TABLE AS . 76
 CREATE TRIGGER . 77
 CREATE TYPE . 79
 CREATE USER . 83
 CREATE VIEW . 85
 DECLARE . 87
 DELETE . 90
 DROP AGGREGATE . 91
 DROP DATABASE . 93
 DROP FUNCTION . 95
 DROP GROUP . 96
 DROP INDEX . 97
 DROP LANGUAGE . 98
 DROP OPERATOR . 99
 DROP RULE . 101
 DROP SEQUENCE . 103
 DROP TABLE . 104
 DROP TRIGGER . 105
 DROP TYPE . 107
 DROP USER . 108
 DROP VIEW . 109
 END . 111
 EXPLAIN . 112
 FETCH . 114

ii

 GRANT . 118
 INSERT . 122
 LISTEN . 124
 LOAD . 126
 LOCK . 127
 MOVE . 132
 NOTIFY . 133
 REINDEX . 135
RESET . 137
 REVOKE . 138
 ROLLBACK . 141
 SELECT . 143
 SELECT INTO . 154
SET . 156
SET CONSTRAINTS . 160
SET TRANSACTION . 161
SHOW. 162
 TRUNCATE . 163
 UNLISTEN . 164
 UPDATE . 166
 VACUUM . 168

II. PostgreSQL Client Applications . 170
createdb . 171
createuser . 173
dropdb. 175
dropuser . 177
 ecpg . 179
pgaccess. 183
 pgadmin . 186
pg_config. 187
 pg_dump . 188
pg_dumpall. 192
 pg_restore . 194
psql . 200
 pgtclsh . 221
 pgtksh . 221
vacuumdb . 222

III. PostgreSQL Server Applications. 225
createlang . 226
droplang . 227
initdb. 229
initlocation . 231
ipcclean . 232
pg_ctl. 232
pg_passwd. 235
postgres . 236
postmaster . 239

I. SQL Commands
 This is reference information for the SQL commands supported by Postgres.

2

 ABORT

Name

 ABORT � Aborts the current transaction

Synopsis

ABORT [WORK | TRANSACTION]

Inputs

 None.

Outputs

ROLLBACK

 Message returned if successful.

NOTICE: ROLLBACK: no transaction in progress

 If there is not any transaction currently in progress.

Description

 ABORT rolls back the current transaction and causes all the updates made by the transaction to be
discarded. This command is identical in behavior to the SQL92 command ROLLBACK, and is present
only for historical reasons.

Notes

 Use COMMIT to successfully terminate a transaction.

Usage

 To abort all changes:

ABORT WORK;

SQL Commands

3

Compatibility

SQL92

 This command is a Postgres extension present for historical reasons. ROLLBACK is the SQL92
equivalent command.

 ALTER GROUP

Name

 ALTER GROUP � Add users to a group, remove users from a group

Synopsis

ALTER GROUP name ADD USER username [, ...]
ALTER GROUP name DROP USER username [, ...]

Inputs

name

 The name of the group to modify.

username

 Users which are to be added or removed from the group. The user names must exist.

Outputs

ALTER GROUP

 Message returned if the alteration was successful.

Description

 ALTER GROUP is used to add or remove users from a group. Only database superusers can use this
command. Adding a user to a group does not create the user. Similarly, removing a user from a group
does not drop the user itself.

 Use CREATE GROUP to create a new group and DROP GROUP to remove a group.

SQL Commands

4

Usage

 Add users to a group:

ALTER GROUP staff ADD USER karl, john

 Remove a user from a group:

ALTER GROUP workers DROP USER beth

Compatibility

SQL92

 There is no ALTER GROUP statement in SQL92. The concept of roles is similar.

 ALTER TABLE

Name

 ALTER TABLE � Modifies table properties

Synopsis

ALTER TABLE [ONLY] table [*]
 ADD [COLUMN] column type
ALTER TABLE [ONLY] table [*]
 ALTER [COLUMN] column { SET DEFAULT value | DROP DEFAULT }
ALTER TABLE table [*]
 RENAME [COLUMN] column TO newcolumn
ALTER TABLE table
 RENAME TO newtable
ALTER TABLE table
 ADD table constraint definition
ALTER TABLE table
 OWNER TO new owner

Inputs

 table

 The name of an existing table to alter.

 column

 Name of a new or existing column.

SQL Commands

5

 type

 Type of the new column.

 newcolumn

 New name for an existing column.

 newtable

 New name for the table.

 table constraint definition

 New table constraint for the table

New user

 The user name of the new owner of the table.

Outputs

ALTER

 Message returned from column or table renaming.

ERROR

 Message returned if table or column is not available.

Description

 ALTER TABLE changes the definition of an existing table. The ADD COLUMN form adds a new
column to the table using the same syntax as CREATE TABLE. The ALTER COLUMN form allows you to
set or remove the default for the column. Note that defaults only apply to newly inserted rows. The
RENAME clause causes the name of a table or column to change without changing any of the data
contained in the affected table. Thus, the table or column will remain of the same type and size after this
command is executed. The ADD table constraint definition clause adds a new constraint
to the table using the same syntax as CREATE TABLE. The OWNER clause chnages the owner of the
table to the user new user.

 You must own the table in order to change its schema.

Notes

 The keyword COLUMN is noise and can be omitted.

 In the current implementation, default and constraint clauses for the new column will be ignored. You
can use the SET DEFAULT form of ALTER TABLE to set the default later. (You will also have to
update the already existing rows to the new default value, using UPDATE.)

SQL Commands

6

 In the current implementation, only FOREIGN KEY constraints can be added to a table. To create or
remove a unique constraint, create a unique index (see CREATE INDEX). To add check constraints you
need to recreate and reload the table, using other parameters to the CREATE TABLE command.

 You must own the table in order to change it. Renaming any part of the schema of a system catalog is
not permitted. The PostgreSQL User’s Guide has further information on inheritance.

 Refer to CREATE TABLE for a further description of valid arguments.

Usage

 To add a column of type VARCHAR to a table:

ALTER TABLE distributors ADD COLUMN address VARCHAR(30);

 To rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

 To rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;

 To add a foreign key constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address)
REFERENCES addresses(address) MATCH FULL

Compatibility

SQL92

 The ADD COLUMN form is compliant with the exception that it does not support defaults and constraints,
as explained above. The ALTER COLUMN form is in full compliance.

 SQL92 specifies some additional capabilities for ALTER TABLE statement which are not yet directly
supported by Postgres:

ALTER TABLE table DROP CONSTRAINT constraint { RESTRICT | CASCADE }

SQL Commands

7

 Removes a table constraint (such as a check constraint, unique constraint, or foreign key
constraint). To remove a unique constraint, drop a unique index. To remove other kinds of
constraints you need to recreate and reload the table, using other parameters to the CREATE
TABLE command.

 For example, to drop any constraints on a table distributors:

CREATE TABLE temp AS SELECT * FROM distributors;
DROP TABLE distributors;
CREATE TABLE distributors AS SELECT * FROM temp;
DROP TABLE temp;

ALTER TABLE table DROP [COLUMN] column { RESTRICT | CASCADE }

 Removes a column from a table. Currently, to remove an existing column the table must be
recreated and reloaded:

CREATE TABLE temp AS SELECT did, city FROM distributors;
DROP TABLE distributors;
CREATE TABLE distributors (
 did DECIMAL(3) DEFAULT 1,
 name VARCHAR(40) NOT NULL
);
INSERT INTO distributors SELECT * FROM temp;
DROP TABLE temp;

 The clauses to rename columns and tables are Postgres extensions from SQL92.

 ALTER USER

Name

 ALTER USER � Modifies user account information

Synopsis

ALTER USER username
 [WITH PASSWORD ’password’]
 [CREATEDB | NOCREATEDB] [CREATEUSER | NOCREATEUSER]
 [VALID UNTIL ’abstime’]

SQL Commands

8

Inputs

username

 The name of the user whose details are to be altered.

password

 The new password to be used for this account.

CREATEDB
NOCREATEDB

 These clauses define a user’s ability to create databases. If CREATEDB is specified, the user
being defined will be allowed to create his own databases. Using NOCREATEDB will deny a user
the ability to create databases.

CREATEUSER
NOCREATEUSER

 These clauses determine whether a user will be permitted to create new users himself. This option
will also make the user a superuser who can override all access restrictions.

abstime

 The date (and, optionally, the time) at which this user’s password is to expire.

Outputs

ALTER USER

 Message returned if the alteration was successful.

ERROR: ALTER USER: user "username" does not exist

 Error message returned if the specified user is not known to the database.

Description

 ALTER USER is used to change the attributes of a user’s Postgres account. Only a database superuser
can change privileges and password expiration with this command. Ordinary users can only change their
own password.

 Use CREATE USER to create a new user and DROP USER to remove a user.

Usage

 Change a user password:

SQL Commands

9

ALTER USER davide WITH PASSWORD ’hu8jmn3’;

 Change a user’s valid until date:

ALTER USER manuel VALID UNTIL ’Jan 31 2030’;

 Change a user’s valid until date, specifying that his authorization should expire at midday on 4th May
1998 using the time zone which is one hour ahead of UTC:

ALTER USER chris VALID UNTIL ’May 4 12:00:00 1998 +1’;

 Give a user the ability to create other users and new databases:

ALTER USER miriam CREATEUSER CREATEDB;

Compatibility

SQL92

 There is no ALTER USER statement in SQL92. The standard leaves the definition of users to the
implementation.

 BEGIN

Name

 BEGIN � Begins a transaction in chained mode

Synopsis

BEGIN [WORK | TRANSACTION]

Inputs

WORK
TRANSACTION

 Optional keywords. They have no effect.

SQL Commands

10

Outputs

BEGIN

 This signifies that a new transaction has been started.

NOTICE: BEGIN: already a transaction in progress

 This indicates that a transaction was already in progress. The current transaction is not affected.

Description

 By default, Postgres executes transactions in unchained mode (also known as �autocommit� in other
database systems). In other words, each user statement is executed in its own transaction and a commit
is implicitly performed at the end of the statement (if execution was successful, otherwise a rollback is
done). BEGIN initiates a user transaction in chained mode, i.e., all user statements after BEGIN
command will be executed in a single transaction until an explicit COMMIT, ROLLBACK, or execution
abort. Statements in chained mode are executed much faster, because transaction start/commit requires
significant CPU and disk activity. Execution of multiple statements inside a transaction is also required
for consistency when changing several related tables.

 The default transaction isolation level in Postgres is READ COMMITTED, where queries inside the
transaction see only changes committed before query execution. So, you have to use SET
TRANSACTION ISOLATION LEVEL SERIALIZABLE just after BEGIN if you need more
rigorous transaction isolation. In SERIALIZABLE mode queries will see only changes committed
before the entire transaction began (actually, before execution of the first DML statement in a
serializable transaction).

 If the transaction is committed, Postgres will ensure either that all updates are done or else that none of
them are done. Transactions have the standard ACID (atomic, consistent, isolatable, and durable)
property.

Notes

 Refer to LOCK for further information about locking tables inside a transaction.

 Use COMMIT or ROLLBACK to terminate a transaction.

Usage

 To begin a user transaction:

BEGIN WORK;

SQL Commands

11

Compatibility

SQL92

 BEGIN is a Postgres language extension. There is no explicit BEGIN command in SQL92; transaction
initiation is always implicit and it terminates either with a COMMIT or ROLLBACK statement.

Note: Many relational database systems offer an autocommit feature as a convenience.

 Incidentally, the BEGIN keyword is used for a different purpose in embedded SQL. You are advised to
be careful about the transaction semantics when porting database applications.

 SQL92 also requires SERIALIZABLE to be the default transaction isolation level.

CHECKPOINT

Name

CHECKPOINT � Force transaction log checkpoint

Synopsis

CHECKPOINT

Description

 Write-Ahead Logging (WAL) puts a checkpoint in the transaction log every so often. (To adjust the
automatic checkpoint interval, see the run-time configuration options CHECKPOINT_SEGMENTS and
CHECKPOINT_TIMEOUT.) The CHECKPOINT command forces an immediate checkpoint when the
command is issued, without waiting for a scheduled checkpoint.

 A checkpoint is a point in the transaction log sequence at which all data files have been updated to
reflect the information in the log. All data files will be flushed to disk. Refer to the PostgreSQL
Administrator’s Guide for more information about the WAL system.

 Only superusers may call CHECKPOINT. The command is not intended for use during normal
operation.

See Also

 PostgreSQL Administrator’s Guide

Compatibility

 The CHECKPOINT command is a PostgreSQL language extension.

SQL Commands

12

 CLOSE

Name

 CLOSE � Close a cursor

Synopsis

CLOSE cursor

Inputs

cursor

 The name of an open cursor to close.

Outputs

CLOSE

 Message returned if the cursor is successfully closed.

NOTICE PerformPortalClose: portal "cursor" not found

 This warning is given if cursor is not declared or has already been closed.

Description

 CLOSE frees the resources associated with an open cursor. After the cursor is closed, no subsequent
operations are allowed on it. A cursor should be closed when it is no longer needed.

 An implicit close is executed for every open cursor when a transaction is terminated by COMMIT or
ROLLBACK.

Notes

 Postgres does not have an explicit OPEN cursor statement; a cursor is considered open when it is
declared. Use the DECLARE statement to declare a cursor.

Usage

 Close the cursor liahona:

CLOSE liahona;

SQL Commands

13

Compatibility

SQL92

 CLOSE is fully compatible with SQL92.

 CLUSTER

Name

 CLUSTER � Gives storage clustering advice to the server

Synopsis

CLUSTER indexname ON tablename

Inputs

indexname

 The name of an index.

table

 The name of a table.

Outputs

CLUSTER

 The clustering was done successfully.

ERROR: relation <tablerelation_number> inherits "table"

* This is not documented anywhere. It seems not to be possible to cluster a table that is inherited.

ERROR: Relation table does not exist!

* The specified relation was not shown in the error message, which contained a random string instead of the relation name.

SQL Commands

14

Description

 CLUSTER instructs Postgres to cluster the table specified by table approximately based on the index
specified by indexname. The index must already have been defined on tablename.

 When a table is clustered, it is physically reordered based on the index information. The clustering is
static. In other words, as the table is updated, the changes are not clustered. No attempt is made to keep
new instances or updated tuples clustered. If one wishes, one can re-cluster manually by issuing the
command again.

Notes

 The table is actually copied to a temporary table in index order, then renamed back to the original
name. For this reason, all grant permissions and other indexes are lost when clustering is performed.

 In cases where you are accessing single rows randomly within a table, the actual order of the data in the
heap table is unimportant. However, if you tend to access some data more than others, and there is an
index that groups them together, you will benefit from using CLUSTER.

 Another place where CLUSTER is helpful is in cases where you use an index to pull out several rows
from a table. If you are requesting a range of indexed values from a table, or a single indexed value that
has multiple rows that match, CLUSTER will help because once the index identifies the heap page for
the first row that matches, all other rows that match are probably already on the same heap page, saving
disk accesses and speeding up the query.

 There are two ways to cluster data. The first is with the CLUSTER command, which reorders the
original table with the ordering of the index you specify. This can be slow on large tables because the
rows are fetched from the heap in index order, and if the heap table is unordered, the entries are on
random pages, so there is one disk page retrieved for every row moved. Postgres has a cache, but the
majority of a big table will not fit in the cache.

 Another way to cluster data is to use

SELECT columnlist INTO TABLE newtable
 FROM table ORDER BY columnlist

 which uses the Postgres sorting code in the ORDER BY clause to match the index, and which is much
faster for unordered data. You then drop the old table, use ALTER TABLE/RENAME to rename
temp to the old name, and recreate any indexes. The only problem is that OIDs will not be preserved.
From then on, CLUSTER should be fast because most of the heap data has already been ordered, and
the existing index is used.

Usage

 Cluster the employees relation on the basis of its salary attribute:

CLUSTER emp_ind ON emp;

SQL Commands

15

Compatibility

SQL92

 There is no CLUSTER statement in SQL92.

 COMMENT

Name

 COMMENT � Add comment to an object

Synopsis

COMMENT ON
[
 [DATABASE | INDEX | RULE | SEQUENCE | TABLE | TYPE | VIEW]
 object_name |
 COLUMN table_name.column_name|
 AGGREGATE agg_name agg_type|
 FUNCTION func_name (arg1, arg2, ...)|
 OPERATOR op (leftoperand_type rightoperand_type) |
 TRIGGER trigger_name ON table_name
] IS ’text’

Inputs

object_name, table_name, column_name, agg_name, func_name, op,
trigger_name

 The name of the object to be be commented.

text

 The comment to add.

Outputs

COMMENT

 Message returned if the table is successfully commented.

SQL Commands

16

Description

 COMMENT adds a comment to an object that can be easily retrieved with psql’s \dd, \d+, or \l+
commands. To remove a comment, use NULL. Comments are automatically dropped when the object is
dropped.

Usage

 Comment the table mytable:

COMMENT ON mytable IS ’This is my table.’;

 Some more examples:

COMMENT ON DATABASE my_database IS ’Development Database’;
COMMENT ON INDEX my_index IS ’Enforces uniqueness on employee id’;
COMMENT ON RULE my_rule IS ’Logs UPDATES of employee records’;
COMMENT ON SEQUENCE my_sequence IS ’Used to generate primary keys’;
COMMENT ON TABLE my_table IS ’Employee Information’;
COMMENT ON TYPE my_type IS ’Complex Number support’;
COMMENT ON VIEW my_view IS ’View of departmental costs’;
COMMENT ON COLUMN my_table.my_field IS ’Employee ID number’;
COMMENT ON AGGREGATE my_aggregate (double precision) IS ’Computes sample
variance’;
COMMENT ON FUNCTION my_function (timestamp) IS ’Returns Roman Numeral’;
COMMENT ON OPERATOR ^ (text, text) IS ’Performs intersection of two text’;
COMMENT ON TRIGGER my_trigger ON my_table IS ’Used for R.I.’;

Compatibility

SQL92

 There is no COMMENT in SQL92.

 COMMIT

Name

 COMMIT � Commits the current transaction

Synopsis

COMMIT [WORK | TRANSACTION]

SQL Commands

17

Inputs

WORK
TRANSACTION

 Optional keywords. They have no effect.

Outputs

COMMIT

 Message returned if the transaction is successfully committed.

NOTICE: COMMIT: no transaction in progress

 If there is no transaction in progress.

Description

 COMMIT commits the current transaction. All changes made by the transaction become visible to
others and are guaranteed to be durable if a crash occurs.

Notes

 The keywords WORK and TRANSACTION are noise and can be omitted.

 Use ROLLBACK to abort a transaction.

Usage

 To make all changes permanent:

COMMIT WORK;

Compatibility

SQL92

 SQL92 only specifies the two forms COMMIT and COMMIT WORK. Otherwise full compatibility.

SQL Commands

18

 COPY

Name

 COPY � Copies data between files and tables

Synopsis

COPY [BINARY] table [WITH OIDS]
 FROM { ’filename’ | stdin }
 [[USING] DELIMITERS ’delimiter’]
 [WITH NULL AS ’null string’]
COPY [BINARY] table [WITH OIDS]
 TO { ’filename’ | stdout }
 [[USING] DELIMITERS ’delimiter’]
 [WITH NULL AS ’null string’]

Inputs

BINARY

 Changes the behavior of field formatting, forcing all data to be stored or read in binary format
rather than as text. The DELIMITERS and WITH NULL options are irrelevant for binary format.

table

 The name of an existing table.

WITH OIDS

 Specifies copying the internal unique object id (OID) for each row.

filename

 The absolute Unix pathname of the input or output file.

stdin

 Specifies that input comes from the client application.

stdout

 Specifies that output goes to the client application.

delimiter

 The character that separates fields within each row (line) of the file.

null string

SQL Commands

19

 The string that represents a NULL value. The default is \N� (backslash-N). You might prefer an
empty string, for example.

Note: On a copy in, any data item that matches this string will be stored as a NULL value, so
you should make sure that you use the same string as you used on copy out.

Outputs

COPY

 The copy completed successfully.

ERROR: reason

 The copy failed for the reason stated in the error message.

Description

 COPY moves data between Postgres tables and standard file-system files. COPY TO copies the entire
contents of a table to a file, while COPY FROM copies data from a file to a table (appending the data
to whatever is in the table already).

 COPY instructs the Postgres backend to directly read from or write to a file. If a file name is specified,
the file must be accessible to the backend and the name must be specified from the viewpoint of the
backend. If stdin or stdout is specified, data flows through the client frontend to the backend.

Tip: Do not confuse COPY with the psql instruction \copy. \copy invokes COPY FROM stdin or
COPY TO stdout, and then fetches/stores the data in a file accessible to the psql client. Thus, file
accessibility and access rights depend on the client rather than the backend when \copy is used.

Notes

 The BINARY keyword will force all data to be stored/read as binary format rather than as text. It is
somewhat faster than the normal copy command, but a binary copy file is not portable across machine
architectures.

 By default, a text copy uses a tab ("\t") character as a delimiter between fields. The field delimiter may
be changed to any other single character with the keyword phrase USING DELIMITERS. Characters in
data fields which happen to match the delimiter character will be backslash quoted. Note that the
delimiter is always a single character. If multiple characters are specified in the delimiter string, only the
first character is used.

 You must have select access on any table whose values are read by COPY, and either insert or update
access to a table into which values are being inserted by COPY. The backend also needs appropriate
Unix permissions for any file read or written by COPY.

SQL Commands

20

 COPY TO neither invokes rules nor acts on column defaults. It does invoke triggers and check
constraints.

 COPY stops operation at the first error. This should not lead to problems in the event of a COPY
FROM, but the target relation will already have received earlier rows in a COPY TO. These rows will
not be visible or accessible, but they still occupy disk space. This may amount to a considerable amount
of wasted disk space if the failure happened well into a large copy operation. You may wish to invoke
VACUUM to recover the wasted space.

 Files named in a COPY command are read or written directly by the backend, not by the client
application. Therefore, they must reside on or be accessible to the database server machine, not the
client. They must be accessible to and readable or writable by the Postgres user (the userid the backend
runs as), not the client. COPY naming a file is only allowed to database superusers, since it allows
writing on any file that the backend has privileges to write on.

Tip: The psql instruction \copy reads or writes files on the client machine with the client’s
permissions, so it is not restricted to superusers.

 It is recommended that the filename used in COPY always be specified as an absolute path. This is
enforced by the backend in the case of COPY TO, but for COPY FROM you do have the option of
reading from a file specified by a relative path. The path will be interpreted relative to the backend’s
working directory (somewhere below $PGDATA), not the client’s working directory.

File Formats

Text Format

 When COPY TO is used without the BINARY option, the file generated will have each row (instance)
on a single line, with each column (attribute) separated by the delimiter character. Embedded delimiter
characters will be preceded by a backslash character ("\"). The attribute values themselves are strings
generated by the output function associated with each attribute type. The output function for a type
should not try to generate the backslash character; this will be handled by COPY itself.

 The actual format for each instance is

<attr1><separator><attr2><separator>...<separator><attrn><newline>

 Note that the end of each row is marked by a Unix-style newline ("\n"). COPY FROM will not behave
as desired if given a file containing DOS- or Mac-style newlines.

 The OID is emitted as the first column if WITH OIDS is specified.

 If COPY TO is sending its output to standard output instead of a file, after the last row it will send a
backslash ("\") and a period (".") followed by a newline. Similarly, if COPY FROM is reading from
standard input, it will expect a backslash ("\") and a period (".") followed by a newline, as the first three
characters on a line to denote end-of-file. However, COPY FROM will terminate correctly (followed
by the backend itself) if the input connection is closed before this special end-of-file pattern is found.

 The backslash character has other special meanings. A literal backslash character is represented as two
consecutive backslashes ("\\"). A literal tab character is represented as a backslash and a tab. (If you are

SQL Commands

21

using something other than tab as the column delimiter, backslash that delimiter character to include it
in data.) A literal newline character is represented as a backslash and a newline. When loading text data
not generated by Postgres, you will need to convert backslash characters ("\") to double-backslashes
("\\") to ensure that they are loaded properly.

Binary Format

 The file format used for COPY BINARY changed in Postgres v7.1. The new format consists of a file
header, zero or more tuples, and a file trailer.

File Header

 The file header consists of 24 bytes of fixed fields, followed by a variable-length header extension area.
The fixed fields are:

Signature

 12-byte sequence "PGBCOPY\n\377\r\n\0" --- note that the null is a required part of the signature.
(The signature is designed to allow easy identification of files that have been munged by a
non-8-bit-clean transfer. This signature will be changed by newline-translation filters, dropped
nulls, dropped high bits, or parity changes.)

Integer layout field

 int32 constant 0x01020304 in source’s byte order. Potentially, a reader could engage in
byte-flipping of subsequent fields if the wrong byte order is detected here.

Flags field

 int32 bit mask to denote important aspects of the file format. Bits are numbered from 0 (LSB) to 31
(MSB) --- note that this field is stored with source’s endianness, as are all subsequent integer fields.
Bits 16-31 are reserved to denote critical file format issues; a reader should abort if it finds an
unexpected bit set in this range. Bits 0-15 are reserved to signal backwards-compatible format
issues; a reader should simply ignore any unexpected bits set in this range. Currently only one flag
bit is defined, and the rest must be zero:

Bit 16

 if 1, OIDs are included in the dump; if 0, not

Header extension area length

 int32 length in bytes of remainder of header, not including self. In the initial version this will be
zero, and the first tuple follows immediately. Future changes to the format might allow additional
data to be present in the header. A reader should silently skip over any header extension data it does
not know what to do with.

The header extension area is envisioned to contain a sequence of self-identifying chunks. The flags field
is not intended to tell readers what is in the extension area. Specific design of header extension contents
is left for a later release.

SQL Commands

22

 This design allows for both backwards-compatible header additions (add header extension chunks, or
set low-order flag bits) and non-backwards-compatible changes (set high-order flag bits to signal such
changes, and add supporting data to the extension area if needed).

Tuples

Each tuple begins with an int16 count of the number of fields in the tuple. (Presently, all tuples in a table
will have the same count, but that might not always be true.) Then, repeated for each field in the tuple,
there is an int16 typlen word possibly followed by field data. The typlen field is interpreted thus:

Zero

 Field is NULL. No data follows.

> 0

 Field is a fixed-length datatype. Exactly N bytes of data follow the typlen word.

-1

 Field is a varlena datatype. The next four bytes are the varlena header, which contains the total
value length including itself.

< -1

 Reserved for future use.

For non-NULL fields, the reader can check that the typlen matches the expected typlen for the
destination column. This provides a simple but very useful check that the data is as expected.

There is no alignment padding or any other extra data between fields. Note also that the format does not
distinguish whether a datatype is pass-by-reference or pass-by-value. Both of these provisions are
deliberate: they might help improve portability of the files (although of course endianness and
floating-point-format issues can still keep you from moving a binary file across machines).

If OIDs are included in the dump, the OID field immediately follows the field-count word. It is a normal
field except that it’s not included in the field-count. In particular it has a typlen --- this will allow
handling of 4-byte vs 8-byte OIDs without too much pain, and will allow OIDs to be shown as NULL if
we someday allow OIDs to be optional.

File Trailer

 The file trailer consists of an int16 word containing -1. This is easily distinguished from a tuple’s
field-count word.

 A reader should report an error if a field-count word is neither -1 nor the expected number of columns.
This provides an extra check against somehow getting out of sync with the data.

Usage

The following example copies a table to standard output, using a vertical bar (|) as the field delimiter:

COPY country TO stdout USING DELIMITERS ’|’;

SQL Commands

23

 To copy data from a Unix file into a table country:

COPY country FROM ’/usr1/proj/bray/sql/country_data’;

 Here is a sample of data suitable for copying into a table from stdin (so it has the termination
sequence on the last line):

AF AFGHANISTAN
AL ALBANIA
DZ ALGERIA
ZM ZAMBIA
ZW ZIMBABWE
\.

 Note that the white space on each line is actually a TAB.

 The following is the same data, output in binary format on a Linux/i586 machine. The data is shown
after filtering through the Unix utility od -c. The table has three fields; the first is char(2), the second
is text, and the third is integer. All the rows have a null value in the third field.

0000000 P G B C O P Y \n 377 \r \n \0 004 003 002 001
0000020 \0 \0 \0 \0 \0 \0 \0 \0 003 \0 377 377 006 \0 \0 \0
0000040 A F 377 377 017 \0 \0 \0 A F G H A N I S
0000060 T A N \0 \0 003 \0 377 377 006 \0 \0 \0 A L 377
0000100 377 \v \0 \0 \0 A L B A N I A \0 \0 003 \0
0000120 377 377 006 \0 \0 \0 D Z 377 377 \v \0 \0 \0 A L
0000140 G E R I A \0 \0 003 \0 377 377 006 \0 \0 \0 Z
0000160 M 377 377 \n \0 \0 \0 Z A M B I A \0 \0 003
0000200 \0 377 377 006 \0 \0 \0 Z W 377 377 \f \0 \0 \0 Z
0000220 I M B A B W E \0 \0 377 377

Compatibility

SQL92

 There is no COPY statement in SQL92.

SQL Commands

24

 CREATE AGGREGATE

Name

 CREATE AGGREGATE � Defines a new aggregate function

Synopsis

CREATE AGGREGATE name (BASETYPE = input_data_type,
 SFUNC = sfunc, STYPE = state_type
 [, FINALFUNC = ffunc]
 [, INITCOND = initial_condition])

Inputs

name

 The name of an aggregate function to create.

input_data_type

 The input data type on which this aggregate function operates. This can be specified as ANY for
an aggregate that does not examine its input values (an example is count(*)).

sfunc

 The name of the state transition function to be called for each input data value. This is normally a
function of two arguments, the first being of type state_type and the second of type
input_data_type. Alternatively, for an aggregate that does not examine its input values, the
function takes just one argument of type state_type. In either case the function must return a
value of type state_type. This function takes the current state value and the current input data
item, and returns the next state value.

state_type

 The data type for the aggregate’s state value.

ffunc

 The name of the final function called to compute the aggregate’s result after all input data has been
traversed. The function must take a single argument of type state_type. The output data type of
the aggregate is defined as the return type of this function. If ffunc is not specified, then the
ending state value is used as the aggregate’s result, and the output type is state_type.

initial_condition

 The initial setting for the state value. This must be a literal constant in the form accepted for the
data type state_type. If not specified, the state value starts out NULL.

SQL Commands

25

Outputs

CREATE

 Message returned if the command completes successfully.

Description

 CREATE AGGREGATE allows a user or programmer to extend Postgres functionality by defining
new aggregate functions. Some aggregate functions for base types such as min(integer) and
avg(double precision) are already provided in the base distribution. If one defines new types or
needs an aggregate function not already provided, then CREATE AGGREGATE can be used to
provide the desired features.

 An aggregate function is identified by its name and input data type. Two aggregates can have the same
name if they operate on different input types. To avoid confusion, do not make an ordinary function of
the same name and input data type as an aggregate.

 An aggregate function is made from one or two ordinary functions: a state transition function sfunc,
and an optional final calculation function ffunc. These are used as follows:

sfunc(internal-state, next-data-item) ---> next-internal-state
ffunc(internal-state) ---> aggregate-value

 Postgres creates a temporary variable of data type stype to hold the current internal state of the
aggregate. At each input data item, the state transition function is invoked to calculate a new internal
state value. After all the data has been processed, the final function is invoked once to calculate the
aggregate’s output value. If there is no final function then the ending state value is returned as-is.

 An aggregate function may provide an initial condition, that is, an initial value for the internal state
value. This is specified and stored in the database as a field of type text, but it must be a valid external
representation of a constant of the state value data type. If it is not supplied then the state value starts out
NULL.

 If the state transition function is declared "strict" in pg_proc, then it cannot be called with NULL inputs.
With such a transition function, aggregate execution behaves as follows. NULL input values are ignored
(the function is not called and the previous state value is retained). If the initial state value is NULL,
then the first non-NULL input value replaces the state value, and the transition function is invoked
beginning with the second non-NULL input value. This is handy for implementing aggregates like max.
Note that this behavior is only available when state_type is the same as input_data_type.
When these types are different, you must supply a non-NULL initial condition or use a non-strict
transition function.

 If the state transition function is not strict, then it will be called unconditionally at each input value, and
must deal with NULL inputs and NULL transition values for itself. This allows the aggregate author to
have full control over the aggregate’s handling of NULLs.

SQL Commands

26

 If the final function is declared "strict", then it will not be called when the ending state value is NULL;
instead a NULL result will be output automatically. (Of course this is just the normal behavior of strict
functions.) In any case the final function has the option of returning NULL. For example, the final
function for avg returns NULL when it sees there were zero input tuples.

Notes

 Use DROP AGGREGATE to drop aggregate functions.

 The parameters of CREATE AGGREGATE can be written in any order, not just the order illustrated
above.

Usage

 Refer to the chapter on aggregate functions in the PostgreSQL Programmer’s Guide for complete
examples of usage.

Compatibility

SQL92

 CREATE AGGREGATE is a Postgres language extension. There is no CREATE AGGREGATE in
SQL92.

 CREATE CONSTRAINT TRIGGER

Name

 CREATE CONSTRAINT TRIGGER � Create a trigger to support a constraint

Synopsis

CREATE CONSTRAINT TRIGGER name
 AFTER events ON
 relation constraint attributes
 FOR EACH ROW EXECUTE PROCEDURE func ’(’ args ’)’

Inputs

name

 The name of the constraint trigger.

events

 The event categories for which this trigger should be fired.

SQL Commands

27

relation

 Table name of the triggering relation.

constraint

 Actual onstraint specification.

attributes

 Constraint attributes.

func(args)

 Function to call as part of the trigger processing.

Outputs

CREATE CONSTRAINT

 Message returned if successful.

Description

 CREATE CONSTRAINT TRIGGER is used from inside of CREATE/ALTER TABLE and by
pg_dump to create the special triggers for referential integrity.

 It is not intended for general use.

SQL Commands

28

CREATE DATABASE

Name

 CREATE DATABASE � Creates a new database

Synopsis

CREATE DATABASE name
 [WITH [LOCATION = ’dbpath’]
 [TEMPLATE = template]
 [ENCODING = encoding]]

Inputs

name

 The name of a database to create.

dbpath

 An alternate filesystem location in which to store the new database, specified as a string literal; or
DEFAULT to use the default location.

template

 Name of template from which to create the new database, or DEFAULT to use the default template
(template1).

encoding

 Multibyte encoding method to use in the new database. Specify a string literal name (e.g.,
’SQL_ASCII’), or an integer encoding number, or DEFAULT to use the default encoding.

Outputs

CREATE DATABASE

 Message returned if the command completes successfully.

ERROR: user ’username’ is not allowed to create/drop databases

 You must have the special CREATEDB privilege to create databases. See CREATE USER.

ERROR: createdb: database "name" already exists

 This occurs if a database with the name specified already exists.

SQL Commands

29

ERROR: database path may not contain single quotes

 The database location dbpath cannot contain single quotes. This is required so that the shell
commands that create the database directory can execute safely.

ERROR: CREATE DATABASE: may not be called in a transaction block

 If you have an explicit transaction block in progress you cannot call CREATE DATABASE. You
must finish the transaction first.

ERROR: Unable to create database directory ’path’.

ERROR: Could not initialize database directory.

 These are most likely related to insufficient permissions on the data directory, a full disk, or other
file system problems. The user under which the database server is running must have access to the
location.

Description

 CREATE DATABASE creates a new Postgres database. The creator becomes the owner of the new
database.

 An alternate location can be specified in order to, for example, store the database on a different disk.
The path must have been prepared with the initlocation command.

 If the path name does not contain a slash, it is interpreted as an environment variable name, which must
be known to the server process. This way the database administrator can exercise control over locations
in which databases can be created. (A customary choice is, e.g., ’PGDATA2’.) If the server is compiled
with ALLOW_ABSOLUTE_DBPATHS (not so by default), absolute path names, as identified by a leading
slash (e.g., ’/usr/local/pgsql/data’), are allowed as well.

 By default, the new database will be created by cloning the standard system database template1. A
different template can be specified by writing TEMPLATE = name. In particular, by writing TEMPLATE
= template0, you can create a virgin database containing only the standard objects predefined by your
version of Postgres. This is useful if you wish to avoid copying any installation-local objects that may
have been added to template1.

 The optional encoding parameter allows selection of the database encoding, if your server was
compiled with multibyte encoding support. When not specified, it defaults to the encoding used by the
selected template database.

 Optional parameters can be written in any order, not only the order illustrated above.

Notes

 CREATE DATABASE is a Postgres language extension.

 Use DROP DATABASE to remove a database.

 The program createdb is a shell script wrapper around this command, provided for convenience.

SQL Commands

30

 There are security and data integrity issues involved with using alternate database locations specified
with absolute path names, and by default only an environment variable known to the backend may be
specified for an alternate location. See the Administrator’s Guide for more information.

