Efficient Mendler-Style Lambda-Encodings in Cedille J

Denis Firsov, Richard Blair, and Aaron Stump

Department of Computer Science
The University of lowa

July 9, 2018

@ It is possible to encode inductive datatypes in pure type theory.

2/ 44

Background

o ltis to encode inductive datatypes in pure type theory.
@ Church-style encoding of natural numbers
cNat « x=VX:*%x. X —-X) — X — X.

cZ 4 cNat = A X. A s. A z. z.
cS 4 cNat — cNat = A n. AX. A s. A z. s (ns z).

Background

o ltis to encode inductive datatypes in pure type theory.
@ Church-style encoding of natural numbers
cNat « x=VX:*%x. X —-X) — X — X.

cZ 4 cNat = A X. A s. A z. z.
cS 4 cNat — cNat = A n. AX. A s. A z. s (ns z).

@ Essentially, we identify each natural number n with its iterator
As. Az, s"z

two = cS (¢S cZ) = A s. Az. s (s 2).

44

Background

@ At the same time, it is provably impossible to derive induction
principle in the second-order dependent type theory (Geuvers, 2001).

44

Background

@ At the same time, it is provably impossible to derive induction
principle in the second-order dependent type theory (Geuvers, 2001).

@ Moreover, it is provably impossible to implement a constant-time

predecessor function for cNat (Parigot, 1989).

two

three :

cS (cS 2)

cS (cS (cS Z)) :

As. Az.s (s 2z).
As. Az.s (s (s 2)).

6

44

Background

@ At the same time, it is provably impossible to derive induction
principle in the second-order dependent type theory (Geuvers, 2001).

@ Moreover, it is provably impossible to implement a constant-time
predecessor function for cNat (Parigot, 1989).

cS (cS 2) = As. Az.s (s z).

cS (¢S (ecS Z)) :=As. Az. s (s (s 2)).

@ As a consequence, most languages come with built-in infrastructure
for defining inductive datatypes (data definition, pattern-matching,
termination checker, negativity and strictness check, etc.).

two
three :

data Nat : Set where pred : Nat -> Nat
zero : Nat pred zero = zero
suc : Nat — Nat pred (suc n) = n

~

Background

@ At the same time, it is provably impossible to derive induction
principle in the second-order dependent type theory (Geuvers, 2001).

@ Moreover, it is provably impossible to implement a constant-time
predecessor function for cNat (Parigot, 1989).

cS (cS 2) = As. Az.s (s z).

cS (¢S (ecS Z)) :=As. Az. s (s (s 2)).

@ As a consequence, most languages come with built-in infrastructure
for defining inductive datatypes (data definition, pattern-matching,
termination checker, negativity and strictness check, etc.).

two
three :

data Nat : Set where pred : Nat -> Nat
zero : Nat pred zero = zero
suc : Nat — Nat pred (suc n) = n

@ In Agda, induction principle can be derived by pattern matching and
explicit structural recursion.

Background

@ Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

Background

@ Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

@ The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

10 /44

Background

@ Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

@ The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

@ CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

11 /44

Background

@ Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

@ The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

@ CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

@ dependent intersection types,

12/44

Background

@ Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

@ The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

@ CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

@ dependent intersection types,
@ implicit products,

13 /44

Background

@ Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

@ The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

@ CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

@ dependent intersection types,
@ implicit products,
© primitive heterogeneous equality.

14 /44

Background

Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).
CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

@ dependent intersection types,
@ implicit products,
© primitive heterogeneous equality.

Cedille is an implementation of CDLE type theory (in Agda!).

