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A B ST R AC T

Software is pervasive in our daily lives and we rely on it for many critical tasks. Despite
the abundance of (formal) techniques that can be used to prevent bugs, software is often
incorrect and insecure. One of the sources of this insecurity is that a gap persists between
what the programmer writes and what actually gets executed.

Such a gap is mainly due to the fact that it is often hard to translate (e.g., via compilation)
a source language (typically at high-level) into a target language (typically at lower-level),
without losing any abstraction.

Indeed, a well-known advantage of using a high-level language is that it usually
provides a multiplicity of abstractions and mechanisms (e.g., types, modules, automatic
memory management) that enforce good programming practices and ease programmers
in writing correct and secure code. However, those high-level abstractions do not always
have counterparts at the low-level. This discrepancy can be dangerous when the source
level abstractions are used to enforce security properties: if the target language does not
provide any mechanism to preserve such properties, the resulting code is vulnerable to
attacks.
One tentative solution could be to adapt the source to the target language (or vice

versa) to make them equally powerful, but that is undesirable because we possibly lose
the advantages that come from having different levels of abstraction in the source and
in the target. A better solution is to work on the compiler itself, by guaranteeing that it
preserves the source-level security properties. The emerging field of secure compilation
has exactly this goal. More precisely, secure compilation is concerned with ensuring that
the security properties at the source level are preserved as they are at the target level or,
equivalently, that all the (interesting) attacks that can be carried out at the target level
have corresponding attacks at the source level. In this way, the reasoning carried out at
the source level to rule out attacks suffices to rule out attacks at the target.
This thesis approaches the problem of secure compilation from three different points

of view. We argue that secure compilation — being relevant at many levels of the
computational stack — needs to be tackled at different levels of abstraction, depending on
the security goals that one has in mind.
At the highest level of abstraction we work on verifying that security properties are

preserved under program transformations whose target language is the same as the source
(e.g., program optimizations or obfuscations). We first follow a classical approach and
we manually prove that the widely-used control-flow flattening program obfuscation
preserves the constant-time policy, i.e., a security policy that requires that the execution
time of programs does not depend on their secret inputs. Then, we move to an automatic
and efficient approach. For that, we assume a (security) type system that statically checks
whether the property of interest holds or not, and we provide a framework to make its
usage incremental, so as to make it possible to perform the analysis after each optimization
step without excessively slowing down the compiler.
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Moving down from the highest level of abstraction, we weaken the requirement about
the source and the target languages being equal and consider transformations that involve
a translation step. This line of research is more general and follows an approach similar to
that of translation validation to automatically certify that a compiled program has a given
security property knowing that its original version enjoys it.

Finally, at the very bottom of the computational stack we deal with low-level attackers,
e.g., those that can carry out micro-architectural attacks. More precisely, we provide an
instantiation of the well-known principle of full abstraction to prove that an extension to
an enclaved-execution architecture is secure with respect to the class of interrupt-based
micro-architectural attacks.
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1
I N T RO D U C T I O N

Computing is a pervasive aspect of our daily lives and its applications are getting more
and more complex. To tackle this growing complexity, a variety of design patterns has been
introduced. One of the most common patterns is layered design, where a system is a
stack of layers at an increasing level of abstraction: each layer in the stack abstracts the
complexity of the layer below it, and provides a well-defined set of functionalities to the
layer following it. This design pattern works well enough when considering functional
properties like correctness, but the gap in abstraction level between adjacent layers raises
many security concerns. This view is well expressed by Piessens [188]:

[. . . ] from a security point of view, the use of abstraction layers can introduce
significant vulnerabilities and hence risks for the resulting ICT systems. So-
called layer-below attacks, where an attacker exploits implementation details
of lower layers to attack one of the upper layers have been common and have
been among the most dangerous attacks over the history of computing.

Similar problems arise also when the layers are (programming) languages, as commonly
found in software systems. Typically, translating a source language S (usually at high-

level) into a target language T (usually at lower-level) introduces a gap between what the
programmer writes and what actually gets executed [81], thus giving more power to
attackers at the target level. For instance, a well-known advantage of using a high-level
source language is that it usually provides a multiplicity of abstractions and mechanisms
(e.g., types, modules, automatic memory management) that enforce good programming
practices and ease programmers in writing correct and secure code. However, those
high-level abstractions do not always have counterparts at the low-level. This discrepancy
can be dangerous: if the target program is not endowed with mechanisms to enforce
source-level properties, target attackers can exploit their additional power and knowledge
about the discrepancy to carry out attacks.

More concretely, consider the following piece of code written in a C-like language with
no pointers:
1 static int count = 0;
2

3 void count ()
4 {
5 count++;
6 }

In this case, the programmer used the static qualifier to limit the scope of the variable
count to the current file, thus trying to guarantee the integrity of its stored value. After
compilation to aRISC -like assembly, the code abovemay be transformed into the following
(assume for simplicity that count is stored in the register R0):

xiv
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1 printf("Pin:");
2 pin = read_secret();
3

4 if (check(pin))
5 printf("OK!");
6 else
7 printf("KO!");
8

9 pin = 0; // reset pin

Figure 1: Code that checks the correctness of a given PIN (dead-store elimination highlighted in
red).

1 ...
2

3 count:
4 add R0, R0, 1

At the target level, the value in R0 is no longer protected, since any other target-level
module linking to our code can read from or write to the register R0. This toy example
leverages the very same idea as real-world, potentially dangerous attacks: both use
target-level mechanisms to break high-level abstractions, thus making the reasoning at
the source level useless [201, 225].
One possible solution would be to adapt the source language to the target one (or

vice versa) so making them equally powerful. However, that is undesirable: the source
language would lose most of the advantages that come from having different levels of
abstraction in the source and in the target.Moreover, it would not even be sufficient. Indeed,
as recently observed by D’Silva et al. [81] and previously known in the cyber-security
community [60–62, 243], even less radical, seemingly innocuous code transformations
that map a language into itself (e.g., compiler optimizations) may hinder security.

Consider for instance the snippet of code in Figure 1, naively checking the correctness
of a given PIN. If we apply to it the well-known optimization dead-store elimination, the
assignment highlighted in red is removed since the variable pin is never used after being
assigned. Unfortunately, that assignment ensured the confidentiality of the value of pin,
that now might be accessed by any attacker able to read the memory of the program
(e.g., an untrusted library linked to our optimized code): dead-store elimination makes it
possible to leak the secret.

A way to solve both the above problems is to work on the compiler itself [14, 125], by
guaranteeing that it preserves the source-level security properties. The field of secure
compilation has exactly this goal. More precisely, secure compilation is concerned with
granting that the security properties at the source level are preserved as they are at the
target level or, equivalently, that all the attacks that can be carried out at the target level
also have a corresponding attack at the source. In this way, it is enough to reason at the
source level to rule out attacks at the target.

Actually, we argue that secure compilation—being relevant atmany levels of abstraction
— needs to be tackled following different approaches, also depending on the security goals
that one has in mind.



1.1 published work on our research xvi

At the highest level of abstraction, we follow two approaches. In Chapter 3 we look at
compiler security in the classical way, by manually showing that a code transformation
preserves an interesting security property (actually, a variant of non-interference). More
precisely, we follow the methodology proposed by Barthe et al. [21] and prove that the
widely-used code obfuscation control-flow flattening [39, 75] preserves the constant-time

policy [21] in an imperative language with a switch construct.
Still at the highest level of abstraction, we work on automatically and efficiently verifying

that security properties are preserved under program transformations whose target
language is the same as the source (e.g., program optimizations). For that, we assume a
(security) type system that statically checks whether the property of interest holds or not,
and we provide a framework to make its usage incremental (incrementalization), so as to
make it possible to perform the analysis after each optimization step without excessively
slowing down the compiler. We remark that preservation of security properties is just
one of the envisioned applications of incrementalization. Indeed, this approach could
also be applied when the code changes frequently and needs to be checked efficiently
(e.g., IDEs or continuous integration). Incrementalization is presented in its full generality
in Chapter 4.
Moving down from the highest level of abstraction, we need to lift the constraint that

requires the source language to be equal to the target and consider transformations that
involve a translation step. To this aim we introduce secure translation validation, which is
inspired by the translation validation approach [189]. Roughly, with secure translation
validation we can automatically certify that, in a given execution environment, the translated
program enjoys all the safety properties of its source counterpart. Chapter 5 presents
secure translation validation and shows a preliminary result on how to successfully apply
it to a simple use-case inspired from the literature [193].
Finally, in Chapter 6 we consider the very bottom of the computational stack and we

deal with low-level attackers (e.g., those that can break the isolation mechanisms of the
processor by exploiting its micro-architectural features). More precisely, we faithfully
model the Sancus architecture [168, 170] and extend itwith carefully-designed interruptible
enclaves. Then, we provide an instantiation of the secure compilation principle of full
abstraction [2] to prove that our extension is backward compatiblewith the original Sancus
model and is secure (i.e., the isolation mechanism is not weakened) with respect to the class
of interrupt-basedmicro-architectural attacks (e.g., the Nemesis attack [225]). Additionally,
we also show that in our scenario full abstraction actually implies the preservation of
various notions of non-interference.

1.1 published work on our research

This thesis collects, revises and updates the following material which we developed
during the Ph.D.:

• Chapter 2 extends the short survey which appeared in
– Matteo Busi and Letterio Galletta. “A Brief Tour of Formally Secure Compi-
lation.” Proceedings of the Third Italian Conference on Cyber Security, Pisa, Italy,

February 13-15, 2019. Ed. by Pierpaolo Degano and Roberto Zunino. Vol. 2315.
2019. url: http://ceur-ws.org/Vol-2315/paper03.pdf

• Chapter 3 includes a polished version of the following paper:

http://ceur-ws.org/Vol-2315/paper03.pdf
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– Matteo Busi, Pierpaolo Degano, and Letterio Galletta. “Control-flow Flattening
Preserves theConstant-TimePolicy.”Proceedings of the Fourth ItalianConference on
Cyber Security, Ancona, Italy, February 4th to 7th, 2020. Ed. by Michele Loreti and
Luca Spalazzi. Vol. 2597. 2020, pp. 82–92. url: http://ceur-ws.org/Vol-
2597/paper-08.pdf

• Chapter 4 updates and joins together the following papers:
– Matteo Busi, Pierpaolo Degano, and Letterio Galletta. “Using Standard Typing
Algorithms Incrementally.”NASAFormalMethods - 11th International Symposium,

NFM 2019, Houston, TX, USA, May 7-9, 2019, Proceedings. 2019, pp. 106–122. doi:
10.1007/978-3-030-20652-9\_7;

– Matteo Busi, Pierpaolo Degano, and Letterio Galletta. “Robust Declassification
by Incremental Typing.” Foundations of Security, Protocols, and Equational Rea-

soning - Essays Dedicated to Catherine A. Meadows. Ed. by Joshua D. Guttman,
Carl E. Landwehr, José Meseguer, and Dusko Pavlovic. Vol. 11565. Lecture
Notes in Computer Science. Springer, 2019, pp. 54–69. doi: 10.1007/978-3-
030-19052-1\_6

and the journal paper:
– Matteo Busi, Pierpaolo Degano, and Letterio Galletta. “Mechanical incremental-

ization of typing algorithms.” Science of Computer Programming 208 (2021). issn:
0167-6423. doi: https://doi.org/10.1016/j.scico.2021.102657

• Contents of Chapter 5 are still unpublished, but our ideas were first presented at the
PriSC’19 informal workshop:

– Matteo Busi, Pierpaolo Degano, and Letterio Galletta. “Translation Validation
for Security Properties.” 3rd Workshop on Principles of Secure Compilation, PriSC

2019, Cascais, Portugal, January 13, 2019. 2019. url: https://arxiv.org/
abs/1901.05082

Moreover, the following paper (which is currently under review) extends the use
case of Chapter 5:

– Matteo Busi, Pierpaolo Degano, and Letterio Galletta. “Secure Translation
Validation: Effective Preservation of Robust Safety Properties” (2021)

• Finally, Chapter 6 is taken from:
– Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pierpaolo Degano,
Jan Tobias Mühlberg, and Frank Piessens. “Provably Secure Isolation for Inter-
ruptible Enclaved Execution on Small Microprocessors.” 33rd IEEE Computer

Security Foundations Symposium, CSF 2020, Boston, MA, USA, June 22-26, 2020.
2020, pp. 262–276. doi: 10.1109/CSF49147.2020.00026

and its extended version, which is currently under review:
– Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pierpaolo Degano,
Jan Tobias Mühlberg, and Frank Piessens. “Securing Interruptible Enclaved
Execution on Small Microprocessors” (2021)

http://ceur-ws.org/Vol-2597/paper-08.pdf
http://ceur-ws.org/Vol-2597/paper-08.pdf
https://doi.org/10.1007/978-3-030-20652-9\_7
https://doi.org/10.1007/978-3-030-19052-1\_6
https://doi.org/10.1007/978-3-030-19052-1\_6
https://doi.org/https://doi.org/10.1016/j.scico.2021.102657
https://arxiv.org/abs/1901.05082
https://arxiv.org/abs/1901.05082
https://doi.org/10.1109/CSF49147.2020.00026


2
BAC KG RO U N D

This chapter is a gentle introduction to the relevant background for this thesis and
secure compilation in general. In the next section we give a non-exhaustive overview on
how security can be formally defined. First, we provide a precise definition of security
properties in terms of sets of allowed traces, then we follow [72] and extend this definition
with the ability to predicate about combinations of traces of the same system. We conclude
the section by introducing a further notion of security based on program equivalences.
In Section 2.2, we give a formal definition of compilers and introduce multiple notions
of secure compilation. We start with the case of attackers that just observe their victims
(i.e., passive attackers) and then we move to the more powerful model of active attackers
(i.e., those that can also interfere with the execution of their victims). Finally, Section 2.3
overviews some common techniques that can be employed to automatically enforce or
prove security properties. More specifically, we shallowly cover some well-known static
analysis techniques, along with emerging mechanisms that can be used to enforce security
directly at the hardware level.

2.1 formal notions of security

The security of a system, either hardware or software, can be defined in a variety of ways,
depending on the power of the attacker, on the level of detail one is interested in and on
the security policies to consider.

Although most of the definitions below can be stated for generic systems, for the scope
of this thesis we limit ourselves to programs. If not stated otherwise, we assumeW to be a
complete and executable program, namely a whole program (W ∈Whole).

2.1.1 Trace properties and hyperproperties [72]

When discussing and defining security policies, it is common to model executions of
programs as sets of traces. More formally, the behavior of a programW — written beh(W )

— is a subset of the set of all traces Ψ:

Ψfin , Σ∗ Ψinf , Σω Ψ , Ψfin ∪Ψinf

where Σ is called the set of observables (or events), and Ψfin and Ψinf denote finite and
infinite sequences of observables. Intuitively, an observable encodes what an external
observer learns aboutW by looking at a single execution step of it. Thus, traces denote the
information that is released during a sequence of execution steps ofW . Typical examples
of observables include I/O operations, errors occurred during the execution of a program,
or termination [21, 72].

1
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Example 2.1 ([21]). Consider the constant-time programmingmodel which is used to guide the

development of secure cryptographic libraries. According to this model, the execution of a program

reveals to an external observer (that is, a potential attacker) information about (1) the number and

the order of steps they perform; (2) the value of branching conditions they evaluate; and (3) the

memory addresses they manipulate. We can express this model using observables and traces by

choosing Σ as Addr ∪ {true, false, •}. Addr encodes the set of valid memory addresses and is

used to keep track of memory manipulations, true and false are used to represent the results of

branching and • allows counting other steps of execution.

From now onward we indicate the i-th element in a trace t as ti, and we say that t ≤ t′
whenever t is a prefix of t ∈ Ψ (if t ∈ Ψfin we say that t is a finite prefix).

trace properties The simplest way to define security policies is through the so-called
trace properties [16, 131]. The intuition is that a trace property is the set of behaviors allowed
for a given program. More precisely:

Definition 2.1. A program W satisfies a property π ∈ Prop = ℘(Ψ) (written W � π) iff
beh(W ) ⊆ π.

Example 2.2. Consider for example a policy stating that “a program may write to the network as

long as it did not read from a file”, this policy can be formalized [72] as

NRW ,
{
t ∈ Ψinf | ¬

(
∃i < j. isFileRead(ti) ∧ isNetworkWrite(tj)

)}
where isFileRead and isNetworkWrite are predicates on Σ.

In the space of trace properties we can identify two interesting families: safety and
liveness properties. Intuitively, a safety property πS requires that something bad and finitely

observable (m) never happens [72]:

πS ∈Safety ⇔
∀t ∈ Ψinf . t 6∈ πS ⇒
∃m ∈ Ψfin . m ≤ t ∧ (∀t′ ∈ Ψinf . m ≤ t′ ⇒ t′ 6∈ πS).

Dually, a liveness property πL prescribes that something goodwill eventually happen:

πL ∈ Liveness ⇔ ∀t ∈ Ψfin . (∃t′ ∈ Ψinf . t ≤ t′ ∧ t′ ∈ πL).

Note that there exist trace properties that do not belong to the two families above.

Example 2.3. A trace property stating that “eventually a write to the network happens, but that

all the previous events were file reads” is neither a safety nor a liveness property [16].

The above example hints at a general characteristic of trace properties, i.e., each trace
property can be written as the intersection between a safety and a liveness property:

Theorem 2.1 (From [16]).

∀π ∈ Prop. ∃πS ∈ Safety , πL ∈ Liveness. π = πS ∩ πL.
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hyperproperties Suppose now that we want to study how confidential data (e.g.,
secret keys of cryptographic algorithms) affects the observable behavior of a program. For
that, split the states of programs into a low (or public) part that is accessible to low users (i.e.,
external observers) and a high part that must be kept secret from them. Consider the policy
of observational determinism (OD) that requires a program to appear as deterministic to the
low users. As one can imagine OD may be used to describe the security of many programs
and systems, but it is rather straightforward to show that such a security policy cannot be
written as a trace property, since establishing that a trace t is allowed in a program requires
to compare twith all the other traces of the program in hand. To overcome the limits of
trace properties, Clarkson and Schneider proposed hyperproperties [72]. In this paragraph
we summarize some of the useful definitions and state the analogue of Theorem 2.1 for
hyperproperties.

Definition 2.2. The set of all hyperproperties can be defined as

HP , ℘(℘(Ψ)) = ℘(Prop)

and we say that a programW satisfies a given hyperproperty Π ∈ HP (W � Π) iff beh(W ) ∈ Π.

Intuitively, a hyperproperty expresses a security policy as the set of program behaviors
allowed by that policy.
Trivially, every trace property π can be lifted to a hyperproperty ℘(π) that expresses

exactly the same policy (i.e., any program satisfying π also satisfies ℘(π), and vice versa).
However, hyperproperties express much more. Consider again the OD policy, though it
cannot be expressed as a trace property, it is easy to express it as a hyperproperty:

OD , {T ∈ Prop | ∀t, t′ ∈ T. t0 =L t
′
0 ⇒ t ≈L t′}

where t0, t′0 are the initial events of t and t′, ti =L t
′
j holds if and only if the public part of

ti and t′j coincides and t ≈L t′ holds iff t and t′ are equivalent according to a low user.
As we did for trace properties we distinguish between classes of hyperproperties. For

that, we need to lift the notion of prefix to sets of traces: we say that T is a prefix of T ′
(T ≤ T ′) iff ∀t ∈ T. ∃t′ ∈ T ′. t ≤ t′ (when T ∈ ℘fin(Ψfin) we say that T is a finite prefix of
T ′). Then, we define the first class of hyperproperties:

Definition 2.3. A hyperproperty ΠS is a safety hyperproperty (hypersafety) (ΠS ∈ SHP)

iff

∀T ∈ Prop. T 6∈ ΠS ⇒
∃M ∈ ℘fin(Ψfin). M ≤ T ∧ (∀T ′ ∈ Prop. M ≤ T ′ ⇒ T ′ 6∈ ΠS)

and the second one:

Definition 2.4. A hyperproperty ΠL is a liveness hyperproperty (hyperliveness) (ΠL ∈
LHP) iff it belongs to:

∀T ∈ ℘fin(Ψfin). (∃T ′ ∈ Prop. T ≤ T ′ ∧ T ′ ∈ ΠL).

Remarkably, Theorem 2.1 lifts to hyperproperties:

Theorem 2.2 (From [72]).

∀Π ∈ HP. ∃ΠS ∈ SHP,ΠL ∈ LHP. Π = ΠS ∩ ΠL
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2.1.2 Security via program equivalences

An alternative way of characterizing the security of a program is to compare its behavior
with that of other programs. More concretely, one usually defines a suitable equivalence
relation between programs and checks that they behave indistinguishably according to an
attacker.
Following [2], we define the attacker as a context C ∈ Ctx (i.e., a program with a hole),

that must be linked with a partial program P ∈ Partial (a program that may require further
information to be executed, e.g., a program with free names representing system calls).

Definition 2.5. The link (or plug) operator is a function ·[·] : Ctx × Partial → Whole that

takes a context C and fills its hole with a partial program P , producing a whole program C[P ].

Furthermore, we say that C[P ] converges (written C[P ]⇓) if and only if all the possible executions
of C[P ] halt in a finite number of steps.

In light of these notions, we can then define the equivalence relation encoding indistin-
guishability:

Definition 2.6. Let P, P ′ be two partial programs. P and P ′ are contextually equivalent
(written P 'ctx P

′
) if and only if they equiconverge in any context, i.e.,

∀C. C[P ]⇓ ⇔ C[P ′]⇓.

Note that indistinguishability comes in many different flavors [177], however we
follow the tradition of secure compilation and from now onward we identify it with
equiconvergence [2]. To illustratewhy contextual equivalence is relevant for defining security,
consider the following example (inspired by [177]).

Example 2.4. Suppose that we are implementing a simple counter and that we want to allow a

callback to be executed as soon as the counter gets updated. The partial program P of Figure 2a

shows a tentative implementation of a function that resets the counter variable cnt, invokes the

external callback function callback (to be provided by our untrusted context), and finally checks

that the new value of cnt is indeed 0 (and halts if not).

Now, suppose that we want to make sure that the assertion of Line 7 never fails, independently

of the implementation of callback. That is, we need to show that for any possible context C,

the program P is indistinguishable from the program P ′ of Figure 2b (notice the change in the

condition of the assertion).

Depending on how powerful the contexts are, our P will be either distinguishable or not from P ′:

• If contexts explicitly manipulate the stack (as it happens low level languages), then the

context C below can tell P and P ′ apart:

1 fun callback (int v)
2 {
3 print ("Updated!");
4 int* counter_ptr = /* Inspect the stack to get a pointer

to counter */;
5 *counter_ptr = 42;
6 }
7

8 fun main ()
9 {
10 reset ();
11 while (true) {};
12 }
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1 int cnt = 0;
2 ...
3 fun reset ()
4 {
5 cnt = 0;
6 callback (cnt);
7 assert (cnt = 0);
8 }

(a) The program P from Example 2.4.

1 int cnt = 0;
2 ...
3 fun reset ()
4 {
5 cnt = 0;
6 callback (cnt);
7 assert (true);
8 }

(b) The program P ′ from Example 2.4.

Indeed, C[P ′] always diverges since the assertion succeeds and the infinite loop in the main

function of C get executed, while C[P ] terminates since the assertion on the value of the

counter fails.

• Otherwise, if contexts do not explicitly manipulate the stack then they cannot distinguish the

two implementations, and P and P ′ are contextually equivalent. Indeed, in this particular

case we conclude that the assertion in P never fails and thus that the integrity of the counter

is not violated.

2.2 secure compilation

In Chapter 1 we informally introduced secure compilation and some of its aspects. We
now make these intuitions precise, starting from the notion of compiler:

Definition 2.7 (Compiler). A compiler J·KST from S to T, is a function mapping programs

written in the source language S into those of the target language T.
1

In light of this definition and those of Section 2.1, we can now formalize the basics of
secure compilation, also depending on the attacker model of choice. Intuitively, a secure
compiler is one that preserves the security of programs it compiles, i.e., if a program
satisfies a security policy before compilation, then it must satisfy it even after compilation.

2.2.1 Passive attackers

The simplest non-trivial attacker that suits for secure compilation is that of passive attacker.
Intuitively, a passive attacker observes the behavior of a program and establishes its
adherence to a certain (security) policy. Recall now the notion of behavior of a program
and define secure compilers in case of passive attackers as follows:2

Definition 2.8. A compiler J·KST is secure for a family of hyperproperties F iff

∀W ∈Whole,Π ∈ F. beh(W) � Π⇒ beh(JWKST) � Π.

Consider the case in which F is the set of trace properties. In this case, proving a
compiler correct suffices to prove that it is secure too. Indeed, according to the following
definition that requires the source program to exhibit a trace when the target code does:

1 For better readability [175] we hereafter highlight in blue, sans-serif font elements of S, in red,bold font
elements of T and in black those that are in common.

2 The definition is a simplified version of RHP as proposed in [10]. Moreover, it is given for families of
hyperproperties, but we abuse the notation and use the same definition also for families of trace properties.
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Definition 2.9 (Compiler correctness [139]). We say that a compiler J·KST is correct iff

∀W ∈Whole, t. t ∈ beh(W)⇐ t ∈ beh(JWKST).

The following theorem holds:

Theorem 2.3 (From [139]). If J·KST is correct, then it is secure in case of passive attackers for trace

properties.

Correctness can be established via a backward simulation (or refinement) between the
behaviors of source and target programs. Typically, this is the case when S is an imperative
language with some under-specified aspects (e.g., the evaluation order of expressions)
and T is an assembly-level language. Other notions of compiler correctness, together with
some discussion about their suitability for different kind of languages and their relation
with backward simulation, are discussed in [139]. Note that, despite being a relatively
well-understood notion, that of compiler correctness may be particularly tricky to get
right (especially in presence of separate compilation or when the behavior of S and that of
T use different observables). See [9, 183] for recent advances on these fronts.

Actually, correctness also suffices in proving that a compiler preserves the subset-closed
(SSC) hyperproperties, i.e., those hyperproperties H such that, for any T ∈ H and T ′ ⊆ T ,
T ′ ∈ H (note that any trace property can be turned into SSC hyperproperty) [72].

Theorem 2.4 (From [72]). If J·KST is correct, then it preserves all the SSC hyperproperties.

Note that Theorem 2.3 and Theorem 2.4 implicitly assume that the observables we
considered for establishing the correctness are the same on which the security property
predicates. Consequently, the correctness proof is monolithic in the sense that it has to
deal with both functional and non-functional properties, and therefore the observables
turn out to be rather complex, along with the proof itself. In addition, this approach is
not modular and does not scale well when we want to prove the preservation of new
security policies: the correctness proof needs to be changed accordingly. Furthermore, it
is not straightforward to reuse off the shelf compilers already proved correct. Take for
example CompCert [138], a compiler for C that is proved correct assuming as observables
I/O operations (calls to library functions and load/store on those variables modelling
memory-mapped hardware devices). Proving that it preserves non-interference (roughly,
the secret part of the initial state of a program must not affect the public part of its final
state [206]) would require to observe also the values of public variables and to re-do
the proof. For these reasons, some papers in the literature adopt a different approach
advocating a neat separation of concerns between functional and non-functional aspects,
allowing for modular and incremental proofs (see e.g., [20, 21, 87, 88]). Then, the proof that
a compiler preserves the security properties of interest is done assuming its correctness.
Below, we briefly discuss a couple of proposals that address the security of program

optimizations, assuming them correct w.r.t. I/O observables. Deng and Namjoshi [87]
proved that (variants of) popular compiler optimizations preserve the above property of
non-interference, and introduced in [88] a technique that statically enforces it in SSA-based
optimization pipelines. In a framework that generalizes [87], Barthe et al. [21] studied the
cryptographic constant-time policy, which is an instance of observational non-interference
and informally requires that the execution time of a program does not depend on non-
public parts of the state (see Chapter 3 for a precise definition). The key ingredients of
their proposal are three variants of CT-simulations. Intuitively, a CT-simulation is a pair of
equivalence relations (one for programs at source level and one for those at the target)
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that are stable under reduction. Crucially, their approach is modular: given a compiler
with a simulation-based correctness proof, one can re-use parts of the proof and of the
simulation relation to prove its security. Barthe et al. [20] proved that a suitably modified
version of the CompCert compiler [138] preserves the constant-time policy. For that,
they identified the CompCert passes that do not preserve cryptographic constant-time,
then they proved them secure using simplified variants of the proof techniques in [21].
Recently, Protzenko et al. [193] proved that the KreMLin compiler, a compiler from a
subset of F* to human-readable C (and more recently, to WebAssembly [202]) preserves the
constant-time policy.

2.2.2 Active attackers

Secure compilation as presented in the previous section just considers attackers that
cannot interfere with programs during their execution and thus act just as observers.
Passive attackers model well the scenario in which we consider monolithic programs
that incorporate in their code all the functionalities they require to operate, or when
the whole code-base of a system is trusted. However, this attacker model is not fully
adequate inmany cases, sincemost of the time programs get executed in an active, untrusted

environment. Consider for example when we want to preserve properties of programs
whose external references cannot be solved at compile time, e.g., because they rely on
dynamically linked libraries. These real-world situations require a sharper notion of
security, where the environment has to be modeled explicitly. For that, we resort again to
contexts (Section 2.1.2). Indeed, the context acts as an attacker that can actively interact
with the program at run-time, rather than just passively watching its execution.

Building upon the notions of security presented in Section 2.1, secure compilation with
active attackers can be either based on (hyper)properties (robust hyperproperty preservation

3)
or program equivalences (fully abstract compilation).

robust hyperproperty preservation To take into account active attackers and
the external environment where the program is plugged in, we resort to the notion of
robust hyperproperty preservation, written RHP(F) [10], where F denotes a family of
hyperproperties:

Definition 2.10 (Robust hyperproperty preservation (RHP)). A compiler J·KST from a source

language S to a target language T robustly preserves F iff for any partial source program P

∀Π ∈ F. (∀C. C[P] � Π)⇒ (∀C. C[JPKST] � Π).

However, directly proving that a compiler robustly preserves a family of hyperproperties
is not at all trivial. To simplify proofs, Abate et al. developed so-called property-less

characterizations of secure compilers which are equivalent to specialized versions of the
criteria in Definition 2.10, but do not explicitly mention the family of hyperproperties they
refer to. Among these, the simplest characterization is that of robustly safe compilers and it
is equivalent to the criteria prescribing the robust preservation of all the safety properties.

Example 2.5 (Robust safety property preservation [10, 180]). Suppose we are interested
in preserving all the safety properties (that is, F is the Safety set lifted to hyperproperties).

Definition 2.10 can be specialized as follows:

3 Here, we limit ourselves to hyperproperties. Abate et al. [10] introduce a variety of secure compilation notions
to deal with more general classes of security policies.
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Definition 2.11 (Robust safety property preservation (RSP)). The compiler J·KST robustly
preserves safety properties (written J·KST ∈ RSP ) iff

∀P, π ∈ Safety . (∀C. C[P] � π)⇒ (∀C. C[JPKST] � π).

The property-free version of RSP goes as follows:

Definition 2.12 (Robustly safe compiler (RSC)). A compiler J·KST is robustly safe (written
J·KST ∈ RSC ) iff

∀P,C,m. (C[JPKST] m)⇒ (∃C. C[P] m),

where C[P ] m , ∃t ≥ m. t ∈ beh(C[P ]).

Actually, the two definitions characterize the same set of compilers:

Theorem 2.5 (From [10]). J·KST ∈ RSP ⇔ J·KST ∈ RSC .

Note in passing that the above definition of secure compiler can be further generalized
to deal with relational hyperproperties, that is hyperproperties that relate multiple
executions of different programs. See [10] for further details. Another interesting extension
of the above definitions (including those concerning compiler correctness) permit to have
different observables in source and target programs. Patrignani and Garg [179] were the
first to consider this scenario for secure compilers. Recently, Abate et al. [9] extended
previous work on compiler correctness and security to systematically deal with these
situations.

fully abstract compilation Abadi [2] coined the idea of usingprogramequivalences
for compiler security. This kind of compiler security takes the name of fully abstract

compilation and prescribes that a secure compiler must preserve and reflect the equivalence
of behaviors between original and compiled programs under any untrusted context of
execution, i.e., it must preserve and reflect contextual equivalence (see Definition 2.6). We
define fully abstract compilation as follows:

Definition 2.13 (Fully abstract compilation (FAC) [2]). A compiler J·KST is fully abstract iff

∀P,P′. P ' P′ ⇔ JPKST '
q
P′

yS
T

where ' denotes contextual equivalence.

Proofs of FAC are usually split in two, correspondingly to the two sides of the double
implication of the definition: equivalence reflection (⇐) and equivalence preservation (⇒).

Equivalence reflection (⇐). This side of the double implication guarantees that pro-
grams that are equivalent after compilationwere equivalent also before, so guarantee-
ing that nothing went wrong during compilation. Indeed, reflection is reminiscent
of compiler correctness and for that it is sometimes called the compiler correctness

side of FAC. However, this terminology is improper [177], since compiler correctness
is not usually implied by reflection. Intuitively, a compiler that compiles any source
program to the same target program is trivially incorrect

4 but it reflects contextual
equivalence. Instead, the converse typically holds. For instance, we rephrase here
the proof sketch for the case in which S and T are deterministic:

4 We do not consider programs with empty behavior.
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Theorem 2.6. If S and T are deterministic, then compiler correctness implies equivalence

reflection.

Sketch. We set out to prove (by restating equivalence reflection) that, for any P,P′

∀C. C[JPKST]⇓ ⇔ C[
q
P′

yS
T

]⇓ ⇒ ∀C. C[P]⇓ ⇔ C[P′]⇓.

Determinism guarantees that behaviors of C[P] and C[P′] are singletons. Compiler
correctness implies that beh(JC[P]KST) ⊆ beh(C[P]) and beh(JC[P′]KST) ⊆ beh(C[P′])

(note that the image of the linking operator is a subset of Whole). Thus, it must
be beh(JC[P]KST) = beh(C[P]) and beh(JC[P′]KST) = beh(C[P′]), and in particular
C[P]⇓ ⇔ C[P′]⇓.

Because of the above theorem and since most fully abstract compilers are defined
and proved correct, equivalence reflection is usually trivial and not relevant for
secure compilation purposes. However — despite the above results — equivalence
reflection remains interesting in some scenarios. For instance, when one has to
guarantee backward compatibility between different versions of the same language, as
it happens in Chapter 6 and its associated papers [58, 59].

Equivalence preservation (⇒). To see why this side of the double implication is relevant
for security, consider the contrapositive of the statement (after expanding the
definition of '):

∀P,P′,C. C[JPKST]⇓ 6⇔ C[
q
P′

yS
T

]⇓ ⇒ ∃C. C[P]⇓ 6⇔ C[P′]⇓

and observe that it requires that for any target-level distinguishing context, i.e.,
any successful attacker at the target, there must be a corresponding source-level
successful attacker. Restating equivalence preservation as its contrapositive also hints
the backtranslation proof technique for it. A backtranslation is a function mapping
any target-level attacker into a source-level one:
Definition 2.14 (Backtranslation). Let Ctx and Ctx be the sets of all contexts of S and T,

respectively. A backtranslation is a function 〈〈·〉〉TS : Ctx→ Ctx such that

∀C. C[JPKST]⇓ 6⇔ C[
q
P′

yS
T

]⇓ ⇒ 〈〈C〉〉TS [P]⇓ 6⇔ 〈〈C〉〉TS [P′]⇓.

Intuitively, a backtranslation witnesses the existence of a source-level attacker, thus
proving the equivalence preservation. Still, despite the power of backtranslation,
proving preservation remains in many cases a challenging task. For that, many
different proof techniques have been developed to simplify the proof [14, 15, 45,
90, 164, 176, 178, 223]. We refer the interested reader to the online appendix of the
survey by Patrignani et al. [177] for a more in-depth treatment of such techniques.