 Although it is possible to copy a database other than template1 by specifying its name as the template,
this is not (yet) intended as a general-purpose COPY DATABASE facility. In particular, it is essential
that the source database be idle (no data-altering transactions in progress) for the duration of the copying
operation. CREATE DATABASE will check that no backend processes (other than itself) are connected
to the source database at the start of the operation, but this does not guarantee that changes cannot be
made while the copy proceeds. Therefore, we recommend that databases used as templates be treated as
read-only.

 Two useful flags exist in pg_database for each database: datistemplate and datallowconn.
datistemplate may be set to indicate that a database is intended as a template for CREATE
DATABASE. If this flag is set, the database may be cloned by any user with CREATEDB privileges; if
it is not set, only superusers and the owner of the database may clone it. If datallowconn is false, then
no new connections to that database will be allowed (but existing sessions are not killed simply by
setting the flag false). The template0 database is normally marked this way to prevent modification of
it.

Usage

 To create a new database:

olly=> create database lusiadas;

 To create a new database in an alternate area ~/private_db:

$ mkdir private_db
$ initlocation ~/private_db

Creating Postgres database system directory /home/olly/private_db/base

$ psql olly

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms

 \h for help with SQL commands

 \? for help on internal slash commands

 \g or terminate with semicolon to execute query

 \q to quit

olly=> CREATE DATABASE elsewhere WITH LOCATION = ’/home/olly/private_db’;

CREATE DATABASE

SQL Commands

31

Compatibility

SQL92

 There is no CREATE DATABASE statement in SQL92. Databases are equivalent to catalogs whose
creation is implementation-defined.

 CREATE FUNCTION

Name

 CREATE FUNCTION � Defines a new function

Synopsis

CREATE FUNCTION name ([ftype [, ...]])
 RETURNS rtype
 AS definition
 LANGUAGE ’langname’
 [WITH (attribute [, ...])]
CREATE FUNCTION name ([ftype [, ...]])
 RETURNS rtype
 AS obj_file , link_symbol
 LANGUAGE ’langname’
 [WITH (attribute [, ...])]

Inputs

name

 The name of a function to create.

ftype

 The data type(s) of the function’s arguments, if any. The input types may be base or complex
types, or opaque. Opaque indicates that the function accepts arguments of a non-SQL type such as
char *.

rtype

 The return data type. The output type may be specified as a base type, complex type, setof
type, or opaque. The setof modifier indicates that the function will return a set of items, rather
than a single item.

attribute

 An optional piece of information about the function, used for optimization. See below for details.

SQL Commands

32

definition

 A string defining the function; the meaning depends on the language. It may be an internal
function name, the path to an object file, an SQL query, or text in a procedural language.

obj_file , link_symbol

 This form of the AS clause is used for dynamically linked, C language functions when the function
name in the C language source code is not the same as the name of the SQL function. The string
obj_file is the name of the file containing the dynamically loadable object, and link_symbol
is the object’s link symbol, that is the name of the function in the C language source code.

langname

 May be ’sql’, ’C’, ’internal’, or ’plname’, where ’plname’ is the name of a created
procedural language. See CREATE LANGUAGE for details.

Outputs

CREATE

 This is returned if the command completes successfully.

Description

 CREATE FUNCTION allows a Postgres user to register a function with the database. Subsequently,
this user is considered the owner of the function.

Function Attributes

 The following items may appear in the WITH clause:

iscachable

 Iscachable indicates that the function always returns the same result when given the same
argument values (i.e., it does not do database lookups or otherwise use information not directly
present in its parameter list). The optimizer uses iscachable to know whether it is safe to
pre-evaluate a call of the function.

isstrict

 isstrict indicates that the function always returns NULL whenever any of its arguments are
NULL. If this attribute is specified, the function is not executed when there are NULL arguments;
instead a NULL result is assumed automatically. When isstrict is not specified, the function
will be called for NULL inputs. It is then the function author’s responsibility to check for NULLs if
necessary and respond appropriately.

SQL Commands

33

Notes

 Refer to the chapter in the PostgreSQL Programmer’s Guide on the topic of extending Postgres via
functions for further information on writing external functions.

 Use DROP FUNCTION to remove user-defined functions.

 The full SQL92 type syntax is allowed for input arguments and return value. However, some details of
the type specification (e.g., the precision field for numeric types) are the responsibility of the
underlying function implementation and are silently swallowed (i.e., not recognized or enforced) by the
CREATE FUNCTION command.

 Postgres allows function "overloading"; that is, the same name can be used for several different
functions so long as they have distinct argument types. This facility must be used with caution for
internal and C-language functions, however.

 Two internal functions cannot have the same C name without causing errors at link time. To get
around that, give them different C names (for example, use the argument types as part of the C names),
then specify those names in the AS clause of CREATE FUNCTION. If the AS clause is left empty,
then CREATE FUNCTION assumes the C name of the function is the same as the SQL name.

 Similarly, when overloading SQL function names with multiple C-language functions, give each
C-language instance of the function a distinct name, then use the alternative form of the AS clause in the
CREATE FUNCTION syntax to select the appropriate C-language implementation of each overloaded
SQL function.

Usage

 To create a simple SQL function:

CREATE FUNCTION one() RETURNS int4
 AS ’SELECT 1 AS RESULT’
 LANGUAGE ’sql’;
SELECT one() AS answer;

 answer

 1

 This example creates a C function by calling a routine from a user-created shared library. This
particular routine calculates a check digit and returns TRUE if the check digit in the function parameters
is correct. It is intended for use in a CHECK contraint.

CREATE FUNCTION ean_checkdigit(bpchar, bpchar) RETURNS boolean
 AS ’/usr1/proj/bray/sql/funcs.so’ LANGUAGE ’c’;

SQL Commands

34

CREATE TABLE product (
 id char(8) PRIMARY KEY,
 eanprefix char(8) CHECK (eanprefix ~ ’[0-9]{2}-[0-9]{5}’)
 REFERENCES brandname(ean_prefix),
 eancode char(6) CHECK (eancode ~ ’[0-9]{6}’),
 CONSTRAINT ean CHECK (ean_checkdigit(eanprefix, eancode))
);

 This example creates a function that does type conversion between the user-defined type complex, and
the internal type point. The function is implemented by a dynamically loaded object that was compiled
from C source. For Postgres to find a type conversion function automatically, the sql function has to
have the same name as the return type, and so overloading is unavoidable. The function name is
overloaded by using the second form of the AS clause in the SQL definition:

CREATE FUNCTION point(complex) RETURNS point
 AS ’/home/bernie/pgsql/lib/complex.so’, ’complex_to_point’
 LANGUAGE ’c’;

 The C declaration of the function is:

Point * complex_to_point (Complex *z)
{
 Point *p;

 p = (Point *) palloc(sizeof(Point));
 p->x = z->x;
 p->y = z->y;

 return p;
}

Compatibility

SQL92

 CREATE FUNCTION is a Postgres language extension.

SQL/PSM

Note: PSM stands for Persistent Stored Modules. It is a procedural language and it was originally
hoped that PSM would be ratified as an official standard by late 1996. As of mid-1998, this has not
yet happened, but it is hoped that PSM will eventually become a standard.

SQL Commands

35

 SQL/PSM CREATE FUNCTION has the following syntax:

CREATE FUNCTION name
 ([[IN | OUT | INOUT] type [, ...]])
 RETURNS rtype
 LANGUAGE ’langname’
 ESPECIFIC routine
 SQL-statement

 CREATE GROUP

Name

 CREATE GROUP � Creates a new group

Synopsis

CREATE GROUP name
 [WITH
 [SYSID gid]
 [USER username [, ...]]]

Inputs

name

 The name of the group.

gid

 The SYSID clause can be used to choose the Postgres group id of the new group. It is not necessary
to do so, however.

 If this is not specified, the highest assigned group id plus one, starting at 1, will be used as default.

username

 A list of users to include in the group. The users must already exist.

SQL Commands

36

Outputs

CREATE GROUP

 Message returned if the command completes successfully.

Description

 CREATE GROUP will create a new group in the database installation. Refer to the adminstrator’s
guide for information about using groups for authentication. You must be a database superuser to use
this command.

 Use ALTER GROUP to change a group’s membership, and DROP GROUP to remove a group.

Usage

 Create an empty group:

CREATE GROUP staff

 Create a group with members:

CREATE GROUP marketing WITH USER jonathan, david

Compatibility

SQL92

 There is no CREATE GROUP statement in SQL92. Roles are similar in concept to groups.

 CREATE INDEX

Name

 CREATE INDEX � Constructs a secondary index

Synopsis

CREATE [UNIQUE] INDEX index_name ON table
 [USING acc_name] (column [ops_name] [, ...])
CREATE [UNIQUE] INDEX index_name ON table
 [USING acc_name] (func_name(column [, ...]) [ops_name])

SQL Commands

37

Inputs

UNIQUE

 Causes the system to check for duplicate values in the table when the index is created (if data
already exist) and each time data is added. Attempts to insert or update data which would result in
duplicate entries will generate an error.

index_name

 The name of the index to be created.

table

 The name of the table to be indexed.

acc_name

 The name of the access method to be used for the index. The default access method is BTREE.
Postgres provides three access methods for indexes:

BTREE

 an implementation of Lehman-Yao high-concurrency btrees.

RTREE

 implements standard rtrees using Guttman’s quadratic split algorithm.

HASH

 an implementation of Litwin’s linear hashing.

column

 The name of a column of the table.

ops_name

 An associated operator class. See below for details.

func_name

 A function, which returns a value that can be indexed.

Outputs

CREATE

 The message returned if the index is successfully created.

SQL Commands

38

ERROR: Cannot create index: ’index_name’ already exists.

 This error occurs if it is impossible to create the index.

Description

 CREATE INDEX constructs an index index_name on the specified table.

Tip: Indexes are primarily used to enhance database performance. But inappropriate use will result
in slower performance.

 In the first syntax shown above, the key field(s) for the index are specified as column names. Multiple
fields can be specified if the index access method supports multi-column indexes.

 In the second syntax shown above, an index is defined on the result of a user-specified function
func_name applied to one or more columns of a single table. These functional indices can be used to
obtain fast access to data based on operators that would normally require some transformation to apply
them to the base data.

 Postgres provides btree, rtree and hash access methods for indices. The btree access method is an
implementation of Lehman-Yao high-concurrency btrees. The rtree access method implements standard
rtrees using Guttman’s quadratic split algorithm. The hash access method is an implementation of
Litwin’s linear hashing. We mention the algorithms used solely to indicate that all of these access
methods are fully dynamic and do not have to be optimized periodically (as is the case with, for
example, static hash access methods).

 Use DROP INDEX to remove an index.

Notes

 The Postgres query optimizer will consider using a btree index whenever an indexed attribute is
involved in a comparison using one of: <, <=, =, >=, >

 The Postgres query optimizer will consider using an rtree index whenever an indexed attribute is
involved in a comparison using one of: <<, &<, &>, >>, @, ~=, &&

 The Postgres query optimizer will consider using a hash index whenever an indexed attribute is
involved in a comparison using the = operator.

 Currently, only the btree access method supports multi-column indexes. Up to 16 keys may be specified
by default (this limit can be altered when building Postgres).

 An operator class can be specified for each column of an index. The operator class identifies the
operators to be used by the index for that column. For example, a btree index on four-byte integers
would use the int4_ops class; this operator class includes comparison functions for four-byte integers.
In practice the default operator class for the field’s data type is usually sufficient. The main point of
having operator classes is that for some data types, there could be more than one meaningful ordering.
For example, we might want to sort a complex-number data type either by absolute value or by real part.
We could do this by defining two operator classes for the data type and then selecting the proper class
when making an index. There are also some operator classes with special purposes:

SQL Commands

39

 The operator classes box_ops and bigbox_ops both support rtree indices on the box data type. The
difference between them is that bigbox_ops scales box coordinates down, to avoid floating-point
exceptions from doing multiplication, addition, and subtraction on very large floating-point
coordinates. If the field on which your rectangles lie is about 20,000 units square or larger, you should
use bigbox_ops.

 The following query shows all defined operator classes:

SELECT am.amname AS acc_name,
 opc.opcname AS ops_name,
 opr.oprname AS ops_comp
 FROM pg_am am, pg_amop amop,
 pg_opclass opc, pg_operator opr
 WHERE amop.amopid = am.oid AND
 amop.amopclaid = opc.oid AND
 amop.amopopr = opr.oid
 ORDER BY acc_name, ops_name, ops_comp

Usage

To create a btree index on the field title in the table films:

CREATE UNIQUE INDEX title_idx
 ON films (title);

Compatibility

SQL92

 CREATE INDEX is a Postgres language extension.

 There is no CREATE INDEX command in SQL92.

 CREATE LANGUAGE

Name

 CREATE LANGUAGE � Defines a new language for functions

Synopsis

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE ’langname’
 HANDLER call_handler
 LANCOMPILER ’comment’

SQL Commands

40

Inputs

TRUSTED

 TRUSTED specifies that the call handler for the language is safe; that is, it offers an unprivileged
user no functionality to bypass access restrictions. If this keyword is omitted when registering the
language, only users with the Postgres superuser privilege can use this language to create new
functions.

langname

 The name of the new procedural language. The language name is case insensitive. A procedural
language cannot override one of the built-in languages of Postgres.

HANDLER call_handler

 call_handler is the name of a previously registered function that will be called to execute the
PL procedures.

comment

 The LANCOMPILER argument is the string that will be inserted in the LANCOMPILER attribute of the
new pg_language entry. At present, Postgres does not use this attribute in any way.

Outputs

CREATE

 This message is returned if the language is successfully created.

ERROR: PL handler function funcname() doesn’t exist

 This error is returned if the function funcname() is not found.

Description

 Using CREATE LANGUAGE, a Postgres user can register a new language with Postgres.
Subsequently, functions and trigger procedures can be defined in this new language. The user must have
the Postgres superuser privilege to register a new language.

Writing PL handlers

Note: In Postgres 7.1 and later, call handlers must adhere to the "version 1" function manager
interface, not the old-style interface.

 The call handler for a procedural language must be written in a compiled language such as C and
registered with Postgres as a function taking no arguments and returning the opaque type, a placeholder

SQL Commands

41

for unspecified or undefined types. This prevents the call handler from being called directly as a
function from queries. (However, arguments may be supplied in the actual call when a PL function in
the language offered by the handler is to be executed.)

 The call handler is called in the same way as any other function: it receives a pointer to a
FunctionCallInfoData struct containing argument values and information about the called function, and
it is expected to return a Datum result (and possibly set the isnull field of the FunctionCallInfoData
struct, if it wishes to return an SQL NULL result). The difference between a call handler and an ordinary
callee function is that the flinfo->fn_oid field of the FunctionCallInfoData struct will contain the
OID of the PL function to be called, not of the call handler itself. The call handler must use this field to
determine which function to execute. Also, the passed argument list has been set up according to the
declaration of the target PL function, not of the call handler.

 It’s up to the call handler to fetch the pg_proc entry and to analyze the argument and return types of
the called procedure. The AS clause from the CREATE FUNCTION of the procedure will be found in
the prosrc attribute of the pg_proc table entry. This may be the source text in the procedural language
itself (like for PL/Tcl), a pathname to a file, or anything else that tells the call handler what to do in
detail.

 Often, the same function is called many times per SQL statement. A call handler can avoid repeated
lookups of information about the called function by using the flinfo->fn_extra field. This will
initially be NULL, but can be set by the call handler to point at information about the PL function. On
subsequent calls, if flinfo->fn_extra is already non-NULL then it can be used and the information
lookup step skipped. The call handler must be careful that flinfo->fn_extra is made to point at
memory that will live at least until the end of the current query, since an FmgrInfo data structure could
be kept that long. One way to do this is to allocate the extra data in the memory context specified by
flinfo->fn_mcxt; such data will normally have the same lifespan as the FmgrInfo itself. But the
handler could also choose to use a longer-lived context so that it can cache function definition
information across queries.

 When a PL function is invoked as a trigger, no explicit arguments are passed, but the
FunctionCallInfoData’s context field points at a TriggerData node, rather than being NULL as it is in
a plain function call. A PL handler should provide mechanisms for PL functions to get at the trigger
information.

Notes

 Use CREATE FUNCTION to create a function.

 Use DROP LANGUAGE to drop procedural languages.

 Refer to the table pg_language for further information:

 Table "pg_language"

 Attribute | Type | Modifier

---------------+---------+----------

 lanname | name |

 lanispl | boolean |

 lanpltrusted | boolean |

 lanplcallfoid | oid |

 lancompiler | text |

 lanname | lanispl | lanpltrusted | lanplcallfoid | lancompiler

SQL Commands

42

-------------+---------+--------------+---------------+-------------

 internal | f | f | 0 | n/a

 C | f | f | 0 | /bin/cc

 sql | f | f | 0 | postgres

 The call handler for a procedural language must normally be written in C and registered as ’internal’ or
’C’ language, depending on whether it is linked into the backend or dynamically loaded. The call
handler cannot use the old-style ’C’ function interface.

 At present, the definitions for a procedural language cannot be changed once they have been created.

Usage

 This is a template for a PL handler written in C:

#include "executor/spi.h"
#include "commands/trigger.h"
#include "utils/elog.h"
#include "fmgr.h"
#include "access/heapam.h"
#include "utils/syscache.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"

PG_FUNCTION_INFO_V1(plsample_call_handler);

Datum
plsample_call_handler(PG_FUNCTION_ARGS)
{
 Datum retval;

 if (CALLED_AS_TRIGGER(fcinfo))
 {
 /*
 * Called as a trigger procedure
 */
 TriggerData *trigdata = (TriggerData *) fcinfo->context;

 retval = ...
 } else {
 /*
 * Called as a function
 */

 retval = ...
 }

 return retval;
}

SQL Commands

43

 Only a few thousand lines of code have to be added instead of the dots to complete the PL call handler.
See CREATE FUNCTION for information on how to compile it into a loadable module.

 The following commands then register the sample procedural language:

CREATE FUNCTION plsample_call_handler () RETURNS opaque
 AS ’/usr/local/pgsql/lib/plsample.so’
 LANGUAGE ’C’;
CREATE PROCEDURAL LANGUAGE ’plsample’
 HANDLER plsample_call_handler
 LANCOMPILER ’PL/Sample’;

Compatibility

SQL92

 CREATE LANGUAGE is a Postgres extension. There is no CREATE LANGUAGE statement in
SQL92.

 CREATE OPERATOR

Name

 CREATE OPERATOR � Defines a new user operator

Synopsis

CREATE OPERATOR name (PROCEDURE = func_name
 [, LEFTARG = type1] [, RIGHTARG = type2]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, SORT1 = left_sort_op] [, SORT2 = right_sort_op])

Inputs

name

 The operator to be defined. See below for allowable characters.

func_name

 The function used to implement this operator.

type1

SQL Commands

44

 The type of the left-hand argument of the operator, if any. This option would be omitted for a
left-unary operator.

type2

 The type of the right-hand argument of the operator, if any. This option would be omitted for a
right-unary operator.

com_op

 The commutator of this operator.

neg_op

 The negator of this operator.

res_proc

 The restriction selectivity estimator function for this operator.

join_proc

 The join selectivity estimator function for this operator.

HASHES

 Indicates this operator can support a hash join.

left_sort_op

 If this operator can support a merge join, the operator that sorts the left-hand data type of this
operator.

right_sort_op

 If this operator can support a merge join, the operator that sorts the right-hand data type of this
operator.

Outputs

CREATE

 Message returned if the operator is successfully created.

Description

 CREATE OPERATOR defines a new operator, name. The user who defines an operator becomes its
owner.

 The operator name is a sequence of up to NAMEDATALEN-1 (31 by default) characters from the

SQL Commands

45

following list:

+ - * / < > = ~ ! @ # % ^ & | ‘ ? $

 There are a few restrictions on your choice of name:

 "$" cannot be defined as a single-character operator, although it can be part of a multi-character
operator name.

 "--" and "/*" cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

 A multi-character operator name cannot end in "+" or "-", unless the name also contains at least one
of these characters:

~ ! @ # % ^ & | ‘ ? $

 For example, @- is an allowed operator name, but *- is not. This restriction allows Postgres to parse
SQL-compliant queries without requiring spaces between tokens.

Note: When working with non-SQL-standard operator names, you will usually need to separate
adjacent operators with spaces to avoid ambiguity. For example, if you have defined a left-unary
operator named "@", you cannot write X*@Y; you must write X* @Y to ensure that Postgres reads it
as two operator names not one.

 The operator "!=" is mapped to "<>" on input, so these two names are always equivalent.

 At least one of LEFTARG and RIGHTARG must be defined. For binary operators, both should be
defined. For right unary operators, only LEFTARG should be defined, while for left unary operators
only RIGHTARG should be defined.

 The func_name procedure must have been previously defined using CREATE FUNCTION and
must be defined to accept the correct number of arguments (either one or two) of the indicated types.

 The commutator operator should be identified if one exists, so that Postgres can reverse the order of the
operands if it wishes. For example, the operator area-less-than, <<<, would probably have a commutator
operator, area-greater-than, >>>. Hence, the query optimizer could freely convert:

box ’((0,0), (1,1))’ >>> MYBOXES.description

 to

MYBOXES.description <<< box ’((0,0), (1,1))’

 This allows the execution code to always use the latter representation and simplifies the query optimizer
somewhat.

SQL Commands

46

 Similarly, if there is a negator operator then it should be identified. Suppose that an operator,
area-equal, ===, exists, as well as an area not equal, !==. The negator link allows the query optimizer to
simplify

NOT MYBOXES.description === box ’((0,0), (1,1))’

 to

MYBOXES.description !== box ’((0,0), (1,1))’

 If a commutator operator name is supplied, Postgres searches for it in the catalog. If it is found and it
does not yet have a commutator itself, then the commutator’s entry is updated to have the newly created
operator as its commutator. This applies to the negator, as well. This is to allow the definition of two
operators that are the commutators or the negators of each other. The first operator should be defined
without a commutator or negator (as appropriate). When the second operator is defined, name the first as
the commutator or negator. The first will be updated as a side effect. (As of Postgres 6.5, it also works to
just have both operators refer to each other.)

 The HASHES, SORT1, and SORT2 options are present to support the query optimizer in performing
joins. Postgres can always evaluate a join (i.e., processing a clause with two tuple variables separated by
an operator that returns a boolean) by iterative substitution [WONG76]. In addition, Postgres can use a
hash-join algorithm along the lines of [SHAP86]; however, it must know whether this strategy is
applicable. The current hash-join algorithm is only correct for operators that represent equality tests;
furthermore, equality of the data type must mean bitwise equality of the representation of the type. (For
example, a data type that contains unused bits that don’t matter for equality tests could not be
hashjoined.) The HASHES flag indicates to the query optimizer that a hash join may safely be used with
this operator.

 Similarly, the two sort operators indicate to the query optimizer whether merge-sort is a usable join
strategy and which operators should be used to sort the two operand classes. Sort operators should only
be provided for an equality operator, and they should refer to less-than operators for the left and right
side data types respectively.

 If other join strategies are found to be practical, Postgres will change the optimizer and run-time system
to use them and will require additional specification when an operator is defined. Fortunately, the
research community invents new join strategies infrequently, and the added generality of user-defined
join strategies was not felt to be worth the complexity involved.

 The RESTRICT and JOIN options assist the query optimizer in estimating result sizes. If a clause of the
form:

MYBOXES.description <<< box ’((0,0), (1,1))’

 is present in the qualification, then Postgres may have to estimate the fraction of the instances in
MYBOXES that satisfy the clause. The function res_proc must be a registered function (meaning it
is already defined using CREATE FUNCTION) which accepts arguments of the correct data types and

SQL Commands

47

returns a floating point number. The query optimizer simply calls this function, passing the parameter
((0,0), (1,1)) and multiplies the result by the relation size to get the expected number of instances.

 Similarly, when the operands of the operator both contain instance variables, the query optimizer must
estimate the size of the resulting join. The function join_proc will return another floating point number
which will be multiplied by the cardinalities of the two tables involved to compute the expected result
size.

 The difference between the function

my_procedure_1 (MYBOXES.description, box ’((0,0), (1,1))’)

 and the operator

MYBOXES.description === box ’((0,0), (1,1))’

 is that Postgres attempts to optimize operators and can decide to use an index to restrict the search
space when operators are involved. However, there is no attempt to optimize functions, and they are
performed by brute force. Moreover, functions can have any number of arguments while operators are
restricted to one or two.

Notes

 Refer to the chapter on operators in the PostgreSQL User’s Guide for further information. Refer to
DROP OPERATOR to delete user-defined operators from a database.

Usage

The following command defines a new operator, area-equality, for the BOX data type:

CREATE OPERATOR === (
 LEFTARG = box,
 RIGHTARG = box,
 PROCEDURE = area_equal_procedure,
 COMMUTATOR = ===,
 NEGATOR = !==,
 RESTRICT = area_restriction_procedure,
 JOIN = area_join_procedure,
 HASHES,
 SORT1 = <<<,
 SORT2 = <<<
);

Compatibility

SQL92

 CREATE OPERATOR is a Postgres extension. There is no CREATE OPERATOR statement in
SQL92.

SQL Commands

48

 CREATE RULE

Name

 CREATE RULE � Defines a new rule

Synopsis

CREATE RULE name AS ON event
 TO object [WHERE condition]
 DO [INSTEAD] action

where action can be:

NOTHING
|
query
|
(query ; query ...)
|
[query ; query ...]

Inputs

name

 The name of a rule to create.

event

 Event is one of SELECT, UPDATE, DELETE or INSERT.

object

 Object is either table or table.column. (Currently, only the table form is actually
implemented.)

condition

 Any SQL boolean-condition expression. The condition expression may not refer to any tables
except new and old.

query

 The query or queries making up the action can be any SQL SELECT, INSERT, UPDATE, DELETE,
or NOTIFY statement.

SQL Commands

49

 Within the condition and action, the special table names new and old may be used to refer to
values in the referenced table (the object). new is valid in ON INSERT and ON UPDATE rules to
refer to the new row being inserted or updated. old is valid in ON SELECT, ON UPDATE, and ON
DELETE rules to refer to the existing row being selected, updated, or deleted.

Outputs

CREATE

 Message returned if the rule is successfully created.

Description

 The Postgres rule system allows one to define an alternate action to be performed on inserts, updates, or
deletions from database tables. Rules are used to implement table views as well.

 The semantics of a rule is that at the time an individual instance (row) is accessed, inserted, updated, or
deleted, there is an old instance (for selects, updates and deletes) and a new instance (for inserts and
updates). All the rules for the given event type and the given target object (table) are examined, in an
unspecified order. If the condition specified in the WHERE clause (if any) is true, the action part
of the rule is executed. The action is done instead of the original query if INSTEAD is specified;
otherwise it is done before the original query is performed. Within both the condition and action,
values from fields in the old instance and/or the new instance are substituted for
old.attribute-name and new.attribute-name.

 The action part of the rule can consist of one or more queries. To write multiple queries, surround
them with either parentheses or square brackets. Such queries will be performed in the specified order
(whereas there are no guarantees about the execution order of multiple rules for an object). The action
can also be NOTHING indicating no action. Thus, a DO INSTEAD NOTHING rule suppresses the
original query from executing (when its condition is true); a DO NOTHING rule is useless.

 The action part of the rule executes with the same command and transaction identifier as the user
command that caused activation.

Notes

 Presently, ON SELECT rules must be unconditional INSTEAD rules and must have actions that consist
of a single SELECT query. Thus, an ON SELECT rule effectively turns the object table into a view,
whose visible contents are the rows returned by the rule’s SELECT query rather than whatever had been
stored in the table (if anything). It is considered better style to write a CREATE VIEW command than to
create a table and define an ON SELECT rule for it.

 You must have rule definition access to a table in order to define a rule on it. Use GRANT and
REVOKE to change permissions.

 It is very important to take care to avoid circular rules. For example, though each of the following two
rule definitions are accepted by Postgres, the select command will cause Postgres to report an error
because the query cycled too many times:

SQL Commands

50

Example 1. Example of a circular rewrite rule combination:

CREATE RULE bad_rule_combination_1 AS
 ON SELECT TO emp
 DO INSTEAD
 SELECT * FROM toyemp;

CREATE RULE bad_rule_combination_2 AS
 ON SELECT TO toyemp
 DO INSTEAD
 SELECT * FROM emp;

 This attempt to select from EMP will cause Postgres to issue an error because the queries cycled too
many times:
SELECT * FROM emp;

Compatibility

SQL92

 CREATE RULE statement is a Postgres language extension. There is no CREATE RULE statement
in SQL92.

 CREATE SEQUENCE

Name

 CREATE SEQUENCE � Creates a new sequence number generator

Synopsis

CREATE SEQUENCE seqname [INCREMENT increment]
 [MINVALUE minvalue] [MAXVALUE maxvalue]
 [START start] [CACHE cache] [CYCLE]

Inputs

seqname

 The name of a sequence to be created.

increment

 The INCREMENT increment clause is optional. A positive value will make an ascending
sequence, a negative one a descending sequence. The default value is one (1).

SQL Commands

51

minvalue

 The optional clause MINVALUE minvalue determines the minimum value a sequence can
generate. The defaults are 1 and -2147483647 for ascending and descending sequences,
respectively.

maxvalue

 The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. The
defaults are 2147483647 and -1 for ascending and descending sequences, respectively.

start

 The optional START start clause enables the sequence to begin anywhere. The default starting
value is minvalue for ascending sequences and maxvalue for descending ones.

cache

 The CACHE cache option enables sequence numbers to be preallocated and stored in memory for
faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no cache)
and this is also the default.

CYCLE

 The optional CYCLE keyword may be used to enable the sequence to wrap around when the
maxvalue or minvalue has been reached by an ascending or descending sequence respectively.
If the limit is reached, the next number generated will be the minvalue or maxvalue,
respectively.

Outputs

CREATE

 Message returned if the command is successful.

ERROR: Relation ’seqname’ already exists

 If the sequence specified already exists.

ERROR: DefineSequence: MINVALUE (start) can’t be >= MAXVALUE (max)

 If the specified starting value is out of range.

ERROR: DefineSequence: START value (start) can’t be < MINVALUE (min)

 If the specified starting value is out of range.

ERROR: DefineSequence: MINVALUE (min) can’t be >= MAXVALUE (max)

 If the minimum and maximum values are inconsistent.

SQL Commands

52

Description

 CREATE SEQUENCE will enter a new sequence number generator into the current data base. This
involves creating and initializing a new single-row table with the name seqname. The generator will be
owned by the user issuing the command.

 After a sequence is created, you may use the function nextval(’seqname’) to get a new number
from the sequence. The function currval(’seqname’) may be used to determine the number returned
by the last call to nextval(’seqname’) for the specified sequence in the current session. The function
setval(’seqname’, newvalue) may be used to set the current value of the specified sequence. The
next call to nextval(’seqname’) will return the given value plus the sequence increment.

 Use a query like

SELECT * FROM seqname;

 to examine the parameters of a sequence. As an alternative to fetching the parameters from the original
definition as above, you can use

SELECT last_value FROM seqname;

 to obtain the last value allocated by any backend.

 To avoid blocking of concurrent transactions that obtain numbers from the same sequence, a nextval
operation is never rolled back; that is, once a value has been fetched it is considered used, even if the
transaction that did the nextval later aborts. This means that aborted transactions may leave unused
"holes" in the sequence of assigned values. setval operations are never rolled back, either.

Caution
 Unexpected results may be obtained if a cache setting greater than one is used for a
sequence object that will be used concurrently by multiple backends. Each backend will
allocate and cache successive sequence values during one access to the sequence object
and increase the sequence object’s last_value accordingly. Then, the next cache-1 uses of
nextval within that backend simply return the preallocated values without touching the shared
object. So, numbers allocated but not used in the current session will be lost. Furthermore,
although multiple backends are guaranteed to allocate distinct sequence values, the values
may be generated out of sequence when all the backends are considered. (For example, with
a cache setting of 10, backend A might reserve values 1..10 and return nextval=1, then
backend B might reserve values 11..20 and return nextval=11 before backend A has
generated nextval=2.) Thus, with a cache setting of one it is safe to assume that nextval
values are generated sequentially; with a cache setting greater than one you should only
assume that the nextval values are all distinct, not that they are generated purely sequentially.
Also, last_value will reflect the latest value reserved by any backend, whether or not it has yet
been returned by nextval. Another consideration is that a setval executed on such a sequence
will not be noticed by other backends until they have used up any preallocated values they
have cached.

Notes

SQL Commands

53

 Use DROP SEQUENCE to remove a sequence.

 Each backend uses its own cache to store preallocated numbers. Numbers that are cached but not used
in the current session will be lost, resulting in "holes" in the sequence.

Usage

 Create an ascending sequence called serial, starting at 101:

CREATE SEQUENCE serial START 101;

 Select the next number from this sequence:

SELECT NEXTVAL (’serial’);

nextval

 114

 Use this sequence in an INSERT:

INSERT INTO distributors VALUES (NEXTVAL(’serial’),’nothing’);

 Set the sequence value after a COPY FROM:

CREATE FUNCTION distributors_id_max() RETURNS INT4
 AS ’SELECT max(id) FROM distributors’
 LANGUAGE ’sql’;
BEGIN;
 COPY distributors FROM ’input_file’;
 SELECT setval(’serial’, distributors_id_max());
END;

Compatibility

SQL92

 CREATE SEQUENCE is a Postgres language extension. There is no CREATE SEQUENCE
statement in SQL92.

SQL Commands

54

 CREATE TABLE

Name

 CREATE TABLE � Creates a new table

Synopsis

CREATE [TEMPORARY | TEMP] TABLE table_name (
 { column_name type [column_constraint [...]]
 | table_constraint } [, ...]
) [INHERITS (inherited_table [, ...])]

where column_constraint can be:
[CONSTRAINT constraint_name]
{ NOT NULL | NULL | UNIQUE | PRIMARY KEY | DEFAULT value | CHECK (condition)
|
 REFERENCES table [(column)] [MATCH FULL | MATCH PARTIAL]
 [ON DELETE action] [ON UPDATE action]
 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE
]
}

and table_constraint can be:
[CONSTRAINT constraint_name]
{ UNIQUE (column_name [, ...]) |
 PRIMARY KEY (column_name [, ...]) |
 CHECK (condition) |
 FOREIGN KEY (column_name [, ...]) REFERENCES table [(column [, ...])
]
 [MATCH FULL | MATCH PARTIAL] [ON DELETE action] [ON UPDATE action]
 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE
]
}

Inputs

TEMPORARY or TEMP

 If specified, the table is created only for this session, and is automatically dropped on session exit.
Existing permanent tables with the same name are not visible (in this session) while the temporary
table exists. Any indexes created on a temporary table are automatically temporary as well.

table_name

 The name of the new table to be created.

SQL Commands

55

column_name

 The name of a column to be created in the new table.

type

 The type of the column. This may include array specifiers. Refer to the PostgreSQL User’s Guide
for further information about data types and arrays.

inherited_table

 The optional INHERITS clause specifies a list of table names from which this table automatically
inherits all fields. If any inherited field name appears more than once, Postgres reports an error.
Postgres automatically allows the created table to inherit functions on tables above it in the
inheritance hierarchy.

constraint_name

 An optional name for a column or table constraint. If not specified, the system generates a name.

value

 A default value for a column. See the DEFAULT clause for more information.

condition

 CHECK clauses specify integrity constraints or tests which new or updated rows must satisfy for
an insert or update operation to succeed. Each constraint must be an expression producing a
boolean result. A condition appearing within a column definition should reference that column’s
value only, while a condition appearing as a table constraint may reference multiple columns.

table

 The name of an existing table to be referenced by a foreign key constraint.

column

 The name of a column in an existing table to be referenced by a foreign key constraint. If not
specified, the primary key of the existing table is assumed.

action

 A keyword indicating the action to take when a foreign key constraint is violated.

Outputs

CREATE

 Message returned if table is successfully created.

SQL Commands

56

ERROR

 Message returned if table creation failed. This is usually accompanied by some descriptive text,
such as: ERROR: Relation ’table’ already exists , which occurs at runtime if the table
specified already exists in the database.

Description

 CREATE TABLE will enter a new, initially empty table into the current database. The table will be
"owned" by the user issuing the command.

 Each type may be a simple type, a complex type (set) or an array type. Each attribute may be specified
to be non-null and each may have a default value, specified by the DEFAULT Clause.

Note: Consistent array dimensions within an attribute are not enforced. This will likely change in a
future release.

 CREATE TABLE also automatically creates a data type that represents the tuple type (structure type)
corresponding to one row of the table. Therefore, tables can’t have the same name as any existing
datatype.

