
FastJet user manual
(for version 3.4.3)

Matteo Cacciari,1,2 Gavin P. Salam3,4 and Gregory Soyez5
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Abstract

FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It
includes efficient native implementations of all widely used 2 → 1 sequential recombination jet
algorithms for pp and e+e− collisions, as well as access to 3rd party jet algorithms through a
plugin mechanism, including all currently used cone algorithms. FastJet also provides means
to facilitate the manipulation of jet substructure, including some common boosted heavy-object
taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination
of jet areas and subtraction or suppression of noise in jets.
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1 Introduction

Jets are the collimated sprays of hadrons that result from the fragmentation of a high-energy quark or
gluon. They tend to be visually obvious structures when one looks at an experimental event display,
and by measuring their energy and direction one can approach the idea of the original “parton” that
produced them. Consequently jets are both an intuitive and quantitatively essential part of collider
experiments, used in a vast array of analyses, from new physics searches to studies of Quantum
Chromodynamics (QCD). For any tool to be so widely used, its behaviour must be well defined and
reproducible: it is not sufficient that one be able to visually identify jets, but rather one should have
rules that project a set of particles onto a set of jets. Such a set of rules is referred to as a jet algorithm.
Usually a jet algorithm involves one or more parameters that govern its detailed behaviour. The
combination of a jet algorithm and its parameters is known as a jet definition. Suitable jet definitions
can be applied to particles, calorimeter towers, or even to the partonic events of perturbative QCD
calculations, with the feature that the jets resulting from these different kinds of input are not just
physically close to the concept of partons, but can be meaningfully be compared to each other.

Jet finding dates back to seminal work by Sterman and Weinberg [1] and several reviews have been
written describing the various kinds of jet finders, their different uses and properties, and even the
history of the field, for example [2, 3, 4, 5, 6].

It is possible to classify most jet algorithms into one of two broad classes: sequential recombination
algorithms and cone algorithms.

Sequential recombination algorithms usually identify the pair of particles that are closest in some
distance measure, recombine them, and then repeat the procedure over and again, until some stop-
ping criterion is reached. The distance measure is usually related to the structure of divergences in
perturbative QCD. The various sequential recombination algorithms differ mainly in their particular
choices of distance measure and stopping criterion.

Cone algorithms put together particles within specific conical angular regions, notably such that
the momentum sum of the particles contained in a given cone coincides with the cone axis (a “stable
cone”). Because QCD radiation and hadronisation leaves the direction of a parton’s energy flow
essentially unchanged, the stable cones are physically close in direction and energy to the original
partons. Differences between various cone algorithms are essentially to do with the strategy taken to
search for the stable cones (e.g. whether iterative or exhaustive) and the procedure used to deal with
cases where the same particle is found in multiple stable cones (e.g. split–merge procedures).

One of the aims of the FastJet C++ library is to provide straightforward, efficient implementations
for the majority of widely used sequential-recombination algorithms, both for hadron-hadron and e+e−

colliders, and easy access also to cone-type jet algorithms. It is distributed under the terms of the
GNU General Public License (GPL), either version 2 of the License [7] or (at your option) any later
version.

To help introduce the terminology used throughout FastJet and this manual, let us consider the
longitudinally-invariant kt algorithm for hadron colliders [8, 9]. This was the first jet algorithm to be
implemented in FastJet [10] and its structure, together with that of other sequential recombination
algorithms, has played a key role in the design of FastJet’s interface. The kt algorithm involves a
(symmetric) distance measure, dij, between all pairs of particles i and j,

dij = dji = min(p2ti, p
2
tj)

∆R2
ij

R2
, (1)

where pti is the transverse momentum of particle i with respect to the beam (z) direction and ∆R2
ij =
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(yi − yj)
2 + (ϕi − ϕj)

2, with yi = 1
2
ln Ei+pzi

Ei−pzi
and ϕi respectively i’s rapidity and azimuth. The kt

algorithm also involves a distance measure between every particle i and the beam

diB = p2ti . (2)

R in eq. (1), usually called the jet radius, is a parameter of the algorithm that determines its angular
reach. In the original, so-called “exclusive” formulation of the kt algorithm [8] (proposed with R ≡ 1),
one identifies the smallest of the dij and diB. If it is a dij, one replaces i and j with a single new
object whose momentum is pi + pj — often this object is called a “pseudojet”, since it is neither a
particle, nor yet a full jet.1 If instead the smallest distance is a diB, then one removes i from the list
of particles/pseudojets and declares it to be part of the “beam” jet. One repeats this procedure until
the smallest dij or diB is above some threshold dcut; all particles/pseudojets that are left are then that
event’s (non-beam) jets.2

In the “inclusive” formulation of the kt algorithm [9], the dij and diB distances are the same
as above. The only difference is that when a diB is smallest, then i is removed from the list of
particles/pseudojets and added to the list of final “inclusive” jets (this is instead of being incorporated
into a beam jet). There is no dcut threshold and the clustering continues until no particles/pseudojets
remain. Of the final jets, generally only those above some transverse momentum are actually used.3

Because the distance measures are the same in the inclusive and exclusive algorithms, the clustering
sequence is common to both formulations (at least up to dcut), a property that will be reflected in
FastJet’s common interface to both formulations.

Having seen these descriptions, the reader may wonder why a special library is needed for
sequential-recombination jet finding. Indeed, the kt algorithm can be easily implemented in just a
few dozen lines of code. The difficulty that arises, however, is that at hadron colliders, clustering is
often performed with several hundreds or even thousands of particles. Given N particles, there are
N(N − 1)/2 dij distances to calculate, and since one must identify the smallest of these O (N2)
distances at each of O (N) iterations of the algorithm, original implementations of the kt
algorithm [11, 12] involved O (N3) operations to perform the clustering. In practice this translates
to about 1 s for N = 1000. Given that events with pileup can have multiplicities significantly in
excess of 1000 and that it can be necessary to cluster hundreds of millions of events, N3 timing
quickly becomes prohibitive, all the more so in time-critical contexts such as online triggers. To
alleviate this problem, FastJet makes use of the observation [10] that the smallest pairwise distance
remains the same if one uses the following alternative (non-symmetric) dij distance measure:

dij = p2ti
∆R2

ij

R2
, dji = p2tj

∆R2
ij

R2
(3)

For a given i, the smallest of the dij is simply found by choosing the j that minimises the ∆Rij,
i.e. by identifying i’s geometrical nearest neighbour on the y − ϕ cylinder. Geometry adds many
constraints to closest pair and nearest neighbour type problems, e.g. if i is geometrically close to k
and j is geometrically close to k, then i and j are also geometrically close; such a property is not
true for the dij. The factorisation of the problem into momentum and geometrical parts makes it
possible to calculate and search for minima among a much smaller set of distances. This is sufficiently

1In FastJet we actually will use PseudoJet to denote any generic object with 4-momentum.
2One can also choose to have the exclusive algorithm stop when it reaches a configuration with a predetermined

number of remaining particles/pseudojets, which then become the event’s (non-beam) jets.
3This transverse momentum cut has some similarity to dcut in the exclusive case, since in the exclusive case pseudojets

with pt <
√
dcut become part of the beam jets, i.e. are discarded.
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powerful that with the help of the external Computational Geometry Algorithms Library (CGAL) [13]
(specifically, its Delaunay triangulation modules), FastJet achieves expected N lnN timing for many
sequential recombination algorithms. This N lnN strategy is supplemented in FastJet with several
other implementations, also partially based on geometry, which help optimise clustering speed up
to moderately large multiplicities, N ≲ 30000. The timing for N = 1000 is thus reduced to a few
milliseconds. The same techniques apply to a range of sequential recombination algorithms, described
in section 4.

At the time of writing, sequential recombination jet algorithms are the main kind of algorithm in
use at CERN’s Large Hadron Collider (LHC), notably the anti-kt algorithm [14], which simply replaces
p2t with p−2

t in eqs. (1,2). Sequential recombination algorithms were also widely used at HERA and
LEP. However at Fermilab’s Tevatron, and in much preparatory LHC work, cone algorithms were
used for nearly all studies. For theoretical and phenomenological comparisons with these results, it is
therefore useful to have straightforward access also to cone algorithm codes. The main challenge that
would be faced by someone wishing to write their own implementation of a given cone algorithm comes
from the large number of details that enter into a full specification of such algorithms, e.g. the precise
manner in which stable cones are found, or in which the split–merge step is carried out. The complexity
is such that in many cases the written descriptions that exist of specific cone algorithms are simply
insufficient to allow a user to correctly implement them. Fortunately, in most cases, the authors of
cone algorithms have provided public implementations and these serve as a reference for the algorithm.
While each tends to involve a different interface, a different 4-momentum type, etc., FastJet has a
“plugin” mechanism, which makes it possible to provide a uniform interface to these different third
party jet algorithms. Many plugins (and the corresponding third party code) are distributed with
FastJet. Together with the natively-implemented sequential-recombination algorithms, they ensure
easy access to all jet algorithms used at colliders in the past decade (section 5). Our distribution of
this codebase is complemented with some limited curatorial activity, e.g. solving bugs that become
apparent when updating compiler versions, providing a common build infrastructure, etc.

In the past few years, research into jets has evolved significantly beyond the question of just
“finding” jets. This has been spurred by two characteristics of CERN’s LHC experimental programme.
The first is that the LHC starts to probe momentum scales that are far above the the electroweak scale,
MEW , e.g. in the search for new particles or the study of high-energy WW scattering. However, even
in events with transverse momenta ≫ MEW , there can simultaneously be hadronic physics occurring
on the electroweak scale (e.g. hadronic W decays). Jet finding then becomes a multi-scale problem,
one manifestation of which is that hadronic decays of W’s, Z’s and top quarks may be so collimated
that they are entirely contained within a single jet. The study of this kind of problem has led to
the development of a wide array of jet substructure tools for identifying “boosted” object decays, as
reviewed in [15]. As was the situation with cone algorithms a few years ago, there is considerable
fragmentation among these different tools, with some public code available from a range of different
sources, but interfaces that differ from one tool to the next. Furthermore, the facilities provided with
version 2 of FastJet did not always easily accommodate tools to manipulate and transform jets.
Version 3 of FastJet aims to improve this situation, providing implementations of the most common
jet substructure tools4 and a framework to help guide third party authors who wish to write further
such tools using a standard interface (section 9). In the near future we also envisage the creation of
a FastJet “contrib” space, to provide a common location for access to these new tools as they are
developed.

4To some extent there is overlap here with SpartyJet [16], however we believe there are benefits to being able to
easily carry jet structure manipulations natively within the framework of FastJet.
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The second characteristic of the LHC that motivates facilities beyond simple jet finding in FastJet

is the need to use jets in high-noise environments. This is the case for proton-proton (pp) collisions,
where in addition to the pp collision of interest there are many additional soft “pileup” pp collisions,
which contaminate jets with a high density of low-momentum particles. A similar problem of “back-
ground contamination” arises also for heavy-ion collisions (also at RHIC) where the underlying event
in the nuclear collision can generate over a TeV of transverse momentum per unit rapidity, part of
which contaminates any hard jets that are present. One way of correcting for this involves the use of
jet “areas”, which provide a measure of a given jet’s susceptibility to soft contamination. Jet areas can
be determined for example by examining the clustering of a large number of additional, infinitesimally
soft “ghost” particles [17]. Together with a determination of the level of pileup or underlying-event
noise in a specific event, one can then perform event-by-event and jet-by-jet subtraction of the con-
tamination [18, 19]. FastJet allows jet clustering to be performed in such a way that the jet areas
are determined at the same time as the jets are identified, simply by providing an “area definition”
in addition to the jet definition (section 7). Furthermore it provides the tools needed to estimate the
density of noise contamination in an event and to subtract the appropriate amount of noise from each
jet (section 8). The interface here shares a number of characteristics with the substructure tools, some
of which also serve to remove noise contamination. Both the substructure and pileup removal make
use also of a “selectors” framework for specifying and combining simple cuts (section 6).

While FastJet provides a broad range of facilities, usage for basic jet finding is straightforward.
To illustrate this, a quick-start guide is provided in section 2, while the core classes (PseudoJet,
JetDefinition and ClusterSequence) are described in section 3. For more advanced usage, one of the
design considerations in FastJet has been to favour user extensibility, for example through plugins,
selectors, tools, etc. This is one of the topics covered in the appendices. Further information is also
available from the extensive “doxygen” documentation, available online at http://fastjet.fr.

2 Quick-start guide

For the impatient, the FastJet package can be set up and run as follows.

� Download the code and the unpack it

curl -O http://fastjet.fr/repo/fastjet-X.Y.Z.tar.gz

tar zxvf fastjet-X.Y.Z.tar.gz

cd fastjet-X.Y.Z/

replacing X.Y.Z with the appropriate version number. On some systems you may need to replace
“curl -O” with “wget”.

� Compile and install (choose your own preferred prefix), and when you’re done go back to the
original directory

./configure --prefix=‘pwd‘/../fastjet-install

make

make check

make install

cd ..

9
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You should note that the first line contains back-quotes not forward quotes, but that if you
copy and paste the above lines from one very widespread PDF viewer, it may nevertheless paste
forward quotes, causing problems down the line (the issue arises again below).

� Now paste the following piece of code into a file called short-example.cc

#include "fastjet/ClusterSequence.hh"

#include <iostream>

using namespace fastjet;

using namespace std;

int main () {

vector<PseudoJet> particles;

// an event with three particles: px py pz E

particles.push_back( PseudoJet( 99.0, 0.1, 0, 100.0) );

particles.push_back( PseudoJet( 4.0, -0.1, 0, 5.0) );

particles.push_back( PseudoJet( -99.0, 0, 0, 99.0) );

// choose a jet definition

double R = 0.7;

JetDefinition jet_def(antikt_algorithm, R);

// run the clustering, extract the jets

ClusterSequence cs(particles, jet_def);

vector<PseudoJet> jets = sorted_by_pt(cs.inclusive_jets());

// print out some info

cout << "Clustered with " << jet_def.description() << endl;

// print the jets

cout << " pt y phi" << endl;

for (unsigned i = 0; i < jets.size(); i++) {

cout << "jet " << i << ": "<< jets[i].pt() << " "

<< jets[i].rap() << " " << jets[i].phi() << endl;

vector<PseudoJet> constituents = jets[i].constituents();

for (unsigned j = 0; j < constituents.size(); j++) {

cout << " constituent " << j << "’s pt: "<< constituents[j].pt() << endl;

}

}

}

� Then compile and run it with

g++ short-example.cc -o short-example \

‘fastjet-install/bin/fastjet-config --cxxflags --libs --plugins‘

./short-example

(watch out, once again, for the back-quotes if you cut and paste from the PDF).

The output will consist of a banner, followed by the lines
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Clustering with Longitudinally invariant anti-kt algorithm with R = 0.7

and E scheme recombination

pt y phi

jet 0: 103 0 0

constituent 0’s pt: 99.0001

constituent 1’s pt: 4.00125

jet 1: 99 0 3.14159

constituent 0’s pt: 99

More evolved example programs, illustrating many of the capabilities of FastJet, are available in
the example/ subdirectory of the FastJet distribution.

3 Core classes

All classes are contained in the fastjet namespace. For brevity this namespace will usually not be
explicitly written below, with the possible exception of the first appearance of a FastJet class, and
code excerpts will assume that a “using namespace fastjet;” statement is present in the user code.
For basic usage, the user is exposed to three main classes:

class fastjet::PseudoJet;

class fastjet::JetDefinition;

class fastjet::ClusterSequence;

PseudoJet provides a jet object with a four-momentum and some internal indices to situate it in
the context of a jet-clustering sequence. The class JetDefinition contains a specification of how jet
clustering is to be performed. ClusterSequence is the class that carries out jet-clustering and provides
access to the final jets.

3.1 fastjet::PseudoJet

All jets, as well as input particles to the clustering (optionally) are PseudoJet objects. They can be
created using one of the following constructors

PseudoJet (double px, double py, double pz, double E);

template<class T> PseudoJet (const T & some_lorentz_vector);

where the second form allows the initialisation to be obtained from any class T that allows subscripting
to return the components of the momentum (running from 0 . . . 3 in the order px, py, pz, E). The default
constructor for a PseudoJet sets the momentum components to zero.

The PseudoJet class includes the following member functions for accessing the components

double E() const ; // returns the energy component

double e() const ; // returns the energy component

double px() const ; // returns the x momentum component

double py() const ; // returns the y momentum component

double pz() const ; // returns the z momentum component

double phi() const ; // returns the azimuthal angle in range 0 . . . 2π
double phi_std() const ; // returns the azimuthal angle in range −π . . . π
double rap() const ; // returns the rapidity
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double rapidity() const ; // returns the rapidity

double pseudorapidity() const ; // returns the pseudo-rapidity

double eta() const ; // returns the pseudo-rapidity

double pt2() const ; // returns the squared transverse momentum

double pt() const ; // returns the transverse momentum

double perp2() const ; // returns the squared transverse momentum

double perp() const ; // returns the transverse momentum

double m2() const ; // returns squared invariant mass

double m() const ; // returns invariant mass (−
√
−m2 if m2 < 0)

double mt2() const ; // returns the squared transverse mass = k2t +m2

double mt() const ; // returns the transverse mass

double mperp2() const ; // returns the squared transverse mass = k2t +m2

double mperp() const ; // returns the transverse mass

double operator[] (int i) const; // returns component i

double operator() (int i) const; // returns component i

/// return a valarray containing the four-momentum (components 0-2

/// are 3-momentum, component 3 is energy).

valarray<double> four_mom() const;

The reader may have observed that in some cases more than one name can be used to access the same
quantity. This is intended to reflect the diversity of common usages within the community.5

There are two ways of associating user information with a PseudoJet. The simpler method is
through an integer called the user index

/// set the user_index, intended to allow the user to label the object (default is -1)

void set_user_index(const int index);

/// return the user_index

int user_index() const ;

A more powerful method, new in FastJet 3, involves passing a pointer to a derived class of
PseudoJet::UserInfoBase. The two essential calls are

/// set the pointer to user information (the PseudoJet will then own it)

void set_user_info(UserInfoBase * user_info);

/// retrieve a reference to a dynamic cast of type L of the user info

template<class L> const L & user_info() const;

Further details are to be found in appendix B and in example/09-user info.cc.

A PseudoJet can be reset with

/// Reset the 4-momentum according to the supplied components, put the user

/// and history indices and user info back to their default values (-1, unset)

inline void reset(double px, double py, double pz, double E);

/// Reset just the 4-momentum according to the supplied components,

/// all other information is left unchanged

inline void reset_momentum(double px, double py, double pz, double E);

and similarly taking as argument a templated some_lorentz_vector or a PseudoJet (in the latter
case, or when some_lorentz_vector is of a type derived from PseudoJet, reset also copies the user
and internal indices and user-info).

5The pt(), pt2(), mt(), mt2() names are available only from version 3.0.1 onwards.
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Additionally, the +, -, * and / operators are defined, with +, - acting on pairs of PseudoJets and *,
/ acting on a PseudoJet and a double coefficient. The analogous +=, etc., operators, are also defined.6

There are also equality testing operators: (jet1 == jet2) returns true if the two jets have identical
4-momenta, structural information and user information; the (jet == 0.0) test returns true if all the
components of the 4-momentum are zero. The != operator works analogously.

Finally, we also provide routines for taking an unsorted vector of PseudoJets and returning a sorted
vector,

/// return a vector of jets sorted into decreasing transverse momentum

vector<PseudoJet> sorted_by_pt(const vector<PseudoJet> & jets);

/// return a vector of jets sorted into increasing rapidity

vector<PseudoJet> sorted_by_rapidity(const vector<PseudoJet> & jets);

/// return a vector of jets sorted into decreasing energy

vector<PseudoJet> sorted_by_E(const vector<PseudoJet> & jets);

These will typically be used on the jets returned by ClusterSequence.

A number of further PseudoJetmember functions provide access to information on a jet’s structure.
They are documented below in sections 3.5 and 3.6.

3.2 fastjet::JetDefinition

The class JetDefinition contains a full specification of how to carry out the clustering. According to
the Les Houches convention detailed in [20], a ‘jet definition’ should include the jet algorithm name,
its parameters (often the radius R) and the recombination scheme. Its constructor is

JetDefinition(fastjet::JetAlgorithm jet_algorithm,

double R,

fastjet::RecombinationScheme recomb_scheme = E_scheme,

fastjet::Strategy strategy = Best);

The jet algorithm is one of the entries of the JetAlgorithm enum:7

enum JetAlgorithm {kt_algorithm, cambridge_algorithm,

antikt_algorithm, genkt_algorithm,

ee_kt_algorithm, ee_genkt_algorithm, ...};

Each algorithm is described in detail in section 4. The . . . represent additional values that are present
for internal or testing purposes. They include plugin algorithm, automatically set when plugins
are used (section 5) and undefined jet algorithm, which is the value set in JetDefinition’s default
constructor.

6The +, - operators return a PseudoJet with default user information; the * and / operators return a PseudoJet

with the same user information as the original PseudoJet; the +=, -=, etc., operators all preserve the user information
of the PseudoJet on the left-hand side of the operator.

7As of v2.3, the JetAlgorithm name replaces the old JetFinder one, in keeping with the Les Houches convention.
Backward compatibility is assured at the user level by a typedef and a doubling of the methods’ names. Backward
compatibility (with versions < 2.3) is however broken for user-written derived classes of ClusterSequence, as the
protected variables default jet finder and jet finder have been replaced by default jet algorithm and
jet algorithm.
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The parameter R specifies the value of R that appears in eq. (1) and in the various definitions of
section 4. For one algorithm, ee_kt_algorithm, there is no R parameter, so the constructor is to be
called without the R argument. For the generalised kt algorithm and its e+e− version, one requires
R and (immediately after R) an extra parameter p. Details are to be found in sections 4.4–4.6. If
the user calls a constructor with the incorrect number of arguments for the requested jet algorithm,
a fastjet::Error() exception will be thrown with an explanatory message.

The recombination scheme is set by an enum of type RecombinationScheme, and it is related to
the choice of how to recombine the 4-momenta of PseudoJets during the clustering procedure. The
default in FastJet is the E-scheme, where the four components of two 4-vectors are simply added.
This scheme is used when no explicit choice is made in the constructor. Further recombination schemes
are described below in section 3.4.

The strategy selects the algorithmic strategy to use while clustering and is an enum of type Strategy.
The default option of Best automatically determines and selects a strategy that should be close to
optimal in speed for each event, based on its multiplicity. A discussion of the main available strategies
together with their performance is given in appendix A. Different strategies give identical clustering
results, except potentially in the presence of distance degeneracies, where different strategies may
resolve those degeneracies differently.

A textual description of the jet definition can be obtained by a call to the member function
std::string description().