Despite the hurdles highlighted above, in the last two decades FAC has been the gold-
standard for compiler security and found several applications. Among others, Ahmed
and Blume [14, 15] and New et al. [164] proved that (variants of) classical closure conversion
and continuation-passing style conversion [156] are fully abstract. Abadi and Plotkin [7]
introduced a language translation that uses memory layout randomization to achieve a
probabilistic variant of FAC. Fournet et al. [100] defined a fully abstract compiler from
(a subset of) ML to JavaScript. Bowman and Ahmed [45] defined a translation from
DCC [4] to System F and proved it fully abstract, exemplifying a situation in which a fully
abstract compiler also preserves non-interference. Full abstraction has also been used to
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assess the security of compilers whose targets are architectures with advanced protection
feature like capabilities and enclaves (see Section 2.3.4). For instance, Patrignani et al.
[176] proposed a fully abstract compiler from an object-oriented source language to an
Instruction Set Architecture (ISA)with enclaves. Van Strydonck et al. [226] defined a fully
abstract translation from a C-like language equipped with contracts based separation-logic
to an ISA equipped with (linear) capabilities. More recently, El-Korashy et al. [94] provided
a fully abstract pointers-as-capabilities compiler, encoding pointers of its source language as
capabilities of the CHERI architecture [234], thus guaranteeing that security properties of
the source level are carried over to the target. Finally, also our recent work relies on FAC
(see Chapter 6 and [58, 59]). More precisely, we prove a modified version of the Sancus
architecture [170] secure against interrupt-based attacks (e.g., the Nemesis attack [225]). For
that, we show that a version of the Sancus architecture without interrupts (which we call
SancusH) and one with them enabled (SancusL) are fully abstract.

rhp vs. fac Since the (recent) introduction of trace-based secure compilation criteria [10,
179, 180], a standing question in the community of secure compilation has been how these
new secure compilation principles and criteria compare to FAC.
FAC, has indeed some limitations. The first and most serious drawback is that real-

world, off-the-shelf compilers seldom are fully abstract. For example, neither the standard
compiler from Java to byte-code [2] nor the one from C# to the .NET CLR language [125]
are fully abstract. The second shortcoming is that FAC can be hard to prove or to disprove
(though the same may apply to other criteria). Indeed, the compiler from System F to
the cryptographic λ-calculus by Pierce and Sumii [187] was conjectured to be FAC, but
it was proved not such only eighteen years later by Devriese et al. [89]. Also, enforcing
FAC requires to instrument the target code, often making it inefficient [180]. Finally, FAC
sometimes does not preserve properties that secure compilers are expected to, as shown
by the following example inspired by [179].

Example 2.6 (FA ; safety preservation). Consider the language S to be a simple functional

language with boolean values and just the constantly true function:

S 3 s ::= true | false | λ _.true | s1 s2.

Similarly, let T be a target language with booleans, integers and non-recursive functions:

T 3 t ::= true | false | n | x | if t1 < t2 then t3 else t4 |
t1 t2 | λ x.t

An FA compiler follows, assuming the observables to be the values returned by functions:

JtrueKST , true JfalseKST , false Js1 s2KST , Js1KSTJs2KST
Jλ _.trueKST , λ x.if x < 2 then true else false.

Actually, it is a trivial compiler except for the constantly true function that is mapped to a function

yielding true or false depending on its parameter.

Consider now the (informal) safety property stating that “a function never outputs false”,

trivially satisfied by all the programs in S. However, target programs can output false depending

on x, the target-level input provided by the context, hence invalidating the property.

Despite these limitations, many of the fully abstract compilers from the literature seem
to (implicitly) leverage features of their source and target languages to achieve meaningful
security and correctness guarantees [179]. The first to explicitly compare a trace-based
secure compilation criterion with FAC were Patrignani and Garg [179]. For that, they
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define trace-preserving (TP) compilation for reactive programs. Informally, a compiler J·KST is
TP if any trace of the compiled program JPKST is either a trace of the original program P or
is a special invalid trace. Depending on how invalid traces are defined, TP compilation
comes in two flavors: halting and disregarding. The first one prescribes that invalid traces
must stutter after an invalid input; the second one defines invalid traces as those that
discard invalid inputs and corresponding outputs. Finally, TP compilers preserve all the
safety hyperproperties [179].
In light of recent advances on robust hyperproperty preservation [9, 10] and applications

of FAC [45, 59], Abate and Busi [11] started an in-depth exploration of the relation
between FAC and robust hyperproperty preservation, and explicitly characterized which
hyperproperties a fully-abstract compiler is expected to preserve. More details about this
work-in-progress are in Chapter 7.

2.3 proving and enforcing program properties

In this section we briefly overview the relevant techniques for automatically enforcing
and proving the security properties we introduced above.

2.3.1 Type systems

Static analysis comprises a broad collection of methodologies and techniques that allow
proving properties of programs, without actually executing them. We just touch the basics
of type systems, a simple syntax-directed and compositional static analysis technique.

Two components define a type system, a set of types, i.e., syntactic entities that intuitively
describe the structure of data used and produced by programs, and a typing relation —
induced by a set of inference rules— that takes the form of a judgment [65]:

Γ ` t : τ

with the intuitive meaning that the term t has type τ under the type environment Γ (a
mapping from free variables of t to their types).
To guarantee that predicted types are “the right ones”, when designing a type system

wemust make sure that such a system is sound [185] with respect to the dynamic semantics
of the programming language. Though soundness can be established in a variety of ways,
the most commonly used approach is the syntactic one [237], that requires to prove the
following properties:

Progress: Any well-typed term it is either a value or it can take a step of evaluation
according to language semantics.

Preservation: Any well-typed term that takes a step of evaluation is evaluated to a
well-typed term.

type checking and type inference Deciding whether a typing relation holds or not
is a well-studied problem, known as type checking:

Definition 2.15 (Type checking). For a given term t of the language, environment Γ, and type τ

decide if Γ ` t : τ .

Indeed, type checking is (usually) simple since the typing rules define a (correct and
complete) algorithm to decide if a given judgment holds.
A different, usually harder, problem is the following
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Definition 2.16 (Type inference). For a given term t of the language and environment Γ, find

themost general type τ (if any) such that Γ ` t : τ .

One of the most well-known type systems for which there exists a decidable and complete

inference algorithm— Algorithm W — is the Hindley-Milner type system for functional
languages.
The general idea behind AlgorithmW is to infer the type of the term in hand by first

inferring the types of its sub-terms and then by suitably joining them together with the
help of unification. Consider, for example, the following rule used by Algorithm W to
infer the type of functional abstractions:

(W-Abs)
Γ[x 7→ αx, f 7→ αx → αe] `W e : (τe, θe)

θ1 = U(τe, θeαe) ∧ (τ, θ) =
(
(θ1 (θe αx))→ (θ1 τe), θ1 ◦ θe

)
Γ `W λf x.e : (τ, θ)

αx, αe fresh

The rule (i) assumes that the formal parameter x has type αx (fresh) in Γ and f has type
αx to αe; (ii) infers recursively the type τe (of body e) and the substitution θe (binding αx);
(iii) reconstructs the overall type by first unifying (if possible) the type τe and the type
θe αe; and finally (iv) builds the functional type and the new substitution to be returned.
Other inference algorithms exist for the Hindley-Milner type system. The two most

successful are Algorithm M [135] and HM(X) [172]. The first uses a top-down approach
(whereasAlgorithmWuses a bottom-up approach),while the second is a general algorithm
parametrized on the term constraint system X , used to express the constraints that arise
during the inference.

security type systems Type systems are useful in a variety of situations, and here we
focus on situations where they can verify that some trace property or some hyperproperty
holds.
The most influential example of a type system that can verify a hyperproperty is

by Volpano et al. [229]. It allows checking statically if a program enjoys a variant of
non-interference. The idea is to annotate every term of the program in hand with a label
from a security lattice and to type check it in search of violations of non-interference. To
better illustrate the concept, consider the WHILE language from [217]:

a ::= n | x | a1 op a2 n ∈ N, op∈ {+, ∗,−, . . .}, x ∈ Var

b ::= true | false | b1 or b2 | not b | a1 ≤ a2

c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c
p ::= a | b | c
τ ::= H | L ς ::= τ | τ var | τ cmd

Γ ::= ∅ | Γ[p 7→ ς]

where Var is the countable set of program variables, ς is a security type (belonging to a
security lattice whose ordering relation is the sub-typing relation defined in Figure 3), and
Γ ∈ TypeEnv is a typing environment that maps variables to their corresponding security
type. Judgments of this type system (call it S) have the following form:

Γ `S p : ς

meaning that under the environment Γ, p has security type ς . Figure 3 shows the most
interesting rules inducing `S . Of course the type system must be sound as explained
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(S-Assign)
Γ `S a : τa Γ(x) = τ var ∧ τ = τa ∧ ς = τ cmd

Γ `S x := a : ς

(S-If)
Γ `S b : τb Γ `S c1 : τ1 cmd Γ `S c2 : τ2 cmd τb = τ1 = τ2 ∧ ς = τb cmd

Γ `S if b then c1 else c2 : ς

(S-Seq)
Γ `S c1 : τ1 cmd Γ `S c2 : τ2 cmd τ1 = τ2 ∧ ς = τ1 cmd

Γ `S c1; c2 : ς

(SS-Sub)
Γ `S p : ς1 ς1 ⊆ ς2

Γ `S p : ς2

(SS-Base)

L ⊆ H

(SS-Cmd)
τ ′ ⊆ τ

τ cmd ⊆ τ ′ cmd

(SS-Refl)

ς ⊆ ς

(SS-Tr)
ς1 ⊆ ς2 ς2 ⊆ ς3

ς1 ⊆ ς3

Figure 3: Some of the rules of the type checking algorithm S (with sub-typing) for language
of [217].

above and shown in [217], but it also needs to be correct, i.e., the given program must
satisfy non-interference when the typing relation holds:

Theorem 2.7 (Correctness). A program p enjoys non-interference under a Γ if there exists a ς

such that

Γ `S p : ς

Note also that the converse is not true: there might be cases in which a program enjoys
non-interference, but for which the typing relation does not hold.
The literature on type systems applied to security is extremely vast, and security type

systems come in different flavors. However, most of them rely on the same principles and
some of them are even provably equivalent (see e.g., [197]).

Other interesting examples of security type systems includework on secret declassification,
i.e., systems in which secrets can be declassified and may become public [159], or real-
world programming languages with built-in security types, e.g., Jif [194] a Java extension,
FlowCaml [213] an OCaml extension, seclib [204] and LIO [218] for Haskell.
Moreover, type systems are not limited to functional, imperative or object-oriented

languages. For instance, Abadi and Blanchet [5] defined a secrecy type system for the
spi-calculus [6], in which the typing relation is defined in such a way that (roughly) if a
process is typable, then secrecy is guaranteed.

Note also that static analysis techniques other than type systems were applied to the
analysis of the security of protocols and programs. Among them control-flow analysis [42–44,
86], abstract interpretation [146] and type and effect systems [24, 41].

2.3.2 Translation validation

Pnueli et al. [189] first introduced translation validation to automatically verify the
correctness of compilers (and in general translation between languages), without having
to build correctness proofs from scratch or to adapt the existing ones after each change
in the translation. At a very high-level, the approach is as in Figure 4. A program P ∈ S
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P ∈ S

J·KST

JPKST ∈ T

Analyzer

Counter
Example

Proof
script

Bad

Good

Figure 4: A high-level overview of the translation validation approach.

is compiled to a target program JPKST: if the analyzer proves that JPKST implements (i.e.,
refines) the original program P, then it generates a proof script and exits successfully,
otherwise it produces a counter-example on which the behavior of P and JPKST differ. It is
worth noting that translation validation performs a correctness verification after each run
of the compiler, so it does not build an a priori proof of the correctness of the translation.
The tricky part of this approach resides in the definition of the analyzer. The key to

make the process fully automatic lies in first giving a homogeneous semantics to both S

and T in terms of a common transition system; then in defining an appropriate notion of
simulation between the transition systems; and finally in defining a syntax-based version of
the obtained simulation that entails the original one and that can be built mechanically.
Since the first work by Pnueli et al. [189] translation validation found a vast number

of applications. For example, Necula [163] experimented with translation validation
on the GCC compiler and Sewell et al. [211] verified the seL4 micro-kernel using the
same approach. Variants of this technique were also applied to prove the correctness of
compiler optimizations, e.g., Namjoshi and Zuck defined a stuttering simulation to perform
translation validation of program optimizations [161].

2.3.3 Security of compiler optimizations

As sketched in the introduction, the problem of secure compilation remains interesting
evenwhen applied to programoptimizations or obfuscations as used in compilers.5 D’Silva
et al. [81] were the first to notice that program optimizations passes may not preserve
security guarantees, even though the first examples of unsafe compiler optimizations date
back to 2002 [200]. To see why optimizations might be dangerous, recall the following
example from Chapter 1:

Example 2.7 (Dead-store elimination is harmful). Let confidentiality be intuitively expressed

as the need of preventing (secret) information leaks. Assume to have a compiler pass J·KDSE from

a C-like intermediate language to itself, implementing the standard dead-store elimination (DSE)
that detects and removes dead assignments in programs.

Now, consider again the program P from Figure 1. The result of its optimization is JPKDSE and is

the program P with the red, boxed assignment removed because it was a dead store, and recognized

as such because the compilation of the library happens before linking it with all the other modules.

Unfortunately, that assignment ensured confidentiality of the secret value of pin that now can

be accessed by any context of execution in which JPKDSE might be plugged in.

5 In this section, we will denote them as compilers that transform program from an intermediate language to
another.
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To solve this specific issue Deng and Namjoshi proposed a confidentiality preserving

version of dead-store elimination [87]. For this, they resort to a taint proof system that
infers when a specific dead store can be removed without breaking the confidentiality
guarantees of the original code. The same two authors also proposed the so-called
unSSA algorithm [88] aimed at avoiding the introduction of new information leaks caused
by compilers that use a static single assignment [198] intermediate language (i.e., an
intermediate language that requires each variable to be defined before its use and assigned
only once). More precisely, consider a compiler that (1) translates the input code written
in a source language into an SSA program; (2) optimizes it with an arbitrary number of
SSA-based transformations; and (3) outputs the code in the target language. Its problem is
that the SSA stage may cause information leaks while transforming multiple assignments
to the same variable into different assignments to different and fresh variables. The
solution of [88] is to add to the pipeline an additional unSSA stage that tries to discover
the sets of SSA variables that must be re-joined together in order to remove the newly
introduced leaks.

2.3.4 Low-level protection mechanisms

In this section,we briefly survey someproposals of target languages, low-level architectural
mechanisms and tools that a designer can use to implement secure compilers.
The first proposal is to use a target language endowed with a rich typed structure in

order to preserve the type guarantees of the source language. An early example of this is
the typed assembly language (TAL) [156] that has existential types to support closures and
other data abstractions (among other features) and has been used as target language of a
type-preserving compiler for System F [156].

Another proposal consists of enriching the target architecturewith low-levelmechanisms
to enforce the security policies during program execution. Along these lines there are
capability machines (CM), special microprocessors guaranteeing local-state encapsulation
at the hardware level [141]. CMs are based on memory capabilities (structures similar to
fat pointers that include some access-control information, tagging registers and memory
locations). Besides memory capabilities, many machines also implement object capabilities,
i.e., structures that allow invoking a piece of code without exposing its encapsulated state.
Of course, memory and object capabilities neither prevent vulnerabilities in software nor
their exploitation, but they do provide strong mitigation mechanisms. Indeed, their main
goals are to reduce the attack surface and, in case of successful exploitation, to avoid
that attackers gain too many rights over the compromised machine. Capability Hardware

Enhanced RISC Instructions (CHERI) [234] extends commodity ISAs with capability-based
primitives and supports real-world operating systems and applications. Watson et al. [233]
proposed a CHERI extension for the x86 architecture. Also, ARM developed the Morello
architecture specification, an ARMv8-A architecture extended with the CHERI protection
model [1]. Recent research efforts have been devoted to formally study the properties of
this model and to securely compile source code to these machines [94, 103, 215, 216, 226].

Enclaved execution architectures bring some security guarantees at the hardware level by
splitting the memory into a protected section (i.e., the enclave) and into an unprotected
one, in order isolate sensitive and critical applications from the rest of the system. Actually,
enclaves enable secure remote computation [79]. Upon creation, enclaves are initialized with a
(software) module, which is isolated from all other software on the same platform (includ-
ing system software such as the operating system). Furthermore, the correct initialization
of modules can be remotely attested: a remote party can get cryptographic assurance that an
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enclave was properly initialized with a specific module (characterized by a cryptographic
hash of the binary module). All these security properties are guaranteed while relying on
a small trusted computing base, for instance trusting only the hardware [148, 170] and
(possibly) a small hypervisor [99, 147]. This idea was further developed in [13, 169, 176,
178] and also implemented in commodity processors by industry, e.g., Intel Secure Guard
eXtensions (Intel SGX). Relevant to our thesis and in this line of research is the Sancus [168,
170] architecture, implementing an enclaved execution architecture on the Texas instrument

MSP430, a low-cost and embedded microprocessor. Sancus achieves (1) software module
isolation; (2) remote attestation; (3) secure communication and linking; (4) confidential
deployment; and (5) hardware breach confinement. For that, its architecture is equipped
with symmetric encryption, key management mechanisms and strictly regulated enclaves
for software modules. Note that, even though Sancus provides a number of security
mechanisms, a careful design is needed to ensure that these mechanisms are indeed
secure [58, 59, 225].
Finally, other proposals attempt to develop new architectures to dynamically enforce

security policies. Among them, micro-tagged architectures [17, 18, 92] enrich each word
in the machine (both instructions and data) by tagging it with a pointer to a (security)
policy to be checked at run-time.



3
A C L A S S I C A L A P P ROAC H TO S E C U R E CO M P I L AT I O N

This chapter shows a rather classical approach to secure compilation, in which a particular
code transformation is manually proved secure against passive attackers. For that, we
focus on obfuscating compilers that are designed to protect a software by obscuring
its meaning and impeding the reconstruction of its original source code. Usually, the
main concern of these compilers is their robustness against reverse engineering and the
performance of the produced code. Very few papers in the literature, e.g., [39], address
the problem of proving their correctness and, to the best our knowledge, there are no
papers about the preservation of security policies. Here, we offer a first contribution in this
direction: we consider a popular program obfuscation (namely control-flow flattening [132])
and a specific security policy (namely the constant-time policy), and by following [21]
we prove that every program satisfying the policy still does after being obfuscated, i.e.,
the obfuscation preserves the policy. Below, we briefly overview the security policy, the
program transformation of interest and the proof technique.

3.1 the constant-time policy

Side-channel attacks allow intruders to extract confidential data by observing the physical
behavior of a system. Roughly, an attacker can recover some pieces of confidential
information or get indications on which parts are worth their cracking efforts by observing
some physical quantity about the execution of the system in hand (the victim). Typically,
an attacker measures the physical effects caused by the execution of its victim (e.g., the
power it consumes or its execution time) and tries to correlate it with the confidential
information the system manipulates (e.g., secret keys). Among these, timing-based attacks
exploit the execution time of programs to extract confidential information [127]. For
instance, if the program in hand branches on a secret, the attacker may restrict the set of
values it may assume, whenever the two branches have different execution times and the
attacker can measure and compare them. The following toy example illustrates how an
attacker may recover confidential information by exploiting a timing-based side-channel.

Example 3.1. Consider the following function (written in a sugared syntax) taking as an input a

secret pin provided by the user, which is checked against the stored one, character by character:

1 fun compare (pin, pin_len):
2 curr := 1;
3 while (curr ≤ pin_len and
4 curr ≤ stored_pin_len and
5 pin(curr) = stored_pin(curr))
6 curr := curr+1;
7

8 return (curr = stored_pin_len+1);

17
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Here the constant-time policy is violated since checking a correct pin takes more comparisons

between characters than a wrong one. In fact, by measuring the time the attacker can understand

which branch was taken, thus restricting the set of values the secret pin may assume.

Many mitigations of timing-based attacks have been proposed, both hardware and
software. The program counter [155] and the constant-time [35] policies are software-based
countermeasures, giving rise to the constant-time programming discipline. The constant-time

programming discipline requires that neither the control-flow of programs nor the sequence
of their memory accesses depend on secrets, like the value of pin in our example. Its goal
is to decouple the running time of programs from secrets (i.e., programs are constant-time

w.r.t. secrets). This task is achieved independently of the platform on which the program
is executed (e.g., the operating system or the CPU). Usually, this is formalized as an
information flowpolicy [105] w.r.t. an instrumented semantics that records at leastmemory
accesses and the control-flow of the program [21]. Intuitively, this policy requires that two
executions with equivalent initial states (from an attacker’s point of view) yield equivalent
leakage, making them indistinguishable to an attacker. The following example completes
the one above, by making the attack more concrete and showing a possible mitigation.

Example 3.2. Consider again the program from the previous example and a simplified version

of the constant-time policy leakage model from [21], i.e., an instrumented semantics recording

(1) memory accesses (denoted with variable names), (2) arithmetic operations, and (3) branching

(either true or false). Let now stored_pin be equal to "ps1". If the user inputs "pw", the

instrumented semantics records the sequence

curr · true · + · curr · false · +

where the first boxed block originates from the initial assignment; the condition of the while leaks

the second block and its body leaks the third; the fourth block is observed because the condition of

the while is false for the second character of pin; the fifth is observed upon evaluation of return.

Instead, if the user correctly inputs "ps1", the same instrumented semantics records

curr · true · + · curr
· true · + · curr · true · + · curr · false · +

Recall that the value of pin is a secret. The violation of the constant-time policy is now evident:

despite starting from equivalent states, the two executions have different leakages (from the fourth

boxed block onward). Assuming the length of stored_pin to be public, the following program

is a constant-time version of the one above (assume the operator _ ? _ : _ to be a branch-less

conditional operator, e.g., implemented using a cmov in x86 assembly)

1 fun compare (pin, pin_len):
2 curr := 1;
3 pin_ok := true;
4 while (curr ≤ stored_pin_len)
5 pin_ok := (curr ≤ pin_len and pin(curr) =

stored_pin(curr)) ? pin_ok : false;
6 curr := curr+1;
7

8 return pin_ok;
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Indeed, now the leakage does not depend on the value of pin (though it still depends on the length of

stored_pin):

curr · pin_ok ·
true · pin_ok ·+ ·curr ·
. . .

true · pin_ok ·+ ·curr ·

 stored_pin_len times

false

3.2 control-flow flattening

Code obfuscation is a program transformation that aims at hiding the intention and the
logic of programs by obscuring (portions of) their source or target code. It is used to protect
a software making it more difficult to reverse engineer the (source/binary) code, which
the attacker can access. In the literature different obfuscations have been proposed. They
range from only performing simple syntactic transformations, e.g., renaming variables and
functions, to more sophisticated ones that alter both the data, e.g., constant encoding and
array splitting [75], and the control flow of the program, e.g., using opaque predicates [75]
and inserting dead code.

Control-flow flattening is an advanced obfuscation technique, implemented in state-of-
the-art and industrial compilers, e.g., [122]. Intuitively, this transformation re-organizes the
control-flow graph (CFG) of a program by taking its basic blocks and putting them as cases
of a select primitive that dispatches to the right case. In practice, CFG flattening breaks
each sequence of statements, nesting of loops and if-statements into single statements,
and then hides them in the cases of a large switch statement, in turn wrapped inside a
while loop. In this way, statements originally at different nesting level are put next each
other. Finally, to ensure that the control flow of the program during the execution is the
same as before, a new variable pc is introduced that acts as a program counter, and is
also used to terminate the while loop mentioned above. The switch statement dispatches
the execution to one of its cases depending on the value of pc. When the execution of a
case of the switch statement is about to complete pc is updated with the value of the next
statement to be executed.
The obfuscated version of our constant-time example follows.
1 fun compare (pin, pin_len):
2 pc := 1;
3 while(1 ≤ pc)
4 switch(pc):
5 case 1:
6 curr := 1; pc := 2;
7 case 2:
8 pin_ok := true; pc := 3;
9 case 3:

10 if (curr ≤ stored_pin_len)
11 then pc := 4;
12 else pc := 6;
13 case 4:
14 pin_ok := (curr ≤ pin_len and pin(curr) =

stored_pin(curr)) ? pin_ok : false;
15 pc := 5;
16 case 5:
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17 curr := curr+1;
18 pc := 3;
19 case 6:
20 skip; pc := 7;
21 case 7:
22 return pin_ok;
23 pc := 0; // Never reached

In this particular case the new obfuscated program is still constant-time, but we do
not know if this is the case also for other programs. In general, we would like to have
guarantees that the attacks prevented by the constant-time based countermeasure are not
possible in the obfuscated versions.

3.3 a short guide to ct-simulations

Typically, proving the correctness of a compiler requires to prove the existence of a
simulation relation between the computations at the source and at the target level [70, 139].
Indeed, if such a relation exists it is guaranteed that the behavior of the target program
refines that of the source, meaning that they have the same observable behavior.
A general method for proving that constant-time is also preserved by compilation

generalizes this approach and is based on the notion of CT-simulation [21]. It considers
three relations: a simulation relation between source and target, and two equivalences,
one between source and the other between target computations. The idea is to prove
that, given two computations at source level that are equivalent, they are simulated by
two equivalent computations at the target level. Actually, CT-simulations guarantee the
preservation of a particular form of non-interference, called observational non-interference.
In the rest of this section, we briefly survey observational non-interference and how
CT-simulations preserve it.

The idea is to model the behavior of programs using a labeled transition system whose
transitions have the form a

t−→ b, where a and b are program configurations and t represents
the leakage associated with the execution step between a and b. The semantics is assumed
deterministic. Hereafter, let the configurations of the source programs be ranged over by
a, b, . . . and those of the target programs be ranged over by a,b, . . .. We will use the dot
notation to refer to commands and state inside configurations, e.g., a.cmd refers to the
command part of the configuration a.
Recall from Section 2.1 that observables represent what an attacker learns by looking

at the execution of a program. Observational non-interference is defined for complete
executions (we denote Sf the set of final configurations) and w.r.t. an equivalence relation
φ on configurations (e.g., states are equivalent on public variables):

Definition 3.1 (Observational non-interference (ONI) [21]). A program P is observationally
non-interferent w.r.t. a relation φ (written p |= ONI (φ)), iff for all initial configurations

a, a′ ∈ Si and configurations b, b′ and leakages t, t′ and n ∈ N,

a
t
−−→n b ∧ a′

t′

−−→n b′ ∧ φ(a, a′)⇒ t = t′ ∧ (b ∈ Sf iff b′ ∈ Sf ).

Consider now a compiler J·KST from S to T. Intuitively, it preserves ONI when for every
program P that enjoys ONI, JPKST does as well (cfr. Definition 2.8):

Definition 3.2. J·KST preserves ONI iff, for all programs P

P |= ONI (φ)⇒ JPKST |= ONI (φ).
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To show that a compiler J·KST is secure, we follow [21]. Actually, Barthe et al. [21] provide
three different proof-techniques based on simulations and with a varying degree of
generality: lockstep, manystep and general CT-simulation. Roughly, a lockstep simulation
requires that each execution step of the source program has a corresponding one at the
target. However, this is not applicable to our compiler, since a single instruction in the
source is compiled to multiple ones in the target. Manystep simulation generalizes the
notion of lockstep simulation by allowing multiple steps at the target for a single step at
the source. Still, this is insufficient for control-flow flattening since it may happen that
for one step at the source there are no steps at the target. Thus, we resort to a general

CT-simulation and we build it in two steps.
The first step consists in defining a simulation, called general simulation, that relates

computations between source and target languages. The idea is to consider related a
source and a target configuration whenever, after they perform a certain number of steps,
they end up in two still related configurations:

Definition 3.3 (General simulation [21]). Let num-steps(·, ·) be a function mapping source

and target configurations to N. Also, let |·| be a function from source configurations to N. The
relation ≈P is a general simulation w.r.t. num-steps(·, ·) whenever:

1. (∀a, b,a. a −→ b ∧ a ≈P a⇒ (∃b. a−−→num-steps(a,a) b ∧ b ≈P b);

2. (∀a, b,a. a −→ b ∧ a ≈P a ∧ num-steps(a,a) = 0⇒ |a| < |b| ;

3. For any source configuration a ∈ Sf and target configuration a such that a ≈P a there exists

a target configuration b ∈ Sf such that a−−→num-steps(a,a) b and a ≈P b.

Given two configurations a and a in the simulation relation, the function num-steps(a,a)

predicts how many steps a has to perform for reaching a configuration b related with
the configuration b such that a −→ b. When num-steps(a,a) = 0, a possibly infinite
sequence of source steps is simulated by an empty one at the target level. To avoid
these situations the measure function |·| is introduced and the condition 2 of the above
definition ensures that the measure of source configuration strictly decreases whenever
the corresponding target one stutters.
The second step consists of introducing two equivalence relations between configura-

tions: c≡S relates configurations at the source and c≡T at the target. These two relations
form a general CT-simulation:

Definition 3.4 (General CT-simulation [21]). A pair (
c≡S,

c≡T) is a general CT-simulation
w.r.t. ≈P, num-steps(·, ·) and |·| whenever:

1. (
c≡S,

c≡T) is a manysteps CT-diagram, i.e., if

• a
c≡S a′ and a

c≡T a′;

• a
t−→ b and a′

t−→ b′;

• a
τ
−−→num-steps(a,a) b and a′

τ ′

−−→num-steps(a′,a′) b′;

• a ≈P a, a′ ≈P a′, b ≈P b and b′ ≈P b′

then

• τ = τ ′ and num-steps(a,a) = num-steps(a′,a′);

• b
c≡S b′ and b

c≡T b′;

2. If a, a′ are initial configurations, with targets a,a′, and φ(a, a′), then a
c≡S a′ and a

c≡T a′;
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3. If a
c≡S a′, then a ∈ Sf ⇔ a′ ∈ Sf ;

4. (
c≡S,

c≡T) is a final CT-diagram [21], i.e., if

• a
c≡S a′ and a

c≡T a′;

• a and a′ are final;

• a
τ
−−→num-steps(a,a) b and a′

τ ′

−−→num-steps(a′,a′) b′;

• a ≈P a, a′ ≈P a′, b ≈P b and b′ ≈P b′

then

• τ = τ ′ and num-steps(a,a) = num-steps(a′,a′);

• b
c≡T b′ and they are both final.

The idea is that the relations c≡S and c≡T are stable under reduction, i.e., preservation
of the observational non-interference is guaranteed. The following theorem, referred to
in [21] as Theorem 6, gives a sufficient condition to establish constant-time preservation.

Theorem 3.1 (Security). If P is constant-time w.r.t. φ and there is a general CT-simulation w.r.t.

a general simulation, then JPKST is constant-time w.r.t. φ.

3.4 the case of control-flow flattening

In this section, we apply the technique of CT-simulations to prove that control-flow
flattening preserves constant-time policy. First, we introduce a small imperative language,
its semantics in the form of a LTS and our leakage model. Then, we formalize our
obfuscation as a function from syntax to syntax, and finally we prove the preservation of
the security policy.
For the sake of presentation, our source language is rather essential, as well as our

illustrative examples. As said above, the proof that control-flow flattening is indeed
secure follows the approach of [21] (briefly presented in Section 3.3), and only needs
paper-and-pencil on our neat, foundational setting. Intuitively, we prove that if two
executions of a program on different secret values are indistinguishable (roughly, they take
the same time), then also the executions of its obfuscated version are indistinguishable.
Note that extending our results to a richer language will only require to handle more

details with no substantial changes in the structure of the proof itself. Furthermore, other
security properties besides those already studied in [21] can be accommodated with no
particular effort in this framework, and also other program transformations can be proved
to preserve security in the same manner.

3.4.1 The language and its (instrumented) semantics

We consider a small imperative language with arithmetic and boolean expressions. Let
Var be a set program identifiers, the syntax is

AExp 3 e ::= v | x | e1 op e2 v ∈ Z, op ∈ {+,−, ∗, /, mod},x ∈ Var

BExp 3 b ::= true | false | b1 or b2 | not b | e1 ≤ e2 | e1 = e2

Cmd 3 c ::= skip | x := e | c1; c2 | if b then c1 else c2 | while b do c
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x := e, σ
leak(e, σ)·x−−−−−−−→ skip, σ{x 7→ [e]σ}

c1, σ
t−→ c′1, σ

′

c1; c2, σ
t−→ c′1; c2, σ

′ skip; c2, σ
•−→ c2, σ

[b]σ = true

if b then c1 else c2, σ
leak(b, σ)·true−−−−−−−−−→ c1, σ

[b]σ = false

if b then c1 else c2, σ
leak(b, σ)·false−−−−−−−−−→ c2, σ

while b do c, σ
•−→ if b then (c; while b do c) else skip, σ

Figure 5: Instrumented operational semantics for commands.

For technical reasons we assume that each command in the syntax carries a permanent
color z, either white or not. Also, we stipulate that each while statement and all its
components get a unique non-white color, and that there is a function color yielding the
color of a statement. Programs in the language are elements of Cmd .
Now, we define the semantics and instantiate the framework of Barthe et al. [21] to

the non-cancelling constant-time policy, i.e., a variant of the constant-time policy where
also the number of execution steps is observed. For that, we define a leakage model: we
instantiate observables and traces from Chapter 2 to describe the information that an
attacker observes during the execution (as already outlined in Example 2.1).
From now onward we follow [21] and denote with · the concatenation of traces.

Arithmetic and boolean expressions leak the sequence of operations required to be
evaluated; we assume that there is an observable op, associated with the arithmetic
operation being executed, but not with the logical ones (slightly simplifying [21]). Also,
we denote with • absence of leaking. Our leakage model is defined by the following
function leak(·, ·) that given an expression (either arithmetic or boolean) and a state returns
the corresponding leakage:

leak(v, σ) = leak(x, σ) = leak(true, σ) = leak(false, σ) = •
leak(not b, σ) = leak(b, σ)

leak(e1 op e2, σ) = leak(e1, σ) · leak(e2, σ) · op
leak(e1 ≤ e2, σ) = leak(e1 = e2, σ) = leak(e1, σ) · leak(e2, σ)

leak(b1 or b2, σ) = leak(b1, σ) · leak(b2, σ)

Accesses to constants and identifiers leak nothing; boolean and relational expressions leak
the concatenation of the leaks of their sub-expressions; the arithmetic expressions append
the observable of the applied operator to the leaks of their sub-expressions.
We omit the semantics of arithmetic and boolean expression [·]σ because fully stan-

dard [167]; we only assume that each syntactic arithmetic operator op has a corresponding
semantic operator op.
As anticipated in Section 3.3, the semantics of commands is given as a transition

relation t−→ between configurations where t is the leakage of that transition step. As usual
a configuration is a pair c, σ consisting of a command and a state σ ∈ Store assigning
values to program identifiers. Given a program c, the set of initial configurations is
Si = {c, σ | σ ∈ Store}, and that of final configurations is Sf = {skip, σ | σ ∈ Store}.

Figure 5 shows the instrumented semantics of the language. The semantics is assumed
to keep colors, in particular in the rule for a z-colored while, all the components of the if
in the target are also z-colored, avoiding color clashes (see the pdf for colors).
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3.4.2 Control-flow flattening formalization

For the sake of presentation, we will adopt the sugared syntax we used above and
represent a sequence of nested conditionals in the obfuscated program as the command
switch e : ls, where ls = [(v1, c1); . . .; (vn : cn)], with semantics

([e]σ, c) /∈ ls

switch e : ls, σ
leak(e, σ)−−−−−→ skip, σ

([e]σ, c) ∈ ls

switch e : ls, σ
leak(e, σ)−−−−−→ c, σ

Now, let pc be a fresh identifier, called program counter. Then, following [39], the obfuscated
version JcK of the command c is

pc := 1;

while 1 ≤ pc do

switch pc : labeled(pc, c, 1 , 0 )

where:

labeled(pc, skip, n,m) = [(n, skip; pc := m)]

labeled(pc, x := e, n,m) = [(n,x := JeKe; pc := m)]

labeled(pc, c1; c2, n,m) =

labeled(pc, c1, n, n+ size(c1)) · labeled(pc, c2, n+ size(c1),m)

labeled(pc, if b then c1 else c2, n,m) =

[(n, if JbKb then pc := n + 1 else pc := n + 1 + size(c1))] ·
labeled(pc, c1, n+ 1,m) · labeled(pc, c2, n+ 1 + size(c1),m)

labeled(pc, while b do c, n,m) =

[(n, if JbKe then pc := n + 1 else pc := n + 1 + size(c))] ·
labeled(pc, c, n+ 1, n) · [(n+ 1 + size(c), skip; pc := m)]

with size(·) defined as follows

size(c) = 1 if c ∈ {skip, · := ·}
size(c1; c2) = size(c1) + size(c2)

size(if b then c1 else c2) = 1 + size(c1) + size(c2)

size(while b do c) = 2 + size(c)

and

Jnot bKb = not JbKb
Je1 ≤ e2Kb = Je1Ke ≤ Je2Ke
Je1 = e2Kb = Je1Ke = Je2Ke

JtrueKb = true

JfalseKb = false

Jb1 or b2Kb = Jb1Kb or Jb2Ke

JvKe = v

JxKe = x

Je1 op e2Ke = Je1Ke op Je2Ke
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The obfuscated version of a command c is a loop with condition 1 ≤ pc and with
body a switch statement. The switch condition is on the values of pc and its cases
correspond to the flattened statements, obtained from the function labeled(pc, c, n,m).
It returns a list containing the cases of the switch and it is inductively defined on the
syntax of commands: the first parameter pc is the identifier to use as program counter;
the second is the command c to be flattened; the parameter n represents the value of the
guard of the case generated for the first statement of c; and the last parameterm represents
the value to be assigned to pc by the last case of the generated switch. For example, the
flattening of a sequence c1; c2 generates the cases corresponding to c1 and c2, and then
concatenates them. Note that the values of the program counter for the cases of c2 start
from the value assigned to pc by the last case generated for c1, i.e., n+ size(c1), where the
function size(·) returns the “length” of c1. For a program c, we use 1 as initial value of n
and 0 as last value to be assigned so as to exit from the while loop.