Extension: Dependent intersection types

@ Formation
Fr=T7T:% x:THT :%

Mux:T. T %

@ Introduction
TrEt: T Tht:[t/X]T Thp:ti~t
e[t t{p}] ex:T. T

@ Elimination

TEtoux:T. T first vi TEtoux:T. T cecond view
rEel: 7 UV T2 [t 1/X] T

16

44

Extension: Dependent intersection types

@ Formation
Fr=T7T:% x:THT :%

Mux:T. T %

@ Introduction
TrEt: T Tht:[t/X]T Thp:ti~t
e[t t{p}] ex:T. T

@ Elimination

TEtoux:T. T first vi TEtoux:T. T cecond view
rEel: 7 UV T2 [t 1/X] T

@ Erasure

I[t1, t2{p}]
|t.1]
|t.2]

[t1]
It]
It]

17 /44

Extension: Implicit products

@ Formation
Mx:T'+T:%

FrEvx:T.T:%

@ Introduction
Tx:T'Ht: T x¢&FV(t])

Fr-Ax: T t:Vx:T'.T

@ Elimination
Fr-t:vVx:T'.T THt: T

Fret —t':[t'/x]T

18 /44

Extension: Implicit products

Formation

Mx:T'+T:%
FrEvx:T.T:%

Introduction

Tx:T'Ht: T x¢&FV(t])

Fr-Ax: T t:Vx:T'.T

@ Elimination
Fr-t:vVx:T'.T THt: T
Fret —t':[t'/x]T
@ Erasure
Ax:T.t| = |t
it —t] = |

19 /44

Extension: Equality

@ Formation rule
Fret: T THE: T
Tt~ t:x

@ Introduction
Fr=t: T

rM=pg:t~t

@ Elimination
Fretity~to THEE: [t1/X]T

FEpt — t:[t/x]T

20 /44

Extension: Equality

@ Formation rule

@ Introduction

@ Elimination

Mt T THe: T

Tt~ t:x

F-t: T

rM=pg:t~t

Fretity~to THEE: [t1/X]T

@ Erasure

FEpt — t:[t/x]T

18]
lpt —

AX. X
|t

21 /44

Mendler-style inductive datatypes

o Categorically, inductive datatypes are modelled as initial F-algebras.

Mendler-style inductive datatypes
o Categorically, inductive datatypes are modelled as initial F-algebras.

@ Mendler-style F-algebra is a pair of object (carrier) X and a natural
transformation C(—, X) — C(F —, X).

23 /44

Mendler-style inductive datatypes

o Categorically, inductive datatypes are modelled as initial F-algebras.

@ Mendler-style F-algebra is a pair of object (carrier) X and a natural
transformation C(—, X) — C(F —, X).

@ In Cedille, objects are types and natural transformations are
polymorphic functions:

AlgM €« * > * = A X : . VR : x. R - X) - FR — X.

24 /44

Mendler-style inductive datatypes

o Categorically, inductive datatypes are modelled as initial F-algebras.

@ Mendler-style F-algebra is a pair of object (carrier) X and a natural
transformation C(—, X) — C(F —, X).

@ In Cedille, objects are types and natural transformations are
polymorphic functions:

AlgM €« * > * = A X : . VR : x. R - X) - FR — X.

@ The object (a type) of initial Mendler-style F-algebra is a least fixed
point of F:

FixM €« x =V X : . AlgM X — X.

Mendler-style inductive datatypes

o Categorically, inductive datatypes are modelled as initial F-algebras.
@ Mendler-style F-algebra is a pair of object (carrier) X and a natural
transformation C(—, X) — C(F —, X).
@ In Cedille, objects are types and natural transformations are
polymorphic functions:
AlgM €« * > * = A X : . VR : x. R - X) - FR — X.
@ The object (a type) of initial Mendler-style F-algebra is a least fixed
point of F:
FixM €« x =V X : . AlgM X — X.

@ There is a homomorphism from the carrier of initial algebra to the
carrier of any other algebra (gives weak initiality):

foldM « V X : x. AlgM X — FixM — X = <..>

26 /44

Mendler-style inductive datatypes

o Categorically, inductive datatypes are modelled as initial F-algebras.

Mendler-style F-algebra is a pair of object (carrier) X and a natural
transformation C(—, X) — C(F —, X).

In Cedille, objects are types and natural transformations are
polymorphic functions:

AlgM €« * > * = A X : . VR : x. R - X) - FR — X.