As of FastJet version 3.1, the JetDefinition class allows one to directly perform the clustering
and access the inclusive jets through a () operator:

template<class L> std::vector<PseudoJet> JetDefinition::operator()(

const std::vector<L> & particles

) const;

Doing

fastjet::JetDefinition AKT4(fastjet::antikt_algorithm,0.4);

vector<fastjet::PseudoJet> akt4_jets = AKT4(particles);

returns the list of all the inclusive jets given by clustering with the anti-kt algorithm with radius
parameter R = 0.4. Jets from the anti-kt algorithm and other hadron-collider algorithms are returned
sorted in decreasing transverse momentum, while those from e+e− algorithms are returned sorted in
decreasing energy. This behaviour differs from that of ClusterSequence::inclusive jets(), where
the ordering of the jets is not a priori determined (i.e. the user must manually sort the jets themselves).

3.3 fastjet::ClusterSequence

To run the jet clustering, create a ClusterSequence object through the following constructor

template<class L> ClusterSequence(const std::vector<L> & input_particles,

const JetDefinition & jet_def);

where input particles is the vector of initial particles of any type (PseudoJet, HepLorentzVector,
etc.) that can be used to initialise a PseudoJet and jet def contains the full specification of the
clustering (see Section 3.2).
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3.3.1 Accessing inclusive jets

Inclusive jets correspond to all objects that have undergone a “beam” clustering (i.e. diB recombina-
tion) in the description following Eq. (2). For nearly all hadron-collider algorithms, the “inclusive”
jets above some given transverse momentum cut are the ones usually just referred to as the “jets”.

To access inclusive jets, the following member function should be used

/// return a vector of all jets (in the sense of the inclusive

/// algorithm) with pt >= ptmin.

vector<PseudoJet> inclusive_jets (const double ptmin = 0.0) const;

where ptmin may be omitted, then implicitly taking the value zero. Note that the order in which
the inclusive jets are provided depends on the jet algorithm. To obtain a specific ordering, such as
decreasing pt, the user should perform a sort themselves, e.g. with the sorted by pt(...) function,
described in section 3.1.

With a zero transverse momentum cut, the number of jets found in the event is not an infrared
safe quantity (adding a single soft particle can lead to one extra soft jet). However it can still be
useful to talk of all the objects returned by inclusive jets() as being “jets”, e.g. in the context of
the estimation underlying-event and pileup densities, cf. section 8.

3.3.2 Accessing exclusive jets

There are two ways of accessing exclusive jets, one where one specifies dcut, the other where one
specifies that the clustering is taken to be stopped once it reaches the specified number of jets.

/// return a vector of all jets (in the sense of the exclusive algorithm) that would

/// be obtained when running the algorithm with the given dcut.

vector<PseudoJet> exclusive_jets (const double dcut) const;

/// return a vector of all jets when the event is clustered (in the exclusive sense)

/// to exactly njets. Throws an error if the event has fewer than njets particles.

vector<PseudoJet> exclusive_jets (const int njets) const;

/// return a vector of all jets when the event is clustered (in the exclusive sense)

/// to exactly njets. If the event has fewer than njets particles, it returns all

/// available particles.

vector<PseudoJet> exclusive_jets_up_to (const int njets) const;

The user may also wish just to obtain information about the number of jets in the exclusive algorithm:

/// return the number of jets (in the sense of the exclusive algorithm) that would

/// be obtained when running the algorithm with the given dcut.

int n_exclusive_jets (const double dcut) const;

Another common query is to establish the dmin value associated with merging from n + 1 to n jets.
Two member functions are available for determining this:

/// return the dmin corresponding to the recombination that went from n+1 to n jets

/// (sometimes known as dn,n+1).

double exclusive_dmerge (const int n) const;
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/// return the maximum of the dmin encountered during all recombinations up to the one

/// that led to an n-jet final state; identical to exclusive_dmerge, except in cases

/// where the dmin do not increase monotonically.

double exclusive_dmerge_max (const int n) const;

The first returns the dmin in going from n + 1 to n jets. Occasionally however the dmin value does
not increase monotonically during successive mergings and using a dcut smaller than the return value
from exclusive dmerge does not guarantee an event with more than n jets. For this reason the second
function exclusive dmerge max is provided — using a dcut below its return value is guaranteed to
provide a final state with more than n jets, while using a larger value will return a final state with n
or fewer jets.

For e+e− collisions, where it is usual to refer to yij = dij/Q
2 (Q is the total (visible) energy)

FastJet provides the following methods:

double exclusive_ymerge (int njets);

double exclusive_ymerge_max (int njets);

int n_exclusive_jets_ycut (double ycut);

std::vector<PseudoJet> exclusive_jets_ycut (double ycut);

which are relevant for use with the e+e− kt algorithm and with the Jade plugin (section 5.4.2).

3.3.3 Other functionality

Unclustered particles. Some jet algorithms (e.g. a number of the plugins in section 5) have the
property that not all particles necessarily participate in the clustering. In other cases, particles may
take part in the clustering, but not end up in any final inclusive jet. Two member functions are
provided to obtain the list of these particles. One is

vector<PseudoJet> unclustered = clust_seq.unclustered_particles();

which returns the list of particles that never took part in the clustering. The other additionally returns
objects that are the result of clustering but that never made it into a inclusive jet (i.e. into a “beam”
recombination):

vector<PseudoJet> childless = clust_seq.childless_pseudojets();

A practical example where this is relevant is with plugins that perform pruning [21], since they include
a condition for vetoing certain recombinations.8

Copying and transforming a ClusterSequence. A standard copy constructor is available for
ClusterSequences. Additionally it is possible to copy the clustering history of a ClusterSequence while
modifying the momenta of the PseudoJets at all (initial, intermediate, final) stages of the clustering,
with the ClusterSequence member function

void transfer_from_sequence(const ClusterSequence & original_cs,

const FunctionOfPseudoJet<PseudoJet> * action_on_jets = 0);

FunctionOfPseudoJet<PseudoJet> is an abstract base class whose interface provides a PseudoJet

operator()(const PseudoJet & jet) function, i.e. a function of a PseudoJet that returns a PseudoJet

8To obtain the list of all initial particles that never end up in any inclusive jet, one should simply concatenate the
vectors of constituents of all the childless PseudoJets.

16



E scheme

pt scheme

pt2 scheme

Et scheme

Et2 scheme

BIpt scheme

BIpt2 scheme

WTA pt scheme

WTA modp scheme

Table 1: Members of the RecombinationScheme enum; the schemes prefixed by “BI” boost-invariant
version of the pt and p2t schemes (as defined in section 3.4).

(cf. appendix D). As the clustering history is copied to the target ClusterSequence, each PseudoJet

in the target ClusterSequence is set to the result of action on jet(original pseudojet). One use
case for this is if one wishes to obtain a Lorentz-boosted copy of a ClusterSequence, which can be
achieved as follows

#include "fastjet/tools/Boost.hh"

// ...

ClusterSequence original_cs(...);

ClusterSequence boosted_cs;

Boost boost(boost_4momentum);

boosted_cs.transfer_from_sequence(cs, &boost);

3.4 Recombination schemes

When merging particles (i.e. PseudoJets) during the clustering procedure, one must specify how to
combine the momenta. The simplest procedure (E-scheme) simply adds the four-vectors. This has
been advocated as a standard in [3], was the main scheme in use during Run II of the Tevatron, is
currently used by the LHC experiments, and is the default option in FastJet. Other choices are listed
in table 1, and are described below.

Other schemes for pp collisions. Other schemes provided by earlier kt-clustering implementations
[11, 12] are the pt, p

2
t , Et and E2

t schemes. They all incorporate a ‘preprocessing’ stage to make the
initial momenta massless (rescaling the energy to be equal to the 3-momentum for the pt and p2t
schemes, rescaling to the 3-momentum to be equal to the energy in the Et and E2

t schemes). Then
for all schemes the recombination pr of pi and pj is a massless 4-vector satisfying

pt,r = pt,i + pt,j , (4a)

ϕr = (wiϕi + wjϕj)/(wi + wj) , (4b)

yr = (wiyi + wjyj)/(wi + wj) , (4c)

where wi is pt,i for the pt and Et schemes, and is p2t,i for the p2t and E2
t schemes.

Note that for massive particles the schemes defined in the previous paragraph are not invariant
under longitudinal boosts. As a workaround for this issue, we propose boost-invariant pt and p2t
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schemes, which are identical to the normal pt and p2t schemes, except that they omit the preprocessing
stage. They are available as BIpt scheme and BIpt2 scheme.

A generalisation of the pt and p2t schemes is to take a weighting by wi = pnt . An interesting limit is
then n → ∞, referred to as the winner-takes-all scheme (WTA), because the new rapidity and azimuth
in Eq. (4) coincide with those of the harder of the two particles [22]. This gives the WTA pt scheme.
The WTA pt scheme does not perform any preprocessing, but differs from the BIpt... schemes in that
the result of a recombination acquires the mass of the higher-pt of the two particles (instead of setting
the mass to zero). This treatment ensures, for example, that recombination of a massive particle with
an infinitesimally soft particle leaves the mass unchanged.

Other schemes for e+e− collisions. The default E-scheme is a sensible choice also for e+e−

collisions. The only non-standard e+e−-specific scheme currently implemented is the WTA modp scheme,
in which the recombination of pi ad pj points in the direction and has the mass of the particle with
larger 3-vector modulus (|p⃗|), and has a 3-vector modulus |p⃗r| = |p⃗i|+ |p⃗i|. 9

On request, we may in the future provide further dedicated schemes for e+e− collisions.

User-defined schemes. The user may define their own, custom recombination schemes, as de-
scribed in Appendix E.1.

3.5 Constituents and substructure of jets

For any PseudoJet that results from a clustering, the user can obtain information about its con-
stituents, internal substructure, etc., through member functions of the PseudoJet class.10

Jet constituents. The constituents of a given PseudoJet jet can be obtained through

vector<PseudoJet> constituents = jet.constituents();

Note that if the user wishes to identify these constituents with the original particles provided to
ClusterSequence, she or he should have set a unique index for each of the original particles with the
PseudoJet::set user index function. Alternatively more detailed information can also be set through
the user_info facilities of PseudoJet, as discussed in appendix B.

Subjet properties. To obtain the set of subjets at a specific dcut scale inside a given jet, one may
use the following PseudoJet member function:

/// Returns a vector of all subjets of the current jet (in the sense of the exclusive

/// algorithm) that would be obtained when running the algorithm with the given dcut

std::vector<PseudoJet> exclusive_subjets (const double dcut) const;

9It is tempting to define also a WTA E scheme in which the recombination would point in the direction of the
particle with the largest energy. This is however dangerous in situations where the most energetic particle is at rest.
As a consequence, this scheme is not provided in FastJet. A similar consideration applies for a WTA mt scheme.

10This is a new development in version 3 of FastJet. In earlier versions, access to information about a jet’s contents
had to be made through its ClusterSequence. Those forms of access, though not documented here, will be retained
throughout the 3.X series.
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If m jets are found, this takes a time O (m lnm) (owing to the internal use of a priority queue).
Alternatively one may obtain the jet’s constituents, cluster them separately and then carry out an
exclusive jets analysis on the resulting ClusterSequence. The results should be identical. This
second method is mandatory if one wishes to identify subjets with an algorithm that differs from the
one used to find the original jets.

In analogy with the exclusive jets(...) functions of ClusterSequence, PseudoJet also has
exclusive subjets(int nsub) and exclusive subjets up to(int nsub) functions.

One can also make use of the following methods, which allow one to follow the merging sequence
(and walk back through it):

/// If the jet has parents in the clustering, returns true and sets parent1 and parent2

/// equal to them. If it has no parents returns false and sets parent1 and parent2 to 0

bool has_parents(PseudoJet & parent1, PseudoJet & parent2) const;

/// If the jet has a child then returns true and sets the child jet otherwise returns

/// false and sets the child to 0

bool has_child(PseudoJet & child) const;

/// If this jet has a child (and so a partner), returns true and sets the partner,

/// otherwise returns false and sets the partner to 0

bool has_partner(PseudoJet & partner) const;

Accessibility of structural information. If any of the above functions are used with a PseudoJet

that is not associated with a ClusterSequence, an error will be thrown. Since the information about
a jet’s constituents is actually stored in the ClusterSequence and not in the jet itself, these methods
will also throw an error if the ClusterSequence associated with the jet has gone out of scope, been
deleted, or in any other way become invalid. One can establish the status of a PseudoJet’s associated
cluster sequence with the following enquiry functions:

// returns true if this PseudoJet has an associated (and valid) ClusterSequence.

bool has_valid_cluster_sequence() const;

// returns a (const) pointer to the parent ClusterSequence (throws if inexistent

// or no longer valid)

const ClusterSequence* validated_cluster_sequence() const;

There are also has associated cluster sequence() and associated cluster sequence() member
functions. The first returns true even when the cluster sequence is not valid, and the second returns
a null pointer in that case. Further information is to be found in appendix C.

There are contexts in which, within some function, one might create a ClusterSequence, obtain a
jet from it and then return that jet from the function. For the user to be able to access the information
about the jet’s internal structure, the ClusterSequence must not have gone out of scope and/or been
deleted. To aid with potential memory management issues in this case, as long the ClusterSequence

was created via a new operation, then one can tell the ClusterSequence that it should be automatically
deleted after the last external object (jet, etc.) associated with it has disappeared. The call to do this
is ClusterSequence::delete self when unused(). There must be at least one external object already
associated with the ClusterSequence at the time of the call (e.g. a jet, subjet or jet constituent).
Note that ClusterSequence tends to be a large object, so this should be used with care.
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3.6 Composite jets, general considerations on jet structure

There are a number of cases where it is useful to be able to take two separate jets and create a single
object that is the sum of the two, not just from the point of view of its 4-momentum, but also as
concerns its structure. For example, in a search for a dijet resonance, some user code may identify
two jets, jet1 and jet2, that are thought to come from a resonance decay and then wish to return a
single object that combines both jet1 and jet2. This can be accomplished with the function join:

PseudoJet resonance = join(jet1,jet2);

The 4-momenta are added,11 and in addition the resonance remembers that it came from jet1 and
jet2. So, for example, a call to resonance.constituents() will return the constituents of both jet1

and jet2. It is possible to join 1, 2, 3 or 4 jets or a vector of jets. If the jets being joined had areas
(section 7) then the joined jet will also have an area.

For a jet formed with join, one can find out which pieces it has been composed from with the
function

vector<PseudoJet> pieces = resonance.pieces();

In the above example, this would simply return a vector of size 2 containing jet1 and jet2. The
pieces() function also works for jets that come from a ClusterSequence, returning two pieces if the
jet has parents, zero otherwise.

Enquiries as to available structural information. Whether or not a given jet has constituents,
recursive substructure or pieces depends on how it was formed. Generally a user will know how a
given jet was formed, and so know if it makes sense, say, to call pieces(). However if a jet is returned
from some third-party code, it may not always be clear what kinds of structural information it has.
Accordingly a number of enquiry functions are available:

bool has_structure(); // true if the jet has some kind of structural info

bool has_constituents(); // true if the jet has constituents

bool has_exclusive_subjets(); // true if there is cluster-sequence style subjet info

bool has_pieces(); // true if the jet can be broken up into pieces

bool has_area(); // true if the jet has jet-area information

string description(); // returns a textual description of the type

// of structural info associated with the jet

Asking (say) for the pieces() of a jet for which has pieces() returns false will cause an error to be
thrown. The structural information available for different kinds of jets is summarised in appendix C.

3.7 Version information

Information on the version of FastJet that is being run can be obtained by making a call to

std::string fastjet_version_string();

(defined in fastjet/JetDefinition.hh). In line with recommendations for other programs in
high-energy physics, the user should include this information in publications and plots so as to

11This corresponds to E-scheme recombination. If the user wishes to have the jets joined with a different recombination
scheme he/she can pass a JetDefinition::Recombiner (cf. section E.1) as the last argument to join(...).
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facilitate reproducibility of the jet-finding.12 We recommend also that the main elements of the
jet def.description() be provided, together with citations to the original article that defines the
algorithm, as well as to this manual and, optionally, the original FastJet paper [10].

As of version 3.1, it is also possible to conditionally compile code based on the the FastJet

version number, which is encoded in the FASTJET VERSION NUMBER preprocessor symbol as a single
integer Mmmpp: M is the major version number, mm the minor version number and pp the patch
level. Thus version 3.1.12 would be represented as 30112. Code requiring at least version 3.1.0 could
be included as follows:

#include "fastjet/config.h"

#if FASTJET_VERSION_NUMBER >= 30100

// code that needs version 3.1.0 or higher

# else

// alternative code that works also with version 3.0.x

#endif

In versions prior to 3.1.0 the FASTJET VERSION NUMBER symbol is undefined and is accordingly treated
by the preprocessor as if it were zero.

4 FastJet native jet algorithms

4.1 Longitudinally invariant kt jet algorithm

The longitudinally invariant kt jet algorithm [8, 9] comes in inclusive and exclusive variants. The
inclusive variant (corresponding to [9], modulo small changes of notation) is formulated as follows:

1. For each pair of particles i, j work out the kt distance
13

dij = min(p2ti, p
2
tj)∆R2

ij/R
2 (5)

with ∆R2
ij = (yi − yj)

2 + (ϕi − ϕj)
2, where pti, yi and ϕi are the transverse momentum (with

respect to the beam direction), rapidity and azimuth of particle i. R is a jet-radius parameter
usually taken of order 1. For each parton i also work out the beam distance diB = p2ti.

2. Find the minimum dmin of all the dij, diB. If dmin is a dij merge particles i and j into a single
particle, summing their four-momenta (this is E-scheme recombination); if it is a diB then
declare particle i to be a final jet and remove it from the list.

3. Repeat from step 1 until no particles are left.

12We devote significant effort to ensuring that all versions of the FastJet program give identical, correct clustering
results, and that any other changes from one version to the next are clearly indicated. However, as per the terms of
the GNU General Public License (v2), under which FastJet is released, we are not able to provide a warranty that
FastJet is free of bugs that might affect your use of the program. Accordingly it is important for physics publications
to include a mention of the FastJet version number used, in order to help trace the impact of any bugs that might be
discovered in the future.

13In the soft, small angle limit for i, the kt distance is the (squared) transverse momentum of i relative to j.
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The exclusive variant of the longitudinally invariant kt jet algorithm [8] is similar, except that (a)
when a diB is the smallest value, that particle is considered to become part of the beam jet (i.e. is
discarded) and (b) clustering is stopped when all dij and diB are above some dcut. In the exclusive
mode R is commonly set to 1.

The inclusive and exclusive variants are both obtained through

JetDefinition jet_def(kt_algorithm, R);

ClusterSequence cs(particles, jet_def);

The clustering sequence is identical in the inclusive and exclusive cases and the jets can then be
obtained as follows:

vector<PseudoJet> inclusive_kt_jets = cs.inclusive_jets();

vector<PseudoJet> exclusive_kt_jets = cs.exclusive_jets(dcut);

4.2 Cambridge/Aachen jet algorithm

The pp Cambridge/Aachen (C/A) jet algorithm [23, 24] is provided in the form proposed in Ref. [24].
Its formulation is identical to that of the (inclusive) pp kt jet algorithm, except as regards the distance
measures, which are:

dij = ∆R2
ij/R

2 , (6a)

diB = 1 . (6b)

To use this algorithm, define

JetDefinition jet_def(cambridge_algorithm, R);

and then extract inclusive jets from the cluster sequence.

Attempting to extract exclusive jets from the Cambridge/Aachen algorithm with a dcut parameter
simply provides the set of jets obtained up to the point where all dij, diB > dcut. Having clustered
with some given R, this can actually be an effective way of viewing the event at a smaller radius,
Reff =

√
dcutR, thus allowing a single event to be viewed at a continuous range of Reff within a single

clustering.

We note that the original formulation of the Cambridge algorithm [23] (in e+e−) instead makes
use of an auxiliary (kt) distance measure and ‘freezes’ pseudojets whose recombination would involve
too large a value of the auxiliary distance measure. Details are given in section 5.4.1.

4.3 Anti-kt jet algorithm

This algorithm, introduced and studied in [14], is defined exactly like the standard kt algorithm,
except for the distance measures which are now given by

dij = min(1/p2ti, 1/p
2
tj)∆R2

ij/R
2 , (7a)

diB = 1/p2ti . (7b)

While it is a sequential recombination algorithm like kt and Cambridge/Aachen, the anti-kt algorithm
behaves in some sense like a ‘perfect’ cone algorithm, in that its hard jets are exactly circular on the
y-ϕ cylinder [14]. To use this algorithm, define
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JetDefinition jet_def(antikt_algorithm, R);

and then extract inclusive jets from the cluster sequence. We advise against the use of exclusive jets
in the context of the anti-kt algorithm, because of the lack of physically meaningful hierarchy in the
clustering sequence.

4.4 Generalised kt jet algorithm

The “generalised kt” algorithm again follows the same procedure, but depends on an additional
continuous parameter p, and has the following distance measure:

dij = min(p2pti , p
2p
tj )∆R2

ij/R
2 , (8a)

diB = p2pti . (8b)

For specific values of p, it reduces to one or other of the algorithms list above, kt (p = 1), Cam-
bridge/Aachen (p = 0) and anti-kt (p = −1). To use this algorithm, define

JetDefinition jet_def(genkt_algorithm, R, p);

and then extract inclusive jets from the cluster sequence (or, for p ≥ 0, also the exclusive jets).

4.5 Generalised kt algorithm for e+e− collisions

FastJet also provides native implementations of clustering algorithms in spherical coordinates (specif-
ically for e+e− collisions) along the lines of the original kt algorithms [25], but extended following the
generalised pp algorithm of [14] and section 4.4. We define the two following distances:

dij = min(E2p
i , E2p

j )
(1− cos θij)

(1− cosR)
, (9a)

diB = E2p
i , (9b)

for a general value of p and R. At a given stage of the clustering sequence, if a dij is smallest then i
and j are recombined, while if a diB is smallest then i is called an “inclusive jet”.

For values of R ≤ π in eq. (9), the generalised e+e− kt algorithm behaves in analogy with the pp
algorithms: when an object is at an angle θiX > R from all other objects X then it forms an inclusive
jet. With the choice p = −1 this provides a simple, infrared and collinear safe way of obtaining a
cone-like algorithm for e+e− collisions, since hard well-separated jets have a circular profile on the 3D
sphere, with opening half-angle R. To use this form of the algorithm, define

JetDefinition jet_def(ee_genkt_algorithm, R, p);

and then extract inclusive jets from the cluster sequence.

For values of R > π, FastJet replaces the factor (1− cosR) in the denominator of eq. (9a) with
(3 + cosR). With this choice (as long as R < 3π), the only time a diB will be relevant is when there
is just a single particle in the event. The inclusive jets(...) will then always return a single jet
consisting of all the particles in the event. In such a context it is only the exclusive jets(...) call
that provides non-trivial information.