3.4.3 Correctness and security

Since the obfuscation does not change the language (apart from sugaring nested if

commands); the operational semantics is deterministic; and there are no unsafe programs
(i.e., a program gets stuck iff execution has completed), the correctness of obfuscation
directly follows from the existence of a general simulation between the source and the
target languages [21]. For that, inspired by [39], we define the relation ≈p between source
and target configurations shown in Figure 6. Intuitively, the relation ≈p matches source
and target configurations with the same behavior, depending on whether they are final
(third rule), their execution originated from a loop (Rule (Colored)) or not (Rule (White)).
Note that we differentiate white and colored cases as to avoid circular reasoning in the
derivations of ≈p. More specifically, our relation matches a configuration a in the source
with a corresponding a in the target. Actually, a.cmd is the while loop of the obfuscated
program (fourth premise in Rule (White) and third in Rule (Colored)), whereas a.σ is
equal to a.σ except for the binding of pc. Its value is mapped to the case of the switch
corresponding to the next command in a (first premise in Rule (White) and fifth in
Rule (Colored)).

To understand how our simulation works, recall Example 3.1 (Page 17). By Rule (White)
we relate the configuration reached at Line 3 at the source level with that of the obfuscated
program starting at Line 2 and with a state equal to that of the source level with the
additional binding pc 7→ 3. Similarly, we relate the configuration reached at Line 6 at the
source level and its obfuscated counterpart (again at Line 2 at the obfuscated level), using
Rule (Colored) and noting that the source configuration derives from the execution of a
loop.

Now, to prove the obfuscation correct we need to show that ≈p is a general simulation
according to Definition 3.3. Before doing that, we give the definition of the function
num-steps(a,a). Intuitively, given b such that a −→ b, this function maps the configurations
a and a into the number of computation steps needed for a to reach a configuration b in
relation ≈p with b [21]:
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(White)
color(c) = white σ′ = σ ∪ {pc 7→ n}

ls = labeled(pc, p, 1, 0) c′ = while (1 ≤ pc) do (switch pc : ls) −,pc ` c ./ ls[n],m

c, σ ≈p c
′, σ′

(Colored)
σ′ = σ ∪ {pc 7→ n} ls = labeled(pc, p, 1, 0) c′ = while (1 ≤ pc) do (switch pc : ls)

while b do c′′ ∈ p color(while b do c′′) = color(c) 6= white

−,pc ` while b do c′′ ./ ls[n0],m′ n0,pc ` c � ls[n],m

c, σ ≈p c
′, σ′

σ′ = σ ∪ {pc 7→ n}
skip, σ ≈p skip, σ

′

n0,pc ` skip ∼ ls[n],m

ls[n] = (n,x := e; pc := m)

n0,pc ` x := e ∼ ls[n],m

n0,pc ` c1 ∼ ls[n],m′ n0,pc ` c2 ∼ ls[m′],m

n0,pc ` c1; c2 ∼ ls[n],m

ls[n] = (n, if b then pc := n + 1 else pc := n + 1 + size(c1))

n0,pc ` c1 ∼ ls[n+ 1],m n0,pc ` c2 ∼ ls[n+ 1 + size(c1)],m

n0,pc ` if b then c1 else c2 ∼ ls[n],m

ls[n] = (n, skip; pc := n0 )

n0,pc ` while b do c � ls[n], n0

n0,pc ` while b do c � ls[n0], n0

n,pc ` if b then (c; while b do c) else skip � ls[n],m

−,pc ` while b do c ./ ls[n],m

where ∼∈ {�, ./}, and the first parameter (n0) is immaterial in ./.

Figure 6: Definition of ≈p relation on configurations and its auxiliary relations.

Definition 3.5. For any a,a source and target configurations:

num-steps(a,a) ,



0 if a.cmd ∈ {skip; ·, while · do ·}

num-steps((c1, a.σ),a) if a.cmd = c1; c2 ∧ c1 6= skip

9 if a.cmd ∈ {if · then · else ·}

7 o.w.

We also define the measure |·| that it used to guarantee that an infinite number of steps
at the source level is not matched by a finite number of steps at the target [21, 39]:

Definition 3.6. For any configuration a:

|a| ,


2 · |(c, a.σ)|+ 3 if a.cmd = while b do c

|(c2, a.σ)|+ 1 if a.cmd = skip; c2

0 o.w.

Note that the measure |·| was built with the specific requirements of the proof of Theo-
rem 3.2, i.e., to ensure that (∀b,a. a −→ b ∧ a ≈p a ∧ num-steps(a,a) = 0⇒ |b| < |a|).
Finally:

Theorem 3.2. For all programs p, the relation ≈p is a general simulation.
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Proof. We show that ≈p satisfies the three properties of Definition 3.3:

1. (∀a, b,a. a −→ b ∧ a ≈c a⇒ (∃b. a−−→num-steps(a,a) b ∧ b ≈p b).
The proof goes by induction on the rules of the operational semantics for the
configuration a.
Note that – by definition of ≈p – any configuration a related with another a must be
such that a.σ = a.σ ∪ {pc 7→ n} and

a.cmd = while 1 ≤ pc do

switch pc : ls

for some n and ls = labeled(pc, p, 1, 0).

Base case: a.cmd = X := e. By definition of→we know that:

a −→ b = skip, a.σ[x 7→ [e]a.σ].

We have two exhaustive cases, depending on color(a.cmd):
a) Case color(a.cmd) = white .

By Rule (White) we know that for somem, −,pc ` x := e ./ ls[n],m.
Fromdefinitions of labeled and./ it follows thatls[n] = (n,x := JeKe; pc :=

m) and a−−→num-steps(a,a) b = a.cmd , σ[x 7→ [JeKe]a.σ,pc 7→ m]. Finally, we
can show that b ≈p b, since Rule (White) applies again (recall that the
color is permanent).

b) Case color(a.cmd) 6= white .

Similarly to the case above, byRule (Colored)wehave−,pc ` while b do c′′

./ ls[n0],m′ and n0,pc ` x := e � ls[n],m, for somem′,m.
Bydefinitionof labeled and �,weknow thatls[n] = (n,x := JeKe; pc := m),
thus a−−→num-steps(a,a) b = a.cmd , σ[x 7→ [JeKe]a.σ,pc 7→ m]. The thesis then
follows by definition of ≈p.

Base case: a.cmd = skip; c2.
By definition of→we know that:

a −→ b = c2, a.σ.

We have two exhaustive cases, depending on color(a.cmd):
a) Case color(a.cmd) = white .

By Rule (White) we know that −,pc ` skip; c2 ./ ls[n],m, i.e., −,pc `
skip ./ ls[n],m′ and −,pc ` c2 ./ ls[m′],m for some m,m′. By def-
inition of num-steps(a,a), it follows that a−−→num-steps(a,a) b, with b =

while 1 ≤ pc do switch pc : ls, σ[pc 7→ m ′]. Thus, b ≈p b trivially holds.
b) Case color(a.cmd) 6= white .

Analogous to the above.
Base case: a.cmd = while b do c.

By definition of→we know that:

a −→ b = if b then (c; while b do c) else skip, σ[x 7→ [e]a.σ].

Again, we have two exhaustive cases, depending on color(a.cmd):
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a) Case color(a.cmd) = white . By Rule (White) of ≈p we know that −,pc `
while b do c ./ ls[n],m, i.e., that

n,pc ` if b then (c; while b do c) else skip � ls[n],m. (1)

Since num-steps(a,a) = 0, then b = a and we must show that b ≈p b.
Indeed, we know color(b.cmd) 6= white (since it derives from while b do c),
so it suffices to show the following facts
• b.σ = b.σ ∪ {pc 7→ n} andb.cmd = while 1 ≤ pc do (switch pc : ls)

with ls = labeled(pc, p, 1, 0), that directly follows from b = a;
• −,pc ` while b do c ./ ls[n0],m′, following from (1) and by definition

of � since n0 = n, because a.σ(pc) = n, and by choosingm′ = m;
• n0,pc ` if b then (c; while b do c) else skip � ls[n],m, following

directly from the hypotheses.
b) Case color(a.cmd) 6= white . Analogous to the above.

Base case: a.cmd = if b then c1 else c2 and [b]a.σ = true .
Mutatis mutandis.

Base case: a.cmd = if b then c1 else c2 and [b]a.σ = false .
Mutatis mutandis.

Inductive step: a.cmd = c1; c2, c1 6= skip.
The induction hypothesis (IHP) reads as follows

∀a′. c1, σ −→ c′1, σ
′ ∧ c1, σ ≈p a′ ⇒

(∃b′. a′−−→num-steps((c1,σ),a′) b′ ⇒ c′1, σ
′ ≈p b′)

and we have to prove that

∀a. c1; c2, σ −→ c′1; c2, σ
′ ∧ c1; c2, σ ≈p a⇒

(∃b. a−−→num-steps((c1; c2,σ),a) b⇒ c′1; c2, σ ≈p b).

Again, we have two exhaustive cases, depending on color(a.cmd):
a) Case color(a.cmd) 6= white .Note that it must be a = a′ since they coincide

both on commands (by definition of ≈p) and on the store. Also, by the
premises ofRule (Colored)wehave−,pc ` while b do c′′ ./ ls[n0],m′ and
n0,pc ` c1; c2 � ls[n],m. Since by definition num-steps((c1; c2, σ),a) =

num-steps((c1, σ),a′), the operational semantics is deterministic and a = a′,
we have thatb = b′. So, since color(c′1) 6= white , to prove that c′1; c2, σ ≈p b,
it remains to prove the following:
• −,pc ` while b do c′′ ./ ls[n0],m′′ holds by hypothesis withm′′ = m′;
• n0,pc ` c′1; c2 � ls[n′],m that follows by (IHP) that guarantees that
n0,pc ` c′1 � ls[n1],m1 and by the condition c1; c2, σ ≈p a that
ensures n0,pc ` c2 � ls[m1],m.

b) Case color(a.cmd) = white . Analogous to the case above.

2. (∀a, b,a. a −→ b ∧ a ≈p a ∧ num-steps(a,a) = 0⇒ |b| < |a|).
By construction of the measure function |·|.
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3. For any final a and obfuscated a there exists a final b such that a−−→num-steps(a,a) b⇒
a ≈p b. Trivial.

The correctness of the obfuscation now follows as a corollary of Theorem 3.2.

Corollary 3.1 (Correctness [21]). For all commands c and store σ

c, σ →∗ skip, σ′ iff JcK, σ →∗ skip, σ′.

The next step is showing that the control-flow flattening obfuscation preserves the
constant-time programming policy. For that we follow [21] by defining c≡ as

Definition 3.7. Let a and a′ be two configurations, then a
c≡ a′ iff a.cmd = a′.cmd

and showing that (
c≡, c≡) is a general CT-simulation w.r.t. ≈p, num-steps(·, ·) and |·|

(Definition 3.4).
To prove that c≡ adheres to the definitions above we need two technical lemmata. The

first lemma proves that c≡ is an invariant of the instrumented semantics of the language:

Lemma 3.1. Let a, a′, b, b′ be source or target configurations. If a
c≡ a′, a t−→ b and a′

t−→ b′ then

b
c≡ b′.

Proof. Follows directly by case analysis on a.cmd (which is equal to a′.cmd by Defini-
tion 3.7).

The second lemma shows that num-steps(·, ·) gives the same values for configurations
equivalent according to c≡:

Lemma 3.2. If a
c≡ a′, a

c≡ a′ then num-steps(a,a) = num-steps(a′,a′).

Proof. This lemma follows from the fact that the definition of the function num-steps(·, ·)
is defined inductively on the syntax of a, a′,a and a′.

We can now state and prove the following theorem:

Theorem 3.3. The pair (
c≡, c≡) is a general CT-simulation w.r.t. ≈p, num-steps(·, ·) and |·|.

Proof. We show that (
c≡, c≡) satisfies the four properties of Definition 3.4:

1. (
c≡, c≡) is a manysteps CT-diagram.

The definition of manysteps CT-diagram states that, if

• a
c≡s a′ and a

c≡t a′;
• a

t−→ b and a′
t−→ b′;

• a
τ
−−→num-steps(a,a) b and a′

τ ′

−−→num-steps(a′,a′) b′;
• a ≈p a, a′ ≈p a′, b ≈p b and b′ ≈p b′

then
• τ = τ ′ and num-steps(a,a) = num-steps(a′,a′);

• b
c≡ b′ and b

c≡ b′;
The equality of τ and τ ′ directly follows from the fact that a and a′ are syntactically
the same by hypothesis and are the obfuscated versions of two configurations that
generate the same observable t. From Lemma 3.2 we can derive num-steps(a,a) =

num-steps(a′,a′). Finally, Lemma 3.1 entails the last two theses.
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2. ∀c, σ, σ′. φ((c, σ), (c, σ′)) ⇒ (c, σ)
c≡ (c, σ′) ∧ (JcK, σ)

c≡ (JcK, σ′) (with σ and σ′ in
common between the source and the target programs).
Easily follows from the definition of c≡ that just requires syntactic equality between
configurations.

3. a
c≡ a′ ⇒ (a ∈ Sf ⇔ a′ ∈ Sf).

Again, follows from definition of c≡ and Sf .

4. (
c≡, c≡) is a final CT-diagram.

The definition of final CT-diagrams states that, if

• a
c≡s a′ and a

c≡t a′;
• a ∈ Sf and a′ ∈ Sf ;

• a
τ
−−→num-steps(a,a) b and a′

τ ′

−−→num-steps(a′,a′) b′;
• a ≈p a, a′ ≈p a′, b ≈p b and b′ ≈p b′

then
• τ = τ ′ and num-steps(a,a) = num-steps(a′,a′);

• b
c≡ b′ and they are both final.

Since a and a′ are final and a ≈p a and a′ ≈p a′, it must be that pc is 0 in both a

and a′. Thus, a and a′ terminate with τ = τ ′ that just include the check of the while
condition. The other theses can be derived following the same proof structure as
above.

Finally, the main result of our paper directly follows from the theorem above, because
the transformation in Section 3.4.2 satisfies Definition 2.8:

Corollary 3.2 (Constant-time preservation).
The control-flow fattening obfuscation preserves the constant-time policy.

3.5 conclusions

In this chapter we illustrated a first approach to secure compilation in the case of passive
attackers. In doing that, we applied amethodology from the literature [21] to the advanced
obfuscation technique of control-flow flattening and proved that it preserves the constant-
time policy. First, we defined what programs leak using an instrumented semantics for
our simple imperative language. Then, we have defined the relation ≈p between source
and target configurations — that roughly relates configurations with the same behavior
— and proved that it adheres to the definition of general simulation. Finally, we proved
that the obfuscation preserves constant time by showing that the pair (

c≡, c≡) is a general
CT-simulation, as required by the framework we instantiated. As a consequence, the
obfuscation based on control-flow flattening is proved to preserve the constant-time
policy.
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related work Program obfuscations are widespread code transformations [33, 75, 76,
122, 132, 247] designed to protect software in settings where the adversary has physical
access to the program and can compromise it by inspection or tampering. A great deal of
work has been done on obfuscations that are resistant against reverse engineering making
the life of attackers harder. However, we do not discuss these papers because they do
not consider formal properties of the proposed transformations. We refer the interested
reader to [116] for a recent survey.
To the best our knowledge, ours is the first work addressing the problem of security

preservation, and therefore here we only focus on those proposals that formally studied
the correctness of obfuscations. In [191, 192] a formal framework based on abstract
interpretation is proposed to study the effectiveness of obfuscating techniques. This
framework not only characterizes when a transformation is correct but also measures its
resilience, i.e., the difficulty of undoing the obfuscation. More recently, other work went in
the direction of fully verified, obfuscating compilation chains [37–39]. Among these [39] is
the most similar to ours, but it only focuses on the correctness of the transformation, and
studies it in the setting of the CompCert C compiler. Differently, we adopted a foundational
approach by considering a core imperative language and proved that the considered
transformation preserves security.

Besides [21], there has recently been an increasing interest in preserving the verification
of the constant time policy, e.g., as said above a version of the CompCert C compiler [20]
has been released that guarantees the preservation of the policy in each compilation step.



4
I NC R E M E N TA L T Y P I NG

As observed in Chapter 1, one of the goals of secure compilation is to make sure that no
new security issues arise as the result of program transformations. In this chapter, we
focus on an instance of secure compilation that prescribes the preservation of types, called
type-preserving compilation [14, 22, 45, 69, 134, 156, 212] in the case in which source and
target languages coincide. Also, although program transformations are usually considered
to be carried out by compilers, here we consider general source code modifications, be
they performed by compilers or by programmers.
The problem of developing type-preserving compilers has been widely studied in the

past [69, 134, 156, 212] and type-preservation has been used as a means to achieve strong
security guarantees in many cases [14, 22, 45]. However, to the best of our knowledge
all the techniques from the literature either require a manual proof effort (which is
not always easy or possible), or apply only to specific programming languages (see,
e.g., Chen et al. [68]). Instead, our approach requires only a limited amount of effort to
derive an incremental typing algorithm from an existing one (provided that the second
is syntax-directed). Also, once the incremental typing algorithm has been derived it can
be used in the spirit of translation validation [189] (see also Chapter 2) to check for the
preservation of security properties.

Actually, a first simple way to achieve type preservation withminimal manual effort is to
perform the type analysis of interest after each step of code transformation, so as to make
sure that the resulting code has a type which is compatible (e.g., equal) with the original
one. However, the ever-growing size of software code bases hinders this approach due to
performance concerns: incremental type analysismitigates this problem by just analyzing
the code changes (diffs) between the given program before and after a transformation. This
incrementality is particularly relevant when the diffs arise from the continuous evolution
of software, e.g., when the codebase follows a perpetual development model [63].
In the rest of this chapter we introduce incremental typing analysis as a means to

achieve type-preserving compilation efficiently and systematically. More specifically, we
focus on transformations mapping programs from a language S to itself (as is usually the
case with code optimizations used in compilers [87, 88, 198]) and on widespread type
systems that permit an early code verification, so reducing errors and also prescribing
programmers a clean programming style. Indeed, most of the modern programming
languages are equipped with mechanisms for checking or inferring types, and to verify
specific properties through them.

Rather than developing new typing algorithms that work incrementally, we propose to
take an existing typing algorithm A as input, be it a checking or an inference one. Then, A
is used incrementally, without re-doing work already done, but exploiting available results
through caching and memoization. An advantage of our proposal is that it consists of

32



incremental typing 33

an algorithmic schema, namely a wrapper that is independent of any specific language
and type system. In addition, we put forward mild conditions on the results and on the
original type system that guarantee that the results of incremental typing match those of
the original algorithm.
Roughly, our algorithmic schema works as follows. We start from the abstract syntax

tree of a program, where each node is annotated with the result R provided by the
original typing algorithm A. We build then a cache, including for each sub-term t both
the result R and some relevant contextual information needed by A to type t (typically
a typing environment binding the free variables of t). When the program changes, its
annotated abstract syntax tree changes accordingly, and typing the sub-term associated
with the changed node is done by reusing the results in the cache whenever possible and
by suitably invoking A upon need. Clearly, the more local the changes, the more reused
the information.
Technically, our proposal consists of a set of rule schemata that drive the usage of

the cache and of the original algorithm A, as sketched above. Actually, the user has to
define the shape of caches and to instantiate a well-confined part of the rule schemata.
If the instantiation meets two easy-to-check criteria, the typing results of A and of the
incremental algorithm are guaranteed to be coherent, i.e., the incrementalized algorithm
behaves as the non-incremental one. Remarkably, the size of the incrementalized version
is always the same of the original version, with a couple of additional rules that take care
of cache hits. The overhead in time and space is small, in particular it decreases with the
size of diffs.
All the above provides us with the guidelines to develop a framework that makes

incremental the usage of a given typing algorithm. As a proof-of-concept, our approach
has been implemented in OCaml and, along with some examples, is available online.1 This
implementation consists of a parametric module that inputs a type system in a specific
format, and outputs its incrementalized version.
Summing up, this chapter includes:

• A parametric, language-independent algorithmic schema that builds a wrapper
around an existing typing algorithm A, so as to allow using it incrementally
(Section 4.2);

• A formalization of the steps that instantiate the schema and yield the incrementalized
version of A: the resulting typing algorithm only types the diffs and those parts of
the code affected by them (Section 4.2);

• A characterization of a rule format of most typing algorithms in terms of two
auxiliary functions tr and checkJoin , only (Section 4.2) that, together with the syntax
of the current language, suffice for automatically generating the code implementing
its (non-incremental) type system;

• Three theorems that undermild conditions guarantee the correctness of the approach
(Section 4.2);

1 Available at https://github.com/matteobusi/incremental-mincaml.

https://github.com/matteobusi/incremental-mincaml
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• The instantiation of the schema on seven typing algorithms for languages in three
different programming paradigms: imperative, functional and process calculus. The
original type systems are taken from the literature, and cover different aspects: the
first two are simple type systems and allow us to illustrate the applicability of our
approach, the next two allow to check variants of non-interference, the fifth deals
with exception inference, and the last two enable checking of dependent types and
protocol security (Section 4.3);

• A module that inputs a type system, rather the two auxiliary functions tr and
checkJoin and the syntax of the language in hand, and that outputs its incremental-
ized version (Section 4.4); and

• Experimental results showing that the time and the space used by the above
incrementalized type checker depend on the size of diffs, and its performance
increases as these become smaller (Section 4.4). This assessment is carried on
a prototype of the incremental version of the type checker for MinCaml [219]
(Section 4.4).

4.1 the incremental schema in a nutshell

Here we overview our algorithmic schema instantiating it on the core of a functional
language, with the standard syntax, types, and typing system T with typing judgments
Γ `T e : τ , where Γ is the typing context, e is an expression and τ ∈ Type is its type. The
upper part of Figure 7 shows the typing rules for the let x= e1 in e2 expression, variables
and the conditional (ignore for the moment the colored boxes).

Suppose you have typed the following factorial function (in λfact the index is the name
of the recursive function to call):

let f =λfact (n : int).(if n ≥ 1 thenn × fact (n − 1) elsen : int) in f 7

and to have stored its abstract-syntax tree annotated with types (aAST), shown in Figure 8.
Assume now that f is optimized as follows:

let f =λfact (n : int).(if n ≥ 3 thenn × fact (n − 1) elsen : int) in f 7

Our goal is to re-type f using as much as possible the information already computed
and stored in the aAST. Our first steps are building a cache from this information, once
defined how it is represented.

In this simple case, we represent each element of the cache as a triple (e,Γ, τ). The entire
cache for f is in Table 1, where the information needed for typing the relevant expression
is given under the heading Typing context.
Actually, the cache is built through the specific function buildCacheT , tailored on the

language in hand. Below, we only show a couple of cases of its instantiation to our
functional language:

buildCacheT ((x : τx),Γ) , {(x, [x 7→ τx], τx)}

buildCacheT ((let x= e1 in e2 : τlet),Γ) , {(let x= e1 in e2,Γ|FV (let x= e1 in e2), τlet)}
∪ (buildCacheT ((x : τx),Γ))

∪ (buildCacheT ((e1 : τ1),Γ))

∪ (buildCacheT ((e2 : τ2),Γ[x 7→ τx]))
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Expression Typing context Type

let f =λfact (n : int).(if n ≥ 1 thenn × fact (n − 1) elsen : int) in f 7 ∅ int

f [f 7→ int → int ] int → int

fact [fact 7→ int → int ] int → int

λfact (n : int).(if n ≥ 1 thenn × fact (n − 1) elsen : int) ∅ int → int

if n ≥ 1 thenn × fact (n − 1) elsen [fact 7→ int → int , n 7→ int ] int

n ≥ 1 [n 7→ int ] bool

n [n 7→ int ] int

1 ∅ int

n × fact (n − 1) [fact 7→ int → int , n 7→ int ] int

fact (n − 1) [fact 7→ int → int , n 7→ int ] int

n − 1 [n 7→ int ] int

f 7 [f 7→ int → int ] int

7 ∅ int

Table 1: Tabular representation of the cache C for our example.

We are now ready for our third step: making incremental the original, non-incremental
type system. The rules in the new type system ℐT have a richer format than the original
ones:

Γ, C `ℐT e : τ . C ′

where C is the current cache and C ′ is the possibly updated one with the newly computed
types. Some of the incremental rules are in the lower part of Figure 7, and we briefly
comment on them below. First, we have a rule that checks if there is anything in the

(T -Var)
x ∈ dom(Γ) Γ(x) = τ

Γ `T x : τ

(T -Let)
Γ `T e1 : τ1 Γ[x 7→ τ1] `T e2 : τ2 τ = τ2

Γ `T let x= e1 in e2 : τ

(T -If)
Γ `T e1 : bool Γ `T e2 : τ2 Γ `T e3 : τ3 τ = τ2 = τ3

Γ `T if e1 then e2 else e3 : τ

(ℐT -Hit)
C(e) = 〈Γ′, τ〉 compatT (Γ,Γ′, e)

Γ, C `ℐT e : τ . C

(ℐT -VarMiss)
Γ `T x : τ C′ = C ∪ {(x, [x 7→ τ ], τ)}

Γ, C `ℐT x : τ . C′
miss(C, x,Γ)

(ℐT -LetMiss) miss(C, let x= e1 in e2,Γ)

Γ , C `ℐT e1 : τ1 . C1 Γ[x 7→ τ1] , C `ℐT e2 : τ2 . C2 τ = τ2
C′ = C ∪ C1 ∪ C2 ∪ {(let x= e1 in e2,Γ|FV (let x= e1 in e2), τ)}

Γ, C `ℐT let x= e1 in e2 : τ . C′

(ℐT -IfMiss) miss(C, if e1 then e2 else e3,Γ)

Γ , C `ℐT e1 : bool . C1 Γ , C `ℐT e2 : τ2 . C2 Γ , C `ℐT e3 : τ3 . C3

τ = τ2 = τ3 C′ = C ∪ C1 ∪ C2 ∪ C3 ∪ {(if e1 then e2 else e3,Γ|FV (if e1 then e2 else e3), τ)}
Γ, C `ℐT if e1 then e2 else e3 : τ2 . C

′

Figure 7: Three rules of the original type systemT (upper part) and their corresponding incremental
versions in the type system ℐT . The rest of the rules is in Appendix A.

cache for an expression e (rule (ℐT -Hit)). If we find such a triple, we simply re-use the
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let ·= · in · : int

· · : int

7 : intf : int → int

λ· ·.· : int → int

if · then · else · : int

n : int· × · : int

· · : int

· − · : int

1 : intn : int

fact : int → int

n : int

· ≥ · : bool

1 : intn : int

n : intfact : int → int

f : int → int

Figure 8: Abstract-syntax tree annotated with types for the factorial program.

cached type, provided that ewas typed in the cached typing context Γ′ compatible with
the current typing context Γ. The notion of compatibility, expressed by the predicate
compatT (Γ,Γ′, e), heavily depends on the type system in hand, and here it simply requires
that the two typing contexts coincide on the free variables of e. Of course, the cache C
needs no updates.

Next, there are the rules for when the expression in hand has to be re-typed, because the
cache has no entry for it or the information available is not compatible. In these rules, the
boxed parts ( fuchsia and light blue in the pdf) play a role in their automatic generation
from the original ones. In the rule (ℐT -VarMiss), a call to the original type system T
suffices for determining the type of x and for updating the cache. Note that Γ occurs
identically in the premises of the original and the incrementalized rules. In the other
two rules, the expression in hand has sub-terms that are typed using the new rules. Also
here the boxed premises, including the updated version of the typing context for the let

construct, are the same in T and ℐT . There is however a difference, to be made precise later,
between the fuchsia boxes and the light blue ones. The first kind of premises identify
the (portions of the) typing context needed to type the sub-terms. The second kind of
boxed premises specify the constraints that the types computed for these sub-terms have
to satisfy and how they can be joined together to get the type of the full term. In this
example, the equality between τ2 and τ3. It is worth noting that buildCacheT could be
simulated by executing the incremental algorithm with an initial empty cache. However,
we kept the two steps apart in the framework, so separating the concerns of building the
initial cache and performing the actual typing.

Finally, we are left to prove that the types computed by the incrementalized transition
system are coherent with those derived by the original one. To do that, one is required
to verify two mild conditions on the predicate compatT and on the applicability of the
premises in the light blue boxes. The soundness of the incrementalized type system
then follows by instantiating a general theorem, whose hypotheses are exactly the two
conditions above.
This is the case in our example, and thus we can re-use most of the information in the

cache C for typing the new version of f , yielding the tree in Figure 9, where we omit the
light blue premises that are trivial (cache hits are highlighted in green in the pdf).

4.2 formalizing the incremental schema

In this section we formally present our algorithmic schema that, given a typing algorithm
A, yields its incrementalized version ℐA. We also prove that ℐA is sound, in that it
computes the same types of A, possibly up to some type manipulations used by A.



4.2 formalizing the incremental schema 37

C(n) = 〈Γn, int〉
Γ, C ` n : int . C

Γ ` 3 : int

Γ, C ` 3 : int . C′

Γ, C ` n ≥ 3 : bool . C′′
C(Frec) = 〈Γ, int〉

Γ, C ` Frec . C

C(n) = 〈Γn, int〉
Γn, C ` n . C

Γ, C ` Fcond : int . C′′′

∅, C ` Fbody : int → int . Civ
C(f 7) = 〈Γf , int〉

Γf , C . f 7 : int . C

∅, C ` F : int . Civ ∪ {(F, ∅, int)}

where

F = let f =Fbody in f 7 Fbody = λfact (n : int).(Fcond : int)

Fcond = if n ≥ 3 thenFrec elsen Frec = n × fact (n − 1)

Γ = [n 7→ int , fact 7→ int → int ]

Γf = [f 7→ int → int ] Γn = [n 7→ int ]

C ′ = C ∪ {(3, ∅, int)} C ′′ = C ′ ∪ {(n ≥ 3,Γn, bool)}
C ′′′ = C ′′ ∪ {(Fcond ,Γ, int)} Civ = C ′′′ ∪ {(Fbody , ∅, int)}.

Figure 9: Incremental type checking of the modified factorial program, where C is as in Table 1.

We remark that our proposal is independent of the paradigm of the programming
language considered and of the kind of its typing algorithm, be it designed for inferring or
for checking types, as exemplified in Section 4.3.We only assume in the formal presentation
of this section that the original typing algorithm A is defined in the usual syntax-directed
manner, through inference rules given in a standardized format described below.
The following notation is rather common.

Definition 4.1. Given a language with typing algorithm A, let

• x, y, . . . ∈ Name be the set of names, e.g., variables or identifiers;

• t ∈ Term denote its basic elements, e.g., expressions or statements;

• τ, τ ′, . . . ∈ Type be the set of (standard) types, usually included in Res the set of typing

results R,R′, . . . (referred to as results hereafter); whenever Type coincides with Res we

feel free to refer to results as types.

• Γ ∈ TypeCtx be the contextual information needed for typing, which always includes

TypeEnv 3 E : Name → Type (the set of typing environments), and often coincides with

it. When the two coincide we feel free to refer to typing contexts as (typing) environments

and vice versa.

Finally, Γ `A t : R is the call to A for typing t.

Now we define the format of the inference rules of A. Remarkably, A is fully specified
only by the functions tr and checkJoin used below.

Definition 4.2. The rules of A have the following format

∀i ∈ It . tr tit (Γ, {Rj}j<i) `A ti : Ri checkJoint(Γ, {Ri}i∈It , outR)

Γ `A t : R
where
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• ti (i ∈ It) is a proper sub-term of t whose result Ri is needed to compute R; in addition, we

let i < j if typing tj requires Ri;

• The function tr tit computes the typing context needed by ti from Γ and the set of results

{Rj | j < i ∧ j ∈ It};

• The (conjunction of) predicate(s) checkJoint first check(s) that the resultsRi of the sub-terms

ti are compatible with each other, combines them all, and outputs the overall result R.

A special case occurs when the current term t has no proper sub-terms, i.e., when It = ∅.
In this case, the function tr is empty as well and only the part concerning checkJoin is
left.

To enhance readability, above and in the rest of the chapter wewill continue highlighting
the occurrences of tr ( fuchsia in the pdf) and checkJoin ( light blue in the pdf), as done
in Section 4.1.
The following examples show how some common typing rules in the usual format

are rendered in the format above. We remark that, when the type system is supplied
in the common syntax-directed, inductive form, both the function tr and the predicate
checkJoin (thus the ordering < on sub-terms) could be easily and mechanically extracted
from the usual typing rules.
Consider again the example of Section 4.1 and the typing rule (T -Var) for variables,

where Ix = ∅:
x ∈ dom (Γ) τ = Γ(x)

Γ `A x : τ

It is rendered in our format as follows
checkJoinx(Γ, ∅, out τ)

Γ `A x : τ

where checkJoinx(Γ, ∅, out τ) , x ∈ dom (Γ) ∧ τ = Γ(x).
If the rule takes instead the form of the following axiom

Γ′[x 7→ τ ] `A x : τ

one has Ix = ∅ and the same checkJoinx, where Γ′[x 7→ τ ] replaces Γ.
Consider also the rule ((T -Let)) for the expression let x= e1 in e2

Γ `A e1 : τ1 Γ[x 7→ τ1] `A e2 : τ2 τ = τ2

Γ `A let x= e1 in e2 : τ

In our format it becomes as follows (we abuse the set notation, e.g., omitting ∅ or { and }
when clear from the context).

tre1let x= e1 in e2
(Γ, ∅) `A e1 : τ1

tre2let x= e1 in e2
(Γ, τ1) `A e2 : τ2 checkJoin let x= e1 in e2(Γ, τ1, τ2, out τ)

Γ `A let x= e1 in e2 : τ

This example shows that the definition of function tr is immediate; that we need the result
of e1 for typing e2 (so τ1 < τ2); and that the second parameter of tre1let x= e1 in e2

is empty,
because we only need the typing context to type e1.

tre1let x= e1 in e2
(Γ, ∅) , Γ tre2let x= e1 in e2

(Γ, τ) , Γ[x 7→ τ ]. (2)

Also, the following definition is immediate

checkJoin let x= e1 in e2(Γ, {τ1, τ2}, out τ) , (τ = τ2).
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4.2.1 Incorporating incrementality

Our algorithmic schema operates in four steps. The first defines the shape of the cache that
will be used to retrieve the reusable pieces of type information. The second step specifies
how a cache is built for a given term. The third step is the most important and generates
the rules for incrementally using the original type inference/checking algorithm. Finally,
the incremental algorithm is proved to behave as the original one, provided that the
contents of the cache and the original typing algorithm each satisfy a mild condition.

From now onward, we assume the language and its original algorithm A as fixed. Also,
we assume A to be syntax-directed, i.e., A is assumed to be defined inductively on the
syntax of the terms of the language.

defining the shape of caches The shape of the cache is crucial for re-using incre-
mentally portions of the available typing results. A cache associates the input data t to
the typing environment Γ and result R, rendered by a set of triples (t,Γ, R), as done
in Section 4.1. More formally:

Definition 4.3. Let the set of caches be ℘(Term × TypeCtx × Res) 3 C, let C(t) = 〈Γ, R〉 if
the cache has an entry for t.

We remark that caches allow for multiple (compatible) triples for the same expression.
The choice of which entry to return when using the functional notation is left to the
particular cache implementation.

building caches Given a term t, we assume that the nodes of its abstract syntax tree
(called annotated Abstract Syntax Tree or aAST) are annotated with the result of A for each
of the sub-terms they represent, written t : R. Also, let Γ|FV (t) be the restriction of Γ to the
free names of t. Note that Γ|FV (t) always carries enough information to type t, because
of the assumption that the type system is syntax-directed. The construction of the cache
relies on the aAST of t, and an example is in Section 4.1. Note that in the definition below,
when a term t has no sub-term, the set It is empty.

Definition 4.4. Let {ti}i∈It and tr tit be as in Definition 4.2. Then the cache is built by the

following function:

buildCacheA ((t : R),Γ) = {(t,Γ|FV (t), R)} ∪⋃
i∈It

buildCacheA

(
(ti : Ri), tr tit (Γ, {Rj}j<i)

)
The following definition describes the set of caches that represent correct typing

information:

Definition 4.5 (Cache well-formedness). A cache C is said to be well-formed for A (written


A C) iff ∀t,Γ, R. (t,Γ, R) ∈ C ⇒ Γ `A t : R.

The following theorem ensures that each entry of a cache returned by buildCacheA is
well-formed for A:

Theorem 4.1 (Cache correctness). Let t ∈ Term , R ∈ Res and Γ ∈ TypeCtx . If Γ `A t : R,

then 
A buildCacheA ((t : R),Γ).