 The optional INHERITS clause specifies a collection of table names from which this table
automatically inherits all fields. If any inherited field name appears more than once, Postgres reports an
error. Postgres automatically allows the created table to inherit functions on tables above it in the
inheritance hierarchy. Inheritance of functions is done according to the conventions of the Common Lisp
Object System (CLOS).

 A table can have no more than 1600 columns (in practice, the effective limit is lower because of
tuple-length constraints). A table cannot have the same name as a system catalog table.

DEFAULT Clause

DEFAULT value

 The DEFAULT clause assigns a default data value for the column whose column definition it appears
within. The value is any variable-free expression (note that sub-selects and cross-references to other
columns in the current table are not supported). The data type of a default value must match the column
definition’s data type.

 The DEFAULT expression will be used in any INSERT operation that does not specify a value for the
column. If there is no DEFAULT clause, then the default is NULL.

SQL Commands

57

Usage

CREATE TABLE distributors (
 name VARCHAR(40) DEFAULT ’luso films’,
 did INTEGER DEFAULT NEXTVAL(’distributors_serial’),
 modtime TIMESTAMP DEFAULT now()
);

 The above assigns a literal constant default value for the column name, and arranges for the default
value of column did to be generated by selecting the next value of a sequence object. The default value
of modtime will be the time at which the row is inserted.

 It is worth remarking that

 modtime TIMESTAMP DEFAULT ’now’

 would produce a result that is probably not the intended one: the string ’now’ will be coerced to a
timestamp value immediately, and so the default value of modtime will always be the time of table
creation. This difficulty is avoided by specifying the default value as a function call.

Column Constraints

[CONSTRAINT constraint_name] {
 NULL | NOT NULL | UNIQUE | PRIMARY KEY | CHECK condition |
 REFERENCES reftable [(refcolumn)]
 [MATCH matchtype]
 [ON DELETE action]
 [ON UPDATE action]
 [[NOT] DEFERRABLE]
 [INITIALLY checktime] }

Inputs

constraint_name

 An arbitrary name given to a constraint clause.

NULL

 The column is allowed to contain NULL values. This is the default.

SQL Commands

58

NOT NULL

 The column is not allowed to contain NULL values. This is equivalent to the column constraint
CHECK (column NOT NULL).

UNIQUE

 The column must have unique values. In Postgres this is enforced by automatic creation of a
unique index on the column.

PRIMARY KEY

 This column is a primary key, which implies that other tables may rely on this column as a unique
identifier for rows. Both UNIQUE and NOT NULL are implied by PRIMARY KEY. See
PRIMARY KEY for more information.

condition

 An arbitrary boolean-valued constraint condition.

Description

 The optional constraint clauses specify constraints or tests which new or updated rows must satisfy for
an insert or update operation to succeed.

 A constraint is a named rule: an SQL object which helps define valid sets of values by putting limits on
the results of INSERT, UPDATE or DELETE operations performed on a table.

 There are two ways to define integrity constraints: table constraints, covered later, and column
constraints, covered here.

 A column constraint is an integrity constraint defined as part of a column definition, and logically
becomes a table constraint as soon as it is created. The column constraints available are:

PRIMARY KEY
REFERENCES
UNIQUE
CHECK
NOT NULL

NOT NULL Constraint

[CONSTRAINT name] NOT NULL

 The NOT NULL constraint specifies a rule that a column may contain only non-null values. This is a
column constraint only, and not allowed as a table constraint.

SQL Commands

59

Outputs

status

ERROR: ExecAppend: Fail to add null value in not null attribute "column".

 This error occurs at runtime if one tries to insert a null value into a column which has a NOT
NULL constraint.

Description

Usage

 Define two NOT NULL column constraints on the table distributors, one of which is explicitly
given a name:

CREATE TABLE distributors (
 did DECIMAL(3) CONSTRAINT no_null NOT NULL,
 name VARCHAR(40) NOT NULL
);

UNIQUE Constraint

[CONSTRAINT constraint_name] UNIQUE

Inputs

constraint_name

 An arbitrary name given to a constraint clause.

SQL Commands

60

Outputs

status

ERROR: Cannot insert a duplicate key into a unique index.

 This error occurs at runtime if one tries to insert a duplicate value into a column.

Description

 The UNIQUE constraint specifies a rule that a group of one or more distinct columns of a table may
contain only unique values.

 The column definitions of the specified columns do not have to include a NOT NULL constraint to be
included in a UNIQUE constraint. Having more than one null value in a column without a NOT NULL
constraint, does not violate a UNIQUE constraint. (This deviates from the SQL92 definition, but is a
more sensible convention. See the section on compatibility for more details.)

 Each UNIQUE column constraint must name a column that is different from the set of columns named
by any other UNIQUE or PRIMARY KEY constraint defined for the table.

Note: Postgres automatically creates a unique index for each UNIQUE constraint, to assure data
integrity. See CREATE INDEX for more information.

Usage

 Defines a UNIQUE constraint for the name column:

CREATE TABLE distributors (
 did DECIMAL(3),
 name VARCHAR(40) UNIQUE
);

 which is equivalent to the following specified as a table constraint:

CREATE TABLE distributors (
 did DECIMAL(3),
 name VARCHAR(40),
 UNIQUE(name)
);

The CHECK Constraint

[CONSTRAINT constraint_name] CHECK (condition)

SQL Commands

61

Inputs

constraint_name

 An arbitrary name given to a constraint clause.

condition

 Any valid conditional expression evaluating to a boolean result.

Outputs

status

ERROR: ExecAppend: rejected due to CHECK constraint "constraint_name".

 This error occurs at runtime if one tries to insert an illegal value into a column subject to a
CHECK constraint.

Description

 The CHECK constraint specifies a generic restriction on allowed values within a column. The CHECK
constraint is also allowed as a table constraint.

 CHECK specifies a general boolean expression involving one or more columns of a table. A new row
will be rejected if the boolean expression evaluates to FALSE when applied to the row’s values.

 Currently, CHECK expressions cannot contain sub-selects nor refer to variables other than fields of the
current row.

 The SQL92 standard says that CHECK column constraints may only refer to the column they apply to;
only CHECK table constraints may refer to multiple columns. Postgres does not enforce this restriction.
It treats column and table CHECK constraints alike.

PRIMARY KEY Constraint

[CONSTRAINT constraint_name] PRIMARY KEY

SQL Commands

62

Inputs

constraint_name

 An arbitrary name given to a constraint clause.

Outputs

ERROR: Cannot insert a duplicate key into a unique index.

 This occurs at runtime if one tries to insert a duplicate value into a column subject to a PRIMARY
KEY constraint.

Description

 The PRIMARY KEY column constraint specifies that a column of a table may contain only unique
(non-duplicate), non-NULL values. The definition of the specified column does not have to include an
explicit NOT NULL constraint to be included in a PRIMARY KEY constraint.

 Only one PRIMARY KEY can be specified for a table, whether as a column constraint or a table
constraint.

Notes

 Postgres automatically creates a unique index to assure data integrity (see CREATE INDEX statement).

 The PRIMARY KEY constraint should name a set of columns that is different from other sets of
columns named by any UNIQUE constraint defined for the same table, since it will result in duplication
of equivalent indexes and unproductive additional runtime overhead. However, Postgres does not
specifically disallow this.

REFERENCES Constraint

[CONSTRAINT constraint_name] REFERENCES reftable [(refcolumn)]
 [MATCH matchtype]
 [ON DELETE action]
 [ON UPDATE action]
 [[NOT] DEFERRABLE]
 [INITIALLY checktime]

 The REFERENCES constraint specifies a rule that a column value is checked against the values of
another column. REFERENCES can also be specified as part of a FOREIGN KEY table constraint.

Inputs

constraint_name

 An arbitrary name given to a constraint clause.

SQL Commands

63

reftable

 The table that contains the data to check against.

refcolumn

 The column in reftable to check the data against. If this is not specified, the PRIMARY KEY
of the reftable is used.

MATCH matchtype

 There are three match types: MATCH FULL, MATCH PARTIAL, and a default match type if
none is specified. MATCH FULL will not allow one column of a multi-column foreign key to be
NULL unless all foreign key columns are NULL. The default MATCH type allows some foreign
key columns to be NULL while other parts of the foreign key are not NULL. MATCH PARTIAL is
currently not supported.

ON DELETE action

 The action to do when a referenced row in the referenced table is being deleted. There are the
following actions.

NO ACTION

 Produce error if foreign key violated. This is the default.

RESTRICT

 Same as NO ACTION.

CASCADE

 Delete any rows referencing the deleted row.

SET NULL

 Set the referencing column values to NULL.

SET DEFAULT

 Set the referencing column values to their default value.

ON UPDATE action

 The action to do when a referenced column in the referenced table is being updated to a new value.
If the row is updated, but the referenced column is not changed, no action is done. There are the
following actions.

NO ACTION

 Produce error if foreign key violated. This is the default.

RESTRICT

 Same as NO ACTION.

SQL Commands

64

CASCADE

 Update the value of the referencing column to the new value of the referenced column.

SET NULL

 Set the referencing column values to NULL.

SET DEFAULT

 Set the referencing column values to their default value.

 [NOT] DEFERRABLE

 This controls whether the constraint can be deferred to the end of the transaction. If
DEFERRABLE, SET CONSTRAINTS ALL DEFERRED will cause the foreign key to be checked
only at the end of the transaction. NOT DEFERRABLE is the default.

INITIALLY checktime

 checktime has two possible values which specify the default time to check the constraint.

DEFERRED

 Check constraint only at the end of the transaction.

IMMEDIATE

 Check constraint after each statement. This is the default.

Outputs

status

ERROR: name referential integrity violation - key referenced from table

not found in reftable

 This error occurs at runtime if one tries to insert a value into a column which does not have a
matching column in the referenced table.

Description

 The REFERENCES column constraint specifies that a column of a table must only contain values
which match against values in a referenced column of a referenced table.

SQL Commands

65

 A value added to this column is matched against the values of the referenced table and referenced
column using the given match type. In addition, when the referenced column data is changed, actions are
run upon this column’s matching data.

Notes

 Currently Postgres only supports MATCH FULL and a default match type. In addition, the referenced
columns are supposed to be the columns of a UNIQUE constraint in the referenced table, however
Postgres does not enforce this.

Table Constraints

[CONSTRAINT name] { PRIMARY KEY | UNIQUE } (column [, ...])
[CONSTRAINT name] CHECK (constraint)
[CONSTRAINT name] FOREIGN KEY (column [, ...])
 REFERENCES reftable [(refcolumn [, ...])]
 [MATCH matchtype]
 [ON DELETE action]
 [ON UPDATE action]
 [[NOT] DEFERRABLE]
 [INITIALLY checktime]

Inputs

constraint_name

 An arbitrary name given to a constraint clause.

column [, ...]

 The column name(s) for which to define a unique index and, for PRIMARY KEY, a NOT NULL
constraint.

CHECK (constraint)

 A boolean expression to be evaluated as the constraint.

Outputs

 The possible outputs for the table constraint clause are the same as for the corresponding portions of the
column constraint clause.

Description

SQL Commands

66

 A table constraint is an integrity constraint defined on one or more columns of a table. The four
variations of "Table Constraint" are:

UNIQUE
CHECK
PRIMARY KEY
FOREIGN KEY

UNIQUE Constraint

[CONSTRAINT constraint_name] UNIQUE (column [, ...])

Inputs

constraint_name

 An arbitrary name given to a constraint clause.

column

 A name of a column in a table.

Outputs

status

ERROR: Cannot insert a duplicate key into a unique index

 This error occurs at runtime if one tries to insert a duplicate value into a column.

Description

 The UNIQUE constraint specifies a rule that a group of one or more distinct columns of a table may
contain only unique values. The behavior of the UNIQUE table constraint is the same as that for column
constraints, with the additional capability to span multiple columns.

 See the section on the UNIQUE column constraint for more details.

SQL Commands

67

Usage

 Prevent duplicate rows in the table distributors:

CREATE TABLE distributors (
 did DECIMAL(3),
 name VARCHAR(40),
 UNIQUE(did,name)
);

PRIMARY KEY Constraint

[CONSTRAINT constraint_name] PRIMARY KEY (column [, ...])

Inputs

constraint_name

 An arbitrary name given to a constraint clause.

column [, ...]

 The names of one or more columns in the table.

Outputs

status

ERROR: Cannot insert a duplicate key into a unique index.

 This occurs at run-time if one tries to insert a duplicate value into a column subject to a
PRIMARY KEY constraint.

Description

 The PRIMARY KEY constraint specifies a rule that a group of one or more distinct columns of a table
may contain only unique (nonduplicate), non-null values. The column definitions of the specified
columns do not have to include a NOT NULL constraint to be included in a PRIMARY KEY constraint.

 The PRIMARY KEY table constraint is similar to that for column constraints, with the additional
capability of encompassing multiple columns.

SQL Commands

68

 Refer to the section on the PRIMARY KEY column constraint for more information.

REFERENCES Constraint

[CONSTRAINT constraint_name] FOREIGN KEY (column [, ...])
 REFERENCES reftable [(refcolumn [, ...])]
 [MATCH matchtype]
 [ON DELETE action]
 [ON UPDATE action]
 [[NOT] DEFERRABLE]
 [INITIALLY checktime]

 The REFERENCES constraint specifies a rule that a column value or set of column values is checked
against the values in another table.

Inputs

constraint_name

 An arbitrary name given to a constraint clause.

column [, ...]

 The names of one or more columns in the table.

reftable

 The table that contains the data to check against.

referenced column [, ...]

 One or more columns in the reftable to check the data against. If this is not specified, the
PRIMARY KEY of the reftable is used.

MATCH matchtype

 There are three match types: MATCH FULL, MATCH PARTIAL, and a default match type if
none is specified. MATCH FULL will not allow one column of a multi-column foreign key to be
NULL unless all foreign key columns are NULL. The default MATCH type allows some foreign
key columns to be NULL while other parts of the foreign key are not NULL. MATCH PARTIAL is
currently not supported.

ON DELETE action

 The action to do when a referenced row in the referenced table is being deleted. There are the
following actions.

NO ACTION

 Produce error if foreign key violated. This is the default.

SQL Commands

69

RESTRICT

 Same as NO ACTION.

CASCADE

 Delete any rows referencing the deleted row.

SET NULL

 Set the referencing column values to NULL.

SET DEFAULT

 Set the referencing column values to their default value.

ON UPDATE action

 The action to do when a referenced column in the referenced table is being updated to a new value.
If the row is updated, but the referenced column is not changed, no action is done. There are the
following actions.

NO ACTION

 Produce error if foreign key violated. This is the default.

RESTRICT

 Disallow update of row being referenced.

CASCADE

 Update the value of the referencing column to the new value of the referenced column.

SET NULL

 Set the referencing column values to NULL.

SET DEFAULT

 Set the referencing column values to their default value.

 [NOT] DEFERRABLE

 This controls whether the constraint can be deferred to the end of the transaction. If
DEFERRABLE, SET CONSTRAINTS ALL DEFERRED will cause the foreign key to be checked
only at the end of the transaction. NOT DEFERRABLE is the default.

INITIALLY checktime

 checktime has two possible values which specify the default time to check the constraint.

IMMEDIATE

 Check constraint after each statement. This is the default.

SQL Commands

70

DEFERRED

 Check constraint only at the end of the transaction.

Outputs

status

ERROR: name referential integrity violation - key referenced from table

not found in reftable

 This error occurs at runtime if one tries to insert a value into a column which does not have a
matching column in the referenced table.

Description

 The FOREIGN KEY constraint specifies a rule that a group of one or more distinct columns of a table
is related to a group of distinct columns in the referenced table.

 The FOREIGN KEY table constraint is similar to that for column constraints, with the additional
capability of encompassing multiple columns.

 Refer to the section on the FOREIGN KEY column constraint for more information.

Usage

 Create table films and table distributors:

CREATE TABLE films (
 code CHARACTER(5) CONSTRAINT firstkey PRIMARY KEY,
 title CHARACTER VARYING(40) NOT NULL,
 did DECIMAL(3) NOT NULL,
 date_prod DATE,
 kind CHAR(10),
 len INTERVAL HOUR TO MINUTE
);

CREATE TABLE distributors (
 did DECIMAL(3) PRIMARY KEY DEFAULT NEXTVAL(’serial’),
 name VARCHAR(40) NOT NULL CHECK (name <> ’’)
);

SQL Commands

71

 Create a table with a 2-dimensional array:

 CREATE TABLE array (
 vector INT[][]
);

 Define a UNIQUE table constraint for the table films. UNIQUE table constraints can be defined on one
or more columns of the table:

CREATE TABLE films (
 code CHAR(5),
 title VARCHAR(40),
 did DECIMAL(3),
 date_prod DATE,
 kind CHAR(10),
 len INTERVAL HOUR TO MINUTE,
 CONSTRAINT production UNIQUE(date_prod)
);

 Define a CHECK column constraint:

CREATE TABLE distributors (
 did DECIMAL(3) CHECK (did > 100),
 name VARCHAR(40)
);

 Define a CHECK table constraint:

CREATE TABLE distributors (
 did DECIMAL(3),
 name VARCHAR(40)
 CONSTRAINT con1 CHECK (did > 100 AND name > ’’)
);

 Define a PRIMARY KEY table constraint for the table films. PRIMARY KEY table constraints can be

SQL Commands

72

defined on one or more columns of the table:

CREATE TABLE films (
 code CHAR(5),
 title VARCHAR(40),
 did DECIMAL(3),
 date_prod DATE,
 kind CHAR(10),
 len INTERVAL HOUR TO MINUTE,
 CONSTRAINT code_title PRIMARY KEY(code,title)
);

 Defines a PRIMARY KEY column constraint for table distributors. PRIMARY KEY column
constraints can only be defined on one column of the table (the following two examples are equivalent):

CREATE TABLE distributors (
 did DECIMAL(3),
 name CHAR VARYING(40),
 PRIMARY KEY(did)
);

CREATE TABLE distributors (
 did DECIMAL(3) PRIMARY KEY,
 name VARCHAR(40)
);

Compatibility

SQL92

 In addition to the locally visible temporary table, SQL92 also defines a CREATE GLOBAL
TEMPORARY TABLE statement, and optionally an ON COMMIT clause:

CREATE GLOBAL TEMPORARY TABLE table (column type [
 DEFAULT value] [CONSTRAINT column_constraint] [, ...])
 [CONSTRAINT table_constraint] [ON COMMIT { DELETE | PRESERVE } ROWS]

 For temporary tables, the CREATE GLOBAL TEMPORARY TABLE statement names a new table
visible to other clients and defines the table’s columns and constraints.

 The optional ON COMMIT clause of CREATE TEMPORARY TABLE specifies whether or not the
temporary table should be emptied of rows whenever COMMIT is executed. If the ON COMMIT clause

SQL Commands

73

is omitted, SQL92 specifies that the default is ON COMMIT DELETE ROWS. However, Postgres’
behavior is always like ON COMMIT PRESERVE ROWS.

UNIQUE clause

 SQL92 specifies some additional capabilities for UNIQUE:

 Table Constraint definition:

[CONSTRAINT constraint_name] UNIQUE (column [, ...])
 [{ INITIALLY DEFERRED | INITIALLY IMMEDIATE }]
 [[NOT] DEFERRABLE]

 Column Constraint definition:

[CONSTRAINT constraint_name] UNIQUE
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

NULL clause

 The NULL "constraint" (actually a non-constraint) is a Postgres extension to SQL92 that is included for
symmetry with the NOT NULL clause (and for compatibility with some other RDBMSes). Since it is
the default for any column, its presence is simply noise.

[CONSTRAINT constraint_name] NULL

NOT NULL clause

 SQL92 specifies some additional capabilities for NOT NULL:

[CONSTRAINT constraint_name] NOT NULL
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

CONSTRAINT clause

 SQL92 specifies some additional capabilities for constraints, and also defines assertions and domain
constraints.

Note: Postgres does not yet support either domains or assertions.

SQL Commands

74

 An assertion is a special type of integrity constraint and shares the same namespace as other constraints.
However, an assertion is not necessarily dependent on one particular table as constraints are, so SQL-92
provides the CREATE ASSERTION statement as an alternate method for defining a constraint:

CREATE ASSERTION name CHECK (condition)

 Domain constraints are defined by CREATE DOMAIN or ALTER DOMAIN statements:

 Domain constraint:

[CONSTRAINT constraint_name] CHECK constraint
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

 Table constraint definition:

[CONSTRAINT constraint_name] { PRIMARY KEY (column, ...) | FOREIGN KEY
constraint | UNIQUE constraint | CHECK constraint }
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

 Column constraint definition:

[CONSTRAINT constraint_name] { NOT NULL | PRIMARY KEY | FOREIGN KEY
constraint | UNIQUE | CHECK constraint }
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

 A CONSTRAINT definition may contain one deferment attribute clause and/or one initial constraint
mode clause, in any order.

NOT DEFERRABLE

 The constraint must be checked at the end of each statement. SET CONSTRAINTS ALL
DEFERRED will have no effect on this type of constraint.

DEFERRABLE

 This controls whether the constraint can be deferred to the end of the transaction. If SET
CONSTRAINTS ALL DEFERRED is used or the constraint is set to INITIALLY DEFERRED,
this will cause the foreign key to be checked only at the end of the transaction.

Note: SET CONSTRAINTS changes the foreign key constraint mode only for the current
transaction.

SQL Commands

75

INITIALLY IMMEDIATE

 Check constraint after each statement. This is the default.

INITIALLY DEFERRED

 Check constraint only at the end of the transaction.

CHECK clause

 SQL92 specifies some additional capabilities for CHECK in either table or column constraints.

 table constraint definition:

[CONSTRAINT constraint_name] CHECK (VALUE condition)
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

 column constraint definition:

[CONSTRAINT constraint_name] CHECK (VALUE condition)
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

PRIMARY KEY clause

 SQL92 specifies some additional capabilities for PRIMARY KEY:

 Table Constraint definition:

[CONSTRAINT constraint_name] PRIMARY KEY (column [, ...])
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

 Column Constraint definition:

[CONSTRAINT constraint_name] PRIMARY KEY
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

SQL Commands

76

Inheritance

 Multiple inheritance via the INHERITS clause is a Postgres language extension. SQL99 (but not
SQL92) defines single inheritance using a different syntax and different semantics. SQL99-style
inheritance is not yet supported by Postgres.

 CREATE TABLE AS

Name

 CREATE TABLE AS � Creates a new table from the results of a SELECT

Synopsis

CREATE [TEMPORARY | TEMP] TABLE table [(column [, ...])]
 AS select_clause

Inputs

TEMPORARY or TEMP

 If specified, the table is created only within this session, and is automatically dropped on session
exit. Existing permanent tables with the same name are not visible (in this session) while the
temporary table exists. Any indexes created on a temporary table are automatically temporary as
well.

table

 The name of the new table to be created. This table must not already exist. However, a temporary
table can be created that has the same name as an existing permanent table.

column

 The name of a column. Multiple column names can be specified using a comma-delimited list of
column names. If column names are not provided, they are taken from the output column names of
the SELECT query.

select_clause

 A valid query statement. Refer to SELECT for a description of the allowed syntax.

Outputs

 Refer to CREATE TABLE and SELECT for a summary of possible output messages.

SQL Commands

77

Description

 CREATE TABLE AS creates a table and fills it with data computed by a SELECT command. The
table columns have the names and datatypes associated with the output columns of the SELECT
(except that you can override the SELECT column names by giving an explicit list of column names).

 CREATE TABLE AS bears some resemblance to creating a view, but it is really quite different: it
creates a new table and evaluates the SELECT just once to fill the new table initially. The new table
will not track subsequent changes to the source tables of the SELECT. In contrast, a view re-evaluates
the given SELECT whenever queried.

 This command is functionally equivalent to SELECT INTO, but it is preferred since it is less likely to be
confused with other uses of the SELECT ... INTO syntax.

 CREATE TRIGGER

Name

 CREATE TRIGGER � Creates a new trigger

Synopsis

CREATE TRIGGER name { BEFORE | AFTER } { event [OR ...] }
 ON table FOR EACH { ROW | STATEMENT }
 EXECUTE PROCEDURE func (arguments)

Inputs

name

 The name of an existing trigger.

table

 The name of a table.

event

 One of INSERT, DELETE or UPDATE.

func

 A user-supplied function.

SQL Commands

78

Outputs

CREATE

 This message is returned if the trigger is successfully created.

Description

 CREATE TRIGGER will enter a new trigger into the current data base. The trigger will be associated
with the relation table and will execute the specified function func.

 The trigger can be specified to fire either before BEFORE the operation is attempted on a tuple (before
constraints are checked and the INSERT, UPDATE or DELETE is attempted) or AFTER the operation
has been attempted (e.g., after constraints are checked and the INSERT, UPDATE or DELETE has
completed). If the trigger fires before the event, the trigger may skip the operation for the current tuple,
or change the tuple being inserted (for INSERT and UPDATE operations only). If the trigger fires after
the event, all changes, including the last insertion, update, or deletion, are "visible" to the trigger.

 Refer to the chapters on SPI and Triggers in the PostgreSQL Programmer’s Guide for more
information.

Notes

 CREATE TRIGGER is a Postgres language extension.

 Only the relation owner may create a trigger on this relation.

 As of the current release (v7.0), STATEMENT triggers are not implemented.

 Refer to DROP TRIGGER for information on how to remove triggers.

Usage

 Check if the specified distributor code exists in the distributors table before appending or updating a
row in the table films:

CREATE TRIGGER if_dist_exists
 BEFORE INSERT OR UPDATE ON films FOR EACH ROW
 EXECUTE PROCEDURE check_primary_key (’did’, ’distributors’, ’did’);

 Before cancelling a distributor or updating its code, remove every reference to the table films:

CREATE TRIGGER if_film_exists
 BEFORE DELETE OR UPDATE ON distributors FOR EACH ROW
 EXECUTE PROCEDURE check_foreign_key (1, ’CASCADE’, ’did’, ’films’,
’did’);

SQL Commands

79

Compatibility

SQL92

 There is no CREATE TRIGGER in SQL92.

 The second example above may also be done by using a FOREIGN KEY constraint as in:

CREATE TABLE distributors (
 did DECIMAL(3),
 name VARCHAR(40),
 CONSTRAINT if_film_exists
 FOREIGN KEY(did) REFERENCES films
 ON UPDATE CASCADE ON DELETE CASCADE
);

 CREATE TYPE

Name

 CREATE TYPE � Defines a new base data type

Synopsis

CREATE TYPE typename (INPUT = input_function, OUTPUT = output_function
 , INTERNALLENGTH = { internallength | VARIABLE }
 [, EXTERNALLENGTH = { externallength | VARIABLE }]
 [, DEFAULT = "default"]
 [, ELEMENT = element] [, DELIMITER = delimiter]
 [, SEND = send_function] [, RECEIVE = receive_function]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
)

Inputs

typename

 The name of a type to be created.

internallength

 A literal value, which specifies the internal length of the new type.

SQL Commands

80

externallength

 A literal value, which specifies the external (displayed) length of the new type.

input_function

 The name of a function, created by CREATE FUNCTION, which converts data from its external
form to the type’s internal form.

output_function

 The name of a function, created by CREATE FUNCTION, which converts data from its internal
form to a form suitable for display.

element

 The type being created is an array; this specifies the type of the array elements.

delimiter

 The delimiter character for the array elements.

default

 The default value for the data type. Usually this is omitted, so that the default is NULL.

send_function

 The name of a function, created by CREATE FUNCTION, which converts data of this type into a
form suitable for transmission to another machine.

receive_function

 The name of a function, created by CREATE FUNCTION, which converts data of this type from
a form suitable for transmission from another machine to internal form.

alignment

 Storage alignment requirement of the data type. If specified, must be ’int4’ or ’double’; the
default is ’int4’.

storage

 Storage technique for the data type. If specified, must be ’plain’, ’external’, ’extended’, or
’main’; the default is ’plain’.

Outputs

CREATE

 Message returned if the type is successfully created.

SQL Commands

81

Description

 CREATE TYPE allows the user to register a new user data type with Postgres for use in the current
data base. The user who defines a type becomes its owner. typename is the name of the new type and
must be unique within the types defined for this database.

 CREATE TYPE requires the registration of two functions (using create function) before defining the
type. The representation of a new base type is determined by input_function, which converts the
type’s external representation to an internal representation usable by the operators and functions defined
for the type. Naturally, output_function performs the reverse transformation. Both the input and
output functions must be declared to take one or two arguments of type "opaque".

 New base data types can be fixed length, in which case internallength is a positive integer, or
variable length, in which case Postgres assumes that the new type has the same format as the
Postgres-supplied data type, "text". To indicate that a type is variable length, set internallength
to VARIABLE. The external representation is similarly specified using the externallength keyword.

 To indicate that a type is an array and to indicate that a type has array elements, indicate the type of the
array element using the element keyword. For example, to define an array of 4-byte integers ("int4"),
specify

ELEMENT = int4

 To indicate the delimiter to be used on arrays of this type, delimiter can be set to a specific
character. The default delimiter is the comma (",").

 A default value is optionally available in case a user wants some specific bit pattern to mean "data not
present." Specify the default with the DEFAULT keyword.

* How does the user specify that bit pattern and associate it with the fact that the data is not present>

 The optional arguments send_function and receive_function are used when the application
program requesting Postgres services resides on a different machine. In this case, the machine on which
Postgres runs may use a format for the data type different from that used on the remote machine. In this
case it is appropriate to convert data items to a standard form when sending from the server to the client
and converting from the standard format to the machine specific format when the server receives the
data from the client. If these functions are not specified, then it is assumed that the internal format of the
type is acceptable on all relevant machine architectures. For example, single characters do not have to be
converted if passed from a Sun-4 to a DECstation, but many other types do.

 The optional flag, PASSEDBYVALUE, indicates that operators and functions which use this data type
should be passed an argument by value rather than by reference. Note that you may not pass by value
types whose internal representation is more than four bytes.

 The storage keyword allows selection of storage strategies for variable-length data types (only
plain is allowed for fixed-length types). plain disables TOAST for the data type: it will always be
stored in-line and not compressed. extended gives full TOAST capability: the system will first try to
compress a long data value, and will move the value out of the main table row if it’s still too long.
external allows the value to be moved out of the main table, but the system will not try to compress it.
main allows compression, but discourages moving the value out of the main table. (Data items with this

SQL Commands

82

storage method may still be moved out of the main table if there is no other way to make a row fit, but
they will be kept in the main table preferentially over extended and external items.)

 For new base types, a user can define operators, functions and aggregates using the appropriate
facilities described in this section.

Array Types

 Two generalized built-in functions, array_in and array_out, exist for quick creation of variable-length
array types. These functions operate on arrays of any existing Postgres type.

Examples

 This command creates the box data type and then uses the type in a table definition:

CREATE TYPE box (INTERNALLENGTH = 8,
 INPUT = my_procedure_1, OUTPUT = my_procedure_2);
CREATE TABLE myboxes (id INT4, description box);

 This command creates a variable length array type with integer elements:

CREATE TYPE int4array (INPUT = array_in, OUTPUT = array_out,
 INTERNALLENGTH = VARIABLE, ELEMENT = int4);
CREATE TABLE myarrays (id int4, numbers int4array);

 This command creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (INPUT = lo_filein, OUTPUT = lo_fileout,
 INTERNALLENGTH = VARIABLE);
CREATE TABLE big_objs (id int4, obj bigobj);

Notes

 Type names cannot begin with the underscore character ("_") and can only be 31 characters long. This
is because Postgres silently creates an array type for each base type with a name consisting of the base
type’s name prepended with an underscore.

 Refer to DROP TYPE to remove an existing type.

 See also CREATE FUNCTION, CREATE OPERATOR and the chapter on Large Objects in the
PostgreSQL Programmer’s Guide.

SQL Commands

83

Compatibility

SQL3

 CREATE TYPE is an SQL3 statement.

 CREATE USER

Name

 CREATE USER � Creates a new database user

Synopsis

CREATE USER username
 [WITH
 [SYSID uid]
 [PASSWORD ’password’]]
 [CREATEDB | NOCREATEDB] [CREATEUSER | NOCREATEUSER]
 [IN GROUP groupname [, ...]]
 [VALID UNTIL ’abstime’]

Inputs

username

 The name of the user.

uid

 The SYSID clause can be used to choose the Postgres user id of the user that is being created. It is
not at all necessary that those match the UNIX user ids, but some people choose to keep the
numbers the same.

 If this is not specified, the highest assigned user id plus one will be used as default.

password

 Sets the user’s password. If you do not plan to use password authentication you can omit this
option, otherwise the user won’t be able to connect to a password-authenticated server. See the
chapter on client authentication in the Administrator’s Guide for details on how to set up
authentication mechanisms.

CREATEDB
NOCREATEDB

 These clauses define a user’s ability to create databases. If CREATEDB is specified, the user
being defined will be allowed to create his own databases. Using NOCREATEDB will deny a user
the ability to create databases. If this clause is omitted, NOCREATEDB is used by default.

SQL Commands

84

CREATEUSER
NOCREATEUSER

 These clauses determine whether a user will be permitted to create new users himself. This option
will also make the user a superuser who can override all access restrictions. Omitting this clause
will set the user’s value of this attribute to be NOCREATEUSER.

groupname

 A name of a group into which to insert the user as a new member.

abstime

 The VALID UNTIL clause sets an absolute time after which the user’s password is no longer
valid. If this clause is omitted the login will be valid for all time.

Outputs

CREATE USER

 Message returned if the command completes successfully.

Description

 CREATE USER will add a new user to an instance of Postgres. Refer to the administrator’s guide for
information about managing users and authentication. You must be a database superuser to use this
command.

 Use ALTER USER to change a user’s password and privileges, and DROP USER to remove a user. Use
ALTER GROUP to add or remove the user from other groups. Postgres comes with a script createuser
which has the same functionality as this command (in fact, it calls this command) but can be run from
the command shell.

Usage

 Create a user with no password:

CREATE USER jonathan

 Create a user with a password:

CREATE USER davide WITH PASSWORD ’jw8s0F4’

 Create a user with a password, whose account is valid until the end of 2001. Note that after one second
has ticked in 2002, the account is not valid:

SQL Commands

85

CREATE USER miriam WITH PASSWORD ’jw8s0F4’ VALID UNTIL ’Jan 1 2002’

 Create an account where the user can create databases:

CREATE USER manuel WITH PASSWORD ’jw8s0F4’ CREATEDB

Compatibility

SQL92

 There is no CREATE USER statement in SQL92.

 CREATE VIEW

Name

 CREATE VIEW � Constructs a virtual table

Synopsis

CREATE VIEW view AS SELECT query

Inputs

view

 The name of a view to be created.

query

 An SQL query which will provide the columns and rows of the view.

 Refer to the SELECT statement for more information about valid arguments.

Outputs

CREATE

 The message returned if the view is successfully created.

ERROR: Relation ’view’ already exists

 This error occurs if the view specified already exists in the database.

SQL Commands

86

NOTICE create: attribute named "column" has an unknown type

 The view will be created having a column with an unknown type if you do not specify it. For
example, the following command gives a warning:

CREATE VIEW vista AS SELECT ’Hello World’

 whereas this command does not:

CREATE VIEW vista AS SELECT text ’Hello World’

Description

 CREATE VIEW will define a view of a table. This view is not physically materialized. Specifically, a
query rewrite retrieve rule is automatically generated to support retrieve operations on views.

Notes

 Currently, views are read only.

 Use the DROP VIEW statement to drop views.

Usage

 Create a view consisting of all Comedy films:

CREATE VIEW kinds AS
 SELECT *
 FROM films
 WHERE kind = ’Comedy’;

SELECT * FROM kinds;

 code | title | did | date_prod | kind | len
-------+---------------------------+-----+------------+--------+-------
 UA502 | Bananas | 105 | 1971-07-13 | Comedy | 01:22
 C_701 | There’s a Girl in my Soup | 107 | 1970-06-11 | Comedy | 01:36
(2 rows)

Compatibility

SQL92

 SQL92 specifies some additional capabilities for the CREATE VIEW statement:

CREATE VIEW view [column [, ...]]

SQL Commands

87

 AS SELECT expression [AS colname] [, ...]
 FROM table [WHERE condition]
 [WITH [CASCADE | LOCAL] CHECK OPTION]

 The optional clauses for the full SQL92 command are:

CHECK OPTION

 This option is to do with updatable views. All INSERTs and UPDATEs on the view will be
checked to ensure data satisfy the view-defining condition. If they do not, the update will be
rejected.

LOCAL

 Check for integrity on this view.

CASCADE

 Check for integrity on this view and on any dependent view. CASCADE is assumed if neither
CASCADE nor LOCAL is specified.