Note that the default clustering strategy (N2Plain) evaluates 1−cos θij using a dot product between
normalised four-vectors. Rounding error case this to break down when θij ≲

√
ϵ, where ϵ is the
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machine precision. For applications where it is important to have reliable clustering for particles at
angles smaller than

√
ϵ, one should use the N2PlainEEAccurate strategy, which uses a cross-product to

determine θij for θij ≲ ϵ1/4. It pushes the breakdown point to θij ∼ ϵ, though it is about 15% slower.

4.6 kt algorithm for e+e− collisions

The e+e− kt algorithm [25], often referred to also as the Durham algorithm, has a single distance:

dij = 2min(E2
i , E

2
j )(1− cos θij) . (10)

Note the difference in normalisation between the dij in eqs. (9) and (10), and the fact that in neither
case have we normalised to the total energy Q in the event, contrary to the convention adopted
originally in [25] (where the distance measure was called yij). To use the e+e− kt algorithm, define

JetDefinition jet_def(ee_kt_algorithm);

and then extract exclusive jets from the cluster sequence.

Note that the ee genkt algorithm with π < R < 3π and p = 1 gives a clustering sequence that is
identical to that of the ee kt algorithm. The normalisation of the dij’s will however be different.

As with the algorithms of section 4.5 the default strategy is N2Plain, but for applications with
particles at particularly small angles to each other, the N2PlainEEAccurate strategy should instead be
used.

5 Plugin jet algorithms

It can be useful to have a common interface for a range of jet algorithms beyond the native (kt, anti-kt
and Cambridge/Aachen) algorithms, notably for the many cone algorithms that are in existence. It
can also be useful to be able to use FastJet features such as area-measurement tools for these other
jet algorithms. In order to facilitate this, the FastJet package provides a plugin facility, allowing
almost any other jet algorithm14 to be used within the same framework.

Generic plugin use is described in the next subsection. The plugins distributed with FastJet

are described afterwards in sections 5.2–5.4. They are all accessible within the fastjet namespace
and their code is to be found in FastJet’s plugins/ directory. New user-defined plugins can also be
implemented, as described in section E.2. Some third-party plugins are linked to from the tools page
at http://fastjet.fr/ .

Not all plugins are enabled by default in FastJet. At configuration time ./configure --help will
indicate which ones get enabled by default. To enable all plugins, run configure with the argument
--enable-allplugins, while to enable all but PxCone (which requires a Fortran compiler, and can
introduce link-time issues) use --enable-allcxxplugins.

5.1 Generic plugin use

Plugins are classes derived from the abstract base class fastjet::JetDefinition::Plugin. A
JetDefinition can be constructed by providing a pointer to a JetDefinition::Plugin; the resulting

14Except those for which one particle may be assigned to more than one jet, e.g. algorithms such as ARCLUS [26],
which performs 3 → 2 clustering.
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JetDefinition object can then be used identically to the normal JetDefinition objects used in the
previous sections. We illustrate this with an example based on the SISCone plugin:

#include "fastjet/SISConePlugin.hh"

// allocate a new plugin for SISCone (for other plugins, simply

// replace the appropriate parameters and plugin name)

double cone_radius = 0.7;

double overlap_threshold = 0.75;

JetDefinition::Plugin * plugin = new SISConePlugin(cone_radius, overlap_threshold);

// create a jet definition based on the plugin

JetDefinition jet_def(plugin);

// run the jet algorithm and extract the jets

ClusterSequence clust_seq(particles, jet_def);

vector<PseudoJet> inclusive_jets = clust_seq.inclusive_jets();

// then analyse the jets as for native fastjet algorithms

...

// only when you will no longer be using the jet definition, or

// ClusterSequence objects that involve it, may you delete the plugin

delete plugin;

In cases such as this where the plugin has been created with a new statement and the user does
not wish to manage the deletion of the corresponding memory when the JetDefinition (and any
copies) using the plugin goes out of scope, then the user may wish to call the JetDefinition’s
delete plugin when unused() function, which tells the JetDefinition to acquire ownership of the
pointer to the plugin and delete it when it is no longer needed.

5.2 SISCone Plugin

SISCone provides infrared and collinear-safe implementations of the two most common kinds of cone
algorithm. Cone algorithm execution generally involves two phases. The first is the search for stable
cones (SC). Then, because a given particle can appear in more than one stable cone, there are two
options for the second phase: the standard approach is to apply a ‘split–merge’ (see e.g. Ref. [3])
procedure, which ensures that no particle ends up in more than one jet. Alternatively, one can
identify the highest-pt stable cone, call it a jet, remove all particles that it contained and then repeat
the stable-cone search and removal over and over until no particles remain (we call this progressive
removal).

The stable cones are identified using an O (N2 lnN) seedless approach [27]. This (and some care
in the ‘split–merge’ procedure, if used) ensures that the jets it produces are insensitive to additional
soft particles and collinear splittings, i.e. the algorithm is infrared and collinear safe.

By default SISCone runs with a split–merge step. The implementation with progressive removal
was made public in version 3.0 of SISCone, first released with version 3.1 of FastJet.
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5.2.1 Default mode: SISCone with a split–merge step (SISCone-SM)

The original implementation of SISCone [27] corresponded to a stable-cone jet algorithm with a split–
merge step (SC-SM in the notation of [5]). This remains SISCone’s default and, unless explicitly
mentioned otherwise, it corresponds to the version of SISCone used in the literature.

The plugin library and include files are to be be found in the plugins/SISCone directory, and the
main header file is fastjet/SISConePlugin.hh. The SISConePlugin class has a constructor with
the following structure

#include "fastjet/SISConePlugin.hh"

SISConePlugin (double cone_radius,

double overlap_threshold,

int n_pass_max = 0,

double protojet_ptmin = 0.0,

bool caching = false,

SISConePlugin::SplitMergeScale

split_merge_scale = SISConePlugin::SM_pttilde);

A cone centred at yc, ϕc is stable if the sum of momenta of all particles i satisfying ∆y2ic + ∆ϕ2
ic <

cone_radius2 has rapidity yc, ϕc. The overlap_threshold is the fraction of overlapping momentum
above which two protojets are merged in a Tevatron Run II type [3] split–merge procedure. The
radius and overlap parameters are a common feature of most modern cone algorithms. Because some
event particles are not to be found in any stable cone [28], SISCone can carry out multiple stable-cone
search passes (as advocated in [29]): in each pass one searches for stable cones using just the subset
of particles not present in any stable cone in earlier passes. Up to n_pass_max passes are carried out,
and the algorithm automatically stops at the highest pass that gives no new stable cones. The default
of n_pass_max = 0 is equivalent to setting it to ∞.

Concern had at some point been expressed that an excessive number of stable cones might com-
plicate cone jets in events with high noise [3], and in particular lead to large “monster” jets. The
protojet_ptmin parameter allows one to use only protojets with pt ≥ protojet_ptmin in the split–
merge phase (all others are thrown away), so as to limit this issue. A large value of the split–merge
overlap threshold, e.g. 0.75, also helps to disfavour the production of these monster jets through
repeated merge operations.

In many cases SISCone’s most time-consuming step is the search for stable cones. If one has
multiple SISConePlugin-based jet definitions, each with caching=true, a check will be carried out
whether the previously clustered event had the same set of particles and the same cone radius and
number of passes. If it did, the stable cones are simply reused from the previous event, rather than
being recalculated, and only the split–merge step is repeated, often leading to considerable speed
gains.

A final comment concerns the split_merge_scale parameter. This controls both the scale used for
ordering the protojets during the split–merge step during the split–merge step, and also the scale used
to measure the degree of overlap between protojets. While various options have been implemented,

enum SplitMergeScale {SM_pt, SM_Et, SM_mt, SM_pttilde};

we recommend using only the last of them p̃t =
∑

i∈jet |pt,i|, which is also the default scale. The
other scales are included only for historical comparison purposes: pt (used in several other codes) is
IR unsafe for events whose hadronic component conserves momentum, Et (advocated in [3]) is not
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boost-invariant, and mt =
√

m2 + p2t is IR unsafe for events whose hadronic component conserves
momentum and stems from the decay of two identical particles.

An example of the use of the SISCone plugin was given in section 5.1. As can be seen there,
SISCone jets are to be obtained by requesting inclusive jets from the cluster sequence. Note that it
makes no sense to ask for exclusive jets from a SISCone based ClusterSequence.

Some cone algorithms provide information beyond that simply about the jets. Such additional in-
formation, where available, can be accessed with the help of the ClusterSequence::extras() function.
In the case of SISCone, one can access that information as follows:

const fastjet::SISConeExtras * extras =

dynamic_cast<const fastjet::SISConeExtras *>(clust_seq.extras());

To determine the pass at which a given jet was found, one then uses15

int pass = extras->pass(jet);

One may also obtain a list of the positions of original stable cones as follows:

const vector<PseudoJet> & stable_cones = extras->stable_cones();

The stable cones are represented as PseudoJets, for which only the rapidity and azimuth are mean-
ingful. The user_index() indicates the pass at which a given stable cone was found.

SISCone uses E-scheme recombination internally and also for constructing the final jets from the
list of constituents. For the latter task, the user may instead instruct SISCone to use the jet-definition’s
own recombiner, with the command

plugin->set_use_jet_def_recombiner(true);

For this to work, plugin must explicitly be of type SISConePlugin * rather than
JetDefinition::Plugin *.

Since SISCone is infrared safe, it may meaningfully be used also with the ClusterSequenceArea

class. Note however that in that case ones loses the cone-specific information from
the jets, because of the way FastJet filters out the information relating to ghosts in the
clustering. If the user needs both areas and cone-specific information, she/he may use the
ClusterSequenceActiveAreaExplicitGhosts class (for usage information, see the corresponding
.hh file).

A final remark concerns speed and memory requirements: as mentioned above, SISCone takes
O (N2 lnN) time to find jets, and the memory use is O (N2); taking N = 103 as a reference point, it
runs in a few tenths of a second, making it about 100 times slower than native FastJet algorithms.
These are ‘expected’ results, i.e. valid for a suitably random set of particles.16

Note that the underlying implementation of SISCone is optimised for large N . An alternative
implementation that is faster for N ≲ 10 was presented in [30].

15In versions of FastJet prior to 3.0.1, a jet’s user index indicated the pass at which it had been found. The value
was however incorrectly set for single-particle jets. The current choice is to leave the user index unchanged from its
default.

16In area determinations, the ghost particles are not entirely random, but distributed close to a grid pattern, all with
similar transverse momenta. Run times and memory usage are then, in practice, somewhat larger than for a normal
QCD event with the same number of particles. We therefore recommend running with not too small a ghost area (e.g.
∼ 0.05) and using grid scatter=1 (cf. section 7), which helps to reduce the number of stable cones (and correspondingly,
the time and memory usage of the subsequent split–merge step). An alternative, which has been found to be acceptable
in many situations, is to use a passive area, since this is relatively fast to calculate with SISCone.
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5.2.2 SISCone with progressive removal (SISCone-PR)

After creating an instance of SISConePlugin, the progressive-removal option can be enabled by calling

plugin->set_progressive_removal(true);

The value of the split–merge overlap threshold is then ignored and caching is not available. The
SplitMergeScale argument in the constructor, instead of being interpreted as the choice of scale to
use in the split-merge step, is instead interpreted as the scale used to order the stable cones (the
default is SISConePlugin::SM pttilde, i.e. the scalar sum of pt’s of the constituents) and it is the
hardest stable cone according to that choice that is removed. The stable cone finding is then repeated
on the remaining set of particles, the new hardest cone is removed, and so forth. As for other
progressive-removal cone algorithms, SISCone-PR guarantees that the first jet that is found has area
πR2.17

There can be interest in trying out other choices of scale variable for the ordering of stable cones.
This can be achieved by calling

plugin->set_user_scale(&user_scale);

where user scale is an instance of any class that derives from the SISConePlugin::UserScaleBase

class (actually defined in SISConeBasePlugin).

In discussing the speed of SISCone with progressive removal, it is useful to distinguish N , the
total number of particles in the event from n, the number inside a typical circle of radius R. SISCone
with split–merge actually takes a time Nn lnn. SISCone with progressive removal, in its current
implementation, repeats the full stable cone finding O (N/n) times. Thus it takes a time ∼ N2 lnn.
This could be reduced by repeating the stable-cone finding only for particles in the neighbourhood of
the last stable-cone that was removed: that more limited stable-cone finding should take a time n2 lnn
at each iteration, so that the total time would then be Nn lnn, albeit with a larger coefficient than
for the split–merge variant. We leave such an improvement to future work, should there be demand
for it.

5.3 Other plugins for hadron colliders

Most of the algorithms listed below are cone algorithms. They are usually either infrared (IR) or
collinear unsafe. The details are indicated for each algorithm following the notation of Ref. [5]:
IRn+1 means that the hard jets may be modified if, to an ensemble of n hard particles in a common
neighbourhood, one adds a single soft particle; Colln+1 means that for n hard particles in a common
neighbourhood, the collinear splitting of one of them may modify the hard jets. The FastJet authors
(and numerous theory-experiment accords) advise against the use of IR and/or collinear unsafe jet
algorithms. Interfaces to these algorithms have been provided mainly for legacy comparison purposes.

Except where stated, the usual way to access jets from these plugins is through
ClusterSequence::inclusive jets().

17The inclusive jets() function returns the jets in the order in which they were found. Each jet’s
extras->pass(jet) value also corresponds to the pass of stable-cone finding at which it was obtained.
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5.3.1 CDF Midpoint

This is one of the two cone algorithms used by CDF in Run II of the Tevatron, based on [3]. It is a
midpoint-type iterative cone with a split–merge step.

#include "fastjet/CDFCones.hh"

// ...

CDFMidPointPlugin(double R,

double overlap_threshold,

double seed_threshold = 1.0,

double cone_area_fraction = 1.0);

The overlap threshold (f) used by CDF is usually 0.5, the seed threshold is 1GeV. With a cone area
fraction α < 1, the search for stable cones is performed with a radius that is R×

√
α, i.e. it becomes

the searchcone algorithm of [28]. CDF has used both α = 0.25 and α = 1.0. It is our understanding
that the particular choice of α is not always clearly documented in the corresponding publications.

Further control over the plugin can be obtained by consulting the header file.

The original underlying code for this algorithm was provided on a webpage belonging to Joey
Huston [31] (with minor modifications to ensure reasonable run times with optimising compilers for
32-bit Intel processors — these modifications do not affect the final jets).

This algorithm is IR3+1 unsafe in the limit of zero seed threshold [27] (with α ̸= 1 it becomes
IR2+1 unsafe [29]). With a non-zero seed threshold (and no preclustering into calorimeter towers) it
is collinear unsafe. It is to be deprecated for new experimental or theoretical analyses.

5.3.2 CDF JetClu

JetClu is the other cone algorithm used by CDF during Run II, as well as their main algorithm during
Run I [32]. It is an iterative cone with split-merge and optional “ratcheting” if iratch == 1 (particles
that appear in one iteration of a cone are retained in future iterations). It can be obtained as follows:

#include "fastjet/CDFCones.hh"

// ...

CDFJetCluPlugin (double cone_radius,

double overlap_threshold,

double seed_threshold = 1.0,

int iratch = 1);

The overlap threshold is usually set to 0.75 in CDF analyses. Further control over the plugin can be
obtained by consulting the header file.

The original underlying code for this algorithm was provided on a webpage belonging to Joey
Huston [31].

This algorithm is IR2+1 unsafe (for zero seed threshold; some IR unsafety persists with non-zero
seed threshold). It is to be deprecated for new experimental or theoretical analyses. Note also
that the underlying implementation groups particles together into calorimeter towers, with CDF-type
geometry, before running the jet algorithm.
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5.3.3 DØ Run I cone

This is the main algorithm used by DØ in Run I of the Tevatron [33]. It is an iterative cone algorithm
with a split-merge step. It comes in two versions

#include "fastjet/D0RunIpre96ConePlugin.hh"

// ...

D0RunIpre96ConePlugin (double R,

double min_jet_Et,

double split_ratio = 0.5);

and

#include "fastjet/D0RunIConePlugin.hh"

// ...

D0RunIConePlugin (double R,

double min_jet_Et,

double split_ratio = 0.5);

corresponding to versions of the algorithm used respectively before and after 1996. They differ only in
the recombination scheme used to determine the jet momenta once each jet’s constituents have been
identified. In the pre-1996 version, a hybrid between an E-like scheme and an Et scheme recombination
is used, while in the post-1996 version it is just the Et scheme [33].

The algorithm places a cut on the minimum Et of the cones during iteration (related to
min_jet_Et). The split_ratio is the same as the overlap threshold in other split-merge based
algorithms (DØ usually use 0.5). It is the FastJet authors’ understanding that the value used for
min_jet_Et was 8GeV, corresponding to a cut of 4GeV on cones. The publication that describes
this algorithm [33] mentions the use of a 1GeV seed threshold applied to preclustered calorimeter
towers in order to obtain the seeds for the stable cone finding. Such a threshold and the
pre-clustering appear not to be included in the code distributed with FastJet.

The underlying code for this algorithm was provided by Lars Sonnenschein. Permission to redis-
tribute this code with FastJet has been granted by the DØ collaboration under the terms of the GPL
license.

Note: this algorithm is IR2+1 unsafe. It is recommended that it be used only for the purpose of
comparison with Run I data from DØ. It is to be deprecated for new experimental or theoretical
analyse

5.3.4 DØ Run II cone

This is the main algorithm used by DØ in Run II of the Tevatron. It is a midpoint type iterative cone
with split-merge step. The DØ collaboration usually refers to Ref. [3] when introducing the algorithm
in its articles. That generic Tevatron document does not reflect all details of the actual DØ algorithm,
and for a complementary description the reader is referred to Ref. [34].

#include "fastjet/D0RunIIConePlugin.hh"

// ...

D0RunIIConePlugin (double R,

double min_jet_Et,

double split_ratio = 0.5);
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The parameters have the same meaning as in the DØ Run I cone. There is a cut on the minimum
Et of the cones during iteration, which by default is half of min_jet_Et. It is the FastJet authors’
understanding that two values have been used for min_jet_Et, 8GeV (in earlier publications) and
6GeV (in more recent publications).

As concerns seed thresholds and preclustering, DØ describes them as being applied to calorimeter
towers in data and in Monte Carlo studies that include detector simulation [34]. However, for NLO
calculations and Monte Carlo studies based on stable particles, no seed threshold is applied. The code
distributed with FastJet does not allow for seed thresholds.

The underlying code for this algorithm was provided by Lars Sonnenschein. Permission to redis-
tribute this code with FastJet has been granted by the DØ collaboration under the terms of the GPL
license.

Note: this algorithm is IR3+1 unsafe (IR2+1 for jets with energy too close to min_jet_Et). It is to
be deprecated for new experimental or theoretical analyses.

5.3.5 ATLAS iterative cone

This iterative cone algorithm, with a split-merge step, was used by ATLAS during the preparation
for the LHC.

#include "fastjet/AtlasConePlugin.hh"

// ...

ATLASConePlugin (double R,

double seedPt = 2.0,

double f = 0.5);

f is the overlap threshold

The underlying code for this algorithm was extracted from an early version of SpartyJet [16] (which
itself was distributed under the GPL license). Since version 3.0 of FastJet it is a slightly modified
version that we distribute, where an internal sort function has been replaced with a stable sort, to
ensure reproducibility of results across compilers and architectures (results are unchanged when the
results of the sort are unambiguous).

Note: this algorithm is IR2+1 unsafe (in the limit of zero seed threshold). It is to be deprecated
for new experimental or theoretical analyses.

5.3.6 CMS iterative cone

This iterative cone algorithm with progressive removal was used by CMS during the preparation for
the LHC.

#include "fastjet/CMSIterativeConePlugin.hh"

// ...

CMSIterativeConePlugin (double ConeRadius, double SeedThreshold=0.0);

The underlying code for this algorithm was extracted from the CMSSW web site, with certain
small service routines having been rewritten by the FastJet authors. Permission to redistribute the
resulting code with FastJet has been granted by CMS under the terms of the GPL license. The code
was validated by clustering 1000 events with the original version of the CMS software and comparing
the output to the clustering performed with the FastJet plugin. The jet contents were identical in
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all cases. However the jet momenta differed at a relative precision level of 10−7, related to the use of
single-precision arithmetic at some internal stage of the CMS software (while the FastJet version is
in double precision).

Note: this algorithm is Coll3+1 unsafe [14]. It is to be deprecated for new experimental or theo-
retical analyses.

5.3.7 PxCone

The PxCone algorithm is an iterative cone with midpoints and a split-drop procedure:

#include "fastjet/PxConePlugin.hh"

// ...

PxConePlugin (double cone_radius ,

double min_jet_energy = 5.0 ,

double overlap_threshold = 0.5,

bool E_scheme_jets = false);

It includes a threshold on the minimum transverse energy for a cone (jet) to be included in the split-
drop stage. If E_scheme_jets is true then the plugin applies an E-scheme recombination to provide
the momenta of the final jets (by default an Et type recombination scheme is used).

The base code for this plugin is written in Fortran and, on some systems, problems have been
reported at the link stage due to mixing Fortran and C++. The Fortran code has been modified
by the FastJet authors to provide the same jets regardless of the order of the input particles. This
involved a small modification of the midpoint procedure, which can have a minor effect on the final
jets and should make the algorithm correspond to the description of [35].

The underlying code for this algorithm was written by Luis del Pozo and Michael Seymour with
input also from David Ward [36] and they have granted permission for their code to be distributed
with FastJet under the terms of the GPL license.

This algorithm is IR3+1 unsafe. It is to be deprecated for new experimental or theoretical analyses.

5.3.8 TrackJet

This algorithm has been used at the Tevatron for identifying jets from charged-particle tracks in
underlying-event studies [37].

#include "fastjet/TrackJetPlugin.hh"

// ...

TrackJetPlugin (double radius,

RecombinationScheme jet_recombination_scheme=pt_scheme,

RecombinationScheme track_recombination_scheme=pt_scheme);

Two recombination schemes are involved: the first one indicates how momenta are recombined to
provide the final jets (once particle-jet assignments are known), the second one indicates how momenta
are combined in the procedure that constructs the jets.

The underlying code for this algorithm was written by the FastJet authors, based on code extracts
from the (GPL) Rivet implementation, written by Andy Buckley with input from Manuel Bahr and
Rick Field. Since version 3.0 of FastJet it is a slightly modified version that we distribute, where an
internal sort function has been replaced with a stable sort, to ensure reproducibility of results across
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compilers and architectures (results are unchanged when the results of the sort are unambiguous, which
is the usual case).

Note: this algorithm is believed to be Coll3+1 unsafe. It is to be deprecated for new experimental
or theoretical analyses.