Proof. Immediate by induction on the structure of the term t.
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incremental typing The third step consists of instantiating the rule templates that
make typing incremental. We stress that no change to the original algorithm A is needed:
its implementation is taken off the shelf and is used as a gray-box. Indeed, what matters
are just the information registered in the original judgments after a minor syntactic
re-wording; the rules that are inspected to derive the function tr tit and the predicate
checkJoin of Definition 4.2; and a condition on the algorithm itself and one on the cache
contents (see Definitions 4.8 and 4.9 below). In other words, what we propose is a wrapper

around the original typing algorithm.
The judgments for the incrementalized typing algorithm ℐA have the form

Γ, C `ℐA t : R . C ′.

The rules of ℐA require the predicate compatA(Γ,Γ′, t) to express the condition that enable
us to re-use the cache contentsC(t) = 〈Γ′, R〉. Intuitively, the predicate holds if Γ′ includes,
in a broad sense, the information represented by Γ for t, so conveying the compatibility of
Γ and Γ′. For example, if Γ(x) = int and Γ′(x) = real , then the two typing contexts are
considered compatible with respect to the standard sub-typing relation. According to
our experience, the definition of the predicate compatA can always be easily derived by
exploiting suitable relations on results, e.g., equality or sub-typing.
The notion of cache miss also helps in the definition of the incrementalized typing

algorithm. Intuitively, a cache miss happens whenever there is no association for t in a
given cache, or if an entry (t,Γ′, R) exists but the typing context Γ′ is not compatible with
the current Γ. Formally, we express a cache miss (and, dually a cache hit) as follows:

Definition 4.6. For all C, t,Γ, a cache miss occurs whenever the following predicate holds

miss(C, t,Γ) , @Γ′, R.
(
C(t) = 〈Γ′, R〉 ∧ compatA(Γ,Γ′, t)

)
.

Otherwise, there is a cache hit.

We are now ready to introduce the three different rule templates that make the original
typing algorithm A incremental.

Definition 4.7. The rules of the typing algorithm ℐA are obtained from those ofA by instantiating

the following rule templates:

(Template-Hit)

C(t) = 〈Γ′, R〉 compatA(Γ,Γ′, t)

Γ, C `ℐA t : R . C

(Template-Miss-NoSub)

Γ `A t : R C′ = C ∪ {(t,Γ|FV (t), R)}
Γ, C `ℐA t : R . C′

miss(C, t,Γ) ∧ It = ∅

(Template-Miss-Sub)

∀i ∈ It . trtit (Γ, {Rj}j<i) , C `ℐA ti : Ri . Ci

checkJoint(Γ, {Ri}i∈It , outR) C′ = {(t,Γ|FV (t), R)} ∪
⋃
i∈It

Ci

Γ, C `ℐA t : R . C′
miss(C, t,Γ) ∧ It 6= ∅

The rule template (Template-Hit) applies when there is a cache hit and the cached result
C(t) = 〈Γ′, R〉 can be used as it is because the typing context Γ′ is compatible with Γ; of
course, the cache C needs no updates (e.g., see the rule (ℐT -Hit) in Figure 7).

The template (Template-Miss-NoSub) is for when there is a cache miss and the current
term t has no proper sub-terms, and thus It = ∅. The new cacheC ′ is obtained by installing
in C the new result R for t computed with the original type algorithm A, e.g., see the
rule (ℐT -VarMiss) in Figure 7, where the triple (x, ∅, τ) is added to the current cache.
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Finally, the last template (Template-Miss-Sub) applies when there is a cache miss, but
the typing result of the term t is inductively defined from those of its sub-terms. In this
case, the incremental algorithm ℐA is inductively invoked on the sub-terms and composes
the obtained results, either available in the cache or inductively computing them (e.g., see
the last two rules in Figure 7).2

proving type coherence We now state the two sufficient conditions for proving that
the construction above preserves the correctness of the original algorithm A and yields
its incremental version ℐA. Both conditions use a binary reflexive relation ∼ between
results, that is typically instantiated to equality or to sub-typing relation; anyway, ∼ is
fully determined by the corresponding relation used by A.
Not surprisingly, the first condition involves compatA(Γ,Γ′, t) and makes sure that it

guarantees that Γ and Γ′ share all the needed information to correctly type the term t:

Definition 4.8 (Typing context compatibility). A predicate compatA expresses compatibility
w.r.t. ∼ iff

∀Γ,Γ′, t. compatA(Γ,Γ′, t) ∧ Γ `A t : R⇒
(∀R′ such that Γ′ `A t : R′ it holds R ∼ R′)

The second condition is on the original typing algorithm A, which intuitively (and as
expected) must respect the relation ∼:

Definition 4.9 (Preservation of∼). A typing algorithm A preserves∼ iff for any term t, i ∈ It,
Ri, R

′
i such that Ri ∼ R′i it holds that

∀R,R′. checkJoint(Γ, {Ri}i∈It , outR) ∧ checkJoint(Γ, {R′i}i∈It , outR′)
⇒ R ∼ R′.

Note that the above condition is trivially satisfiedwhen∼ is type equality and checkJoint
is deterministic, which is typically the case. In all our case studies, the function checkJoin

also preserves sub-typing, when present. Additionally, this condition and the typing
context compatibility, as well, are quite simple to check.
Now we establish the correctness of the incremental algorithm ℐA, provided that

the original one is such. For that, we prove three properties: coherence, completeness and
well-formedness preservation. Roughly, coherence guarantees that the results of the original
typing algorithm and the incrementalized one (if any) agree up to ∼:

Theorem 4.2 (Coherence). Let C be well-formed for A, compatA be a predicate that expresses

compatibility w.r.t.∼, and A be a typing algorithm that preserves∼. For all t, Γ, R, R′, C ′ it holds

that

Γ `A t : R ∧ Γ, C `ℐA t : R′ . C ′ ⇒ R ∼ R′.

Proof. If C(t) = 〈Γ′, R′〉 and Γ′ is compatible with Γ, we instantiate the rule tem-
plate (Template-Hit) of Definition 4.7. By well-formedness of C we have that Γ′ `A t : R′.
Thus, by the fact that compatA expresses compatibility w.r.t. ∼, it follows R ∼ R′ as
requested.
Otherwise, a cache miss occurs and we proceed by structural induction on t:

2 Actually, our implementation uses an equivalent format that accumulates the caches obtained by typing ti
with i < j when typing tj .
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Base case: The base case occurs when t has no sub-terms, and in this case the rule tem-
plate (Template-Miss-NoSub) of Definition 4.7 is used. Since we know by hypothesis
that Γ, C `ℐA t : R′ . C ′, by the premises the rule template (Template-Miss-NoSub)
it follows that Γ `A t : R′. Thus by Definition 4.2 the result R′ of the incremental
typing algorithm is obtained from checkJoint(Γ, ∅, out R′). Similarly, the result R
of the original algorithm is produced by checkJoint(Γ, ∅, out R). The thesis follows
since A preserves ∼.

Inductive step: The induction hypothesis allows us to assume that for any sub-term of
t the implication holds, i.e., (assuming each i-indexed variable to be universally
quantified)

∀i ∈ It. Γi `A ti : Ri ∧ Γi, C `ℐA ti : R′i . C
′
i ⇒ Ri ∼ R′i.

For all i, let Γi = trtit (Γ, {Rj}j<i). Also, from the hypotheses and the rule template
of Definition 4.2 we know that Γi `A ti : Ri (for some Ri) and the result R of the
original typing algorithm is given by checkJoint(Γ, {Ri}i∈It , outR). Similarly, by
hypotheses and the rule template (Template-Miss-Sub) of Definition 4.7, we have
Γi, C `ℐA ti : R′i (for someR′i) and the resultR′ of the incremental algorithm is given
by checkJoint(Γ, {R′i}i∈It , outR′). Finally, by the induction hypothesis we know that
the above Ri ∼ R′i (for all i), thus by the fact that A preserves ∼, it follows R ∼ R′ as
requested.

Dual to coherence is completeness, that ensures that if the original algorithm produces a
result R, then also the incremental one produces a result (which can be then related to R
by the coherence theorem above, assuming well-formedness of the cache):

Theorem 4.3 (Completeness). Let C be a cache. For all t, Γ, R it holds that

Γ `A t : R⇒ ∃R′, C ′. Γ, C `ℐA t : R′ . C ′.

Proof. If a cache hit happens, a compatible entry 〈Γ′, R′′〉 for t belongs to the cache. In the
case we instantiate the rule template (Template-Hit) of Definition 4.7, and it easily follows
that Γ, C `ℐA t : R′′ . C (i.e., R′ = R′′ and C ′ = C).

Otherwise, a cache miss occurs and we proceed by structural induction on t:

Base case: The base case occurs when t has no sub-terms, and the rule template (Template-
Miss-NoSub) of Definition 4.7 applies. Since by hypothesis C `ℐA t : R, the premises
the rule template (Template-Miss-NoSub) entails Γ, C `ℐA t : R′ . C ′ for R′ = R and
C ′ = C ∪ {(t,Γ|FV (t), R)}.

Inductive step: The induction hypothesis allows us to assume that for any sub-term of
t the implication holds, i.e., (assuming each i-indexed variable to be universally
quantified)

∀i ∈ It. Γi `A ti : Ri ⇒ ∃R′i, C ′i. Γ, C `ℐA ti : R′i . C
′
i.

For any i, let Γi = trtit (Γ, {Rj}j<i). From the hypotheses and by the rule template
of Definition 4.2, it follows that Γi `A ti : Ri (for some Ri). The thesis then follows
by the premises of (Template-Miss-Sub) and by the induction hypothesis: R′ is given
by checkJoint(Γ, {R′i}i∈It , outR′) and C ′ = {(t,Γ|FV (t), R

′)} ∪
⋃
i∈It C

′
i.

Finally, well-formedness preservation guarantees that the incrementalized algorithm keeps
the well-formedness of caches when updating them, so enabling the usage of the updated
caches in future re-typings:
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Theorem 4.4 (Well-formedness preservation). Let C be a well-formed cache. For all t, Γ, R,

C ′ it holds that

Γ, C `ℐA t : R . C ′ ⇒ 
A C
′.

Proof. If a cache hit happens, we instantiate the rule template (Template-Hit) of Defini-
tion 4.7, and C ′ = C is well-formed by hypothesis.
Otherwise, a cache miss occurs and we proceed by structural induction on t:

Base case: The base case occurs when t has no sub-terms, and the rule template (Template-
Miss-NoSub) of Definition 4.7 applies. By the premises of such a rule template, it
follows that C ′ = C ∪ {(t,Γ|FV (t), R)} and trivially 
A C

′.

Inductive step: The induction hypothesis allows us to assume that for any sub-term of
t the implication holds, i.e., (assuming each i-indexed variable to be universally
quantified)

∀i ∈ It. Γi, C `ℐA ti : Ri . C
′
i ⇒ 
A C

′
i.

The well-formedness of C ′ = {(t,Γ|FV (t), R)} ∪
⋃
i∈It C

′
i easily follows by the

premises of the rule template (Template-Miss-Sub) and by the induction hypothesis.

4.3 making existing typing algorithms incremental

In this section we illustrate the flexibility of our proposal and how our algorithmic schema
can be easily instantiated to make non-trivial type systems incremental. For that, we
consider seven type systems that enforce different properties on programs and we study
their incrementalization using our schema:

1. In Section 4.3.1 and Section 4.3.2 we present two use cases that serve as a warm-up
and show how to incrementalize a type checking and a type inference algorithm for
a simple functional language;

2. As said in the previous chapter, preserving (variants of) non-interference is an
important issue, thus Section 4.3.3 applies our framework to the classical security-
typed imperative language by [229];

3. Section 4.3.4 extends the previous use case and considers active attackers in the
style of Section 2.2.2 by applying our schema to the type system for enforcing robust
declassification of Myers et al. [159];

4. Since failing to make sure that the raised exceptions are the same before and after
a program transformation may lead to unexpected vulnerabilities, in Section 4.3.5
we illustrate how to incrementally use the type inference algorithm for exceptions
by Leroy and Pessaux [140].

5. Dependent types allow to express many interesting properties of programs using
types, thus our sixth use case in Section 4.3.6 deals with incremental type checking
of the dependently-typed λ-calculus [186];

6. Finally, Section 4.3.7 incrementalizes the type system to check security of protocols
in the SPI calculus [3].

Here, we omit all the proofs of theorems and lemmata, which are instead available
in Appendix A.
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4.3.1 Type checking a functional language

Here, we instantiate our schema in order to incrementally type check FUN, a simply typed
functional programming language with booleans, integers and recursive lambdas. The
syntax, the types and the semantics of FUN are standard, see e.g., [166]. We only recall
some relevant aspects of its syntax below.

Val 3 v ::= c | λf (x : τx).(e : τe) op ∈ {+, ∗,=,≤}
Expr 3 e ::= v | x | e1 op e2 | e1 e2 | if e1 then e2 else e3 |

let x= e2 in e3

Type 3 τ, τx, τe ::= int | bool | τ1 → τ2 TypeEnv 3 Γ ::= ∅ | Γ[x 7→ τ ]

where the f in the functional abstraction denotes the name of the (possibly) recursive
function we are defining, with type τx → τe. Also, we denote with τop the type of the result
of the operation op, with τ lop that of its left operand, and with τ rop that of the right one.
Assume as given the type checking algorithm ℱ, defined by judgments

Γ `ℱ e : τ

We build the type checking algorithm ℐℱ that uses ℱ incrementally by following the four
steps detailed in Section 4.2.

defining the shape of caches As said in Section 4.2 each entry in the cache is a
triple made of a term, a typing environment and a result. Instantiating this to FUN, we get
that

C ∈ Cache = ℘(Expr × TypeEnv × Type).

building caches We build the cache by visiting the aAST and “reconstructing” the
typing environment. The function buildCacheℱ is in Figure 10, where for brevity we have
directly used the results of tr rather than writing the needed invocations. Indeed, tr is the
identity almost everywhere, except for let-in (see Equation (2)) and for abstraction where
it is treλf (x:τx).(e:τe)

(Γ, {τx, τf}) = Γ[x 7→ τx, f 7→ τf ] .

incremental typing By instantiating the patterns of Section 4.2 we obtain judgments
of the form

Γ, C `ℐℱ e : τ . C ′

meaning that the expression e has type τ in the environment Γ and using the cache C.
The cache C ′ records new discoveries during the incremental typing.

The incremental rules are in Figure 11. Most of them are trivial as they mimic the
behavior of the original algorithm ℱ. Again, we simply write the results of tr and
of checkJoin rather than their invocations. Consider for example the rule (ℐℱ-Let-
Miss): first, the subexpressions e2 and e3 are incrementally type checked in the envi-
ronments prescribed by the relevant calls to the function tr in Equation (2), i.e., Γ and
Γ[x 7→ τ2] , respectively. Then, the type of the whole expression let-in is computed by
checkJoin let x= e2 in e3(Γ, {τ2, τ3}, out τ) . The predicate compatℱ is rather simple and uses
type equality = as the relation for deciding when two typing contexts are compatible:

Definition 4.10. Let e be an expression and let Γ,Γ′ be two typing contexts. Then we define

compatℱ(Γ,Γ′, e) , dom (Γ) ⊇ FV (e) ∧ dom
(
Γ′
)
⊇ FV (e) ∧

∀y ∈ FV (e).Γ(y) = Γ′(y).
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buildCacheℱ ((c : τc),Γ) , {(c, ∅, τc)}

buildCacheℱ ((x : τx),Γ) , {(x, [x 7→ τx], τx)}

buildCacheℱ ((λf (x : τx).(e : τe) : τf ),Γ) , {(λf x : τx.e : τe,Γ|FV (λf (x:τx).(e:τe)), τf )}

∪ (buildCacheℱ
(
(f : τf ), Γ

)
) ∪ (buildCacheℱ

(
(x : τx), Γ

)
)

∪ (buildCacheℱ
(
(e : τe), Γ[x 7→ τx, f 7→ τf ]

)
)

buildCacheℱ ((let x= e2 in e3 : τlet),Γ) , {(let x= e2 in e3,Γ|FV (let x= e2 in e3), τlet)}

∪ (buildCacheℱ
(
(x : τx), Γ

)
) ∪ (buildCacheℱ

(
(e2 : τ2), Γ

)
)

∪ (buildCacheℱ
(
(e3 : τ3), Γ[x 7→ τx]

)
)

buildCacheℱ ((e1 op e2 : τop),Γ) , {(e1 op e2,Γ|FV (e1ope2), τop)}

∪ (buildCacheℱ
(
(e1 : τ1), Γ

)
) ∪ (buildCacheℱ

(
(e2 : τ2), Γ

)
)

buildCacheℱ ((e1 e2 : τapp),Γ) , {(e1 e2,Γ|FV (e1 e2), τapp)}

∪ (buildCacheℱ
(
(e1 : τ1), Γ

)
) ∪ (buildCacheℱ

(
(e2 : τ2), Γ

)
)

Figure 10: Definition of buildCacheℱ for the FUN language.

proving type coherence The following lemma follows easily from the above defini-
tions:

Theorem 4.3.1. The predicate compatℱ expresses compatibility w.r.t. =, and ℱ preserves =.

The lemma we just proved together with Theorems 4.2 to 4.4 guarantee the correctness
of the incrementalized algorithm:

Corollary 4.1. Let C be a well-formed cache, the following properties hold for ℐℱ:

• Coherence: For all e, Γ, τ , τ ′, and C ′

Γ `ℱ e : τ ∧ Γ, C `ℐℱ e : τ ′ . C ′ ⇒ τ = τ ′;

• Completeness: For all e, Γ, and τ

Γ `ℱ e : τ ⇒ ∃τ ′, C ′. Γ, C `ℐℱ e : τ ′ . C ′;

• Well-formedness preservation: For all e, Γ, τ , and C ′

Γ, C `ℐℱ e : τ . C ′ ⇒ 
ℱ C
′.



4.3 making existing typing algorithms incremental 46

(ℐℱ-Hit)
C(e) = 〈Γ′, τ〉 compatℱ(Γ,Γ′, e)

Γ, C `ℐℱ e : τ . C

(ℐℱ-Const-Miss)
Γ `ℱ c : τ C′ = C ∪ {(c, ∅, τ)}

Γ, C `ℐℱ c : τ . C′
miss(C, c,Γ)

(ℐℱ-Var-Miss)
Γ `ℱ x : τ C′ = C ∪ {(x,Γ| x, τ)}

Γ, C `ℐℱ x : τ . C′
miss(C, x,Γ)

(ℐℱ-Abs-Miss)
Γ[x 7→ τx, f 7→ τx → τe] , C `ℐℱ e : τbody . C

′′ τbody = τe ∧ τ = τx → τe
C′ = C′′ ∪ {(λf x : τx.e : τe,Γ|FV (λf (x:τx).(e:τe)), τ)}

Γ, C `ℐℱ λf (x : τx).(e : τe) : τ . C′
miss(C, λf (x : τx).(e : τe),Γ)

(ℐℱ-Op-Miss)
Γ , C `ℐℱ e1 : τ1 . C

′′ Γ , C `ℐℱ e2 : τ2 . C
′′′

τ1 = τ lop ∧ τ2 = τrop ∧ τ = τop C′ = C′′ ∪ C′′′ ∪ {(e1 op e2,Γ|FV (e1ope2), τ)}

Γ, C `ℐℱ e1 op e2 : τ . C′
miss(C, e1 op e2,Γ)

(ℐℱ-App-Miss)
Γ , C `ℐℱ e1 : τx → τe . C

′′

Γ , C `ℐℱ e2 : τ2 . C
′′′ τx = τ2 ∧ τ = τe C′ = C′′ ∪ C′′′ ∪ {(e1 e2,Γ|FV (e1 e2), τ)}

Γ, C `ℐℱ e1 e2 : τ . C′
miss(C, e1 e2,Γ)

(ℐℱ-If-Miss) miss(C, if e1 then e2 else e3,Γ)

Γ , C `ℐℱ e1 : τ1 . C
′′ Γ , C `ℐℱ e2 : τ2 . C

′′′ Γ , C `ℐℱ e3 : τ3 . C
iv

τ2 = τ3 ∧ τ1 = bool ∧ τ = τ2 C′ = C′′ ∪ C′′′ ∪ Civ ∪ {(if e1 then e2 else e3,Γ|FV (if e1 then e2 else e3), τ)}
Γ, C `ℐℱ if e1 then e2 else e3 : τ . C′

(ℐℱ-Let-Miss)
Γ , C `ℐℱ e2 : τ2 . C

′′ Γ[x 7→ τ2] , C `ℐℱ e3 : τ3 . C
′′′

τ = τ3 C′ = C′′ ∪ C′′′ ∪ {(let x= e2 in e3,Γ|FV (let x= e2 in e3), τ)}
Γ, C `ℐℱ let x= e2 in e3 : τ . C′

miss(C, let x= e2 in e3,Γ)

Figure 11: Rules defining incremental algorithm ℐℱ to type check FUN, where compatℱ is as
in Definition 4.10.

4.3.2 Type inference on a functional language

In this sub-section we instantiate our schema in order to use incrementally the type
inference algorithm of the language FUN of Section 4.3.1. Differently from the previous
use case, here we deal with type inference and thus expressions need not be annotated
with types. The syntax changes accordingly:

Val 3 v ::= c | λf x.e op ∈ {+, ∗,=,≤}
Expr 3 e ::= v | x | e1 op e2 | e1 e2 | if e1 then e2 else e3 | let x= e2 in e3

Type 3 τ ::= int | bool | τ1 → τ2 | α TypeEnv 3 Γ ::= ∅ | Γ[x 7→ τ ]

As above, the semantics of FUN is standard and we denote with τop, τ lop and τ rop the type
of the result and of the operands of op. Types are now augmented with type variables
α, β, . . . ∈ TVar . We only recall some relevant aspects below. The judgments of the type
inference algorithmW are

Γ `W e : (τ, θ)

where θ : (TVar → Type) ∈ Subst is a substitution mapping type variables into (aug-
mented) types. As usual, we write θ τ to indicate the application of the substitution θ to τ ,
and θ2 ◦ θ1 stands for the composition of substitutions.
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(W -Const)

Γ `W c : (τc, id)

(W -Var)

Γ `W x : (Γ(x), id)

(W -Abs)
Γ[x 7→ αx, f 7→ αx → αe] `W e : (τe, θe)

θ1 = U(τe, θeαe) ∧ (τ, θ) =
(
(θ1 (θe αx))→ (θ1 τe), θ1 ◦ θe

)
Γ `W λf x.e : (τ, θ)

αx, αe fresh

(W -Op)
Γ `W e1 : (τ1, θ1)

θ1 Γ `W e2 : (τ2, θ2) θ3 = U(θ2 τ1, τ
l
op) ∧ θ4 = U(θ3 τ2, τ

r
op) ∧ (τ, θ) = (τop, θ4 ◦ θ3 ◦ θ2 ◦ θ1)

Γ `W e1 op e2 : (τ, θ)

(W -App)
Γ `W e1 : (τ1, θ1) θ1 Γ `W e2 : (τ2, θ2) θ3 = U(θ2 τ1, τ2 → α) ∧ (τ, θ) = (θ3 α, θ3 ◦ θ2 ◦ θ1)

Γ `W e1 e2 : (τ, θ)
α fresh

(W -If)
Γ `W e1 : (τ1, θ1) θ1 Γ `W e2 : (τ2, θ2) θ2(θ1 Γ) `W e3 : (τ3, θ3)

θ4 = U(θ3(θ2 τ1), bool) ∧ θ5 = U(θ4 τ3, θ4(θ3 τ2)) ∧ (τ, θ) = (θ5(θ4 τ3), θ5 ◦ θ4 ◦ θ3 ◦ θ2)

Γ `W if e1 then e2 else e3 : (τ, θ)

(W -Let)
Γ `W e2 : (τ2, θ2) (θ2 Γ)[x 7→ τ2] `W e3 : (τ3, θ3) (τ, θ) = (τ3, θ3 ◦ θ2)

Γ `W let x= e2 in e3 : (τ, θ)

Figure 12: Rules defining algorithm W to infer FUN types of Section 4.3.2.

For the sake of completeness, in Figure 12 we show the classical inference algorithm W
(see e.g., [166]), where we assume constants c to have a fixed and known type, andU to be
the standard type unification algorithm. As usual, in the resulting set of rules we have
colored and framed the parts that drive the definitions results of tr and checkJoin , so
making clear that they occur unchanged in the definition of the incremental inference
algorithm ℐW .

defining the shape of caches Entries in the cache differ slightly from those of the
previous sub-section, since now the result of the inference algorithmW also includes a
substitution. Thus, in this use case each entry is a triple (e,Γ, (τ, θ)) and a cache is

C ∈ Cache = ℘(Expr × TypeEnv × (Type × Subst))

building caches The function buildCacheW is easily defined in Figure 13, similarly as
we did above.

incremental typing In Figure 14 we display the rules defining the algorithm ℐW
with judgments of the following form

Γ, C `ℐW e : (τ, θ) . C ′

Most of the rulesmimic the behavior of algorithmW , following the templates of Section 4.2.
Consider for example the rule (ℐW -Let-Miss): first, the types of e1 and e2 are incrementally
inferred in the environments prescribed by the relevant calls to the function tr . The result
associated with the whole expression let-in is then the pair (τ2, θ2 ◦ θ1), where θ1 and θ2

are the substitutions obtained recursively from e1 and e2, respectively. Also in this case the
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buildCacheW ((c : (τc, θ)),Γ) , {(c, ∅, (τc, θ))}

buildCacheW ((x : (τx, θ)),Γ) , {(x, [x 7→ τx], (τx, θ))}

buildCacheW ((λf x.e : (τf , θf )),Γ) , {(λf x.e,Γ|FV (λf x.e), (τf , θf ))}

∪ (buildCacheW
(
(f : (τf , θf )), Γ

)
) ∪ (buildCacheW

(
(x : (τx, θx)), Γ

)
)

∪ (buildCacheW
(
(e : (τe, θe)), Γ[x 7→ τx, f 7→ τf ]

)
)

buildCacheW ((let x= e2 in e3 : (τlet, θlet)),Γ) ,

{(let x= e2 in e3,Γ|FV (let x= e2 in e3), (τlet, θlet))}

∪ (buildCacheW
(
(x : (τx, θx)), Γ

)
) ∪ (buildCacheW

(
(e2 : (τ2, θ2)), Γ

)
)

∪ (buildCacheW
(
(e3 : (τ3, θ3)), Γ[x 7→ τx]

)
)

buildCacheW ((e1 op e2 : (τop, θop)),Γ) , {(e1 op e2,Γ|FV (e1ope2), (τop, θop))}

∪ (buildCacheW
(
(e1 : (τ1, θ1), Γ

)
) ∪ (buildCacheW

(
(e2 : (τ2, θ2), Γ

)
)

buildCacheW ((e1 e2 : (τapp, θapp)),Γ) , {(e1 e2,Γ|FV (e1 e2), (τapp, θapp))}

∪ (buildCacheW
(
(e1 : (τ1, θ1)), Γ

)
) ∪ (buildCacheW

(
(e2 : (τ2, θ2)), Γ

)
)

Figure 13: Definition of buildCacheW for the incremental type inference of FUN.

predicate compatW uses type equality = as the relation for deciding when two contexts
are compatible:

Definition 4.11. Let e be an expression and let Γ,Γ′ be two typing environments. Then we define

compatW (Γ,Γ′, e) , dom (Γ) ⊇ FV (e) ∧ dom
(
Γ′
)
⊇ FV (e) ∧

∀y ∈ FV (e) .Γ(y) = Γ′(y)

For the sake of presentation, we keep our compatW quite restrictive, even though it
fails to detect some cases of compatibility between typing environments (e.g., when W
chooses different fresh variables for the same term). One alternative would be to substitute
equality with unificability both in the definition above and in Theorem 4.5 below.

proving type coherence The following lemma together with Theorems 4.2 to 4.4
ensure the correctness of ℐW (Corollary 4.2):

Theorem 4.5. The predicate compatW expresses compatibility w.r.t. =, and W preserves =.

Corollary 4.2. Let C be a well-formed cache, the following properties hold for ℐW :

• Coherence: For all e, Γ, (τ, θ), (τ ′, θ′), and C ′

Γ `W e : (τ, θ) ∧ Γ, C `ℐW e : (τ ′, θ′) . C ′ ⇒ (τ, θ) = (τ ′, θ′);

• Completeness: For all e, Γ, and (τ, θ)

Γ `W e : (τ, θ)⇒ ∃(τ ′, θ′), C ′. Γ, C `ℐW e : (τ ′, θ′) . C ′;

• Well-formedness preservation: For all e, Γ, (τ, θ), and C ′

Γ, C `ℐW e : (τ, θ) . C ′ ⇒ 
W C ′.
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(ℐW -Hit)
C(e) = 〈Γ′, (τ, θ)〉 compatW (Γ,Γ′, e)

Γ, C `ℐW e : (τ, θ) . C

(ℐW -Const-Miss) miss(C, c,Γ)
Γ `W c : (τ, θ) C′ = C ∪ {(c, ∅, (τ, θ))}

Γ, C `ℐW c : (τ, θ) . C′

(ℐW -Var-Miss)
Γ `W x : (τ, θ) C′ = C ∪ {(x,Γ| x, (τ, θ))}

Γ, C `ℐW x : (τ, θ) . C′
miss(C, x,Γ)

(ℐW -Abs-Miss)
Γ[x 7→ αx, f 7→ αx → αe] , C `ℐW e : (τe, θe) . C

′′

θ1 = U(τe, θeαe) ∧ (τ, θ) =
(
(θ1 (θe αx))→ (θ1 τe), θ1 ◦ θe

)
C′ = C′′ ∪ {(λf x : τx.e,Γ|FV (λf x:τx.e), (τ, θ))}

Γ, C `ℐW λf x.e : (τ, θ) . C′
miss(C, λf x.e,Γ) ∧ αx, αe fresh

(ℐW -Op-Miss) miss(C, e1 op e2,Γ)

Γ , C `ℐW e1 : (τ1, θ1) . C′′ θ1 Γ , C `ℐW e2 : (τ2, θ2) . C′′′

θ3 = U(θ2 τ1, τ
l
op) ∧ θ4 = U(θ3 τ2, τ

r
op) ∧ (τ, θ) = (τop, θ4 ◦ θ3 ◦ θ2 ◦ θ1)

C′ = C′′ ∪ C′′′ ∪ {(e1 op e2,Γ|FV (e1ope2), (τ, θ))}
Γ, C `ℐW e1 op e2 : (τ, θ) . C′

(ℐW -App-Miss)
Γ , C `ℐW e1 : (τ1, θ1)→ τe . C

′′ θ1 Γ , C `ℐW e2 : (τ2, θ2) . C′′′

θ3 = U(θ2 τ1, τ2 → α) ∧ (τ, θ) = (θ3 α, θ3 ◦ θ2 ◦ θ1)

C′ = C′′ ∪ C′′′ ∪ {(e1 e2,Γ|FV (e1 e2), (τ, θ))}
Γ, C `ℐW e1 e2 : (τ, θ) . C′

miss(C, e1 e2,Γ) ∧ α fresh

(ℐW -If-Miss) miss(C, if e1 then e2 else e3,Γ)

Γ , C `ℐW e1 : (τ1, θ1) . C′′ θ1 Γ , C `ℐW e2 : (τ2, θ2) . C′′′ θ2(θ1 Γ) , C `ℐW e3 : (τ3, θ3) . Civ

θ4 = U(θ3(θ2 τ1), bool) ∧ θ5 = U(θ4 τ3, θ4(θ3 τ1)) ∧ (τ, θ) = (θ5(θ4 τ3), θ5 ◦ θ4 ◦ θ3 ◦ θ2)

C′ = C′′ ∪ C′′′ ∪ Civ ∪ {(if e1 then e2 else e3,Γ|FV (if e1 then e2 else e3), (τ, θ))}
Γ, C `ℐW if e1 then e2 else e3 : (τ, θ) . C′

(ℐW -Let-Miss) miss(C, let x= e1 in e3,Γ)

Γ , C `ℐW e2 : (τ2, θ2) . C′′ (θ1 Γ)[x 7→ τ2] , C `ℐW e3 : (τ3, θ3) . C′′′

(τ, θ) = (τ3, θ3 ◦ θ1) C′ = C′′ ∪ C′′′ ∪ {(let x= e2 in e3,Γ|FV (let x= e2 in e3), (τ, θ))}
Γ, C `ℐW let x= e2 in e3 : (τ, θ) . C′

Figure 14: Rules defining incremental algorithm ℐW to infer FUN types, where compatW is as
in Definition 4.11.

4.3.3 Type checking non-interference

Here we show how to make incremental the typing algorithm S of Volpano-Smith-
Irvine [217, 229] for checking non-interference policies, obtaining the algorithm ℐS. We
assume that the variables of programs are classified either as high,H , or low L. Intuitively,
a program enjoys the non-interference property when the values of low variables do not
depend on those of high ones.
As usual, assume a simple imperative language WHILE, whose syntax is below (Var

denotes the set of program variables).

a ::= n | x | a1 opa a2 n ∈ N opa ∈ {+, ∗,−, . . .} x ∈ Var

b ::= true | false | b1 or b2 | not b | a1 ≤ a2

Stmt 3 c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c
Term 3 p ::= a | b | c DType 3 τ ::= H | L

PType 3 ς ::= τ | τ var | τ cmd TypeEnv 3 Γ ::= ∅ | Γ[p 7→ ς]
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The type checking algorithm has judgments of the form

Γ `S p : ς

where ς ∈ PType, and its rules are in Figure 15, where as usual we have colored and
framed the results of tr and checkJoin . In the following we assume that the initial typing

(S-Const)

Γ `S c : L

(S-Var)
Γ(x) = τ var ∧ ς = τ

Γ `S x : ς

(S-Not)
Γ `S b : τb τ = τb

Γ `S not b : τ

(S-Skip)
ς = H cmd

Γ `S skip : ς

(S-Op)
Γ `S p0 : τ0 Γ `S p1 : τ1 op ∈ {+, ∗,−, or,≤, . . .} ∧ τ0 = τ1 ∧ ς = τ0

Γ `S a0 op a1 : ς

(S-Assign)
Γ `S a : τa Γ(x) = τ var ∧ τ = τa ∧ ς = τ cmd

Γ `S x := a : ς

(S-If)
Γ `S b : τb Γ `S c1 : τ1 cmd Γ `S c2 : τ2 cmd τb = τ1 = τ2 ∧ ς = τb cmd

Γ `S if b then c1 else c2 : ς

(S-While)
Γ `S b : τb Γ `S c1 : τ1 cmd τb = τ1 ∧ ς = τb cmd

Γ `S while b do c1 : ς

(S-Seq)
Γ `S c1 : τ1 cmd Γ `S c2 : τ2 cmd τ1 = τ2 ∧ ς = τ1 cmd

Γ `S c1; c2 : ς

(SS-Sub)
Γ `S p : ς1 ς1 ⊆ ς2

Γ `S p : ς2

(SS-Base)

L ⊆ H

(SS-Cmd)
τ ′ ⊆ τ

τ cmd ⊆ τ ′ cmd

(SS-Refl)

ς ⊆ ς

(SS-Tr)
ς1 ⊆ ς2 ς2 ⊆ ς3

ς1 ⊆ ς3

Figure 15: The rules of the type checking algorithm S (with subtyping) for WHILE of Section 4.3.4.

environment Γ contains the security level of each variable occurring in the program in
hand.

defining the shape of caches Here, terms are elements of the set Phrase, typing
environments are in TypeEnv , and results belong to PType . Thus, the shape of the caches
is:

C ∈ Cache = ℘(Phrase × TypeEnv × PType).

building caches We build the cache by visiting the aAST and “reconstructing” the
typing environment. The function buildCacheS is in Figure 16, where for brevity we have
directly used the results of tr rather than writing the needed invocations.

incremental typing In Figure 17 we display the rules defining the algorithm ℐSwith
judgments of the following form

Γ, C `ℐS p : ς . C ′

Most of the rules are trivial instantiations of rules in Section 4.2 that mimic those of the
original type checking algorithm. Of course, ℐS inherits unchanged the subtyping relation
of S and applies it when needed. The predicate compatS uses again type equality =:
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buildCacheS ((c : L),Γ) , {(c, ∅, L)} c ∈ N ∪ {true, false}

buildCacheS ((x : τ),Γ) , {(x, [x 7→ τ var ], τ)}

buildCacheS ((a1 op a2 : τ),Γ) , {(a1 op a2,Γ|FV (a1opa2), τ)}

∪ (buildCacheS
(
(a1 : τ1), Γ

)
) ∪ (buildCacheS

(
(a2 : τ2), Γ

)
)

buildCacheS ((a1 ≤ a2 : τ),Γ) , {(a1 ≤ a2,Γ|FV (a1≤a2), τ)}

∪ (buildCacheS
(
(a1 : τ1), Γ

)
) ∪ (buildCacheS

(
(a2 : τ2), Γ

)
)

buildCacheS ((b1 or b2 : τ),Γ) , {(b1 or b2,Γ|FV (b1orb2), τ)}

∪ (buildCacheS
(
(b1 : τ1), Γ

)
) ∪ (buildCacheS

(
(b2 : τ2), Γ

)
)

buildCacheS ((not b : τ),Γ) , {(not b,Γ|FV (notb), τ)} ∪ (buildCacheS
(
(b : τ), Γ

)
)

buildCacheS ((skip : H cmd),Γ) , {(skip, ∅, H cmd)}

buildCacheS ((x := a : τ cmd),Γ) , {(x := a,Γ|FV (x:=a), τ cmd)}

∪ (buildCacheS
(
(x : τx), Γ

)
) ∪ (buildCacheS

(
(a : τa), Γ

)
)

buildCacheS ((if b then c1 else c2 : τ cmd),Γ) ,

{(if b then c1 else c2,Γ|FV (if b then c1 else c2), τ cmd)}

∪ (buildCacheS
(
(b : τb), Γ

)
) ∪ (buildCacheS

(
(c1 : τ1 cmd), Γ

)
)

∪ (buildCacheS
(
(c2 : τ2 cmd), Γ

)
)

buildCacheS ((while b do c : τ cmd),Γ) , {(while b do c,Γ|FV (while b do c), τ cmd)}

∪ (buildCacheS
(
(b : τb), Γ

)
) ∪ (buildCacheS

(
(c : τc cmd), Γ

)
)

buildCacheS ((c1; c2 : τ cmd),Γ) , {(c1; c2,Γ|FV (c1; c2), τ cmd)}

∪ (buildCacheS
(
(c1 : τ1 cmd), Γ

)
) ∪ (buildCacheS

(
(c2 : τ2 cmd), Γ

)
)

Figure 16: Definition of buildCacheS for the incremental type checking of WHILE.

