
Efficient Mendler-Style Lambda-Encodings in Cedille

Denis Firsov, Richard Blair, and Aaron Stump

Department of Computer Science
The University of Iowa

July 9, 2018

1 / 44

Background

It is possible to encode inductive datatypes in pure type theory.

Church-style encoding of natural numbers

cNat J ? = ∀ X : ?. (X → X) → X → X.

cZ J cNat = Λ X. λ s. λ z. z.
cS J cNat → cNat = λ n. Λ X. λ s. λ z. s (n s z).

Essentially, we identify each natural number n with its iterator
λ s. λ z. sn z.

two := cS (cS cZ) = λ s. λ z. s (s z).

2 / 44

Background

It is possible to encode inductive datatypes in pure type theory.

Church-style encoding of natural numbers

cNat J ? = ∀ X : ?. (X → X) → X → X.

cZ J cNat = Λ X. λ s. λ z. z.
cS J cNat → cNat = λ n. Λ X. λ s. λ z. s (n s z).

Essentially, we identify each natural number n with its iterator
λ s. λ z. sn z.

two := cS (cS cZ) = λ s. λ z. s (s z).

3 / 44

Background

It is possible to encode inductive datatypes in pure type theory.

Church-style encoding of natural numbers

cNat J ? = ∀ X : ?. (X → X) → X → X.

cZ J cNat = Λ X. λ s. λ z. z.
cS J cNat → cNat = λ n. Λ X. λ s. λ z. s (n s z).

Essentially, we identify each natural number n with its iterator
λ s. λ z. sn z.

two := cS (cS cZ) = λ s. λ z. s (s z).

4 / 44

Background

At the same time, it is provably impossible to derive induction
principle in the second-order dependent type theory (Geuvers, 2001).

Moreover, it is provably impossible to implement a constant-time
predecessor function for cNat (Parigot, 1989).

two := cS (cS Z) := λ s. λ z. s (s z).

three := cS (cS (cS Z)) := λ s. λ z. s (s (s z)).

As a consequence, most languages come with built-in infrastructure
for defining inductive datatypes (data definition, pattern-matching,
termination checker, negativity and strictness check, etc.).

data Nat : Set where pred : Nat -> Nat

zero : Nat pred zero = zero

suc : Nat → Nat pred (suc n) = n

In Agda, induction principle can be derived by pattern matching and
explicit structural recursion.

5 / 44

Background

At the same time, it is provably impossible to derive induction
principle in the second-order dependent type theory (Geuvers, 2001).

Moreover, it is provably impossible to implement a constant-time
predecessor function for cNat (Parigot, 1989).

two := cS (cS Z) := λ s. λ z. s (s z).

three := cS (cS (cS Z)) := λ s. λ z. s (s (s z)).

As a consequence, most languages come with built-in infrastructure
for defining inductive datatypes (data definition, pattern-matching,
termination checker, negativity and strictness check, etc.).

data Nat : Set where pred : Nat -> Nat

zero : Nat pred zero = zero

suc : Nat → Nat pred (suc n) = n

In Agda, induction principle can be derived by pattern matching and
explicit structural recursion.

6 / 44

Background

At the same time, it is provably impossible to derive induction
principle in the second-order dependent type theory (Geuvers, 2001).

Moreover, it is provably impossible to implement a constant-time
predecessor function for cNat (Parigot, 1989).

two := cS (cS Z) := λ s. λ z. s (s z).

three := cS (cS (cS Z)) := λ s. λ z. s (s (s z)).

As a consequence, most languages come with built-in infrastructure
for defining inductive datatypes (data definition, pattern-matching,
termination checker, negativity and strictness check, etc.).

data Nat : Set where pred : Nat -> Nat

zero : Nat pred zero = zero

suc : Nat → Nat pred (suc n) = n

In Agda, induction principle can be derived by pattern matching and
explicit structural recursion.

7 / 44

Background

At the same time, it is provably impossible to derive induction
principle in the second-order dependent type theory (Geuvers, 2001).