5.3.9 GridJet

GridJet allows you to define a grid and then cluster particles such that all particles in a common grid
cell combine to form a jet. Its main interest is in providing fast clustering for high multiplicities (the
clustering time scales linearly with the number of particles). The jets that it forms are not always
physically meaningful: for example, a genuine physical jet may lie at the corner of 4 grid cells and so
be split up somewhat arbitrarily into 4 pieces. It is therefore not intended to be used for standard jet
finding. However for some purposes (such as background estimation) this drawback is offset by the
greater uniformity of the area of the jets. Its interface is as follows

#include "fastjet/GridJetPlugin.hh"

// ...

GridJetPlugin (double ymax, double requested_grid_spacing);

creating a grid that covers |y| <ymax with a grid spacing close to the requested grid spacing: the
spacings chosen in ϕ and y are those that are closest to the requested spacing while also giving an
integer number of grid cells that fit exactly into the rapidity and 0 < ϕ < 2π ranges.

Note that for background estimation purposes the GridMedianBackgroundEstimator is much faster
than using the GridJetPlugin with ghosts and a JetMedianBackgroundEstimator.

The underlying code for this algorithm was written by the FastJet authors.

5.4 Plugins for e+e− collisions

5.4.1 Cambridge algorithm

The original e+e− Cambridge [23] algorithm is provided as a plugin:

#include "fastjet/EECambridgePlugin.hh"

// ...

EECambridgePlugin (double ycut);

This algorithms performs sequential recombination of the pair of particles that is closest in angle,

except when yij =
2min(E2

i ,E
2
j )

Q2 (1− cos θ) > ycut, in which case the less energetic of i and j is labelled a
jet, and the other member of the pair remains free to cluster.

To access the jets, the user should use the inclusive_jets(), i.e. as they would for the majority
of the pp algorithms.

The underlying code for this algorithm was written by the FastJet authors.

5.4.2 Jade algorithm

The JADE algorithm [38, 39], a sequential recombination algorithm with distance measure dij =
2EiEj(1− cos θ), is available through
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#include "fastjet/JadePlugin.hh"

// ...

JadePlugin ();

To access the jets at a given ycut = dcut/Q
2, the user should call

ClusterSequence::exclusive jets ycut(double ycut).

Note: the JADE algorithm has been used with various recombination schemes. The current plugin
will use whatever recombination scheme the user specifies with for the jet definition. The default E-
scheme is what was used in the original JADE publication [38]. To modify the recombination scheme,
the user may first construct the jet definition and then use either of

void JetDefinition::set_recombination_scheme(RecombinationScheme recomb_scheme);

void JetDefinition::set_recombiner(const Recombiner * recomb)

(cf. sections 3.4, E.1) to modify the recombination scheme.

The underlying code for this algorithm was written by the FastJet authors.

5.4.3 Spherical SISCone algorithm

The spherical SISCone algorithm is an extension [40] to spherical coordinates of the hadron-collider
SISCone algorithm [27].

#include "fastjet/SISConeSphericalPlugin.hh"

// ...

SISConeSphericalPlugin(double R,

double overlap_threshold

double protojet_Emin = 0.0,

bool caching = false,

SISConeSphericalPlugin::SplitMergeScale

split_merge_scale = SISConeSphericalPlugin::SM_Etilde,

double split_merge_stopping_scale = 0.0);

The functionality follows directly that of SISConePlugin, including options for using a split–merge
step (the default) or progressive removal.

Note that the underlying implementation of spherical SISCone is optimised for large N . An
alternative implementation that is faster for N ≲ 10 was presented in [30]. That reference also
contains a nice description of the algorithm.

6 Selectors

Analyses often place constraints (cuts) on jets’ transverse momenta, rapidity, maybe consider only
some N hardest jets, etc. There are situations in which it is convenient to be able to define a basic
set of jet cuts in one part of a program and then have it used elsewhere. To allow for this, we provide
a fastjet::Selector class, available through

#include "fastjet/Selector.hh"

34



6.1 Essential usage

As an example of how Selectors are used, suppose that we have a vector of jets, jets, and wish to
select those that have rapidities |y| < 2.5 and transverse momenta above 20GeV. We might write the
following:

Selector select_rapidity = SelectorAbsRapMax(2.5);

Selector select_pt = SelectorPtMin(20.0);

Selector select_both = select_pt && select_rapidity;

vector<PseudoJet> selected_jets = select_both(jets);

Here, Selector is a class, while SelectorAbsRapMax and SelectorPtMin are functions that return an
instance of the Selector class containing the internal information needed to carry out the selection.
Selector::operator(const vector<PseudoJet> & jets) takes the jets given as input and returns a
vector containing those that pass the selection cuts. The logical operations &&, || and ! enable
different selectors to be combined.

Nearly all selectors, like those above, apply jet by jet (the function Selector::applies jet by jet()

returns true). For these, one can query whether a single jet passes the selection with the help of the
function bool Selector::pass(const PseudoJet &).

There are also selectors that only make sense applied to an ensemble of jets. This is the case
specifically for SelectorNHardest(unsigned int n), which, acting on an ensemble of jets, selects the
n jets with largest transverse momenta. If there are fewer than n jets, then all jets pass.

When a selector is applied to an ensemble of jets one can also use

Selector::sift(vector<PseudoJet> & jets,

vector<PseudoJet> & jets_that_pass,

vector<PseudoJet> & jets_that_fail)

to obtain the vectors of PseudoJets that pass or fail the selection.

For selectors that apply jet-by-jet, the selectors on either side of the logical operators && and ||

naturally commute. For operators that act only on the ensemble of jets the behaviour needs specifying.
The design choice that we have made is that

SelectorNHardest(2) && SelectorAbsRapMax(2.5)

SelectorAbsRapMax(2.5) && SelectorNHardest(2)

give identical results: in logical combinations of selectors, each constituent selector is applied inde-
pendently to the ensemble of jets, and then a decision whether a jet passes is determined from the
corresponding logical combination of each of the selectors’ results. Thus, here only jets that are among
the 2 hardest of the whole ensemble and that have |y| < 2.5 will be selected. If one wishes to first
apply a rapidity cut, and then find the 2 hardest among those jets that pass the rapidity cut, then
one should instead use the * operator:

SelectorNHardest(2) * SelectorAbsRapMax(2.5)

In this combined selector, the right-hand selector is applied first, and then the left-hand selector is
applied to the results of the right-hand selection.

A complementary selector can also be defined using the negation operator. For instance

Selector sel_allbut2hardest = !SelectorNHardest(2);

35



Note that, if directly applying (as opposed to first defining) a similar negated selector to a collection
of jets, one should write

vector<PseudoJet> allbut2hardest = (!SelectorNHardest(2))(jets);

with the brackets around the selector definition being now necessary due to () having higher prece-
dence in C++ than Boolean operators.

A user can obtain a string describing a given Selector’s action by calling its description()member
function. This behaves sensibly also for compound selectors.

New selectors can be implemented as described in section E.3.

6.1.1 Other information about selectors

Selectors contain a certain amount of additional information that can provide useful hints to the
functions using them.

One such piece of information is a selector’s rapidity extent, accessible through a
get rapidity extent(rapmin,rapmax) call, which is useful in the context of background estimation
(section 8). If it is not sensible to talk about a rapidity extent for a given selector (e.g. for
SelectorPtMin) the rapidity limits that are returned are the largest (negative and positive) numbers
that can be represented as doubles. The function is geometric() returns true if the selector places
constraints only on rapidity and azimuth.

Selectors may also have areas associated with them (in analogy with jet areas, section 7). The
has finite area() member function returns true if a selector has a meaningful finite area. The area()
function returns this area. In some cases the area may be computed using ghosts (by default with
ghosts of area 0.01; the user can specify a different ghost area as an argument to the area function).

6.2 Available selectors

6.2.1 Absolute kinematical cuts

A number of selectors have been implemented following the naming convention
Selector{Var}{LimitType}. The {Var} indicates which variable is being cut on, and can be one of

pt, Et, E, Mass, Rap, AbsRap, Eta, AbsEta

The {LimitType} indicates whether one places a lower-limit on the variable, an upper limit or a range,
corresponding to the choices

Min, Max, Range

A couple of examples are

SelectorPtMin(25.0) // Selects pt > 25 (units are user’s default for momenta)

SelectorRapRange(1.9,4.9) // Selects 1.9 < y < 4.9

Following a similar naming convention, there are also SelectorPhiRange(ϕmin, ϕmax) and
SelectorRapPhiRange(ymin, ymax, ϕmin, ϕmax).
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6.2.2 Relative kinematical cuts

Some selectors take a reference jet. They have been developed because it is can be useful for a selector
to make its decision based on information about some other jet. For example one might wish to select
all jets within some distance of a given reference jet; or all jets whose transverse momentum is at least
some fraction of a reference jet’s. That reference jet may change from event to event, or even from
one invocation of the Selector to the next, even though the Selector is fundamentally performing the
same underlying type of action.

The available selectors of this kind are:

SelectorCircle(R) // a circle of radius R around the reference jet

SelectorDoughnut(Rin, Rout) // a doughnut between Rin and Rout

SelectorStrip(half_width) // a rapidity strip 2*half_width large

SelectorRectangle(half_rap_width, half_phi_width) // a rectangle in rapidity and phi

SelectorPtFractionMin(f) // pt larger than fpreft

One example of selectors taking a reference jet is the following. First, one constructs the selector,

Selector sel = SelectorCircle(1.0);

Then if one is interested in the subset of jets near jet1, and then those near jet2, one performs the
following operations:

sel.set_reference(jet1);

vector<PseudoJet> jets_near_jet1 = sel(jets);

sel.set_reference(jet2);

vector<PseudoJet> jets_near_jet2 = sel(jets);

If one uses a selector that takes a reference without the reference having been actually set, an exception
will be thrown. If one sets a reference for a compound selector, the reference is automatically set for
all components that take a reference. One can verify whether a given selector takes a reference by
calling the member function

bool Selector::takes_reference() const;

Attempting to set a reference for a Selector that returns false here will cause an exception to be
thrown.

6.2.3 Other selectors

The following selectors are also available:

SelectorNHardest(n) // selects the n hardest jets

SelectorIsPureGhost() // selects jets that are made exclusively of ghost particles

SelectorIsZero() // selects jets with zero momentum

SelectorIdentity() // selects everything. Included for completeness

7 Jet areas

Jet areas provide a measure of the surface in the y-ϕ plane over which a jet extends, or, equivalently,
a measure of a jet’s susceptibility to soft contamination.
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Since a jet is made up of only a finite number of particles, one needs a specific definition in order
to make its area an unambiguous concept. Three definitions of area have been proposed in [17] and
implemented in FastJet:

� Active areas add a uniform background of extremely soft massless ‘ghost’ particles to the event
and allow them to participate in the clustering. The area of a given jet is proportional to the
number of ghosts it contains. Because the ghosts are extremely soft (and sensible jet algorithms
are infrared safe), the presence of the ghosts does not affect the set of user particles that end up
in a given jet. Active areas give a measure of a jet’s sensitivity to diffuse background noise.

� Passive areas are defined as follows: one adds a single randomly placed ghost at a time to the
event. One examines which jet (if any) the ghost ends up in. One repeats the procedure many
times and the passive area of a jet is then proportional to the probability of it containing the
ghost. Passive areas give a measure of a jet’s sensitivity to point-like background noise.

� The Voronoi area of a jet is the sum of the Voronoi areas of its constituent particles. The
Voronoi area of a particle is obtained by determining the Voronoi diagram for the event as a
whole, and intersecting the Voronoi cell of the particle with a circle of radius R centred on the
particle. Note that for the kt algorithm (but not in general for other algorithms) the Voronoi
area of a jet coincides with its passive area.

In the limit of very densely populated events, all area definitions lead to the same jet-area results [17].18

The area of a jet can be calculated either as a scalar, or as a 4-vector. Essentially the scalar case
corresponds to counting the number of ghosts in the jet; the 4-vector case corresponds to summing
their 4-vectors, normalised such that for a narrow jet, the transverse component of the 4-vector is
equal to the scalar area.

To access jet areas, the user is exposed to two main classes:

class fastjet::AreaDefinition;

class fastjet::ClusterSequenceArea;

with input particles, a jet definition and an area definition being supplied to a ClusterSequenceArea

in order to obtain jets with area information. Typical usage would be as follows:

#include "fastjet/ClusterSequenceArea.hh"

// ...

double ghost_maxrap = 5.0; // e.g. if particles go up to y=5

AreaDefinition area_def(active_area, GhostedAreaSpec(ghost_maxrap));

ClusterSequenceArea clust_seq(input_particles, jet_def, area_def);

vector<PseudoJet> jets = sorted_by_pt(clust_seq.inclusive_jets());

double area_hardest_jet = jets[0].area();

Details are to be found below and an example program is given as example/06-area.cc.

When jet areas are to be used to establish the level of a diffuse noise that might be present in the
event (e.g. from underlying event particles or pileup), and maybe subtract it from jets, further classes
such as fastjet::JetMedianBackgroundEstimator and fastjet::Subtractor are useful. This topic is
discussed in Section 8 and an example program is given in example/07-subtraction.cc.

18This can be useful when one area is particularly expensive to calculate: for example active areas for SISCone tend
to be memory and CPU intensive; however, for dense events, they can be adequately replaced with passive areas, which,
for SISCone, are computationally more straightforward.
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7.1 AreaDefinition

Area definitions are contained in the AreaDefinition class. Its two main constructors are:

AreaDefinition(fastjet::AreaType area_type,

fastjet::GhostedAreaSpec ghost_spec);

for the various active and passive areas (which all involve ghosts) and

AreaDefinition(fastjet::VoronoiAreaSpec voronoi_spec);

for the Voronoi area. A default constructor exists, and provides an active area with a ghost spec that
is acceptable for a majority of area measurements with clustering algorithms and typical Tevatron
and LHC rapidity coverage.

Information about the current AreaDefinition can be retrieved with the help of description(),
area type(), ghost spec() and voronoi spec() member functions.

7.1.1 Ghosted Areas (active and passive)

There are two variants each of the active and passive areas, as defined by the AreaType enum:

enum AreaType{ [...],

active_area,

active_area_explicit_ghosts,

one_ghost_passive_area,

passive_area,

[...]};

The two active variants give identical results for the areas of hard jets. The second one explicitly
includes the ghosts when the user requests the constituents of a jet and also leads to the presence of
“pure ghost” jets. The first of the passive variants explicitly runs through the procedure mentioned
above, i.e. it clusters the events with one ghost at a time, and repeats this for very many ghosts.
This can be quite slow, so we also provide the passive area option, which makes use of information
specific to the jet algorithm in order to speed up the passive-area determination.19

In order to carry out a clustering with a ghosted area determination, the user should also create
an object that specifies how to distribute the ghosts.20 This is done via the class GhostedAreaSpec

whose constructor is

GhostedAreaSpec(double ghost_maxrap,

int repeat = 1, double ghost_area = 0.01,

double grid_scatter = 1.0, double pt_scatter = 0.1,

double mean_ghost_pt = 1e-100);

The ghosts are distributed on a uniform grid in y and ϕ, with small random fluctuations to avoid
clustering degeneracies.

The ghost maxrap variable defines the maximum rapidity up to which ghosts are generated. If
one places ghosts well beyond the particle acceptance (at least R beyond it), then jet areas also

19This ability is provided for kt, Cambridge/Aachen, anti-kt and the SISCone plugin. In the case of kt it is actually a
Voronoi area that is used, since this can be shown to be equivalent to the passive area [17] (though some approximations
are made for 4-vector areas). For other algorithms it defaults back to the one ghost passive area approach.

20Or accept a default — which uses the default values listed in the explicit constructor and ghost maxrap = 6
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Figure 1: Two choices for ghost placement. The grey area in each plot indicates the region containing
ghosts, while the dots are particles, which here are accepted up to |y| < 3. The circular regions
indicate the areas that will be found for two particular jets. In the left-hand case, with ghosts that
extend well beyond the acceptance for particles, jet areas are unaffected by the particle acceptance;
in the right-hand case, with ghosts placed only up to the acceptance limit, jet areas are clipped at the
edge of the acceptance.

stretch beyond the acceptance, giving a measure of the jet’s full extent in rapidity and azimuth. If
ghosts are placed only up to the particle acceptance, then the jet areas are clipped at that acceptance
and correspond more closely to a measure of the jet’s susceptibility to contamination from accepted
soft particles. This is relevant in particular for jets within a distance R of the particle acceptance
boundary. The two choices are illustrated in fig. 1. To define more complicated ghost acceptances it
is possible to replace ghost maxrap with a Selector, which must be purely geometrical and have finite
rapidity extent.

The ghost area parameter in the GhostedAreaSpec constructor is the area associated with a single
ghost. The number of ghosts is inversely proportional to the ghost area, and so a smaller area leads
to a longer CPU-time for clustering. However small ghost areas give more accurate results. We have
found the default ghost area given above to be adequate for most applications. Smaller ghost areas
are beneficial mainly for high-precision determinations of areas of jets with small R.

By default, one set of ghosts is generated for each event that is clustered. The small random
fluctuations in ghost positions and pt’s, introduced to break clustering degeneracies, mean that for
repeated clustering of the same event a given hard jet’s area will be different after each clustering.
This is especially true for sparse events, where a jet’s particle content fails to accurately delineate the
boundaries of the jet. For the active area choice (and certain passive areas), specifying repeat > 1
causes FastJet to directly cluster the same hard event with multiple ghost sets. This results in a
pseudo-Monte Carlo type evaluation of the jet areas. A statistical uncertainty on the area is available
for each jet, through the jet.area error() call. It is calculated as the standard deviation of areas
obtained for that jet, divided by

√
repeat− 1. While there are situations in which this facility is

useful, for most applications of jet areas it is sufficient to use repeat = 1.21

21Several parameters are available to control the properties and randomness of the ghosts: each ghost’s position differs
from an exact grid vertex by a random amount distributed uniformly in the range ± 1

2grid scatter times the grid spac-
ing in both the rapidity and azimuth directions. Each ghost’s pt is distributed randomly in the range (1± 1

2pt scatter)
times mean ghost pt. For nearly all applications, it makes sense to use the default values. Facilities are also available
to set and retrieve the seeds for the random-number generator, notably through the set random status(...) and
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After initialisation, the parameters can be modified and retrieved respectively with calls such as
set ghost area(...) and ghost maxrap() (similarly for the other parameters22). A textual description
of the GhostedAreaSpec can be obtained, as usual, with the description() member function.

7.1.2 Voronoi Areas

The Voronoi areas of jets are evaluated by summing the corresponding Voronoi areas of the jets’
constituents. The latter are obtained by considering the intersection between the Voronoi cell of each
particle and a circle of radius R centred on the particle’s position in the rapidity-azimuth plane.

The jets’ Voronoi areas can be obtained from ClusterSequenceArea by passing the proper
VoronoiAreaSpec specification to AreaDefinition. Its constructors are

/// default constructor (effective_Rfact = 1)

VoronoiAreaSpec() ;

/// constructor that allows you to set effective_Rfact

VoronoiAreaSpec(double effective_Rfact) ;

The second constructor allows one to modify (by a multiplicative factor effective Rfact) the radius of
the circle which is intersected with the Voronoi cells. With effective Rfact = 1, for the kt algorithm,
the Voronoi area is equivalent to the passive area. Information about the specification in use is
returned by effective Rfact() and description() member functions.

The Voronoi areas are calculated with the help of Fortune’s (N lnN) Voronoi diagram generator
for planar static point sets [41].

One use for the Voronoi area is in background determination with the kt algorithm (see below,
section 8): with the choice effective Rfact ≃ 0.9 it provides an acceptable approximation to the kt
algorithm’s active area and is often significantly faster to compute than the active area. Note that
it is not currently possible to clip Voronoi areas with a given particle acceptance. As a result, given
particles up to |y| < ymax, only jets with |y| ≲ ymax−R will have areas that reflect the jets’ sensitivity
to accepted particle contamination. It is only these jets that should then be used for background
determinations.

7.2 ClusterSequenceArea

This is the class23 used for producing a cluster sequence that also calculates jet areas. Its constructor
is

template<class L> ClusterSequenceArea(const std::vector<L> & input_particles,

const JetDefinition & jet_def,

const AreaDefinition & area_def);

get random status(...) members of GhostedAreaSpec.
22In versions of FastJet prior to 3.0.1, the names mean ghost kt and kt scatter should be used rather than

mean ghost pt and pt scatter. The former names will be maintained for the foreseeable future.
23ClusterSequenceArea is derived from ClusterSequenceAreaBase (itself derived from ClusterSequence)

and makes use of one among ClusterSequenceActiveAreaExplicitGhosts, ClusterSequenceActiveArea,
ClusterSequencePassiveArea, ClusterSequence1GhostPassiveArea or ClusterSequenceVoronoiArea (all of them
in the fastjet namespace of course), according to the choice made with AreaDefinition. The user can also use these
classes directly. ClusterSequenceActiveAreaExplicitGhosts is particularly useful in that it allows the user to specify
their own set of ghost particles. This is exploited to provide area support in a number of the transformers of section 9.
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and the class includes the methods

/// Return a reference to the area definition

virtual const AreaDefinition & area_def() const;

/// Returns an estimate of the area contained within the selector that is free of jets.

/// The selector needs to have a finite area and be applicable jet by jet.

/// The function returns 0 if active_area_explicit_ghosts was used.

virtual double empty_area(const Selector & selector) const;

As long as an instance of this class is in scope, a user can access information about the area of its
jets using the following methods of PseudoJet:

/// Returns the scalar area associated with the given jet

double area = jet.area();

/// Returns the error (uncertainty) associated with the determination of the

/// scalar area of the jet; gives zero when the repeat=1 and for passive/Voronoi areas

double area_error = jet.area_error();

/// Returns a PseudoJet whose 4-vector is defined by the following integral

///

///
∫
dydϕ PseudoJet(y,ϕ,pt = 1) * Θ("y, ϕ inside jet boundary")

///

/// where PseudoJet(y,ϕ,pt = 1) is a 4-vector with the given rapidity (y),
/// azimuth (ϕ) and pt = 1, while Θ("y, ϕ inside jet boundary") is 1

/// when y, ϕ define a direction inside the jet boundary and 0 otherwise.

PseudoJet area_4vector = jet.area_4vector();

/// When using active_area_explicit_ghosts, returns true for jets made

/// exclusively of ghosts and for ghost constituents.

bool is_pure_ghost = jet.is_pure_ghost();

In the limit of small-R jets, the transverse component of the 4-vector area is close to the scalar area;
for moderate R values, the transverse component of the 4-vector area is smaller by a factor that
reads 1− R2/8 + R4/192 +O (R6) for the case of circular jets [42]. Note that 4-vector areas are not
currently computed exactly for Voronoi areas of jets in sparse events, insofar as the 4-vector area of
each particle’s Voronoi cell is approximated as massless and pointing in the direction of the particle.