Definition 4.12. Let p ∈ Term and Γ,Γ′ be two typing contexts. Then we define

compatS(Γ,Γ′, p) , dom (Γ) ⊇ FV (p) ∧ dom
(
Γ′
)
⊇ FV (p) ∧

∀y ∈ FV (p) .Γ(y) = Γ′(y).

proving type coherence As for the previous two use cases, the following lemma
together with Theorems 4.2 to 4.4 ensure the correctness of ℐS (Corollary 4.3):

Theorem 4.3.2. The predicate compatS expresses compatibility w.r.t. =, and S preserves =.

Corollary 4.3. Let C be a well-formed cache, the following properties hold for ℐS:

• Coherence: For all p, Γ, ς , ς ′, and C ′

Γ `S p : ς ∧ Γ, C `ℐS p : ς ′ . C ′ ⇒ ς = ς ′;

• Completeness: For all p, Γ, and ς it holds that

Γ `S p : ς ⇒ ∃ς ′, C ′. Γ, C `ℐS p : ς ′ . C ′;

• Well-formedness preservation: For all p, Γ, ς , and C ′ it holds that

Γ, C `ℐS p : ς . C ′ ⇒ 
S C
′.
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(ℐS-Hit)
C(p) = 〈Γ′, ς〉 compatS(Γ,Γ′, p)

Γ, C `ℐS p : ς . C

(ℐS-Const-Miss)
∅ `S c : ς C′ = C ∪ {(c, ∅, ς)}

Γ, C `ℐS c : ς . C′
miss(C, c,Γ)

(ℐS-Var-Miss)
Γ `S x : ς C′ = C ∪ {(x,Γ| x, ς)}

Γ, C `ℐS x : ς . C′
miss(C, x,Γ)

(ℐS-Op-Miss)
Γ , C `ℐS a1 : τ1 . C

′′ Γ , C `ℐS a2 : τ2 . C
′′′

τ1 = τ2 ∧ ς = τ1 C′ = C′′ ∪ C′′′ ∪ {(a1 op a2,Γ|FV (a1opa2), ς)}
Γ, C `ℐS a1 op a2 : ς . C′

miss(C, a1 op a2,Γ)

(ℐS-BOp-Miss)
Γ , C `ℐS b1 : τ1 . C

′′ Γ , C `ℐS b2 : τ2 . C
′′′

τ1 = τ2 ∧ ς = τ1 C′ = C′′ ∪ C′′′ ∪ {(b1 or b2,Γ|FV (b1orb2), ς)}
Γ, C `ℐS b1 or b2 : ς . C′

miss(C, b1 or b2,Γ)

(ℐS-Not-Miss)
Γ , C `ℐS b : τ . C′′ C′ = C′′ ∪ {( not b,Γ|FV ( notb), τ)}

Γ , C `ℐS not b : τ . C′
miss(C, not b,Γ)

(ℐS-Leq-Miss)
Γ , C `ℐS a1 : τ1 . C

′′ Γ , C `ℐS a2 : τ2 . C
′′′

τ1 = τ2 ∧ ς = τ1 C′ = C′′ ∪ C′′′ ∪ {(a1 ≤ a2,Γ|FV (a1≤a2), ς)}
Γ, C `ℐS a1 ≤ a2 : ς . C′

miss(C, a1 ≤ a2,Γ)

(ℐS-Skip-Miss) miss(C, skip,Γ)
Γ `S skip : ς C′ = C ∪ {(skip, ∅, ς)}

Γ, C `ℐS skip : ς . C′

(ℐS-Assign-Miss)
Γ , C `ℐS x : τx var . C′′ Γ , C `ℐS a : τa . C

′′′

τa = τx ∧ ς = τa cmd C′ = C′′ ∪ C′′′ ∪ {(x := a,Γ|FV (x:=a), ς)}
Γ, C `ℐS x := a : ς . C′

miss(C, x := a,Γ)

(ℐS-If-Miss) miss(C, if b then c1 else c2,Γ)

Γ , C `ℐS b : τb . C
′′ Γ , C `ℐS c1 : τ1 cmd . C′′′ Γ , C `ℐS c2 : τ2 cmd . Civ

τ1 = τ2 = τb ∧ ς = τ1 cmd C′ = C′′ ∪ C′′′ ∪ Civ ∪ {(if b then c1 else c2,Γ|FV (if b then c1 else c2), ς)}
Γ, C `ℐS if b then c1 else c2 : ς . C′

(ℐS-While-Miss)
Γ , C `ℐS b : τb . C

′′ Γ , C `ℐS c : τ1 cmd . C′′′

τ1 = τb ∧ ς = τ1 cmd C′ = C′′ ∪ C′′′ ∪ {(while b do c,Γ|FV (while b do c), ς)}
Γ, C `ℐS while b do c : ς . C′

miss(C, while b do c,Γ)

(ℐS-Seq-Miss)
Γ , C `ℐS c1 : τ1 cmd . C′′ Γ , C `ℐS c2 : τ2 cmd . C′′′

τ1 = τ2 ∧ ς = τ1 cmd C′ = C′′ ∪ C′′′ ∪ {(c1; c2,Γ|FV (c1; c2), ς)}
Γ, C `ℐS c1; c2 : ς . C′

miss(C, c1; c2,Γ)

Figure 17: Rules defining the incremental algorithm ℐS to type check WHILE, where compatS is as
in Definition 4.12.
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4.3.4 Type checking robust declassification

We consider here the type system ℛ for non-interference with robust declassification
of Myers et al. [159], briefly surveyed below.

4.3.4.1 A survey of the type systemℛ

Assume a security lattice L, whose ordering specifies the relationship between different
security levels ` ∈ L. The ordering encodes constraints on how data at a given security
level can be used. To reason about both confidentiality and integrity,L is a productLC×LI
of confidentiality and integrity lattices. For x, y ∈ LC , x vC y indicates that data at level
x is no more confidential than data at level y. Similarly, x vI y for some x, y ∈ LI says
that data at level x is not less trustworthy than data at level y. Thus, the elements of ` ∈ L
are pairs ` = (`C , `I), and hereafter we denote with C(·) and I(·) the confidentiality and
the integrity part, respectively. The ordering v of L is built by using vI and the dual of
vC , i.e., for all `, `′ ∈ L, ` v `′ iff C(`) vC C(`′) and I(`) vI I(`′). The underlying idea for
preventing information leaks is to constrain more the usage of high-confidentiality data
than low-confidentiality data. Conversely, using low-integrity data is to be constrained
more than high-integrity data to prevent information corruption.
Consider a simple imperative language consisting of expressions and commands. Let

val ∈ Val = { false, true, 0, 1, . . . } denote a value; let v range over variable names Name ;
let op represent arithmetic and boolean operators; and let ` ∈ L range over the security
levels of a lattice L. The syntax of the language is defined by the following grammar:

e ::= val | v | e op e′ | declassify(e, `)

c ::= skip | v := e | c1; c2 | if e then c1 else c2 | while e do c

The language constructs are standard and so is its semantics, except for the expression
declassify(e, `) that declassifies the security level of the expression e to the level ` ∈ L.
The result of evaluating declassify(e, `) is the same as that of e, but it allows controlling
the security level of the computed value. Intuitively, the resulting security level is the join
of ` and of the security levels associated with the free variables of e.
A security policy is specified by using a typing environment (also called security

environment) E : Name → L that assigns each program variable with a security level.
Intuitively, the policy permits an information flow from variable x to variable y only if
E(x) v E(y). Hereafter, we assume as given the security environment.
Assume that an attacker can read and write some data manipulated by the program.

The power of an attacker to observe and modify a state of the system can be described by
an element of the security lattice `A = (CA, IA). A passive attacker may read data with a
security level of at most C(`A) = CA; whereas an active attacker can also manipulate data
with a security level of at least I(`A) = IA (recall the definition of vI above). In [159] a
low-integrity piece of code is represented by a hole • that occurs in a program c in the
point c[•]. An attacker of level `A can inject in those points a possibly malicious code
fragment a, but it cannot insert any declassify. Actually, defining⊥C as the least element
of ℒC , makes the code fragment a type check when the program counter is (⊥C , I(`A)).
A passive attacker fills all the holes with the low-integrity code of the original program;
whereas an active attacker fills the holes in a way that changes the original program
behavior. Intuitively, a program satisfies robust declassification when for all program
fragments a, a′, the attacker’s observations about the execution of c[a′] does not reveal any
secrets apart from what the attacker already knows from observations about c[a].
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The type system ℛ is defined through two typing relations, one for expressions and
one for commands. Hereafter, we denote with pc the value of the program counter, and
we assume that the special element OK does not belong to ℒ. For commands, the typing
relation is:

(E, pc) `ℛ c : OK

with the intuitive meaning that under E and the program counter pc, the command c
enjoys robust declassification.
The program counter pc is immaterial for expressions, and to make the typing rules

of commands and expression homogeneous, we introduce the distinguished element _
in ℒ to represent a don’t care program counter. With this notation, the typing relation for
expressions is

(E, _) `ℛ e : `

meaning that under the environment E and any program counter, the expression e has
the security level ` ∈ ℒ.
The typing rules are displayed in Figure 18, and they are quite standard. The only

exception is the rule ℛ-Declassify that only allows high-integrity data to be declassified
when the declassification occurs in a high-integrity program point. Actually, the type
system in Figure 18 differs from the original one in [159] because the sub-typing relation has
been incorporated in the rules (thus, making the type system completely syntax-directed).

(ℛ-Val)

(E, _) `ℛ val : `

(ℛ-Var)
E(v) = `

(E, _) `ℛ v : `

(ℛ-Op)
(E, _) `ℛ e : ` (E, _) `ℛ e′ : `′ op : `op × `op → `op ∧ ` v `op ∧ `′ v `op

(E, _) `ℛ e op e′ : `op

(ℛ-Skip)

(E, pc) `ℛ skip : OK

(ℛ-Assign)
(E, _) `ℛ e : ` ` t pc v E(v)

(E, pc) `ℛ v := e : OK

(ℛ-Seq)
(E, pc) `ℛ c1 : OK (E, pc) `ℛ c2 : OK

(E, pc) `ℛ c1; c2 : OK

(ℛ-If)
(E, _) `ℛ e : ` (E, ` t pc) `ℛ c1 : OK (E, ` t pc) `ℛ c2 : OK

(E, pc) `ℛ if e then c1 else c2 : OK

(ℛ-While)
(E, _) `ℛ e : ` (E, ` t pc) `ℛ c : OK

(E, pc), C `ℛ while e do c : OK

(ℛ-Declassify)
(E, _) `ℛ e : `′ ` t pc v E(v) ∧ I(`) = I(`′) ∧ pc, `′ ∈ {` | IA 6vI I(`)}

(E, pc), C `ℛ v := declassify(e, `) : OK

(ℛ-Inject)
C(pc) vC CA

(E, pc) `ℛ • : OK

Figure 18: The original type system ℛ of [159].

4.3.4.2 Makingℛ incremental

Here we instantiate the four steps of our schema and obtain the incrementalized algorithm
ℐℛ.

defining the shape of caches Each entry of a cache is a triple, made of a term, a
pair (E, pc) ∈ TypeCtx = TypeEnv × L, and a result R ∈ (ℒ ∪ {OK}):

Cache , ℘
(
(Expr ∪ Cmd)× TypeCtx × (ℒ ∪ {OK})

)
.
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building caches The second step instantiates the buildCacheℛ template to fit the
language in hand. The straightforward instantiation is in Figure 19, where for brevity we
have used the results of tr rather than the relevant invocations.

buildCacheℛ ((val : `), (E, _)) , {(val , (∅, _), `)} val ∈ N ∪ {true, false}

buildCacheℛ ((v : `), (E, _)) , {(v, ([v 7→ `], _), `)}

buildCacheℛ
(
(e op e′ : `op), (E, _)

)
, {(e op e′, (E|FV (ee′ op ), _), `op)}

∪ (buildCacheℛ
(
(e : `), (E, _)

)
) ∪ (buildCacheℛ

(
(e′ : `′), (E, _)

)
)

buildCacheℛ
(
(declassify(e, `′) : `), (E, pc)

)
,

{(declassify(e, `′), (E|FV (declassify(e,`′)), pc), `)}

∪ (buildCacheℛ
(
(e : `e), (E, _)

)
)

buildCacheℛ ((skip : OK), (E, pc)) , {(skip, (∅, pc),OK)}

buildCacheℛ ((v := e : OK), (E, pc)) , {(v := e, (E|FV (v:=e), pc),OK)}

∪ (buildCacheℛ
(
(v : `v), (E, _)

)
) ∪ (buildCacheℛ

(
(e : `e), (E, _)

)
)

buildCacheℛ ((if e then c1 else c2 : OK), (E, pc)) ,

{(if e then c1 else c2, (E|FV (if e then c1 else c2), pc),OK)}

∪ (buildCacheℛ
(
(e : `e), (E, _)

)
) ∪ (buildCacheℛ

(
(c1 : OK), (E, pc)

)
)

∪ (buildCacheℛ
(
(c2 : OK), (E, pc)

)
)

buildCacheℛ ((while e do c : OK), (E, pc)) , {(while e do c, (E|FV (while e do c), pc),OK)}

∪ (buildCacheℛ
(
(e : `e), (E, _)

)
) ∪ (buildCacheℛ

(
(c : `c), (E, pc)

)
)

buildCacheℛ ((c1; c2 : OK), (E, pc)) , {(c1; c2, (E|FV (c1; c2), pc),OK)}

∪ (buildCacheℛ
(
(c1 : OK), (E, pc)

)
) ∪ (buildCacheℛ

(
(c2 : OK), (E, pc)

)
)

buildCacheℛ ((• : OK), (E, pc)) , {(•, (∅, pc),OK)}

Figure 19: Instantiation of buildCacheℛ for ℛ [159].

incremental typing The third step of the process consists in instantiating the rule tem-
plates of Definition 4.7, which yields the incrementalized type algorithm ℐℛ in Figures 20
and 21, the judgments of which have the form (E, pc), C `ℐℛ t : R . C ′. As an example of
how Definition 4.7 is instantiated, consider the rule template (Template-Miss-Sub) and the
rule ℐℛ-AssignMiss that derives from the ruleℛ-Assign in Figure 18 and is applied when
the cache has no entry for v := e. We obtain the incrementalized rule by noting that (1) the
command has sub-terms v and e (It = {v, e}), that only the result of the type checking of
e is required according to rule ℛ-Assign, and therefore trev:=e ((E, pc), ∅) = (E, _) , that
(2) the compatibility between the cached environments and those necessary for the actual
typing is rendered by checkJoinv:=e ((E, pc), {v, e}, out _) = (` t pc v E(v)) , and finally
that (3) the new cache C ′ contains all the triples in C, the new ones in C ′′ required while
typing e, and the triple for the assignment itself. The predicate compatℛ uses equality as
the relation for deciding when two types are compatible:

Definition 4.13. Given a term t, two security environments E,E′ and two security levels pc, pc′,

let

compatℛ((E, pc), (E′, pc′), t) ,

dom(E) ∩ dom(E′) ⊇ FV (t) ∧ E|FV (t) = E′|FV (t) ∧ pc′ v pc

assuming that _ v _.
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(ℐℛ-Hit)
C(t) = 〈(E′, c′), R〉 compatℛ((E, c), (E′, c′), t)

(E, c), C `ℐℛ t : R . C

(ℐℛ-ValMiss)
(E, _) `ℛ val : ` C′ = C ∪ {(val , (∅, _), `)}

(E, _), C `ℐℛ val : ` . C′
miss(C, val , (E, _))

(ℐℛ-VarMiss)
(E, _) `ℛ v : ` C′ = C ∪ {(v, ({v 7→ `}, _), `)}

(E, _), C `ℐℛ v : ` . C′
miss(C, v, (E, _))

(ℐℛ-OpMiss)
(E, _) , C `ℐℛ e : ` . C′′

(E, _) , C `ℐℛ e′ : `′ . C′′′ op : `op × `op → `op ∧ ` v `op ∧ `′ v `op
C′ = C ∪ C′′ ∪ C′′′ ∪ {(e op e′, (E|FV (ee′ op ), _), `op)}

(E, _), C `ℐℛ e op e′ : `op . C
′ miss(C, e op e′, (E, _))

(ℐℛ-SkipMiss)
(E, pc) `ℛ skip : OK C′ = C ∪ {(skip, (∅, pc),OK)}

(E, pc), C `ℐℛ skip : OK . C′
miss(C, skip, (E, pc))

(ℐℛ-AssignMiss)
(E, _) , C `ℐℛ e : ` . C′′

` t pc v E(v) C′ = C ∪ C′′ ∪ {(v := e, (E| v:=e, pc),OK)}
(E, pc), C `ℐℛ v := e : OK . C′

miss(C, v := e, (E, pc))

Figure 20: The set of rules for using ℛ incrementally, where compatℛ is as in Definition 4.13 (part
I).

proving type coherence The lemma below easily follows from the above definition.
Consequently, we can instantiate Theorems 4.2 to 4.4 (Corollary 4.4) to guarantee that the
results of the original type systemℛ and of its incremental version ℐℛ coincide:

Theorem 4.3.3. compatℛ expresses compatibility w.r.t. =, andℛ preserves =.

Corollary 4.4. Let C be a well-formed cache, The following properties hold for ℐℛ:

• Coherence: For all t, (E, pc), R R′, and C ′

(E, pc) `ℛ t : τ ∧ (E, pc), C `ℐℛ t : τ ′ . C ′ ⇒ τ = τ ′;

• Completeness: For all t, (E, pc), and R it holds that

(E, pc) `ℛ r : τ ⇒ ∃R′, C ′. (E, pc), C `ℐℛ t : R′ . C ′;

• Well-formedness preservation: For all t, (E, pc), R, and C ′ it holds that

(E, pc), C `ℐℛ t : R . C ′ ⇒ 
ℛ C ′.
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(ℐℛ-SeqMiss)
(E, pc) , C `ℐℛ c1 : OK . C′′

(E, pc) , C `ℐℛ c2 : OK . C′′′ C′ = C ∪ C′′ ∪ C′′′ ∪ {(c1; c2, (E| c1; c2 , pc),OK)}
(E, pc), C `ℐℛ c1; c2 : OK . C′

miss(C, c1; c2, (E, pc))

(ℐℛ-IfMiss) miss(C, if e then c1 else c2, (E, pc))

(E, _) , C `ℐℛ e : ` . C′′ (E, ` t pc) , C `ℐℛ c1 : OK . C′′′ (E, ` t pc) , C `ℐℛ c2 : OK . Civ

C′ = C ∪ C′′ ∪ C′′′ ∪ Civ ∪ {(if e then c1 else c2, (E| if e then c1 else c2 , pc),OK)}
(E, pc), C `ℐℛ if e then c1 else c2 : OK . C′

(ℐℛ-WhileMiss)
(E, _) , C `ℐℛ e : ` . C′′ (E, ` t pc) , C `ℐℛ c : OK . C′′′
C′ = C ∪ C′′ ∪ C′′′ ∪ {(while e do c, (E| while e do c, pc),OK)}

(E, pc), C `ℐℛ while e do c : OK . C′
miss(C, while e do c, (E, pc))

(ℐℛ-DeclassifyMiss) miss(C, v := declassify(e, `), (E, pc))

(E, _) , C `ℐℛ e : `′ . C′′ ` t pc v E(v) ∧ I(`) = I(`′) ∧ pc, `′ ∈ {` | IA 6vI I(`)}
C′ = C ∪ C′′ ∪ {(v := declassify(e, `), (E| v:=declassify(e,`), pc),OK)}

(E, pc), C `ℐℛ v := declassify(e, `) : OK . C′

(ℐℛ-InjectMiss)
(E, pc) `ℛ • : OK C′ = C ∪ {(•, (∅, pc),OK)}

(E, pc), C `ℐℛ • : OK . C′
miss(C, •, (E, pc))

Figure 21: The set of rules for using ℛ incrementally, where compatℛ is as in Definition 4.13 (part
II).

4.3.5 Type inference of exceptions

We turn our attention to the functional language with integers, pattern matching and
exceptions of Leroy and Pessaux [140] that has the following syntax:

Term 3 a ::= x | i | λ x.a | a1(a2) |match a1 with p→ a2 p x→ a3 |
let x= a1 in a2 | c | d(a) | try a1 with x → a2

Pattern 3 p ::= x | i | c | d(p)

The construct match a1 with p → a2 p x → a3 implements pattern matching on a1: if
its value matches the pattern p then a2 is evaluated, otherwise the term evaluates to a3.
Exceptions are rendered by the construct try a1 with x → a2, with the intuitive meaning
that if the execution of a1 raises an exception, then its value is bound to x and a2 is
evaluated. Also, there is no syntactic construct for raising an exception in the original
paper [140] and a predefined raise function is assumed. The evaluation is defined as
expected by a reduction semantics, and we omit it. The types are designed to statically
detect uncaught exceptions, and have the following form (α, ρ, δ are variables for types,
rows and presence annotations, respectively):

Type 3 τ ::= α | int [ϕ] | exn[ϕ] | τ1
ϕ−→ τ2

TypeScheme 3 σ ::= ∀αi, ρj , δk.τ
Row 3 ϕ ::= ρ | > | ε;ϕ

RowElement 3 ε ::= i : π | c : π | d(τ)

PresenceAnnotation 3 π ::= Pre | δ
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The integer type int [ϕ] is annotated by the set of integers ϕ; similarly the type of exceptions
exn[ϕ] is annotated by a set of exceptions; the functional type carries a latent effect ϕ, that
denotes the set of exceptions that may be raised at runtime; sets of exceptions or of integers
are represented as rows: a rowmay be> (all the values of the type are possible, e.g., int [>]

denotes all the integers), or a row element followed by another row. A row element may
be an integer constant i, a constant exception constructor c, or a parametrized exception
construct d(τ); moreover, constant row elements also carry a presence annotation π. If
π equals to Pre, then the element is present in the relevant row; otherwise it is not, but
it may be considered as such to satisfy unification constraints (δ). Finally, type schemes
are used to encode empty rows and absence of row elements, e.g., ∀ρ.int

ρ−→ int denotes a
function with no effect and ∀δ.int [0 : δ;ϕ] denotes a non-zero integer.
The original type system is equipped with kinds:

Kind 3 κ ::= INT({i1, . . . , in}) | EXN({c1, . . . , cp, d1 . . . , dq})

allowing to enforce some invariants over rows and to check for the well-formedness of the
types (written ` ϕ :: κ and ` τ wf ), respectively. We omit the rules for kinding.

The judgments for terms of the type inference algorithm ℐ are

(E, V ) `ℐ a : (τ, ϕ, θ, V ′)

where (E, V ) ∈ TypeCtx , E is a typing environment and V is a set of non-fresh variables;
θ ∈ Subst is a substitution mapping type variables into types; V ′ includes V and the newly
introduced variables.
Instead, the judgments for patterns of the type inference algorithm ℐ are

(τ, V ) `ℐ p : (E, τ ′, θ, V ′)

with (τ, V ) ∈ TypeCtx , E is a typing environment associating free variables of p to their
type; τ ′ is the type of terms that are not matched by p (pattern subtraction in [140]); and
θ, V and V ′ are as above. As usual, θ τ is the application of the substitution θ to τ , and
θ2 ◦ θ1 is the composition of substitutions.
From now onward we assume mguV to be the unification function between types;

Gen(τ, E, ϕ) = ∀αi, ρj , δk.τ where αi, ρj , and δk appear free in τ , but not in E and ϕ; Inst
to be a function that inputs a type scheme ∀αi, ρj , δk.τ and a set of non-fresh variables V ,
and returns τ in which αi, ρj , and δk have been substituted with fresh (i.e., not in V ) α′i,
ρ′j , and δ′k and such that ρj and ρ′j have the same kind for all j; finally, TypeArg(d) to be a
function returning the type scheme of the argument of the exception constructor d.
The rules in Figures 22 and 23 are the logical presentation of the original inference

algorithm.3 We now briefly comment on the rules for terms, omitting the details about
unification. The rules for variables, and let-in are standard.Rule (ℐ-Abs) dealswith function
abstraction, and is analogous to that of other effect systems. Rules (ℐ-Const), (ℐ-cConstr)
are for integers and constant exception constructors, respectively. Intuitively, they return
a type that records the presence of the actual value of the expression. Rule (ℐ-dConstr)
Pattern matching match a1 with p → a2 p x → a3 is dealt with in rule (ℐ-Match). The
results for the term a1 and the pattern p are computed as expected. Using that information,
the type and the set of exceptions of a2 and a3 are computed. To ensure the precision
of the type inference, the results for a3 are computed under the assumption that x has

3 We assume that the fresh variables are generated algorithmically.



4.3 making existing typing algorithms incremental 59

a type which is not matched by p (as given by pattern inference). Finally, inference for
try a1 with x → a2 is done using the rule (ℐ-Try). Roughly, the type and the set of raised
exceptions ϕ1 of a1 is inferred first, then — under the assumption that x assumes value in
ϕ1 — the rule computes the overall type and set of exceptions.

(ℐ-Const)
V ′ = V ∪ {ρ, ρ′}∧ ` ρ :: INT({i})∧ ` ρ′ :: EXN(∅)

(E, V ) `ℐ i : (int [i : Pre; ρ], ρ′, id , V ′)
ρ, ρ′ /∈ V

(ℐ-Var)
(τ, V ′) = Inst(E(x), V ∪ {ρ})∧ ` ρ :: EXN(∅)

(E, V ) `ℐ x : (τ, ρ, id , V ′)
ρ /∈ V

(ℐ-Abs)
E[x 7→ α], V ∪ {α} `ℐ a : (τ1, ϕ1, θ1, V1) V ′ = V1 ∪ {ρ}∧ ` ρ :: EXN(∅) ∧ τ = θ1α

ϕ1−−→ τ1

(E, V ) `ℐ λ x.a : (τ, ρ, θ1, V
′)

α /∈ V, ρ /∈ V1

(ℐ-App)
(E, V ) `ℐ a1 : (τ1, ϕ1, θ1, V1) (θ1 E, V1) `ℐ a2 : (τ2, ϕ2, θ2, V2)

(µ, V3) = mguV2∪{α}{θ2τ1 = θ2
ϕ2−−→ α, θ2ϕ1 = ϕ2} ∧ τ = µα ∧ ϕ = µϕ2 ∧ θ = µ ◦ θ2 ◦ θ1 ∧ V ′ = V3

(E, V ) `ℐ a1 (a2) : (τ, ϕ, θ, V ′)
α /∈ V2

(ℐ-Match)
(E, V ) `ℐ a1 : (τ1, ϕ1, θ1, V1) (τ1, V1) `ℐ p : (E′, τ ′, ψ, V ′1) ((θ1 ◦ ψE)[E′], V ′1) `ℐ a2 : (τ2, ϕ2, θ2, V2)

((θ1 ◦ ψ ◦ θ2 E)[x 7→ θ2τ
′], V2) `ℐ a3 : (τ3, ϕ3, θ3, V3)

(µ, V4) = mguV3
{θ3τ2 = τ3, θ3ϕ2 = ϕ3, (θ3 ◦ θ2 ◦ ψ)ϕ1 = ϕ3} ∧

τ = µτ3 ∧ ϕ = µϕ3 ∧ θ = µ ◦ θ3 ◦ θ2 ◦ ψ ◦ θ1 ∧ V ′ = V4

(E, V ) `ℐ match a1 with p→ a2 p x→ a3 : (τ, ϕ, θ, V ′)

(ℐ-Let)
(E, V ) `ℐ a1 : (τ1, ϕ1, θ1, V1) (θ1 E[x 7→ Gen(τ1, θ1E,ϕ1)], V1) `ℐ a2 : (τ2, ϕ2, θ2, V2)

(µ, V3) = mguV2
{θ2ϕ1 = ϕ2} ∧ τ = µτ2 ∧ ϕ = µϕ2 ∧ θ = µ ◦ θ2 ◦ θ1 ∧ V ′ = V3

(E, V ) `ℐ let x= a1 in a2 : (τ, ϕ, θ, V ′)

(ℐ-cConstr)
` ρ :: EXN({c})∧ ` ρ′ :: EXN(∅) ∧ τ = exn[c : Pre; ρ] ∧ ϕ = ρ′ ∧ θ = id ∧ V ′ = V ∪ {ρ, ρ′}

(E, V ) `ℐ c : (τ, ϕ, θ, V ′)
ρ, ρ′ /∈ V

(ℐ-dConstr)
(E, V ) `ℐ a1 : (τ1, ϕ1, θ1, V1)

(τ2, V2) = Inst(TypeArg(d), V1) ∧ (µ, V3) = mguV2
{τ2 = τ1}∧ ` ρ :: EXN({C}) ∧

` ρ′ :: EXN(∅) ∧ τ = exn[d(µτ1); ρ] ∧ ϕ = ρ′ ∧ θ = µ ◦ θ1 ∧ V ′ = V3 ∪ {ρ, ρ′}
(E, V ) `ℐ d(a1) : (τ, ϕ, θ, V ′)

ρ /∈ V3, ρ
′ /∈ V3 ∪ {ρ}

(ℐ-Try)
(E, V ) `ℐ a1 : (τ1, ϕ1, θ1, V1) (θ1 E[x 7→ exn[ϕ1]], V1) `ℐ a2 : (τ2, ϕ2, θ2, V2)

(µ, V3) = mguV2
{θ2ϕ1 = ϕ2} ∧ τ = µτ2 ∧ ϕ = µϕ2 ∧ θ = µ ◦ θ2 ◦ θ1 ∧ V ′ = V3

(E, V ) `ℐ try a1 with x → a2 : (τ, ϕ, θ, V ′)

Figure 22: Rules defining the inference algorithm for terms of [140].
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(ℐ-PVar)
E = {x : τ} ∧ τ ′ = α ∧ θ = id ∧ V ′ = V ∪ {α}

(τ, V ) `ℐ x : (E, τ ′, θ, V ′)
α /∈ V

(ℐ-PInt)
` ρ :: INT({i}) ∧ (µ, V1) = mguV ∪{ρ,δ}{τ = int [i : δ; ρ]} ∧

E = ∅ ∧ τ ′ = int [i : δ′;µρ] ∧ θ = µ ∧ V ′ = V1 ∪ {δ}
(τ, V ) `ℐ i : (E, τ ′, θ, V ′)

ρ /∈ V, δ′ /∈ V ∪ {ρ} ∪ V1

(ℐ-PcConstr)
` ρ :: EXN({c}) ∧ (µ, V1) = mguV ∪{ρ,δ}{τ = exn[c : δ; ρ]} ∧

E = ∅ ∧ τ ′ = exn[c : δ′;µρ] ∧ θ = µ ∧ V ′ = V1 ∪ {δ}
(τ, V ) `ℐ C : (E, τ ′, θ, V ′)

ρ /∈ V, δ′ /∈ V ∪ {ρ}∪ /∈ V1

(ℐ-PdConstr)
Inst(TypeArg(d)), V `ℐ p1 : (E1, τ

′
1, θ1, V1)

` ρ :: EXN({d}) ∧ (µ, V2) = mguV1∪{ρ}{τ = exn[d(θ1τ1); ρ]} ∧
E = µE1 ∧ τ ′ = exn[d(µτ ′1);µρ] ∧ θ = µ ◦ θ1 ∧ V ′ = V2

(τ, V ) `ℐ d(p1) : (E, τ ′, θ, V ′)
ρ /∈ V

Figure 23: Rules defining the inference algorithm for patterns of [140].

defining the shape of caches The entries of the cache are either (a, (E, V ),

(τ, ϕ, θ, V ′)) or (p, (τ, V ), (E, τ ′, θ, V ′)). Thus, a cache C is an element of

Cache , ℘
(
(Term ∪ Pattern) ×
((TypeEnv ∪ Type)× ℘(Name)) ×(
((TypeEnv × Type) ∪ (Type ×Row))× Subst× ℘(Name)

))
.

building caches The second step instantiates the buildCache template from Section 4.2.
The definition has two groups of rules, one for patterns and one for terms and is displayed
in Figure 24.

incremental typing In Figures 25 to 27 we display all the rules defining the algorithm
ℐℐ for patterns and for terms.
Note that here we have unnecessarily duplicated the hit rules for the sake of clarity,

because of the uniform presentation of typing for both patterns and terms. All the rules
mimic the behavior of algorithm ℐ, following the templates of Section 4.2. The predicate
compatℐ consists of two parts, one for patterns and one the terms, and it uses equality for
deciding when two types are compatible:

Definition 4.14. Given a pattern p and two pairs (τ, V ), (τ ′, V ′), and a term a and two pairs

(E, V ), (E′, V ′), let

compatpℐ((τ, V ), (τ ′, V ′), p) ,
(
τ = τ ′ ∧ V = V ′

)
and

compataℐ((E, V ), (E′, V ′), a) , dom (E) ∩ dom
(
E′
)
⊇ FV (a) ∧

E|FV (a) = E′|FV (a) ∧ V = V ′

Finally, define compatℐ = compatpℐ xor compataℐ.
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proving type coherence The following lemma easily follows from Definition 4.14:

Theorem 4.3.4. compatℐ expresses compatibility w.r.t. =, and ℐ preserves =.

Now, we instantiate Theorems 4.2 to 4.4 to guarantee that the results of the original type
system ℐ and of its incremental version ℐℐ coincide. (We separate the two corollaries for
the sake of readability.)

Corollary 4.5 (Patterns). Let C be a well-formed cache, the following properties hold for ℐℐ:

• Coherence: For any pattern p, any τ , V , E, τ ′, θ, V ′, E′, τ ′′, θ′, V ′′, and cache C ′:

(τ, V ) `ℐ p : (E, τ ′, θ, V ′) ∧ (τ, V ), C `ℐℐ p : (E′, τ ′′, θ′, V ′′) . C ′

⇒ (E, τ ′, θ, V ′) = (E′, τ ′′, θ′, V ′′);

• Completeness: For any pattern p, any τ , V , E, τ ′, θ, V ′:

(τ, V ) `ℐ p : (E, τ ′, θ, V ′)⇒
∃(E′, τ ′′, θ′, V ′′), C ′. (τ, V ), C `ℐℐ p : (E′, τ ′′, θ′, V ′′) . C ′;

• Well-formedness preservation: For any pattern p, any τ , V , E, τ ′, θ, V ′, and cache C ′:

(τ, V ), C `ℐℐ p : (E, τ ′, θ, V ′) . C ′ ⇒ 
ℐ C
′.