 DECLARE

Name

 DECLARE � Defines a cursor for table access

Synopsis

DECLARE cursorname [BINARY] [INSENSITIVE] [SCROLL]
 CURSOR FOR query
 [FOR { READ ONLY | UPDATE [OF column [, ...]]]

Inputs

cursorname

 The name of the cursor to be used in subsequent FETCH operations.

BINARY

 Causes the cursor to fetch data in binary rather than in text format.

INSENSITIVE

 SQL92 keyword indicating that data retrieved from the cursor should be unaffected by updates
from other processes or cursors. Since cursor operations occur within transactions in Postgres this
is always the case. This keyword has no effect.

SQL Commands

88

SCROLL

 SQL92 keyword indicating that data may be retrieved in multiple rows per FETCH operation.
Since this is allowed at all times by Postgres this keyword has no effect.

query

 An SQL query which will provide the rows to be governed by the cursor. Refer to the SELECT
statement for further information about valid arguments.

READ ONLY

 SQL92 keyword indicating that the cursor will be used in a read only mode. Since this is the only
cursor access mode available in Postgres this keyword has no effect.

UPDATE

 SQL92 keyword indicating that the cursor will be used to update tables. Since cursor updates are
not currently supported in Postgres this keyword provokes an informational error message.

column

 Column(s) to be updated. Since cursor updates are not currently supported in Postgres the
UPDATE clause provokes an informational error message.

Outputs

SELECT

 The message returned if the SELECT is run successfully.

NOTICE: Closing pre-existing portal "cursorname"

 This message is reported if the same cursor name was already declared in the current transaction
block. The previous definition is discarded.

ERROR: DECLARE CURSOR may only be used in begin/end transaction blocks

 This error occurs if the cursor is not declared within a transaction block.

Description

 DECLARE allows a user to create cursors, which can be used to retrieve a small number of rows at a
time out of a larger query. Cursors can return data either in text or in binary format using FETCH.

 Normal cursors return data in text format, either ASCII or another encoding scheme depending on how
the Postgres backend was built. Since data is stored natively in binary format, the system must do a
conversion to produce the text format. In addition, text formats are often larger in size than the
corresponding binary format. Once the information comes back in text form, the client application may

SQL Commands

89

need to convert it to a binary format to manipulate it. BINARY cursors give you back the data in the
native binary representation.

 As an example, if a query returns a value of one from an integer column, you would get a string of ’1’
with a default cursor whereas with a binary cursor you would get a 4-byte value equal to control-A
(’^A’).

 BINARY cursors should be used carefully. User applications such as psql are not aware of binary
cursors and expect data to come back in a text format.

 String representation is architecture-neutral whereas binary representation can differ between different
machine architectures. Postgres does not resolve byte ordering or representation issues for binary
cursors. Therefore, if your client machine and server machine use different representations (e.g.,
"big-endian" versus "little-endian"), you will probably not want your data returned in binary format.
However, binary cursors may be a little more efficient since there is less conversion overhead in the
server to client data transfer.

Tip: If you intend to display the data in ASCII, getting it back in ASCII will save you some effort on
the client side.

Notes

 Cursors are only available in transactions. Use to BEGIN, COMMIT and ROLLBACK to define a
transaction block.

 In SQL92 cursors are only available in embedded SQL (ESQL) applications. The Postgres backend
does not implement an explicit OPEN cursor statement; a cursor is considered to be open when it is
declared. However, ecpg, the embedded SQL preprocessor for Postgres, supports the SQL92 cursor
conventions, including those involving DECLARE and OPEN statements.

Usage

 To declare a cursor:

DECLARE liahona CURSOR
 FOR SELECT * FROM films;

Compatibility

SQL92

 SQL92 allows cursors only in embedded SQL and in modules. Postgres permits cursors to be used
interactively. SQL92 allows embedded or modular cursors to update database information. All Postgres
cursors are read only. The BINARY keyword is a Postgres extension.

SQL Commands

90

 DELETE

Name

 DELETE � Removes rows from a table

Synopsis

DELETE FROM [ONLY] table [WHERE condition]

Inputs

table

 The name of an existing table.

condition

 This is an SQL selection query which returns the rows which are to be deleted.

 Refer to the SELECT statement for further description of the WHERE clause.

Outputs

DELETE count

 Message returned if items are successfully deleted. The count is the number of rows deleted.

 If count is 0, no rows were deleted.

Description

 DELETE removes rows which satisfy the WHERE clause from the specified table.

 If the condition (WHERE clause) is absent, the effect is to delete all rows in the table. The result is a
valid, but empty table.

Tip: TRUNCATE is a Postgres extension which provides a faster mechanism to remove all rows
from a table.

 By default DELETE will delete tuples in the table specified and all its sub-tables. If you wish to only
update the specific table mentioned, you should use the ONLY clause.

SQL Commands

91

 You must have write access to the table in order to modify it, as well as read access to any table whose
values are read in the condition.

Usage

 Remove all films but musicals:

DELETE FROM films WHERE kind <> ’Musical’;
SELECT * FROM films;

 code | title | did | date_prod | kind | len

-------+---------------------------+-----+------------+---------+-------

 UA501 | West Side Story | 105 | 1961-01-03 | Musical | 02:32

 TC901 | The King and I | 109 | 1956-08-11 | Musical | 02:13

 WD101 | Bed Knobs and Broomsticks | 111 | | Musical | 01:57

(3 rows)

 Clear the table films:

DELETE FROM films;
SELECT * FROM films;

 code | title | did | date_prod | kind | len

------+-------+-----+-----------+------+-----

(0 rows)

Compatibility

SQL92

 SQL92 allows a positioned DELETE statement:

DELETE FROM table WHERE
 CURRENT OF cursor

 where cursor identifies an open cursor. Interactive cursors in Postgres are read-only.

SQL Commands

92

DROP AGGREGATE

Name

 DROP AGGREGATE � Removes the definition of an aggregate function

Synopsis

DROP AGGREGATE name type

Inputs

name

 The name of an existing aggregate function.

type

 The input datatype of an existing aggregate function, or * if the function accepts any input type.
(Refer to the PostgreSQL User’s Guide for further information about data types.)

* This should become a cross-reference rather than a hard-coded chapter number

Outputs

DROP

 Message returned if the command is successful.

ERROR: RemoveAggregate: aggregate ’agg’ for ’type’ does not exist

 This message occurs if the aggregate function specified does not exist in the database.

Description

 DROP AGGREGATE will remove all references to an existing aggregate definition. To execute this
command the current user must be the owner of the aggregate.

Notes

 Use CREATE AGGREGATE to create aggregate functions.

SQL Commands

93

Usage

 To remove the myavg aggregate for type int4:

DROP AGGREGATE myavg int4;

Compatibility

SQL92

 There is no DROP AGGREGATE statement in SQL92; the statement is a Postgres language
extension.

 DROP DATABASE

Name

 DROP DATABASE � Removes an existing database

Synopsis

DROP DATABASE name

Inputs

name

 The name of an existing database to remove.

Outputs

DROP DATABASE

 This message is returned if the command is successful.

ERROR: user ’username’ is not allowed to create/drop databases

 You must have the special CREATEDB privilege to drop databases. See CREATE USER.

ERROR: dropdb: cannot be executed on the template database

 The template1 database cannot be removed. It’s not in your interest.

SQL Commands

94

ERROR: dropdb: cannot be executed on an open database

 You cannot be connected to the database your are about to remove. Instead, you could connect to
template1 or any other database and run this command again.

ERROR: dropdb: database ’name’ does not exist

 This message occurs if the specified database does not exist.

ERROR: dropdb: database ’name’ is not owned by you

 You must be the owner of the database. Being the owner usually means that you created it as well.

ERROR: dropdb: May not be called in a transaction block.

 You must finish the transaction in progress before you can call this command.

NOTICE: The database directory ’xxx’ could not be removed.

 The database was dropped (unless other error messages came up), but the directory where the data
is stored could not be removed. You must delete it manually.

Description

 DROP DATABASE removes the catalog entries for an existing database and deletes the directory
containing the data. It can only be executed by the database owner (usually the user that created it).

Notes

 This command cannot be executed while connected to the target database. Thus, it might be more
convenient to use the shell script dropdb, which is a wrapper around this command, instead.

 Refer to CREATE DATABASE for information on how to create a database.

Compatibility

SQL92

 DROP DATABASE statement is a Postgres language extension; there is no such command in SQL92.

SQL Commands

95

 DROP FUNCTION

Name

 DROP FUNCTION � Removes a user-defined C function

Synopsis

DROP FUNCTION name ([type [, ...]])

Inputs

 name

 The name of an existing function.

type

 The type of function parameters.

Outputs

DROP

 Message returned if the command completes successfully.

NOTICE RemoveFunction: Function "name" ("types") does not exist

 This message is given if the function specified does not exist in the current database.

Description

 DROP FUNCTION will remove references to an existing C function. To execute this command the user
must be the owner of the function. The input argument types to the function must be specified, as only
the function with the given name and argument types will be removed.

Notes

 Refer to CREATE FUNCTION for information on creating aggregate functions.

 No checks are made to ensure that types, operators or access methods that rely on the function have
been removed first.

Usage

SQL Commands

96

 This command removes the square root function:

DROP FUNCTION sqrt(int4);

Compatibility

SQL92

 DROP FUNCTION is a Postgres language extension.

SQL/PSM

 SQL/PSM is a proposed standard to enable function extensibility. The SQL/PSM DROP FUNCTION
statement has the following syntax:

DROP [SPECIFIC] FUNCTION name { RESTRICT | CASCADE }

 DROP GROUP

Name

 DROP GROUP � Removes a group

Synopsis

DROP GROUP name

Inputs

name

 The name of an existing group.

Outputs

DROP GROUP

 The message returned if the group is successfully deleted.

SQL Commands

97

Description

 DROP GROUP removes the specified group from the database. The users in the group are not deleted.

 Use CREATE GROUP to add new groups, and ALTER GROUP to change a group’s membership.

Usage

 To drop a group:

DROP GROUP staff;

Compatibility

SQL92

 There is no DROP GROUP in SQL92.

 DROP INDEX

Name

 DROP INDEX � Removes existing indexes from a database

Synopsis

DROP INDEX index_name [, ...]

Inputs

index_name

 The name of an index to remove.

Outputs

DROP

 The message returned if the command completes successfully.

ERROR: index "index_name" does not exist

 This message occurs if index_name is not an index in the database.

SQL Commands

98

Description

 DROP INDEX drops an existing index from the database system. To execute this command you must
be the owner of the index.

Notes

 DROP INDEX is a Postgres language extension.

 Refer to CREATE INDEX for information on how to create indexes.

Usage

 This command will remove the title_idx index:

 DROP INDEX title_idx;

Compatibility

SQL92

 SQL92 defines commands by which to access a generic relational database. Indexes are an
implementation-dependent feature and hence there are no index-specific commands or definitions in the
SQL92 language.

 DROP LANGUAGE

Name

 DROP LANGUAGE � Removes a user-defined procedural language

Synopsis

DROP [PROCEDURAL] LANGUAGE ’name’

Inputs

name

 The name of an existing procedural language.

SQL Commands

99

Outputs

DROP

 This message is returned if the language is successfully dropped.

ERROR: Language "name" doesn’t exist

 This message occurs if a language called name is not found in the database.

Description

 DROP PROCEDURAL LANGUAGE will remove the definition of the previously registered
procedural language called name.

Notes

 The DROP PROCEDURAL LANGUAGE statement is a Postgres language extension.

 Refer to CREATE LANGUAGE for information on how to create procedural languages.

 No checks are made if functions or trigger procedures registered in this language still exist. To
re-enable them without having to drop and recreate all the functions, the pg_proc’s prolang attribute of
the functions must be adjusted to the new object ID of the recreated pg_language entry for the PL.

Usage

 This command removes the PL/Sample language:

DROP PROCEDURAL LANGUAGE ’plsample’;

Compatibility

SQL92

 There is no DROP PROCEDURAL LANGUAGE in SQL92.

SQL Commands

100

DROP OPERATOR

Name

 DROP OPERATOR � Removes an operator from the database

Synopsis

DROP OPERATOR id (lefttype | NONE , righttype | NONE)

Inputs

id

 The identifier of an existing operator.

lefttype

 The type of the operator’s left argument; write NONE if the operator has no left argument.

righttype

 The type of the operator’s right argument; write NONE if the operator has no right argument.

Outputs

DROP

 The message returned if the command is successful.

ERROR: RemoveOperator: binary operator ’oper’ taking ’type’ and ’type2’ does

not exist

 This message occurs if the specified binary operator does not exist.

ERROR: RemoveOperator: left unary operator ’oper’ taking ’type’ does not

exist

 This message occurs if the left unary operator specified does not exist.

ERROR: RemoveOperator: right unary operator ’oper’ taking ’type’ does not

exist

 This message occurs if the right unary operator specified does not exist.

SQL Commands

101

Description

 DROP OPERATOR drops an existing operator from the database. To execute this command you must
be the owner of the operator.

 The left or right type of a left or right unary operator, respectively, must be specified as NONE.

Notes

 The DROP OPERATOR statement is a Postgres language extension.

 Refer to CREATE OPERATOR for information on how to create operators.

 It is the user’s responsibility to remove any access methods and operator classes that rely on the deleted
operator.

Usage

 Remove power operator a^n for int4:

DROP OPERATOR ^ (int4, int4);

 Remove left unary negation operator (! b) for booleans:

DROP OPERATOR ! (none, bool);

 Remove right unary factorial operator (i !) for int4:

DROP OPERATOR ! (int4, none);

Compatibility

SQL92

 There is no DROP OPERATOR in SQL92.

SQL Commands

102

DROP RULE

Name

 DROP RULE � Removes existing rules from the database

Synopsis

DROP RULE name [, ...]

Inputs

name

 The name of an existing rule to drop.

Outputs

DROP

 Message returned if successful.

ERROR: Rule or view "name" not found

 This message occurs if the specified rule does not exist.

Description

 DROP RULE drops a rule from the specified Postgres rule system. Postgres will immediately cease
enforcing it and will purge its definition from the system catalogs.

Notes

 The DROP RULE statement is a Postgres language extension.

 Refer to CREATE RULE for information on how to create rules.

 Once a rule is dropped, access to historical information the rule has written may disappear.

Usage

 To drop the rewrite rule newrule:

DROP RULE newrule;

SQL Commands

103

Compatibility

SQL92

 There is no DROP RULE in SQL92.

 DROP SEQUENCE

Name

 DROP SEQUENCE � Removes existing sequences from a database

Synopsis

DROP SEQUENCE name [, ...]

Inputs

name

 The name of a sequence.

Outputs

DROP

 The message returned if the sequence is successfully dropped.

ERROR: sequence "name" does not exist

 This message occurs if the specified sequence does not exist.

Description

 DROP SEQUENCE removes sequence number generators from the data base. With the current
implementation of sequences as special tables it works just like the DROP TABLE statement.

Notes

 The DROP SEQUENCE statement is a Postgres language extension.

 Refer to the CREATE SEQUENCE statement for information on how to create a sequence.

SQL Commands

104

Usage

 To remove sequence serial from database:

DROP SEQUENCE serial;

Compatibility

SQL92

 There is no DROP SEQUENCE in SQL92.

 DROP TABLE

Name

 DROP TABLE � Removes existing tables from a database

Synopsis

DROP TABLE name [, ...]

Inputs

name

 The name of an existing table to drop.

Outputs

DROP

 The message returned if the command completes successfully.

ERROR: table "name" does not exist

 If the specified table does not exist in the database.

SQL Commands

105

Description

 DROP TABLE removes tables from the database. Only its owner may destroy a table. A table may be
emptied of rows, but not destroyed, by using DELETE.

 If a table being destroyed has secondary indexes on it, they will be removed first. The removal of just a
secondary index will not affect the contents of the underlying table.

Notes

 Refer to CREATE TABLE and ALTER TABLE for information on how to create or modify tables.

Usage

 To destroy two tables, films and distributors:

DROP TABLE films, distributors;

Compatibility

SQL92

 SQL92 specifies some additional capabilities for DROP TABLE:

DROP TABLE table { RESTRICT | CASCADE }

RESTRICT

 Ensures that only a table with no dependent views or integrity constraints can be destroyed.

CASCADE

 Any referencing views or integrity constraints will also be dropped.

Tip: At present, to remove a referenced view you must drop it explicitly.

SQL Commands

106

DROP TRIGGER

Name

 DROP TRIGGER � Removes the definition of a trigger

Synopsis

DROP TRIGGER name ON table

Inputs

name

 The name of an existing trigger.

table

 The name of a table.

Outputs

DROP

 The message returned if the trigger is successfully dropped.

ERROR: DropTrigger: there is no trigger name on relation "table"

 This message occurs if the trigger specified does not exist.

Description

 DROP TRIGGER will remove all references to an existing trigger definition. To execute this
command the current user must be the owner of the trigger.

Notes

 DROP TRIGGER is a Postgres language extension.

 Refer to CREATE TRIGGER for information on how to create triggers.

Usage

 Destroy the if_dist_exists trigger on table films:

DROP TRIGGER if_dist_exists ON films;

SQL Commands

107

Compatibility

SQL92

 There is no DROP TRIGGER statement in SQL92.

 DROP TYPE

Name

 DROP TYPE � Removes user-defined types from the system catalogs

Synopsis

DROP TYPE typename [, ...]

Inputs

typename

 The name of an existing type.

Outputs

DROP

 The message returned if the command is successful.

ERROR: RemoveType: type ’typename’ does not exist

 This message occurs if the specified type is not found.

Description

 DROP TYPE will remove a user type from the system catalogs.

 Only the owner of a type can remove it.

Notes

 DROP TYPE statement is a Postgres language extension.

SQL Commands

108

 Refer to CREATE TYPE for information on how to create types.

 It is the user’s responsibility to remove any operators, functions, aggregates, access methods, subtypes,
and tables that use a deleted type.

 If a built-in type is removed, the behavior of the backend is unpredictable.

Usage

 To remove the box type:

DROP TYPE box;

Compatibility

SQL3

 DROP TYPE is a SQL3 statement.

 DROP USER

Name

 DROP USER � Removes a user

Synopsis

DROP USER name

Inputs

name

 The name of an existing user.

Outputs

DROP USER

 The message returned if the user is successfully deleted.

SQL Commands

109

ERROR: DROP USER: user "name" does not exist

 This message occurs if the username is not found.

DROP USER: user "name" owns database "name", cannot be removed

 You must drop the database first or change its ownership.

Description

 DROP USER removes the specified user from the database. It does not remove tables, views, or other
objects owned by the user. If the user owns any database you get an error.

 Use CREATE USER to add new users, and ALTER USER to change a user’s properties. Postgres comes
with a script dropuser which has the same functionality as this command (in fact, it calls this command)
but can be run from the command shell.

Usage

 To drop a user account:

DROP USER jonathan;

Compatibility

SQL92

 There is no DROP USER in SQL92.

 DROP VIEW

Name

 DROP VIEW � Removes existing views from a database

Synopsis

DROP VIEW name [, ...]

Inputs

name

 The name of an existing view.

SQL Commands

110

Outputs

DROP

 The message returned if the command is successful.

ERROR: view name does not exist

 This message occurs if the specified view does not exist in the database.

Description

 DROP VIEW drops an existing view from the database. To execute this command you must be the
owner of the view.

Notes

 Refer to CREATE VIEW for information on how to create views.

Usage

 This command will remove the view called kinds:

DROP VIEW kinds;

Compatibility

SQL92

 SQL92 specifies some additional capabilities for DROP VIEW:

DROP VIEW view { RESTRICT | CASCADE }

Inputs

RESTRICT

 Ensures that only a view with no dependent views or integrity constraints can be destroyed.

CASCADE

 Any referencing views and integrity constraints will be dropped as well.

SQL Commands

111

Notes

 At present, to remove a referenced view from a Postgres database, you must drop it explicitly.

 END

Name

 END � Commits the current transaction

Synopsis

END [WORK | TRANSACTION]

Inputs

WORK
TRANSACTION

 Optional keywords. They have no effect.

Outputs

COMMIT

 Message returned if the transaction is successfully committed.

NOTICE: COMMIT: no transaction in progress

 If there is no transaction in progress.

Description

 END is a Postgres extension, and is a synonym for the SQL92-compatible COMMIT.

Notes

 The keywords WORK and TRANSACTION are noise and can be omitted.

 Use ROLLBACK to abort a transaction.

SQL Commands

112

Usage

 To make all changes permanent:

END WORK;

Compatibility

SQL92

 END is a PostgreSQL extension which provides functionality equivalent to COMMIT.

 EXPLAIN

Name

 EXPLAIN � Shows statement execution plan

Synopsis

EXPLAIN [VERBOSE] query

Inputs

VERBOSE

 Flag to show detailed query plan.

query

 Any query.

Outputs

NOTICE: QUERY PLAN: plan

 Explicit query plan from the Postgres backend.

EXPLAIN

 Flag sent after query plan is shown.

SQL Commands

113

Description

 This command displays the execution plan that the Postgres planner generates for the supplied query.
The execution plan shows how the table(s) referenced by the query will be scanned---by plain sequential
scan, index scan, etc.---and if multiple tables are referenced, what join algorithms will be used to bring
together the required tuples from each input table.

 The most critical part of the display is the estimated query execution cost, which is the planner’s guess
at how long it will take to run the query (measured in units of disk page fetches). Actually two numbers
are shown: the start-up time before the first tuple can be returned, and the total time to return all the
tuples. For most queries the total time is what matters, but in contexts such as an EXISTS sub-query the
planner will choose the smallest start-up time instead of the smallest total time (since the executor will
stop after getting one tuple, anyway). Also, if you limit the number of tuples to return with a LIMIT
clause, the planner makes an appropriate interpolation between the endpoint costs to estimate which
plan is really the cheapest.

 The VERBOSE option emits the full internal representation of the plan tree, rather than just a summary
(and sends it to the postmaster log file, too). Usually this option is only useful for debugging Postgres.

Notes

 There is only sparse documentation on the optimizer’s use of cost information in Postgres. General
information on cost estimation for query optimization can be found in database textbooks. Refer to the
Programmer’s Guide in the chapters on indexes and the genetic query optimizer for more information.

Usage

 To show a query plan for a simple query on a table with a single int4 column and 128 rows:

EXPLAIN SELECT * FROM foo;

 NOTICE: QUERY PLAN:

Seq Scan on foo (cost=0.00..2.28 rows=128 width=4)

EXPLAIN

 For the same table with an index to support an equijoin condition on the query, EXPLAIN will show a
different plan:

EXPLAIN SELECT * FROM foo WHERE i = 4;

 NOTICE: QUERY PLAN:

Index Scan using fi on foo (cost=0.00..0.42 rows=1 width=4)

EXPLAIN

SQL Commands

114

 And finally, for the same table with an index to support an equijoin condition on the query, EXPLAIN
will show the following for a query using an aggregate function:

EXPLAIN SELECT sum(i) FROM foo WHERE i = 4;

 NOTICE: QUERY PLAN:

Aggregate (cost=0.42..0.42 rows=1 width=4)

 -> Index Scan using fi on foo (cost=0.00..0.42 rows=1 width=4)

 Note that the specific numbers shown, and even the selected query strategy, may vary between Postgres
releases due to planner improvements.

Compatibility

SQL92

 There is no EXPLAIN statement defined in SQL92.

 FETCH

Name

 FETCH � Gets rows using a cursor

Synopsis

FETCH [direction] [count] { IN | FROM } cursor
FETCH [FORWARD | BACKWARD | RELATIVE] [# | ALL | NEXT | PRIOR] { IN |
FROM } cursor

Inputs

direction

 selector defines the fetch direction. It can be one of the following:

FORWARD

 fetch next row(s). This is the default if selector is omitted.

BACKWARD

 fetch previous row(s).

SQL Commands

115

RELATIVE

 Noise word for SQL92 compatibility.

count

 count determines how many rows to fetch. It can be one of the following:

#

 A signed integer that specifies how many rows to fetch. Note that a negative integer is
equivalent to changing the sense of FORWARD and BACKWARD.

 ALL

 Retrieve all remaining rows.

 NEXT

 Equivalent to specifying a count of 1.

 PRIOR

 Equivalent to specifying a count of -1.

cursor

 An open cursor’s name.

Outputs

 FETCH returns the results of the query defined by the specified cursor. The following messages will be
returned if the query fails:

NOTICE: PerformPortalFetch: portal "cursor" not found

 If cursor is not previously declared. The cursor must be declared within a transaction block.

NOTICE: FETCH/ABSOLUTE not supported, using RELATIVE

 Postgres does not support absolute positioning of cursors.

ERROR: FETCH/RELATIVE at current position is not supported

 SQL92 allows one to repetitively retrieve the cursor at its "current position" using the syntax

FETCH RELATIVE 0 FROM cursor.

 Postgres does not currently support this notion; in fact the value zero is reserved to indicate that all
rows should be retrieved and is equivalent to specifying the ALL keyword. If the RELATIVE

SQL Commands

116

keyword has been used, Postgres assumes that the user intended SQL92 behavior and returns this
error message.

Description

 FETCH allows a user to retrieve rows using a cursor. The number of rows retrieved is specified by #.
If the number of rows remaining in the cursor is less than #, then only those available are fetched.
Substituting the keyword ALL in place of a number will cause all remaining rows in the cursor to be
retrieved. Instances may be fetched in both FORWARD and BACKWARD directions. The default
direction is FORWARD.

Tip: Negative numbers are allowed to be specified for the row count. A negative number is
equivalent to reversing the sense of the FORWARD and BACKWARD keywords. For example,
FORWARD -1 is the same as BACKWARD 1.

Notes

 Note that the FORWARD and BACKWARD keywords are Postgres extensions. The SQL92 syntax is
also supported, specified in the second form of the command. See below for details on compatibility
issues.

 Updating data in a cursor is not supported by Postgres, because mapping cursor updates back to base
tables is not generally possible, as is also the case with VIEW updates. Consequently, users must issue
explicit UPDATE commands to replace data.

 Cursors may only be used inside of transactions because the data that they store spans multiple user
queries.

 Use MOVE to change cursor position. DECLARE will define a cursor. Refer to BEGIN, COMMIT, and
ROLLBACK for further information about transactions.

Usage

 The following examples traverses a table using a cursor.

-- Set up and use a cursor:

BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;

SQL Commands

117

-- Fetch first 5 rows in the cursor liahona:
FETCH FORWARD 5 IN liahona;

 code | title | did | date_prod | kind | len

-------+-------------------------+-----+------------+----------+-------

 BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44

 BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43

 JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25

 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

 P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Fetch previous row:
FETCH BACKWARD 1 IN liahona;

 code | title | did | date_prod | kind | len

-------+---------+-----+------------+--------+-------

 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

-- close the cursor and commit work:

CLOSE liahona;
COMMIT WORK;

Compatibility

SQL92

Note: The non-embedded use of cursors is a Postgres extension. The syntax and usage of cursors
is being compared against the embedded form of cursors defined in SQL92.

 SQL92 allows absolute positioning of the cursor for FETCH, and allows placing the results into explicit
variables:

FETCH ABSOLUTE #
 FROM cursor
 INTO :variable [, ...]

ABSOLUTE

 The cursor should be positioned to the specified absolute row number. All row numbers in
Postgres are relative numbers so this capability is not supported.

:variable

 Target host variable(s).

SQL Commands

118

 GRANT

Name

 GRANT � Grants access privilege to a user, a group or all users

Synopsis

GRANT privilege [, ...] ON object [, ...]
 TO { PUBLIC | GROUP group | username }

Inputs

privilege

 The possible privileges are:

SELECT

 Access all of the columns of a specific table/view.

INSERT

 Insert data into all columns of a specific table.

UPDATE

 Update all columns of a specific table.

DELETE

 Delete rows from a specific table.

RULE

 Define rules on the table/view (See CREATE RULE statement).

ALL

 Grant all privileges.

object

 The name of an object to which to grant access. The possible objects are:
 table
 view
 sequence

SQL Commands

119

PUBLIC

 A short form representing all users.

GROUP group

 A group to whom to grant privileges.

 username

 The name of a user to whom to grant privileges. PUBLIC is a short form representing all users.

Outputs

CHANGE

 Message returned if successful.

ERROR: ChangeAcl: class "object" not found

 Message returned if the specified object is not available or if it is impossible to give privileges to
the specified group or users.

Description

 GRANT allows the creator of an object to give specific permissions to all users (PUBLIC) or to a
certain user or group. Users other than the creator don’t have any access permission unless the creator
GRANTs permissions, after the object is created.

 Once a user has a privilege on an object, he is enabled to exercise that privilege. There is no need to
GRANT privileges to the creator of an object, the creator automatically holds ALL privileges, and can
also drop the object.

Notes

 Currently, to grant privileges in Postgres to only a few columns, you must create a view having desired
columns and then grant privileges to that view.

 Use psql \z for further information about permissions on existing objects:

 Database = lusitania
 +------------------+---+
 | Relation | Grant/Revoke Permissions |
 +------------------+---+
 | mytable | {"=rw","miriam=arwR","group todos=rw"} |
 +------------------+---+

SQL Commands

120

 Legend:
 uname=arwR -- privileges granted to a user
 group gname=arwR -- privileges granted to a GROUP
 =arwR -- privileges granted to PUBLIC

 r -- SELECT
 w -- UPDATE/DELETE
 a -- INSERT
 R -- RULE
 arwR -- ALL

 Refer to REVOKE statements to revoke access privileges.

Usage

 Grant insert privilege to all users on table films:

GRANT INSERT ON films TO PUBLIC;

 Grant all privileges to user manuel on view kinds:

GRANT ALL ON kinds TO manuel;

Compatibility

SQL92

 The SQL92 syntax for GRANT allows setting privileges for individual columns within a table, and
allows setting a privilege to grant the same privileges to others:

GRANT privilege [, ...]
 ON object [(column [, ...])] [, ...]
 TO { PUBLIC | username [, ...] } [WITH GRANT OPTION]

 Fields are compatible with those in the Postgres implementation, with the following additions:

privilege

 SQL92 permits additional privileges to be specified:

SELECT

SQL Commands

121

REFERENCES

 Allowed to reference some or all of the columns of a specific table/view in integrity
constraints.

USAGE

 Allowed to use a domain, character set, collation or translation. If an object specifies anything
other than a table/view, privilege must specify only USAGE.

object

[TABLE] table

 SQL92 allows the additional non-functional keyword TABLE.

CHARACTER SET

 Allowed to use the specified character set.

COLLATION

 Allowed to use the specified collation sequence.

TRANSLATION

 Allowed to use the specified character set translation.

DOMAIN

 Allowed to use the specified domain.

WITH GRANT OPTION

 Allowed to grant the same privilege to others.

SQL Commands

122

 INSERT

Name

 INSERT � Inserts new rows into a table

Synopsis

INSERT INTO table [(column [, ...])]
 { DEFAULT VALUES | VALUES (expression [, ...]) | SELECT query }

Inputs

table

 The name of an existing table.

column

 The name of a column in table.

DEFAULT VALUES

 All columns will be filled by NULLs or by values specified when the table was created using
DEFAULT clauses.

expression

 A valid expression or value to assign to column.

query

 A valid query. Refer to the SELECT statement for a further description of valid arguments.

Outputs

INSERT oid 1

 Message returned if only one row was inserted. oid is the numeric OID of the inserted row.

INSERT 0 #

 Message returned if more than one rows were inserted. # is the number of rows inserted.

SQL Commands

123

Description

 INSERT allows one to insert new rows into a table. One can insert a single row at a time or several
rows as a result of a query. The columns in the target list may be listed in any order.

 Each column not present in the target list will be inserted using a default value, either a declared
DEFAULT value or NULL. Postgres will reject the new column if a NULL is inserted into a column
declared NOT NULL.

 If the expression for each column is not of the correct data type, automatic type coercion will be
attempted.

 You must have insert privilege to a table in order to append to it, as well as select privilege on any table
specified in a WHERE clause.

Usage

 Insert a single row into table films:

INSERT INTO films VALUES
 (’UA502’,’Bananas’,105,’1971-07-13’,’Comedy’,INTERVAL ’82 minute’);

 In this second example the last column len is omitted and therefore it will have the default value of
NULL:

INSERT INTO films (code, title, did, date_prod, kind)
 VALUES (’T_601’, ’Yojimbo’, 106, DATE ’1961-06-16’, ’Drama’);

 Insert a single row into table distributors; note that only column name is specified, so the omitted
column did will be assigned its default value:

INSERT INTO distributors (name) VALUES (’British Lion’);

 Insert several rows into table films from table tmp:

INSERT INTO films SELECT * FROM tmp;

SQL Commands

124

 Insert into arrays (refer to the PostgreSQL User’s Guide for further information about arrays):

-- Create an empty 3x3 gameboard for noughts-and-crosses
-- (all of these queries create the same board attribute)
INSERT INTO tictactoe (game, board[1:3][1:3])
 VALUES (1,’{{"","",""},{},{"",""}}’);
INSERT INTO tictactoe (game, board[3][3])
 VALUES (2,’{}’);
INSERT INTO tictactoe (game, board)
 VALUES (3,’{{,,},{,,},{,,}}’);

Compatibility

SQL92

 INSERT is fully compatible with SQL92. Possible limitations in features of the query clause are
documented for SELECT.

 LISTEN

Name

 LISTEN � Listen for a response on a notify condition

Synopsis

LISTEN name

Inputs

name

 Name of notify condition.

Outputs

LISTEN

 Message returned upon successful completion of registration.

NOTICE Async_Listen: We are already listening on name

 If this backend is already registered for that notify condition.

SQL Commands

125

Description

 LISTEN registers the current Postgres backend as a listener on the notify condition name.

 Whenever the command NOTIFY name is invoked, either by this backend or another one connected to
the same database, all the backends currently listening on that notify condition are notified, and each
will in turn notify its connected frontend application. See the discussion of NOTIFY for more
information.

 A backend can be unregistered for a given notify condition with the UNLISTEN command. Also, a
backend’s listen registrations are automatically cleared when the backend process exits.

 The method a frontend application must use to detect notify events depends on which Postgres
application programming interface it uses. With the basic libpq library, the application issues LISTEN
as an ordinary SQL command, and then must periodically call the routine PQnotifies to find out
whether any notify events have been received. Other interfaces such as libpgtcl provide higher-level
methods for handling notify events; indeed, with libpgtcl the application programmer should not even
issue LISTEN or UNLISTEN directly. See the documentation for the library you are using for more
details.

 NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Notes

 name can be any string valid as a name; it need not correspond to the name of any actual table. If
notifyname is enclosed in double-quotes, it need not even be a syntactically valid name, but can be
any string up to 31 characters long.

 In some previous releases of Postgres, name had to be enclosed in double-quotes when it did not
correspond to any existing table name, even if syntactically valid as a name. That is no longer required.

Usage

 Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;

Asynchronous NOTIFY ’virtual’ from backend with pid ’8448’ received.

Compatibility

SQL92

 There is no LISTEN in SQL92.

SQL Commands

126

 LOAD

Name

 LOAD � Dynamically loads an object file

Synopsis

LOAD ’filename’

Inputs

filename

 Object file for dynamic loading.

Outputs

LOAD

 Message returned on successful completion.

ERROR: LOAD: could not open file ’filename’

 Message returned if the specified file is not found. The file must be visible to the Postgres
backend, with the appropriate full path name specified, to avoid this message.

Description

 Loads an object (or ".o") file into the Postgres backend address space. Once a file is loaded, all
functions in that file can be accessed. This function is used in support of user-defined types and
functions.

 If a file is not loaded using LOAD, the file will be loaded automatically the first time the function is
called by Postgres. LOAD can also be used to reload an object file if it has been edited and recompiled.
Only objects created from C language files are supported at this time.

Notes

 Functions in loaded object files should not call functions in other object files loaded through the LOAD
command. For example, all functions in file A should call each other, functions in the standard or math
libraries, or in Postgres itself. They should not call functions defined in a different loaded file B. This is

SQL Commands

127

because if B is reloaded, the Postgres loader is not able to relocate the calls from the functions in A into
the new address space of B. If B is not reloaded, however, there will not be a problem.

 Object files must be compiled to contain position independent code. For example, on DECstations you
must use /bin/cc with the -G 0 option when compiling object files to be loaded.

 Note that if you are porting Postgres to a new platform, LOAD will have to work in order to support
ADTs.

Usage

 Load the file /usr/postgres/demo/circle.o:

LOAD ’/usr/postgres/demo/circle.o’

Compatibility

SQL92

 There is no LOAD in SQL92.

 LOCK

Name

 LOCK � Explicitly lock a table inside a transaction

Synopsis

LOCK [TABLE] name
LOCK [TABLE] name IN [ROW | ACCESS] { SHARE | EXCLUSIVE } MODE
LOCK [TABLE] name IN SHARE ROW EXCLUSIVE MODE

Inputs

name

 The name of an existing table to lock.