8 Background estimation and subtraction

Events with hard jets are often accompanied by a more diffuse “background” of relatively soft particles,
for example from the underlying event (in pp or PbPb collisions) or from pileup (in pp collisions). For
many physical applications, it is useful to be able to estimate characteristics of the background on
an event-by-event basis, for example the pt per unit area (ρ), or fluctuations from point to point (σ).
One use of this information is to correct the hard jets for the soft contamination, as discussed below
in section 8.1.2.

One of the issues in characterising the background is that it is difficult to introduce a robust
criterion to distinguish “background” jets from hard jets. The main method that is available in
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FastJet involves the determination of the distribution of pt/A for the jets in a given event (or region
of the event) and then taking the median of the distribution as an estimate of ρ, as proposed in [18]
and studied in detail also in [43, 44]. This is largely insensitive to the presence of a handful of hard
jets, and avoids any need for introducing a pt scale to distinguish hard and background jets.

The original form of this method used the kt or Cambridge/Aachen jet algorithms to find the jets.
These algorithms have the advantage that the resulting jets tend to have reasonably uniform areas24

In the meantime a variant of the approach that has emerged is to cluster the particles into rectangular
grid cells in y and ϕ and determine their median pt/A. This has the advantage of simplicity and much
greater speed. One may worry that a hard jet will sometimes lie at a corner of multiple grid cells,
inducing larger biases in the median than with a normal jet finder jets, however we have found this
not to be an issue in practice [44].

8.1 General Usage

8.1.1 Background estimation

The simplest workflow for background estimation is first, outside the event loop, to create a background
estimator. For the jet-based method, one creates a fastjet::JetMedianBackgroundEstimator,

#include "fastjet/tools/JetMedianBackgroundEstimator.hh"

// ...

JetMedianBackgroundEstimator bge(const Selector & selector,

const JetDefinition & jet_def,

const AreaDefinition & area_def);

where the selector is used to indicate which jets are used for background estimation (for simple use
cases, one just specifies a rapidity range, e.g. SelectorAbsRapMax(4.5) to use all jets with |y| < 4.5),
together with a jet definition and an area definition. We have found that the kt or Cambridge/Aachen
jet algorithms with R = 0.4 − 0.6 generally provide adequate background estimates, with the lower
range of R values to be preferred if the events are likely to be busy [43, 44]. An active area with
explicit ghosts is generally recommended.25

For the grid based method one creates a fastjet::GridMedianBackgroundEstimator,

#include "fastjet/tools/GridMedianBackgroundEstimator.hh"

// ...

GridMedianBackgroundEstimator bge(double max_rapidity,

double requested_grid_spacing);

We have found grid spacings in the range 0.5 − 0.7 to be adequate [44], with lower values preferred
for events that are likely to have high multiplicities.

Both of the above background estimators derive from a fastjet::BackgroundEstimatorBase class
and the remaining functionality is common to both. In particular, for each event, one tells the

24Whereas anti-kt and SISCone suffer from jets with near zero areas or, for SISCone, sometimes huge, “monster”
jets, biasing the ρ determination. They are therefore not recommended.

25With the kt algorithm one may also use a Voronoi area (effective Rfact = 0.9 is recommended), which has the
advantage of being deterministic and faster than ghosted areas. In this case however one must use a selector that is
geometrical and selects only jets well within the range of event particles. E.g. if particles are present up to |y| = ymax

one should only use jets with |y| ≲ ymax − R. When using ghosts, the selector can instead go right up to the edge of
the acceptance, if the ghosts also only go right up to the edge, as in the right-hand plot of fig. 1.
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background estimator about the event particles,

bge.set_particles(event_particles);

where event particles is a vector of PseudoJet, and then extracts the background density and a
measure of its fluctuations with the two following calls

BackgroundEstimate bkgd_estimate = bge.estimate();

// the median of (pt/area) for grid cells, or for jets that pass the selection cut,

// making use also of information on empty area in the event (in the jets case)

rho = estimate.rho();

// an estimate of the fluctuations in the pt density per unit
√
A,

// which is obtained from the 1-sigma half-width of the distribution of pt/A.

// To be precise it is defined such that a fraction (1-0.6827)/2 of the jets

// (including empty jets) have pt/A < ρ− σ/
√

⟨A⟩
sigma = bkgd_estimate.sigma();

Note that ρ and σ determinations count empty area within the relevant region as consisting of jets
of zero pt. Thus (roughly speaking), if more that half of the area covered by the jets selector or grid
rapidity range is empty, the median estimate for ρ will be zero, as expected and appropriate for quiet
events.

8.1.2 Background subtraction

A common use of an estimation of the background is to subtract its contamination from the transverse
momentum of hard jets, in the form

psubt,jet = prawt,jet − ρAjet (11)

or its 4-vector version
psubµ,jet = prawµ,jet − ρAµ,jet , (12)

as first proposed in [18].

To this end, the Subtractor class is defined in include/tools/Subtractor.hh. Its constructor takes
a pointer to a background estimator:

JetMedianBackgroundEstimator bge(....); // or a grid-based estimator

Subtractor subtractor(&bge);

(it is also possible to construct the Subtractor with a fixed value for ρ). The subtractor can then be
used as follows:

PseudoJet jet;

vector<PseudoJet> jets;

// ...

PseudoJet subtracted_jet = subtractor(jet);

vector<PseudoJet> subtracted_jets = subtractor(jets);

The subtractor normally returns jet - rho*jet.area 4vector(), where rho may be estimated locally
(see below, section 8.2). If jet.pt() < rho*jet.area 4vector().pt(), then the subtractor instead
returns a jet with zero 4-momentum (so that (subtracted jet==0) returns true). In both cases, the
returned jet retains the user and structural information of the original jet.
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An example program is given in example/07-subtraction.cc.

Note that Subtractor derives from the Transformer class (see section 9) and hence from
FunctionOfPseudoJet<PseudoJet> (cf. appendix D).

8.2 Positional dependence of background

The background density in pp and heavy-ion collisions usually has some non-negligible dependence
on rapidity (and sometimes azimuth). This dependence is not accounted for in the standard estimate
of ρ based on all jets or grid cells from (say) |y| < 4.5. Two techniques are described below to help
alleviate this problem. In each case the properties of the background are to be obtained as follows
(available for both JetMedianBackgroundEstimator and GridMedianBackgroundEstimator)

// get an estimate of the background in the vicinity of the given jet

BackgroundEstimate bkgd_estimate = bge.estimate(jet);

// and then extract specific information about the background

double rho = bkgd_estimate.rho(); // pt density per unit area A near jet

double sigma = bkgd_estimate.sigma(); // fluctuations in the pt density near jet

8.2.1 Local estimation (jet based)

The first technique, “local estimation”, available for now only in the case of the jet-based estimator,
involves the use of a more local range for the determination of ρ, with the help of a Selector that
is able to take a reference jet, e.g. SelectorStrip(∆y), a strip of half-width ∆y (which might be of
order 1) centred on whichever jet is set as its reference. With this kind of selector, when the user calls
either rho(jet) or sigma(jet) a selector.set reference(jet) call is made to centre the selector on
the specified jet. Then only the jets in the event that pass the cut specified by this newly positioned
selector are used to estimate ρ or σ.26 This method is adequate if the number of jets that pass the
selector is much larger than the number of hard jets in the range (otherwise the median pt/A will be
noticeably biased by the hard jets). It therefore tends to be suitable for dijet events in pp or PbPb
collisions, but may fare less well in event samples such as hadronically decaying tt̄ which may have
many central hard jets. One can attempt to remove some given number of hard jets before carrying
out the median estimation, e.g. with a selector such as

selector = SelectorStrip(∆y) * (!SelectorNHardest(2))

which removes the 2 hardest jets globally and then, of the remainder, takes the ones within the strip.27

This is however not always very effective, because one may not know how many hard jets to remove.

8.2.2 Estimation in regions (grid based)

The grid-based estimator does not currently provide for local estimates, in the sense that the set of
tiles used for a given instance of the grid-based estimator is always fixed. However, as of FastJet 3.1,
it is possible to obtain relatively fine control over which fixed set of tiles a grid-based estimator uses.
This is done with the help of the RectangularGrid class

26If the selector does not take a reference jet, then these calls give identical results to the plain rho() and sigma()

calls (unless a manual rapidity rescaling is also in effect, cf. section 8.2.3).
27If you use non-geometric selectors such as this in determining ρ, the area must have explicit ghosts in order to

simplify the determination of the empty area. If it does not, an error will be thrown.
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RectangularGrid grid(rap_min, rap_max, rap_spacing, phi_spacing, selector);

GridMedianBackgroundEstimator bge(grid);

A given grid tile will be used only if a massless PseudoJet placed at the centre of the tile passes
the selector. So, for example, to obtain an estimate for ρ based on the activity in the two forward
regions of a detector, one might set rap min and rap min to cover the whole detector and then supply
a SelectorAbsRapRange(rap central max, rap max) to select just the two forward regions.

8.2.3 Rescaling method

A second technique to account for positional dependence of the background is “rescaling”. First one
parametrises the average shape of the rapidity dependence from some number of pileup events. Then
for subsequent event-by-event background determinations, one carries out a global ρ determination
and then applies the previously determined average rescaling function to that global determination
to obtain an estimate for ρ in the neighbourhood of a specific jet.

The rescaling approach approach is available for both grid and jet-based methods. To encode the
background shape, one defines an object such as

// gives rescaling(y) = 1.16 + 0 · y − 0.023 · y2 + 0 · y3 + 0.000041 · y4
fastjet::BackgroundRescalingYPolynomial rescaling(1.16, 0, -0.023, 0, 0.000041);

(for other shapes, e.g. parametrisation of elliptic flow in heavy ion collisions, with both rapidity and
azimuth dependence, derive a class from FunctionOfPseudoJet<double> — see appendix D). Then one
tells the background estimator (whether jet or grid based) about the rescaling with the call

// tell JetMedianBackgroundEstimator or GridMedianBackgroundEstimator about the rescaling

bge.set_rescaling_class(&rescaling);

Subsequent calls to bge.estimate() will be based on the on median of the distribution
pt/A/rescaling(y) (rather than pt/A). Any calls to bge.estimate(jet) will include an additional
factor of rescaling(yjet) in the resulting BackgroundEstimate. Note that any overall factor in the
rescaling function cancels out for bge.estimate(jet), but not for calls to bge.estimate() (which are
in any case less meaningful when a rapidity dependence is being assumed for the background).

We have found [44] that despite its use of an average background shape, the rescaling method gen-
erally performs comparably to local estimation in terms of its residual pt dispersion after subtraction.
Additionally, it has the advantage of reduced sensitivity to biases in events with high multiplicities of
hard jets.

8.3 Handling masses

There are several subtleties in handling masses in subtraction. The first is related to the fact that
hadrons have masses. In some contexts those masses are ignored and set to zero, e.g. because they
are experimentally unconstrained: detectors do not systematically give information on the mass for
every particle. However, if particle masses are kept non-zero, then Eq. (12) must be extended [45] to
read

pµjet,sub = pµjet − [ρAx
jet, ρA

y
jet, (ρ+ ρm)A

z
jet, (ρ+ ρm)A

E
jet] , (13)
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where ρm accounts the massive component of the energy flow. It can be approximately determined
as the median across patches of a quantity mδ,patch/Apatch, where

mδ,patch =
∑

i∈patch

(√
m2

i + p2t,i − pti

)
. (14)

By default, as of FastJet 3.1, the grid and jet-median background estimators automatically determine
ρm. It is available within a BackgroundEstimate via a call to rho m(), with fluctuations accessible
through sigma m(). The determination of ρm involves a small speed penalty and can be disabled with
a call to set compute rho m(false) for either of the background estimators.

To avoid changes in results relative to version 3.0, by default FastJet 3.1 does not use ρm in the
Subtractor, i.e. it uses Eq. (12). However, for a given subtractor, a call to set use rho m(true), will
cause it to instead use Eq. (13) for all subsequent subtractions. We strongly recommend switching this
on if your input particles have masses, and in future versions of FastJet we may change the default
so that it is automatically switched on.28 An alternative is to make the input particles massless.

A second issue, relevant both for Eqs. (12) and (13), is that sometimes the resulting squared jet
mass is negative.29 This is obviously unphysical. By default the 4-vector returned by the subtractor
is left in that unphysical state, so that the user can decide what to do with it. For most applications a
sensible behaviour is to adjust the 4-vector so as to maintain its pt and azimuth, while setting the mass
to zero. This behaviour can be enabled for a given subtractor by a call to its set safe mass(true)

function (available since v.3.1). In this case the rapidity is then taken to be that of the original
unsubtracted jet. In future versions of FastJet, the default behaviour may be changed so that “safe”
subtraction is automatically enabled.

A general note with regards to jet masses is that a number of techniques have been proposed as
alternatives to 4-vector subtraction for jet masses. They include Jet Cleansing [46] (which requires
charged-track information; see also the discussion in Ref. [47]), Constituent Subtraction [48], the
SoftKiller [49] method and PUPPI [50]. Some of these can give significant improvements in the
resolution of the subtraction for the jet masses, though potentially at the expense of some bias.
SoftKiller and PUPPI appear to give improved resolution also for the jet pt (again at the potential
expense of modest biases). Implementations of most of these techniques are, or will soon become
available in fjcontrib. There one will also find the GenericSubtractor contrib, with code for area-
based subtraction of jet shapes and other generic observables as discussed in Refs. [45, 51].

8.4 Other facilities

The BackgroundEstimate class has one further enquiry function:

// Returns the mean area of the jets or grid cells used to actually compute

// the background properties, including empty area and/or pure ghost jets

double mean_area() const;

A BackgroundEstimate from a JetMedianBackgroundEstimator contains yet more information that can
be obtained as follows

28It is also possible to construct a Subtractor with explicit ρ and ρm values, Subtractor subtractor(rho, rho m);
if this is done, then ρm use is enabled by default.

29Recall that if m2 < 0, m() returns −
√
−m2, to avoid having to introduce complex numbers just for this special

case.
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JetMedianBackgroundEstimator::Extras extras = \

bkgd_estimate.extras<JetMedianBackgroundEstimator>();

where the extras object has the following member functions:

// Returns the number of jets used to actually compute the background properties

// (including empty jets)

unsigned int n_jets_used() const;

// Returns the estimate of the area (within the range defined by the selector) that

// is not occupied by jets.

double empty_area() const;

// Returns the number of empty jets used when computing the background properties.

double n_empty_jets() const;

For area definitions with explicit ghosts the last two functions return 0. For active areas without
explicit ghosts the results are calculated based on the observed number of internally recorded pure
ghost jets (and unclustered ghosts) that pass the selector; for Voronoi and passive areas, they are
calculated using the difference between the total range area and the area of the jets contained in the
range, with the number of empty jets then being calculated based on the average jet area for ghost
jets (0.55πR2 [17]). All four functions above return a result corresponding to the last call to rho or
sigma (as long as the particles, cluster sequence or selector have not changed in the meantime).

The Subtractor has an option

void set_known_selectors(const Selector & sel_known_vertex,

const Selector & sel_leading_vertex);

The idea here is that there are contexts where it is possible, for some of a jet’s constituents, to
identify which vertex they come from. In that case it is possible to provide a user-defined a selector
(section 6) that indicates whether a particle comes from an identified vertex or not and a second
user-defined selector that indicates whether that vertex was the leading vertex. The 4-momentum
from the non-leading vertex is then discarded, that from the leading vertex is kept, and subtraction
is applied to component that is not from identified vertices. It follows that ρ must correspond only
to the momentum flow from non-identified vertices. With this setup, the jet pt is bounded to be at
least equal to that from the leading vertex, as is the mass if the “safe” subtraction option is enabled.

8.5 Alternative workflows

To allow flexibility in the user’s workflow, alternative constructors to JetMedianBackgroundEstimator

are provided. These can come in useful if, for example, the user wishes to carry out multiple back-
ground estimations with the same particles but different selectors, or wishes to take care of the jet
clustering themselves, e.g. because the results of that same jet clustering will be used in multiple
contexts and it is more efficient to perform it just once. These constructors are:

// create an estimator that uses the inclusive jets from the supplied cluster sequence

JetMedianBackgroundEstimator(const Selector & rho_range,

const ClusterSequenceAreaBase & csa);

// a default constructor that requires all information to be set later

JetMedianBackgroundEstimator();
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In the first case, the background estimator already has all the information it needs. Instead, if the
default constructor has been used, one can then employ

// (re)set the selector to be used for future calls to rho() etc.

void set_selector(const Selector & rho_range_selector);

// (re)set the cluster sequence to be used by future calls to rho() etc.

// (as with the cluster-sequence based constructor, its inclusive jets are used)

void set_cluster_sequence(const ClusterSequenceAreaBase & csa);

to set the rest of the necessary information. If a list of jets is already available, they can be submitted
to the background estimator in place of a cluster sequence:

// (re)set the jets to be used by future calls to rho() etc.

void set_jets(const std::vector<PseudoJet> & jets);

Note that the jets passed via the set jets() call above must all originate from a common
ClusterSequenceAreaBase type class.

8.6 Recommendations

While the basic idea of pileup subtraction is rather simple, in practice a few details are relevant to
obtaining the best possible performance. Here we summarise some useful recommendations:

1. The GridMedianBackgroundEstimator is significantly faster than the
JetMedianBackgroundEstimator and performs equally well in nearly all cases.

2. Pileup usually has non-negligible rapidity dependence (and in the case of heavy-ion collisions,
the underlying event also has azimuthal dependence). It is often important to account for
this dependence, which can be done either with the rescaling method (section 8.2.3) or via a
local background estimator (section 8.2.1) or the use of regions (section 8.2.2). For their own
work in pileup subtraction the FastJet authors tend to prefer the rescaling method, with local
estimation also a useful option e.g. in the case of heavy-ion collisions.

3. If you are interested in jet masses, and wish to use non-zero input particle masses, make sure
you use the ρm component in Eq. (13) by calling your subtractor’s set use rho m() method
(section 8.3). You should also pay attention to what happens with negative squared masses, and
consider calling the subtractor’s set safe mass() option. For reasons of backwards compatibility,
both of these options are disabled by default; in future versions of FastJet, this may change.

4. For jet masses and shapes, there are various other techniques that may be of use, see e.g.
Refs. [51, 45, 46, 47, 48, 49, 50].

9 Jet transformers (substructure, taggers, etc...)

Performing post-clustering actions on jets has in recent years become quite widespread: for example,
numerous techniques have been introduced to tag boosted hadronically decaying objects, and various
methods also exist for suppressing the underlying event and pileup in jets, beyond the subtraction
approach discussed in section 8. FastJet 3 provides a common interface for such tools, intended to help
simplify their usage and to guide authors of new ones. Below, we first discuss generic considerations
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about these tools, which we call fastjet::Transformers. We then describe some that have already
been implemented. New user-defined transformers can be implemented as described in section E.4.

A transformer derived from Transformer, e.g. the class MyTransformer, will generally be used as
follows:

MyTransformer transformer;

PseudoJet transformed_jet = transformer(jet);

Often, transformers provide new structural information that is to be associated with the returned
result. For a given transformer, say MyTransformer, the new information that is not already directly
accessible from PseudoJet (like its constituents, pieces or area when they are relevant), can be
accessed through

transformed_jet.structure_of<MyTransformer>()

which returns a reference to an object of type MyTransformer::StructureType. This is illustrated below
on a case-by-case basis for each of the transformers that we discuss. Using the Boolean function
transformed jet.has structure of<MyTransformer>() it is possible to check if transformed jet is
compatible with the structure provided by MyTransformer.

A number of the transformers that we discuss below are “taggers” for boosted objects. In some
cases they will determine that a given jet does not satisfy the tagging conditions (e.g., for a top tagger,
because it seems not to be a top jet). We will adopt the convention that in such cases the result of
the transformer is a jet whose 4-momentum is zero, i.e. one that satisfies jet == 0. Such a jet may
still have structural information however (e.g. to indicate why the jet was not tagged).

9.1 Noise-removal transformers

In section 8.1.2 we already saw one transformer for noise removal, i.e. Subtractor. Others have
emerged in the context of jet substructure studies and are described here.

9.1.1 Jet Filtering and Trimming using Filter

Filtering was first introduced in [52] to reduce the sensitivity of a boosted Higgs-candidate jet’s mass
to the underlying event. Generally speaking, filtering clusters a jet’s constituents with a smaller-than-
original jet radius Rfilt. It then keeps just the nfilt hardest of the resulting subjets, rejecting the others.
Trimming [53] is similar, but selects the subjets to be kept based on a pt cut. The use of filtering
and trimming has been advocated in number of contexts, beyond just the realm of boosted object
reconstruction.

The fastjet::Filter class derives from Transformer, and can be constructed using a
JetDefinition, a Selector and (optionally) a value for the background density,

#include "fastjet/tools/Filter.hh"

// ...

Filter filter(subjet_def, selector, rho);

This reclusters the jet’s constituents with the jet definition subjet def30 and then applies selector on

30When the input jet was obtained with the Cambridge/Aachen algorithm and the subjet definition also involves the
Cambridge/Aachen algorithm, the Filter uses the exclusive subjets of the input jet to avoid having to recluster its
constituents.
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the inclusive jets resulting from the clustering to decide which of these (sub)jets have to be kept.
If rho is non-zero, each of the subjets is subtracted (using the specified value for the background
density) prior to the selection of the kept subjets. Alternatively, the user can set a Subtractor (see
section 8.1.2), e.g.

GridMedianBackgroundEstimator bge(...);

Subtractor sub(&bge);

filter.set_subtractor(sub);

When this is done, the subtraction operation is performed using the Subtractor, independently of
whether a value had been set for rho.

If the jet definition to be used to recluster the jet’s constituents is the Cambridge/Aachen algo-
rithm, two additional constructors are available:

Filter(double Rfilt, Selector selector, double rho = 0.0);

Filter(FunctionOfPseudoJet<double> * Rfilt_dyn, Selector selector, double rho = 0.0);

In the first one, only the radius parameter is specified instead of the full subjet definition. In the
second, one has to provide a (pointer to) a class derived from FunctionOfPseudoJet<double> which
dynamically computes the filtering radius as a function of the jet being filtered (as was originally used
in [52] where Rfilt = min(0.3, Rbb̄/2), with Rbb̄ the distance between the parents of the jet).