Moreover, it is provably impossible to implement a constant-time
predecessor function for cNat (Parigot, 1989).

two := cS (cS Z) := λ s. λ z. s (s z).

three := cS (cS (cS Z)) := λ s. λ z. s (s (s z)).

As a consequence, most languages come with built-in infrastructure
for defining inductive datatypes (data definition, pattern-matching,
termination checker, negativity and strictness check, etc.).

data Nat : Set where pred : Nat -> Nat

zero : Nat pred zero = zero

suc : Nat → Nat pred (suc n) = n

In Agda, induction principle can be derived by pattern matching and
explicit structural recursion.

8 / 44

Background

Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

1 dependent intersection types,
2 implicit products,
3 primitive heterogeneous equality.

Cedille is an implementation of CDLE type theory (in Agda!).

9 / 44

Background

Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

1 dependent intersection types,
2 implicit products,
3 primitive heterogeneous equality.

Cedille is an implementation of CDLE type theory (in Agda!).

10 / 44

Background

Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

1 dependent intersection types,
2 implicit products,
3 primitive heterogeneous equality.

Cedille is an implementation of CDLE type theory (in Agda!).

11 / 44

Background

Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

1 dependent intersection types,

2 implicit products,
3 primitive heterogeneous equality.

Cedille is an implementation of CDLE type theory (in Agda!).

12 / 44

Background

Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

1 dependent intersection types,
2 implicit products,

3 primitive heterogeneous equality.

Cedille is an implementation of CDLE type theory (in Agda!).

13 / 44

Background

Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

1 dependent intersection types,
2 implicit products,
3 primitive heterogeneous equality.

Cedille is an implementation of CDLE type theory (in Agda!).

14 / 44

Background

Is it possible to extend CC with some typing constructs to derive
induction and implement constant-time predecessor (destructor)
function for some linear-space encoding of natural numbers (inductive
datatypes)?

The solution is provided by Mendler-style encoding and The Calculus
of Dependent Lambda Eliminations (CDLE) (A. Stump, JFP 2017).

CDLE adds three typing constructs to the Curry-style Calculus of
Constructions:

1 dependent intersection types,
2 implicit products,
3 primitive heterogeneous equality.

Cedille is an implementation of CDLE type theory (in Agda!).

15 / 44

Extension: Dependent intersection types

Formation
Γ ` T : ? Γ, x : T ` T ′ : ?

Γ ` ι x :T .T ′ : ?

Introduction

Γ ` t1 : T Γ ` t2 : [t1/x]T ′ Γ ` p : t1 ' t2

Γ ` [t1, t2{p}] : ι x :T .T ′

Elimination

Γ ` t : ι x :T .T ′

Γ ` t.1 : T
first view

Γ ` t : ι x :T .T ′

Γ ` t.2 : [t.1/x]T ′ second view

Erasure
[t1, t2{p}]	=	t1
t.1	=	t
t.2	=	t

16 / 44

Extension: Dependent intersection types

Formation
Γ ` T : ? Γ, x : T ` T ′ : ?

Γ ` ι x :T .T ′ : ?

Introduction

Γ ` t1 : T Γ ` t2 : [t1/x]T ′ Γ ` p : t1 ' t2

Γ ` [t1, t2{p}] : ι x :T .T ′

Elimination

Γ ` t : ι x :T .T ′

Γ ` t.1 : T
first view

Γ ` t : ι x :T .T ′

Γ ` t.2 : [t.1/x]T ′ second view

Erasure
[t1, t2{p}]	=	t1
t.1	=	t
t.2	=	t

17 / 44

Extension: Implicit products

Formation
Γ, x : T ′ ` T : ?

Γ ` ∀ x :T ′.T : ?