Corollary 4.6 (Terms). Let C be a well-formed cache, the following properties hold for ℐℐ:

• Coherence: For any term a, any E, V , τ , ϕ, θ, V ′, τ ′, ϕ′, θ′, V ′′, and cache C ′:

(E, V ) `ℐ a : (τ, ϕ, θ, V ′) ∧ (E, V ), C `ℐℐ a : (τ ′, ϕ′, θ′, V ′′) . C ′

⇒ (τ, ϕ, θ, V ′) = (τ ′, ϕ′′, θ′, V ′′);

• Completeness: For any term a, any E, V , τ , ϕ, θ, V ′, τ ′, ϕ′, θ′, and V ′′:

(E, V ) `ℐ a : (τ, ϕ, θ, V ′)⇒
∃(τ ′, ϕ′, θ′, V ′′), C ′. (τ, V ), C `ℐℐ a : (τ ′, ϕ′, θ′, V ′′) . C ′;

• Well-formedness preservation: For any term a, any E, V , τ , ϕ, θ, V ′, and cache C ′:

(E, V ), C `ℐℐ a : (τ, ϕ, θ, V ′) . C ′ ⇒ 
ℐ C
′.
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buildCacheℐ
(
(x : (E, τ ′, θ, V ′)), (τ, V )

)
, {(x, (τ, V ), (E, τ ′, θ, V ′))}

buildCacheℐ
(
(i : (E, τ ′, θ, V ′)), (τ, V )

)
, {(i, (τ, V ), (E, τ ′, θ, V ′))}

buildCacheℐ
(
(c : (E, τ ′, θ, V ′)), (τ, V )

)
, {(c, (τ, V ), (E, τ ′, θ, V ′))}

buildCacheℐ
(
(d(p1) : (E, τ ′, θ, V ′)), (τ, V )

)
, {(d(p1), (τ, V ), (E, τ ′, θ, V ′))}

∪ (buildCacheℐ
(
(p1 : (E1, τ

′
1, θ1, V

′
1 )), (Inst(TypeArg(d)), V )

)
)

buildCacheℐ
(
(x : (τ, ϕ, id , V ′)), (E, V )

)
, {(x, (E, V ), (τ, id , θ, V ′))}

buildCacheℐ
(
(i : (τ, ϕ, id , V ′)), (E, V )

)
, {(i, (E, V ), (τ, ϕ, id , V ′))}

buildCacheℐ
(
(λ x.a : (τ, ϕ, θ, V ′)), (E, V )

)
, {(λ x.a, (E|FV (λ x.a), V ), (τ, ϕ, θ, V ′))}

∪ buildCacheℐ

(
(a : (τ1, ϕ1, θ1, V

′
1 )), (E|FV (a)\{x}, V

′)
)

buildCacheℐ
(
(a1(a2) : (τ, ϕ, θ, V ′)), (E, V )

)
, {(a1(a2), (E|FV (a1(a2)), V ), (τ, ϕ, θ, V ′))}

∪ buildCacheℐ

(
(a1 : (τ1, ϕ1, θ1, V1)), (E|FV (a1), V

′)
)

∪ buildCacheℐ

(
(a2 : (τ2, ϕ2, θ2, V2)), (θ1|FV (a2), V1)

)
buildCacheℐ

(
(match a1 with p→ a2 p x→ a3 : (τ, ϕ, θ, V ′)), (E, V )

)
,

{(match a1 with p→ a2 p x→ a3, (E|FV (match a1 with p→a2px→a3), V ), (τ, ϕ, θ, V ′))}

∪ buildCacheℐ

(
(a1 : (τ1, ϕ1, θ1, V1)), (E|FV (a1), V

′)
)

∪ buildCacheℐ

(
(p : (E′, τ ′, ψ, V ′1 )), (E, V ′)

)
∪ buildCacheℐ

(
(a2 : (τ2, ϕ2, θ2, V2)), ((θ1 ◦ ψE[E′])|FV (a2), V

′
1 )
)

∪ buildCacheℐ

(
(a3 : (τ3, ϕ3, θ3, V3)), ((θ1 ◦ ψ ◦ θ2 E)[x 7→ θ2τ

′]|FV (a3), V2)
)

buildCacheℐ
(
(let x= a1 in a2 : (τ, ϕ, θ, V ′)), (E, V )

)
,

{(let x= a1 in a2, (E|FV (let x= a1 in a2), V ), (τ, ϕ, θ, V ′))}

∪ buildCacheℐ

(
(a1 : (τ1, ϕ1, θ1, V1)), (E|FV (a1), V

′)
)

∪ buildCacheℐ

(
(a2 : (τ2, ϕ2, θ2, V2)), (θ1E[x 7→ Gen(τ1, θ1E,ϕ1)]|FV (a2), V1)

)
buildCacheℐ

(
(c : (τ, ϕ, id , V ′)), (τ, V )

)
, {(c, (τ, V ), (τ, id , θ, V ′))}

buildCacheℐ
(
(d(a1) : (τ, ϕ, θ, V ′)), (E, V )

)
, {(d(a1), (E|FV (d(a1)), V ), (τ, ϕ, θ, V ′))}

∪ buildCacheℐ

(
(a1 : (τ1, ϕ1, θ1, V1)), (E|FV (a1), V

′)
)

buildCacheℐ
(
(try a1 with x → a2 : (τ, ϕ, θ, V ′)), (E, V )

)
,

{(try a1 with x → a2, (E|FV (try a1 with x →a2), V ), (τ, ϕ, θ, V ′))}

∪ buildCacheℐ

(
(a1 : (τ1, ϕ1, θ1, V1)), (E|FV (a1), V

′)
)

∪ buildCacheℐ

(
(a2 : (τ2, ϕ2, θ2, V2)), (θ1 E[x 7→ exn[ϕ1]], V1|FV (a2), V1)

)

Figure 24: Definition of buildCacheℐ for the incremental type inference of [140] (upper part for
patterns, lower for terms).
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(ℐℐ-Hit)
C(p) = 〈(τ ′, V ′), (E′, τ ′, θ, V ′)〉 compatℐ((τ, V ), (τ ′, V ′), p)

(τ, V ), C `ℐℐ p : (E, τ ′, θ, V ′) . C

(ℐℐ-PVarMiss)
(τ, V ) `ℐ x : (E, τ ′, θ, V ′) C′ = C ∪ {(x, (τ, V ), (E, τ ′, θ, V ′))}

(τ, V ), C `ℐℐ x : (E, τ ′, θ, V ′) . C′
α /∈ V,miss(C, x, (τ, V ))

(ℐℐ-PIntMiss)
(τ, V ) `ℐ i : (E, τ ′, θ, V ′) C′ = C ∪ {(i, (τ, V ), (E, τ ′, θ, V ′))}

(τ, V ), C `ℐℐ i : (E, τ ′, θ, V ′) . C′
miss(C, i, (τ, V ))

(ℐℐ-PcConstrMiss)
(τ, V ) `ℐ c : (E, τ ′, θ, V ′) C′ = C ∪ {(c, (τ, V ), (E, τ ′, θ, V ′))}

(τ, V ), C `ℐℐ c : (E, τ ′, θ, V ′) . C′
miss(C, c, (τ, V ))

(ℐℐ-PdConstrMiss)
(Inst(TypeArg(d)), V ) , C `ℐℐ p1 : (E1, τ

′
1, θ1, V1) . C′′

` ρ :: EXN({d}) ∧ (µ, V2) = mguV1∪{ρ}{τ = exn[d(θ1τ1); ρ]} ∧
E = µE1 ∧ τ ′ = exn[d(µτ ′1);µρ] ∧ θ = µ ◦ θ1 ∧ V ′ = V2

C′ = C ∪ C′′ ∪ {(d(p1), (τ,FV (d(p1))), (E, τ ′, θ, V ′))}
(τ, V ), C `ℐℐ d(p1) : (E, τ ′, θ, V ′) . C′

ρ /∈ V,miss(C, d(p1), (τ, V ))

Figure 25: The rules of the incremental inference algorithm for patterns of [140].

(ℐℐ-Hit)
C(a) = 〈(τ, ρ, θ, V ′)〉 compatℐ((E, V ), (E′, V ′), a)

(E, V ), C `ℐℐ a : (τ, ρ, θ, V ′) . C

(ℐℐ-VarMiss)
(E, V ) `ℐ x : (τ, ρ, id , V ′) C′ = C ∪ {(x, (E|FV (x), V ), (τ, ρ, id , V ′))}

(E, V ), C `ℐℐ x : (τ, ρ, id , V ′) . C
ρ /∈ V,miss(C, x, (E, V ))

(ℐℐ-ConstMiss)
(E, V ) `ℐ i : (int [i : Pre; ρ], ρ′, id , V ′)

C′ = C ∪ {(i, (E|FV (i), V ), (int [i : Pre; ρ], ρ′, id , V ′))}
(E, V ), C `ℐℐ i : (int [i : Pre; ρ], ρ′, id , V ′) . C′

ρ, ρ′ /∈ V,miss(C, i, (E, V ))

(ℐℐ-AbsMiss)
(E[x 7→ α], V ∪ {α}) , C `ℐℐ a : (τ1, ϕ1, θ1, V1) . C′′

V ′ = V1 ∪ {ρ}∧ ` ρ :: EXN(∅) ∧ τ = θ1α
ϕ1−−→ τ1

C′ = C ∪ C′′ ∪ {(λ x.a, (E|FV (λ x.a), V ), (τ, ρ, θ1, V
′))}

(E, V ), C `ℐℐ λ x.a : (τ, ρ, θ1, V
′) . C′

α /∈ V, ρ /∈ V1,miss(C, λ x.a, (E, V ))

Figure 26: The rules of the incrementalized inference algorithm for terms of [140] (part I).
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(ℐℐ-AppMiss) α /∈ V2,miss(C, a1(a2), (E, V ))

(E, V ) , C `ℐℐ a1 : (τ1, ϕ1, θ1, V1) . C′′ (θ1 E, V1) , C `ℐℐ a2 : (τ2, ϕ2, θ2, V2) . C′′′

(µ, V3) = mguV2∪{α}{θ2τ1 = θ2
ϕ2−−→ α, θ2ϕ1 = ϕ2} ∧ τ = µα ∧ ϕ = µϕ2 ∧ θ = µ ◦ θ2 ◦ θ1 ∧ V ′ = V3

C′ = C ∪ C′′ ∪ C′′′ ∪ {(a1 (a2), (E|FV (a1 (a2)), V ), (τ, ϕ, θ, V ′))}
(E, V ), C `ℐℐ a1 (a2) : (τ, ϕ, θ, V ′) . C′

(ℐℐ-MatchMiss) miss(C,match a1 with p→ a2 p x→ a3, (E, V ))

(E, V ) , C `ℐℐ a1 : (τ1, ϕ1, θ1, V1) . C1

(τ1, V1) , C `ℐℐ p : (E′, τ ′, ψ, V ′1) . C2 ((θ1 ◦ ψE)[E′], V ′1) , C `ℐℐ a2 : (τ2, ϕ2, θ2, V2) . C3

((θ1 ◦ ψ ◦ θ2 E)[x 7→ θ2τ
′], V2) , C `ℐℐ a3 : (τ3, ϕ3, θ3, V3) . C4

(µ, V4) = mguV3
{θ3τ2 = τ3, θ3ϕ2 = ϕ3, (θ3 ◦ θ2 ◦ ψ)ϕ1 = ϕ3} ∧

τ = µτ3 ∧ ϕ = µϕ3 ∧ θ = µ ◦ θ3 ◦ θ2 ◦ ψ ◦ θ1 ∧ V ′ = V4

C′ = C ∪
4⋃
i=1

Ci ∪ {(match a1 with p→ a2 p x→ a3, (E|FV (match a1 with p→a2px→a3), V ), (τ, ϕ, θ, V ′))}

(E, V ), C `ℐℐ match a1 with p→ a2 p x→ a3 : (τ, ϕ, θ, V ′) . C′

(ℐℐ-LetMiss) miss(C, let x= a1 in a2, (E, V ))

(E, V ) , C `ℐℐ a1 : (τ1, ϕ1, θ1, V1) . C′′ (θ1 E[x 7→ Gen(τ1, θ1E,ϕ1)], V1) , C `ℐℐ a2 : (τ2, ϕ2, θ2, V2) . C′′′

(µ, V3) = mguV2
{θ2ϕ1 = ϕ2} ∧ τ = µτ2 ∧ ϕ = µϕ2 ∧ θ = µ ◦ θ2 ◦ θ1 ∧ V ′ = V3

C′ = C′′ ∪ C′′ ∪ {(let x= a1 in a2, (E|FV (let x= a1 in a2), V ), (τ, ϕ, θ, V ′))}
(E, V ), C `ℐℐ let x= a1 in a2 : (τ, ϕ, θ, V ′) . C′

(ℐℐ-cConstrMiss)
(E, V ) `ℐ c : (τ, ϕ, θ, V ′) C′ = C ∪ {(c, (E|FV (c), V ), (τ, ϕ, θ, V ′))}

(E, V ), C `ℐℐ c : (τ, ϕ, θ, V ′) . C′
ρ, ρ′ /∈ V,miss(C, c, (E, V ))

(ℐℐ-dConstrMiss) ρ /∈ V3, ρ
′ /∈ V3 ∪ {ρ},miss(C, d(a1), E)

(E, V ) , C `ℐℐ a1 : (τ1, ϕ1, θ1, V1) . C′′

(τ2, V2) = Inst(TypeArg(d), V1) ∧ (µ, V3) = mguV2
{τ2 = τ1}∧ ` ρ :: EXN({c}) ∧

` ρ′ :: EXN(∅) ∧ τ = exn[d(µτ1); ρ] ∧ ϕ = ρ′ ∧ θ = µ ◦ θ1 ∧ V ′ = V3 ∪ {ρ, ρ′}
C′ = C ∪ C′′ ∪ {(d(a1), (E|FV (d(a1)), V ), (τ, ϕ, θ, V ′))}

(E, V ), C `ℐ d(a1) : (τ, ϕ, θ, V ′) . C′

(ℐℐ-Try) miss(C, try a1 with x → a2, (E, V ))
(E, V ) , C `ℐℐ a1 : (τ1, ϕ1, θ1, V1) . C′′ (θ1 E[x 7→ exn[ϕ1]], V1) , C `ℐℐ a2 : (τ2, ϕ2, θ2, V2) . C′′′

(µ, V3) = mguV2
{θ2ϕ1 = ϕ2} ∧ τ = µτ2 ∧ ϕ = µϕ2 ∧ θ = µ ◦ θ2 ◦ θ1 ∧ V ′ = V3

C′ = C ∪ C′′ ∪ C′′′ ∪ {(try a1 with x → a2, (E|FV (try a1 with x→a2), V ), (τ, ϕ, θ, V ′))}
(E, V ), C `ℐℐ try a1 with x → a2 : (τ, ϕ, θ, V ′) . C′

Figure 27: The rules of the incrementalized inference algorithm for terms of [140] (part II).
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4.3.6 Type checking the dependently-typed λ-calculus

Here, we instantiate our algorithmic schema to a type checker with dependent types for
the λ-calculus, the evaluation rules of which are standard. We follow the type system
of λLF in [186], except that ours presents both kinding and typing relations uniformly.
Below, we recall the syntax of terms, types, kinds and contexts.

Term 3 t ::= x | t1 t2 | λx : T. t

Type 3 T ::= X | Πx : T1. T2 | T t
Kind 3 K ::= ∗ | Πx : T.K

TypeCtx 3 Γ ::= ∅ | Γ, x : T | X : K

The algorithmic kinding and type checking of λLF are in Figures 28 and 29, where we
assume that (initial) typing contexts and kinds are well-formed and omit the relevant
rules.

We now follow the four steps of our schema, and obtain the algorithmic incrementalized
version of both the kinding and the type checker of λLF.

defining the shape of caches Because we have a uniform presentation of kinding
and typing relations, the entries of the cache are (A,Γ, R) where either A is a type T and
R is a kindK, or A is a term t and R is a type T . Thus, a cache C is an element of

Cache , ℘
(
(Type ∪ Term)× TypeEnv × (Kind ∪ Type)

)
.

building caches The second step instantiates the buildCacheD template, resulting
in Figure 30.

incremental typing Figures 31 and 32 display all the rules defining the algorithm
ℐD for kinding and typing. Note that we have duplicated the rules for hit for the sake of
clarity, although this is not formally needed because we have a uniform presentation of
kinding and typing. The instantiation is again rather straightforward: all the rules mimic
the behavior of algorithm D, following the templates of Section 4.2.
The definition of the predicate compatD is as follows:

Definition 4.15. Let A be a type or a term, then

compatD(Γ,Γ′, A) ,

dom (Γ) ∩ dom
(
Γ′
)
⊇ FV (A) ∧ ∀v ∈ FV (A).Γ(v) = Γ′(v)

(D-KA-Var)
X : K ∈ Γ

Γ `D X : K

(D-KA-Pi)
Γ `D T1 : ∗ Γ, x : T1 `D T2 : ∗

Γ `D Πx : T1. T2 : ∗

(D-KA-App)
Γ `D S : Πx : T1.K Γ `D t : T2 Γ ` T1 ≡ T2 ∧K′ = K{t/x}

Γ `D S t : K′

Figure 28: The rules for the algorithmic kinding of D of λLF [186].
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(D-TA-Var)
x : T ∈ Γ

Γ `D x : T

(D-TA-Abs)
Γ `D S : ∗ Γ, x : S `D t : T T ′ = Πx : S. T

Γ `D λx : S. t : T ′

(D-TA-App)
Γ `D t1 : Πx : S1. T Γ `D t2 : S2 Γ ` S1 ≡ S2 ∧ T ′ = T{t2/x}

Γ `D t1 t2 : T ′

Figure 29: The rules for the algorithmic typing of D of λLF [186].

buildCacheD ((X : K),Γ) , {(X,X : K,K)}

buildCacheD ((Πx : T1. T2 : K),Γ) , {(Πx : T1. T2,Γ|FV (Πx:T1. T2),K)}

∪ (buildCacheD
(
(T1 : K1), Γ

)
) ∪ (buildCacheD

(
(T2 : K2), Γ, x : T1

)
)

buildCacheD ((S t : K),Γ) , {(S t,Γ|FV (S t),K)}

∪ (buildCacheD
(
(S : K′), Γ

)
) ∪ (buildCacheD

(
(t : T ), Γ

)
)

buildCacheD ((x : T ),Γ) , {(x, x : T, T )}

buildCacheD ((λx : S. t : T ),Γ) , {(λx : S. t,Γ|FV (λx:S. t), T )}

∪ (buildCacheD
(
(S : K), Γ

)
) ∪ (buildCacheD

(
(t : T ), Γ, x : S

)
)

buildCacheD ((t1 t2 : T ),Γ) , {(t1 t2,Γ|FV (t1 t2), T )}

∪ (buildCacheD
(
(t1 : S1), Γ

)
) ∪ (buildCacheD

(
(t2 : S2), Γ

)
)

Figure 30: Definition of buildCacheD for the incremental kinding and typing of λLF.

proving type coherence The following lemma holds trivially:

Theorem 4.3.5. compatD expresses compatibility w.r.t. =, and D preserves =.

Consequently, we instantiate Theorems 4.2 to 4.4 to achieve the following:

Corollary 4.7. Let C be a well-formed cache, the following properties hold for ℐD:

• Coherence: For any term or type A, Γ, R, R′, and C ′

Γ `D A : R ∧ Γ, C `ℐD A : R′ . C ′ ⇒ R = R′;

• Completeness: For any term or type A, Γ, and R it holds that

Γ `D A : R⇒ ∃R′, C ′. Γ, C `ℐD A : R′ . C ′;

• Well-formedness preservation: For any term or type A, Γ, R, and C ′ it holds that

Γ, C `ℐD A : R . C ′ ⇒ 
D C ′.
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(ℐD-Hit)
C(T ) = 〈Γ′,K〉 compatD(Γ,Γ′, T )

Γ, C `ℐD T : K . C

(D-TA-VarMiss)
Γ `D T : K C′ = C ∪ {(X,Γ|X ,K)}

Γ `ℐD X : K . C′
miss(C,X,Γ)

(D-KA-PiMiss)
Γ , C `ℐD T1 : ∗ . C1

Γ, x : T1 , C `ℐD T2 : ∗ . C2 C′ = C ∪ C1 ∪ C2 ∪ {(Πx : T1. T2,Γ|FV (Πx:T1. T2), ∗)}
Γ, C `ℐD Πx : T1. T2 : ∗ . C′

miss(C,Πx : T1. T2,Γ)

(D-KA-AppMiss)
Γ , C `ℐD S : Πx : T1.K . C1 Γ , C `ℐD t : T2 . C2

Γ ` T1 ≡ T2 ∧K′ = K{t/x} C′ = C ∪ C1 ∪ C2 ∪ {(S t,Γ|FV (S t),K
′)}

Γ, C `ℐD S t : K′ . C′
miss(C, S t,Γ)

Figure 31: The rules for the incrementalized version of the kinding of algorithm D of λLF [186],
where compatD is as in Definition 4.15.

(ℐD-Hit)
C(t) = 〈Γ′, T 〉 compatD(Γ,Γ′, t)

Γ, C `ℐD t : T . C

(D-TA-VarMiss)
Γ `D x : T C′ = C ∪ {(x,Γ| x, T )}

Γ, C `ℐD x : T . C′
miss(C, x,Γ)

(ℐD-TA-AbsMiss)
Γ , C `ℐD S : ∗ . C1 Γ, x : S ,C `ℐD t : T . C2 T ′ = Πx : S. T

C′ = C ∪ C1 ∪ C2 ∪ {(λx : S. t,Γ|FV (λx:S. t), T
′)}

Γ, C `ℐD λx : S. t : T ′ . C′
miss(C, λx : S. t,Γ)

(ℐD-TA-AppMiss)
Γ , C `ℐD t1 : Πx : S1. T . C1 Γ , C `ℐD t2 : S2 . C2 Γ ` S1 ≡ S2 ∧ T ′ = T{t2/x}

C′ = C ∪ C1 ∪ C2 ∪ {(t1 t2,Γ|FV (t1 t2), T
′)}

Γ, C `ℐD t1 t2 : T ′ . C′
miss(C, t1 t2,Γ)

Figure 32: The rules for the incrementalized version of the typing of algorithm D of λLF [186],
where compatD is as in Definition 4.15.

4.3.7 Type checking secrecy in the spi-calculus

The last use case illustrates how our algorithmic schema can be instantiated also to process
calculi, and we consider Abadi’s type system for secrecy [3]. We assume a set of variables
ranged over by x, y, . . . and a set of names ranged over by n.
We omit the definition of the semantics, the choice of which is actually immaterial for

our treatment, and we only briefly recall the syntax of the spi-calculus:

L ::= n | (M,N) | 0 | suc(M) | x | {M1, . . . ,Mk}N
P ::= M〈N1, . . . , Nk〉.P |M(x1, . . . , xk).P | nil | P |Q | !P | (νn)P |

[M is N ]P | let (x, y) = M in P |
case M of 0 : P suc(x) : Q | case L of {x1, . . . , xk}N in P

A term L can be a name n; a pair (M,N); the 0 term; the successor of another term suc(M);
a variable x; or {M1, . . . ,Mk}N , the symmetric key encryption of the termsM1, . . . ,Mk.
Instead, a process may be:
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• An output processM〈N1, . . . , Nk〉.P that outputs the terms N1, . . . , Nk onM upon
interaction;

• An inputprocessM(x1, . . . , xk).P that reduces toP [N1/x1, . . . , Nk/xk]whenN1, . . . ,

Nk are communicated overM ;

• The nil process that does nothing;

• A composition P |Q that intuitively behaves as P and Q run in parallel;

• A replication !P , behaving as an infinite composition of P with itself;

• A restriction (νn)P that creates a new private name n and then behaves as P ;

• Amatching [M is N ]P that reduces to P ifM andN are the same (stuck otherwise);

• Apair splitting process let (x, y) = M inP that reduces toP [N/x][L/y] ifM = (N,L)

(stuck otherwise);

• The case process case L of {x1, . . . , xk}N in P , that tries to decrypt Lwith the key
N : if L has the form {M1, . . . ,Mk}N , then process behaves as P [M1/x1, . . . ,Mk/xk]

(stuck otherwise);

Names are assigned types T,R in the set ℒ = {Secret ,Public,Any}, with the expected
meaning. Types are partially ordered by T <: R if T = R or R is Any, writing T t R
for the join of T and R. If the process P typechecks then it does not leak the values of
parameters of level Any, typically the payload of the messages of a protocol. The original
type system P is in Figures 33 to 35, where we omit the rules for checking that a type
environment E is well-formed and assume it to be always such; we follow [3] and write
n : T :: {M1, . . . ,Mk, n}N for nwith type T when a name n is a confounder only used in
the term {M1, . . . ,Mk, n}N . As usual, to obtain a fully syntax-directed type system we
directly incorporate type subsumption in the rules. We refer the interested reader to Abadi
[3] for more details about the original typing algorithm. We now show how to obtain the

(P-Var)
T = E(x)

E `P x : T

(P-Name)
n : T :: {M1, . . . ,Mk, n}N ∈ E

E `P n : T

(P-Zero)

E `P 0: Public

(P-Suc)
E `P M : T

E `P suc(M) : T

(P-Pair)
E `P M : R E `P N : U T = R t U

E `P (M,N) : T

(P-PEncr1)
E `P N : Public

E `P {}N : Public

(P-PEncr2)

E `P M1 : T1 . . . E `P Mk : Tk k > 0 ∧ T =
k⊔
i=1

Ti E `P N : Public

E `P {M1, . . . ,Mk}N : T

(P-SEncr)
E `P M1 : Secret

E `P M2 : Any E `P M3 : Public E `P N : Secret n : T :: {M1,M2,M3, n}N ∈ E
E `P {M1,M2,M3, n}N : Public

Figure 33: The original type system P of [3] for terms.

incrementalized algorithm ℐP by instantiating the four steps of our schema.
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(P-POut)
E `P M : Public E `P M1 : Public . . . E `P Mk : Public E `P P : OK

E `P M〈M1, . . . ,Mk〉.P : OK

(P-SOut)
E `P M : Secret E `P M1 : Secret E `P M2 : Any E `P M3 : Public E `P P : OK

E `P M〈M1,M2,M3〉.P : OK

(P-PIn)
E `P M : Public E `P x1 : Public . . . E `P xk : Public E `P P : OK

E `P M(x1, . . . , xk).P : OK

(P-SIn)
E `P M : Secret E `P x1 : Secret E `P x2 : Any E `P x3 : Public E `P P : OK

E `P M(x1, x2, x3).P : OK

(P-Nil)

E `P nil : OK

(P-Par)
E `P P : OK E `P Q : OK

E `P P | Q : OK

(P-Rep)
E `P P : OK
E `P !P : OK

(P-Res)
E[n : T :: {M1, . . . ,Mk, n}N ] `P P : OK

E `P (νn)P : OK

Figure 34: The original type system P of [3] for processes (part I).

defining the shape of caches Each entry of a cache is a triple, made of a term or
a process, an environment E ∈ TypeEnv (in this case TypeEnv coincides with TypeCtx ),
and a result S ∈ (ℒ ∪ {OK}):

Cache , ℘
(
(Term ∪ Processes)× TypeCtx × ({Secret ,Public,Any ,OK})

)
.

building caches The second step instantiates the buildCacheP template to fit the
spi-calculus, see Figure 36. In most of the rules, the instantiation is straightforward,
because E in the premises and in the conclusions is unchanged.

incremental typing The third step of the process consists in instantiating the
rule templates of Definition 4.7, which yields the incrementalized type algorithm ℐP
in Figures 37 to 39. Here, the predicate compatP uses type equality = as the relation for
deciding when two types are compatible:

Definition 4.16. Let X be a process P or a termM ; let v be a name or a variable; and let E,E′

be two typing environments. Then we define

compatP(E,E′, X) ,

dom (E) ∩ dom
(
E′
)
⊇ FV (X) ∧ E|FV (X) = E′|FV (X)

The rules for when the cache has a compatible entry are plain. As usual the rules
mimic those of the original type system, except that the incremental ones have calls to
ℐP instead of P and cache updates. Note again that the needed extensions to the typing
environment (dictated by the instantiation of tr ), as well as the checks on the type T (due
to the instantiation of checkJoin ), are exactly the same as in the original rules.
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(P-Match)
E `P M : T E `P N : R E `P P : OK T,R ∈ {Public,Secret}

E `P [M is N ] in P : OK

(P-Split)
E `P M : T E[x : T, y : T ] `P P : OK T ∈ {Public,Secret}

E `P let (x, y) = M in P : OK

(P-Int)
E `P M : T E `P P : OK E[x : T ] `P Q : OK T ∈ {Public,Secret}

E `P case M of 0 : P suc(x) : Q : OK

(P-PDecr)
E `P L : T E `P N : Public E[x1 : T, . . . , xk : T ] `P P : OK T ∈ {Public,Secret}

E `P case L of {x1, . . . , xk}N in P : OK

(P-SDecr)
E `P L : T

E `P N : Secret E[x1 : Secret , x2 : Any, x3 : Public, x4 : Any] `P P : OK T ∈ {Public,Secret}
E `P case L of {x1, x2, x3, x4}N in P : OK

Figure 35: The original type system P of [3] for processes (part II).

proving type coherence The following lemma easily follows from the above defini-
tions:

Theorem 4.3.6. compatP expresses compatibility w.r.t. =, and P preserves =.

We can then instantiate Theorems 4.2 to 4.4 guarantee the correctness of the incremen-
talized algorithm. As we did for Section 4.3.5, we split the corollaries for terms and for
processes for the sake of readability. Since the result of P for processes can only be OK

(if any), the coherence property for processes holds trivially (it is an implication whose
consequence is always true) and thus is omitted.

Corollary 4.8 (Terms). Let C be a well-formed cache, the following properties hold for ℐP:

• Coherence: For any termM , any E, T , T ′, and cache C ′:

E `P M : T ∧ E,C `ℐP M : T ′ . C ′ ⇒ T = T ′;

• Completeness: For any termM , any E, and T :

E `P M : T ⇒ ∃T ′, C ′. E,C `ℐP M : T ′ . C ′;

• Well-formedness preservation: For any termM , any E, T , and cache C ′:

E,C `ℐP M : T . C ′ ⇒ 
P C ′.

Corollary 4.9 (Processes). Let C be a well-formed cache, the following properties hold for ℐP:

• Completeness: For any process P and any E:

E `P P : OK⇒ ∃C ′. E,C `ℐP P : OK . C ′;

• Well-formedness preservation: For any process P , any E, and cache C ′:

E,C `ℐP P : OK . C ′ ⇒ 
P C ′.
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buildCacheP ((n : T :: {M1, . . . ,Mk, n}N ), E) , {(n,E|n, T )}

buildCacheP (((M,N) : T ), E) , {((M,N), E|FV ((M,N)), T )}

∪ buildCacheP

(
(M : T ′), E|FV (M)

)
∪ buildCacheP

(
(N : T ′′), E|FV (N)

)
buildCacheP ((0 : Public), E) , {(0, ∅,Public)}

buildCacheP ((suc(M) : T ), E) , {(suc(M), E|FV (M), T )}

buildCacheP (({M1, . . . ,Mk}N : T ), E) , ({M1, . . . ,Mk}N , E|⋃k
i=1 FV (Mi)

, T

∪ buildCacheP

(
(M1 : T1), E|FV (M1)

)
∪ · · · ∪ buildCacheP

(
(Mk : Tk), E|FV (Mk)

)
buildCacheP ((x : T ), E) , {(x,E| x, T )}

buildCacheP
(
(M0〈M1, . . . ,Mk〉.P : OK), E

)
, (M0, E|⋃k

i=0 FV (Mi)
, T )

∪ buildCacheP

(
(M1 : T1), E|FV (M1)

)
∪ · · · ∪ buildCacheP

(
(Mk : Tk), E|FV (Mk)

)
buildCacheP ((M(x1, . . . , xk).P : OK), E) , (M,E|FV (M), T )

∪ buildCacheP

(
(x1 : T1), E| x1

)
∪ · · · ∪ buildCacheP

(
(xk : Tk), E| xk

)
buildCacheP ((nil : OK), E) , (nil, E,OK)

buildCacheP ((P |Q : OK), E) , (P |Q,E|FV (P )∪FV (Q),OK)

∪ buildCacheP

(
(P : OK), E|FV (P )

)
∪ buildCacheP

(
(Q : OK), E|FV (Q)

)
buildCacheP (( !P : OK), E) , ( !P,E|FV (P ),OK)

buildCacheP (((νn)P : OK), E) , ((νn)P,E,OK)

∪ buildCacheP

(
(P : OK), E|FV (P )∪{n}

)
∪ buildCacheP

(
(n : T ), E

)
buildCacheP (([M is N ]P : OK), E) , ([M is N ]P,E|FV (M)∪FV (N)∪FV (P ),OK)

∪ buildCacheP

(
(M : T ), E|FV (M)

)
∪ buildCacheP

(
(N : T ), E|FV (N)

)
∪

buildCacheP

(
(P : OK), E|FV (P )

)
buildCacheP ((let (x, y) = M in P : OK), E) , {(let (x, y) = M in P,E|FV (M)∪FV (P ),OK)}∪

buildCacheP

(
(M : T ), E|FV (M)

)
∪ buildCacheP

(
(P : OK), E|FV (P )[x 7→ T, y 7→ T ]

)
buildCacheP ((case M of 0 : P suc(x) : Q : OK), E) ,

{case M of 0 : P suc(x) : Q,E|FV (M)∪{x}∪FV (P ),OK}∪

buildCacheP

(
(M : T ), E|FV (M)

)
∪ buildCacheP

(
(P : OK), E|FV (P )

)
∪

buildCacheP

(
(Q : OK), E|FV (Q)∪{x}

)
buildCacheP ((case L of {x1, . . . , xk}N in P : OK), E) ,

{case L of {x1, . . . , xk}N in P,E|FV (M)∪{x}∪FV (P ),OK}∪

buildCacheP

(
(L : T ), E|FV (L)

)
∪ buildCacheP

(
(N : OK), E|FV (N)

)
∪

buildCacheP

(
(P : OK), E|FV (P )∪

⋃k
i=0{xi}

)

Figure 36: Instantiation of buildCacheP for P [3].
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(ℐP-THit)
C(M) = 〈E′, T 〉 compatP(E,E′,M)

E,C `ℐP M : T . C

(ℐP-VarMiss)
E `P x : T C′ = C ∪ {(x,E| {x}, T )}

E,C `ℐP x : T . C′
miss(C, x,E)

(ℐP-NameMiss)
E `P n : T C′ = C ∪ {(n,E| {n}, T )}

E,C `ℐP n : T . C′
miss(C, n,E)

(ℐP-ZeroMiss)
E `P 0: Public C′ = C ∪ {(0, ∅, T )}

E,C `ℐP 0: Public . C′
miss(C, 0, E)

(ℐP-SucMiss)
E ,C `ℐP M : T . C′′ C′ = C ∪ C′′ ∪ {(suc(M), E|FV (M ), T )}

E,C `ℐP suc(M) : T . C′
miss(C, suc(M), E)

(ℐP-PairMiss)
E ,C `ℐP M : R . C′′ E ,C `ℐP N : U . C′′′

T = R t U C′ = C ∪ C′′ ∪ C′′′ ∪ {((M,N), E|FV ((M ,N )), T )}
E,C `ℐP (M,N) : T . C′

miss(C, (M,N), E)

(ℐP-SEncrMiss) miss(C, {M1,M2,M3, n}N , E)

E ,C `ℐP M1 : Secret . C1

E ,C `ℐP M2 : Any . C2 E ,C `ℐP M3 : Public . C3 E ,C `ℐP N : Secret . C0

n : T :: {M1,M2,M3, n}N ∈ E C′ = C ∪ {({M1,M2,M3, n}N , E|FV ({M1 ,M2 ,M3 ,n}N ),Public)} ∪
3⋃
i=0

Ci

E,C `ℐP {M1,M2,M3, n}N : Public . C′

(ℐP-PEncr1Miss)
E ,C `ℐP N : Public . C′′ C′ = C ∪ C′′ ∪ {(N,E|FV (N ),Public)}

E,C `ℐP {}N : Public . C′
miss(C,N,E)

(ℐP-PEncr2Miss)
∀i ∈ {1, . . . , k}. E , C `ℐP Mi : Ti . Ci

E ,C `ℐP N : Public . C0 k > 0 ∧ T =
k⊔
i=1

Ti

C′ = C ∪ {({M1, . . . ,Mk}N , E|FV ({M1 ,...,Mk}N ), T )} ∪
k⋃
i=0

Ci

E,C `ℐP {M1, . . . ,Mk}N : T . C′
miss(C, {M1, . . . ,Mk}N , E)

Figure 37: The incrementalized type system ℐP for terms, where compatP is as in Definition 4.16.
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(ℐP-PHit)
C(M) = 〈E′,OK〉 compatP(E,E′,M)

E,C `ℐP M : OK . C

(ℐP-POutMiss)
∀i ∈ {0, . . . , k}. E , C `ℐP Mi : Public . Ci E ,C `ℐP P : OK . C′′

C′ = C ∪ C′′ ∪ {(M0〈M1, . . . ,Mk〉.P, E|FV (M0 〈M1 ,...,Mk 〉.P),OK)} ∪
k⋃
i=0

Ci

E,C `ℐP M0〈M1, . . . ,Mk〉.P : OK . C′
miss(C,M0〈M1, . . . ,Mk〉.P, E)

(ℐP-SOutMiss)
E ,C `ℐP M1 : Secret . C1

E ,C `ℐP M2 : Any . C2 E ,C `ℐP M3 : Public . C3

E ,C `ℐP M0 : Secret . C0 E ,C `ℐP P : OK . C′′

C′ = C ∪ C′′ ∪ {(M0〈M1, . . . ,Mk〉.P, E|FV (M0 〈M1 ,...,Mk 〉.P),OK)} ∪
3⋃
i=0

Ci

E,C `ℐP M0〈M1,M2,M3〉.P : OK . C′
miss(C,M0〈M1,M2,M3〉.P, E)

(ℐP-PInMiss)
∀i ∈ {1, . . . , k}. E , C `ℐP xi : Public . Ci

E ,C `ℐP M : Public . C0 E ,C `ℐP P : OK . C′′

C′ = C ∪ C′′ ∪ {(M(x1, . . . , xk).P, E|FV (M (x1 ,...,xk ).P),OK)} ∪
k⋃
i=0

Ci

E,C `ℐP M(x1, . . . , xk).P : OK . C′
miss(C,M(x1, . . . , xk).P, E)

(ℐP-SInMiss)
E ,C `ℐP x1 : Secret . C1

E ,C `ℐP x2 : Any . C2 E ,C `ℐP x3 : Public . C3

E ,C `ℐP M : Secret . C0 E ,C `ℐP P : OK . C′′

C′ = C ∪ C′′ ∪ {(M(x1, x2, x3).P, E|FV (M (x1 ,x2 ,x3 ).P),OK)} ∪
3⋃
i=0

Ci

E,C `ℐP M(x1, x2, x3).P : OK . C′
miss(C,M(x1, x2, x3).P, E)

(ℐP-NilMiss)
E `P nil : OK C′ = C ∪ {(nil, E,OK)}

E,C `ℐP nil : OK . C′
miss(C, nil, E)

(ℐP-ParMiss)
E ,C `ℐP P : OK . C′′

E ,C `ℐP Q : OK . C′′′ C′ = C ∪ C′′ ∪ C′′′ ∪ {(P | Q,E|FV (P |Q),OK)}
E,C `ℐP P | Q : OK . C′

miss(C,P | Q,E)

(ℐP-RepMiss)
E ,C `ℐP P : OK . C′′ C′ = C ∪ C′′ ∪ {( !P,E|FV (!P ),OK)}

E,C `ℐP !P : OK . C′
miss(C, !P,E)

Figure 38: The incrementalized type system ℐP for processes (part I), where compatP is as
in Definition 4.16.
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(ℐP-ResMiss)
E[n : T :: {M1, . . . ,Mk, n}N ] , C `ℐP P : OK . C′′
C′ = C ∪ C′′ ∪ {((νn)P,E|FV ((νn)P ),OK)}

E,C `ℐP (νn)P : OK . C′
miss(C, (νn)P,E)

(ℐP-MatchMiss)
E ,C `ℐP M : T . C0

E ,C `ℐP N : R . C1 E ,C `P P : OK . C2 T,R ∈ {Public,Secret}

C′ = C ∪ {([M is N ] in P,E| [M is N ] in P ,OK)} ∪
2⋃
i=0

Ci

E,C `ℐP [M is N ] in P : OK . C′
miss(C, [M is N ] in P,E)

(ℐP-SplitMiss) miss(C, (let (x, y) = M in P,E))

E ,C `ℐP M : T . C′′

E[x : T, y : T ] , C `ℐP P : OK . C′′′ C′ = C ∪ C′′ ∪ C′′′{(let (x, y) = M in P,E|FV ((let (x,y)=M in P )),OK)}
E,C `ℐP let (x, y) = M in P : OK . C′

(ℐP-IntMiss) miss(C, case M of 0 : P suc(x) : Q,E)

E ,C `ℐP M : T . C0 E ,C `ℐP P : OK . C1 E ,C `ℐP Q : OK . C2 T ∈ {Public,Secret}

C′ = C ∪ {(case M of 0 : P suc(x) : Q,E|FV (case M of 0:P suc(x):Q),OK)} ∪
2⋃
i=0

Ci

E,C `ℐP case M of 0 : P suc(x) : Q : OK . C′

(ℐP-PDecrMiss) miss(C, case L of {x1, . . . , xk}N in P,E)

E ,C `ℐP L : T . C0

E ,C `ℐP N : Public . C1 E[x1 : T, . . . , xk : T ] , C `ℐP P : OK . C2 T ∈ {Public,Secret}

C′ = C ∪ {(case L of {x1, . . . , xk}N in P,E|FV (case L of {x1,...,xk}N in P ),OK)} ∪
2⋃
i=0

Ci

E,C `ℐP case L of {x1, . . . , xk}N in P : OK . C′

(ℐP-SDecrPMiss) miss(C, case L of {x1, x2, x3, x4}N in P,E)

E ,C `ℐP L : T . C0 E ,C `ℐP N : Secret . C1

E, x1 : Secret , x2 : Any, x3 : Public, x4 : Any `ℐP P : OK . C2 T ∈ {Public,Secret}
C′ = C ∪

(
∪i∈{0,1,2} Ci

)
∪{(case L of {x1, x2, x3, x4}N in P,E|FV (case L of {x1,x2,x3,x4}N in P ),OK)}

E,C `ℐP case L of {x1, x2, x3, x4}N in P : OK . C′

Figure 39: The incrementalized type system ℐP for processes (part II), where compatP is as
in Definition 4.16.
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4.4 implementation and experiments

This section presents a prototypical implementation of our algorithmic schema as the
OCaml module Incrementalizer. We have applied it to the type checker for MinCaml [219],
a monomorphic higher-order core of ML. Finally, we report on some experiments that
show that the time and space performance of the incrementalized type checker are almost
always better than those of the original MinCaml type checker. In particular, the time
depends on the size of diffs and decreases as these become smaller, and the space overhead
is negligible.