As an example, a simple filter, giving the subjets obtained clustering with the Cambridge/Aachen
algorithm with radius Rfilt and keeping the nfilt hardest subjets found, can be set up and applied using

Filter filter(Rfilt, SelectorNHardest(nfilt));

PseudoJet filtered_jet = filter(jet);

The pieces() of the resulting filtered/trimmed jet correspond to the subjets that were kept:

vector<PseudoJet> kept = filtered_jet.pieces();

Additional structural information is available as follows:

// the subjets (on the scale Rfilt) not kept by the filtering

vector<PseudoJet> rejected = filtered_jet.structure_of<Filter>().rejected();

Trimming, which keeps the subjets with a pt larger than a fixed fraction of the input jet, can be
obtained defining

Filter trimmer(Rfilt, SelectorPtFractionMin(pt_fraction_min));

and then applying trimmer similarly to filter above.

Note that the jet being filtered must have constituents. Furthermore, if rho is non-zero or if a
Subtractor is set, the input jet must come from a cluster sequence with area support and explicit
ghosts. If any of these requirements fail, an exception is thrown. In cases where the filter/trimmer has
been defined with just a jet radius, the reclustering of the jet is performed with the same recombination
scheme as was used in producing the original jet (assuming it can be uniquely determined).

9.1.2 Jet pruning

Pruning was introduced in [21]. It works by reclustering a jet’s constituents with some given sequential
recombination algorithm, but vetoing soft and large-angle recombinations between pseudojets i and
j, specifically when the two following conditions are met
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1. the geometric distance between i and j is larger than a parameter Rcut, with Rcut =
Rcut factor×2m/pt, where m and pt are the mass and transverse momentum of the original
jet being pruned;

2. one of pit, p
j
t is < zcut×pi+j

t .

When the veto condition occurs, the softer of i and j is discarded, while the harder one continues to
participate in the clustering.

Pruning bears similarity to filtering in that it reduces the contamination of soft noise in a jet
while aiming to retain hard perturbative radiation within the jet. However, because by default the
parameters for the noise removal depend on the original mass of the jet, the type of radiation that is
discarded depends significantly on the initial jet structure. As a result pruning, in its default form,
is better thought of as a noise-removing boosted-object tagger (to be used in conjunction with a
pruned-jet mass cut) rather than a generic noise-removal procedure.

The fastjet::Pruner class, derived from Transformer, can be used as follows, using a JetAlgorithm
and two double parameters:

#include "fastjet/tools/Pruner.hh"

// ...

Pruner pruner(jet_algorithm, zcut, Rcut_factor);

// ...

PseudoJet pruned_jet = pruner(jet);

The pruned jet will have a valid associated cluster sequence, so that one can, for instance, ask for
its constituents with pruned jet.constituents(). In addition, the subjets that have been rejected by
the pruning algorithm (i.e. have been ‘pruned away’) can be obtained with

vector<PseudoJet> rejected_subjets = pruned_jet.structure_of<Pruner>().rejected();

and each of these subjets will also have a valid associated clustering sequence.

When using the constructor given above, the jet radius used by the pruning clustering sequence
is set internally to the functional equivalent of infinity. Alternatively, a pruner transformer can be
constructed with a JetDefinition instead of just a JetAlgorithm:

JetDefinition pruner_jetdef(jet_algorithm, Rpruner);

Pruner pruner(pruner_jetdef, zcut, Rcut_factor);

In this situation, the jet definition pruner jetdef should normally have a radius Rpruner large enough
to ensure that all the constituents of the jet being pruned are reclustered into a single jet. If this is
not the case, pruning is applied to the entire reclustering and it is the hardest resulting pruned jet
that is returned; the others can be retrieved using

vector<PseudoJet> extra_jets = pruned_jet.structure_of<Pruner>().extra_jets();

Finally, note that a third constructor for Pruner exists, that allows one to construct the pruner
using functions that dynamically compute zcut and Rcut for the jet being pruned:

Pruner (const JetDefinition &jet_def,

const FunctionOfPseudoJet< double > *zcut_dyn,

const FunctionOfPseudoJet< double > *Rcut_dyn);

The pruned jet.structure of<Pruner>() object also provides Rcut() and zcut() members, in order
to retrieve the actual Rcut and zcut values used for that jet.
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9.2 Boosted-object taggers

A number of the taggers developed to distinguish 2- or 3-pronged decays of massive objects from plain
QCD jets (see the review [15]) naturally fall into the category of transformers. Typically they search
for one or more hard branchings within the jet and then return the part of the jet that has been
identified as associated with those hard branchings. They share the convention that if they were not
able to identify suitable substructure, they return a jet with zero momentum, i.e. one that has the
property jet == 0.

At the time of writing, we provide only a small set of taggers. These include one main two-
body tagger, the fastjet::MassDropTagger introduced in [52] and one main boosted top tagger,
fastjet::JHTopTagger from [54] (JHTopTagger derives from the fastjet::TopTaggerBase class, ex-
pressly included to provide a common framework for all top taggers capable of also returning a W ).
In addition, to help provide a more complete set of examples of coding methods to which users
may refer when writing their own taggers, we have also included the fastjet::CASubJetTagger intro-
duced in [55], which illustrates the use of a WrappedStructure (cf. appendix E.4) and the rest-frame
fastjet::RestFrameNSubjettinessTagger from Ref. [56], which makes use of facilities to boost a clus-
ter sequence.

We refer the reader to the original papers for a more extensive description of the physics use of
these taggers.

More taggers may be provided in the future, either through native implementations or, potentially,
through a “contrib” type area. Users are invited to contact the FastJet authors for further information
in this regard.

9.2.1 The mass-drop tagger

Introduced in [52] for the purpose of identifying a boosted Higgs decaying into a bb̄ pair, this is
a general 2-pronged tagger. It starts with a fat jet obtained with a Cambridge/Aachen algorithm
(originally, R = 1.2 was suggested for boosted Higgs tagging). Tagging then proceeds as follows:

1. the last step of the clustering is undone: j → j1, j2, with mj1 > mj2 ;

2. if there is a significant mass drop, µ ≡ mj1/mj < µcut, and the splitting is sufficiently symmetric,
y ≡ min(p2tj1 , p

2
tj2
)∆R2

j1j2
/m2

j > ycut, then j is the resulting heavy particle candidate with j1 and
j2 its subjets;

3. otherwise, redefine j to be equal to j1 and go back to step 1.

The tagger can be constructed with

#include "fastjet/tools/MassDropTagger.hh"

// ...

MassDropTagger mdtagger(double µcut, double ycut);

and applied using

PseudoJet tagged_jet = mdtagger(jet);

This tagger will run with any jet that comes from a ClusterSequence. A warning will be issued if the
ClusterSequence is not based on the C/A algorithm. If the JetDefinition used in the ClusterSequence
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involved a non-default recombiner, that same recombiner will be used when joining the final two prongs
to form the boosted particle candidate.

For a jet that is returned by the tagger and has the property that tagged jet != 0, two enquiry
functions can be used to return the actual value of µ and y for the clustering that corresponds to the
tagged structure:

tagged_jet.structure_of<MassDropTagger>.mu();

tagged_jet.structure_of<MassDropTagger>.y();

Note that in [52] the mass-drop element of the tagging was followed by a filtering stage using
min(0.3, Rjj/2) as the reclustering radius and selecting the three hardest subjects. That can be
achieved with

vector<PseudoJet> tagged_pieces = tagged_jet.pieces();

double Rfilt = min(0.3, 0.5 * pieces[0].delta_R(pieces[1]));

PseudoJet filtered_tagged_jet = Filter(Rfilt, SelectorNHardest(3))(tagged_jet);

(It is also possible to use the Rfilt dyn option to the filter discussed in section 9.1.1).

A significantly updated version of the mass-drop tagger, modified as in Ref. [57], is available as
part of the RecursiveTools fjcontrib module (see section 14).

9.2.2 The Johns-Hopkins top tagger

The Johns Hopkins top tagger [54] is a 3-pronged tagger specifically designed to identify top quarks.
It recursively breaks a jet into pieces, finding up to 3 or 4 subjets and then looking for a W candidate
among them. The parameters used to identify the relevant subjets include a momentum fraction
cut and a minimal separation in Manhattan distance (|∆y|+ |∆ϕ|) between subjets obtained from a
declustering.

The tagger will run with any jet that comes from a ClusterSequence, however to conform with the
original formulation of [54], the ClusterSequence should be based on the C/A algorithm. A warning
will be issued if this is not the case. If the JetDefinition used in the ClusterSequence involves a
non-default recombiner, that same recombiner will be used when joining the final two prongs to form
the boosted particle candidate. The tagger can be used as follows:

#include "fastjet/tools/JHTopTagger.hh"

// ...

double delta_p = 0.10; // subjets must carry at least this fraction of original jet’s pt
double delta_r = 0.19; // subjets must be separated by at least this Manhattan distance

double cos_theta_W_max = 0.7; // the maximal allowed value of the W helicity angle

JHTopTagger top_tagger(delta_p, delta_r, cos_theta_W_max);

// indicate the acceptable range of top, W masses

top_tagger.set_top_selector(SelectorMassRange(150,200));

top_tagger.set_W_selector (SelectorMassRange( 65, 95));

// now try and tag a jet

PseudoJet top_candidate = top_tagger(jet); // jet should come from a C/A clustering

if (top_candidate != 0) { // successful tagging

double top_mass = top_candidate.m();

double W_mass = top_candidate.structure_of<JHTopTagger>().W().m();

}
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Other information available through the structure of<JHTopTagger>() call includes: W1() and W2(),
the harder and softer of the two W subjets; non W(), the part of the top that has not been identified
with a W (i.e. the candidate for the b); and cos theta W(). The top candidate.pieces() call will
return 2 pieces, where the first is the W candidate (identical to structure of<JHTopTagger>().W()),
while the second is the remainder of the top jet (i.e. non W).

Note the above calls to set top selector() and set W selector(). If these calls are not made,
then the tagger places no cuts on the top or W candidate masses and it is then the user’s responsibility
to verify that they are in a suitable range.

Note further that JHTopTagger does not derive directly from Transformer, but from the
fastjet::TopTaggerBase class instead. This class (which itself derives from Transformer) has
been included to provide a proposed common interface for all the top taggers. In particular,
TopTaggerBase provides (via the associated structure)

top_candidate.structure_of<TopTaggerBase>().W()

top_candidate.structure_of<TopTaggerBase>().non_W()

and standardises the fact that the resulting top candidate is a PseudoJet made of these two pieces.

The benefits of the base class for top taggers will of course be more evident once more than a
single top tagger has been implemented.

9.2.3 The Cambridge/Aachen subjet tagger

The Cambridge/Aachen subjet tagger [55], originally implemented in a 3-pronged context, is really a
generic 2-body tagger, which can also be used in a nested fashion to obtained multi-pronged tagging.
It can be obtained through the include

#include "fastjet/tools/CASubjetTagger.hh"

As it is less widely used than the taggers mentioned above, we refer the user to the online doxygen
documentation for further details.

9.2.4 The rest-frame N-subjettiness tagger

The rest-frame N -subjettiness tagger [56], meant to identify a highly boosted colour singlet particle
decaying to 2 partons, can be obtained through the include

#include "fastjet/tools/RestFrameNSubjettinessTagger.hh"

As it is less widely used than the taggers mentioned above, we refer the user to the online doxygen
documentation for further details.

10 Thread safety

As of version 3.4.0, FastJet has the option of being configured with thread-safety enabled. Two
variants are possible: limited and full thread safety. Both require C++11 support in the compiler.
Limited thread safety should come with essentially zero overhead in normal operation, and is generally
suitable if each thread processes a distinct event. Full thread safety allows separate threads to work
concurrently on a common event or collection of PseudoJets (e.g. multiple threads each applying a
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different JetDefinition algorithm or Transformer to the same set of input PseudoJets). It involves
adaptations of frequently used core objects, which may have a moderate speed impact: on some
systems, we have observed a slowdown of up to 10−15%. Summaries of the classes that are thread
safe or not with the two options are given below in sections 10.1 and 10.2. Suggestions concerning
thread-safe workflows are given in section 10.3.

As of version 3.4.0, thread safety is not yet guaranteed in plugins.

10.1 Limited thread safety

Limited thread safety, can be obtained by configuring with the --enable-limited-thread-safety

option. Output of the banner, error-handling and warnings are thread safe. Concurrent read-access
and copying of JetDefinition are safe, so long as one doesn’t use delete recombiner when unused()

or delete plugin when unused(). Concurrent read access of AreaDefinition objects is also safe across
threads (see section 10.3.1 for the handling of seeds for ghost-generation). Core objects for which
concurrent read-access and copying of a single object are not safe across threads include PseudoJet

and SharedPtr, as well as classes that rely on them such as ClusterSequence. In particular, PseudoJet
objects cache rapidity and azimuth the first time these are evaluated, and this is not thread safe.

10.2 Full thread safety

Full thread safety is obtained by configuring with --enable-thread-safety. Concurrent read-access of
PseudoJet objects is now possible, and SharedPtr objects are thread safe. This enables thread safety
across FastJet operations marked as const.

In our implementation, the SharedPtr object involves an atomic counter and the PseudoJet involves
a spin-lock the first time phi() or rap() are called, in order to safely cache their values. Both of these
strategies can lead to timing overheads, which in our tests have not exceeded 10−15%.

10.3 Specific work-flows

FastJet usage sometimes entails non-const operations and/or operations that affect global (static)
variables. Below, we outline specific cases where care is needed even with thread-safety enabled.

10.3.1 Ghosted areas

Areas that use ghosts, cf. Section 7.1.1, rely on an internal random number generator to place the
ghosts. By default the generator is static and common across all threads. When using the static
generator, a lock is employed to ensure that the full set of ghosts being added to a given event is gen-
erated with a single consistent sequence of random numbers (any concurrent thread needing a distinct
set of ghosts waits its turn until the static generator is available). Given a ClusterSequenceArea csa,
the random seed that was used for that set of ghosts can be retrieved with

vector<int> seeds;

csa.area_def().ghost_spec().get_last_seed(seeds);

Alternatively, given a ghosted AreaDefinition area def, the ClusterSequenceArea can use ghosts
generated using a specific set of seeds for the random number generator, for example
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vector<int> seed{12345,67890};

ClusterSequenceArea csa(particles, jet_def, area_def.with_fixed_seed(seed));

The area def.with fixed seeds(seeds) call returns a copy of the area def with the specified seeds.31

The above functionality is available even without thread safety and functions in a thread-safe manner
already with the limited thread safety option.

10.3.2 Background estimation and subtraction

The classes derived from BackgroundEstimatorBase store information about an event when
one calls member functions such as set particles(...). Thus it is not safe to use a single
BackgroundEstimatorBase across concurrent threads that are each processing a different event.
Instead, given a global BackgroundEstimatorBase global bge, it is possible to ask for a copy of the
estimator locally within a thread, and then set the particles on the local copy and use that for
accessing information about the background

// copy the global BackgroundEstimator class

// (the user will be responsible for deleting it and may

// wish to put it into a unique_ptr)

BackgroundEstimatorBase * local_bge(global_bge.copy());

// set the particles on the local copy

local_bge->set_particles(particles);

// alternatively set the particles with a fixed a specific seed for

// the ghost generation

vector<int> seed{12345,67890};

local_bge->set_particles_with_seed(particles, seed);

// and access information about the background across the whole

// event (if supported), using its operator() function

BackgroundEstimate bkgd_estimate1 = local_bge->estimate();

// or in the vicinity of a specific jet

BackgroundEstimate bkgd_estimate2 = local_bge->estimate(jet);

// extract rho

double rho1 = bkgd_estimate1.rho();

double rho2 = bkgd_estimate2.rho();

If using a globally defined Subtractor global subtractor, one similarly needs to take a copy and point
that copy to the thread-local BackgroundEstimatorBase:

// copy the subtractor

Subtractor local_subtractor = global_subtractor;

// arrange for the copy to use the local background estimator

local_subtractor.set_background_estimator(local_bge);

The user is responsible for deleting the local gbe when it is no longer needed.

31If using an area definition with a repeat value greater than one, this method will not work, because the seeds will
be the same for each repetition of the ghosts. In that case, the user may create their own random generator (one per
thread), and in each thread create a GhostedAreaSpec with that generator.

57



Note that prior to version 3.4.0 of FastJet, the BackgroundEstimate class did not exist
and one accessed information about the background directly from member functions
of the BackgroundEstimatorBase instance, e.g. BackgroundEstimatorBase::rho(jet). For
JetMedianBackgroundEstimator objects that involve a Selector that takes a reference,
(section 8.2.1), calls to rho(jet), rho m(jet), sigma(jet), sigma m(jet) (which are all non-const)
update the state of the JetMedianBackgroundEstimator object, which then affects the result of
subsequent calls to mean area(), n jets used(), jets used(), empty area() and n empty jets().
Without full thread safety, concurrent calls to rho(jet), etc., can cause the code to crash.
Compiling with full thread safety enabled eliminates the risk of a crash. However, even with full
thread safety, the results from mean area() calls, etc., can be wrong if separate threads are each
calling rho(jet) with different jets. So we recommend that any code that uses background
estimation be updated to access the results through the BackgroundEstimate class. The details of its
usage are given in sections 8.1.1 and 8.4.

10.3.3 I/O

There are three components of the FastJet code that perform text output: the banner output, the
LimitedWarning class and the Error class. With limited thread safety enabled, all are thread safe in
the sense that they will not crash the code.

The banner will be output just once, and to ensure reproducibility of text output the user may
wish to call ClusterSequence::print banner() before creating threads (the stream can be controlled
with ClusterSequence::set fastjet banner stream()).

For the LimitedWarning and Error classes, the user has no direct control over the stage at which
output may come. To prevent garbled output, the user may perform calls to

LimitedWarning::set_default_stream_and_mutex(&user_stream, &user_mutex);

Error::set_default_stream_and_mutex(&user_stream, &user_mutex);

where the user provides a pointer to a stream and a mutex. The mutex is then locked whenever
something is to be output to the stream. If the user is sending their own output to that same stream,
it is their responsibility to ensure that they lock it when performing their own output. Note that the
LimitedWarning warning class outputs a “(LAST SUCH WARNING)” string the last time it outputs
a warning of a given kind. When running concurrent threads, that string may not appear with the
warning that is actually the last of that kind. Recall that output from warnings and errors can be
disabled by setting a null stream for each of them and that a summary of the warnings can be obtained
as a string at any time with a call to LimitedWarning::summary().

11 Compilation notes

Compilation and installation make use of the standard

% ./configure

% make

% make check

% make install
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procedure. Explanations of available options (e.g. to select which plugins are built or enable/disable
python support) are given in the INSTALL file in the top directory, and a list can also be obtained
running ./configure --help.

In order to access the NlnN strategy for the kt algorithm, the FastJet library needs to be compiled
with support for the Computational Geometry Algorithms Library CGAL [13]. This same strategy
gives N lnN performance for Cambridge/Aachen and N3/2 performance for anti-kt (whose sequence
for jet clustering triggers a worst-case scenario for the underlying computational geometry methods.)
CGAL can be enabled with the --enable-cgal at the configure stage.32 CGAL may be obtained
in source form from http://www.cgal.org/ and is also available in binary form for many common
Linux distributions. For CGAL versions 3.4 and higher, the user can specify --with-cgaldir=... if
the CGAL files are not installed in a standard location.33

The NlnNCam strategy does not require CGAL, since it is based on a considerably simpler
computational-geometry structure [58].

12 Python interface

As of version 3.3, FastJet ships with a Python interface. In version 3.3 this interface is to be
considered at a beta-release stage. While we expect it to remain largely stable, some details may
evolve in future releases.

Its compilation can be enabled at configure time with the option --enable-pyext. It includes access
to much of the functionality in FastJet, except plugins and certain features that are difficult to map
to Python. In particular templated types, nested classes and user-derived classes are not currently
supported (with a few exceptions, see below). The Python interface was largely created automatically,
using SWIG [59]. The Python documentation was generated automatically using Doxygen and the
doxy2swig program [60].

12.1 Essential usage

The following points are useful to keep in mind:

� You can pass a Python list such as [PseudoJet0, PseudoJet1, ...] to any FastJet call that
expects a vector of PseudoJets.

� Any FastJet call that in C++ returns a vector of PseudoJets will in Python return a tuple of
PseudoJets

� For many objects that provide definitions of some kind, a pythonic str call maps to
description().

� When combining selectors, &&, || and ! in C++ map to &, | and ~ in Python.

32Since version 4.9, CGAL can be used as a header-only library (this is the default from version 5.0 of CGAL). In
this case, FastJet requires an installed version of CGAL as well as the --enable-cgal-header-only configure
argument, see e.g. section 4 of the CGAL manual.

33For events with near degeneracies in their Delaunay triangulation, issues have been found with versions 3.7 and 3.8
of CGAL. We recommend the use of earlier or later versions.
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� Any python variable var (which may be a simple variable or a more complicated object) can
be associated with a PseudoJet pj using the pj.set python info(var) call; it can be retrieved
with pj.python info(). This is based on the C++ PseudoJet user info functionality described
in Appendix B.

� Python functions can be used to create FastJet Selector objects, using
SelectorPython(some python function). The function must accept a PseudoJet as its single
argument and return True or False. You can also supply a class, in which case it should
implement a call (self,particle) member to indicate whether a particle passes the
selector and a str (self) member for the description (see example/python/06-selector.py).

� A Python class can also be used to construct a recombiner, which must have
preprocess(self,pa), recombine(self,pa,pb) and str (self) members, in analogy
with the C++ structure, Appendix E.1 (with str providing the functionality of
the C++ description member). preprocess(self,pa) should (optionally) modify pa

directly, while recombine(self,pa,pb) should return a new PseudoJet, resulting from
the recombination of pa and pb. You can then assign the python-based recombiner
using a call such as jet def.set python recombiner(python recombiner), cf. example
example/python/07-recombiner.py.

� When a FastJetError exception is thrown from C++, a corresponding fastjet.Error(...)

exception is raised in Python. This allows for graceful handling of exceptions, notably in an
interactive Python session.

� Remember that Python uses references, e.g. a = b means that a is a reference to b. If you need
to copy a PseudoJet pj with a view to altering it, do “pjcopy = PseudoJet(pj)”.

12.2 Known issues as of version 3.3.x

� C++ enums are replaced by integers in Python. This causes complications for some overloaded
interfaces, notably that of JetDefinition, which takes a jet algorithm specification, followed by
zero, one or two C++ double arguments (e.g. jet radius R and the power p of the generalised-
kt algorithm), then specifications of the recombination scheme and clustering strategy (both
enums). With Python the arguments corresponding to the C++ doubles must be Python
floats. If instead they are integers, then they are interpreted as specifying the recombination
scheme and clustering strategy.

As an alternative there are Python calls JetDefinition0Param(...),
JetDefinition1Param(...), JetDefinition2Param(...), which explicitly expect 0, 1 or 2
parameters that are automatically converted to double.

This issue is relevant also if you write code for other users that takes the parameters as an
argument and then passes them on to FastJet: you may want to either explicitly call the NParam
versions, or explicitly convert the user parameters to float in your own code.