SQL Commands

128

ACCESS SHARE MODE

Note: This lock mode is acquired automatically over tables being queried.

 This is the least restrictive lock mode. It conflicts only with ACCESS EXCLUSIVE mode. It is
used to protect a table from being modified by concurrent ALTER TABLE, DROP TABLE and
VACUUM commands.

ROW SHARE MODE

Note: Automatically acquired by SELECT...FOR UPDATE. While it is a shared lock, may be
upgraded later to a ROW EXCLUSIVE lock.

 Conflicts with EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

ROW EXCLUSIVE MODE

Note: Automatically acquired by UPDATE, DELETE, and INSERT statements.

 Conflicts with SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE and ACCESS EXCLUSIVE
modes.

SHARE MODE

Note: Automatically acquired by CREATE INDEX. Share-locks the entire table.

 Conflicts with ROW EXCLUSIVE, SHARE ROW EXCLUSIVE, EXCLUSIVE and ACCESS
EXCLUSIVE modes. This mode protects a table against concurrent updates.

SHARE ROW EXCLUSIVE MODE

Note: This is like EXCLUSIVE MODE, but allows SHARE ROW locks by others.

 Conflicts with ROW EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE and
ACCESS EXCLUSIVE modes.

EXCLUSIVE MODE

Note: This mode is yet more restrictive than SHARE ROW EXCLUSIVE. It blocks all concurrent
ROW SHARE/SELECT...FOR UPDATE queries.

 Conflicts with ROW SHARE, ROW EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE and ACCESS EXCLUSIVE modes.

SQL Commands

129

ACCESS EXCLUSIVE MODE

Note: Automatically acquired by ALTER TABLE, DROP TABLE, VACUUM statements. This is the
most restrictive lock mode which conflicts with all other lock modes and protects a locked table
from any concurrent operations.

Note: This lock mode is also acquired by an unqualified LOCK TABLE (i.e., the command
without an explicit lock mode option).

Outputs

LOCK TABLE

 The lock was successfully applied.

ERROR name: Table does not exist.

 Message returned if name does not exist.

Description

 LOCK TABLE controls concurrent access to a table for the duration of a transaction. Postgres always
uses the least restrictive lock mode whenever possible. LOCK TABLE provides for cases when you
might need more restrictive locking.

 RDBMS locking uses the following terminology:

EXCLUSIVE

 Exclusive lock that prevents other locks from being granted.

SHARE

 Allows others to share lock. Prevents EXCLUSIVE locks.

ACCESS

 Locks table schema.

ROW

 Locks individual rows.

Note: If EXCLUSIVE or SHARE are not specified, EXCLUSIVE is assumed. Locks exist for the
duration of the transaction.

SQL Commands

130

 For example, an application runs a transaction at READ COMMITTED isolation level and needs to
ensure the existence of data in a table for the duration of the transaction. To achieve this you could use
SHARE lock mode over the table before querying. This will protect data from concurrent changes and
provide any further read operations over the table with data in their actual current state, because SHARE
lock mode conflicts with any ROW EXCLUSIVE one acquired by writers, and your LOCK TABLE
name IN SHARE MODE statement will wait until any concurrent write operations commit or rollback.

Note: To read data in their real current state when running a transaction at the SERIALIZABLE
isolation level you have to execute a LOCK TABLE statement before executing any DML statement,
when the transaction defines what concurrent changes will be visible to itself.

 In addition to the requirements above, if a transaction is going to change data in a table, then SHARE
ROW EXCLUSIVE lock mode should be acquired to prevent deadlock conditions when two concurrent
transactions attempt to lock the table in SHARE mode and then try to change data in this table, both
(implicitly) acquiring ROW EXCLUSIVE lock mode that conflicts with a concurrent SHARE lock.

 To continue with the deadlock (when two transaction wait for one another) issue raised above, you
should follow two general rules to prevent deadlock conditions:

 Transactions have to acquire locks on the same objects in the same order.

 For example, if one application updates row R1 and than updates row R2 (in the same transaction)
then the second application shouldn’t update row R2 if it’s going to update row R1 later (in a single
transaction). Instead, it should update rows R1 and R2 in the same order as the first application.

 Transactions should acquire two conflicting lock modes only if one of them is self-conflicting (i.e.,
may be held by one transaction at time only). If multiple lock modes are involved, then transactions
should always acquire the most restrictive mode first.

 An example for this rule was given previously when discussing the use of SHARE ROW
EXCLUSIVE mode rather than SHARE mode.

Note: Postgres does detect deadlocks and will rollback at least one waiting transaction to resolve
the deadlock.

Notes

 LOCK is a Postgres language extension.

 Except for ACCESS SHARE/EXCLUSIVE lock modes, all other Postgres lock modes and the LOCK
TABLE syntax are compatible with those present in Oracle.

 LOCK works only inside transactions.

SQL Commands

131

Usage

 Illustrate a SHARE lock on a primary key table when going to perform inserts into a foreign key table:

BEGIN WORK;
LOCK TABLE films IN SHARE MODE;
SELECT id FROM films
 WHERE name = ’Star Wars: Episode I - The Phantom Menace’;
-- Do ROLLBACK if record was not returned
INSERT INTO films_user_comments VALUES
 (_id_, ’GREAT! I was waiting for it for so long!’);
COMMIT WORK;

 Take a SHARE ROW EXCLUSIVE lock on a primary key table when going to perform a delete
operation:

BEGIN WORK;
LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;
DELETE FROM films_user_comments WHERE id IN
 (SELECT id FROM films WHERE rating < 5);
DELETE FROM films WHERE rating < 5;
COMMIT WORK;

Compatibility

SQL92

 There is no LOCK TABLE in SQL92, which instead uses SET TRANSACTION to specify
concurrency levels on transactions. We support that too; see SET TRANSACTION for details.

SQL Commands

132

 MOVE

Name

 MOVE � Moves cursor position

Synopsis

MOVE [direction] [count]
 { IN | FROM } cursor

Description

 MOVE allows a user to move cursor position a specified number of rows. MOVE works like the
FETCH command, but only positions the cursor and does not return rows.

 Refer to FETCH for details on syntax and usage.

Notes

 MOVE is a Postgres language extension.

 Refer to FETCH for a description of valid arguments. Refer to DECLARE to define a cursor. Refer to
BEGIN, COMMIT, and ROLLBACK for further information about transactions.

Usage

 Set up and use a cursor:

BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;
-- Skip first 5 rows:
MOVE FORWARD 5 IN liahona;

MOVE

-- Fetch 6th row in the cursor liahona:
FETCH 1 IN liahona;

FETCH

 code | title | did | date_prod | kind | len

-------+--------+-----+-----------+--------+-------

 P_303 | 48 Hrs | 103 | 1982-10-22| Action | 01:37

(1 row)

-- close the cursor liahona and commit work:
CLOSE liahona;
COMMIT WORK;

Compatibility

SQL Commands

133

SQL92

 There is no SQL92 MOVE statement. Instead, SQL92 allows one to FETCH rows from an absolute
cursor position, implicitly moving the cursor to the correct position.

 NOTIFY

Name

 NOTIFY � Signals all frontends and backends listening on a notify condition

Synopsis

NOTIFY name

Inputs

notifyname

 Notify condition to be signaled.

Outputs

NOTIFY

 Acknowledgement that notify command has executed.

Notify events

 Events are delivered to listening frontends; whether and how each frontend application reacts
depends on its programming.

Description

 The NOTIFY command sends a notify event to each frontend application that has previously executed
LISTEN notifyname for the specified notify condition in the current database.

 The information passed to the frontend for a notify event includes the notify condition name and the
notifying backend process’s PID. It is up to the database designer to define the condition names that will
be used in a given database and what each one means.

 Commonly, the notify condition name is the same as the name of some table in the database, and the
notify event essentially means "I changed this table, take a look at it to see what’s new". But no such

SQL Commands

134

association is enforced by the NOTIFY and LISTEN commands. For example, a database designer
could use several different condition names to signal different sorts of changes to a single table.

 NOTIFY provides a simple form of signal or IPC (interprocess communication) mechanism for a
collection of processes accessing the same Postgres database. Higher-level mechanisms can be built by
using tables in the database to pass additional data (beyond a mere condition name) from notifier to
listener(s).

 When NOTIFY is used to signal the occurrence of changes to a particular table, a useful programming
technique is to put the NOTIFY in a rule that is triggered by table updates. In this way, notification
happens automatically when the table is changed, and the application programmer can’t accidentally
forget to do it.

 NOTIFY interacts with SQL transactions in some important ways. Firstly, if a NOTIFY is executed
inside a transaction, the notify events are not delivered until and unless the transaction is committed.
This is appropriate, since if the transaction is aborted we would like all the commands within it to have
had no effect, including NOTIFY. But it can be disconcerting if one is expecting the notify events to be
delivered immediately. Secondly, if a listening backend receives a notify signal while it is within a
transaction, the notify event will not be delivered to its connected frontend until just after the transaction
is completed (either committed or aborted). Again, the reasoning is that if a notify were delivered within
a transaction that was later aborted, one would want the notification to be undone somehow---but the
backend cannot "take back" a notify once it has sent it to the frontend. So notify events are only
delivered between transactions. The upshot of this is that applications using NOTIFY for real-time
signaling should try to keep their transactions short.

 NOTIFY behaves like Unix signals in one important respect: if the same condition name is signaled
multiple times in quick succession, recipients may get only one notify event for several executions of
NOTIFY. So it is a bad idea to depend on the number of notifies received. Instead, use NOTIFY to
wake up applications that need to pay attention to something, and use a database object (such as a
sequence) to keep track of what happened or how many times it happened.

 It is common for a frontend that sends NOTIFY to be listening on the same notify name itself. In that
case it will get back a notify event, just like all the other listening frontends. Depending on the
application logic, this could result in useless work---for example, re-reading a database table to find the
same updates that that frontend just wrote out. In Postgres 6.4 and later, it is possible to avoid such extra
work by noticing whether the notifying backend process’s PID (supplied in the notify event message) is
the same as one’s own backend’s PID (available from libpq). When they are the same, the notify event
is one’s own work bouncing back, and can be ignored. (Despite what was said in the preceding
paragraph, this is a safe technique. Postgres keeps self-notifies separate from notifies arriving from other
backends, so you cannot miss an outside notify by ignoring your own notifies.)

Notes

 name can be any string valid as a name; it need not correspond to the name of any actual table. If name
is enclosed in double-quotes, it need not even be a syntactically valid name, but can be any string up to
31 characters long.

 In some previous releases of Postgres, name had to be enclosed in double-quotes when it did not
correspond to any existing table name, even if syntactically valid as a name. That is no longer required.

SQL Commands

135

 In Postgres releases prior to 6.4, the backend PID delivered in a notify message was always the PID of
the frontend’s own backend. So it was not possible to distinguish one’s own notifies from other clients’
notifies in those earlier releases.

Usage

 Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous NOTIFY ’virtual’ from backend with pid ’8448’ received.

Compatibility

SQL92

 There is no NOTIFY statement in SQL92.

 REINDEX

Name

 REINDEX � Recover corrupted system indexes under stand-alone Postgres

Synopsis

REINDEX { TABLE | DATABASE | INDEX } name [FORCE]

Inputs

TABLE

 Recreate all indexes of a specified table.

DATABASE

 Recreate all system indexes of a specified database.

INDEX

 Recreate a specified index.

name

 The name of the specific table/database/index to be be reindexed.

SQL Commands

136

FORCE

 Recreate indexes forcedly. Without this keyword REINDEX does nothing unless target indexes are
invalidated.

Outputs

REINDEX

 Message returned if the table is successfully reindexed.

Description

 REINDEX is used to recover corrupted system indexes. In order to run REINDEX command,
postmaster must be shut down and stand-alone Postgres should be started instead with options -O and -P
(an option to ignore system indexes). Note that we couldn’t rely on system indexes for the recovery of
system indexes.

Usage

 Recreate the table mytable:

 REINDEX TABLE mytable;

 Some more examples:

REINDEX DATABASE my_database FORCE;
REINDEX INDEX my_index;

Compatibility

SQL92

 There is no REINDEX in SQL92.

SQL Commands

137

RESET

Name

RESET � Restores run-time parameters to default values

Synopsis

RESET variable

Inputs

variable

 The name of a run-time parameter. See SET for a list.

Description

 RESET restores run-time parameters to their default values. Refer to SET for details. RESET is an
alternate form for

SET variable TO DEFAULT

Diagnostics

 See under the SET command.

Examples

 Set DateStyle to its default value:

RESET DateStyle;

 Set Geqo to its default value:

RESET GEQO;

SQL Commands

138

Compatibility

 RESET is a Postgres extension.

 REVOKE

Name

 REVOKE � Revokes access privilege from a user, a group or all users.

Synopsis

REVOKE privilege [, ...]
 ON object [, ...]
 FROM { PUBLIC | GROUP groupname | username }

Inputs

privilege

 The possible privileges are:

SELECT

 Privilege to access all of the columns of a specific table/view.

INSERT

 Privilege to insert data into all columns of a specific table.

UPDATE

 Privilege to update all columns of a specific table.

DELETE

 Privilege to delete rows from a specific table.

RULE

 Privilege to define rules on table/view. (See CREATE RULE).

ALL

 Rescind all privileges.

SQL Commands

139

object

 The name of an object from which to revoke access. The possible objects are:
 table
 view
 sequence

group

 The name of a group from whom to revoke privileges.

username

 The name of a user from whom revoke privileges. Use the PUBLIC keyword to specify all users.

PUBLIC

 Rescind the specified privilege(s) for all users.

Outputs

CHANGE

 Message returned if successfully.

ERROR

 Message returned if object is not available or impossible to revoke privileges from a group or
users.

Description

 REVOKE allows creator of an object to revoke permissions granted before, from all users (via
PUBLIC) or a certain user or group.

Notes

 Refer to psql \z command for further information about permissions on existing objects:

Database = lusitania
+------------------+---+
| Relation | Grant/Revoke Permissions |
+------------------+---+
| mytable | {"=rw","miriam=arwR","group todos=rw"} |
+------------------+---+

SQL Commands

140

Legend:
 uname=arwR -- privileges granted to a user
 group gname=arwR -- privileges granted to a GROUP
 =arwR -- privileges granted to PUBLIC

 r -- SELECT
 w -- UPDATE/DELETE
 a -- INSERT
 R -- RULE
 arwR -- ALL

Tip: Currently, to create a GROUP you have to insert data manually into table pg_group as:

INSERT INTO pg_group VALUES (’todos’);

CREATE USER miriam IN GROUP todos;

Usage

 Revoke insert privilege from all users on table films:

REVOKE INSERT ON films FROM PUBLIC;

 Revoke all privileges from user manuel on view kinds:

REVOKE ALL ON kinds FROM manuel;

Compatibility

SQL92

 The SQL92 syntax for REVOKE has additional capabilities for rescinding privileges, including those
on individual columns in tables:

REVOKE { SELECT | DELETE | USAGE | ALL PRIVILEGES } [, ...]
 ON object
 FROM { PUBLIC | username [, ...] } { RESTRICT | CASCADE }
REVOKE { INSERT | UPDATE | REFERENCES } [, ...] [(column [, ...])]
 ON object
 FROM { PUBLIC | username [, ...] } { RESTRICT | CASCADE }

SQL Commands

141

 Refer to GRANT for details on individual fields.

REVOKE GRANT OPTION FOR privilege [, ...]
 ON object
 FROM { PUBLIC | username [, ...] } { RESTRICT | CASCADE }

 Rescinds authority for a user to grant the specified privilege to others. Refer to GRANT for details
on individual fields.

 The possible objects are:

 [TABLE] table/view
 CHARACTER SET character-set
 COLLATION collation
 TRANSLATION translation
 DOMAIN domain

 If user1 gives a privilege WITH GRANT OPTION to user2, and user2 gives it to user3 then user1 can
revoke this privilege in cascade using the CASCADE keyword.

 If user1 gives a privilege WITH GRANT OPTION to user2, and user2 gives it to user3, then if user1
tries to revoke this privilege it fails if he specify the RESTRICT keyword.

 ROLLBACK

Name

 ROLLBACK � Aborts the current transaction

Synopsis

ROLLBACK [WORK | TRANSACTION]

Inputs

 None.

Outputs

ABORT

 Message returned if successful.

SQL Commands

142

NOTICE: ROLLBACK: no transaction in progress

 If there is not any transaction currently in progress.

Description

 ROLLBACK rolls back the current transaction and causes all the updates made by the transaction to be
discarded.

Notes

 Use COMMIT to successfully terminate a transaction. ABORT is a synonym for ROLLBACK.

Usage

 To abort all changes:

ROLLBACK WORK;

Compatibility

SQL92

 SQL92 only specifies the two forms ROLLBACK and ROLLBACK WORK. Otherwise full compatibility.

SQL Commands

143

 SELECT

Name

 SELECT � Retrieves rows from a table or view

Synopsis

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{ UNION | INTERSECT | EXCEPT [ALL] } select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [FOR UPDATE [OF tablename [, ...]]]
 [LIMIT { count | ALL } [{ OFFSET | , } start]]

where from_item can be:

[ONLY] table_name [*]
 [[AS] alias [(column_alias_list)]]
|
(select)
 [AS] alias [(column_alias_list)]
|
from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column_list)]

Inputs

expression

 The name of a table’s column or an expression.

output_name

 Specifies another name for an output column using the AS clause. This name is primarily used to
label the column for display. It can also be used to refer to the column’s value in ORDER BY and
GROUP BY clauses. But the output_name cannot be used in the WHERE or HAVING clauses;
write out the expression instead.

from_item

 A table reference, sub-SELECT, or JOIN clause. See below for details.

SQL Commands

144

condition

 A boolean expression giving a result of true or false. See the WHERE and HAVING clause
descriptions below.

select

 A select statement with all features except the ORDER BY, FOR UPDATE, and LIMIT clauses
(even those can be used when the select is parenthesized).

 FROM items can contain:

table_name

 The name of an existing table or view. If ONLY is specified, only that table is scanned. If ONLY
is not specified, the table and all its descendant tables (if any) are scanned. * can be appended to
the table name to indicate that descendant tables are to be scanned, but as of Postgres 7.1 this is the
default behavior. (In releases before 7.1, ONLY was the default behavior.)

alias

 A substitute name for the preceding table_name. An alias is used for brevity or to eliminate
ambiguity for self-joins (where the same table is scanned multiple times). If an alias is written, a
column alias list can also be written to provide substitute names for one or more columns of the
table.

select

 A sub-SELECT can appear in the FROM clause. This acts as though its output were created as a
temporary table for the duration of this single SELECT command. Note that the sub-SELECT must
be surrounded by parentheses, and an alias must be provided for it.

join_type

 One of [INNER] JOIN, LEFT [OUTER] JOIN, RIGHT [OUTER] JOIN, FULL [
OUTER] JOIN, or CROSS JOIN. For INNER and OUTER join types, exactly one of
NATURAL, ON join_condition, or USING (join_column_list) must appear. For
CROSS JOIN, none of these items may appear.

join_condition

 A qualification condition. This is similar to the WHERE condition except that it only applies to the
two from_items being joined in this JOIN clause.

join_column_list

 A USING column list (a, b, ...) is shorthand for the ON condition left_table.a = right_table.a
AND left_table.b = right_table.b ...

SQL Commands

145

Outputs

Rows

 The complete set of rows resulting from the query specification.

 count

 The count of rows returned by the query.

Description

 SELECT will return rows from one or more tables. Candidates for selection are rows which satisfy the
WHERE condition; if WHERE is omitted, all rows are candidates. (See WHERE Clause.)

 Actually, the returned rows are not directly the rows produced by the FROM/WHERE/GROUP
BY/HAVING clauses; rather, the output rows are formed by computing the SELECT output expressions
for each selected row. * can be written in the output list as a shorthand for all the columns of the
selected rows. Also, one can write table_name.* as a shorthand for the columns coming from just
that table.

 DISTINCT will eliminate duplicate rows from the result. ALL (the default) will return all candidate
rows, including duplicates.

 DISTINCT ON eliminates rows that match on all the specified expressions, keeping only the first row
of each set of duplicates. The DISTINCT ON expressions are interpreted using the same rules as for
ORDER BY items; see below. Note that "the first row" of each set is unpredictable unless ORDER BY
is used to ensure that the desired row appears first. For example,

 SELECT DISTINCT ON (location) location, time, report
 FROM weatherReports
 ORDER BY location, time DESC;

 retrieves the most recent weather report for each location. But if we had not used ORDER BY to force
descending order of time values for each location, we’d have gotten a report of unpredictable age for
each location.

 The GROUP BY clause allows a user to divide a table into groups of rows that match on one or more
values. (See GROUP BY Clause.)

 The HAVING clause allows selection of only those groups of rows meeting the specified condition.
(See HAVING Clause.)

 The ORDER BY clause causes the returned rows to be sorted in a specified order. If ORDER BY is not
given, the rows are returned in whatever order the system finds cheapest to produce. (See ORDER BY
Clause.)

 SELECT queries can be combined using UNION, INTERSECT, and EXCEPT operators. Use
parentheses if necessary to determine the ordering of these operators.

SQL Commands

146

 The UNION operator computes the collection of rows returned by the queries involved. Duplicate rows
are eliminated unless ALL is specified. (See UNION Clause.)

 The INTERSECT operator computes the rows that are common to both queries. Duplicate rows are
eliminated unless ALL is specified. (See INTERSECT Clause.)

 The EXCEPT operator computes the rows returned by the first query but not the second query.
Duplicate rows are eliminated unless ALL is specified. (See EXCEPT Clause.)

 The FOR UPDATE clause allows the SELECT statement to perform exclusive locking of selected
rows.

 The LIMIT clause allows a subset of the rows produced by the query to be returned to the user. (See
LIMIT Clause.)

 You must have SELECT privilege to a table to read its values (See the GRANT/REVOKE
statements).

FROM Clause

 The FROM clause specifies one or more source tables for the SELECT. If multiple sources are
specified, the result is conceptually the Cartesian product of all the rows in all the sources --- but usually
qualification conditions are added to restrict the returned rows to a small subset of the Cartesian product.

 When a FROM item is a simple table name, it implicitly includes rows from sub-tables (inheritance
children) of the table. ONLY will suppress rows from sub-tables of the table. Before Postgres 7.1, this
was the default result, and adding sub-tables was done by appending * to the table name. This old
behaviour is available via the command SET SQL_Inheritance TO OFF;

 A FROM item can also be a parenthesized sub-SELECT (note that an alias clause is required for a
sub-SELECT!). This is an extremely handy feature since it’s the only way to get multiple levels of
grouping, aggregation, or sorting in a single query.

 Finally, a FROM item can be a JOIN clause, which combines two simpler FROM items. (Use
parentheses if necessary to determine the order of nesting.)

 A CROSS JOIN or INNER JOIN is a simple Cartesian product, the same as you get from listing the two
items at the top level of FROM. CROSS JOIN is equivalent to INNER JOIN ON (TRUE), that is, no
rows are removed by qualification. These join types are just a notational convenience, since they do
nothing you couldn’t do with plain FROM and WHERE.

 LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined rows that
pass its ON condition), plus one copy of each row in the left-hand table for which there was no
right-hand row that passed the ON condition. This left-hand row is extended to the full width of the
joined table by inserting NULLs for the right-hand columns. Note that only the JOIN’s own ON or
USING condition is considered while deciding which rows have matches. Outer ON or WHERE
conditions are applied afterwards.

 Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each unmatched
right-hand row (extended with nulls on the left). This is just a notational convenience, since you could
convert it to a LEFT OUTER JOIN by switching the left and right inputs.

 FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand row
(extended with nulls on the right), plus one row for each unmatched right-hand row (extended with nulls
on the left).

SQL Commands

147

 For all the JOIN types except CROSS JOIN, you must write exactly one of ON join_condition,
USING (join_column_list), or NATURAL. ON is the most general case: you can write any
qualification expression involving the two tables to be joined. A USING column list (a, b, ...) is
shorthand for the ON condition left_table.a = right_table.a AND left_table.b = right_table.b ... Also,
USING implies that only one of each pair of equivalent columns will be included in the JOIN output,
not both. NATURAL is shorthand for a USING list that mentions all similarly-named columns in the
tables.

WHERE Clause

 The optional WHERE condition has the general form:

WHERE boolean_expr

 boolean_expr can consist of any expression which evaluates to a boolean value. In many cases, this
expression will be:

 expr cond_op expr

 or

 log_op expr

 where cond_op can be one of: =, <, <=, >, >= or <>, a conditional operator like ALL, ANY, IN,
LIKE, or a locally defined operator, and log_op can be one of: AND, OR, NOT. SELECT will ignore
all rows for which the WHERE condition does not return TRUE.

GROUP BY Clause

 GROUP BY specifies a grouped table derived by the application of this clause:

GROUP BY expression [, ...]

 GROUP BY will condense into a single row all selected rows that share the same values for the
grouped columns. Aggregate functions, if any, are computed across all rows making up each group,
producing a separate value for each group (whereas without GROUP BY, an aggregate produces a single
value computed across all the selected rows). When GROUP BY is present, it is not valid for the
SELECT output expression(s) to refer to ungrouped columns except within aggregate functions, since
there would be more than one possible value to return for an ungrouped column.

 A GROUP BY item can be an input column name, or the name or ordinal number of an output column
(SELECT expression), or it can be an arbitrary expression formed from input-column values. In case of
ambiguity, a GROUP BY name will be interpreted as an input-column name rather than an output
column name.

SQL Commands

148

HAVING Clause

 The optional HAVING condition has the general form:

HAVING boolean_expr

 where boolean_expr is the same as specified for the WHERE clause.

 HAVING specifies a grouped table derived by the elimination of group rows that do not satisfy the
boolean_expr. HAVING is different from WHERE: WHERE filters individual rows before
application of GROUP BY, while HAVING filters group rows created by GROUP BY.

 Each column referenced in boolean_expr shall unambiguously reference a grouping column, unless
the reference appears within an aggregate function.

ORDER BY Clause

ORDER BY expression [ASC | DESC | USING operator] [, ...]

 An ORDER BY item can be the name or ordinal number of an output column (SELECT expression), or
it can be an arbitrary expression formed from input-column values. In case of ambiguity, an ORDER BY
name will be interpreted as an output-column name.

 The ordinal number refers to the ordinal (left-to-right) position of the result column. This feature makes
it possible to define an ordering on the basis of a column that does not have a proper name. This is never
absolutely necessary because it is always possible to assign a name to a result column using the AS
clause, e.g.:

SELECT title, date_prod + 1 AS newlen FROM films ORDER BY newlen;

 It is also possible to ORDER BY arbitrary expressions (an extension to SQL92), including fields that do
not appear in the SELECT result list. Thus the following statement is legal:

SELECT name FROM distributors ORDER BY code;

 A limitation of this feature is that an ORDER BY clause applying to the result of a UNION,
INTERSECT, or EXCEPT query may only specify an output column name or number, not an
expression.

 Note that if an ORDER BY item is a simple name that matches both a result column name and an input
column name, ORDER BY will interpret it as the result column name. This is the opposite of the choice
that GROUP BY will make in the same situation. This inconsistency is mandated by the SQL92
standard.

 Optionally one may add the keyword DESC (descending) or ASC (ascending) after each column name
in the ORDER BY clause. If not specified, ASC is assumed by default. Alternatively, a specific ordering
operator name may be specified. ASC is equivalent to USING < and DESC is equivalent to USING >.

SQL Commands

149

UNION Clause

table_query UNION [ALL] table_query
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT { count | ALL } [{ OFFSET | , } start]]

 where table_query specifies any select expression without an ORDER BY, FOR UPDATE, or
LIMIT clause. (ORDER BY and LIMIT can be attached to a sub-expression if it is enclosed in
parentheses. Without parentheses, these clauses will be taken to apply to the result of the UNION, not to
its right-hand input expression.)

 The UNION operator computes the collection (set union) of the rows returned by the queries involved.
The two SELECTs that represent the direct operands of the UNION must produce the same number of
columns, and corresponding columns must be of compatible data types.

 The result of UNION does not contain any duplicate rows unless the ALL option is specified. ALL
prevents elimination of duplicates.

 Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise
indicated by parentheses.

 Currently, FOR UPDATE may not be specified either for a UNION result or for the inputs of a
UNION.

INTERSECT Clause

table_query INTERSECT [ALL] table_query
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT { count | ALL } [{ OFFSET | , } start]]

 where table_query specifies any select expression without an ORDER BY, FOR UPDATE, or
LIMIT clause.

 INTERSECT is similar to UNION, except that it produces only rows that appear in both query outputs,
rather than rows that appear in either.

 The result of INTERSECT does not contain any duplicate rows unless the ALL option is specified.
With ALL, a row that has m duplicates in L and n duplicates in R will appear min(m,n) times.

 Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless
parentheses dictate otherwise. INTERSECT binds more tightly than UNION --- that is, A UNION B
INTERSECT C will be read as A UNION (B INTERSECT C) unless otherwise specified by
parentheses.

SQL Commands

150

EXCEPT Clause

table_query EXCEPT [ALL] table_query
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT { count | ALL } [{ OFFSET | , } start]]

 where table_query specifies any select expression without an ORDER BY, FOR UPDATE, or
LIMIT clause.

 EXCEPT is similar to UNION, except that it produces only rows that appear in the left query’s output
but not in the right query’s output.

 The result of EXCEPT does not contain any duplicate rows unless the ALL option is specified. With
ALL, a row that has m duplicates in L and n duplicates in R will appear max(m-n,0) times.

 Multiple EXCEPT operators in the same SELECT statement are evaluated left to right, unless
parentheses dictate otherwise. EXCEPT binds at the same level as UNION.

LIMIT Clause

 LIMIT { count | ALL } [{ OFFSET | , } start]
 OFFSET start

 where count specifies the maximum number of rows to return, and start specifies the number of
rows to skip before starting to return rows.

 LIMIT allows you to retrieve just a portion of the rows that are generated by the rest of the query. If a
limit count is given, no more than that many rows will be returned. If an offset is given, that many rows
will be skipped before starting to return rows.

 When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows---you may be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? You don’t know
what ordering, unless you specified ORDER BY.

 As of Postgres 7.0, the query optimizer takes LIMIT into account when generating a query plan, so you
are very likely to get different plans (yielding different row orders) depending on what you give for
LIMIT and OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query
result will give inconsistent results unless you enforce a predictable result ordering with ORDER BY.
This is not a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the
results of a query in any particular order unless ORDER BY is used to constrain the order.

SQL Commands

151

Usage

 To join the table films with the table distributors:

SELECT f.title, f.did, d.name, f.date_prod, f.kind
 FROM distributors d, films f
 WHERE f.did = d.did

 title | did | name | date_prod | kind
---------------------------+-----+------------------+------------+----------
 The Third Man | 101 | British Lion | 1949-12-23 | Drama
 The African Queen | 101 | British Lion | 1951-08-11 | Romantic
 Une Femme est une Femme | 102 | Jean Luc Godard | 1961-03-12 | Romantic
 Vertigo | 103 | Paramount | 1958-11-14 | Action
 Becket | 103 | Paramount | 1964-02-03 | Drama
 48 Hrs | 103 | Paramount | 1982-10-22 | Action
 War and Peace | 104 | Mosfilm | 1967-02-12 | Drama
 West Side Story | 105 | United Artists | 1961-01-03 | Musical
 Bananas | 105 | United Artists | 1971-07-13 | Comedy
 Yojimbo | 106 | Toho | 1961-06-16 | Drama
 There’s a Girl in my Soup | 107 | Columbia | 1970-06-11 | Comedy
 Taxi Driver | 107 | Columbia | 1975-05-15 | Action
 Absence of Malice | 107 | Columbia | 1981-11-15 | Action
 Storia di una donna | 108 | Westward | 1970-08-15 | Romantic
 The King and I | 109 | 20th Century Fox | 1956-08-11 | Musical
 Das Boot | 110 | Bavaria Atelier | 1981-11-11 | Drama
 Bed Knobs and Broomsticks | 111 | Walt Disney | | Musical
(17 rows)

 To sum the column len of all films and group the results by kind:

SELECT kind, SUM(len) AS total FROM films GROUP BY kind;

 kind | total
----------+-------
 Action | 07:34
 Comedy | 02:58
 Drama | 14:28
 Musical | 06:42
 Romantic | 04:38
(5 rows)

 To sum the column len of all films, group the results by kind and show those group totals that are less

SQL Commands

152

than 5 hours:

SELECT kind, SUM(len) AS total
 FROM films
 GROUP BY kind
 HAVING SUM(len) < INTERVAL ’5 hour’;

 kind | total
----------+-------
 Comedy | 02:58
 Romantic | 04:38
(2 rows)

 The following two examples are identical ways of sorting the individual results according to the
contents of the second column (name):

SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

 did | name
-----+------------------
 109 | 20th Century Fox
 110 | Bavaria Atelier
 101 | British Lion
 107 | Columbia
 102 | Jean Luc Godard
 113 | Luso films
 104 | Mosfilm
 103 | Paramount
 106 | Toho
 105 | United Artists
 111 | Walt Disney
 112 | Warner Bros.
 108 | Westward
(13 rows)

 This example shows how to obtain the union of the tables distributors and actors, restricting the
results to those that begin with letter W in each table. Only distinct rows are wanted, so the ALL
keyword is omitted:

distributors: actors:
 did | name id | name
-----+-------------- ----+----------------
 108 | Westward 1 | Woody Allen
 111 | Walt Disney 2 | Warren Beatty
 112 | Warner Bros. 3 | Walter Matthau

SQL Commands

153

SELECT distributors.name
 FROM distributors
 WHERE distributors.name LIKE ’W%’
UNION
SELECT actors.name
 FROM actors
 WHERE actors.name LIKE ’W%’

 name

 Walt Disney
 Walter Matthau
 Warner Bros.
 Warren Beatty
 Westward
 Woody Allen

Compatibility

Extensions

Postgres allows one to omit the FROM clause from a query. This feature was retained from the original
PostQuel query language. It has a straightforward use to compute the results of simple constant
expressions:

SELECT 2+2;

 ?column?

 4

Some other DBMSes cannot do this except by introducing a dummy one-row table to do the select from.
A less obvious use is to abbreviate a normal select from one or more tables:

SELECT distributors.* WHERE name = ’Westward’;

 did | name
-----+----------
 108 | Westward

This works because an implicit FROM item is added for each table that is referenced in the query but
not mentioned in FROM. While this is a convenient shorthand, it’s easy to misuse. For example, the
query

SELECT distributors.* FROM distributors d;

SQL Commands

154

is probably a mistake; most likely the user meant

SELECT d.* FROM distributors d;

rather than the unconstrained join

SELECT distributors.* FROM distributors d, distributors distributors;

that he will actually get. To help detect this sort of mistake, Postgres 7.1 and later will warn if the
implicit-FROM feature is used in a query that also contains an explicit FROM clause.

SQL92

SELECT Clause

 In the SQL92 standard, the optional keyword "AS" is just noise and can be omitted without affecting
the meaning. The Postgres parser requires this keyword when renaming output columns because the type
extensibility features lead to parsing ambiguities in this context. "AS" is optional in FROM items,
however.

 The DISTINCT ON phrase is not part of SQL92. Nor are LIMIT and OFFSET.

 In SQL92, an ORDER BY clause may only use result column names or numbers, while a GROUP BY
clause may only use input column names. Postgres extends each of these clauses to allow the other
choice as well (but it uses the standard’s interpretation if there is ambiguity). Postgres also allows both
clauses to specify arbitrary expressions. Note that names appearing in an expression will always be
taken as input-column names, not as result-column names.

UNION/INTERSECT/EXCEPT Clause

 The SQL92 syntax for UNION/INTERSECT/EXCEPT allows an additional CORRESPONDING BY
option:

table_query UNION [ALL]
 [CORRESPONDING [BY (column [,...])]]
 table_query

 The CORRESPONDING BY clause is not supported by Postgres.

SQL Commands

155

SELECT INTO

Name

 SELECT INTO � Creates a new table from the results of a SELECT

Synopsis

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 INTO [TEMPORARY | TEMP] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{ UNION | INTERSECT | EXCEPT [ALL] } select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [FOR UPDATE [OF tablename [, ...]]]
 [LIMIT { count | ALL } [{ OFFSET | , } start]]

where from_item can be:

[ONLY] table_name [*]
 [[AS] alias [(column_alias_list)]]
|
(select)
 [AS] alias [(column_alias_list)]
|
from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column_list)]

Inputs

TEMPORARY
TEMP

 If TEMPORARY or TEMP is specified, the output table is created only within this session, and is
automatically dropped on session exit. Existing permanent tables with the same name are not
visible (in this session) while the temporary table exists. Any indexes created on a temporary table
are automatically temporary as well.

new_table

 The name of the new table to be created. This table must not already exist. However, a temporary
table can be created that has the same name as an existing permanent table.