Introduction
Γ, x : T ′ ` t : T x 6∈ FV(|t|)

Γ ` Λ x :T ′. t : ∀ x :T ′.T

Elimination
Γ ` t : ∀ x :T ′.T Γ ` t ′ : T ′

Γ ` t − t ′ : [t ′/x]T

Erasure
|Λ x :T . t| = |t|
|t − t′| = |t|

18 / 44

Extension: Implicit products

Formation
Γ, x : T ′ ` T : ?

Γ ` ∀ x :T ′.T : ?

Introduction
Γ, x : T ′ ` t : T x 6∈ FV(|t|)

Γ ` Λ x :T ′. t : ∀ x :T ′.T

Elimination
Γ ` t : ∀ x :T ′.T Γ ` t ′ : T ′

Γ ` t − t ′ : [t ′/x]T

Erasure
|Λ x :T . t| = |t|
|t − t′| = |t|

19 / 44

Extension: Equality

Formation rule
Γ ` t : T Γ ` t ′ : T ′

Γ ` t ' t ′ : ?

Introduction
Γ ` t : T

Γ ` β : t ' t

Elimination
Γ ` t ′ : t1 ' t2 Γ ` t : [t1/x]T

Γ ` ρ t ′ − t : [t2/x]T

Erasure
|β| = λ x . x
|ρ t′ − t| = |t|

20 / 44

Extension: Equality

Formation rule
Γ ` t : T Γ ` t ′ : T ′

Γ ` t ' t ′ : ?

Introduction
Γ ` t : T

Γ ` β : t ' t

Elimination
Γ ` t ′ : t1 ' t2 Γ ` t : [t1/x]T

Γ ` ρ t ′ − t : [t2/x]T

Erasure
|β| = λ x . x
|ρ t′ − t| = |t|

21 / 44

Mendler-style inductive datatypes

Categorically, inductive datatypes are modelled as initial F-algebras.

Mendler-style F-algebra is a pair of object (carrier) X and a natural
transformation C(−,X)→ C(F −,X).

In Cedille, objects are types and natural transformations are
polymorphic functions:

AlgM J ? → ? = λ X : ?. ∀ R : ?. (R → X) → F R → X.

The object (a type) of initial Mendler-style F-algebra is a least fixed
point of F:

FixM J ? = ∀ X : ?. AlgM X → X.

There is a homomorphism from the carrier of initial algebra to the
carrier of any other algebra (gives weak initiality):

foldM J ∀ X : ?. AlgM X → FixM → X = <..>

Constructors are expressed as a Church-style algebra:

inM J F FixM → FixM = λ v. λ alg. alg (foldM alg) v.

22 / 44

Mendler-style inductive datatypes

Categorically, inductive datatypes are modelled as initial F-algebras.

Mendler-style F-algebra is a pair of object (carrier) X and a natural
transformation C(−,X)→ C(F −,X).

In Cedille, objects are types and natural transformations are
polymorphic functions:

AlgM J ? → ? = λ X : ?. ∀ R : ?. (R → X) → F R → X.

The object (a type) of initial Mendler-style F-algebra is a least fixed
point of F:

FixM J ? = ∀ X : ?. AlgM X → X.

There is a homomorphism from the carrier of initial algebra to the
carrier of any other algebra (gives weak initiality):

foldM J ∀ X : ?. AlgM X → FixM → X = <..>

Constructors are expressed as a Church-style algebra:

inM J F FixM → FixM = λ v. λ alg. alg (foldM alg) v.

23 / 44

Mendler-style inductive datatypes

Categorically, inductive datatypes are modelled as initial F-algebras.

Mendler-style F-algebra is a pair of object (carrier) X and a natural
transformation C(−,X)→ C(F −,X).

In Cedille, objects are types and natural transformations are
polymorphic functions:

AlgM J ? → ? = λ X : ?. ∀ R : ?. (R → X) → F R → X.

The object (a type) of initial Mendler-style F-algebra is a least fixed
point of F:

FixM J ? = ∀ X : ?. AlgM X → X.

