Énantiomérie

type d'isomérie en chimie, conséquence d'une chiralité
Ceci est une version archivée de cette page, en date du 11 août 2013 à 22:16 et modifiée en dernier par 78.251.40.185 (discuter). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

Des énantiomères sont des molécules stéréoisomères images l'une de l'autre dans un miroir. Une molécule ayant deux énantiomères est dite chirale. La chiralité peut être due à un centre stéréogène, comme un atome substitué asymétriquement (avec quatre substituants différents), qui est souvent un atome de carbone, ou par une Chiralité axiale. Dans ce dernier cas, la forme peut être due à une véritable hélice comme pour les hélicènes, ou à des arrangements comme les allènes, les biphényles ou les complexes octaédriques possédant trois ligands bidentates.

Les deux énantiomères du bromochlorofluorométhane.

Dans le cas d'un centre stéréogène, la configuration autour de ce centre est indiquée par les lettres R ou S, selon les règles de la nomenclature Cahn-Ingold-Prelog. Dans le cas d'une chiralité de type hélicoïdale, la nomenclature Δ, Λ est souvent utilisée.

Importance

Chimiquement, deux énantiomères ont des réactivités identiques avec d'autres molécules non chirales. Mais au niveau biologique, les deux énantiomères d'une molécule, un médicament par exemple, peuvent avoir des effets physiologiques différents, voire antagoniques. Cela s'explique par le fait que les systèmes biologiques sont eux-mêmes énantiopurs et interagissent différemment avec les deux énantiomères d'un centre chiral externe, où les interactions sont diastéréomériques. Les relations entre les activités biologiques de chaque stéréoisomère pur et celles de leurs mélanges sont souvent très complexes et leur analyse nécessite des études approfondies et détaillées. Cependant il arrive que deux énantiomères aient des activités similaires au niveau biologique. L'analyse et la séparation des énantiomères (qui forment la structure spatiale et fonctionnelle de notre environnement biotique et abiotique) sont capitales pour l'avancée des recherches dans la plupart des domaines scientifiques. Près des 2/3 des molécules biologiquement actives chirales issues de synthèse classique (non énantiosélective) proviennent de dédoublements (séparation d'énantiomères), qui représente l'une des principales voies d'accès aux composés énantiomériquement purs. La production des produits énantiopurs représentait aux États-Unis, en 1995, la somme colossale de près de 60 milliards de dollars.

Séparation d'énantiomères

Le premier exemple de séparation d'énantiomères est celui de Louis Pasteur qui, en 1848, isola les deux énantiomères de l'acide tartrique par tri manuel de cristaux énantiomorphes.

De nouvelles techniques et méthodes effectuant le dédoublement des racémates sont depuis apparues :

  • Méthodes chimiques : elles font appel aux diastéréoisomères, préparés à partir de racémiques par formation de sels ou par dérivation avec des composés énantiopurs, puis séparés par cristallisation ou chromatographie, ou par transformations stéréosélectives. Plusieurs méthodes chromatographiques sont utilisées pour la séparation chirale d'une large variété de composés. L'utilisation d'une colonne à phase stationnaire chirale ou d'additifs chiraux dans la phase mobile est une voie plus « élégante » de séparation des énantiomères que par synthèse de composés diastéréoisomères à l'aide d'un réactif optiquement pur. Les positions de l'équilibre entre les états liés et non liés sont donc différentes pour les deux énantiomères et ceci est la base de la séparation. Les cyclodextrines sont utilisées en séparation énantiomérique par l'électrophorèse capillaire CPG et HPLC. Elles sont aussi employées en résonance magnétique nucléaire (RMN) comme auxiliaires chiraux pour la détermination d'excès énantiomérique. La formation des complexes d'inclusion et ses applications en séparation chirale sont mises à profit dans le domaine, mais aussi dans les industries chimiques et agro-alimentaires (cas du menthol ou de la mélisse).
  • Méthodes biologiques : utilisation des enzymes qui sont des composés qui catalysent des transformations stéréospécifiques.

Ces applications ont eu pour conséquence les dépôts de nombreux brevets nationaux et internationaux couvrant l'exploitation des recherches.

Nomenclature

Il existe 3 sortes de nomenclature permettant de différencier les énantiomères : R/S, D/L et +/-. Les règles apparaissent page chiralité.

Voir aussi

Articles connexes

Liens externes

  • (histoire des sciences) Article de 1822 de Fresnel sur la chiralité, en ligne et commenté sur le site BibNum
  • (histoire des sciences) Article de 1848 de Pasteur sur la dissymétrie moléculaire, en ligne et commenté sur le site BibNum