The object (a type) of initial Mendler-style F-algebra is a least fixed
point of F:

FixM €« x =V X : . AlgM X — X.

There is a homomorphism from the carrier of initial algebra to the
carrier of any other algebra (gives weak initiality):

foldM « V X : x. AlgM X — FixM — X = <..>
Constructors are expressed as a Church-style algebra:
inM « F FixM — FixM = A v. A alg. alg (foldM alg) v.

@ There is no induction principle for FixM.

28 /44

@ There is no induction principle for FixM.
@ We define a type FixIndM as an inductive subset of FixM:
FixIndM « * = ¢ x : FixM. Inductive x.

29 /44

@ There is no induction principle for FixM.
@ We define a type FixIndM as an inductive subset of FixM:
FixIndM « * = ¢ x : FixM. Inductive x.

@ For FixIndM to be inhabited, we must express an inductivity
predicate so that the value x : FixM and the proof
p : Inductive x are equal.

FixM €« x =V X : x. AlgM X — X.

Inductive « FixM — x = A x : FixM.
vV Q : FixM — x. PrfAlgM FixM Q inM — Q x.

30/ 44

@ There is no induction principle for FixM.
@ We define a type FixIndM as an inductive subset of FixM:
FixIndM « * = ¢ x : FixM. Inductive x.

For FixIndM to be inhabited, we must express an inductivity
predicate so that the value x : FixM and the proof
p : Inductive x are equal.

FixM €« x =V X : x. AlgM X — X.

Inductive « FixM — x = A x : FixM.
vV Q : FixM — x. PrfAlgM FixM Q inM — Q x.

Mendler-style proof-algebras
Algl « * > x=AX. VR : x. R—=>X) - FR — X.

31 /44

@ There is no induction principle for FixM.
@ We define a type FixIndM as an inductive subset of FixM:
FixIndM « * = ¢ x : FixM. Inductive x.

For FixIndM to be inhabited, we must express an inductivity
predicate so that the value x : FixM and the proof

p : Inductive x are equal.

FixM €« x =V X : x. AlgM X — X.

Inductive « FixM — x = A x : FixM.
vV Q : FixM — x. PrfAlgM FixM Q inM — Q x.

Mendler-style proof-algebras
Algl « * > x=AX. VR : x. R—=>X) - FR — X.

PrfAlgM « 1 A : x. (A - x) — (FA = A) — %
=X A. A Q. A alg.

VR:*.Vc:R—-A. Ve : ({lr:R. cr ~r).

(Mr :R.Q (1) —
MMfr : FR. Q (alg (fmap c fr)).

32/44

Mendler-style induction principle

@ The collection of constructors of type FixIndM is expressed by
Church-algebra

inFixIndM « F FixIndM — FixIndM = <..>

33 /44

Mendler-style induction principle

@ The collection of constructors of type FixIndM is expressed by
Church-algebra

inFixIndM « F FixIndM — FixIndM = <..>
@ Induction principle

induction €« V Q : FixIndM — *.
PrfAlgM FixIndM Q inFixIndM —
M x : FixIndM. Q x = <..>

34 /44

Mendler-style induction principle

@ The collection of constructors of type FixIndM is expressed by
Church-algebra
inFixIndM « F FixIndM — FixIndM = <..>
@ Induction principle
induction €« V Q : FixIndM — *.
PrfAlgM FixIndM Q inFixIndM —
M x : FixIndM. Q x = <..>
o Cancellation law:
indHom « V Q palg x.
induction palg (inFixInd x) ~ palg (induction palg) x
= A Q. A palg. A x. B.

@ Can we define a a proof-algebra which erases to lambda term
AX. Ay. y?

44

Constant-time destructor

@ outAlgM <« PrfAlgM FixIndM (A _. F FixIndM) inFixIndM
=AR. Ac. Ae. A x. hy. [y, cy{ey}].2.