There is a homomorphism from the carrier of initial algebra to the
carrier of any other algebra (gives weak initiality):

foldM J ∀ X : ?. AlgM X → FixM → X = <..>

Constructors are expressed as a Church-style algebra:

inM J F FixM → FixM = λ v. λ alg. alg (foldM alg) v.

24 / 44

Mendler-style inductive datatypes

Categorically, inductive datatypes are modelled as initial F-algebras.

Mendler-style F-algebra is a pair of object (carrier) X and a natural
transformation C(−,X)→ C(F −,X).

In Cedille, objects are types and natural transformations are
polymorphic functions:

AlgM J ? → ? = λ X : ?. ∀ R : ?. (R → X) → F R → X.

The object (a type) of initial Mendler-style F-algebra is a least fixed
point of F:

FixM J ? = ∀ X : ?. AlgM X → X.

There is a homomorphism from the carrier of initial algebra to the
carrier of any other algebra (gives weak initiality):

foldM J ∀ X : ?. AlgM X → FixM → X = <..>

Constructors are expressed as a Church-style algebra:

inM J F FixM → FixM = λ v. λ alg. alg (foldM alg) v.

25 / 44

Mendler-style inductive datatypes

Categorically, inductive datatypes are modelled as initial F-algebras.

Mendler-style F-algebra is a pair of object (carrier) X and a natural
transformation C(−,X)→ C(F −,X).

In Cedille, objects are types and natural transformations are
polymorphic functions:

AlgM J ? → ? = λ X : ?. ∀ R : ?. (R → X) → F R → X.

The object (a type) of initial Mendler-style F-algebra is a least fixed
point of F:

FixM J ? = ∀ X : ?. AlgM X → X.

There is a homomorphism from the carrier of initial algebra to the
carrier of any other algebra (gives weak initiality):

foldM J ∀ X : ?. AlgM X → FixM → X = <..>

Constructors are expressed as a Church-style algebra:

inM J F FixM → FixM = λ v. λ alg. alg (foldM alg) v.

26 / 44

Mendler-style inductive datatypes

Categorically, inductive datatypes are modelled as initial F-algebras.

Mendler-style F-algebra is a pair of object (carrier) X and a natural
transformation C(−,X)→ C(F −,X).

In Cedille, objects are types and natural transformations are
polymorphic functions:

AlgM J ? → ? = λ X : ?. ∀ R : ?. (R → X) → F R → X.

The object (a type) of initial Mendler-style F-algebra is a least fixed
point of F:

FixM J ? = ∀ X : ?. AlgM X → X.

There is a homomorphism from the carrier of initial algebra to the
carrier of any other algebra (gives weak initiality):

foldM J ∀ X : ?. AlgM X → FixM → X = <..>

Constructors are expressed as a Church-style algebra:

inM J F FixM → FixM = λ v. λ alg. alg (foldM alg) v.

27 / 44

There is no induction principle for FixM.

We define a type FixIndM as an inductive subset of FixM:

FixIndM J ? = ι x : FixM. Inductive x.

For FixIndM to be inhabited, we must express an inductivity
predicate so that the value x : FixM and the proof
p : Inductive x are equal.

FixM J ? = ∀ X : ?. AlgM X → X.

Inductive J FixM → ? = λ x : FixM.
∀ Q : FixM → ?. PrfAlgM FixM Q inM → Q x.

Mendler-style proof-algebras

AlgM J ? → ? = λ X. ∀ R : ?. (R → X) → F R → X.

PrfAlgM J Π A : ?. (A → ?) → (F A → A) → ?
= λ A. λ Q. λ alg.

∀ R : ?. ∀ c : R → A. ∀ e : (Π r : R. c r ' r).
(Π r : R. Q (c r)) →
Π fr : F R. Q (alg (fmap c fr)).

28 / 44

There is no induction principle for FixM.

We define a type FixIndM as an inductive subset of FixM:

FixIndM J ? = ι x : FixM. Inductive x.

For FixIndM to be inhabited, we must express an inductivity
predicate so that the value x : FixM and the proof
p : Inductive x are equal.

