Species	Current name in GenBank	GenBank id
A. nidulans	Aspergillus nidulans FGSC A4	CH236920
A. niger	Aspergillus niger CBS 513.88	AM270980
A. terreus	Aspergillus terreus NIH2624	CH981535
B. cinerea	Botryotinia fuckeliana B05.10	BS264920
C. immitis	Coccidioides immitis RS	CH671914
C. cinereus	Coprinopsis cinerea okayama7#130	AACS00000000
C. neoformans	Cryptococcus neoformans R265	AAFP00000000
F. graminearum	Gibberella zeae PH-1	AACM00000000
F. oxysporum	Fusarium oxysporum f. sp. lycopersici FGSC 4286	AAXH00000000
F. verticillioides	Gibberella moniliformis 7600	AAIM00000000
M. grisea	Magnaporthe grisea 70-15	AACU00000000
N. crassa	Neurospora crassa OR74A	AABX00000000
R. oryzae	Rhizopus oryzae RA 99-880	AACW00000000
S. pombe	Schizosaccharomyces pombe 972h-	CU329670
S. sclerotiorum	Sclerotinia sclerotiorum 1980	AAGT00000000
S. nodorum	Phaeosphaeria nodorum SN15	AAGI0000000

 Table S1. Nomenclature of the 16 fungal genomes.

Species	number of ESTs	Kb
A. nidulans	16,848	10,480
A. niger	15,473	10,443
A. terreus	61,051	48,256
B. cinerea	11,076	11,107
C. immitis	65,754	55,777
C. cinereus	15,715	14,020
C. neoformans	14,211	11,060
F. graminearum	21,325	14,829
F. oxysporum	9,248	5,454
F. verticillioides	87,086	75,347
M. grisea	53,102	30,299
N. crassa	28,089	14,658
S. pombe	8,131	4,720
S. sclerotiorum	1,494	1,260
S. nodorum	16,014	10,784

Table S2. Volumes of the EST sequence data used to generate the test sets for assessment of the algorithms performance (Table S5). The test set generation was done by EST to genomic DNA mapping (A. Kislyuk, A. Lomsadze, M. Boroodvsky, unpublished)

		Iteration 6			Iteration 7						
	Instances of upper path transition	Instances of lower path transition	% of upper path transition	Instances of upper path transition	Instances of lower path transition	% of upper path transition					
A. nidulans	17,336	699	96.1	17,553	759	95.9					
A. niger	22,368	1,069	95.4	22,592	1,172	95.1					
A. terreus	21,263	1,150	94.9	21,605	1,132	95.0					
B. cinerea	13,454	1,028	92.9	13,569	1,077	92.6					
C. immitis	13,073	762	94.5	13,382	783	94.5					
C. cinereus	50,321	3,079	94.2	53,454	3,313	94.2					
C. neoformans	29,124	1,092	96.4	30,085	1,200	96.2					
F. graminearum	5,982	261	95.8	6,025	264	95.8					
F. oxysporum	31,355	2,127	93.6	31,408	2,246	93.3					
F. verticillioides	24,296	1,034	95.9	24,359	1,149	95.5					
M. grisea	12,568	5,576	69.3	14,109	4,120	77.4					
N. crassa	12,945	1,264	91.1	12,880	1,358	90.5					
R. oryzae	15,152	28,842	34.4	10,238	34,546	22.9					
S. pombe	4,712	226	95.4	4,718	227	95.4					
S. sclerotiorum	19,057	1,293	93.6	19,194	1,310	93.6					
S. nodorum	19,895	1,385	93.5	20,083	1,403	93.5					

Table S3. Counts of traversing of the Viterbi paths computed by the algorithm through upper and lower branches of the enhanced intron sub-model (Fig. 2).

set I	genes	introns per gene
C. cinereus	167	3.4
C. immitis	432	2.3
F. verticillioides	327	2.0
M. grisea	169	2.0
S. pombe	1,277	3.1
set II	transcripts	introns per transcript
A. nidulans	1,075	2.6
A. niger	955	2.8
A. terreus	729	2.8
B. cinerea	787	2.7
C. neoformans	2,425	3.8
F. graminearum	919	2.6
F. oxysporum	461	2.5
N. crassa	276	2.5
R. oryzae	2,169	3.3
S. nodorum	413	2.7
S. sclerotiorum	587	2.9

Table S4. Size of the test sets andaverage intron density; sets of type Iconsist of complete genes; sets of typeII include both complete andincomplete genes (neither set containssingle exon genes).