 All other inputs are described in detail for SELECT.

SQL Commands

156

Outputs

 Refer to CREATE TABLE and SELECT for a summary of possible output messages.

Description

 SELECT INTO creates a new table and fills it with data computed by a query. The data is not returned
to the client, as it is with a normal SELECT. The new table’s columns have the names and datatypes
associated with the output columns of the SELECT.

Note: CREATE TABLE AS is functionally equivalent to SELECT INTO. CREATE TABLE AS is the
recommended syntax, since SELECT INTO is not standard. In fact, this form of SELECT INTO is
not available in PL/pgSQL or ecpg, because they interpret the INTO clause differently.

Compatibility

 SQL92 uses SELECT ... INTO to represent selecting values into scalar variables of a host program,
rather than creating a new table. This indeed is the usage found in PL/pgSQL and ecpg. The Postgres
usage of SELECT INTO to represent table creation is historical. It’s best to use CREATE TABLE AS
for this purpose in new code. (CREATE TABLE AS isn’t standard either, but it’s less likely to cause
confusion.)

SET

Name

SET � Set run-time parameters

Synopsis

SET variable { TO | = } { value | ’value’ | DEFAULT }
SET TIME ZONE { ’timezone’ | LOCAL | DEFAULT }

Inputs

variable

 A settable run-time parameter.

value

 New value of parameter. DEFAULT can be used to specify resetting the parameter to its default
value. Lists of strings are allowed, but more complex constructs may need to be single or double
quoted.

SQL Commands

157

Description

 The SET command changes run-time configuration parameters. The following parameters can be
altered:

CLIENT_ENCODING
NAMES

 Sets the multibyte client encoding. The specified encoding must be supported by the backend.

 This option is only available if Postgres is build with multibyte support.

DATESTYLE

 Choose the date/time representation style. Two separate settings are made: the default date/time
output and the interpretation of ambiguous input.

 The following are date/time output styles:

ISO

 Use ISO 8601-style dates and times (YYYY-MM-DD HH:MM:SS). This is the default.

SQL

 Use Oracle/Ingres-style dates and times. Note that this style has nothing to do with SQL
(which mandates ISO 8601 style), the naming of this option is a historical accident.

Postgres

 Use traditional Postgres format.

German

 Use dd.mm.yyyy for numeric date representations.

 The following two options determine both a substyle of the �SQL� and �Postgres� output formats and
the preferred interpretation of ambiguous date input.

European

 Use dd/mm/yyyy for numeric date representations.

NonEuropean
US

 Use mm/dd/yyyy for numeric date representations.

 A value for SET DATESTYLE can be one from the first list (output styles), or one from the
second list (substyles), or one from each separated by a comma.

SQL Commands

158

 Date format initialization may be done by:

 Setting the PGDATESTYLE environment variable. If PGDATESTYLE is set in the frontend
environment of a client based on libpq, libpq will automatically set DATESTYLE to the value of
PGDATESTYLE during connection start-up.
 Running postmaster using the option -o -e to set dates to the European convention.

 The DateStyle option is really only intended for porting applications. To format your date/time
values to choice, use the to_char family of functions.

SEED

 Sets the internal seed for the random number generator.

value

 The value for the seed to be used by the random function. Allowed values are floating point
numbers between 0 and 1, which are then multiplied by 2^31-1. This product will silently
overflow if a number outside the range is used.

 The seed can also be set by invoking the setseed SQL function:

SELECT setseed(value);

SERVER_ENCODING

 Sets the multibyte server encoding.

 This option is only available if Postgres was built with multibyte support.

TIME ZONE
TIMEZONE

 The possible values for time zone depends on your operating system. For example, on Linux
/usr/share/zoneinfo contains the database of time zones.

 Here are some valid values for time zone:

PST8PDT

 Set the time zone for California.

Portugal

 Set time zone for Portugal.

’Europe/Rome’

 Set time zone for Italy.

SQL Commands

159

LOCAL
DEFAULT

 Set the time zone to your local time zone (the one that your operating system defaults to).

 If an invalid time zone is specified, the time zone becomes GMT (on most systems anyway).

 If the PGTZ environment variable is set in the frontend environment of a client based on libpq,
libpq will automatically set TIMEZONE to the value of PGTZ during connection start-up.

 An extended list of other run-time parameters can be found in the Administrator’s Guide.

 Use SHOW to show the current setting of a parameters.

Diagnostics

SET VARIABLE

 Message returned if successful.

ERROR: not a valid option name: name

 The parameter you tried to set does not exist.

ERROR: permission denied

 You must be a superuser to have access to certain settings.

ERROR: name can only be set at start-up

 Some parameters are fixed once the server is started.

Examples

 Set the style of date to traditional Postgres with European conventions:

SET DATESTYLE TO Postgres,European;

 Set the time zone for Berkeley, California, using double quotes to preserve the uppercase attributes of
the time zone specifier (note that the date/time format is ISO here):

SET TIME ZONE "PST8PDT";
SELECT CURRENT_TIMESTAMP AS today;

 today

 1998-03-31 07:41:21-08

SQL Commands

160

 Set the time zone for Italy (note the required single or double quotes to handle the special characters):

SET TIME ZONE ’Europe/Rome’;
SELECT CURRENT_TIMESTAMP AS today;

 today

 1998-03-31 17:41:31+02

Compatibility

SQL92

 The second syntax shown above (SET TIME ZONE) attempts to mimic SQL92. However, SQL allows
only numeric time zone offsets. All other parameter settings as well as the first syntax shown above are
a Postgres extension.

SET CONSTRAINTS

Name

SET CONSTRAINTS � Set the constraint mode of the current SQL-transaction

Synopsis

SET CONSTRAINTS { ALL | constraint [, ...] } { DEFERRED | IMMEDIATE }

Description

 SET CONSTRAINTS sets the behavior of constraint evaluation in the current transaction. In
IMMEDIATE mode, constraints are checked at the end of each statement. In DEFERRED mode, constraints
are not checked until transaction commit.

 Upon creation, a constraint is always give one of three characteristics: INITIALLY DEFERRED,
INITIALLY IMMEDIATE DEFERRABLE, or INITIALLY IMMEDIATE NOT DEFERRABLE. The third
class is not affected by the SET CONSTRAINTS command.

 Currently, only foreign key constraints are affected by this setting. Check and unique constraints are
always effectively initially immediate not deferrable.

Compatibility

SQL92, SQL99

 SET CONSTRAINT is defined in SQL92 and SQL99.

SQL Commands

161

SET TRANSACTION

Name

SET TRANSACTION � Set the characteristics of the current SQL-transaction

Synopsis

SET TRANSACTION ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE }
SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL { READ COMMITTED |
SERIALIZABLE }

Description

 This command sets the transaction isolation level. The SET TRANSACTION command sets the
characteristics for the current SQL-transaction. It has no effect on any subsequent transactions. This
command cannot be used after the first DML statement (SELECT, INSERT, DELETE, UPDATE,
FETCH, COPY) of a transaction has been executed. SET SESSION CHARACTERISTICS sets the
default transaction isolation level for each transaction for a session. SET TRANSACTION can override
it for an individual transaction.

 The isolation level of a transaction determines what data the transaction can see when other transactions
are running concurrently.

READ COMMITTED

 A statement can only see rows committed before it began. This is the default.

SERIALIZABLE

 The current transaction can only see rows committed before first DML statement was executed in
this transaction.

Tip: Intuitively, serializable means that two concurrent transactions will leave the database in
the same state as if the two has been executed strictly after one another in either order.

Compatibility

SQL92, SQL99

 SERIALIZABLE is the default level in SQL. Postgres does not provide the isolation levels READ
UNCOMMITTED and REPEATABLE READ. Because of multi-version concurrency control, the serializable
level is not truly serializable. See the User’s Guide for details.

 In SQL there are two other transaction characteristics that can be set with these commands: whether the
transaction is read-only and the size of the diagnostics area. Neither of these concepts are supported in
Postgres.

SQL Commands

162

SHOW

Name

SHOW � Shows run-time parameters

Synopsis

SHOW name

Inputs

name

 The name of a run-time parameter. See SET for a list.

Description

 SHOW will display the current setting of a run-time parameter. These variables can be set using the
SET statement or are determined at server start.

Diagnostics

ERROR: not a valid option name: name

 Message returned if variable does not stand for an existing parameter.

ERROR: permission denied

 You must be a superuser to be allowed to see certain settings.

NOTICE: Time zone is unknown

 If the TZ or PGTZ environment variable is not set.

Examples

 Show the current DateStyle setting:

SHOW DateStyle;
NOTICE: DateStyle is ISO with US (NonEuropean) conventions

SQL Commands

163

 Show the current genetic optimizer (geqo) setting:

SHOW GEQO;
NOTICE: geqo = true

Compatibility

 The SHOW command is a Postgres extension.

 TRUNCATE

Name

 TRUNCATE � Empty a table

Synopsis

TRUNCATE [TABLE] name

Inputs

name

 The name of the table to be truncated.

Outputs

TRUNCATE

 Message returned if the table is successfully truncated.

Description

 TRUNCATE quickly removes all rows from a table. It has the same effect as an unqualified DELETE
but since it does not actually scan the table it is faster. This is most effective on large tables.

Usage

 Truncate the table bigtable:

TRUNCATE TABLE bigtable;

SQL Commands

164

Compatibility

SQL92

 There is no TRUNCATE in SQL92.

 UNLISTEN

Name

 UNLISTEN � Stop listening for notification

Synopsis

UNLISTEN { notifyname | * }

Inputs

notifyname

 Name of previously registered notify condition.

*

 All current listen registrations for this backend are cleared.

Outputs

UNLISTEN

 Acknowledgment that statement has executed.

Description

 UNLISTEN is used to remove an existing NOTIFY registration. UNLISTEN cancels any existing
registration of the current Postgres session as a listener on the notify condition notifyname. The
special condition wildcard "*" cancels all listener registrations for the current session.

 NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

SQL Commands

165

Notes

 notifyname need not be a valid class name but can be any string valid as a name up to 32 characters
long.

 The backend does not complain if you UNLISTEN something you were not listening for. Each backend
will automatically execute UNLISTEN * when exiting.

Usage

 To subscribe to an existing registration:

LISTEN virtual;
LISTEN
NOTIFY virtual;
NOTIFY
Asynchronous NOTIFY ’virtual’ from backend with pid ’8448’ received

 Once UNLISTEN has been executed, further NOTIFY commands will be ignored:

UNLISTEN virtual;
UNLISTEN
NOTIFY virtual;
NOTIFY
-- notice no NOTIFY event is received

Compatibility

SQL92

 There is no UNLISTEN in SQL92.

SQL Commands

166

 UPDATE

Name

 UPDATE � Replaces values of columns in a table

Synopsis

UPDATE [ONLY] table SET col = expression [, ...]
 [FROM fromlist]
 [WHERE condition]

Inputs

table

 The name of an existing table.

column

 The name of a column in table.

expression

 A valid expression or value to assign to column.

fromlist

 A Postgres non-standard extension to allow columns from other tables to appear in the WHERE
condition.

condition

 Refer to the SELECT statement for a further description of the WHERE clause.

Outputs

UPDATE #

 Message returned if successful. The # means the number of rows updated. If # is 0 no rows are
updated.

SQL Commands

167

Description

 UPDATE changes the values of the columns specified for all rows which satisfy condition. Only the
columns to be modified need appear as columns in the statement.

 Array references use the same syntax found in SELECT. That is, either single array elements, a range of
array elements or the entire array may be replaced with a single query.

 You must have write access to the table in order to modify it, as well as read access to any table whose
values are mentioned in the WHERE condition.

 By default UPDATE will update tuples in the table specified and all its sub-tables. If you wish to only
update the specific table mentioned, you should use the ONLY clause.

Usage

 Change word "Drama" with "Dramatic" on column kind:

UPDATE films
SET kind = ’Dramatic’
WHERE kind = ’Drama’;
SELECT *
FROM films
WHERE kind = ’Dramatic’ OR kind = ’Drama’;

 code | title | did | date_prod | kind | len
-------+---------------+-----+------------+----------+-------
 BL101 | The Third Man | 101 | 1949-12-23 | Dramatic | 01:44
 P_302 | Becket | 103 | 1964-02-03 | Dramatic | 02:28
 M_401 | War and Peace | 104 | 1967-02-12 | Dramatic | 05:57
 T_601 | Yojimbo | 106 | 1961-06-16 | Dramatic | 01:50
 DA101 | Das Boot | 110 | 1981-11-11 | Dramatic | 02:29

Compatibility

SQL92

 SQL92 defines a different syntax for the positioned UPDATE statement:

UPDATE table SET column = expression [, ...]
 WHERE CURRENT OF cursor

 where cursor identifies an open cursor.

SQL Commands

168

 VACUUM

Name

 VACUUM � Clean and analyze a Postgres database

Synopsis

VACUUM [VERBOSE] [ANALYZE] [table]
VACUUM [VERBOSE] ANALYZE [table [(column [, ...])]]

Inputs

VERBOSE

 Prints a detailed vacuum activity report for each table.

ANALYZE

 Updates column statistics used by the optimizer to determine the most efficient way to execute a
query.

table

 The name of a specific table to vacuum. Defaults to all tables.

column

 The name of a specific column to analyze. Defaults to all columns.

Outputs

VACUUM

 The command has been accepted and the database is being cleaned.

NOTICE: --Relation table--

 The report header for table.

NOTICE: Pages 98: Changed 25, Reapped 74, Empty 0, New 0; Tup 1000: Vac 3000,

Crash 0, UnUsed 0, MinLen 188, MaxLen 188; Re-using: Free/Avail. Space

586952/586952; EndEmpty/Avail. Pages 0/74. Elapsed 0/0 sec.

 The analysis for table itself.

SQL Commands

169

NOTICE: Index index: Pages 28; Tuples 1000: Deleted 3000. Elapsed 0/0 sec.

 The analysis for an index on the target table.

Description

 VACUUM serves two purposes in Postgres as both a means to reclaim storage and also a means to
collect information for the optimizer.

 VACUUM opens every table in the database, cleans out records from rolled back transactions, and
updates statistics in the system catalogs. The statistics maintained include the number of tuples and
number of pages stored in all tables.

 VACUUM ANALYZE collects statistics representing the dispersion of the data in each column. This
information is valuable when several query execution paths are possible.

 Running VACUUM periodically will increase the speed of the database in processing user queries.

Notes

 The open database is the target for VACUUM.

 We recommend that active production databases be VACUUM-ed nightly, in order to remove expired
rows. After copying a large table into Postgres or after deleting a large number of records, it may be a
good idea to issue a VACUUM ANALYZE query. This will update the system catalogs with the results
of all recent changes, and allow the Postgres query optimizer to make better choices in planning user
queries.

Usage

 The following is partial example from running VACUUM on a table in the regression database:

regression=> vacuum verbose analyze onek;
NOTICE: --Relation onek--
NOTICE: Pages 98: Changed 25, Reapped 74, Empty 0, New 0;
 Tup 1000: Vac 3000, Crash 0, UnUsed 0, MinLen 188, MaxLen 188;
 Re-using: Free/Avail. Space 586952/586952; EndEmpty/Avail. Pages
0/74.
 Elapsed 0/0 sec.
NOTICE: Index onek_stringu1: Pages 28; Tuples 1000: Deleted 3000. Elapsed
0/0 sec.
VACUUM

Compatibility

SQL92

 There is no VACUUM statement in SQL92.

II. PostgreSQL Client Applications
 This is reference information for Postgres client applications and utilities.

171

createdb

Name

createdb � Create a new Postgres database

Synopsis

createdb [options...] [dbname] [description]

Inputs

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p, --port port

 Specifies the Internet TCP/IP port or the local Unix domain socket file extension on which the
postmaster is listening for connections.

-U, --username username

 Username to connect as.

-W, --password

 Force password prompt.

-e, --echo

 Echo the queries that createdb generates and sends to the backend.

-q, --quiet

 Do not display a response.

-D, --location datadir

 Specifies the alternative location for the database. See also initlocation.

-T, --template template

 Specifies the template database from which to build this database.

-E, --encoding encoding

 Specifies the character encoding scheme to be used in this database.

PostgreSQL Client Applications

172

dbname

 Specifies the name of the database to be created. The name must be unique among all Postgres
databases in this installation. The default is to create a database with the same name as the current
system user.

description

 This optionally specifies a comment to be associated with the newly created database.

 The options -h, -p, -U, -W, and -e are passed on literally to psql. The options -D, -T, and -E are
converted into options for the underlying SQL command CREATE DATABASE; see there for more
information about them.

Outputs

CREATE DATABASE

 The database was successfully created.

createdb: Database creation failed.

 (Says it all.)

createdb: Comment creation failed. (Database was created.)

 The comment/description for the database could not be created. The database itself will have been
created already. You can use the SQL command COMMENT ON DATABASE to create the
comment later on.

 If there is an error condition, the backend error message will be displayed. See CREATE DATABASE
and psql for possibilities.

Description

 createdb creates a new Postgres database. The user who executes this command becomes the database
owner.

 createdb is a shell script wrapper around the SQL command CREATE DATABASE via the Postgres
interactive terminal psql. Thus, there is nothing special about creating databases via this or other
methods. This means that the psql program must be found by the script and that a database server must
be running at the targeted port. Also, any default settings and environment variables available to psql
and the libpq front-end library will apply.

Usage

 To create the database demo using the default database server:
$ createdb demo

CREATE DATABASE

 The response is the same as you would have gotten from running the CREATE DATABASE SQL
command.

PostgreSQL Client Applications

173

 To create the database demo using the postmaster on host eden, port 5000, using the LATIN1 encoding
scheme with a look at the underlying query:
$ createdb -p 5000 -h eden -E LATIN1 -e demo

CREATE DATABASE "demo" WITH ENCODING = ’LATIN1’

CREATE DATABASE

createuser

Name

createuser � Create a new Postgres user

Synopsis

createuser [options...] [username]

Inputs

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.

-e, --echo

 Echo the queries that createdb generates and sends to the backend.

-q, --quiet

 Do not display a response.

-d, --createdb

 Allows the new user to create databases.

-D, --no-createdb

 Forbids the new user to create databases.

-a, --adduser

 Allows the new user to create other users.

-A, --no-adduser

 Forbids the new user to create other users.

PostgreSQL Client Applications

174

-P, --pwprompt

 If given, createuser will issue a prompt for the password of the new user. This is not necessary if
you do not plan on using password authentication.

-i, --sysid uid

 Allows you to pick a non-default user id for the new user. This is not necessary, but some people
like it.

username

 Specifies the name of the Postgres user to be created. This name must be unique among all
Postgres users.

 You will be prompted for a name and other missing information if it is not specified on the command
line.

 The options -h, -p, and -e, are passed on literally to psql. The psql options -U and -W are available as
well, but their use can be confusing in this context.

Outputs

CREATE USER

 All is well.

createuser: creation of user "username" failed

 Something went wrong. The user was not created.

 If there is an error condition, the backend error message will be displayed. See CREATE USER and psql
for possibilities.

Description

 createuser creates a new Postgres user. Only users with usesuper set in the pg_shadow table can
create new Postgres users.

 createuser is a shell script wrapper around the SQL command CREATE USER via the Postgres
interactive terminal psql. Thus, there is nothing special about creating users via this or other methods.
This means that the psql must be found by the script and that a database server is running at the targeted
host. Also, any default settings and environment variables available to psql and the libpq front-end
library do apply.

Usage

 To create a user joe on the default database server:
$ createuser joe
Is the new user allowed to create databases? (y/n) n
Shall the new user be allowed to create more new users? (y/n) n

CREATE USER

PostgreSQL Client Applications

175

 To create the same user joe using the postmaster on host eden, port 5000, avoiding the prompts and
taking a look at the underlying query:
$ createuser -p 5000 -h eden -D -A -e joe

CREATE USER "joe" NOCREATEDB NOCREATEUSER

CREATE USER

dropdb

Name

dropdb � Remove an existing Postgres database

Synopsis

dropdb [options...] dbname

Inputs

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.

-U, --username username

 Username to connect as.

-W, --password

 Force password prompt.

-e, --echo

 Echo the queries that dropdb generates and sends to the backend.

-q, --quiet

 Do not display a response.

-i, --interactive

 Issues a verification prompt before doing anything destructive.

PostgreSQL Client Applications

176

dbname

 Specifies the name of the database to be removed. The database must be one of the existing
Postgres databases in this installation.

 The options -h, -p, -U, -W, and -e are passed on literally to psql.

Outputs

DROP DATABASE

 The database was successfully removed.

dropdb: Database removal failed.

 Something didn’t work out.

 If there is an error condition, the backend error message will be displayed. See DROP DATABASE and
psql for possibilities.

Description

 dropdb destroys an existing Postgres database. The user who executes this command must be a database
superuser or the owner of the database.

 dropdb is a shell script wrapper around the SQL command DROP DATABASE via the Postgres
interactive terminal psql. Thus, there is nothing special about dropping databases via this or other
methods. This means that the psql must be found by the script and that a database server is running at
the targeted host. Also, any default settings and environment variables available to psql and the libpq
front-end library do apply.

Usage

 To destroy the database demo on the default database server:
$ dropdb demo

DROP DATABASE

 To destroy the database demo using the postmaster on host eden, port 5000, with verification and a peek
at the underlying query:
$ dropdb -p 5000 -h eden -i -e demo

Database "demo" will be permanently deleted.

Are you sure? (y/n) y

DROP DATABASE "demo"

DROP DATABASE

PostgreSQL Client Applications

177

dropuser

Name

dropuser � Drops (removes) a Postgres user

Synopsis

dropuser [options...] [username]

Inputs

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.

-e, --echo

 Echo the queries that createdb generates and sends to the backend.

-q, --quiet

 Do not display a response.

-i, --interactive

 Prompt for confirmation before actually removing the user.

username

 Specifies the name of the Postgres user to be removed. This name must exist in the Postgres
installation. You will be prompted for a name if none is specified on the command line.

 The options -h, -p, and -e, are passed on literally to psql. The psql options -U and -W are available as
well, but they can be confusing in this context.

Outputs

DROP USER

 All is well.

PostgreSQL Client Applications

178

dropuser: deletion of user "username" failed

 Something went wrong. The user was not removed.

 If there is an error condition, the backend error message will be displayed. See DROP USER and psql
for possibilities.

Description

 dropuser removes an existing Postgres user and the databases which that user owned. Only users with
usesuper set in the pg_shadow table can destroy Postgres users.

 dropuser is a shell script wrapper around the SQL command DROP USER via the Postgres interactive
terminal psql. Thus, there is nothing special about removing users via this or other methods. This means
that the psql must be found by the script and that a database server is running at the targeted host. Also,
any default settings and environment variables available to psql and the libpq front-end library do apply.

Usage

 To remove user joe from the default database server:
$ dropuser joe

DROP USER

 To remove user joe using the postmaster on host eden, port 5000, with verification and a peek at the
underlying query:
$ dropuser -p 5000 -h eden -i -e joe

User "joe" and any owned databases will be permanently deleted.

Are you sure? (y/n) y

DROP USER "joe"

DROP USER

PostgreSQL Client Applications

179

 ecpg

Name

 ecpg � Embedded SQL C preprocessor

Synopsis

ecpg [-v] [-t] [-I include-path] [-o outfile] file1 [file2] [...
]

Inputs

 ecpg accepts the following command line arguments:

-v

 Print version information.

-t

 Turn off auto-transaction mode.

-I path

 Specify an additional include path. Defaults are ., /usr/local/include, the Postgres include
path which is defined at compile time (default: /usr/local/pgsql/lib), and /usr/include.

-o

 Specifies that ecpg should write all its output to outfile. If no such option is given the output is
written to name.c, assuming the input file was named name.pgc. If the input file does have the
expected .pgc suffix, then the output file will have .pgc appended to the input file name.

file

 The files to be processed.

Outputs

 ecpg will create a file or write to stdout.

return value

 ecpg returns 0 to the shell on successful completion, -1 for errors.

PostgreSQL Client Applications

180

Description

 ecpg is an embedded SQL preprocessor for the C language and the Postgres. It enables development of
C programs with embedded SQL code.

 Linus Tolke (<linus@epact.se>) was the original author of ecpg (up to version 0.2). Michael
Meskes (<meskes@debian.org>) is the current author and maintainer of ecpg. Thomas Good
(<tomg@q8.nrnet.org>) is the author of the last revision of the ecpg man page, on which this
document is based.

Usage

Preprocessing for Compilation

 An embedded SQL source file must be preprocessed before compilation:

ecpg [-d] [-o file] file.pgc

 where the optional -d flag turns on debugging. The .pgc extension is an arbitrary means of denoting
ecpg source.

 You may want to redirect the preprocessor output to a log file.

Compiling and Linking

 Assuming the Postgres binaries are in /usr/local/pgsql, you will need to compile and link your
preprocessed source file:

gcc -g -I /usr/local/pgsql/include [-o file] file.c -L /usr/local/pgsql/lib
-lecpg -lpq

Grammar

Libraries

 The preprocessor will prepend two directives to the source:

#include <ecpgtype.h>
#include <ecpglib.h>

Variable Declaration

 Variables declared within ecpg source code must be prepended with:

EXEC SQL BEGIN DECLARE SECTION;

PostgreSQL Client Applications

181

 Similarly, variable declaration sections must terminate with:

EXEC SQL END DECLARE SECTION;

Note: Prior to version 2.1.0, each variable had to be declared on a separate line. As of version
2.1.0 multiple variables may be declared on a single line:

char foo(16), bar(16);

Error Handling

 The SQL communication area is defined with:

EXEC SQL INCLUDE sqlca;

Note: The sqlca is in lowercase. While SQL convention may be followed, i.e., using uppercase to
separate embedded SQL from C statements, sqlca (which includes the sqlca.h header file) MUST
be lowercase. This is because the EXEC SQL prefix indicates that this INCLUDE will be parsed by
ecpg. ecpg observes case sensitivity (SQLCA.h will not be found). EXEC SQL INCLUDE can be
used to include other header files as long as case sensitivity is observed.

 The sqlprint command is used with the EXEC SQL WHENEVER statement to turn on error handling
throughout the program:

EXEC SQL WHENEVER sqlerror sqlprint;

 and

EXEC SQL WHENEVER not found sqlprint;

Note: This is not an exhaustive example of usage for the EXEC SQL WHENEVER statement.
Further examples of usage may be found in SQL manuals (e.g., ‘The LAN TIMES Guide to SQL’ by
Groff and Weinberg).

PostgreSQL Client Applications

182

Connecting to the Database Server

 One connects to a database using the following:

EXEC SQL CONNECT TO dbname;

 where the database name is not quoted. Prior to version 2.1.0, the database name was required to be
inside single quotes.

 Specifying a server and port name in the connect statement is also possible. The syntax is:

dbname[@server][:port]

 or

<tcp|unix>:postgresql://server[:port][/dbname][?options]

Queries

 In general, SQL queries acceptable to other applications such as psql can be embedded into your C
code. Here are some examples of how to do that.

 Create Table:

EXEC SQL CREATE TABLE foo (number int4, ascii char(16));
EXEC SQL CREATE UNIQUE index num1 on foo(number);
EXEC SQL COMMIT;

 Insert:

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, ’doodad’);
EXEC SQL COMMIT;

 Delete:

EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;

 Singleton Select:

EXEC SQL SELECT foo INTO :FooBar FROM table1 WHERE ascii = ’doodad’;

PostgreSQL Client Applications

183

 Select using Cursors:

EXEC SQL DECLARE foo_bar CURSOR FOR
 SELECT number, ascii FROM foo
 ORDER BY ascii;
EXEC SQL FETCH foo_bar INTO :FooBar, DooDad;
...
EXEC SQL CLOSE foo_bar;
EXEC SQL COMMIT;

 Updates:

EXEC SQL UPDATE foo
 SET ascii = ’foobar’
 WHERE number = 9999;
EXEC SQL COMMIT;

Notes

 There is no EXEC SQL PREPARE statement.

 The complete structure definition MUST be listed inside the declare section.

 See the TODO file in the source for some more missing features.

pgaccess

Name

pgaccess � PostgreSQL graphical client

Synopsis

pgaccess [dbname]

Options

dbname

 The name of an existing database to access.

PostgreSQL Client Applications

184

Description

 pgaccess provides a graphical interface for Postgres wherein you can manage your tables, edit them,
define queries, sequences and functions.

 pgaccess can:
 Open any database on a specified host at the specified port, username, and password.
 Execute VACUUM.
 Save preferences in the ~/.pgaccessrc file.

 For tables, pgaccess can:
 Open multiple tables for viewing, with a configurable number of rows shown.
 Resize columns by dragging the vertical grid lines.
 Wrap text in cells.
 Dynamically adjust row height when editing.
 Save table layout for every table.
 Import/export to external files (SDF, CSV).
 Use filter capabilities; enter filters like price > 3.14.
 Specify sort order; enter manually the sort field(s).
 Edit in place; double click the text you want to change.
 Delete records; point to the record, press Delete key.
 Add new records; save new row with right-button click.
 Create tables with an assistant.
 Rename and delete (drop) tables.
 Retrieve information on tables, including owner, field information, indices.

 For queries, pgaccess can:
 Define, edit and store user-defined queries.
 Save view layouts.
 Store queries as views.
 Execute with optional user input parameters, e.g.,

select * from invoices where year=[parameter "Year of selection"]

 View any select query result.
 Run action queries (insert, update, delete).
 Construct queries using a visual query builder with drag & drop support, table aliasing.

 For sequences, pgaccess can:
 Define new instances.
 Inspect existing instances.
 Delete.

PostgreSQL Client Applications

185

 For views, pgaccess can:
 Define them by saving queries as views.
 View them, with filtering and sorting capabilities.
 Design new views.
 Delete (drop) existing views.

 For functions, pgaccess can:
 Define.
 Inspect.
 Delete.

 For reports, pgaccess can:
 Generate simple reports from a table (beta stage).
 Change font, size, and style of fields and labels.
 Load and save reports from the database.
 Preview tables, sample Postscript print.

 For forms, pgaccess can:
 Open user-defined forms.
 Use a form design module.
 Access record sets using a query widget.

 For scripts, pgaccess can:
 Define.
 Modify.
 Call user defined scripts.

Notes

 pgaccess is written in Tcl/Tk. Your PostgreSQL installation needs to be built with Tcl support for
pgaccess to be available.

PostgreSQL Client Applications

186

 pgadmin

Name

 pgadmin � Postgres database management and design tool for Windows 95/98/NT

Synopsis

pgadmin [datasourcename [username [password]]]

Inputs

datasourcename

 The name of an existing Postgres ODBC System or User Data Source.

username

 A valid username for the specified datasourcename.

password

 A valid password for the specified datasourcename and username.

Outputs

Description

 pgadmin is a general purpose tool for designing, maintaining, and administering Postgres databases. It
runs under Windows 95/98 and NT.

 Features include:

 Arbitrary SQL entry.

 Info Browsers and ’Creators’ for databases, tables, indexes, sequences, views, triggers, functions and
languages.

 User, Group and Privilege configuration dialogues.

 Revision tracking with upgrade script generation.

 Configuration of Microsoft MSysConf table.

 Data Import and Export Wizards.

 Database Migration Wizard.

 Predefined reports on databases, tables, indexes, sequences, languages and views.

PostgreSQL Client Applications

187

 pgadmin is distributed separately from Postgres and may be downloaded from
http://www.pgadmin.freeserve.co.uk

pg_config

Name

pg_config � Provides information about the installed version of PostgreSQL

Synopsis

pg_config {--bindir | --includedir | --libdir | --configure | --version...}

Description

 The pg_config utility provides configuration parameters of the currently installed version of
PostgreSQL. It is intended, for example, to be used by software packages that want to interface to
PostgreSQL in order to find the respective header files and libraries.

 To use pg_config, supply one or more of the following options:

--bindir

 Print the location of user executables. Use this, for example, to find the psql program. This is
normally also the location where the pg_config program resides.

--includedir

 Print the location of C and C++ header files.

--libdir

 Print the location of object code libraries.

--configure

 Print the options that were given to the configure script when PostgreSQL was configured for
building. This can be used to reproduce the identical configuration, or to find out with what options
a binary package was built. (Note however that binary packages often contain vendor-specific
custom patches.)

--version

 Print the version of PostgreSQL and exit.

 If more than one option (except for --version) is given, the information is printed in that order, one
item per line.

PostgreSQL Client Applications

188

 pg_dump

Name

pg_dump � Extract a Postgres database into a script file or other archive file

Synopsis

pg_dump [-a | -s] [-b] [-c] [-C] [-d | -D] [-f file] [-F format] [-i] [-n | -N] [-o] [-O] [-R] [-S] [-t
table] [-v] [-x] [-Z 0...9] [-h host] [-p port] [-u] dbname

Description

 pg_dump is a utility for dumping out a Postgres database into a script or archive file containing query
commands. The script files are in text format and can be used to reconstruct the database, even on other
machines and other architectures. The archive files, new with version 7.1, contain enough information
for pg_restore to rebuild the database, but also allow pg_restore to be selective about what is restored,
or even to reorder the items prior to being restored. The archive files are also designed to be portable
across architectures.

 pg_dump will produce the queries necessary to re-generate all user-defined types, functions, tables,
indices, aggregates, and operators. In addition, all the data is copied out in text format so that it can be
readily copied in again, as well as imported into tools for editing.

 pg_dump is useful for dumping out the contents of a database to move from one Postgres installation to
another. After running pg_dump, one should examine the output for any warnings, especially in light of
the limitations listed below.

 When used with one of the alternate file formats and combined with pg_restore, it provides a flexible
archival and transfer mechanism. pg_dump can be used to backup an entire database, then pg_restore
can be used to examine the archive and/or select which parts of the database are to be restored. See the
pg_restore documentation for details.

Options

 pg_dump accepts the following command line arguments. (Long option forms are only available on
some platforms.)

dbname

 Specifies the name of the database to be extracted.

-a
--data-only

 Dump only the data, not the schema (definitions).

-b
--blobs

 Dump data and BLOB data.

PostgreSQL Client Applications

189

-c
--clean

 Dump commands to clean (drop) the schema prior to (the commands for) creating it.

-C
--create

 For plain text (script) output, include commands to create the database itself.

-d
--inserts

 Dump data as proper INSERT commands (not COPY). This will make restoration very slow.

-D
--attribute-inserts

 Dump data as INSERT commands with explicit column names. This will make restoration very
slow.

-f file
--file=file

 Send output to the specified file.

-F format
--format=format

 Format can be one of the following:

p

 output a plain text SQL script file (default)

t

 output a tar archive suitable for input into pg_restore. Using this archive format allows
reordering and/or exclusion of schema elements at the time the database is restored. It is also
possible to limit which data is reloaded at restore time.

c

 output a custom archive suitable for input into pg_restore. This is the most flexible format in
that it allows reordering of data load as well as schema elements. This format is also
compressed by default.

-i
--ignore-version

 Ignore version mismatch between pg_dump and the database server. Since pg_dump knows a
great deal about system catalogs, any given version of pg_dump is only intended to work with the
corresponding release of the database server. Use this option if you need to override the version
check (and if pg_dump then fails, don’t say you weren’t warned).

PostgreSQL Client Applications

190

-n
--no-quotes

 Suppress double quotes around identifiers unless absolutely necessary. This may cause trouble
loading this dumped data if there are reserved words used for identifiers. This was the default
behavior for pg_dump prior to version 6.4.

-N
--quotes

 Include double quotes around identifiers. This is the default.

-o
--oids

 Dump object identifiers (OIDs) for every table.

-O
--no-owner

 In plain text output mode, do not set object ownership to match the original database. Typically,
pg_dump issues (psql-specific) \connect statements to set ownership of schema elements.

-R
--no-reconnect

 In plain text output mode, prohibit pg_dump from issuing any \connect statements.

-s
--schema-only

 Dump only the schema (definitions), no data.

-S username
--superuser=username

 Specify the superuser user name to use when disabling triggers and/or setting ownership of schema
elements.

-t table
--table=table

 Dump data for table only.

-v
--verbose

 Specifies verbose mode.

-x
--no-acl

 Prevent dumping of ACLs (grant/revoke commands) and table ownership information.

PostgreSQL Client Applications

191

-Z 0..9
--compress=0..9

 Specify the compression level to use in archive formats that support compression (currently only
the custom archive format supports compression).

 pg_dump also accepts the following command line arguments for connection parameters:

-h host
--host=host

 Specifies the host name of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections. The port number defaults to 5432, or the value of the
PGPORT environment variable (if set).

-u

 Use password authentication. Prompts for username and password.

