درگاه:ریاضیات
درگاههای ویکیپدیا: فرهنگ · جغرافیا · بهداشت و درمان · تاریخ · ریاضیات · علوم طبیعی · مردم · فلسفه · دین · اجتماعی · فناوری
درگاه ریاضیاتریاضیات (Mathematics) را معمولاً دانش بررسی کمیتها و ساختارها و فضا و تبدیل تعریف میکنند. دیدگاه دیگری ریاضی را دانشی میداند که در آن با استدلال منطقی از اصول و تعریفها به نتایج دقیق و جدیدی میرسیم. دیدگاههای دیگری نیز در فلسفه ریاضیات بیان شدهاست. اگرچه ریاضیات خود یکی از علوم طبیعی بهشمار نمیرود ولی ساختارهای ویژهای که ریاضیدانان میپژوهند، بیشتر از دانشهای طبیعی به ویژه فیزیک سرچشمه میگیرند و در فضایی جدا از طبیعت و محضگونه گسترش پیدا میکند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز میگردند تا جوابشان را با آن مقایسه و بررسی کنند. علوم طبیعی، مهندسی و اقتصاد، بسیار به ریاضیات تکیه دارند. آن بخش از ریاضیات را که علوم کاربردی به آن بیشتر میپردازند، ریاضیات کاربردی مینامند. ولی گاه ریاضیدانان به دلایل صرفاً ریاضی و نه کاربردی به تعریف و بررسی برخی ساختارها میپردازند که به آن ریاضیات محض گفته میشود. نوشتار برگزیدهنظریه اعداد اول نام نظریهای بسیار اساسی در بخش نظریه اعداد ریاضی و اعداد اول که نقش بسیار مهمی در پیشبرد نظریه اعداد را ایفا میکند. بر اساس این نظریه اگر تعداد اعداد اول کمتر از باشد آنگاه
این نظریه غوغایی را در نظریه اعداد ایجاد کرد و شگفتی بزرگی در اعداد اول آفرید تا به آنجا که توانست بسیاری از قضیههای موجود در نظریه اعداد، همچون قضیه اردیش را به راحتی اثبات کند. زندگینامهٔ برگزیدهابوریحان بیرونی دانشمند،ریاضیدان، ستارهشناس، تقویمشناس، انسانشناس، هندشناس و تاریخنگار ایرانی سده چهارم و پنجم هجری است. بیرونی را بزرگترین دانشمند مسلمان و یکی از بزرگترین دانشمندان همه اعصار میدانند. همینطور او را پدر علم انسانشناسی و هندشناسی میدانند. دانشنامه علوم چاپ مسکو، ابوریحان را دانشمند همه قرون و اعصار خواندهاست. در بسیاری از کشورها نام بیرونی را بر دانشگاهها، دانشکدهها و تالار کتابخانهها نهاده و لقب «استاد جاوید» به او دادهاند.
مفاهیمتابع یکی از مفاهیم نظریه مجموعهها و حساب دیفرانسیل و انتگرال است. بطور ساده میتوان گفت که به قاعدههای تناظری که به هر ورودی خود یک و فقط یک خروجی نسبت میدهند، تابع گفته میشود. تابع به عنوان مفهومی در ریاضیات، توسط گوتفرید لایبنیتس در سال ۱۶۹۴، با هدف توصیف یک کمیت در رابطه با یک منحنی مانند شیب یک نمودار در یک نقطه خاص به وجود آمد. امروزه به توابعی که توسط لایبنیز تعریف شدند، توابع مشتقپذیر میگوییم. نوشتارهای برگزیدهنگارهٔ برگزیدهدر هندسه اقلیدسی، تجانس یکنواخت یا تجانس همسانگرد، تبدیلی خطی است که اشکال را در تمام جهات به یک مقیاس بزرگ یا کوچک میکند. در حالت کلیتر، ضریب تجانس در جهات گوناگون میتواند متفاوت باشد. در این صورت به آن تجانس غیریکنواخت یا ناهمسانگرد گویند.سطح زیرین گنبد مسجد شیخ لطفالله نمونه ای از تجانس است. گفتاورد«هر نوع علمی، اگر به درجه ای از بلوغ برسد، به صورت خودکار قسمتی از ریاضیات می گردد.» هندسهدایره مکان هندسی نقاطی از صفحه است که فاصلهشان از نقطهٔ ثابتی واقع در آن صفحه، مقدار ثابتی باشد. نقطهٔ ثابت، «مرکز دایره»، و مقدار ثابت، «اندازهٔ شعاع دایره» نامیده میشود. در حقیقت، دایره یک بیضی است که کانونهای آن بر همدیگر منطبقاند. آیا میدانستید؟... که یک هفتضلعی منتظم، یک چند ضلعی منتظم با کمترین اضلاع ممکن است که می توان آن را با خط کش و پرگار ساخت؟
|