	r	epeats (nt)			% of all re	petitive sequ	iences	repeats found in coding	% of total	genome	
species	in intergenic regions	in coding regions	in introns	total (nt)	in intergenic regions	in coding regions	in introns	regions as % of total size of predicted coding regions	genome size	size (MB)	
A. nidulans	638,497	186,062	34,227	858,786	74.3	21.7	4.0	1.3	2.8	31	
A. niger	141,935	67,487	9,306	218,728	64.9	30.9	4.3	0.4	0.6	34	
A. terreus	135,794	18,713	4,159	158,666	85.6	11.8	2.6	0.1	0.5	29	
B. cinerea	272,539	100,341	8,753	381,633	71.4	26.3	2.3	0.8	1.5	26	
C. immitis	379,493	51,969	54,726	486,188	78.1	10.7	11.3	0.5	1.7	29	
C. cinereus	51,643	387,201	24,847	463,691	11.1	83.5	5.4	2.0	1.2	38	
C. neoformans	194,860	139,299	27,505	361,664	53.9	38.5	7.6	1.3	1.8	20	
F. graminearum	99,662	40,156	2,228	142,046	70.2	28.3	1.6	0.6	0.4	40	
F. oxysporum	764,914	1,276,899	88,266	2,130,079	35.9	59.9	4.1	4.6	3.6	60	
F. verticillioides	72,123	20,471	4,298	96,892	74.4	21.1	4.4	0.1	0.2	42	
M. grisea	783,116	1,518,185	163,183	2,464,484	31.8	61.6	6.6	8.9	6.2	40	
N. crassa	682,978	95,603	277,416	1,055,997	64.7	9.1	26.3	0.6	2.7	39	
R. oryzae	104,687	660,911	40,280	805,878	13.0	82.0	5.0	3.7	2.0	40	
S. pombe	133,175	66,816	14,231	214,222	62.2	31.2	6.6	0.8	1.8	12	
S. sclerotiorum	436,924	301,321	25,777	764,022	57.2	39.4	3.4	1.8	2.0	39	
S. nodorum	309,373	33,960	31,208	374,541	82.6	9.1	8.3	0.2	1.0	37	

Table S5. Statistics of the content of repetitive sequences determined by RepeatMasker in protein-coding and non-coding regions (as predicted by GeneMark.hmm-ES) determined in the 16 fungi genomes.

		A. nidulans A. niger		A. terreus			B. cinerea			C. neoformans			F. graminearum							
		intron	submo	submodel in		intron submodel			intron submodel			intron submodel			intron submodel			intron submodel		
		original	new	δ	original	new	δ	original	new	δ	original	new	δ	original	new	δ	original	new	δ	
Internal exon	Sn	77.3	87.4	10.1	85.0	91.5	6.5	85.5	91.6	6.1	79.5	87.9	8.4	85.7	92.3	6.6	88.6	92.6	4.0	
internal exon	Sp	90.5	93.1	2.6	91.4	96.3	4.9	90.9	94.8	3.9	91.4	96.5	5.1	91.1	95.1	4.0	93.6	95.9	2.3	
Introp	Sn	81.1	89.0	7.9	86.2	91.7	5.5	88.2	92.7	4.5	84.7	89.8	5.1	86.8	92.4	5.6	90.5	93.5	3.0	
maon	Sp	93.1	96.4	3.3	93.4	96.8	3.4	94.5	97.4	2.9	94.1	96.7	2.6	93.0	96.0	3.0	96.0	97.5	1.5	
Dopor	Sn	84.9	90.5	5.6	90.1	92.9	2.8	90.7	93.7	3.0	88.4	91.1	2.7	91.3	94.6	3.3	93.2	94.7	1.5	
Donor	Sp	95.6	96.8	1.2	96.2	97.3	1.1	96.1	97.7	1.6	97.1	97.3	0.2	96.4	97.4	1.0	97.8	97.9	0.1	
Accontor	Sn	83.8	91.4	7.6	89.3	94.2	4.9	90.2	94.4	4.2	87.0	92.4	5.4	88.7	94.0	5.3	92.0	95.6	3.6	
Αυτοριοι	Sp	94.5	97.5	3.0	95.1	98.5	3.4	95.2	97.9	2.7	95.4	98.6	3.2	94.4	97.2	2.8	96.5	98.5	2.0	