FixM J ? = ∀ X : ?. AlgM X → X.

Inductive J FixM → ? = λ x : FixM.
∀ Q : FixM → ?. PrfAlgM FixM Q inM → Q x.

Mendler-style proof-algebras

AlgM J ? → ? = λ X. ∀ R : ?. (R → X) → F R → X.

PrfAlgM J Π A : ?. (A → ?) → (F A → A) → ?
= λ A. λ Q. λ alg.

∀ R : ?. ∀ c : R → A. ∀ e : (Π r : R. c r ' r).
(Π r : R. Q (c r)) →
Π fr : F R. Q (alg (fmap c fr)).

29 / 44

There is no induction principle for FixM.

We define a type FixIndM as an inductive subset of FixM:

FixIndM J ? = ι x : FixM. Inductive x.

For FixIndM to be inhabited, we must express an inductivity
predicate so that the value x : FixM and the proof
p : Inductive x are equal.

FixM J ? = ∀ X : ?. AlgM X → X.

Inductive J FixM → ? = λ x : FixM.
∀ Q : FixM → ?. PrfAlgM FixM Q inM → Q x.

Mendler-style proof-algebras

AlgM J ? → ? = λ X. ∀ R : ?. (R → X) → F R → X.

PrfAlgM J Π A : ?. (A → ?) → (F A → A) → ?
= λ A. λ Q. λ alg.

∀ R : ?. ∀ c : R → A. ∀ e : (Π r : R. c r ' r).
(Π r : R. Q (c r)) →
Π fr : F R. Q (alg (fmap c fr)).

30 / 44

There is no induction principle for FixM.

We define a type FixIndM as an inductive subset of FixM:

FixIndM J ? = ι x : FixM. Inductive x.

For FixIndM to be inhabited, we must express an inductivity
predicate so that the value x : FixM and the proof
p : Inductive x are equal.

FixM J ? = ∀ X : ?. AlgM X → X.

Inductive J FixM → ? = λ x : FixM.
∀ Q : FixM → ?. PrfAlgM FixM Q inM → Q x.

Mendler-style proof-algebras

AlgM J ? → ? = λ X. ∀ R : ?. (R → X) → F R → X.

PrfAlgM J Π A : ?. (A → ?) → (F A → A) → ?
= λ A. λ Q. λ alg.

∀ R : ?. ∀ c : R → A. ∀ e : (Π r : R. c r ' r).
(Π r : R. Q (c r)) →
Π fr : F R. Q (alg (fmap c fr)).

31 / 44

There is no induction principle for FixM.

We define a type FixIndM as an inductive subset of FixM:

FixIndM J ? = ι x : FixM. Inductive x.

For FixIndM to be inhabited, we must express an inductivity
predicate so that the value x : FixM and the proof
p : Inductive x are equal.

FixM J ? = ∀ X : ?. AlgM X → X.

Inductive J FixM → ? = λ x : FixM.
∀ Q : FixM → ?. PrfAlgM FixM Q inM → Q x.

Mendler-style proof-algebras

AlgM J ? → ? = λ X. ∀ R : ?. (R → X) → F R → X.

PrfAlgM J Π A : ?. (A → ?) → (F A → A) → ?
= λ A. λ Q. λ alg.

∀ R : ?. ∀ c : R → A. ∀ e : (Π r : R. c r ' r).
(Π r : R. Q (c r)) →
Π fr : F R. Q (alg (fmap c fr)).

32 / 44

Mendler-style induction principle

The collection of constructors of type FixIndM is expressed by
Church-algebra

inFixIndM J F FixIndM → FixIndM = <..>

Induction principle

induction J ∀ Q : FixIndM → ?.
PrfAlgM FixIndM Q inFixIndM →
Π x : FixIndM. Q x = <..>

Cancellation law:

indHom J ∀ Q palg x.
induction palg (inFixInd x) ' palg (induction palg) x
= Λ Q. Λ palg. Λ x. β.