Diagnostics

Connection to database ’template1’ failed.

connectDBStart() -- connect() failed: No such file or directory

 Is the postmaster running locally

 and accepting connections on Unix socket ’/tmp/.s.PGSQL.5432’?

 pg_dump could not attach to the postmaster process on the specified host and port. If you see this
message, ensure that the postmaster is running on the proper host and that you have specified the
proper port.

dumpSequence(table): SELECT failed

 You do not have permission to read the database. Contact your Postgres site administrator.

Note: pg_dump internally executes SELECT statements. If you have problems running pg_dump,
make sure you are able to select information from the database using, for example, psql.

Notes

 pg_dump has a few limitations. The limitations mostly stem from difficulty in extracting certain
meta-information from the system catalogs.

 When dumping a single table or as plain text, pg_dump does not handle large objects. Large objects
must be dumped in their entirety using one of the binary archive formats.

PostgreSQL Client Applications

192

 When doing a data only dump, pg_dump emits queries to disable triggers on user tables before
inserting the data and queries to re-enable them after the data has been inserted. If the restore is
stopped in the middle, the system catalogs may be left in the wrong state.

Examples

 To dump a database:

$ pg_dump mydb > db.out

 To reload this database:

$ psql -d database -f db.out

 To dump a database called mydb that contains BLOBs to a tar file:

$ pg_dump -Ft -b mydb > db.tar

 To reload this database (with BLOBs) to an existing database called newdb:

$ pg_restore -d newdb db.tar

See Also
pg_dumpall, pg_restore , psql, PostgreSQL Administrator’s Guide

pg_dumpall

Name

pg_dumpall � Extract all databases into a script file

Synopsis

pg_dumpall [-c | --clean] [-h host] [-p port] [-g | --globals-only]

Description

 pg_dumpall is a utility for writing out (�dumping�) all Postgres databases of a cluster into one script file.
The script file contains SQL commands that can be used as input to psql to restore the databases. It does
this by calling pg_dump for each database in a cluster. pg_dumpall also dumps global objects that are

PostgreSQL Client Applications

193

common to all databases. (pg_dump does not save these objects.) This currently includes the
information about database users and groups.

 Thus, pg_dumpall is an integrated solution for backing up your databases.

 Since pg_dumpall reads tables from all databases you will most likely have to connect as a database
superuser in order to produce a complete dump. Also you will need superuser privileges to execute the
saved script in order to be allowed to add users and groups, and to create databases.

 The SQL script will be written to the standard ouput. Shell operators should be used to redirect it into a
file.

Options

 pg_dumpall accepts the following command line arguments:

-c, --clean

 Clean (drop) database before creating schema.

-h host

 Specifies the hostname of the machine on which the database server is running. If host begins with
a slash, it is used as the directory for the Unix domain socket. The default is taken from the
PGHOST environment variable, if set, else a Unix domain socket connection is attempted.

-p port

 The port number on which the server is listening. Defaults to the PGPORT environment variable,
if set, or a compiled-in default.

-g, --globals-only

 Only dump global objects (users and groups), no databases.

 Any other command line parameters are passed to the underlying pg_dump calls. This is useful to
control some aspects of the output format, but some options such as -f, -t, and dbname should be
avoided.

Usage

 To dump all databases:

$ pg_dumpall > db.out

 To reload this database use, for example:

$ psql -f db.out template1

 (It is not important to which database you connect here since the script file created by pg_dumpall will
contain the appropriate commands to create and connect to the saved databases.)

PostgreSQL Client Applications

194

See Also

 pg_dump , psql. Check there for details on possible error conditions.

 pg_restore

Name

pg_restore � Restore a Postgres database from an archive file created by pg_dump

Synopsis

pg_restore [-a] [-c] [-C] [-d dbname] [-f archive-file] [-F format] [-i index] [-l] [
-L contents-file] [-N | -o | -r] [-O] [-P function-name] [-R] [-s] [-S] [-t table] [-T
trigger] [-v] [-x] [-h host] [-p port] [-u] [archive-file]

Description

 pg_restore is a utility for restoring a Postgres database dumped by pg_dump in one of the
non-plain-text formats.

 The archive files, new with the 7.1 release, contain enough information for pg_restore to rebuild the
database, but also allow pg_restore to be selective about what is restored, or even to reorder the items
prior to being restored. The archive files are designed to be portable across architectures. pg_dump will
produce the queries necessary to re-generate all user-defined types, functions, tables, indices,
aggregates, and operators. In addition, all the data is copied out (in text format for scripts) so that it can
be readily copied in again.

 pg_restore reads the archive file and outputs the appropriate SQL in the required order based on the
command parameters. Obviously, it can not restore information that is not present in the dump file; so if
the dump is made using the �dump data as INSERTs� option, pg_restore will not be able to load the data
using COPY statements.

 The most flexible output file format is the �custom� format (-Fc). It allows for selection and reordering of
all archived items, and is compressed by default. The tar format (-Ft) is not compressed and it is not
possible to reorder data when loading, but it is otherwise quite flexible.

 To reorder the items, it is first necessary to dump the contents of the archive:

$ pg_restore archive.file -l > archive.list

 This file consists of a header and one line for each item, e.g.,

;
; Archive created at Fri Jul 28 22:28:36 2000
; dbname: birds
; TOC Entries: 74
; Compression: 0
; Dump Version: 1.4-0
; Format: CUSTOM

PostgreSQL Client Applications

195

;
;
; Selected TOC Entries:
;
2; 145344 TABLE species postgres
3; 145344 ACL species
4; 145359 TABLE nt_header postgres
5; 145359 ACL nt_header
6; 145402 TABLE species_records postgres
7; 145402 ACL species_records
8; 145416 TABLE ss_old postgres
9; 145416 ACL ss_old
10; 145433 TABLE map_resolutions postgres
11; 145433 ACL map_resolutions
12; 145443 TABLE hs_old postgres
13; 145443 ACL hs_old

 Semi-colons are comment delimiters, and the numbers at the start of lines refer to the internal archive
ID assigned to each item.

 Lines in the file can be commented out, deleted, and reordered. For example,

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

 could be used as input to pg_restore and would only restore items 10 and 6, in that order.

$ pg_restore archive.file -L archive.list

Options

 pg_restore accepts the following command line arguments. (Long option forms are only available on
some platforms.)

archive-name

 Specifies the location of the archive file to be restored. If not specified, and no -f option is
specified, then the standard input is used.

-a
--data-only

 Restore only the data, no schema (definitions).

-c
--clean

 Clean (drop) schema prior to create.

PostgreSQL Client Applications

196

-C
--create

 Include SQL to create the schema.

-d dbname
--dbname=dbname

 Connect to database dbname and restore directly into the database. BLOBs can only be restored
by using a direct database connection.

-f filename
--file=filename

 Specify output file for generated script. (Use with the -l option.) Default is the standard output.

-F format
--format=format

 Specify format of the archive. It is not necessary to specify the format, since pg_restore will
determine the format automatically. If specified, it can be one of the following:

t

 Archive is a tar archive. Using this archive format allows reordering and/or exclusion of
schema elements at the time the database is restored. It is also possible to limit which data is
reloaded at restore time.

c

 Archive is in the custom format of pg_dump. This is the most flexible format in that it allows
reordering of data load as well as schema elements. This format is also compressed by default.

-i index
--index=index

 Restore definition for named index only.

-l
--list

 List the contents of the archive. The output of this command can be used with the -L option to
restrict and reorder the items that are restored.

-L list-file
--use-list=list-file

 Restore elements in list-file only, and in the order they appear in the file. Lines can be
moved and may also be commented out by placing a ’;’ at the start of the line.

PostgreSQL Client Applications

197

-N
--orig-order

 Restore items in the original dump order. By default pg_dump will dump items in an order
convenient to pg_dump, then save the archive in a modified OID order. This option overrides the
OID ordering.

-o
--oid-order

 Restore items in the OID order. By default pg_dump will dump items in an order convenient to
pg_dump, then save the archive in a modified OID order. This option enforces strict OID ordering.

-O
--no-owner

 Prevent any attempt to restore original object ownership. Objects will be owned by the user name
used to attach to the database.

-P function-name
--function=function-name

 Specify a procedure or function to be restored.

-r
--rearrange

 Restore items in modified OID order. By default pg_dump will dump items in an order convenient
to pg_dump, then save the archive in a modified OID order. Most objects will be restored in OID
order, but some things (e.g., rules and indices) will be restored at the end of the process irrespective
of their OIDs. This option is the default.

-R
--no-reconnect

 Prohibit pg_restore from issuing any

\connect

 statements or reconnecting to the database if directly connected.

-s
--schema-only

 Restore the schema (definitions), no data. Sequence values will be reset.

-S username
--superuser=username

 Specify the superuser user name to use when disabling triggers and/or setting ownership of schema
elements. By default, pg_restore will use the current user name if it is a superuser.

PostgreSQL Client Applications

198

-t table
--table=table

 Restore schema/data for table only.

-T trigger
--trigger=trigger

 Restore definition of trigger only.

-v
--verbose

 Specifies verbose mode.

-x
--no-acl

 Prevent restoration of ACLs (grant/revoke commands).

 pg_restore also accepts the following command line arguments for connection parameters:

-h host
--host=host

 Specifies the host name of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections. The port number defaults to 5432, or the value of the
PGPORT environment variable (if set).

-u

 Use password authentication. Prompts for user name and password.

Diagnostics

Connection to database ’template1’ failed.

connectDBStart() -- connect() failed: No such file or directory

 Is the postmaster running locally

 and accepting connections on Unix socket ’/tmp/.s.PGSQL.5432’?

 pg_restore could not attach to the postmaster process on the specified host and port. If you see
this message, ensure that the postmaster is running on the proper host and that you have specified
the proper port. If your site uses an authentication system, ensure that you have obtained the
required authentication credentials.

PostgreSQL Client Applications

199

Note: When a direct database connection is specified using the -d option, pg_restore internally
executes SQL statements. If you have problems running pg_restore, make sure you are able to
select information from the database using, for example, psql.

Notes

 The limitations of pg_restore are detailed below.

 When restoring data to a table, pg_restore emits queries to disable triggers on user tables before
inserting the data then emits queries to re-enable them after the data has been inserted. If the restore is
stopped in the middle, the system catalogs may be left in the wrong state.

 pg_restore will not restore BLOBs for a single table. If an archive contains BLOBs, then all BLOBs
will be restored.

 See the pg_dump documentation for details on limitation of pg_dump.

Examples

 To dump a database:

$ pg_dump mydb > db.out

 To reload this database:

$ psql -d database -f db.out

 To dump a database called mydb that contains BLOBs to a tar file:

$ pg_dump -Ft -b mydb > db.tar

 To reload this database (with BLOBs) to an existing database called newdb:

$ pg_restore -d newdb db.tar

See Also
 pg_dump , pg_dumpall, psql, PostgreSQL Administrator’s Guide

PostgreSQL Client Applications

200

psql

Name

psql � Postgres interactive terminal

Synopsis

psql [options] [dbname [user]]

Summary

 psql is a terminal-based front-end to Postgres. It enables you to type in queries interactively, issue them
to Postgres, and see the query results. Alternatively, input can be from a file. In addition, it provides a
number of meta-commands and various shell-like features to facilitate writing scripts and automating a
wide variety of tasks.

Description

Connecting To A Database

 psql is a regular Postgres client application. In order to connect to a database you need to know the
name of your target database, the hostname and port number of the server and what user name you want
to connect as. psql can be told about those parameters via command line options, namely -d, -h, -p,
and -U respectively. If an argument is found that does not belong to any option it will be interpreted as
the database name (or the user name, if the database name is also given). Not all these options are
required, defaults do apply. If you omit the host name psql will connect via a Unix domain socket to a
server on the local host. The default port number is compile-time determined. Since the database server
uses the same default, you will not have to specify the port in most cases. The default user name is your
Unix username, as is the default database name. Note that you can’t just connect to any database under
any username. Your database administrator should have informed you about your access rights. To save
you some typing you can also set the environment variables PGDATABASE, PGHOST, PGPORT and
PGUSER to appropriate values.

 If the connection could not be made for any reason (e.g., insufficient privileges, postmaster is not
running on the server, etc.), psql will return an error and terminate.

Entering Queries

 In normal operation, psql provides a prompt with the name of the database to which psql is currently

PostgreSQL Client Applications

201

connected, followed by the string "=>". For example,

$ psql testdb

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

testdb=>

 At the prompt, the user may type in SQL queries. Ordinarily, input lines are sent to the backend when a
query-terminating semicolon is reached. An end of line does not terminate a query! Thus queries can be
spread over several lines for clarity. If the query was sent and without error, the query results are
displayed on the screen.

 Whenever a query is executed, psql also polls for asynchronous notification events generated by
LISTEN and NOTIFY.

psql Meta-Commands

 Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that is
processed by psql itself. These commands are what makes psql interesting for administration or
scripting. Meta-commands are more commonly called slash or backslash commands.

 The format of a psql command is the backslash, followed immediately by a command verb, then any
arguments. The arguments are separated from the command verb and each other by any number of
whitespace characters.

 To include whitespace into an argument you must quote it with a single quote. To include a single quote
into such an argument, precede it by a backslash. Anything contained in single quotes is furthermore
subject to C-like substitutions for \n (new line), \t (tab), \digits, \0digits, and \0xdigits (the
character with the given decimal, octal, or hexadecimal code).

 If an unquoted argument begins with a colon (:), it is taken as a variable and the value of the variable is
taken as the argument instead.

 Arguments that are quoted in �backticks� (‘) are taken as a command line that is passed to the shell. The
output of the command (with a trailing newline removed) is taken as the argument value. The above
escape sequences also apply in backticks.

 Some commands take the name of an SQL identifier (such as a table name) as argument. These
arguments follow the syntax rules of SQL regarding double quotes: an identifier without double quotes
is coerced to lower-case. For all other commands double quotes are not special and will become part of
the argument.

 Parsing for arguments stops when another unquoted backslash occurs. This is taken as the beginning of
a new meta-command. The special sequence \\ (two backslashes) marks the end of arguments and
continues parsing SQL queries, if any. That way SQL and psql commands can be freely mixed on a line.
But in any case, the arguments of a meta-command cannot continue beyond the end of the line.

PostgreSQL Client Applications

202

 The following meta-commands are defined:

\a

 If the current table output format is unaligned, switch to aligned. If it is not unaligned, set it to
unaligned. This command is kept for backwards compatibility. See \pset for a general solution.

\C [title]

 Set the title of any tables being printed as the result of a query or unset any such title. This
command is equivalent to \pset title title. (The name of this command derives from
�caption�, as it was previously only used to set the caption in an HTML table.)

\connect (or \c) [dbname [username]]

 Establishes a connection to a new database and/or under a user name. The previous connection is
closed. If dbname is - the current database name is assumed.

 If username is omitted the current user name is assumed.

 As a special rule, \connect without any arguments will connect to the default database as the
default user (as you would have gotten by starting psql without any arguments).

 If the connection attempt failed (wrong username, access denied, etc.), the previous connection
will be kept if and only if psql is in interactive mode. When executing a non-interactive script,
processing will immediately stop with an error. This distinction was chosen as a user convenience
against typos on the one hand, and a safety mechanism that scripts are not accidentally acting on
the wrong database on the other hand.

\copy table [with oids] { from | to } filename | stdin | stdout [using delimiters
’characters’] [with null as ’string’]

 Performs a frontend (client) copy. This is an operation that runs an SQL COPY command, but
instead of the backend’s reading or writing the specified file, and consequently requiring backend
access and special user privilege, as well as being bound to the file system accessible by the
backend, psql reads or writes the file and routes the data between the backend and the local file
system.

 The syntax of the command is similar to that of the SQL COPY command (see its description for
the details). Note that, because of this, special parsing rules apply to the \copy command. In
particular, the variable substitution rules and backslash escapes do not apply.

Tip: This operation is not as efficient as the SQL COPY command because all data must pass
through the client/server IP or socket connection. For large amounts of data the other
technique may be preferable.

Note: Note the difference in interpretation of stdin and stdout between frontend and backend
copies: in a frontend copy these always refer to psql’s input and output stream. On a backend
copy stdin comes from wherever the COPY itself came from (for example, a script run with
the -f option), and stdout refers to the query output stream (see \o meta-command below).

\copyright

 Shows the copyright and distribution terms of Postgres.

PostgreSQL Client Applications

203

\d relation

 Shows all columns of relation (which could be a table, view, index, or sequence), their types,
and any special attributes such as NOT NULL or defaults, if any. If the relation is, in fact, a table,
any defined indices are also listed. If the relation is a view, the view definition is also shown.

 The command form \d+ is identical, but any comments associated with the table columns are
shown as well.

Note: If \d is called without any arguments, it is equivalent to \dtvs which will show a list of all
tables, views, and sequences. This is purely a convenience measure.

\da [pattern]

 Lists all available aggregate functions, together with the data type they operate on. If pattern (a
regular expression) is specified, only matching aggregates are shown.

\dd [object]

 Shows the descriptions of object (which can be a regular expression), or of all objects if no
argument is given. (�Object� covers aggregates, functions, operators, types, relations (tables, views,
indices, sequences, large objects), rules, and triggers.) For example:

=> \dd version

 Object descriptions
 Name | What | Description
---------+----------+---------------------------
 version | function | PostgreSQL version string
(1 row)

 Descriptions for objects can be generated with the COMMENT ON SQL command.

Note: Postgres stores the object descriptions in the pg_description system table.

\df [pattern]

 Lists available functions, together with their argument and return types. If pattern (a regular
expression) is specified, only matching functions are shown. If the form \df+ is used, additional
information about each function, including language and description, is shown.

\distvS [pattern]

 This is not the actual command name: The letters i, s, t, v, S stand for index, sequence, table, view,
and system table, respectively. You can specify any or all of them in any order to obtain a listing of
them, together with who the owner is.

 If pattern is specified, it is a regular expression that restricts the listing to those objects whose
name matches. If one appends a �+� to the command name, each object is listed with its associated
description, if any.

\dl

 This is an alias for \lo_list, which shows a list of large objects.

PostgreSQL Client Applications

204

\do [name]

 Lists available operators with their operand and return types. If name is specified, only operators
with that name will be shown.

\dp [pattern]

 This is an alias for \z which was included for its greater mnemonic value (�display permissions�).

\dT [pattern]

 Lists all data types or only those that match pattern. The command form \dT+ shows extra
information.

\edit (or \e) [filename]

 If filename is specified, the file is edited; after the editor exits, its content is copied back to the
query buffer. If no argument is given, the current query buffer is copied to a temporary file which is
then edited in the same fashion.

 The new query buffer is then re-parsed according to the normal rules of psql, where the whole
buffer is treated as a single line. (Thus you cannot make scripts this way. Use \i for that.) This
means also that if the query ends with (or rather contains) a semicolon, it is immediately executed.
In other cases it will merely wait in the query buffer.

Tip: psql searches the environment variables PSQL_EDITOR, EDITOR, and VISUAL (in that
order) for an editor to use. If all of them are unset, /bin/vi is run.

\echo text [...]

 Prints the arguments to the standard output, separated by one space and followed by a newline.
This can be useful to intersperse information in the output of scripts. For example:

=> \echo ‘date‘

Tue Oct 26 21:40:57 CEST 1999

 If the first argument is an unquoted -n the the trailing newline is not written.

Tip: If you use the \o command to redirect your query output you may wish to use \qecho
instead of this command.

\encoding [encoding]

 Sets the client encoding, if you are using multibyte encodings. Without an argument, this
command shows the current encoding.

\f [string]

 Sets the field separator for unaligned query output. The default is pipe (|). See also \pset for a
generic way of setting output options.

\g [{ filename | |command }]

 Sends the current query input buffer to the backend and optionally saves the output in filename
or pipes the output into a separate Unix shell to execute command. A bare \g is virtually
equivalent to a semicolon. A \g with argument is a �one-shot� alternative to the \o command.

PostgreSQL Client Applications

205

\help (or \h) [command]

 Give syntax help on the specified SQL command. If command is not specified, then psql will list
all the commands for which syntax help is available. If command is an asterisk (�*�), then syntax
help on all SQL commands is shown.

Note: To simplify typing, commands that consists of several words do not have to be quoted.
Thus it is fine to type \help alter table.

\H

 Turns on HTML query output format. If the HTML format is already on, it is switched back to the
default aligned text format. This command is for compatibility and convenience, but see \pset
about setting other output options.

\i filename

 Reads input from the file filename and executes it as though it had been typed on the keyboard.

Note: If you want to see the lines on the screen as they are read you must set the variable
ECHO to all.

\l (or \list)

 List all the databases in the server as well as their owners. Append a �+� to the command name to
see any descriptions for the databases as well. If your Postgres installation was compiled with
multibyte encoding support, the encoding scheme of each database is shown as well.

\lo_export loid filename

 Reads the large object with OID loid from the database and writes it to filename. Note that
this is subtly different from the server function lo_export, which acts with the permissions of the
user that the database server runs as and on the server’s file system.

Tip: Use \lo_list to find out the large object’s OID.

Note: See the description of the LO_TRANSACTION variable for important information
concerning all large object operations.

\lo_import filename [comment]

 Stores the file into a Postgres �large object�. Optionally, it associates the given comment with the
object. Example:

foo=> \lo_import ’/home/peter/pictures/photo.xcf’ ’a picture of me’

lo_import 152801

 The response indicates that the large object received object id 152801 which one ought to
remember if one wants to access the object ever again. For that reason it is recommended to always
associate a human-readable comment with every object. Those can then be seen with the \lo_list
command.

 Note that this command is subtly different from the server-side lo_import because it acts as the
local user on the local file system, rather than the server’s user and file system.

PostgreSQL Client Applications

206

Note: See the description of the LO_TRANSACTION variable for important information
concerning all large object operations.

\lo_list

 Shows a list of all Postgres �large objects� currently stored in the database, along with any comments
provided for them.

\lo_unlink loid

 Deletes the large object with OID loid from the database.

Tip: Use \lo_list to find out the large object’s OID.

Note: See the description of the LO_TRANSACTION variable for important information
concerning all large object operations.

\o [{filename | |command}]

 Saves future query results to the file filename or pipes future results into a separate Unix shell
to execute command. If no arguments are specified, the query output will be reset to stdout.

 �Query results� includes all tables, command responses, and notices obtained from the database
server, as well as output of various backslash commands that query the database (such as \d), but
not error messages.

Tip: To intersperse text output in between query results, use \qecho.

\p

 Print the current query buffer to the standard output.

\pset parameter [value]

 This command sets options affecting the output of query result tables. parameter describes
which option is to be set. The semantics of value depend thereon.

 Adjustable printing options are:

format

 Sets the output format to one of unaligned, aligned, html, or latex. Unique
abbreviations are allowed. (That would mean one letter is enough.)

 �Unaligned� writes all fields of a tuple on a line, separated by the currently active field
separator. This is intended to create output that might be intended to be read in by other
programs (tab-separated, comma-separated). �Aligned� mode is the standard, human-readable,
nicely formatted text output that is default. The �HTML� and �LaTeX� modes put out tables that
are intended to be included in documents using the respective mark-up language. They are not
complete documents! (This might not be so dramatic in HTML, but in LaTeX you must have a
complete document wrapper.)

border

 The second argument must be a number. In general, the higher the number the more borders
and lines the tables will have, but this depends on the particular format. In HTML mode, this

PostgreSQL Client Applications

207

will translate directly into the border=... attribute, in the others only values 0 (no border), 1
(internal dividing lines), and 2 (table frame) make sense.

expanded (or x)

 Toggles between regular and expanded format. When expanded format is enabled, all output
has two columns with the field name on the left and the data on the right. This mode is useful
if the data wouldn’t fit on the screen in the normal �horizontal� mode.

 Expanded mode is supported by all four output modes.

null

 The second argument is a string that should be printed whenever a field is null. The default is
not to print anything, which can easily be mistaken for, say, an empty string. Thus, one might
choose to write \pset null ’(null)’.

fieldsep

 Specifies the field separator to be used in unaligned output mode. That way one can create,
for example, tab- or comma-separated output, which other programs might prefer. To set a tab
as field separator, type \pset fieldsep ’\t’. The default field separator is ’|’ (a �pipe�
symbol).

recordsep

 Specifies the record (line) separator to use in unaligned output mode. The default is a newline
character.

tuples_only (or t)

 Toggles between tuples only and full display. Full display may show extra information such
as column headers, titles, and various footers. In tuples only mode, only actual table data is
shown.

title [text]

 Sets the table title for any subsequently printed tables. This can be used to give your output
descriptive tags. If no argument is given, the title is unset.

Note: This formerly only affected HTML mode. You can now set titles in any output
format.

tableattr (or T) [text]

 Allows you to specify any attributes to be placed inside the HTML table tag. This could for
example be cellpadding or bgcolor. Note that you probably don’t want to specify border
here, as that is already taken care of by \pset border.

pager

 Toggles the list of a pager to do table output. If the environment variable PAGER is set, the
output is piped to the specified program. Otherwise more is used.

 In any case, psql only uses the pager if it seems appropriate. That means among other things
that the output is to a terminal and that the table would normally not fit on the screen. Because

PostgreSQL Client Applications

208

of the modular nature of the printing routines it is not always possible to predict the number of
lines that will actually be printed. For that reason psql might not appear very discriminating
about when to use the pager and when not to.

 Illustrations on how these different formats look can be seen in the Examples section.

Tip: There are various shortcut commands for \pset. See \a, \C, \H, \t, \T, and \x.

Note: It is an error to call \pset without arguments. In the future this call might show the
current status of all printing options.

\q

 Quit the psql program.

\qecho text [...]

 This command is identical to \echo except that all output will be written to the query output
channel, as set by \o.

\r

 Resets (clears) the query buffer.

\s [filename]

 Print or save the command line history to filename. If filename is omitted, the history is
written to the standard output. This option is only available if psql is configured to use the GNU
history library.

Note: As of psql version 7.0 it is no longer necessary to save the command history, since that
will be done automatically on program termination. The history is also loaded automatically
every time psql starts up.

\set [name [value [...]]]

 Sets the internal variable name to value or, if more than one value is given, to the concatenation
of all of them. If no second argument is given, the variable is just set with no value. To unset a
variable, use the \unset command.

 Valid variable names can contain characters, digits, and underscores. See the section about psql
variables for details.

 Although you are welcome to set any variable to anything you want, psql treats several variables
as special. They are documented in the section about variables.

Note: This command is totally separate from the SQL command SET.

\t

 Toggles the display of output column name headings and row count footer. This command is
equivalent to \pset tuples_only and is provided for convenience.

\T table_options

 Allows you to specify options to be placed within the table tag in HTML tabular output mode. This
command is equivalent to \pset tableattr table_options.

PostgreSQL Client Applications

209

\w {filename | |command}

 Outputs the current query buffer to the file filename or pipes it to the Unix command
command.

\x

 Toggles extended row format mode. As such it is equivalent to \pset expanded.

\z [pattern]

 Produces a list of all tables in the database with their appropriate access permissions listed. If an
argument is given it is taken as a regular expression which limits the listing to those tables which
match it.

test=> \z

Access permissions for database "test"
 Relation | Access permissions
----------+-------------------------------------
 my_table | {"=r","joe=arwR", "group staff=ar"}
(1 row)

 Read this as follows:

 "=r": PUBLIC has read (SELECT) permission on the table.

 "joe=arwR": User joe has read, write (UPDATE, DELETE), �append� (INSERT) permissions,
and permission to create rules on the table.

 "group staff=ar": Group staff has SELECT and INSERT permission.

 The commands GRANT and REVOKE are used to set access permissions.

\! [command]

 Escapes to a separate Unix shell or executes the Unix command command. The arguments are not
further interpreted, the shell will see them as is.

\?

 Get help information about the backslash (�\�) commands.

Command-line Options

 If so configured, psql understands both standard Unix short options, and GNU-style long options. The
latter are not available on all systems.

-a, --echo-all

 Print all the lines to the screen as they are read. This is more useful for script processing rather
than interactive mode. This is equivalent to setting the variable ECHO to all.

PostgreSQL Client Applications

210

-A, --no-align

 Switches to unaligned output mode. (The default output mode is otherwise aligned.)

-c, --command query

 Specifies that psql is to execute one query string, query, and then exit. This is useful in shell
scripts.

 query must be either a query string that is completely parseable by the backend (i.e., it contains
no psql specific features), or it is a single backslash command. Thus you cannot mix SQL and psql
meta-commands. To achieve that, you could pipe the string into psql, like this: echo "\x \\
select * from foo;" | psql.

-d, --dbname dbname

 Specifies the name of the database to connect to. This is equivalent to specifying dbname as the
first non-option argument on the command line.

-e, --echo-queries

 Show all queries that are sent to the backend. This is equivalent to setting the variable ECHO to
queries.

-E, --echo-hidden

 Echoes the actual queries generated by \d and other backslash commands. You can use this if you
wish to include similar functionality into your own programs. This is equivalent to setting the
variable ECHO_HIDDEN from within psql.

-f, --file filename

 Use the file filename as the source of queries instead of reading queries interactively. After the
file is processed, psql terminates. This is in many ways equivalent to the internal command \i.

 Using this option is subtly different from writing psql < filename. In general, both will do
what you expect, but using -f enables some nice features such as error messages with line
numbers. There is also a slight chance that using this option will reduce the start-up overhead. On
the other hand, the variant using the shell’s input redirection is (in theory) guaranteed to yield
exactly the same output that you would have gotten had you entered everything by hand.

-F, --field-separator separator

 Use separator as the field separator. This is equivalent to \pset fieldsep or \f.

-h, --host hostname

 Specifies the host name of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-H, --html

 Turns on HTML tabular output. This is equivalent to \pset format html or the \H command.

PostgreSQL Client Applications

211

-l, --list

 Lists all available databases, then exits. Other non-connection options are ignored. This is similar
to the internal command \list.

-o, --output filename

 Put all query output into file filename. This is equivalent to the command \o.

-p, --port port

 Specifies the TCP/IP port or, by omission, the local Unix domain socket file extension on which
the postmaster is listening for connections. Defaults to the value of the PGPORT environment
variable or, if not set, to the port specified at compile time, usually 5432.

-P, --pset assignment

 Allows you to specify printing options in the style of \pset on the command line. Note that here
you have to separate name and value with an equal sign instead of a space. Thus to set the output
format to LaTeX, you could write -P format=latex.

-q

 Specifies that psql should do its work quietly. By default, it prints welcome messages and various
informational output. If this option is used, none of this happens. This is useful with the -c option.
Within psql you can also set the QUIET variable to achieve the same effect.

-R, --record-separator separator

 Use separator as the record separator. This is equivalent to the \pset recordsep command.

-s, --single-step

 Run in single-step mode. That means the user is prompted before each query is sent to the
backend, with the option to cancel execution as well. Use this to debug scripts.

-S, --single-line

 Runs in single-line mode where a newline terminates a query, as a semicolon does.

Note: This mode is provided for those who insist on it, but you are not necessarily encouraged
to use it. In particular, if you mix SQL and meta-commands on a line the order of execution
might not always be clear to the inexperienced user.

-t, --tuples-only

 Turn off printing of column names and result row count footers, etc. It is completely equivalent to
the \t meta-command.

-T, --table-attr table_options

 Allows you to specify options to be placed within the HTML table tag. See \pset for details.

-u

 Makes psql prompt for the user name and password before connecting to the database.

PostgreSQL Client Applications

212

 This option is deprecated, as it is conceptually flawed. (Prompting for a non-default user name and
prompting for a password because the backend requires it are really two different things.) You are
encouraged to look at the -U and -W options instead.

-U, --username username

 Connects to the database as the user username instead of the default. (You must have permission
to do so, of course.)

-v, --variable, --set assignment

 Performs a variable assignment, like the \set internal command. Note that you must separate name
and value, if any, by an equal sign on the command line. To unset a variable, leave off the equal
sign. To just set a variable without a value, use the equal sign but leave off the value. These
assignments are done during a very early stage of start-up, so variables reserved for internal
purposes might get overwritten later.

-V, --version

 Shows the psql version.

-W, --password

 Requests that psql should prompt for a password before connecting to a database. This will remain
set for the entire session, even if you change the database connection with the meta-command
\connect.

 As of version 7.0, psql automatically issues a password prompt whenever the backend requests
password authentication. Because this is currently based on a hack, the automatic recognition might
mysteriously fail, hence this option to force a prompt. If no password prompt is issued and the
backend requires password authentication the connection attempt will fail.

-x, --expanded

 Turns on extended row format mode. This is equivalent to the command \x.

-X, --no-psqlrc

 Do not read the start-up file ~/.psqlrc.

-?, --help

 Shows help about psql command line arguments.

Advanced features

Variables

 psql provides variable substitution features similar to common Unix command shells. This feature is
new and not very sophisticated, yet, but there are plans to expand it in the future. Variables are simply
name/value pairs, where the value can be any string of any length. To set variables, use the psql

PostgreSQL Client Applications

213

meta-command \set:

testdb=> \set foo bar

 sets the variable �foo� to the value �bar�. To retrieve the content of the variable, precede the name with a
colon and use it as the argument of any slash command:

testdb=> \echo :foo

bar

Note: The arguments of \set are subject to the same substitution rules as with other commands.
Thus you can construct interesting references such as \set :foo ’something’ and get �soft links�
or �variable variables� of Perl or PHP fame, respectively. Unfortunately (or fortunately?), there is no
way to do anything useful with these constructs. On the other hand, \set bar :foo is a perfectly
valid way to copy a variable.

 If you call \set without a second argument, the variable is simply set, but has no value. To unset (or
delete) a variable, use the command \unset.

 psql’s internal variable names can consist of letters, numbers, and underscores in any order and any
number of them. A number of regular variables are treated specially by psql. They indicate certain
option settings that can be changed at runtime by altering the value of the variable or represent some
state of the application. Although you can use these variables for any other purpose, this is not
recommended, as the program behavior might grow really strange really quickly. By convention, all
specially treated variables consist of all upper-case letters (and possibly numbers and underscores). To
ensure maximum compatibility in the future, avoid such variables. A list of all specially treated
variables follows.

DBNAME

 The name of the database you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

ECHO

 If set to all�, all lines entered or from a script are written to the standard output before they are
parsed or executed. To specify this on program start-up, use the switch -a. If set to queries�, psql
merely prints all queries as they are sent to the backend. The option for this is -e.

ECHO_HIDDEN

 When this variable is set and a backslash command queries the database, the query is first shown.
This way you can study the Postgres internals and provide similar functionality in your own
programs. If you set the variable to the value �noexec�, the queries are just shown but are not actually
sent to the backend and executed.

ENCODING

 The current client multibyte encoding. If you are not set up to use multibyte characters, this
variable will always contain �SQL_ASCII�.

PostgreSQL Client Applications

214

HISTCONTROL

 If this variable is set to ignorespace, lines which begin with a space are not entered into the
history list. If set to a value of ignoredups, lines matching the previous history line are not
entered. A value of ignoreboth combines the two options. If unset, or if set to any other value
than those above, all lines read in interactive mode are saved on the history list.

Note: This feature was shamelessly plagiarized from bash.

HISTSIZE

 The number of commands to store in the command history. The default value is 500.

Note: This feature was shamelessly plagiarized from bash.

HOST

 The database server host you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

IGNOREEOF

 If unset, sending an EOF character (usually Control-D) to an interactive session of psql will
terminate the application. If set to a numeric value, that many EOF characters are ignored before
the application terminates. If the variable is set but has no numeric value, the default is 10.

Note: This feature was shamelessly plagiarized from bash.

LASTOID

 The value of the last affected oid, as returned from an INSERT or lo_insert command. This
variable is only guaranteed to be valid until after the result of the next SQL command has been
displayed.

LO_TRANSACTION

 If you use the Postgres large object interface to specially store data that does not fit into one tuple,
all the operations must be contained in a transaction block. (See the documentation of the large
object interface for more information.) Since psql has no way to tell if you already have a
transaction in progress when you call one of its internal commands (\lo_export, \lo_import,
\lo_unlink) it must take some arbitrary action. This action could either be to roll back any
transaction that might already be in progress, or to commit any such transaction, or to do nothing at
all. In the last case you must provide your own BEGIN TRANSACTION/COMMIT block or the
results will be unpredictable (usually resulting in the desired action’s not being performed in any
case).

 To choose what you want to do you set this variable to one of �rollback�, �commit�, or �nothing�. The
default is to roll back the transaction. If you just want to load one or a few objects this is fine.
However, if you intend to transfer many large objects, it might be advisable to provide one explicit
transaction block around all commands.

PostgreSQL Client Applications

215

ON_ERROR_STOP

 By default, if non-interactive scripts encounter an error, such as a malformed SQL query or
internal meta-command, processing continues. This has been the traditional behavior of psql but it
is sometimes not desirable. If this variable is set, script processing will immediately terminate. If
the script was called from another script it will terminate in the same fashion. If the outermost
script was not called from an interactive psql session but rather using the -f option, psql will return
error code 3, to distinguish this case from fatal error conditions (error code 1).