� For the Selector::sift(jets, jets that pass, jets that fail) C++ member, the last two
arguments are references to vector<PseudoJet> objects. In this case, it is not possible to use
a Python list in place of those arguments. Instead you should pass variables initialised to be
vectorPJ() (which corresponds to the C++ vector<PseudoJet>).
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� Plugins and fjcontrib code do not yet have a Python interface, nor does fjcore.

12.3 A simple example

A short example of Python usage is as follows:

from fastjet import *

particles = []

particles.append(PseudoJet(100.0, 0.0, 0.0, 100.0)) # px, py, pz, E

particles.append(PseudoJet(150.0, 0.0, 0.0, 150.0))

R = 0.4

jet_def = JetDefinition(antikt_algorithm, R)

jets = jet_def(particles)

print jet_def

for jet in jets: print jet

Further examples are to be found in the example/python/ directory.

13 FJcore

The fjcore package provides a simple, compact way of accessing the main FastJet functionality. It
consists of just two files fjcore.hh and fjcore.cc. A program can access the fjcore functionality by
linking with fjcore.cc instead of the full FastJet library,

g++ main.cc fjcore.cc

where main.cc includes fjcore.hh rather than the usual FastJet headers. Clustering results are
identical to those obtained by linking to the full FastJet distribution.

One of the main intended uses of fjcore is to provide jet-finding code that can be easily distributed
with 3rd party code (e.g. it is currently distributed with Pythia 8 [61] and MadGraph5 aMC@NLO).
We emphasize that the FastJet licensing conditions must be respected when incorporating fjcore.
This includes a mention of fjcore’s GPL license in the third-party package’s own LICENSE or
COPYING file. Furthermore for interactive usage, the fjcore banner may not be removed. This is
because it contains crucial information, such as the fjcore version number, that users are expected
to quote in their scientific publications. In order to make it possible for fjcore and the full FastJet
(e.g. used in a separate user program) to coexist, the fjcore package uses the fjcore namespace
instead of fastjet.

In particular, fjcore provides:

� access to all native hadron-collider and e+e− algorithms, kt, anti-kt, C/A. For C/A, the N lnN
method is available, while anti-kt and kt are limited to the N2 one (still the fastest for N < 100k
particles)

� access to selectors, for implementing cuts and selections
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� access to all functionalities related to PseudoJets (e.g. a jet’s structure or user-defined informa-
tion)

Instead, it does not provide:

� jet-area functionality

� background estimation

� access to other algorithms via plugins

� interface to CGAL

� fastjet tools, e.g. filters, taggers

If these functionalities are needed, the full FastJet installation must be used. The code will be
fully compatible, with the sole replacement of the header files and of the fjcore namespace with the
fastjet one.

Note that the fjcore package comes with a basic example 01-basic.cc as well as a fortran interface
and an associated example.

The fjcore package has been available since release 3.0.4 of FastJet, and tracks FastJet versions.
It is available for download from the http://fastjet.fr/ web site.

14 FastJet Contrib

The FastJet update schedule is geared towards providing stability. Typically, a minor (e.g. 3.0 → 3.1)
release is made every two or three years, and a new minor or major release may only become widely
adopted (notably by the experiments) a further year or two down the line. In comparison, the field of
jet physics, especially jet substructure, and the development of associated tools proceeds at a much
faster pace.

To accommodate this, part way through the 3.1 development cycle, in 2013, FastJet Contrib

(fjcontrib) was introduced. This provides a home for a variety of contributed tools. New tools from
3rd-party authors can usually be added in the space of days or weeks, after some basic review of the
interface, so far usually carried out by the FastJet authors. Contents, instructions and information
for contributing are provided on the fjcontrib web pages [62], http://fastjet.hepforge.org/
contrib/.
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N2Plain Plain N2 algorithm
N2Tiled Tiled N2 algorithm
N2MinHeapTiled Tiled N2 algorithm with a heap for tracking the min. of dij
N2MHTLazy9 Variant of N2MinHeapTiled, with “lazy” (see text) evaluation of

distances to particles in the set of 9 = 3× 3 nearby tiles
N2MHTLazy25 Like N2MHTLazy9, but uses tiles of size R/2 and a set of

25 = 5× 5 neighbours
N2MHTLazy9AntiKtSeparateGhosts Similar to N2MHTLazy9, but neglects ghost-ghost clusterings

(to be considered preliminary in FJ3.1)
NlnN Voronoi-based N lnN algorithm
NlnNCam Based on Chan’s N lnN closest pairs algorithm, suitable only

for the Cambridge jet algorithm
Best Automatic selection of the best of these based on N and R
BestFJ30 Automatic strategy selection as was done in FastJet 3.0

Table 2: The more interesting of the various algorithmic strategies for clustering. Other strategies are
given in JetDefinition.hh — however, strategies not listed in the above table may disappear in future
releases. For jet algorithms with spherical distance measures (those whose name starts with “ee ”),
only the N2Plain strategy is available. The N range in which a given strategy is optimal depends on
R and on the rapidity extent of the particles. See figure 2 for details.

Since its inception, this project has been supported in part by grants ANR-05-JCJC-0046-01, ANR-
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A Clustering strategies and performance

The constructor for a JetDefinition can take a strategy argument (cf. section 3.2), which selects the
algorithmic “strategy” to use while clustering. It is an enum of type Strategy with relevant values
listed in table 2. Nearly all strategies are based on the factorisation of energy and geometrical distance
components of the dij measure [10]. In particular they involve the dynamic maintenance of a nearest-
neighbour graph for the geometrical distances. They apply equally well to any of the internally
implemented hadron-collider jet algorithms. The two exceptions are: NlnNCam, which is based on a
computational geometry algorithm for dynamic maintenance of closest pairs [58] (rather than the
more involved nearest neighbour graph), and is suitable only for the Cambridge algorithm, whose
distance measure is purely geometrical; and N2MHTLazy9AntiKtSeparateGhosts, intended specifically
for area calculations with the anti-kt algorithm (to be considered preliminary in v3.1; it can also be
used for passive area calculations for other algorithms).

The N2Plain strategy uses a “nearest-neighbour heuristic” [63] approach to maintaining the ge-
ometrical nearest-neighbour graph; N2Tiled tiles the y − ϕ cylinder to limit the set of points over
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Figure 2: Transitions between fastest strategies in the plane of particle multiplicity N and radius R.
The events consist of one hard scatter and a variable number pileup collisions, with particles accepted
up to rapidity |y| < 5. To probe the small N region, only the N hardest particles in the event are
kept. The red lines with symbols indicate the measured transitions, while the black solid lines are the
approximate transitions used for the Best strategy. The three plots are, from left to right, for the
anti-kt, C/A and kt algorithms.

which nearest-neighbours are searched for,34 and N2MinHeapTiled differs only in that it uses an N lnN
(rather than N2) data structure for maintaining in order the subset of the dij that involves nearest
neighbours. Both use tiles of size at least R × R, and search for a particle’s nearest neighbours in
the 3× 3 set of tiles centred on that particle’s own tile. The N2MHTLazy9 strategy is similar, however
before considering a neighbouring tile it establishes whether the edge of the tile is closer than the
particle’s nearest same-tile neighbour. If not, it skips the tile, hence the name “lazy”. The extra
checks and bookkeeping introduce a speed penalty for moderate N , but at large N that is more than
compensated for by the fact that one searches for neighbours in a smaller set of tiles. The N2MHTLazy25
strategy is almost identical except that it uses a 5 × 5 set of tiles of size at least R/2. All the lazy
algorithms are new in FastJet 3.1. The NlnN strategy uses CGAL’s Delaunay Triangulation [13] for
the maintenance of the nearest-neighbour graph. Note that N lnN performance is an expected result,
and it holds in practice for the kt and Cambridge algorithms, while for anti-kt and generalised-kt with
p < 0, hub-and-spoke (or bicycle-wheel) type configurations emerge dynamically during the clustering
and these break the conditions needed for the expected result to hold (this however has a significant
impact only for N ≳ 105; we believe that it leads to N3/2 asymptotic time for clustering).35

Given the many strategies, it is not entirely trivial to select the fastest one for any given event.
The optimal choice depends on the jet algorithm, its radius parameter, the event multiplicity, and the
way in which the particles are distributed across the event (e.g. all concentrated at small rapidities, or
covering a large rapidity range). Figure 2 shows our determination of the optimal strategy for different
R and N for events covering rapidities up to |y| < 5.36 The solid black lines indicate the transitions
encoded in the “Best” meta-strategy, which automatically selects one of the actual strategies for
execution. Note that the choice of optimal strategy can to some extent depend also on the processor,

34Tiling is a textbook approach in computational geometry, where it is often referred to as bucketing. It has been
used also in certain cone jet algorithms, notably at trigger level and in [64].

35In versions of FastJet prior to 3.1.0, the N lnN strategy had the limitation that it could not be used in events with
perfectly collinear particles. This was related to the fact that the underlying computational geometry structures cannot
cleanly accommodate multiple particles in the same location. As of version 3.1.0, this limitation has been eliminated.

36The optimal transition to the NlnNCam strategy may depend strongly on the size of the cache.
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compiler version and optimisation flags. Accordingly, the choices made in the Best strategy may not
be perfectly optimal on all systems.

Illustrative timings for the Best strategy are shown as a function of N in figure 3 for the anti-
kt, kt and the Cambridge/Aachen algorithms, with R = 0.4 on the left and R = 1.2 on the right.
For comparison the figure also shows the timings for the anti-kt algorithm in FastJet 3.0.6 and
additionally for SISCone (R = 0.4 only). Kinks in the timings of the native algorithms are visible at
the N values where there is a switch from one strategy to another. The speed improvements from the
strategies introduced in version 3.1 set in starting with a couple of thousand (hundred) particles for
R = 0.4 (1.2) and reach about a factor of ten improvement for N ≃ 105 (20 000); they also result in
the transition to the N lnN strategies occurring at somewhat larger N than in version 3.0, typically
at or beyond N = 105. Taking N = 104 particles as a reference (e.g. corresponding to moderate pp
pileup plus ghosts for area subtraction37), the improvement in speed is about a factor of 2 for R = 0.4
and 7 for R = 1.2.

We note that there are a few places where there remains scope for timing improvements. In
particular at low N the overheads related to copying and sorting a vector of PseudoJet objects are
a relevant fraction of the total time, and could be reduced. Additionally, for the Cambridge/Aachen
algorithm at moderate to large N , the use of multiple grid sizes could bring some benefit. The
improvements contained in the N2MHTLazy9AntiKtSeparateGhosts strategy could be further extended
to the Lazy25 case and made available automatically. Finally the Best strategy selection could try to
better take into account the rapidity extent of the event, and special cases like single-jet reclustering.
Should users have applications where such improvements are critical, they are encouraged to contact
the FastJet authors.

A final comment concerns the native e+e− algorithms (eekt and ee genkt). By default these always
use an N2Plain strategy. A more accurate N2PlainEEAccurate strategy is also available, as discussed
in section 4.5, with a speed penalty of about 15%.

B User Info in PseudoJets

One method for associating extra user information with a PseudoJet is via its user index (section 3.1).
This is adequate for encoding simple information. such as an input particle’s barcode in a HepMC
event. However, it can quickly show its limitations; for example, when simulating pileup one might
have several HepMC events and it is then useful for each particle to additionally store information
about which HepMC event it comes from.

A second method for supplementing a PseudoJet with extra user information is for the user to
derive a class from PseudoJet::UserInfoBase and associate the PseudoJet with a pointer to an instance
of that class:

void set_user_info(UserInfoBase * user_info);

const UserInfoBase* user_info_ptr() const;

The function set user info(...) transfers ownership of the pointer to the PseudoJet. This is achieved
internally with the help of a shared pointer. Copies of the PseudoJet then point to the same user info.
When the PseudoJet and all its copies go out of scope, the user info is automatically deleted. Since

37For the specific case of the anti-kt algorithm with ghosts, the N2MHTLazy9AntiKtSeparateGhosts can bring
further benefits in this region.
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Figure 3: Time required to perform the clustering of N particles in FastJet 3.1.0 with the Best

strategy. The anti-kt, kt, and Cambridge/Aachen (C/A) native algorithms are shown for R = 0.4 (left)
and R = 1.2 (right). For comparison, the figure also includes the timings for the anti-kt algorithm in
version 3.0.6 of FastJet. The timings were obtained on an Intel Xeon X3360 processor with 6 MB
of level-3 cache, running at 2.83GHz. The code was compiled with g++ version 4.4, using the -O2

optimisation flag. For small N , N was varied by taking a single hard dijet event generated with
Pythia 6 [65] and extracting the N hardest particles. Large N values were obtained by taking a single
hard dijet event and adding simulated minimum-bias events to it. Particles are limited to rapidities
|y| < 5. The results include the time to extract the inclusive jets with pt > 5GeV and sort them into
decreasing pt. Note that timings observed in practice can differ from those given here for events with
substantially different distributions of particles.
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nearly all practical uses of user info require it to be cast to the relevant derived class of UserInfoBase,
we also provide the following member function for convenience:

template<class L> const L & user_info() const;

which explicitly performs the cast of the extra info to type L. If the cast fails, or the user info has not
been set, an error will be thrown.38

The user may wonder why we have used shared pointers internally (i.e. have ownership transferred
to the PseudoJet) rather than normal pointers. An example use case where the difference is impor-
tant is if, for example, one wishes to write a Recombiner that sets the user info in the recombined
PseudoJet. Since this is likely to be new information, the Recombiner will have to allocate some
memory for it. With a normal pointer, there is then no easy way to clean up that memory when the
PseudoJet is no longer relevant (e.g. because the ClusterSequence that contains it has gone out of
scope). In contrast, with a shared pointer the memory is handled automatically.39

The shared pointer type in FastJet is a template class called SharedPtr, available through

#include "fastjet/SharedPtr.hh"

It behaves almost identically to the C++0x shared ptr.40 The end-user should not usually need to
manipulate the SharedPtr, though the SharedPtr to user info is accessible through PseudoJet’s
user info shared ptr() member.

An example of the usage might be the following. First you define a class MyInfo, derived from
PseudoJet::UserInfo,

class MyInfo: public PseudoJet::UserInfoBase {

MyInfo(int id) : _pdg_id(id);

int pdg_id() const {return _pdg_id;}

int _pdg_id;

};

Then you might set the info as follows

PseudoJet particle(...);

particle.set_user_info(new MyInfo(its_pdg_id));

and later access the PDG id through the function

particle.user_info<MyInfo>().pdg_id();

More advanced examples can be provided on request, including code that helps handle particle classes
from third party tools such as Pythia 8 [61].
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particle jet jet (no CS) constituent join(j1, j2) join(p1, p2)

has associated cs() false true true true false false
associated cs() NULL CS NULL CS NULL NULL

has valid cs() false true false true false false
validated cs() throws CS throws CS throws throws

has constituents() false true true true true true
constituents() throws from CS throws itself recurse pieces

has pieces() false true throws false true true
pieces() throws parents throws empty pieces pieces

has parents(...) throws from CS throws from CS throws throws
has child(...) throws from CS throws from CS throws throws
contains(...) throws from CS throws from CS throws throws

Table 3: summary of the behaviour obtained when requesting structural information from different
kinds of PseudoJet. A particle (also p1, p2) is a PseudoJet constructed by the user, without struc-
tural information; a “jet” (also j1, j2) is the output from a ClusterSequence; “from CS” means that
the information is obtained from the associated ClusterSequence. A “jet (no CS)” is one whose
ClusterSequence has gone out of scope. All other entries should be self-explanatory.

C Structural information for various kinds of PseudoJet

Starting with FastJet version 3.0, a PseudoJet can access information about its structure, for example
its constituents if it came from a ClusterSequence, or its pieces if it was the result of a join(...)

operation. In this appendix, we summarise what the various structural access methods will return for
different types of PseudoJets: input particles, jets resulting from a clustering, etc. Table 3 provides
the information for the most commonly-used methods.

Additionally, all the methods that access information related to the clustering (has partner(),
is inside(), has exclusive subjets(), exclusive subjets(), n exclusive subjets(),
exclusive subdmerge(), and exclusive subdmerge max) require the presence of an associated cluster
sequence and throw an error if none is available (except for has exclusive subjets() which just
returns false).

For area-related calls, has area() will be false unless the jet is obtained from a
ClusterSequenceAreaBase or is a composite jet made from such jets. All other area calls
(validated csab(), area(), area error(), area 4vector(), is pure ghost()) will return the
information from the ClusterSequenceAreaBase, or from the pieces in case of a composite jet. An

38For clustering with explicit ghosts, even if the particles being clustered have user information, the ghosts will
not. The user should take care therefore not to ask for user information about the ghosts, e.g. with the help of the
PseudoJet::is pure ghost() or PseudoJet::has user info<L>() calls. The SelectorIsPureGhost() can also be
used for this purpose.

39The user may also wonder why we didn’t simply write a templated version of PseudoJet in order to contain
extra information. The answer here is that to introduce a templated PseudoJet would imply that every other class in
FastJet should then also be templated.

40Internally it has been designed somewhat differently, in order to limit the memory footprint of the PseudoJet that
contains it. One consequence of this is that dynamic casts of SharedPtr’s are not supported.
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error will be thrown if the jet does not have area information.

Internal storage of structural information. The means by which information about a jet’s
structure is stored is generally transparent to the user. The main exception that arises is when the
user wishes to create jets with a new kind of structure, for example when writing boosted-object
taggers. Here, we simply outline the approach adopted. For concrete usage examples one can consult
section 9 and appendix E.4, where we discuss transformers and taggers.

To be able to efficiently access structural information, each PseudoJet has a shared pointer to a class
of type fastjet::PseudoJetStructureBase. For plain PseudoJets the pointer is null. For PseudoJets
obtained from a ClusterSequence the pointer is to a class fastjet::ClusterSequenceStructure, which
derives from PseudoJetStructureBase. For PseudoJets obtained from a join(...) operation, the
pointer is to a class fastjet::CompositeJetStructure, again derived from PseudoJetStructureBase.
It is these classes that are responsible for answering structural queries about the jet, such as returning
its constituents, or indicating whether it has pieces(). Several calls are available for direct access to
the internal structure storage, among them

const PseudoJetStructureBase* structure_ptr() const;

PseudoJetStructureBase* structure_non_const_ptr();

template<typename StructureType> const StructureType & structure() const;

template<typename TaggerType> const TaggerType::StructureType & structure_of() const;

where the first two return simply the structure pointer, while the last two cast the pointer to the
desired derived structure type.

D Functions of a PseudoJet

A concept that is new to FastJet 3 is that of a fastjet::FunctionOfPseudoJet. Functions of
PseudoJets arise in many contexts: many boosted-object taggers take a jet and return a modified
version of a jet; background subtraction does the same; so does a simple Lorentz boost. Other func-
tions return a floating-point number associated with the jet: for example jet shapes, but also the
rescaling functions used to provide local background estimates in section 8.2.

To help provide a uniform interface for functions of a PseudoJet, FastJet has the following tem-
plate base class:

// a generic function of a PseudoJet

template<typename TOut> class FunctionOfPseudoJet{

// the action of the function (this _has_ to be overloaded in derived classes)

virtual TOut result(const PseudoJet &pj) const = 0;

};

Derived classes should implement the result(...) function. In addition it is good practice to overload
the description() member,

virtual std::string description() const {return "";}

Usage of a FunctionOfPseudoJet is simplest through the operator(...) member functions

TOut operator()(const PseudoJet & pj) const;

vector<TOut> operator()(const vector<PseudoJet> & pjs) const;
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which just call result(...) either on the single jet, or separately on each of the elements of the vector
of PseudoJets.41.

The FunctionOfPseudoJet framework makes it straightforward to pass functions of PseudoJets as
arguments. This is, e.g., used for the background rescalings in section 8.2, which are just derived from
FunctionOfPseudoJet<double>. It is also used for the Transformers of section 9, which all derive from
FunctionOfPseudoJet<PseudoJet>. The use of a class for these purposes, rather than a pointer to a
function, provides the advantage that the class can be initialised with additional arguments.

E User-defined extensions of FastJet

E.1 External Recombination Schemes

A user who wishes to introduce a new recombination scheme may do so by writing a class derived
from JetDefinition::Recombiner:

class JetDefinition::Recombiner {

public:

/// return a textual description of the recombination scheme implemented here

virtual std::string description() const = 0;

/// recombine pa and pb and put result into pab

virtual void recombine(const PseudoJet & pa, const PseudoJet & pb,

PseudoJet & pab) const = 0;

/// routine called to preprocess each input jet (to make all input

/// jets compatible with the scheme requirements (e.g. massless).

virtual void preprocess(PseudoJet & p) const {};

/// a destructor to be replaced if necessary in derived classes...

virtual ~Recombiner() {};

};

A jet definition can then be constructed by providing a pointer to an object derived from
JetDefinition::Recombiner instead of the RecombinationScheme index:

JetDefinition(JetAlgorithm jet_algorithm,

double R,

const JetDefinition::Recombiner * recombiner,

Strategy strategy = Best);

The derived class JetDefinition::DefaultRecombiner is what is used internally to implement the
various recombination schemes if an external Recombiner is not provided. It provides a useful example
of how to implement a new Recombiner class.

The recombiner can also be set with a set recombiner(...) call. If the recombiner has been
created with a new statement and the user does not wish to manage the deletion of the corresponding

41Having result(...) and operator(...) doing the same thing may seem redundant, however, it allows one to
redefine only result in derived classes. If we had had a virtual operator(...) instead, both the PseudoJet and
vector<PseudoJet> versions would have had to be overloaded.
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memory when the JetDefinition (and any copies) using the recombiner goes out of scope, then the
user may wish to call the delete recombiner when unused() function, which tells the JetDefinition

to acquire ownership of the pointer to the recombiner and delete it when it is no longer needed.

E.2 Implementation of a plugin jet algorithm

The base class from which plugins derive has the following structure:

class JetDefinition::Plugin{

public:

/// returns a textual description of the jet-definition implemented in this plugin

virtual std::string description() const = 0;

/// given a ClusterSequence that has been filled up with initial particles,

/// the following function should fill up the rest of the ClusterSequence,

/// using the following member functions of ClusterSequence:

/// - plugin_do_ij_recombination(...)