Can we define a a proof-algebra which erases to lambda term
λ x. λ y. y?

33 / 44

Mendler-style induction principle

The collection of constructors of type FixIndM is expressed by
Church-algebra

inFixIndM J F FixIndM → FixIndM = <..>

Induction principle

induction J ∀ Q : FixIndM → ?.
PrfAlgM FixIndM Q inFixIndM →
Π x : FixIndM. Q x = <..>

Cancellation law:

indHom J ∀ Q palg x.
induction palg (inFixInd x) ' palg (induction palg) x
= Λ Q. Λ palg. Λ x. β.

Can we define a a proof-algebra which erases to lambda term
λ x. λ y. y?

34 / 44

Mendler-style induction principle

The collection of constructors of type FixIndM is expressed by
Church-algebra

inFixIndM J F FixIndM → FixIndM = <..>

Induction principle

induction J ∀ Q : FixIndM → ?.
PrfAlgM FixIndM Q inFixIndM →
Π x : FixIndM. Q x = <..>

Cancellation law:

indHom J ∀ Q palg x.
induction palg (inFixInd x) ' palg (induction palg) x
= Λ Q. Λ palg. Λ x. β.

Can we define a a proof-algebra which erases to lambda term
λ x. λ y. y?

35 / 44

Constant-time destructor

outAlgM J PrfAlgM FixIndM (λ _. F FixIndM) inFixIndM
= Λ R. Λ c. Λ e. λ x. λ y. [y , c y { e y }].2.

Finally, we arrive at the generic constant-time linear-space destructor
of inductive datatypes:

outFixIndM J FixInd → F FixInd = induction outAlgM.

Since outFixIndM is constant-time then we get Lambek’s Lemma as
an easy consequence

lambek1 J Π x: F FixInd. outFixIndM (inFixIndM x) ' x
= λ x. β.

lambek2 J Π x: FixIndM. inFixIndM (outFixIndM x) ' x
= λ x. induction (Λ R. Λ c. Λ e. λ ih. λ fr. β) x.

36 / 44

Constant-time destructor

outAlgM J PrfAlgM FixIndM (λ _. F FixIndM) inFixIndM
= Λ R. Λ c. Λ e. λ x. λ y. [y , c y { e y }].2.

Finally, we arrive at the generic constant-time linear-space destructor
of inductive datatypes:

outFixIndM J FixInd → F FixInd = induction outAlgM.

Since outFixIndM is constant-time then we get Lambek’s Lemma as
an easy consequence

lambek1 J Π x: F FixInd. outFixIndM (inFixIndM x) ' x
= λ x. β.

lambek2 J Π x: FixIndM. inFixIndM (outFixIndM x) ' x
= λ x. induction (Λ R. Λ c. Λ e. λ ih. λ fr. β) x.

37 / 44

Constant-time destructor

outAlgM J PrfAlgM FixIndM (λ _. F FixIndM) inFixIndM
= Λ R. Λ c. Λ e. λ x. λ y. [y , c y { e y }].2.

Finally, we arrive at the generic constant-time linear-space destructor
of inductive datatypes:

outFixIndM J FixInd → F FixInd = induction outAlgM.

Since outFixIndM is constant-time then we get Lambek’s Lemma as
an easy consequence

lambek1 J Π x: F FixInd. outFixIndM (inFixIndM x) ' x
= λ x. β.

lambek2 J Π x: FixIndM. inFixIndM (outFixIndM x) ' x
= λ x. induction (Λ R. Λ c. Λ e. λ ih. λ fr. β) x.

38 / 44

Example: Natural numbers

Natural numbers arise as least fixed point of a scheme NF

NF J ? → ? = λ X : ?. Unit + X.

Nat J ? = FixIndM NF.

Constructors

zero J Nat = inFixIndM (in1 unit).

suc J Nat → Nat = λ n. inFixIndM (in2 n).