4.4.1 The Incrementalizer

The Incrementalizer is a proof-of-concept in the form of a couple of OCaml functors that
mechanize our algorithmic schema. They take as input a specification of the language in
terms of Definition 4.2: the syntax, the function tr , the predicate checkJoin , which fully
define the original typing algorithm; the input also includes the shape of the typing results
and contexts, and the definition of the relation compat . The output is the incrementalized
typing algorithm (including an implementation of caches and of buildCache). For that, we
provide the following signature:
1 module type LanguageSpecification = sig
2 type ’a term
3 type context
4 type res
5

6 val term_getannot : ’a term -> ’a
7 val term_edit : ’a term -> (’b term) list -> ’b -> ’b term
8 val compute_fv : ’a term -> VarSet.t
9 val compute_hash : ’a term -> int

10 val get_sorted_children : ’a term -> (int * ’a term) list
11

12 val compat : context -> context -> (int * VarSet.t) term -> bool

13 val tr : int -> (int * VarSet.t) term -> (int * VarSet.t) term
-> context -> res list -> context

14 val checkjoin : (int * VarSet.t) term -> context -> res list ->
res option

15

16 (* Pretty printing utilities *)
17 val string_of_term : (Format.formatter -> ’a -> unit) -> ’a term

-> string
18 val string_of_type : res -> string
19 val string_of_context : context -> string
20 end

The type declarations type ’a term, type context and type res and functions de-
clared from Lines 12 to 14 define the language and its type system according to Defini-
tion 4.2. Lines 6 to 10 are required by the incrementalizer to navigate and modify the
AST:

• term_getannot t returns the annotation of t;
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• term_edit t [a1; ...; an] a returns (a new term) t annotated with a; also, its
i-th child is annotated with ai;

• compute_fv t and compute_hash t return the set of free variables and a hash of
t, respectively;

• Finally, the call get_sorted_children t returns the list of pairs [(0, t0); ...;

(n− 1, tn−1)]with ti’s ordered according to < from Definition 4.2.

The user is required to reify the above signature. For example, the predicate checkJoin

for the if-then-else expression of MinCaml is
1 let checkjoin (t : (int * VarSet.t) term) (gamma : context) (rs :

res list) : res option =
2 match t with
3 (* ... *)
4 | If(_, _, _, _) ->
5 (match (check (List.at rs 0) TBool, check (List.at rs 1)

(List.at rs 2)) with
6 | (Some _, r) -> r
7 | _ -> None)
8 (* ... *)

where check takes two types t1 and t2 as input and returns Some t1 if they are equal,
None otherwise. The function checkjoin intuitively returns the type r if both branches
have the type r (i.e., check (List.at rs 1)(List.at rs 2)) and if the guard is a
boolean (i.e., check (List.at rs 0)TBool); otherwise it returns None.

Now, let MyLangSpec be the provided reified signature. Then the following line of code
suffices to obtain the incrementalized type system:

module MyIncrementalAlgorithm =
Incrementalizer.TypeAlgorithm(MyLangSpec)

For typing a modified term tmod with the incremental rules just call
MyIncrementalAlgorithm.typing cache Γmod tmod

where Γmod is the environment and cache is the cache built from the original term t

through the following:
let cache = MyIncrementalAlgorithm.get_empty_cache () in
MyIncrementalAlgorithm.build_cache t Γ cache

Note that the cache is built in place for performance reasons. Also, to keep efficient checking
typing context compatibility, we compute the sets of the free variables beforehand, and
store them as additional annotations on the aAST.

4.4.2 A git-versioned ray tracer

To show the applicability of our methodology to a lifelike case, we experimented with the
MinRT ray-tracer4 of about 1kloc written for the original MinCaml compiler.
First, the implicitly-typed code of MinRT was type-annotated through a simple tool

that exploits the frontend of the original MinCaml compiler.5
Then, we linked our incremental type checker to the git repository, via the following

script (simplified for readability):

4 The original source code is available at https://github.com/esumii/min-caml/tree/master/
min-rt.

5 See main.ml and syntax.ml in https://github.com/matteobusi/min-caml.

https://github.com/esumii/min-caml/tree/master/min-rt
https://github.com/esumii/min-caml/tree/master/min-rt
https://github.com/matteobusi/min-caml
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1 git show HEAD:minrt.ml > minrt.2.ml
2 git show HEAD~2:minrt.ml > minrt.1.ml
3 imc minrt.1.ml minrt.2.ml

The first two lines retrieve the last two committed versions of the minrt.ml file. The
last line invokes the incremental type checker imc: first it builds the aAST and the cache
for minrt.1.ml and then it uses them to type minrt.2.ml. For the sake of presentation
consider only the diff between the two (successive) commits concerning the function
write_rgb, that replaces:
1 let rec write_rgb (_ : unit) : unit =
2 let red = int_of_float rgb.(0) in
3 let red = if not (red <= 255) then 255 else red in
4 let _ = print_byte red in
5 let green = int_of_float rgb.(1) in
6 let green = if not (green <= 255) then 255 else green in
7 let _ = print_byte green in
8 let blue = int_of_float rgb.(2) in
9 let blue = if not (blue <= 255) then 255 else blue in

10 print_byte blue

with
1 let rec write_rgb (_ : unit) : unit =
2 let rec cc (v : int) : int = (if v <= 255 then v else 255) in
3 print_byte (cc (int_of_float rgb.(0)));
4 print_byte (cc (int_of_float rgb.(1)));
5 print_byte (cc (int_of_float rgb.(2)))

The script above produces the following output
1 Analyzing: Orig: minrt.1.ml ... Mod: minrt.2.ml ...
2 Lexing ... done
3 Parsing ... done
4 Annotating original ... - done (root hash: 355609555)
5 Annotating modified ... - done (root hash: 994309017)
6 Initial typing environments ... done
7 Building the cache ... done
8 Original typing ... done
9 Incremental typing ... done

10 Type: unit - IType: unit
11 [Visited: 216/3977] O: 10 - H: 99 - M: 0 (I) + 107 (NF) = 107
12 Printing graphical tree report ... done

Lines 1 to 9 include some basic information about the (incremental) typing and its progress.
Line 10 shows the result of type checking. Some statistics on the incremental type checking
are in Line 11: (i) the incremental type checking of minrt.2.ml required to visit 216 of (ii)
the total 3977 nodes; (iii) the original typing algorithm was called 10 times (O); (iv) there
were 99 cache hits (H) and (v) 107 cache misses (M). All the misses depend on the absence
of the required node in the cache (NF) and none on failed compatibility checks (I). The
last line of the output tells that a graphical report was generated too. This report, in the
Graphviz dot format, includes a representation of the aAST of minrt.2.ml where hits
are highlighted in green, calls to the original typing algorithm are in cyan, and misses
due to nodes that are not in cache are highlighted in red (see Figure 40). Furthermore,
nodes highlighted in orange are those that caused a miss because of a failed compatibility
check (none in Figure 40). Such a graphical representation should be especially useful to
visually debug incrementalizations of new type systems.
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Figure 40: The graphical report as generated by the incremental typechecker for two successive
commits of the explicitly typed MinRT. In green the nodes found in the cache; in cyan
the nodes whose type was discovered resorting to the original algorithm; in red the
nodes not in the cache.

4.4.3 Experimental evaluation

We have applied the Incrementalizer to obtain an incremental version of the type checker
for MinCaml [219], and we have evaluated its performance.6 In particular, we made
experiments for verifying that (i) the overhead for managing the cache is small; (ii) the
time for incrementally checking depends on the size of diffs; (iii) the ratio between the
time taken by the incremental and the original type checker also decreases with the size
of diffs; (iv) the memory overhead is negligible.
For that we type checked synthetic programs with (binary and complete) aAST of

increasing depth from 8 to 16, and with a number of variables ranging from 1 to 215.
All the internal nodes are binary operators and the leaves are free variables. These test
suites are intended to stress our incremental algorithm in the worst, yet artificial case. The
measures are obtained using the libraries Landmarks and Core_bench that however also
take into account the OCaml runtime. 7
Since caches and type environments are implemented as hash-tables, the memory

overhead due to the cache is O(n×m), where n is the size of the program under analysis
andm is the number of its variables. To support the above, we measured the number of
MBs allocated by our implementation for the original type checking and by its incremental
usage with respect to the size of the synthetic aAST and the number of free variables.
Table 2b displays the obtained figures and shows that the space overhead is less than 4%,
decreasing with the number of free variables in a program and its size.

6 Available at https://github.com/matteobusi/incremental-mincaml.
7 Available at https://github.com/LexiFi/landmarks and https://github.com/janestreet/
core_bench.

https://github.com/matteobusi/incremental-mincaml
https://github.com/LexiFi/landmarks
https://github.com/janestreet/core_bench
https://github.com/janestreet/core_bench
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Depth Vars Original Incremental Incremental/Original ratio

16 1 177.87 95681.91 537.94

16 27 145.06 4502.24 31.04

16 29 143.18 1322.83 9.24

16 211 139.45 329.90 2.37

16 213 116.60 69.01 0.59

16 215 95.33 13.66 0.14

(a) Experimental results about caching in terms of the throughput (i.e., re-checks per second) for the original
and the incremental usage of the type checker.

Original vs. Incremental

Depth Vars Original Incremental Ratio Difference

10 29 6.03 6.79 0.8880 0.7602

12 211 88.20 91.16 0.9675 2.9655

14 213 1374.05 1385.91 0.9914 11.8610

16 215 21808.74 21856.18 0.9978 47.4481

(b) Experimental results on the memory overhead in MB.

Table 2: A summary of experimental results.

To test the efficiency of caching we first typed the program with an empty cache to
build one. We then typed again the same program with no changes, but starting from the
just built cache, so as to compare the difference in time. One reason for time overhead are
the inspection and update of caches and environments. We have implemented them as
hash-tables to handle them in almost constant time. The other possible time-consuming
part concerns checking typing context compatibility. To make also compat efficient we
compute the sets of the free variables beforehand as mentioned above. Table 2a displays
the number of re-typings per second in function of the depth of the aAST and the number
of variables in the program. The experiments not only show that the overhead for caching
is negligible, but also that caching is beneficial when the number of free variables is not
too large with respect to the aAST depth because the results of common subtrees are
re-used: just look in the cache for the single, relevant entry. Indeed, when the number
of free variables is too large, the cost checking compatibility grows and prevails on the
other costs. However, we do not expect this situation to happen very often in practice,
since according to our experiments we loose all the advantages of incrementalization only
when the number of free variables is at least half the size of the abstract-syntax tree.

Finally, we have simulated program changes by invalidating parts of caches that
correspond to the rightmost sub-expression at different depths. Note that invalidating
cache entries for the diff sub-term t′ of t requires to invalidate (i) all the entries for the
nodes in the path from the root of the aAST of t to t′ and (ii) all the entries for t′ and its
sub-terms, recursively: therefore the smaller the invalidation depth, the more typing is
expected. In this way we simulate that the whole t′ is new and never seen before: the
bigger t′, the more typing is expected. Actually, some sub-trees of t′ may appear elsewhere
in t. In this case, the number of cache entries invalidated is smaller than the size of t′ plus
the number of nodes of the path from the root of t to the root of t′.
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The plots in Figure 41 show the performance of the incrementalized and of the original
type checking algorithmvs. the size of the diff sub-term. Thefigure displays the throughput
for a few choices of the depth of the aASTs (from 12 to 16) and the number of variables
(from 29 to 215). The throughput is expressed in terms of the number of aASTs that can be
processed per unit of time (i.e., re-typings/s).

The experimental results show that our caching and memoization is in many cases
faster than re-typing twice.

All in all, the advantage of using the incrementalized type checker decreases, as expected,
when there is a significant growth of the number of variables or in the size of the diff
sub-trees. However, these cases only show up with very big numbers, which are not likely
to occur often, especially in the perpetual development model. One of the main reasons is
the repeated invocation of the function compat . To mitigate this overhead we introduced
the possibility of defining a threshold on the maximum number of compatibility checks.
As an optimization, one can force the incremental algorithm to behave as the original one
when the threshold is reached. Dotted, cross-marked plots in Figure 41 report the behavior
of the incrementalized type checker on our example for different values of the threshold.
As expected, smaller values of the threshold correspond to a delayed degradation of
performance due to the size of diffs. Note that when the size of the aAST doubles that of
the diffs, the performance of the incrementalized algorithm with and without threshold
coincide since the number of compatibility checks is always 1.
The performance is expected to lower when the code has a lot of inter-dependencies.

Indeed, code dependencies are notoriously hard to deal with and they often lead to worst
cases in complexity (see e.g., [123]). To experiment on that, we considered programs
resulting from unrolling n times the factorial of n:
1 let x1 = 1 in
2 ...
3 let xn = n * xn−1 in
4 xn

and we have simulated program changes by invalidating parts of caches that correspond
to xi and its sub-expressions, for different values of i.
The dashed, star-marked and the solid, diamond-marked plots in Figure 42 report

the experimental results for 2559 and 20479 nodes. In this pathological case with a lot
of inter-dependencies, both the original and the incrementalized algorithm are much
slower than in similarly-sized programs (cfr. Figure 41). The incrementalized algorithm
is slightly slower than the original one, because it inspects and updates the cache many
times. Yet, the bigger the aAST, the smaller the gap in performance. Actually, the dotted
plots in Figure 42 report the results with the optimization discussed above: the smaller
the threshold, the closer the incremental algorithm gets to the original one. More plots are
available in Appendix A.2.
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Figure 41: Experimental results comparing the number of re-typings per second vs. the number of
nodes of the diff sub-tree. The blue, dashed plot is for the original type checking, while
the orange, solid one is for the incrementalized one. Dotted plots report the behavior of
the incrementalized type checker for various values of the threshold T . The x-axis is
logarithmic, while the y-axis is scaled as necessary. The plots on the right consider the
maximum number of variables.
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Figure 42: Experimental results comparing the number of re-typings per second vs. the number of
nodes of the diff on two unrollings of the factorial function. The dashed, star-marked
plot is for the original type checking, the orange, solid one is for the incrementalized one.
Dotted plots report the behavior of the incrementalized type checker for various values
of the threshold T . The x-axis is logarithmic, while the y-axis is scaled as necessary.
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4.5 conclusions

In this chapter we presented incremental type analysis as a possible way to achieve secure
compilation efficiently and automatically. For that, we have presented an algorithmic
schema for incrementally using existing type checking and type inference algorithms.
Our algorithmic schema is essentially a wrapper that uses the original typing algorithms
as gray-boxes. Indeed, assuming that the rules of the type system are given in a specific
format (in which most algorithmic presentations fit), only the shape of the input, the
output, and some domain-specific knowledge of the original algorithms are relevant. The
basic idea of our schema is to re-use as much as possible the available information on the
portions of code already typed, which is stored in a cache. Remarkably, the only real effort
for defining the incremental algorithm is establishing the notion of compatibility between
parts of the environments that are cached and portions that are relevant for re-typing.

Actually, we argue that our approach is mostly mechanizable. Indeed, our recent
graduate Federico Pennino developed a parser for automatizing the extraction of the
functions tr and checkJoin that specify a typing algorithm, directly from syntax-directed
inference rules written in Datalog [184]. We have introduced the basic bricks of our
approach and proved three theorems ensuring coherence, completeness and cache well-

formedness of any incrementalized algorithm. More precisely, these three properties of the
incremental algorithm follow from easily checking mild conditions on a notion of typing
context compatibility and on the original type system.

To illustrate the approach and show its flexibility, we have then instantiated our proposal
on seven typing algorithms for languages in three different programming paradigms
(imperative, functional and process calculus). The original type systems are taken from
the literature, and cover four different aspects: checking confidentiality and integrity,
dependent types, exceptions and protocol security.
We have then implemented an OCaml module that takes as an input two specific

functions (namely, tr and checkJoin) and the syntax of the language in hand and au-
tomatically generates the code of both its original and its incremental type system. As
a side result, one can use our module for generating early prototypes of type systems.
We have implemented the incremental version of the type checker of MinCaml, and
we have assessed it on synthetic programs with varying size and number of variables.
The experiments have shown our proposal worth using in situations in which changes
between successive re-typings are relatively small w.r.t the size of the program at hand,
since only diffs are typed, possibly with those parts of the code affected by them. Indeed,
e.g., when the size of diffs is close to that of the whole program, or when the code has
many inter-dependencies, the incrementalized type systems may slow down because
of too many compatibility checks. We mitigated this loss in performance by using less
cached information when an optional threshold is reached. Additionally, the cost of using
the type checker incrementally depends on the size of diffs, and its performance increases
as these become smaller, a typical situation when applying local transformations, e.g.,
code-motion, dead code elimination, and code wrapping.
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Related work

generic formats for typing judgments A few general formats for specifying
programming languages, program analysis tools and type systems exist in the literature,
e.g., PLT Redex [97] and K [203]. However, these proposals are usually much wider in
scope than the format we proposed in Definition 4.2 (Page 37). We feel that providing an
incrementalization schema based on (restricted versions of) one of these existing formats
could foster a wider adoption of our approach but at the same time we think that it would
make our framework significantly more complex.
Focussing instead of formats that are specific for type systems, Marino and Millstein

[145] propose a very general format with the aim to describe a large class of type and
effect systems. More precisely, they provide a set of rule templates to be instantiated to
the language at hand by specifying two functions: adjust and check. Very roughly, the first
function works similarly to our tr and the second one is analogous to checkJoin . However,
differently from us, they are interested in describing and studying the properties of various
type (and effect) systems and not in providing a general format useful for making typing
algorithms incremental. Also, Cimini and Siek [71] introduce Gradualizer, an algorithm
that inputs a type system and outputs a gradually typed version of it. For that, they chose
λ-prolog [98] to represent the input type system. As said above, a recent graduate of ours
followed a similar approach and developed a tool that parses inference rules written in
Datalog and automatically extracts a type checker following our format [184].

type-preserving compilation Despite the fact that type-preserving compilation is
a special form of secure compilation (see Chapter 2) and although many instances of
type-preserving compilers exist (e.g., [69, 134, 212]) only a handful of them have been
applied to security problems. One of the most influential examples of type-preserving
compilation with applications to security dates back to Morrisett et al. [156] that provide a
type-preserving compiler fromSystemF to a typed assembly language (calledTAL), via five
intermediate steps and four intermediate typed languages. More precisely, let J·KII′ be one
of the intermediate steps, they prove that if a program e has type τ , then the transformed
program JeKII′ has a type which is equivalent to τ . Ahmed and Blume [14] and Bowman and
Ahmed [45] respectively show that typed closure-conversion [152] and a translation from
DCC [4] to Fω [185, Chapter 30] are type-preserving and fully abstract, thus proving that
they preserve strong security properties. Barthe et al. [22] provide a compiler between two
security-typed languages and prove that if the source program satisfies non-interference
according to its type system, then its compiled counterpart still satisfies it. Tackling the
problem from the point of view of proof-carrying code [162], Barthe et al. [23] provide
a compiler that preserves verification conditions as generated on (annotated version of)
their source programs at the target. However, to the best of our knowledge, no effort has
been made to make the derivation of such type-preserving compilers systematic.

incremental analysis The literature has some proposals for incrementally typing
programs. However, these approaches heavily differ from ours, because all of them
propose a new incremental algorithm for typing, while we derive and incremental typing
algorithm bywrapping existing ones. Additionally, none of the approaches surveyed below
use a uniform characterization of type judgments as we do through the metafunctions tr

and checkJoin .
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Meertens [150] proposes an incremental type checking algorithm for the language B.
Johnson and Walz [120] treat incremental type inference, focussing on identifying where
type errors precisely arise. Aditya andNikhil [12] propose an incremental Hindley/Milner
type system supporting incremental type checking of top-level definitions. Our approach
instead supports incremental type checking for all kinds of expressions, not only the
top-level ones. Miao and Siek [151] introduce an incremental type checker leveraging the
fact that, in multi-staged programming, programs are successively refined. Wachsmuth
et al. [230] propose a task engine for type checking and name resolution: when a file is
modified a task is generated and existing (cached) results are re-used where possible. The
proposal by Erdweg et al. [95] and Kuci [130] is the most similar to ours, but, given a
type checking algorithm, they describe how to obtain a new incremental algorithm. As
in our case, they decorate an abstract syntax tree with types and typing environments,
represented as sets of constraints, to be suitably propagated when typing. In this way
there is no need of dealing with top-down typing context propagation while types flow
bottom-up. Recently, Facebook released Pyre [96] a scalable and incremental type checker
specifically designed for Python. Pacak et al. [173] propose a systematic approach to
derive incremental type checkers directly from the inference rules of a type checker. Their
idea is to compile the inference rules to the logic programming language Datalog [67], so as
to leverage existing efficient and incremental Datalog solvers. Actually, their compilation
consists of three steps. The first step translates the given inference rules into a format
that it is computable in Datalog. The second step further transforms the rules to enable
efficient and incremental type checking (via a specialized form of deforestation of typing
contexts [231]). Finally, the last step re-formulates the type checking algorithm to separate
error handling from type computation, so avoiding significant re-analyses when checking
code changes that fix a type error. Despite sharing our goals, their benchmarking results
are not directly comparable with ours since they adopt existing and very efficient Datalog
interpreters whereas we use our own prototypical implementation. We are convinced that
further research is needed to compare the two approaches, especially concerning their
ability to incrementally analyze programs with a lot of internal data dependencies.

Incrementality has also been studied for static analysis other than typing. IncA [220] is
a domain-specific language for the definition of incremental program analyses (including
typing algorithms), which represents dependencies among the nodes of the abstract
syntax tree of the target program as a graph. Infer [118] uses an approach similar to ours
in which analysis results are cached to improve performance [36]. Designing incremental
data-flow analyzers is a well studied problem and many proposals are based on the
technique of the restarting iteration [77, 104]. Intuitively, the idea of this technique is to start
the fixpoint iteration to solve the data-flow equations from an already computed analysis
where the entries corresponding to the changed program points are invalidated. Ryder
and Paull [205] present two incremental update algorithms, ACINCB and ACINCF, that allow
incremental data-flow analysis. Yur et al. [244] propose an algorithm for an incremental
points-to analysis. McPeak et al. [149] describe a technique for incremental and parallel
static analysis based on work units (self-contained atoms of analysis input). The solutions
are computed by a sort of processes called analysis workers, all coordinated by an analysis

master. Arzt and Bodden [19] presented Reviser, a tool for incremental interprocedural
data-flow analysis based on the IDE/IFDS framework. Given the control-flow graphs of
the two program versions, and a previous analysis, Reviser uses a graph-diff algorithm to
determine a superset of the changed nodes. Then, the tool recomputes the analysis for
them and for those nodes that transitively depend on them. More recently, Nichols et al.
[165] presents fixpoint reuse, an incremental static analysis technique based on fixpoint
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computations for Javascript programs. This technique, given two versions of a program
Po and Pn, and an analysis Ao for Po, computes a sound approximation An of the analysis
for Pn. Seidl et al. [210] extend the local generic solver for computing fixpoint solution on
which their tool Goblint relies to support incremental static analysis of different versions
of the same programs.
Also, there are papers that use memoization with a goal similar to the one of our

cache, even if they consider different analysis techniques. In particular, Mudduluru and
Ramanathan propose, implement, and test an incremental analysis algorithm based on
memoization of (equivalent) boolean formulas used to encode paths on programs [157].
Leino and Wüstholz [137] extend the verification machinery of the Dafny language with a
cache mechanism to record the results from earlier runs of the verifier. The cache works
on the control-flow graph of the program and for each node stores its verification results.
Thus, the verification efforts are focused on those parts of the program that were affected
by the user’s most recent modifications. Although their cache mechanism is similar to
ours, they do not provide any formal condition when it is safe re-use cached data. Also,
other authors apply memoization techniques to incremental model-checking [133, 241]
and incremental symbolic execution [195, 242].



5
S E C U R E T R A N S L AT I O N VA L I DAT I O N

In Chapter 4 we presented a first step towards automatization of secure compilation.
However, extending such an approach to check the preservation of infinite classes of
(hyper)properties may be rather impractical, especially when the target and the source
language differ. To overcome this limitation, we propose secure translation validation (STV )

that generalizes the framework of translation validation proposed by Pnueli et al. [189]
so guaranteeing robust safety property preservation [10]. More precisely, our idea is to
automatically detect whether the safety properties of a source program are broken by
its compiled version when executed in a given environment (modeled as a target context,
recall Chapter 2). Indeed, STV can automatically detect if a compiler preserves the family of
all the safety properties for a specific source program P, under a given target context. STV

is carried out at link time (i.e., when the compiled program is plugged into its execution
context) and we argue that this is the right time. On the one hand, it is not too early because
one typically wants some security guarantees on a module, e.g., a library, before launching
a program using it. On the other hand, it is not too late, since linking the same program to
different contexts may result in different security guarantees.

Example 5.1 (Motivating example). Consider for instance a functional source language S with

I/O primitives, but none for communication, and a compiler to a target language T that relies on

system calls for managing the I/O (on screen, network, etc.). Suppose that a run of the compiler

transforms the source program P

λ i.if i ≥ 0 then (display i; i) else (−1)

into the target program P

λ i.if i ≥ 0 then (sc_print i; i) else (−1).

Although intuitively correct, this compilation does not preserve the security property requiring a

program to never send a value on the network, which P enjoys in any context, i.e., a program with a

single hole. The property still holds when P is plugged into a non-evil target context that correctly
implements the system calls, however things go wrong when the context is evil, i.e., it maliciously

implements the system calls. For example, the property is violated when we plug P into Cevil

(
λ i.let sc_print=λ x.(display x; send x) in [·] i

)
42.

As said above, STV allows to automatically decide whether the compiled version of a
given source program still enjoys the same safety properties as its source counterpart in a
given context of execution.

87
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5.1 our proposal

Recall from Section 2.3.2 that translation validation [189] checks the correctness of the
compilation of a given program P, rather than proving the compiler correct for all inputs.
Roughly, it works as follows: first, the source and the target languages are endowed
with two semantics sharing the same observables; then a suitable simulation is defined
between the result of the compilation and the corresponding source program: if such a
simulation exists, the compilation is correct; finally, an algorithm effectively computes
the required simulation, if any. Remarkably, this algorithm gives a fully automaticway of
checking the correctness of real-world optimizing compilers [163]. A tempting approach
could be to automatically prove also the security of a compiler by showing (the existence
of) a (suitable) simulation between the source and the target program. However, the
construction of the required simulation, if any, is undecidable when the program at hand
is not finite-state [87]. Program analysis comes to our rescue and allows us to devise a
mechanical (and approximated) procedure to deal with this problem.
For that, we consider principles guaranteeing the preservation of safety properties,

inspired by RSP and RSC (see Definition 2.11 and Definition 2.12, Page 8) proposed
by Abate et al. [10]. As said above, RSC considers finite traces produced by the compiled
program when plugged in a possibly malicious context: the compiler robustly preserves
safety properties iff there exists a context in which the source program also produces the
same finite traces.
We can effectively check this principle by using STV . Indeed, we can get rid of the

universal quantifiers on programs and contexts because STV only considers a single

program at a time and the check is performed at link time, and proceed as follows. The
first key ingredient of STV are two program analyses, one for S and one for T. Crucially,
we require the analysis for S to produce an under-approximation of the behavior of the
program under analysis, while that of T has to produce an over-approximation. Under-
approximation at the source and over-approximation at the target are indeed fundamental
(see Theorems 5.4 and 5.5) to guarantee the absence of false positives (i.e., target programs
classified as securewhen they are not). Of course, false negativesmay still be produced and
we may fail to prove a compilation secure because of the over- and under-approximations
of the behavior of programs. For instance, in Section 5.4 we consider the source analysis to
be program testing, whereas we instantiate target analysis as a type and effect system [166]
that infers history expressions [32]. A history expression is a (finite-state) process of a basic
process algebra [34], whose actions are, in our case, the observables of the trace semantics

of the source language, e.g., in the code of P in Example 5.1 the observable of the primitive
display will be display itself.
With our analyses in hand, at link time we plug the compiled program P = JPKST into

the target context C, obtaining C[P]. Once the over-approximated behavior of C[P] is
computed, we verify if the compilation process broke some of its properties of interest.
To this aim, starting from C we build a source context C witnessing the presence of all
the behaviors of C[P] at the source level, i.e., we check beh(W ) ⊆ beh(W ), where beh(W )

denotes the over-approximated behavior of C[P] and beh(W ) the under-approximated
one associated with C[P]. Note that, to keep this procedure effective, the inclusion of
behaviors ⊆ must be decidable, as it is the case for example with traces generated by
testing and our instantiation of history expressions.
In summary, in this chapter we

• Introduce STV as a mean for achieving secure compilation with active attackers
automatically;
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• Define a notion of STV and link it with robust safety property preservation from [10];

• Give two abstract variants of STV , that are more amenable to verification;

• Define our STV algorithm and prove that it entails our notions of abstract STV ;
and

• Apply STV to a simple use case, whose languages are inspired from Protzenko et al.
[193].

The rest of the chapter is organized as follows. Section 5.2 lays the foundations of STV . A
concrete use case of our framework is shown in Section 5.4. For that, we formally introduce
a source and a target language, their analyses, and show a concrete usage of STV on a
simple example. Section 5.5 discusses how to lift some assumptions and limitations of our
STV framework and of the presented use case. Finally, Section 5.6 concludes the chapter.

The whole development of Section 5.2 has been mechanized using the Coq proof
assistant and is available online at https://github.com/matteobusi/stv/tree/
phdthesis.

5.2 secure translation validation

In this section we lay the foundations for our secure translation validation (STV ) approach,
making formal the intuitions of the previous two sections.1
Consider again the scenario we briefly illustrated at the beginning of the chapter.

Suppose to have a compiled program which is about to be linked (e.g., by a static linker
or a program loader) with a given context (e.g., its execution environment). We want to
make sure that it is safe to execute this program, by showing automatically that any attack
that can be carried out by the context in the target can also be carried out by some context
in the source.
For our purposes, a (source or target) programming language is defined as follows

Definition 5.1 (Programming language ). A programming language (or simply, a language)

L is a 5-tuple (Whole,Partial ,Ctx , ·[·], · ·−→ ·) with:

1. Whole is the set of whole programs;

2. Partial is the set of partial programs;

3. Ctx is the set of contexts;

4. ·[·] : Ctx → Partial →Whole is the linking operator;

5. · ·−→ · : Whole → Σ → Whole is a labelled transition function, where Σ is the set of

observables as in Chapter 2. Also, we denote with · ·−→
∗
· its reflexive and transitive closure.

Intuitively, the linkingoperator completes apartial programwith theneeded information
from the context and produce a whole program, while the transition function describes
the execution of whole programs and their observable behavior. Also, we specialize the
notion of behavior of a whole programW as the set of all the prefixes of its traces, i.e.,
beh(W ) , {t ∈ Ψfin | ∃W ′. W

t−→
∗

W ′}. Furthermore, from now onward we will assume
to have a source language S and a target language T, along with a compiler J·K from S to
T (Definition 2.7).

1 All the proofs of this section are mechanized in Coq and available online at https://github.com/
matteobusi/stv/tree/phdthesis. Links with the symbol in the pdf lead to relevant theorems and
definitions in the repository.

https://github.com/matteobusi/stv/tree/phdthesis
https://github.com/matteobusi/stv/tree/phdthesis
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L55L61
https://github.com/matteobusi/stv/tree/phdthesis
https://github.com/matteobusi/stv/tree/phdthesis
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We are now ready to formalize our notion of STV in the case of safety properties. The
notion of STVRSP states when a target program can be executed securely:

Definition 5.2 (STV robust safety property preservation ). A target program P can be

executed securely in C w.r.t. a source program P (written P `C
P STVRSP ) iff

∀π ∈ Safety . (∀C. C[P] � π)⇒ C[P] � π.