PORT

 The database server port to which you are currently connected. This is set every time you connect
to a database (including program start-up), but can be unset.

PROMPT1, PROMPT2, PROMPT3

 These specify what the prompt psql issues is supposed to look like. See �Prompting� below.

QUIET

 This variable is equivalent to the command line option -q. It is probably not too useful in
interactive mode.

SINGLELINE

 This variable is set by the command line option -S. You can unset or reset it at run time.

SINGLESTEP

 This variable is equivalent to the command line option -s.

USER

 The database user you are currently connected as. This is set every time you connect to a database
(including program start-up), but can be unset.

SQL Interpolation

 An additional useful feature of psql variables is that you can substitute (�interpolate�) them into regular
SQL statements. The syntax for this is again to prepend the variable name with a colon (:).

testdb=> \set foo ’my_table’
testdb=> SELECT * FROM :foo;

 would then query the table my_table. The value of the variable is copied literally, so it can even
contain unbalanced quotes or backslash commands. You must make sure that it makes sense where you
put it. Variable interpolation will not be performed into quoted SQL entities.

 A popular application of this facility is to refer to the last inserted OID in subsequent statements to
build a foreign key scenario. Another possible use of this mechanism is to copy the contents of a file

PostgreSQL Client Applications

216

into a field. First load the file into a variable and then proceed as above.

testdb=> \set content ’\’’ ‘cat my_file.txt‘ ’\’’
testdb=> INSERT INTO my_table VALUES (:content);

 One possible problem with this approach is that my_file.txt might contain single quotes. These need
to be escaped so that they don’t cause a syntax error when the third line is processed. This could be done
with the program sed:

testdb=> \set content ‘sed -e "s/’/\\\\\\’/g" < my_file.txt‘

 Observe the correct number of backslashes (6)! You can resolve it this way: After psql has parsed this
line, it passes sed -e "s/’/\\\’/g" < my_file.txt to the shell. The shell will do its own thing
inside the double quotes and execute sed with the arguments -e and s/’/\\’/g. When sed parses this
it will replace the two backslashes with a single one and then do the substitution. Perhaps at one point
you thought it was great that all Unix commands use the same escape character. And this is ignoring the
fact that you might have to escape all backslashes as well because SQL text constants are also subject to
certain interpretations. In that case you might be better off preparing the file externally.

 Since colons may legally appear in queries, the following rule applies: If the variable is not set, the
character sequence �colon+name� is not changed. In any case you can escape a colon with a backslash to
protect it from interpretation. (The colon syntax for variables is standard SQL for embedded query
languages, such as ecpg. The colon syntax for array slices and type casts are Postgres extensions, hence
the conflict.)

Prompting

 The prompts psql issues can be customized to your preference. The three variables PROMPT1,
PROMPT2, and PROMPT3 contain strings and special escape sequences that describe the appearance of
the prompt. Prompt 1 is the normal prompt that is issued when psql requests a new query. Prompt 2 is
issued when more input is expected during query input because the query was not terminated with a
semicolon or a quote was not closed. Prompt 3 is issued when you run an SQL COPY command and
you are expected to type in the tuples on the terminal.

 The value of the respective prompt variable is printed literally, except where a percent sign (�%�) is
encountered. Depending on the next character, certain other text is substituted instead. Defined
substitutions are:

%M

 The full hostname (with domain name) of the database server (or �localhost� if hostname information
is not available).

%m

 The hostname of the database server, truncated after the first dot.

%>

 The port number at which the database server is listening.

%n

 The username you are connected as (not your local system user name).

PostgreSQL Client Applications

217

%/

 The name of the current database.

%~

 Like %/, but the output is �~� (tilde) if the database is your default database.

%#

 If the current user is a database superuser, then a �#�, otherwise a �>�.

%R

 In prompt 1 normally �=�, but �̂ � if in single-line mode, and �!� if the session is disconnected from the
database (which can happen if \connect fails). In prompt 2 the sequence is replaced by �-�, �*�, a single
quote, or a double quote, depending on whether psql expects more input because the query wasn’t
terminated yet, because you are inside a /* ... */ comment, or because you are inside a quote.
In prompt 3 the sequence doesn’t resolve to anything.

%digits

 If digits starts with 0x the rest of the characters are interpreted as a hexadecimal digit and the
character with the corresponding code is substituted. If the first digit is 0 the characters are
interpreted as on octal number and the corresponding character is substituted. Otherwise a decimal
number is assumed.

%:name:

 The value of the psql, variable name. See the section �Variables� for details.

%‘command‘

 The output of command, similar to ordinary �back-tick� substitution.

 To insert a percent sign into your prompt, write %%. The default prompts are equivalent to ’%/%R%# ’
for prompts 1 and 2, and ’>> ’ for prompt 3.

Note: This feature was shamelessly plagiarized from tcsh.

Miscellaneous

 psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own (out of memory, file not
found) occurs, 2 if the connection to the backend went bad and the session is not interactive, and 3 if an
error occurred in a script and the variable ON_ERROR_STOP was set.

 Before starting up, psql attempts to read and execute commands from the file $HOME/.psqlrc. It could
be used to set up the client or the server to taste (using the \set and SET commands).

GNU readline

 psql supports the readline and history libraries for convenient line editing and retrieval. The command
history is stored in a file named .psql_history in your home directory and is reloaded when psql
starts up. Tab-completion is also supported, although the completion logic makes no claim to be an SQL
parser. When available, psql is automatically built to use these features. If for some reason you do not

PostgreSQL Client Applications

218

like the tab completion, you can turn if off by putting this in a file named .inputrc in your home
directory:

$if psql
set disable-completion on
$endif

 (This is not a psql but a readline feature. Read its documentation for further details.)

 If you have the readline library installed but psql does not seem to use it, you must make sure that
Postgres’s top-level configure script finds it. configure needs to find both the library
libreadline.a (or a shared library equivalent) and the header files readline.h and history.h (or
readline/readline.h and readline/history.h) in appropriate directories. If you have the
library and header files installed in an obscure place you must tell configure about them, for example:

$./configure --with-includes=/opt/gnu/include --with-libs=/opt/gnu/lib ...

 Then you have to recompile psql (not necessarily the entire code tree).

 The GNU readline library can be obtained from the GNU project’s FTP server at ftp://ftp.gnu.org.

Examples

Note: This section only shows a few examples specific to psql. If you want to learn SQL or get
familiar with Postgres, you might wish to read the Tutorial that is included in the distribution.

 The first example shows how to spread a query over several lines of input. Notice the changing prompt:

testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text
testdb->);

CREATE

 Now look at the table definition again:

testdb=> \d my_table

 Table "my_table"
 Attribute | Type | Modifier
-----------+---------+--------------------
 first | integer | not null default 0
 second | text |

 At this point you decide to change the prompt to something more interesting:

testdb=> \set PROMPT1 ’%n@%m %~%R%# ’

peter@localhost testdb=>

PostgreSQL Client Applications

219

 Let’s assume you have filled the table with data and want to take a look at it:

peter@localhost testdb=> SELECT * FROM my_table;
 first | second
-------+--------
 1 | one
 2 | two
 3 | three
 4 | four
(4 rows)

 You can make this table look differently by using the \pset command:

peter@localhost testdb=> \pset border 2

Border style is 2.
peter@localhost testdb=> SELECT * FROM my_table;

+-------+--------+
| first | second |
+-------+--------+
1	one
2	two
3	three
4	four
+-------+--------+
(4 rows)

peter@localhost testdb=> \pset border 0

Border style is 0.
peter@localhost testdb=> SELECT * FROM my_table;

first second
----- ------
 1 one
 2 two
 3 three
 4 four
(4 rows)

peter@localhost testdb=> \pset border 1

Border style is 1.
peter@localhost testdb=> \pset format unaligned

Output format is unaligned.
peter@localhost testdb=> \pset fieldsep ","

Field separator is ",".
peter@localhost testdb=> \pset tuples_only

Showing only tuples.
peter@localhost testdb=> SELECT second, first FROM my_table;

one,1
two,2
three,3
four,4

PostgreSQL Client Applications

220

 Alternatively, use the short commands:

peter@localhost testdb=> \a \t \x

Output format is aligned.
Tuples only is off.
Expanded display is on.
peter@localhost testdb=> SELECT * FROM my_table;

-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3]-
first | 3
second | three
-[RECORD 4]-
first | 4
second | four

Appendix

Bugs and Issues

 In some earlier life psql allowed the first argument to start directly after the (single-letter) command.
For compatibility this is still supported to some extent but I am not going to explain the details here as
this use is discouraged. But if you get strange messages, keep this in mind. For example

testdb=> \foo

Field separator is "oo",

 which is perhaps not what one would expect.

 psql only works smoothly with servers of the same version. That does not mean other combinations
will fail outright, but subtle and not-so-subtle problems might come up.

 Pressing Control-C during a �copy in� (data sent to the server) doesn’t show the most ideal of
behaviors. If you get a message such as �PQexec: you gotta get out of a COPY state yourself�, simply
reset the connection by entering \c - -.

PostgreSQL Client Applications

221

 pgtclsh

Name

pgtclsh � PostgreSQL Tcl shell client

Synopsis

pgtclsh [filename [arguments...]]

Description

 pgtclsh is a Tcl shell interface extended with Postgres database access functions. (Essentially, it is tclsh
with libpgtcl loaded.) Like with the regular Tcl shell, the first command line argument is a script file,
any remaining arguments are passed to the script. If no script file is named, the shell is interactive.

 A Tcl shell with Tk and Postgres functions is available as pgtksh .

See Also
 pgtksh , PostgreSQL Programmer’s Guide (description of libpgtcl) , tclsh

 pgtksh

Name

pgtksh � PostgreSQL Tcl/Tk shell client

Synopsis

pgtksh [filename [arguments...]]

Description

 pgtksh is a Tcl/Tk shell interface extended with Postgres database access functions. (Essentially, it is
wish with libpgtcl loaded.) Like with wish, the regular Tcl/Tk shell, the first command line argument
is a script file, any remaining arguments are passed to the script. Special options may be processed by
the X Window System libraries instead. If no script file is named, the shell is interactive.

 A plain Tcl shell with Postgres functions is available as pgtclsh .

See Also
 pgtclsh , PostgreSQL Programmer’s Guide (description of libpgtcl) , tclsh , wish

PostgreSQL Client Applications

222

vacuumdb

Name

vacuumdb � Clean and analyze a Postgres database

Synopsis

vacuumdb [connection-options...] [[-d] dbname] [--analyze | -z] [--verbose | -v] [--table
’table [(column [,...])]’]
vacuumdb [connection-options...] [--all | -a] [--analyze | -z] [--verbose | -v]

Inputs

 vacuumdb accepts the following command line arguments:

-d dbname
--dbname dbname

 Specifies the name of the database to be cleaned or analyzed.

-z
--analyze

 Calculate statistics on the database for use by the optimizer.

-a
--alldb

 Vacuum all databases.

-v
--verbose

 Print detailed information during processing.

-t table [(column [,...])]
--table table [(column [,...])]

 Clean or analyze table only. Column names may be specified only in conjunction with the
--analyze option.

Tip: If you specify columns to vacuum, you probably have to escape the parentheses from the
shell.

PostgreSQL Client Applications

223

 vacuumdb also accepts the following command line arguments for connection parameters:

-h host
--host host

 Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-p port
--port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.

-U username
--username username

 Username to connect as.

-W
--password

 Force password prompt.

-e
--echo

 Echo the commands that vacuumdb generates and sends to the backend.

-q
--quiet

 Do not display a response.

Outputs

VACUUM

 Everything went well.

vacuumdb: Vacuum failed.

 Something went wrong. vacuumdb is only a wrapper script. See VACUUM and psql for a detailed
discussion of error messages and potential problems.

PostgreSQL Client Applications

224

Description

 vacuumdb is a utility for cleaning a Postgres database. vacuumdb will also generate internal statistics
used by the Postgres query optimizer.

 vacuumdb is a shell script wrapper around the backend command VACUUM via the Postgres interactive
terminal psql. There is no effective difference between vacuuming databases via this or other methods.
psql must be found by the script and a database server must be running at the targeted host. Also, any
default settings and environment variables available to psql and the libpq front-end library do apply.

Usage

 To clean the database test:
$ vacuumdb test

 To analyze for the optimzer a database named bigdb:
$ vacuumdb --analyze bigdb

 To analyze a single column bar in table foo in a database named xyzzy for the optimizer:
$ vacuumdb --analyze --verbose --table ’foo(bar)’ xyzzy

III. PostgreSQL Server Applications
 This is reference information for Postgres server applications and support utilities.

226

createlang

Name

createlang � Add a new programming language to a Postgres database

Synopsis

createlang [connection-options...] [langname] dbname
createlang [connection-options...] --list | -l dbname

Inputs

 createlang accepts the following command line arguments:

langname

 Specifies the name of the backend programming language to be defined. createlang will prompt for
langname if it is not specified on the command line.

-d, --dbname dbname

 Specifies which database the language should be added.

-l, --list

 Shows a list of already installed languages in the target database (which must be specified).

 createlang also accepts the following command line arguments for connection parameters:

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.

-U, --username username

 Username to connect as.

-W, --password

 Force password prompt.

PostgreSQL Server Applications

227

Outputs

 Most error messages are self-explanatory. If not, run createlang with the --echo option and see under
the respective SQL command for details. Check also under psql for more possibilities.

Description

 createlang is a utility for adding a new programming language to a Postgres database. createlang
currently accepts several languages, plpgsql, pltcl, pltclu, and plperl.

 Although backend programming languages can be added directly using several SQL commands, it is
recommended to use createlang because it performs a number of checks and is much easier to use. See
CREATE LANGUAGE for more.

Notes

 Use droplang to remove a language.

Usage

 To install pltcl into the database template1:
$ createlang pltcl template1

droplang

Name

droplang � Remove a programming language from a Postgres database

Synopsis

droplang [connection-options...] [langname] dbname
droplang [connection-options...] --list | -l dbname

Inputs

 droplang accepts the following command line arguments:

langname

 Specifies the name of the backend programming language to be removed. droplang will prompt for
langname if it is not specified on the command line.

[-d, --dbname] dbname

 Specifies from which database the language should be removed.

-l, --list

 Shows a list of already installed languages in the target database (which must be specified).

PostgreSQL Server Applications

228

 droplang also accepts the following command line arguments for connection parameters:

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the
postmaster is listening for connections.

-U, --username username

 Username to connect as.

-W, --password

 Force password prompt.

Outputs

 Most error messages are self-explanatory. If not, run droplang with the --echo option and see under
the respective SQL command for details. Check also under psql for more possibilities.

Description

 droplang is a utility for removing an existing programming language from a Postgres database. droplang
currently accepts two languages, plsql and pltcl.

 Although backend programming languages can be removed directly using several SQL commands, it is
recommended to use droplang because it performs a number of checks and is much easier to use. See
DROP LANGUAGE for more.

Notes

 Use createlang to add a language.

Usage

 To remove pltcl:
$ droplang pltcl

PostgreSQL Server Applications

229

initdb

Name

initdb � Create a new Postgres database cluster

Synopsis

initdb --pgdata | -D dbdir [--sysid | -i sysid] [--pwprompt | -W] [--encoding | -E encoding] [-L
directory] [--noclean | -n] [--debug | -d]

Description

 initdb creates a new Postgres database cluster or system. A database cluster is a collection of databases
that are managed by a single postmaster.

 Creating a database system consists of creating the directories in which the database data will live,
generating the shared catalog tables (tables that belong to the whole cluster rather than to any particular
database), and creating the template1 database. When you create a new database, everything in the
template1 database is copied. It contains catalog tables filled in for things like the built-in types.

 You must not execute initdb as root; it must be run by the Unix user account that will run the database
server. This is because you cannot run the database server as root either, but the server needs to have
access to the files initdb creates. Furthermore, during the initialization phase, when there are no users
and no access controls installed, Postgres will only connect with the name of the current Unix user, so
you must log in under the account that will own the server process.

 Although initdb will attempt to create the specified data directory, often it won’t have permission to do
so, since the parent of the desired data directory is often a root-owned directory. To set up an
arrangement like this, create an empty data directory as root, then use chown to hand over ownership of
that directory to the database user account, then su to become the database user, and finally run initdb as
the database user.

Options

--pgdata=dbdir
-D dbdir

 This option specifies where in the file system the database should be stored. This is the only
information required by initdb, but you can avoid writing it by setting the PGDATA environment
variable, which can be convenient since the database server (postmaster) can find the database
directory later by the same variable.

PostgreSQL Server Applications

230

--sysid=sysid
-i sysid

 Selects the system id of the database superuser. This defaults to the effective user id of the user
running initdb. It is really not important what the superuser’s sysid is, but one might choose to start
the numbering at some number like 1.

--pwprompt
-W

 Makes initdb prompt for a password to give the database superuser. If you don’t plan on using
password authentication, this is not important. Otherwise you won’t be able to use password
authentication until you have a password set up.

--encoding=encoding
-E encoding

 Selects the multibyte encoding of the template database. This will also be the default encoding of
any database you create later, unless you override it there. To use the multibyte encoding feature,
you must specify so at build time, at which time you also select the default for this option.

 Other, less commonly used, parameters are also available:

-L directory

 Specifies where initdb should find its input files to initialize the database system. This is normally
not necessary. You will be told if you need to specify their location explicitly.

--noclean
-n

 By default, when initdb determines that an error prevented it from completely creating the
database system, it removes any files it may have created before discovering that it can’t finish the
job. This option inhibits tidying-up and is thus useful for debugging.

--debug
-d

 Print debugging output from the bootstrap backend and a few other messages of lesser interest for
the general public. The bootstrap backend is the program initdb uses to create the catalog tables.
This option generates a tremendous amount of extremely boring output.

See also

 PostgreSQL Administrator’s Guide

PostgreSQL Server Applications

231

initlocation

Name

initlocation � Create a secondary Postgres database storage area

Synopsis

initlocation directory

Description

 initlocation creates a new Postgres secondary database storage area. See the discussion under CREATE
DATABASE about how to manage and use secondary storage areas. If the argument does not contain a
slash and is not valid as a path, it is assumed to be an environment variable, which is referenced. See the
examples at the end.

 In order to use this command you must be logged in (using ’su’, for example) as the database superuser.

Usage

 To create a database in an alternate location, using an environment variable:
$ export PGDATA2=/opt/postgres/data

 Stop and start postmaster so it sees the PGDATA2 environment variable. The system must be
configured so the postmaster sees PGDATA2 every time it starts. Finally:
$ initlocation PGDATA2
$ createdb -D PGDATA2 testdb

 Alternatively, if you allow absolute paths you could write:
$ initlocation /opt/postgres/data
$ createdb -D /opt/postgres/data/testdb testdb

PostgreSQL Server Applications

232

ipcclean

Name

ipcclean � Clean up shared memory and semaphores from aborted backends

Synopsis

ipcclean

Description

 ipcclean cleans up shared memory and semaphore space from aborted backends by deleting all
instances owned by user postgres. Only the DBA should execute this program as it can cause bizarre
behavior (i.e., crashes) if run during multi-user execution. This program should be executed if messages
such as semget: No space left on device are encountered when starting up the postmaster or
the backend server.

 If this command is executed while postmaster is running, the shared memory and semaphores allocated
by the postmaster will be deleted. This will result in a general failure of the backend servers started by
that postmaster.

 This script is a hack, but in the many years since it was written, no one has come up with an equally
effective and portable solution. Suggestions are welcome.

 The script makes assumption about the format of output of the ipcs utility which may not be true across
different operating systems. Therefore, it may not work on your particular OS.

pg_ctl

Name

pg_ctl � Starts, stops, or restarts postmaster

Synopsis

pg_ctl start [-w] [-D datadir] [-l filename] [-o options] [-p path]
pg_ctl stop [-W] [-D datadir] [-m s[mart] | f[ast] | i[mmediate]]
pg_ctl restart [-w] [-D datadir] [-m s[mart] | f[ast] | i[mmediate]] [-o options]
pg_ctl status [-D datadir]

Description

 pg_ctl is a utility for starting, stopping, or restarting postmaster, the PostgreSQL backend server, or
displaying the status of a running postmaster. Although the postmaster can be started manually, pg_ctl
encapulates tasks such as redirecting log output, properly detaching from the terminal and process
group, and additionally provides an option for controlled shut down.

PostgreSQL Server Applications

233

 In start mode, a new postmaster is launched. The server is started in the background, the standard
input attached to /dev/null. The standard output and standard error are either appended to a log file, if
the -l option is used, or are redirected to pg_ctl’s standard output (not standard error). If no log file is
chosen, the standard output of pg_ctl should be redirected to a file or piped to another process, for
example a log rotating program, otherwise the postmaster will write its output the the controlling
terminal (from the background) and will not leave the shell’s process group.

 In stop mode, the postmaster that is running on the specified data directory is shut down. Three
different shutdown methods can be selected with the -m option: �Smart� mode waits for all the clients to
disconnect. This is the default. �Fast� mode does not wait for clients to disconnect. All active transactions
will be rolled back. �Immediate� mode will abort without complete shutdown. This will lead to a recovery
run on restart. By the default, stop mode waits for the shutdown to complete.

 restart mode effectively executes a stop followed by a start. This allows the changing of postmaster
command line options.

 status mode checks whether a postmaster is running and if so displays the PID and the command line
options that were used to invoke it.

Options

-D datadir

 Specifies the file system location of the database files. If this is omitted, the environment variable
PGDATA is used.

-l filename

 Append the server log output to filename. If the file does not exist, it is created. The umask is
set to 077, so access to the log file from other users is disallowed by default.

-m mode

 Specifies the shutdown mode. mode may be smart, fast, or immediate, or the first letter of one
of these three.

-o options

 Specifies options to be passed directly to postmaster.

 The parameters are usually surrounded by single or double quotes to ensure that they are passed
through as a group.

-p path

 Specifies the location of the postmaster executable. By default the postmaster is taken from the
same directory as pg_ctl, or failing that, the hard-wired installation directory. It is not necessary to
use this option unless you are doing something unusual and get errors that the postmaster was not
found.

-w

PostgreSQL Server Applications

234

 Wait for the start or stutdown to complete. Times out after 60 seconds. This is the default for
shutdowns.

-W

 Do not wait for start or shutdown to complete. This is the default for starts and restarts.

Files

 If the file postmaster.opts.default exists in the data directory, the contents of the file will be
passed as options to the postmaster, unless overridden by the -o option.

Examples

Starting the postmaster

 To start up postmaster:

$ pg_ctl start

 An example of starting the postmaster, blocking until postmaster comes up is:

$ pg_ctl -w start

 For a postmaster using port 5433, and running without fsync, use:

$ pg_ctl -o "-F -p 5433" start

Stopping the postmaster

$ pg_ctl stop

 stops postmaster. Using the -m switch allows one to control how the backend shuts down.

Restarting the postmaster

 This is almost equivalent to stopping the postmaster then starting it again except that pg_ctl saves and
reuses the command line options that were passed to the previously running instance. To restart
postmaster in the simplest form:

$ pg_ctl restart

 To restart postmaster, waiting for it to shut down and to come up:

$ pg_ctl -w restart

PostgreSQL Server Applications

235

 To restart using port 5433 and disabling fsync after restarting:

$ pg_ctl -o "-F -p 5433" restart

Showing postmaster status

 Here is a sample status output from pg_ctl:

$ pg_ctl status

pg_ctl: postmaster is running (pid: 13718)

Command line was:

/usr/local/pgsql/bin/postmaster ’-D’ ’/usr/local/pgsql/data’ ’-p’ ’5433’ ’-B’ ’128’

 This is the command line that would be invoked in restart mode.

Bugs

 Waiting for complete start is not a well-defined operation and may fail if access control is set up in way
that a local client cannot connect without manual interaction. It should be avoided.

See Also

 postmaster, PostgreSQL Administrator’s Guide

pg_passwd

Name

pg_passwd � Manipulate a text password file

Synopsis

pg_passwd filename

Description

 pg_passwd is a tool to manipulate a flat text password file for the purpose of using that file to control
client authentication of the PostgreSQL server. More information about setting up this authentication
mechanism can be found in the Administrator’s Guide.

 The form of a text password file is one entry per line; the fields of each entry are separated by colons.
The first field is the user name, the second field is the encrypted password. Other fields are ignored (to
allow password files to be shared between applications that use similar formats). The functionality of the
pg_passwd utility is to enable a user to interactively add entries to such a file, to alter passwords of
existing entries, and to take care of encrypting the passwords.

PostgreSQL Server Applications

236

 Supply the name of the password file as argument to the pg_passwd command. To be of use for client
authentication the file needs to be located in the server’s data directory, and the base name of the file
needs to be specified in the pg_hba.conf access control file.

$ pg_passwd /usr/local/pgsql/data/passwords
File "/usr/local/pgsql/data/passwords" does not exist. Create? (y/n): y
Username: guest

Password:

Re-enter password:

 where the Password: and Re-enter password: prompts require the same password input which is
not displayed on the terminal. Note that the password is limited to eight useful characters by restrictions
of the standard crypt(3) library routine.

 The original password file is renamed to passwords.bk.

 To make use of this password file, put a line like the following in pg_hba.conf:

host mydb 133.65.96.250 255.255.255.255 password passwords

 which would allow access to database mydb from host 133.65.96.250 using the passwords listed in the
passwords file (and only to the users listed in that file).

Note: It is also useful to have entries in a password file with an empty password field. (This is
different from an empty password.) These entries cannot be managed by pg_passwd, but it is
always possible to edit password files manually.

See also

 PostgreSQL Administrator’s Guide

postgres

Name

postgres � Run a PostgreSQL single-user backend

Synopsis

postgres [-A 0 | 1] [-B nbuffers] [-c name=value] [-d debug-level] [-D datadir] [-e] [-E]
[-f s | i | t | n | m | h] [-F] [-i] [-L] [-N] [-o file-name] [-O] [-P] [-s | -t pa | pl | ex] [-S sort-mem]
[-W seconds] database
postgres [-A 0 | 1] [-B nbuffers] [-c name=value] [-d debug-level] [-D datadir] [-e] [-f s |
i | t | n | m | h] [-F] [-i] [-L] [-o file-name] [-O] [-p database] [-P] [-s | -t pa | pl | ex] [-S
sort-mem] [-v protocol-version] [-W seconds]

Description

 The postgres executable is the actual PostgreSQL server process that processes queries. It is normally
not called directly; instead a postmaster multi-user server is started.

PostgreSQL Server Applications

237

 The second form above is how postgres is invoked by the postmaster (only conceptually, since both
postmaster and postgres are in fact the same program); it should not be invoked directly this way.
The first form invokes the server directly in interactive mode. The primary use for this mode is for
bootstrapping by initdb.

 When invoked in interactive mode from the shell, the user can enter queries and the results will be
printed to the screen, but in a form that is more useful for developers than end users. But note that
running a single-user backend is not truly suitable for debugging the server since no realistic
inter-process communication and locking will happen.

 When running a stand-alone backend the session user name will automatically be set to the current
effective Unix user name. If that user does not exist the server will not start.

Options

 When postgres is started by a postmaster then it inherits all options set by the latter. Additionally,
postgres-specific options can be passed from the postmaster with the -o switch.

 You can avoid having to type these options by setting up a configuration file. See the Administrator’s
Guide for details. Some (safe) options can also be set from the connecting client in an
application-dependent way. For example, if the environment variable PGOPTIONS is set, then
libpq-based clients will pass that string to the server, which will interpret it as postgres command-line
options.

General Purpose

 The options -A, -B, -c, -d, -D, and -F have the same meaning as with the postmaster.

-e

 Sets the default date style to �European�, which means that the �day before month� (rather than month
before day) rule is used to interpret ambiguous date input, and that the day is printed before the
month in certain date output formats. See the PostgreSQL User’s Guide for more information.

-o file-name

 Sends all debugging and error output to OutputFile. If the backend is running under the
postmaster, error messages are still sent to the frontend process as well as to OutputFile, but
debugging output is sent to the controlling tty of the postmaster (since only one file descriptor can
be sent to an actual file).

-P

 Ignore system indexes to scan/update system tuples. The REINDEX command for system
tables/indexes requires this option to be used.

-s

 Print time information and other statistics at the end of each query. This is useful for
benchmarking or for use in tuning the number of buffers.

-S sort-mem

 Specifies the amount of memory to be used by internal sorts and hashes before resorting to
temporary disk files. The value is specified in kilobytes, and defaults to 512 kilobytes. Note that for

PostgreSQL Server Applications

238

a complex query, several sorts and/or hashes might be running in parallel, and each one will be
allowed to use as much as sort-mem kilobytes before it starts to put data into temporary files.

Options for stand-alone mode

database

 Specifies the name of the database to be accessed. If it is omitted it defaults to the user name.

-E

 Echo all queries.

-N

 Disables use of newline as a query delimiter.

Semi-internal Options

 There are several other options that may be specified, used mainly for debugging purposes. These are
listed here only for the use by PostgreSQL system developers. Use of any of these options is highly
discouraged. Furthermore, any of these options may disappear or change in a future release without
notice.

-f { s | i | m | n | h }

 Forbids the use of particular scan and join methods: s and i disable sequential and index scans
respectively, while n, m, and h disable nested-loop, merge and hash joins respectively.

Note: Neither sequential scans nor nested-loop joins can be disabled completely; the -fs and -fn
options simply discourage the optimizer from using those plan types if it has any other
alternative.

-i

 Prevents query execution, but shows the plan tree.

-L

 Turns off the locking system.

-O

 Allows the structure of system tables to be modified. This is used by initdb.

-p database

 Indicates that this server has been started by a postmaster and makes different assumptions about
buffer pool management, file descriptors, etc.

-t pa[rser] | pl[anner] | e[xecutor]

 Print timing statistics for each query relating to each of the major system modules. This option
cannot be used together with the -s option.

PostgreSQL Server Applications

239

-v protocol

 Specifies the version number of the frontend/backend protocol to be used for this particular
session.

-W seconds

 As soon as this option is encountered, the process sleeps for the specified amount of seconds. This
gives developers time to attach a debugger to the backend process.

See also

 initdb, ipcclean, postmaster

postmaster

Name

postmaster � PostgreSQL multi-user database server

Synopsis

postmaster [-A 0 | 1] [-B nbuffers] [-c name=value] [-d debug-level] [-D datadir] [-F] [-h
hostname] [-i] [-k directory] [-l] [-N max-connections] [-o extra-options] [-p port]
[-S] [-n | -s]

Description

 postmaster is the PostgreSQL multi-user database server. In order for a client application to access a
database it connects (over a network or locally) to a running postmaster. The postmaster then starts a
separate server process (�postgres�) to handle the connection. The postmaster also manages the
communication among server processes.

 By default the postmaster starts in the foreground and prints log messages to the standard output. In
practical applications the postmaster should be started as a background process, perhaps at boot time.

 One postmaster always manages the data from exactly one database cluster. A database cluster is a
collection of databases that is stored at a common file system location. When the postmaster starts it
needs to know the location of the database cluster files (�data area�). This is done with the -D invocation
option or the PGDATA environment variable; there is no default. More than one postmaster process can
run on a system at one time, as long as they use different data areas and different communication ports
(see below). A data area is created with initdb.

Options

 postmaster accepts the following command line arguments. For a detailed discussion of the options
consult the Administrator’s Guide. You can also save typing most of these options by setting up a

PostgreSQL Server Applications

240

configuration file.

-A 0|1

 Enables run-time assert checks, which is a debugging aid to detect programming mistakes. This is
only available if it was enabled during compilation. If so, the default is on.

-B nbuffers

 Sets the number of shared buffers for use by the server processes. This value defaults to 64 buffers,
where each buffer is 8 kB.

-c name=value

 Sets a named run-time parameter. Consult the Administrator’s Guide for a list and descriptions.
Most of the other command line options are in fact short forms of such a parameter assignment.

 On some systems it is also possible to equivalently use GNU-style long options in the form -
-name=value.

-d debug-level

 Sets the debug level. The higher this value is set, the more debugging output is written to the
server log. The default is 0, which means no debugging. Values up to 4 make sense.

-D datadir

 Specifies the file system location of the data directory. See discussion above.

-F

 Disables fsync calls for performance improvement at the risk of data corruption. Read the
detailed documentation before using this!

-h hostname

 Specifies the TCP/IP hostname or address on which the postmaster is to listen for connections
from client applications. Defaults to listening on all configured addresses (including localhost).

-i

 Allows clients to connect via TCP/IP (Internet domain) connections. Without this option, only
local Unix domain socket connections are accepted.

-k directory

 Specifies the directory of the Unix-domain socket on which the postmaster is to listen for
connections from client applications. The default is normally /tmp, but can be changed at build
time.

-l

 Enables secure connections using SSL. The -i option is also required. You must have compiled
with SSL enabled to use this option.

-N max-connections

PostgreSQL Server Applications

241

 Sets the maximum number of client connections that this postmaster will accept. By default, this
value is 32, but it can be set as high as 1024 if your system will support that many processes. (Note
that -B is required to be at least twice -N.)

-o extra-options

 The command line-style options specified in extra-options are passed to all backend server
processes started by this postmaster. See postgres for possibilities. If the option string contains any
spaces, the entire string must be quoted.

-p port

 Specifies the TCP/IP port or local Unix domain socket file extension on which the postmaster is to
listen for connections from client applications. Defaults to the value of the PGPORT environment
variable, or if PGPORT is not set, then defaults to the value established during compilation
(normally 5432). If you specify a port other than the default port, then all client applications must
specify the same port using either command-line options or PGPORT.

-S

 Specifies that the postmaster process should start up in silent mode. That is, it will disassociate
from the user’s (controlling) terminal, start its own process group, and redirect its standard output
and standard error to /dev/null.

 Using this switch discards all logging output, which is probably not what you want, since it makes
it very difficult to troubleshoot problems. See below for a better way to start the postmaster in the
background.

 Two additional command line options are available for debugging problems that cause a backend to die
abnormally. These options control the behavior of the postmaster in this situation, and neither option is
intended for use in ordinary operation.

 The ordinary strategy for this situation is to notify all other backends that they must terminate and then
reinitialize the shared memory and semaphores. This is because an errant backend could have corrupted
some shared state before terminating.

 These special-case options are:

-n

 postmaster will not reinitialize shared data structures. A knowledgeable system programmer can
then use a debugger to examine shared memory and semaphore state.

-s

 postmaster will stop all other backend processes by sending the signal SIGSTOP, but will not cause
them to terminate. This permits system programmers to collect core dumps from all backend
processes by hand.

PostgreSQL Server Applications

242

Outputs

semget: No space left on device

 If you see this message, you should run the ipcclean command. After doing so, try starting
postmaster again. If this still doesn’t work, you probably need to configure your kernel for shared
memory and semaphores as described in the installation notes. If you run multiple instances of
postmaster on a single host, or have a kernel with particularly small shared memory and/or
semaphore limits, you may have to reconfigure your kernel to increase its shared memory or
semaphore parameters.

Tip: You may be able to postpone reconfiguring your kernel by decreasing -B to reduce Postgres’
shared memory consumption, and/or by reducing -N to reduce Postgres’ semaphore
consumption.

StreamServerPort: cannot bind to port

 If you see this message, you should make certain that there is no other postmaster process already
running on the same port number. The easiest way to determine this is by using the command

$ ps ax | grep postmaster

 or

$ ps -e | grep postmaster

 depending on your system.

 If you are sure that no other postmaster processes are running and you still get this error, try
specifying a different port using the -p option. You may also get this error if you terminate the
postmaster and immediately restart it using the same port; in this case, you must simply wait a few
seconds until the operating system closes the port before trying again. Finally, you may get this
error if you specify a port number that your operating system considers to be reserved. For
example, many versions of Unix consider port numbers under 1024 to be trusted and only permit
the Unix superuser to access them.

Notes

 If at all possible, do not use SIGKILL to kill the postmaster. This will prevent postmaster from freeing
the system resources (e.g., shared memory and semaphores) that it holds before terminating.

 To terminate the postmaster normally, the signals SIGTERM, SIGINT, or SIGQUIT can be used. The
first will wait for all clients to terminate before quitting, the second will forcefully disconnect all clients,
and the third will quit immediately without lengthy shutdown, resulting in a recovery run during restart.

 The utility command pg_ctl can be used to start and shut down the postmaster safely and comfortably.

PostgreSQL Server Applications

243

Usage

 To start postmaster in the background using default values, type:

$ nohup postmaster >logfile 2>&1 </dev/null &

 To start postmaster with a specific port:

$ postmaster -p 1234

 This command will start up postmaster communicating through the port 1234. In order to connect to
this postmaster using psql, you would need to run it as

$ psql -p 1234

 or set the environment variable PGPORT:

$ export PGPORT=1234
$ psql