/// - plugin_do_iB_recombination(...)

virtual void run_clustering(ClusterSequence &) const = 0;

/// a destructor to be replaced if necessary in derived classes...

virtual ~Plugin() {};

//------- ignore what follows for simple usage! ---------

/// returns true if passive areas can be efficiently determined by

/// (a) setting the ghost_separation scale (see below)

/// (b) clustering with many ghosts with pt ≪ ghost_separation_scale

/// (c) counting how many ghosts end up in a given jet

virtual bool supports_ghosted_passive_areas() const {return false;}

/// sets the ghost separation scale for passive area determinations

/// in future runs (NB: const, so should set internal mutable var)

virtual void set_ghost_separation_scale(double scale) const;

virtual double ghost_separation_scale() const;

};

Any plugin class must define the description and run clustering member functions. The former just
returns a textual description of the jet algorithm and its options (e.g. radius, etc.), while the latter
does the hard work of running the user’s own jet algorithm and transferring the information to the
ClusterSequence class. This is best illustrated with an example:

using namespace fastjet;

void CDFMidPointPlugin::run_clustering(ClusterSequence & clust_seq) {

// when run_clustering is called, the clust_seq.jets() has already been

// filled with the initial particles

const vector<PseudoJet> & initial_particles = clust_seq.jets();
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// it is up to the user to do their own clustering on these initial particles

// ...

Once the plugin has run its own clustering it must transfer the information back to the clust seq.
This is done by recording mergings between pairs of particles or between a particle and the beam.
The new momenta are stored in the clust seq.jets() vector, after the initial particles. Note though
that the plugin is not allowed to modify clust seq.jets() itself. Instead it must tell clust seq what
recombinations have occurred, via the following (ClusterSequence member) functions

/// record the fact that there has been a recombination between jets()[jet_i]

/// and jets()[jet_j], with the specified dij, and return the index (newjet_k)

/// allocated to the new jet. The recombined PseudoJet is determined by

/// applying the JetDefinition’s recombiner to the two input jets.

/// (By default E-scheme recombination, i.e. a 4-vector sum)

void plugin_record_ij_recombination(int jet_i, int jet_j, double dij, int & newjet_k);

/// as for the simpler variant of plugin_record_ij_recombination, except

/// that the new jet is attributed the momentum and user information of newjet

void plugin_record_ij_recombination(int jet_i, int jet_j, double dij,

const PseudoJet & newjet, int & newjet_k);

/// record the fact that there has been a recombination between jets()[jet_i]

/// and the "beam", with the specified diB; this jet will then be returned to

/// the user when they request inclusive_jets() from the cluster sequence.

void plugin_record_iB_recombination(int jet_i, double diB);

The dij recombination functions return the index newjet k of the newly formed pseudojet. The plugin
may need to keep track of this index in order to specify subsequent recombinations.

Certain (cone) jet algorithms do not perform pairwise clustering — in these cases the plugin must
invent a fictitious series of pairwise recombinations that leads to the same final jets. Such jet algorithms
may also produce extra information that cannot be encoded in this way (for example a list of stable
cones), but to which one may still want access. For this purpose, during run_clustering(...), the
plugin may call the ClusterSequence member function:

inline void plugin_associate_extras(std::auto_ptr<ClusterSequence::Extras> extras);

where ClusterSequence::Extras is an abstract base class, which the plugin should derive from so
as to provide the relevant information:

class ClusterSequence::Extras {

public:

virtual ~Extras() {}

virtual std::string description() const;

};

A method of ClusterSequence then provides the user with access to the extra information:

/// returns a pointer to the extras object (may be null) const

ClusterSequence::Extras * extras() const;

The user should carry out a dynamic cast so as to convert the extras back to the specific plugin extras
class, as illustrated for SISCone in section 5.2.
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Note that when calculating areas, the extras() member works only for active areas with explicit
ghosts and for Voronoi areas. The reason for this is that other types of area first carry out a clustering
with explicit ghosts and then edit the ClusterSequence to remove the information related to pure ghost
jets. This modifies the internal indices of the jets, making it very challenging, for example, for the
Extras class to handle queries about individual jets.

E.2.1 Building new sequential recombination algorithms

To enable users to more easily build plugins for new sequential recombination algorithms, FastJet
also provides several classes that give access to implementations of dynamic nearest neighbour finding:

� A class NNH, which provides users with access to an implementation of the nearest-neighbour
heuristic for establishing and maintaining information about the closest pair of objects in a
dynamic set of objects with generic distance measures (see [66] for an introduction to this and
other generic algorithms). In good cases (e.g. C/A-like distances) this allows one to construct
clustering that runs in N2 time, though its worst case can be as bad as N3 (e.g. anti-kt).

� A class NNFJN2Plain, for distances that can be written in the form dij = min(xi, xj)Dij, diB =
xiDiB, making use of the FastJet lemma and maintaining a nearest neighbour table for the
Dij part of the distance measure. Closely related code forms the basis of the internal N2Plain
strategy for the generalised-kt algorithms, where xi ≡ p2pti and Dij ≡ ∆R2

ij/R
2, DiB = 1. If

Dij is geometrical, then the nearest-neighbour maintenance for the Dij can be done in N2 time,
ensuring an overall N2 algorithm.

� A class NNFJN2Tiled. This is intended for problems with a cylindrical geometry. The user
specifies the tile size and then the algorithm facilitates clustering with distance measures of the
form dij = min(xi, xj)Dij (like NNFJN2Plain), with the additional assumption that for a pair
of particles i and j on non-identical, non-neighbouring tiles, DiB, DjB < Dij, so that i and j
will never cluster with each other. The code is closely related to that used for the internal
N2Tiled strategy for generalised-kt algorithms. The asymptotic scaling is also N2, but at high
multiplicities the coefficient is usually significantly smaller than for NNFJN2Tiled.

All three classes derive from NNBase.42 They are templated with an underlying (“BriefJet”) class,
which stores the minimal information for each particles so as to be able to calculate interparticle and
particle–beam distances. The e+e− Cambridge plugin relies on the NNH class, the JadePlugin can use
both NNH and NNFJN2Plain, while all three NN*** classes are used in the VariableR contrib’s plugin.
The interested user should consult those plugins for examples, and the headers of the NN*** classes
for more detailed information.

E.3 Implementing new selectors

Technically a Selector contains a shared pointer to a SelectorWorker. Classes derived
from SelectorWorker actually do the work. So, for example, the call to the function
SelectorAbsRapMax(2.5) first causes a new instance of the internal SW AbsRapMax class to
be constructed with the information that the limit on |y| is 2.5 (SW AbsRapMax derives from

42The NNBase, NNFJN2Plain and NNFJN2Tiled classes were introduced in version 3.2 of FastJet.
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SelectorWorker). Then a Selector is constructed with a pointer to the SW AbsRapMax object, and it
is this Selector that is returned to the user:

Selector SelectorAbsRapMax(double absrapmax) {

return Selector(new SW_AbsRapMax(absrapmax));

}

Since Selector is really nothing more than a shared pointer to the SW AbsRapMax object, it is a
lightweight object. The fact that it’s a shared pointer also means that it looks after the memory
management issues associated with the SW AbsRapMax object.

If a user wishes to implement a new selector, they should write a class derived from SelectorWorker.
The base is defined with sensible defaults, so for simple usage, only two SelectorWorker functions
need to be overloaded:

/// returns true if a given object passes the selection criterion.

pass(const PseudoJet & jet) const = 0;

/// returns a description of the worker

virtual std::string description() const {return "missing description";}

For information on how to implement more advanced workers (for example workers that do not apply
jet-by-jet, or that take a reference), users may wish to examine the extensive in-code documenta-
tion of SelectorWorker, the implementation of the existing workers and/or consult the authors. A
point to be aware of in the case of constructors that take a reference is the need to implement the
SelectorWorker::copy() function.

E.4 User-defined transformers

All transformers are derived from the Transformer base class, declared in the
fastjet/tools/Transformer.hh header:

class Transformer : public FunctionOfPseudoJet<PseudoJet> {

public:

// the result of the Transformer acting on the PseudoJet.

// this has to be overloaded in derived classes

virtual PseudoJet result(const PseudoJet & original) const = 0;

// should be overloaded to return a description of the Transformer

virtual std::string description() const = 0;

// information about the associated structure type

typedef PseudoJetStructureBase StructureType;

// destructor is virtual so that it can be safely overloaded

virtual ~Transformer(){}

};

Relative to the FunctionOfPseudoJet<PseudoJet> (cf. appendix D) from which it derives, the
Transformer’s main additional feature is that the jets resulting from the transformation are
generally expected to have standard structural information, e.g. constituents, and will often have
supplemental structural information, which the StructureType typedef helps access. As for a
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FunctionOfPseudoJet<PseudoJet>, the action of a Transformer is to be implemented in the
result(...) member function, though typically it will be used through the operator() function, as
discussed in appendix D.

To help understand how to create user-defined transformers, it is perhaps easiest to consider the
example of a filtering/trimming class. The simplest form of such a class is the following:43

/// a simple class to carry out filtering and/or trimming

class SimpleFilter: public Transformer {

public:

SimpleFilter(const JetDefinition & subjet_def, const Selector & selector) :

_subjet_def(subjet_def), _selector(selector) {}

virtual std::string description() const {

return "Filter that finds subjets with " + _subjet_def.description()

+ ", using a (" + _selector.description() + ") selector" ;}

virtual PseudoJet result(const PseudoJet & jet) const;

// CompositeJetStructure is the structural type associated with the

// join operation that we use shall use to create the returned jet below

typedef CompositeJetStructure StructureType;

private:

JetDefinition _subjet_def;

Selector _selector;

};

The function that does the work in this class is result(...):

PseudoJet SimpleFilter::result(const PseudoJet & jet) const {

// get the subjets

ClusterSequence * cs = new ClusterSequence(jet.constituents(), _subjet_def);

vector<PseudoJet> subjets = cs->inclusive_jets();

// signal that the cluster sequence should delete itself when

// there are no longer any of its (sub)jets in scope anywhere

cs->delete_self_when_unused();

// get the selected subjets

vector<PseudoJet> selected_subjets = _selector(subjets);

// join them using the same recombiner as was used in the subjet_def

PseudoJet joined = join(selected_subjets, *_subjet_def.recombiner());

return joined;

}

This provides almost all the basic functionality that might be needed from a filter, including access to
the pieces() of the filtered jet since it is formed with the join(...) function. The one part that is
potentially missing is that the user does not have any way of accessing information about the subjets

43The actual Filter class is somewhat more elaborate than this, since it also handles areas, pileup subtraction and
avoids reclustering when the jet and subjet definitions are C/A based.
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that were not kept by the filter. This requires adding to the structural information that underlies
the returned jet. The join(...) function creates a structure of type CompositeJetStructure. There
is also a templated version, join<ClassDerivedFromCompositeJetStructure>(...), which allows the
user to choose the structure created by the join function. In this case we therefore create

#include "fastjet/CompositeJetStructure.hh"

class SimpleFilterStructure: public CompositeJetStructure {

public:

// the form of constructor expected by the join<...> function

SimpleFilterStructure(const vector<PseudoJet> & pieces,

const Recombiner *recombiner = 0) :

CompositeJetStructure(pieces, recombiner) {}

// provide access to the rejected subjets from the filtering

const vector<PseudoJet> & rejected() const {return _rejected;}

private:

vector<PseudoJet> _rejected;

friend class SimpleFilter;

};

and then replace the last few lines of the SimpleFilter::result(...) function with

// get the selected and rejected subjets

vector<PseudoJet> selected_subjets, rejected_subjets;

_selector.sift(subjets, selected_subjets, rejected_subjets);

// join the selected ones, now with a user-chosen structure

PseudoJet joined = join<SimpleFilterStructure>(selected_subjets, *_subjet_def.recombiner());

// and then set the structure’s additional elements

SimpleFilterStructure * structure =

static_cast<SimpleFilterStructure *>(joined.structure_non_const_ptr());

structure->_rejected = rejected_subjets;

return joined;

Finally, with the replacement of the typedef in the SimpleFilter class with

typedef SimpleFilterStructure StructureType;

then on a jet returned by the SimpleFilter one can simply call

filtered_jet.structure_of<SimpleFilter>().rejected();

as with the fully fledged Filter of section 9.1.1.

A second way of extending the structural information of an existing jet is to “wrap” it. This can
be done with the help of the WrappedStructure class.

#include "fastjet/WrappedStructure.hh"

/// a class to wrap and extend existing jet structures with information about

/// "rejected" pieces

class SimpleFilterWrappedStructure: public WrappedStructure {

public:

SimpleFilterWrappedStructure(const SharedPtr<PseudoJetStructureBase> & to_be_wrapped,

const vector<PseudoJet> & rejected_pieces) :
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WrappedStructure(to_be_wrapped), _rejected(rejected_pieces) {}

const vector<PseudoJet> & rejected() const {return _rejected;}

private:

vector<PseudoJet> _rejected;

};

The WrappedStructure’s constructor takes a SharedPtr to an existing structure and simply redirects
all standard structural queries to that existing structure. A class derived from it can then reimplement
some of the standard queries, or implement non-standard ones, as done above with the rejected()

call. To use the wrapped class one might proceed as in the following lines:

// create a jet with some existing structure

PseudoJet joined = join(selected_subjets, *_subjet_def.recombiner());

// create a new structure that wraps the existing one and supplements it with new info

SharedPtr<PseudoJetStructureBase> structure(new

SimpleFilterWrappedStructure(joined.structure_shared_ptr(), rejected_subjets));

// assign the new structure to the original jet

joined.set_structure_shared_ptr(structure);

The SharedPtrs ensure that memory allocated for the structural information is released when no jet
remains that refers to it. For the above piece of code to be used in the SimpleFilter it would then
suffice to include a

typedef SimpleFilterWrappedStructure StructureType;

line in the SimpleFilter class definition.

In choosing between the templated join<...> and WrappedStructure approaches to providing
advanced structural information, two elements are worth considering: on one hand, the
WrappedStructure can be used to extend arbitrary structural information; on the other, while
join<...> is more limited in its scope, it involves fewer pointer indirections when accessing
structural information and so may be marginally more efficient.

F Error handling

FastJet provides warning and error messages through the classes fastjet::LimitedWarning and
fastjet::Error respectively. A user does not normally need to interact with them, however, they
do provide some customisation facilities, especially to redirect and summarise their output.

Each different kind of warning is written out a maximum number of times (the current default is
5) before its output is suppressed. The program is allowed to continue. At the end of the run (or
at any other stage) it is possible to obtain a summary of all warnings encountered, both explicit or
suppressed, through the following static member function of the LimitedWarning class:

#include "fastjet/LimitedWarning.hh"

// ...

cout << LimitedWarning::summary() << endl;

The throwing of an Error aborts the program. One can use

/// controls whether the error message (and the backtrace, if its printing is enabled)
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/// is printed out or not

static void Error::set_print_errors(bool print_errors);

/// controls whether the backtrace is printed out with the error message or not.

/// The default is "false".

static void Error::set_print_backtrace(bool enabled);

to control whether an error message is printed (default = true) and whether a full backtrace is also
given (default = false). Switching off the printing of error messages can be useful, for example, if the
user expects to repeatedly catch FastJet errors. The message() member function can then be used
to access the specific error message.

The output of both LimitedWarning and Error, which by default goes to std::cerr, can be redi-
rected to a file using their set default stream(std::ostream * ostr) functions. For instance,

#include "fastjet/LimitedWarning.hh"

#include "fastjet/Error.hh"

#include <iostream>

#include <fstream>

// ...

ostream * myerr = new ofstream("warnings-and-errors.txt");

LimitedWarning::set_default_stream(myerr);

Error::set_default_stream(myerr);

Error::set_print_backtrace(true);

// ...

cout << LimitedWarning::summary() << endl;

will send the output of both classes to the file warnings-and-errors.txt (as well as provide the
backtrace of errors). Note that the output of LimitedWarning::summary() will only be present if the
program did not abort earlier due to an error.

With a suitable design of the output stream, the output redirection facility can also be used by the
user to record additional information when an error or warning occurs, for example the event number.
One only stream << string type operation is performed for each warning or error, so as to help with
formatting in such cases.

As well as performing output of warnings and errors, FastJet also outputs a banner the first
time that clustering is performed. If the user wishes to have the banner appear before the first
clustering (e.g. during the initialisation phase of their program), they may call the static
ClusterSequence::print banner() function.

G Evolution of FastJet across versions

G.1 History

Version 1 of FastJet provided the first fast implementation of the longitudinally invariant kt clus-
tering [8, 9], based on the factorisation of momentum and geometry in that algorithm’s distance
measure [10].

Version 2.0 brought the implementation of the inclusive Cambridge/Aachen algorithm [23, 24]
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and of jet areas and background estimation [18, 17]; other changes include a new interface,44 and
new algorithmic strategies that could provide a factor of two improvement in speed for events whose
number N of particles was ∼ 104. Choices of recombination schemes and plugins for external jet
algorithms were new features of version 2.1. The initial set of plugins included SISCone [27], the
CDF midpoint [3] and JetClu [32] cones and PxCone [36, 35]. The plugins helped provide a uniform
interface to a range of different jet algorithms and made it possible to overlay FastJet features such
as areas onto the external jet algorithms. Version 2.2 never made it beyond the beta-release stage,
but introduced a number of the features that eventually were released in 2.3. The final 2.3 release
included the anti-kt algorithm [14], a broader set of area measures, improved access to background
estimation, means to navigate the ClusterSequence and a new build system (GNU autotools). Version
2.4 included the new version 2.0 of SISCone (including the spherical variant), as well as plugins to
the DØ Run II cone, the ATLAS cone, the CMS cone, TrackJet and a range of e+e− algorithms, and
also further tools to help investigate jet substructure. It also added a wrapper to FastJet allowing
one to run SISCone and some of the sequential recombination algorithms from Fortran programs.

A major practical change in version 3.0 was that PseudoJet acquired knowledge (where relevant)
about its underlying ClusterSequence, allowing one to write e.g. jet.constituents() It also became
possible to associate extra information with a PseudoJet beyond just a user index. It brought the first
of a series of FastJet tools to help with advanced jet analyses, namely the Selector class, filters,
pruners, taggers and new background estimation classes. Version 3.0 also added the D0-Run I cone [33]
plugin and support for native jet algorithms to be run with R > π/2. Version 3.1 gave significant
speed improvements for multiplicities from a few thousand up to a few hundred thousand and various
other small additions. The period in between versions 3.0.0 and 3.1.0 also saw the first releases
of the fjcore compact subset of FastJet (section 13) and of the fjcontrib project (section 14).
Version 3.2 exposed more of FastJet’s core clustering functionality to third-party code (NNFJN2Plain
and NNFJN2Tiled classes). Version 3.3 brought a Python interface to FastJet.

G.2 Deprecated and removed features

While we generally aim to maintain backwards compatibility for software written with old versions of
FastJet, there are occasions where old interfaces or functionality no longer meet the standards that
are demanded of a program that is increasingly widely used. Table 4 lists the cases where such consid-
erations have led us to deprecate and/or remove functionality. Note that the series of “CSAB” methods
marked as deprecated in FastJet v3.2 are direct consequences of CSAB::median pt per unit area()
already being marked as deprecated in v3.0.

As of FastJet v3.2, whenever supported by the compiler, a “deprecation” message will be issued
at compilation time.45

As of version 3.1.0, the FASTJET VERSION NUMBER symbol can be used to provide version-dependent
code compilation, as discussed in section 3.7.

G.3 Backwards compatibility of background estimation facilities

The JetMedianBackgroundEstimator and GridMedianBackgroundEstimator classes are new to FastJet

3. In FastJet versions 2.3 and 2.4, the background estimation tools were instead integrated into the

44The old one was retained through v2
45This is not available for all deprecated methods due to a bug with gcc 5.1 amd 5.2.
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Feature, class or include file Dep. Rem. Suggested replacement

FjClusterSequence.hh 2.0 3.0 fastjet/ClusterSequence.hh
FjPseudoJet.hh 2.0 3.0 fastjet/PseudoJet.hh

CS::set jet finder(...) 2.1 3.0 pass a JetDefinition to constructor
CS::set jet algorithm(...) 2.1 3.0 pass a JetDefinition to constructor
CS::CS(particles, R, ...) 2.1 3.0 CS::CS(particles, jet def)
JD(jet alg, R, strategy) 2.1 – JD(jet alg, R, recomb scheme, strategy)

JetFinder 2.3 – JetAlgorithm
SISConePlugin.hh 2.3 3.0 fastjet/SISConePlugin.hh (idem. other plugins)
ActiveAreaSpec 2.3 – AreaDefinition & GhostedAreaSpec
ClusterSequenceWithArea 2.3 – ClusterSequenceArea

default f = 0.5 in some cone plugins – 2.4 include f explicitly in constructor
default R = 1 in JetDefinition – 2.4 include R explicitly in constructor

RangeDefinition 3.0 – Selector(s)
CircularRange 3.0 – SelectorCircle
CSAB::median pt per unit area(...) 3.0 – BackgroundEstimator
CSAB::parabolic pt per unit area(...) 3.0 – BackgroundEstimator (cf. section 8.2)
GAS::set fj2 placement(...) 3.0 – use new default ghost placement instead

CS::plugin associate extras(auto ptr) 3.1 – CS::plugin associate extras(Extras *)

SharedPtr::operator() 3.2 – SharedPtr::get()
CSAB::median rho *() 3.2 – BackgroundEstimator
CSAB::get median rho and sigma() 3.2 – BackgroundEstimator
CSAB::subtracted jet() 3.2 – Subtractor
CSAB::subtracted jets() 3.2 – Subtractor
CSAB::subtracted pt() 3.2 – Subtractor

Table 4: Summary of interfaces and features of earlier versions that have been deprecated and/or
removed. For brevity we have used the following abbreviations: Dep. = version since which a feature
has been deprecated, Rem. = version where removed, CS = ClusterSequence, JD = JetDefinition,
CSAB = ClusterSequenceAreaBase, GAS = GhostedAreaSpec.
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ClusterSequenceAreaBase class. Rather than using selectors to specify the jets used in the background
estimation, they used the RangeDefinition class. For the purpose of backwards compatibility, these
facilities will remain present in all 3.0.x versions. Note that ClusterSequenceAreaBase now actually
uses a selector in its background estimation interface, and that a RangeDefinition is automatically
converted to a selector.

An explicit argument in ρ-determination calls in FastJet 2.4 concerned the choice between the
use of scalar areas and the transverse component of the 4-vector area in the denominator of pt/A.
The transverse component gives the more accurate ρ determination and that is now the default in
JetMedianBackgroundEstimator. The behaviour can be changed with a member function call of the
form

set_use_area_4vector(false);

Finally, the calculation of σ in FastJet 2.x incorrectly handled the limit of a small number
of jets. This is now fixed in FastJet 3, but a call to set provide fj2 sigma(true) causes
JetMedianBackgroundEstimator to reproduce that behaviour.

FastJet 2.x also placed the ghosts differently, resulting in different event-by-event rho esti-
mates, and possibly a small systematic offset (scaling as the square-root of the ghost area) when
ghosts and particles both covered identical (small) regions. This offset is no longer present with the
FastJet 3 ghost placement. If the old behaviour is needed, a call to a specific GhostedAreaSpec’s
set fj2 placement(true) function causes ghosts to placed as in the 2.x series.
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