36 /44

Constant-time destructor

@ outAlgM <« PrfAlgM FixIndM (A _. F FixIndM) inFixIndM
=AR. Ac. Ae. A x. hy. [y, cy{ey}].2.

o Finally, we arrive at the generic constant-time linear-space destructor
of inductive datatypes:

outFixIndM « FixInd — F FixInd = induction outAlgM.

37 /44

Constant-time destructor

@ outAlgM <« PrfAlgM FixIndM (A _. F FixIndM) inFixIndM
=AR. Ac. Ae. A x. hy. [y, cy{ey}].2.

o Finally, we arrive at the generic constant-time linear-space destructor
of inductive datatypes:

outFixIndM « FixInd — F FixInd = induction outAlgM.

@ Since outFixIndM is constant-time then we get Lambek’s Lemma as
an easy consequence

lambekl « [1 x: F FixInd. outFixIndM (inFixIndM x) ~ x
=\ x. B.

lambek?2 <« 1 x: FixIndM. inFixIndM (outFixIndM x) ~ x
= A x. induction (A R. A c. A e. X ih. X fr. B) x.

38 /44

Example: Natural numbers

@ Natural numbers arise as least fixed point of a scheme NF
NF €« x - =X X : x. Unit + X.

Nat <« x = FixIndM NF.
@ Constructors

zero « Nat = inFixIndM (inl unit).
suc <« Nat — Nat = A n. inFixIndM (in2 n).

@ Constructor suc has the following underlying lambda-term
suc n >~ A alg. (alg (» £. (£ alg)) (A i. A j. (g m.

@ Constant-time predecessor

pred « Nat — Nat
= A n. case (outFixIndM n) (A _. zero) (A m. m).

39 /44

|dentity mappings instead of functors

@ The described developments are well-justified for any functor
Functor €« (x — *x) — x = A\ F.
X fmap : VXY : x. X—>Y) - FX —> FY.
IdentityLaw fmap X CompositionLaw fmap.

40 /44

|dentity mappings instead of functors

@ The described developments are well-justified for any functor

Functor €« (x = *x) — x = A F.
X fmap : VXY : x. X—>Y) - FX —> FY.
IdentityLaw fmap X CompositionLaw fmap.
@ Surprisingly, the construction can be easily generalized to the larger
class of schemes we call identity mappings
IdMapping €« (x — %) — % = A F.
VXY : x. IdXY —>Id(F X (FY).

41 /44

|dentity mappings instead of functors

@ The described developments are well-justified for any functor
Functor €« (x — *x) — x = A\ F.
X fmap : VXY : x. X—>Y) - FX —> FY.
IdentityLaw fmap X CompositionLaw fmap.

@ Surprisingly, the construction can be easily generalized to the larger
class of schemes we call identity mappings

IdMapping €« (x — %) — % = A F.
VXY : x. IdXY > 1Id (FX) (FY).
e Every functor is identity mapping
fm2im « V F : x — *. Functor F — IdMapping F = <..>

|dentity mappings instead of functors

@ The described developments are well-justified for any functor

Functor €« (* — %) — % = A F.
X fmap : VXY : x. X—>Y) - FX —> FY.
IdentityLaw fmap X CompositionLaw fmap.

@ Surprisingly, the construction can be easily generalized to the larger
class of schemes we call identity mappings

IdMapping €« (x — %) — % = A F.
VXY :%x. IdXY —-Id (FX) (FY).

e Every functor is identity mapping

fm2im « V F : x — *. Functor F — IdMapping F = <..>
@ Converse is not true

UneqPair €« x — x = A X. X x3 x : X. X3 # Xp.
@ Identity mappings induce a large class of datatypes (including

infinitary and non-strictly positive datatypes).

43 /44

There is more!

o We generically define course-of-value datatypes and implement
dependent histomorphisms. We do this by defining a least fixed point
of a coend of “negative” scheme.

Lift « (* 2 %) > % > x=AF. A X. FX x X — FX).

FixCoV €« (*x — %) — = A F. FixIndM (Coend (Lift F)).

@ In a similar way, we generically derive (small) inductive-recursive
datatypes and derive the respective dependent elimination.

44 /44

Thank you!