Constructor suc has the following underlying lambda-term
suc n ' λ alg. (alg (λ f. (f alg)) (λ i. λ j. (j n))).
Constant-time predecessor

pred J Nat → Nat

= λ n. case (outFixIndM n) (λ _. zero) (λ m. m).

39 / 44

Identity mappings instead of functors

The described developments are well-justified for any functor

Functor J (? → ?) → ? = λ F.
Σ fmap : ∀ X Y : ?. (X → Y) → F X → F Y.

IdentityLaw fmap × CompositionLaw fmap.

Surprisingly, the construction can be easily generalized to the larger
class of schemes we call identity mappings

IdMapping J (? → ?) → ? = λ F.
∀ X Y : ?. Id X Y → Id (F X) (F Y).

Every functor is identity mapping

fm2im J ∀ F : ? → ?. Functor F → IdMapping F = <..>

Converse is not true

UneqPair J ? → ? = λ X. Σ x1 x2 : X. x1 6= x2.
Identity mappings induce a large class of datatypes (including
infinitary and non-strictly positive datatypes).

40 / 44

Identity mappings instead of functors

The described developments are well-justified for any functor

Functor J (? → ?) → ? = λ F.
Σ fmap : ∀ X Y : ?. (X → Y) → F X → F Y.

IdentityLaw fmap × CompositionLaw fmap.
Surprisingly, the construction can be easily generalized to the larger
class of schemes we call identity mappings

IdMapping J (? → ?) → ? = λ F.
∀ X Y : ?. Id X Y → Id (F X) (F Y).

Every functor is identity mapping

fm2im J ∀ F : ? → ?. Functor F → IdMapping F = <..>

Converse is not true

UneqPair J ? → ? = λ X. Σ x1 x2 : X. x1 6= x2.
Identity mappings induce a large class of datatypes (including
infinitary and non-strictly positive datatypes).

41 / 44

Identity mappings instead of functors

The described developments are well-justified for any functor

Functor J (? → ?) → ? = λ F.
Σ fmap : ∀ X Y : ?. (X → Y) → F X → F Y.

IdentityLaw fmap × CompositionLaw fmap.
Surprisingly, the construction can be easily generalized to the larger
class of schemes we call identity mappings

IdMapping J (? → ?) → ? = λ F.
∀ X Y : ?. Id X Y → Id (F X) (F Y).

Every functor is identity mapping

fm2im J ∀ F : ? → ?. Functor F → IdMapping F = <..>

Converse is not true

UneqPair J ? → ? = λ X. Σ x1 x2 : X. x1 6= x2.
Identity mappings induce a large class of datatypes (including
infinitary and non-strictly positive datatypes).

42 / 44

Identity mappings instead of functors

The described developments are well-justified for any functor

Functor J (? → ?) → ? = λ F.
Σ fmap : ∀ X Y : ?. (X → Y) → F X → F Y.

IdentityLaw fmap × CompositionLaw fmap.
Surprisingly, the construction can be easily generalized to the larger
class of schemes we call identity mappings

IdMapping J (? → ?) → ? = λ F.
∀ X Y : ?. Id X Y → Id (F X) (F Y).

Every functor is identity mapping

fm2im J ∀ F : ? → ?. Functor F → IdMapping F = <..>

Converse is not true

UneqPair J ? → ? = λ X. Σ x1 x2 : X. x1 6= x2.
Identity mappings induce a large class of datatypes (including
infinitary and non-strictly positive datatypes).

43 / 44

There is more!

We generically define course-of-value datatypes and implement
dependent histomorphisms. We do this by defining a least fixed point
of a coend of “negative” scheme.

Lift J (? → ?) → ? → ? = λ F. λ X. F X × (X → F X).

FixCoV J (? → ?) → ? = λ F. FixIndM (Coend (Lift F)).

In a similar way, we generically derive (small) inductive-recursive
datatypes and derive the respective dependent elimination.

44 / 44

Thank you!

45 / 44