		R.	R. oryzae			F. oxysporum			N. crassa			S. sclerotiorum			S. nodorum		
		intron	submo	del	intron submodel		intron submodel			intron submodel			intron submodel				
		original	new	δ	original	new	δ	original	new	δ	original	new	δ	original	new	δ	
Internal even	Sn	88.7	88.8	0.1	84.1	92.5	8.4	81.2	85.2	4.0	82.6	90.2	7.6	82.8	88.5	5.7	
Internal exon	Sp	94.3	94.7	0.4	87.8	90.6	2.8	92.0	95.6	3.6	91.3	94.1	2.8	90.7	94.8	4.1	
Introp	Sn	88.8	88.9	0.1	86.7	91.3	4.6	85.9	88.6	2.7	86.3	91.3	5.0	87.3	90.8	3.5	
Intron	Sp	95.9	95.9	0.0	94.0	94.8	0.8	94.8	97.0	2.2	94.7	96.4	1.7	94.9	97.2	2.3	
Dopor	Sn	91.3	91.4	0.1	89.3	93.4	4.1	88.4	89.6	1.2	90.5	93.5	3.0	90.4	92.4	2.0	
Donor	Sp	97.0	97.2	0.2	95.0	95.5	0.5	96.7	97.6	0.9	97.5	97.4	-0.1	96.6	97.6	1.0	
Accoptor	Sn	90.3	90.4	0.1	89.3	94.3	5.0	88.9	91.3	2.4	88.2	93.8	5.6	89.8	93.3	3.5	
Acceptor	Sp	96.7	96.8	0.1	95.4	96.6	1.2	96.8	98.7	1.9	95.5	97.8	2.3	96.1	98.2	2.1	

Table S6. Accuracy of prediction of gene structure elements. The Sn and Sp values were determined for the test sets of incomplete genes.

	C	lonor		bran	ch point		ac	ceptor		S	pacer	
Species	self-training	alignment	δ									
A. niger	8.0	7.8	0.2	7.3	7.6	-0.3	5.1	5.0	0.1	2.1	1.7	0.4
A.nidulans	7.7	7.6	0.1	7.3	7.4	-0.1	5.0	5.0	0.0	2.0	1.8	0.2
A. terreus	7.9	7.7	0.2	7.5	8.0	-0.5	5.1	5.1	0.0	2.1	2.1	0.0
B. cinerea	7.9	8.2	-0.3	7.4	8.2	-0.8	5.0	5.1	-0.1	2.2	2.4	-0.2
C. immitis	7.8	7.4	0.4	7.2	7.0	0.2	5.3	5.0	0.3	1.9	1.4	0.5
C. cinereus	7.9	7.8	0.1	5.7	6.3	-0.6	5.3	5.3	0.0	1.1	0.9	0.2
C. neoformans	8.5	7.1	1.4	6.7	5.9	0.8	5.1	5.1	0.0	1.8	1.8	0.0
F. graminearum	8.4	8.6	-0.2	7.6	8.3	-0.7	5.0	5.0	0.0	2.3	2.5	-0.2
F. oxysporum	7.5	8.7	-1.2	7.2	8.1	-0.9	4.8	5.6	-0.8	1.7	2.3	-0.6
F. verticillioides	8.2	8.3	-0.1	7.5	7.8	-0.3	4.9	5.2	-0.3	2.0	2.3	-0.3
M. grisea	7.9	8.5	-0.6	7.5	8.2	-0.7	4.9	5.3	-0.4	1.1	1.6	-0.5
N. crassa	8.7	8.5	0.2	8.3	8.2	0.1	5.1	5.3	-0.2	2.4	1.7	0.7
R. oryzae	7.1	5.4	1.7	4.0	4.1	-0.1	5.1	6.4	-1.3	0.3	0.8	-0.5
S. sclerotiorum	7.8	8.2	-0.4	7.3	7.8	-0.5	5.0	5.2	-0.2	2.0	2.7	-0.7
S. pombe	8.6	9.2	-0.6	7.6	7.8	-0.2	5.4	7.2	-1.8	1.8	1.8	0.0
S. nodorum	7.6	8.5	-0.9	7.2	7.8	-0.6	4.8	5.3	-0.5	2.1	2.2	-0.1

Table S7. Relative entropies of the first order models of donor, branch point and acceptor sites as well as the length distributions of the downstream spacers derived from the sets of intron determined by i/ the self-training algorithm and ii/ EST to genome alignment. Differences between the values derived by different methods are shown in columns with label δ .

Species	Programs used for gene prediction
A. nidulans	Fgenesh, Fgenesh+ and Geneid
A. niger	Unknown
A. terreus	Fgenesh, Fgenesh+ and Geneid
B. cinerea	Fgenesh & Geneid
C. immitis	Fgenesh, Geneid and GENEWISE
C. cinereus	AUGUSTUS, GeneZilla; SNAP
C. neoformans	GENEWISE, TWINSCAN, GLEAN
F. graminearum	Fgenesh and Geneid
F. oxysporum	Fgenesh and Geneid
F. verticillioides	Fgenesh and Geneid
M. grisea	Fgenesh, Geneid and GENEWISE.
N. crassa	Fgenesh, Geneid, and GENEWISE
R. oryzae	Fgenesh and Geneid. Fgenesh
S. pombe	Unknown
S. sclerotiorum	Fgenesh and Geneid
S. nodorum	Fgenesh, Fgenesh+, Geneid, GENEWISE

Table S8. Intrinsic (*ab initio*) and extrinsic gene finding methodsused to produce annotation of the 16 fungal genomes