Intuitively, P `C
P STVRSP holds whenever the target program P satisfies π under the

given target context, provided that P does in any source context. Perhaps surprisingly,
the program P is not required to be the compiled version of P. This is done on purpose,
since imposing P = JPK for a given J·K would allow to use the information about J·K to
prove STVRSP . We do not want this in the above definition, since we want to consider the
compiler as a black-box and we want it to be outside the trusted computing base.

The following theorem guarantees that our definition of STVRSP corresponds to that of
RSP [10] (see Definition 2.11):

Theorem 5.1 (STVRSP ⇔ RSP ). Let J·K be a compiler from S to T.(
∀C,P. JPK `C

P STVRSP

)
⇔ J·K ∈ RSP .

Similarly to the principles by Abate et al. [10], we have the following criterion that does
not explicitly mention the class of all the safety properties:

Definition 5.3 (STV robustly safe compiler ). A target program P satisfies the STV

criterion for safety properties in C w.r.t. P (written P `C
P STVRSC ) iff

∀t. t ∈ beh(C[P])⇒ ∀m ≤ t.
(
∃C, t′. t′ ∈ beh(C[P]) ∧m ≤ t′

)
.

The criterion we just stated turns out to be equivalent to Definition 5.2:

Theorem 5.2 (STVRSP ⇔ STVRSC ). For any target program P, target context C and source

program P:

P `C
P STVRSP ⇔ P `C

P STVRSC .

Also, analogously to STVRSP and RSP (Theorem 5.1) there is a correspondence between
STVRSC and RSC (Definition 2.12):

Theorem 5.3 (STVRSC ⇔ RSC ). Let J·K be a compiler from S to T.(
∀C,P. JPK `C

P STVRSC

)
⇔ J·K ∈ RSC .

5.3 effective secure translation validation

The definitions from Section 5.2 easily follow from the robust secure compilation principles
and criteria of Abate et al. [10]. However, they are hardly practical in a context in which
one would like to achieve automation since in most cases the set of all traces is difficult
or even impossible to extract. To overcome this issue, we introduce three variants of the
notion of abstract STV and put forward a few conditions for their applicability.
Our notions of abstract STV rely on a notion of analysis, which roughly is a mapping

between a language and an abstract version of it:

Definition 5.4 (Analysis ). An analysis L·MLℒ from a language L (called concrete language) to

the language ℒ (called abstract language) is a triple (αPartial , αCtx , αWhole) where

https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L141
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L145L151
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L143
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L170L205
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L153L159
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L219L225
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• αPartial maps partial programs of L in partial programs of ℒ;

• αCtx maps contexts of L in contexts of ℒ; and

• αWhole maps whole programs of L in whole programs of ℒ.

From now onward we will abuse the notation and feel free to use L·MLℒ in place of its
components when analyzing partial programs, contexts, or whole programs.
Of course, not all analyses are adequate for our purposes, e.g., think of an analysis

mapping any program or context into an empty program. Therefore, we will only use
analyses that enjoy a (non-empty combination of) the following three properties: soundness,
completeness, and modularity. Intuitively, we say that an analysis is sound if the behavior of
the abstract program (i.e., the one resulting from the analysis) includes that of the original
one. Dually, complete analyses are such that the behavior of the abstract program is included

in that of the original one. Finally, an analysis is modular if the abstracted version of C [P ]

behaves the same way as the results of the analysis of C and P computed separately and
then linked together. Formally:

Definition 5.5 (Sound , complete , and modular analyses).
An analysis L·MLℒ is

• Sound iff ∀C,P. beh(C [P ]) ⊆ beh(LC [P ]MLℒ);

• Complete iff ∀C,P. beh(C [P ]) ⊇ beh(LC [P ]MLℒ);

• Modular iff ∀C,P. beh(LC [P ]MLℒ) = beh(LC ML
ℒ[LPML

ℒ]).

From now onward we will assume two analyses: L·MSS from S to S, and L·MTT from T to T .
With the above notions in hand, one might be tempted to define the abstract criterion as
follows:

Definition 5.6 ((Tentative) aSTVRSC ). A target program P satisfies the abstract STV

criterion for safety properties in C w.r.t. P (written P `C
P aSTVRSC ) iff

∀t. t ∈ beh(LCMTT [LPMTT ])⇒
(
∃〈〈·〉〉TS . t ∈ beh(L〈〈t,C〉〉TS MSS[LPMSS])

)
where 〈〈·〉〉TS is a backtranslation function (see Chapter 2 and [10, 177, 180]) mapping traces and

contexts of T into contexts of S.

Intuitively, this criterion requires that any attack that can be carried out at the abstract
target level must have a corresponding attack at the abstract source level. Indeed, this
abstract notion of STV arises naturally from the above definitions, and it can be easily
proved to imply Definition 5.3 and thus Definition 5.2:

Theorem 5.4 (Definition 5.6⇒ STVRSC ). Assume L·MSS to be complete and modular, and

L·MTT to be sound and modular. Then for any C, P, P:

P `C
P aSTVRSC ⇒ P `C

P STVRSC .

Corollary 5.1 (Definition 5.6⇒ STVRSP ). Assume L·MSS to be complete and modular, and

L·MTT to be sound and modular. Then for any C, P, P:

P `C
P aSTVRSC ⇒ P `C

P STVRSP .

https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L229
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L230
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L228
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L242L245
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L248L267
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L269L276
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However, the hypotheses for the above theorems are quite strong since the source analysis
is required to be modular, complete, and to produce abstractions for source contexts.
Consider for instance the set of program traces as the abstract source language, and
program testing as the source analysis. Despite being complete (according toDefinition 5.5),
program testing usually lacks the ability to abstract (i.e., execute) source contexts, and
consequently it lacks themodularity property. Fortunately, we can remove the requirement
about the modularity of the source analysis by slightly changing Definition 5.6:

Definition 5.7 (aSTVRSC ). A target program P satisfies the abstract STV criterion for
safety properties in C w.r.t. P (written P `C

P aSTVRSC ) iff

∀t. t ∈ beh(LCMTT [LPMTT ])⇒
(
∃〈〈·〉〉TS . t ∈ beh(L〈〈t,C〉〉TS [P]MSS)

)
where 〈〈·〉〉TS is a backtranslation function [10, 177, 180] mapping traces and contexts of T into

contexts of S.

Note that this new definition requires the source program to be available at linking time,
which is the case in our scenario. As above, we can easily prove that this abstract notion of
STV implies Definition 5.3 and thus Definition 5.2:

Theorem 5.5 (aSTVRSC ⇒ STVRSC ). Assume L·MSS to be complete, and L·MTT to be sound and

modular. Then for any C, P, P:

P `C
P aSTVRSC ⇒ P `C

P STVRSC .

Corollary 5.2 (aSTVRSC ⇒ STVRSP ). Assume L·MSS to be complete, and L·MTT to be sound

and modular. Then for any C, P, P:

P `C
P aSTVRSC ⇒ P `C

P STVRSP .

One could do the same for the target analysis. However, in our scenario it is highly
unlikely that the target context and the target program can be analyzed together at linking
time. Also, using the above definition of aSTVRSC can be quite demanding. Indeed,
to build the wanted source context, the backtranslation function may depend on the
information about a specific trace in the behavior of the abstracted target program. If
such a dependency is not acceptable (e.g., for performance reasons) we can change the
definition above as follows:

Definition 5.8 (aSTVTI -RSC ). A target program P satisfies the abstract trace-independent
STV criterion for safety properties in C w.r.t. P (written P `C

P aSTVTI -RSC ) iff

∃〈〈·〉〉TS . ∀t. t ∈ beh(LCMTT [LPMTT ])⇒ t ∈ beh(L〈〈C〉〉TS [P]MSS)

where 〈〈·〉〉TS is now a function mapping contexts of T into contexts of S.

Crucially, this new notion implies the old one (and thus STVRSP , if L·MSS is modular and
sound, and L·MTT is complete):

Theorem 5.6 (aSTVTI -RSC ⇒ aSTVRSC ). For any C, P, P:

P `C
P aSTVTI -RSC ⇒ P `C

P aSTVRSC .

https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L332L335
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L384L393
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L396L406
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L372L375
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L377L381
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Algorithm 1 Pseudo-code for the STV algorithm .
function SafeToRun(C ∈ TCtx,P ∈ SPar,P ∈ TPar)

Assume that ⊆ on abstract behaviors is computable
Assume L·MSS to be an analysis from S to S
Assume L·MTT to be an analysis from T to T
Let b : TCtx ⇀ SCtx be a backtranslation function

if b(C) is undefined then

return (MAYBE_UNSAFE,⊥)

else

if beh(LCMTT [LPMTT ]) ⊆ beh(L(b(C))[P]MSS) then

return (SAFE,⊥)

else

return (MAYBE_UNSAFE, b(C))

end if

end if

end function

Building on Definition 5.8, we finally put everything together in Algorithm 1. Assume
inclusion between behaviors of programs in S and T to be computable, and let b : TCtx ⇀

SCtx be a partial function mapping target contexts into source ones (intuitively, a partial
backtranslation). The algorithm is now rather straightforward. If the function b is defined
on C, it then checks the conditions of Definition 5.8 and if they hold it returns (SAFE,⊥).
When these conditions do not hold, the algorithm returns the pair (MAYBE_UNSAFE, b(C))

meaning that it may be unsafe to link the target program in hand with C; it also gives b(C)

as a possible source-level attacker ofP. Finally, if b is undefined onC the same happens, but
no counterexample is exhibited. The following theorem proves that if Algorithm 1 returns
(SAFE,⊥), then it is safe to run the program according to the definition of aSTVTI -RSC :

Theorem 5.7 ((SAFE,⊥) ⇒ aSTVTI -RSC ). Let P be a partial target program, C be a

target context and P be a source program. If SafeToRun(C,P,P) = (SAFE,⊥) then P `C
P

aSTVTI -RSC .

Recall now our usage scenario. Let P be the program before compilation and P = JPKST
be the partial target program that wewant to execute in the target contextC. The following
corollary allows us to use Algorithm 1 to assess whether it is secure to run P in C:

Corollary 5.3 (Algorithm 1 is correct ). Assume L·MSS to be complete, and L·MTT to be sound

and modular. If SafeToRun(C,P,P) = (SAFE,⊥) then P `C
P STVRSP .

5.4 a use case for secure translation validation

This section illustrates a simple use case for our STV framework. We focus here on source
and target languages that simplify λow∗ and C∗ from Protzenko et al. [193] by removing
heap-related constructs. Although simple enough to keep the presentation manageable,
we remark that these two languages are used in practice [193].

https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L433L446
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L469L483
https://github.com/matteobusi/stv/blob/phdthesis/Framework.v#L485L497
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The source language µow∗ is a simple first-order functional language. The contexts
of µow∗ are sequences of definitions introducing environment variables and functions,
ending with a hole. Partial programs are expressions (as found in many functional
languages), with the additional ability to invoke I/O primitives in the set Prim (e.g., for
writing on screen). Whole programs are obtained by filling the hole of a context with a
partial program.

The target language µC∗ is instead an imperative language. The definitions of contexts
and whole programs are very similar to the ones of µow∗, partial programs are instead
lists of statements. The special syntactic construct call is used to invoke system calls
taken from a given set SCName. Also, we assume that SCName ⊇ Prim . Note that this
inclusion is reasonable: it often happens that source, high-level languages forbid access to
some system functionalities that are available to lower-level languages, e.g., for portability
reasons.

Both µow∗ and µC∗ are deterministic languages, whose observable behavior is defined
as the sequence of system calls performed by a program during its execution. Formally,
a trace t is a sequence of names taken from the set Σ = SCName ⊇ Prim . Also, let ε be
empty sequence, that is the neutral element of the sequence concatenation operator · (i.e.,
ε · t = t · ε = t).
A said above, to make STV practical we also need two abstract languages and two

analyses mapping programs from µow∗ and µC∗ to their abstract counterparts.
The abstract source language is called µOW∗. Since we are going to use aSTVTI -RSC , we

slightly abuse Definition 5.1 and just define the set of whole programs of µOW∗ (which
actually coincides with the set of sets of finite traces). The analysis from µow∗ to µOW∗ is
L·Mµow∗

µOW∗ and it maps a whole source program to the set of the finite prefixes of its behavior.
The abstract target language µC∗ is instead that of history expressions (see [32] for

further details), with observables over the set Σ = SCName . The analysis is in this case a
type and effect system inferring histories directly from programs and contexts.

5.4.1 The concrete and abstract source languages and their analysis

In the following, we present the source language µow∗, its abstract counterpart µOW∗, and
the (complete) analysis relating them.

the source language: µow∗ As said above µow∗ is a simply-typed, first-order
functional language inspired by the λow∗ language from [193]. The only relevant difference
with λow∗ is that variables in their language can be allocated on the heap. Let Prim be the
set of the names of available language primitives, included in the set of the observables.
For the sake of simplicity, we model primitives as opaque procedures with no return
value. Also, since the type system is standard, we omit it and assume that all programs
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are well-typed. The definition of µow∗ = (Wholeµow∗ ,Partialµow∗ ,Ctxµow∗ , ·[·], ·
·−→µow∗ ·)

is rather unsurprising. Its syntax is defined as follows:

fp ∈ Prim x, f ∈ Name fc ∈ CName

Prim ∩Name = ∅ Prim ∩ CName = ∅ Name ∩ CName = ∅
v ∈ Val = Z ∪ { () } op ∈ {+, ∗,−} τ , τ1 ∈ {int, unit}

Partialµow∗ 3 P ::= let x : τ = v inP | let f =λ x : τ .e : τ1 inP | e
e ::= v | x | e1 op e2 | let x : τ = e1 in e2 | let x : τ = f e in e2 |

let x : τ = fc e in e2 | let x : unit= fp e in e2 |
if e1 then e2 else e3

Ctxµow∗ 3 C ::= let fc =λ x : τ .e : τ1 inC | [·]

Given a context and a program, we can easily define the linking operator:

(let fc =λ x : τ1.e : τ2 inC)[P] = let fc =λ x : τ1.e : τ2 inC[P]

([·])[P] = P.

The set of whole programs, Wholeµow∗ , is then the set of programs generated by the
linking operator above. The rules defining the call-by-value operational semantics for
whole programs are in Figure 43, where {·/·} is the usual capture-avoiding substitution
operator. Most of the rules are unsurprising, the only interesting cases being those for the
invocation of primitives. When a program calls a primitive, it first reduces its parameter
to a value (rule (µow∗-Prim0)) and then it invokes the actual primitive fp , emitting fp as
the observable (rule (µow∗-Prim1)).

the abstract source language: µOW ∗ Now that our source language µow∗ is fully
defined we can introduce its abstract counterpart µOW∗. As said above, we abuse Defini-
tion 5.1 and just define whole programs of µOW∗. Since our analysis is program testing
(see below), we defineWholeµOW∗ as the set of all finite program traces, formally:

WholeµOW∗ = ℘(Prim∗).

The semantics of µOW∗ is as follows (where \ is the usual set difference operation)

t ∈ W

W t−→µOW∗ W\{t}

the analysis We are now ready to define the analysis L·Mµow∗

µOW∗ from µow∗ to µOW∗. As
said above, L·Mµow∗

µOW∗ is defined as program testing on whole programs of µow∗, i.e.,

LWMµow∗

µOW∗ = {t |W t−→
∗
µow∗W

′}.

Note that the above set is always finite because all µow∗ programs are total: the language
has no recursion, no recursive types and no higher-order state. To see our definitions at
work, consider the following simple example.

Example 5.2. Assume a primitive display that shows a given integer on the screen and let P be

the following partial µow∗ program:

let x : int= 3 in

let dx : int= d x in

if dx then (display x ) else (display 42 )
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(µow∗-LetVar0)
e1

o−→µow∗ e
′
1

let x : τ = e1 in e2
o−→µow∗ let x : τ = e′1 in e2

(µow∗-LetVar1)

let x : τ = v in e2
ε−→µow∗ e2{v/x}

(µow∗-LetAbs)
f ∈ Name ∪ CName

let f =λ x : τ .e1 : τ1 in e2
ε−→µow∗ e{(λ x : τ .e1 : τ1) / f }

(µow∗-Op0)
e1

o−→µow∗ e
′
1

e1 op e2
o−→µow∗ e

′
1 op e2

(µow∗-Op1)
e2

o−→µow∗ e
′
2

n1 op e2
o−→µow∗ n1 op e′2

(µow∗-Op2)
n = n1 op n2

n1 op n2
o−→µow∗ n

(µow∗-App0)
e2

o−→µow∗ e
′
2

let x : τ = (λ y : τ1.e1 : τ) e2 in e3
o−→µow∗ let x : τ = (λ y : τ1.e1 : τ) e′2 in e3

(µow∗-App1)

let x : τ = (λ y : τ1.e1 : τ) v in e3
ε−→µow∗ let x : τ = e1{v/y} in e3

(µow∗-Prim0)
fp ∈ Prim e

o−→µow∗ e
′

let x : unit= fp e in e2
o−→µow∗ let x : unit= fp e

′ in e2

(µow∗-Prim1)
fp ∈ Prim

let x : unit= fp v in e2
fp−→µow∗ e2

(µow∗-If)
e1

o−→µow∗ e
′
1

if e1 then e2 else e3
o−→µow∗ if e′1 then e2 else e3

(µow∗-If0)

if n then e2 else e3
ε−→µow∗ e3

n = 0

(µow∗-If1)

if n then e2 else e3
ε−→µow∗ e2

n = 1

Figure 43: Semantics of the µow∗ language.

Now, let C[P] ∈ Wholeµow∗ be the whole program obtained by linking P with the context

C = (let d = (λ y : int.y ∗ 2 : int) in [·]). Analyzing C[P], we get:

LC[P]Mµow∗

µOW∗ = {m | m ≤ ε · ε · ε · ε · ε · ε · display} = {ε, display}.

Now, rather trivially, the following theorem follows:

Theorem 5.8. L·Mµow∗

µOW∗ is a complete analysis.

Proof. Easily from the definition of the analysis and the semantics of µow∗ and µOW∗.

5.4.2 The concrete and abstract target languages and their analysis

Here we present our target language µC∗ and its abstract counterpart µC∗. Also, we
introduce the analysis as a sound type and effect system inferring µC∗ (partial) programs
and contexts starting from concrete ones in µC∗.
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the target language: µC∗ µC∗ is an imperative language inspired by the C∗
language by Protzenko et al. [193]. Just as in [193] and µow∗, in C∗ we forbid nested
function declarations. Let SCName be the set of the names of available system calls,
coinciding with the set of the observables of µC∗. Similarly to primitives of µow∗, we
model system calls as opaque procedures with no return value. Contexts and partial
programs of µC∗ are defined as follows:

fsc ∈ SCName x, y, f ∈ Name fc ∈ CName n ∈ Z
SCName ∩Name = ∅ SCName ∩ CName = ∅ Name ∩ CName = ∅

v ∈ Val = Z ∪ { () } op ∈ {+, ∗,−} τ , τ1 ∈ {int, unit}
a ::= n | x | a1 op a2

Expr 3 e ::= a | ()
PartialµC∗ 3 P ::= τ x = v ; P | fun f (y : τ) : τ1 {s}; P | s

s, s1, s2 ::= τ x = e; s | τ x = f (e); s | τ x = fc (e); s | call (fsc , e); s |
if (e) {s1} else {s2}; s | return e; s | return e

CtxµC∗ 3 C ::= fun fc (y : τ) : τ1 {s}; C | [·]

Names and values are shared with the source language µow∗. Arithmetic expressions
and expressions are standard and have no side effects. Partial programs are sequences
of declarations terminating with a statement. The statements include declarations of
variables, function calls (x = f (e)), calls to functions defined in the context (x = fc (e)),
and conditionals. All the statements end with a return. Returns appearing before the end
of a statement are simply ignored. Similarly to C∗, variables are immutable and functions
can only access their local variables and parameters. Additionally, our language has a
special syntactic construct call (fsc , e) used to invoke the system call fsc passing to it the
value obtained by evaluating e.

Given a target context and a partial program, we define the linking operator as:

(fun fc (y : τ) : τ1 {s}; C)[P] = fun fc (y : τ) : τ1 {s}; C[P]

([·])[P] = P

Again, the set of whole programs WholeµC∗ is the set of programs generated by the
linking operator above. Before defining the semantics of µC∗ we need to define the set
RuntimeµC∗ , corresponding to the set of configurations that may arise at runtime. To do
that we define extended partial programs of µC∗, built upon extended statements that enrich
standard statements with the following two alternatives:

s, s1 ::= . . . | τ x = (fn (y : τy) {s}Γ) ; s1 |
τ x = (fn (y : τy) {return e}Γ) ; s1

where Γ is a typing environment used by our type and effect system to keep track of the
types of the variables inside functions (see below).
The transition relation of the semantics has the form

(σ̄,Π),R
o−→µC∗ (σ̄′,Π′),R′

where (1) σ̄, σ̄′ ∈ Stack = (Name ⇀ Val)∗ denotes a stack, i.e., a finite list of frames. A
frame is a partial map from variables to their values; (2) Π,Π′ are function environments

and associate function names with their definitions; (3) R,R′ ∈ RuntimeµC∗ is a runtime
program; and (4) o ∈ Σ is an observable. Intuitively, a transition from (σ̄,Π),R to
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(σ̄′,Π′),R′ with observable o denotes that the program R evolves into R′ by emitting o as
its observable behavior and changing σ̄ and Π into σ̄′ and Π′. Figure 44 shows the rules
defining the operational semantics of programs of µC∗, where the evaluation function for
arithmetic expressions [·]· : Expr× Stack→ Val is defined as

[n]σ̄ = n

[x]σ′·σ̄ = σ′(x) if x ∈ dom
(
σ′
)

[a1 op a2]σ̄ = [a1]σ̄ op [a2]σ̄

Also, we assume the usual concatenation operator on lists (denoted with ·); the update
operator for mappings (written ·[· 7→ ·]); and the update operator on stacks to always
operate on the topmost frame. Most of the rules are standard and reminiscent of those
of Protzenko et al. [193]. The only interesting case is that of system calls: first, we reduce
its parameter to a value and then we perform the actual call to fsc , emitting the observable
fsc (rule (µC∗-Call)). Behaviors are then defined as the finite traces that can be generated
starting from a stack with a single, empty frame and an empty function environment:

beh(R) = {t | ∃R′, σ̄,Π. ({}, ∅),R t−→
∗
µC∗(σ̄,Π),R′}.

the abstract target language: µC∗ We now move to the abstract target language,
µC∗. Both partial and whole programs of µC∗ are defined as history expressions:

PartialµC∗ 3 HS,H
′
S ::= •τ | h | HS; H′S | HS + H′S | f τsc

WholeµC∗ 3 HW ::= •τ | HW; H′W | HW + H′W | f τsc | >.

Where •τ denotes an abstract program with empty behavior, whose type annotation τ
intuitively corresponds to the type of the concrete statement the empty program abstracts;
variables h indicate an unknown effect coming from the context; f τsc denotes a system
call, whose annotation τ corresponds to the type of the parameter of the system call; the
operator ; is for sequencing; and + denotes the non-deterministic choice; > is the history
expression whose behavior is the set of all the possible prefixes of the traces over SCName .

Also, for any τ we let (PartialµC∗ ,op, •τ ) and (WholeµC∗ ,op, •τ ) bemonoids if op = ;,
and commutative monoids if op = + (which is considered idempotent). Furthermore, for
both PartialµC∗ and WholeµC∗ we assume the following axiom:

o; (H + H′) = o; H + o; H′.

(Note that from the above assumptions it is easy to define a rewriting system that reduces
history expressions to a normal form, up to associativity and commutativity, see e.g., [32].)
Finally, from now onward we will stipulate that any context name fc ∈ CName is

associated with the unique variable hfc and we consider histories up to the above axioms
and assumptions.
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(µC∗-FunDecl)
f ∈ Name ∪ CName

(σ̄,Π), fun f (y : τf ) : τ1 {s1}; s
ε−→µC∗ (σ̄,Π[f 7→ (fn (y : τy) {s1})]), s

(µC∗-VarDecl)
[e]σ′·σ̄ = v x /∈ dom

(
σ′ · σ̄

)
(σ̄,Π), τ x = e; s

ε−→µC∗ (σ̄[x 7→ v ],Π), s

(µC∗-App0)
f ∈ Name ∪ CName Π(f) = fn (y : τy) {s1}

(σ̄,Π), τ x = f (e); s
ε−→µC∗ ({y 7→ [e]σ̄} · σ̄,Π), τ x = (fn (y : τy) {s1}∅) ; s

(µC∗-App1-Decl)
(σ̄,Π), τ x = e; s′1

o−→µC∗ (σ̄′,Π′), s′1 Γ′ = Γ[x 7→ τ ]

(σ̄,Π), τ x =
(
fn (y : τy) {τ x = e; s′1}Γ

)
; s

o−→µC∗ (σ̄′,Π′), τ x =
(
fn (y : τy) {s′1}Γ′

)
; s

(µC∗-App1)
s1 /∈ {return e, τ x = e; s′1} (σ̄,Π), s1

o−→µC∗ (σ̄′,Π′), s′1

(σ̄,Π), τ x = (fn (y : τy) {s1}Γ) ; s
o−→µC∗ (σ̄′,Π′), τ x =

(
fn (y : τy) {s′1}Γ

)
; s

(µC∗-App2)

(σ′ · σ̄,Π), τ x = (fn (y : τy) {return e}Γ) ; s
ε−→µC∗ (σ̄,Π), τ x = v ; s

[e]σ′·σ̄ = v

(µC∗-Call)

(σ̄,Π), call(fsc , e); s
fsc−→µC∗ (σ̄,Π), s

[e]σ̄ = v

(µC∗-If0)

(σ̄,Π), if (e) {s1} else {s2}; s
ε−→µC∗ (σ̄,Π), s2; s

[e]σ̄ = 0

(µC∗-If1)

(σ̄,Π), if (e) {s1} else {s2}; s
ε−→µC∗ (σ̄,Π), s1; s

[e]σ̄ 6= 0

(µC∗-Ret)

(σ̄,Π), return e
ε−→µC∗ (σ̄,Π),v

[e]σ̄ = v
(µC∗-RetSeq)

(σ̄,Π), return e; s
ε−→µC∗ (σ̄,Π), s

Figure 44: Semantics for runtime programs of the µC∗ language.
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Abstract contexts are just special kind typing contexts mapping function names into
their type and latent effects:

CtxµC∗ 3 HC ::= ∅ | HC[f 7→ τ
HS−−→ τ1]

The linking operator is defined by cases as follows:

HC[H] =

HW if HW = subst(HC,H) ∧ FV (HW) = ∅

> o.w.

where subst is

subst(∅,H) = H

subst(HC[fc 7→ τ
Hfc−−→ τ1],H) = subst(HC,H{Hfc/hfc}).

It is easy to see that ·[·] always produces a whole program of µC∗. Since we allow
the attacker to freely choose the (abstract) context, when the current context does not
provide enough information to complete the linking (i.e., when FV (HW) 6= ∅), the linking
operator produces the whole abstract program > to reflect the fact. The semantics of
whole programs of µC∗ is in Figure 45. Intuitively, the rule (µC∗-Eps) allows any history
expression to emit an empty observable. The second rule describes the behavior of >,
which can move to itself by emitting any observable. The rule (µC∗-Seq) is for sequencing
and the fourth rule reduces histories denoting system calls. Finally, rule (µC∗-Choice)
deals with the choice operator by reducing it to its right operand. Note that there is no
need of a symmetric rule (i.e., one that reduces the choice operator to the left operand)
since + is commutative monoid.

the analysis For the purpose of applying aSTVTI -RSC we now need a (sound and
modular) analysis that abstracts (partial and runtime) programs and contexts of µC∗ into
those of µC∗. As said above, our analysis is based on a type and effect system that extracts
abstract programs from concrete ones. Types are either τ as in µC∗, or functional types
τ

H−→ τ1, with H being the latent effect, i.e., an effect that is observable upon the execution
of the function associated with it. Figures 46 and 47 display the type and effect system for
extended partial programs of µC∗, whose judgments have the form:

Γ,∆ ` P : τ & H

(µC∗-Eps)
HW

ε−→µC∗ HW

(µC∗-Top)
o ∈ Σ

> o−→µC∗ >

(µC∗-Seq)
HW

o−→µC∗ H′′W

HW; H′W
o−→µC∗ H′′W; H′W

(µC∗-SysCall)

f τsc
fsc−→µC∗ •τ

(µC∗-Choice)

HW + H′W
ε−→µC∗ HW

Figure 45: Semantics for whole programs of the µC∗ language.
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(AP-Int)
Γ,∆ ` n : int & •int

(AP-Unit)
Γ,∆ ` () : unit & •void

(AP-Var)
Γ(x ) = τ

Γ,∆ ` x : τ & •τ

(AP-Op)
Γ,∆ ` a1 : int & •int Γ,∆ ` a2 : int & •int

Γ,∆ ` a1 op a2 : int & •int

(AP-DeclVar) + case for P in place of s
Γ,∆ ` e : τ & •τ Γ[x 7→ τ ],∆ ` s : τs & H

Γ,∆ ` τ x = e; s : τs & H

(AP-DeclFun) + case for P in place of s
f ∈ Name ∪ CName

[y 7→ τy ],∆ ` s1 : τf & Hf Γ,∆[f 7→ (τy
Hf−−→ τf )] ` s : τs & Hs

Γ,∆ ` fun f (y : τy) : τf {s1}; s : τs & Hs

Figure 46: The type and effect system for extended partial programs of µC∗ (part I).

where P is an extended partial program, and Γ and ∆ are typing environments mapping
names of variables and names of functions into their types.We now briefly comment on the
most interesting rules of the type and effect system.Rules (AP-Int)-(AP-Op) allowus to infer
that expressions never have observable behavior. Rules (AP-DeclVar) and (AP-DeclFun)
deal with the declarations of variables and functions and are standard. The rule (AP-App0)
typechecks function calls using the typing information coming from ∆ and uses the
latent effect of the function being executed to infer the effect of the whole program in
hand. Rules (AP-App1) and (AP-App2) are similar, but deal with syntactic configurations
belonging to extended statements. Crucially, the additional typing environment Γ1 is
used to check types and infer effects of the body of the function being executed, so
faithfully simulating the stack of the dynamic semantics. Rule (AP-AppNF) is used in
partial programs only and puts a placeholder in place of the effect of functions coming
from the context (to be substituted upon linking). Effects of system calls are inferred by
rule (AP-Call). Finally, rules (AP-If), (AP-Ret), and (AP-RetSeq) are standard and deal
with conditionals and returns. Figure 48 displays the rather trivial type and effect system
for contexts of µC∗. Its judgments have the form:

Γ,∆ ` C : τ & H

where typing environments are as above, C is a context and HC is a context of µC∗ (i.e.,
a typing environment mapping names from CName to their type and latent effect). The
final part of the type and effect system concerns programs and it just puts together the
results coming from the analysis of context and partial programs, Figure 49 displays
it. We are finally ready to state and prove the modularity and the soundness theorems.
Recall that modularity prescribes that the behavior of the analysis of a context linked
with a partial program equals to that of the analyses of the context and of the program
performed separately and then linked together:

Theorem 5.9 (Modularity). Let C be a context and P be a partial program. If Γ ` C & HC,

Γ ` P : τP & HP, and Γ ` C[P] : τW & HW then beh(HW) = beh(HC[HP]).
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(AP-App0)
f ∈ Name ∪ CName

Γ ` e : τe & •τe ∆(f ) = τe
Hf−−→ τ Γ[x 7→ τ ],∆ ` s : τs & Hs

Γ,∆ ` τ x = f (e); s : τs & Hf ; Hs

(AP-App1)
s1 6= return e Γ1[y 7→ τy ],∆ ` s1 : τ & Hs1 Γ[x 7→ τ ],∆ ` s : τs & Hs

Γ,∆ ` τ x = (fn (y : τy) {s1}Γ1) ; s : τs & Hs1 ; Hs

(AP-App2)
Γ1[y 7→ τy ],∆ ` e : τ & •τ Γ[x 7→ τ ],∆ ` s : τs & Hs

Γ,∆ ` τ x = (fn (y : τy) {return e}Γ1) ; s : τs & Hs

(AP-AppNF)
Γ,∆ ` e : τe & •τe fc /∈ dom (∆) Γ[x 7→ τx ],∆ ` s : τs & Hs

Γ,∆ ` τ x = fc (e); s : τs & hfc ; Hs

(AP-Call)
Γ,∆ ` e : τe & •τe Γ,∆ ` s : τs & Hs

Γ,∆ ` call (fsc , e); s : τs & f τesc ; Hs

(AP-If)
Γ,∆ ` e : int & •int

Γ,∆ ` s1 : τ & Hs1 Γ,∆ ` s2 : τ & Hs2 Γ,∆ ` s : τs & Hs

Γ,∆ ` if (e) {s1} else {s2}; s : τs & (Hs1 + Hs2); Hs

(AP-Ret)
Γ,∆ ` e : τ & •τ

Γ,∆ ` return e : τ & •τ

(AP-RetSeq)
Γ,∆ ` e : τ & •τ Γ,∆ ` s : τs & Hs

Γ,∆ ` return e; s : τs & Hs

Figure 47: The type and effect system for extended partial programs of µC∗ (part II).

Proof. By the definition of the subst function and the rules from Figures 46, 47 and 49, it
easily follows that HW = HC[HP], thus the thesis.

Soundness requires instead that the behavior of abstract programs over-approximates
that of their concrete counterpart. To prove that we first need to introduce three new
auxiliary definitions and a preservation lemma. The first definition introduces the relation
�, linking a function environment Π with the typing environment for functions ∆.
Intuitively, � ensures that the type and the latent effect stored in Π for a function f

correspond to the definition of f in ∆:

Definition 5.9. Let Π be a function environment and ∆ be a typing environment for functions.

Π � Γ holds iff for any f ∈ Name ∪ CName

Π(f ) = fn (y : τy) {s} ∧ ∆ (f ) = τy
H−→ τ

=⇒ [y 7→ τy ] ` s : τ & H.
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(AC-Hole)
Γ,∆ ` [·] : ∅

(AC-FunDecl)

Γ[x 7→ τx ],∆ ` s : τfc & Hs Γ,∆[fc 7→ (τx
Hs−−→ τfc )] ` C & HC

Γ,∆ ` fun fc (x : τx ) : τfc {s}; C & HC[fc 7→ (τx
Hs−−→ τs)]

Figure 48: The type and effect system for contexts of µC∗.

(AW-OK)
Γ,∆ ` C & HC Γ,HC ` C[P] : τ & H FV (H) = ∅

Γ,∆ ` C[P] : τ & H

(AW-Top)
Γ,∆ ` C & HC Γ,HC ` C[P] : τ & H FV (H) 6= ∅

Γ,∆ ` C[P] : τ & >

Figure 49: The type and effect system for whole programs of µC∗.

The seconddefinition introduces the function γ. Intuitively, γ takes a typing environment
for variables Γ and a runtime program R and transforms its first parameter into a typing
environment with enough information to type the program obtained from R in one step
of computation. To this aim, γ adds to Γ all the bindings that are introduced by one
evaluation step of R:

Definition 5.10. The function γ is defined as follows:

γ(Γ, τ x = e; s) = Γ[x 7→ τ ]

γ(Γ,R) = Γ

The third definition is analogous to the previous one, but applies to typing environments
for functions:

Definition 5.11. The function δ is defined as follows:

δ(∆, (fun f (y : τy) : τf {s1}; s)) = ∆[f 7→ τy
Hf−−→ τf ]

with Hf s.t.

[y 7→ τy ],∆ ` s1 : τf & Hf

δ(∆,R) = ∆

We are now ready to prove the preservation lemma, stating that types are preserved
by the semantics of µC∗ and effects reflect the actual behavior of programs in the target
language:

Lemma 5.1 (Subject reduction). For any R,Γ,∆, σ̄,Π, σ̄′,Π′, o,R′, τR,HR 6= >, if

(σ̄,Π),R
o−→µC∗ (σ̄′,Π′),R′ ∧ Γ,∆ ` R : τR & HR ∧ Π �∆

then there exists H′R

HR
o−→µC∗ H′R ∧ γ(Γ,R), δ(∆,R) ` R′ : τR & H′R ∧ Π′ � δ(∆,R).
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Proof. Below, if not specified we assume all variables to be universally quantified. The
proof goes by induction on the derivations of Γ,∆ ` R : τR & HR. Since we assume that
HR 6= >, and since updates to ∆ performed by rules in Figure 48 produce the same
results as updates performed by those in Figures 46 and 47, we just consider the rules
from the latter figures.

Base cases: (AP-Int) and (AP-Unit). Values cannot progress, thus the implication follows
trivially.

Base case: (AP-Var) and (AP-Op). By definition it never happens that R is a variable or
an arithmetic expression.

Base case: (AP-Ret). Let HR′ = •τ . Also, observe that in this case the program reduces to
a value v of the same type τ of e, thus γ(Γ, return e), δ(∆, return e) ` v : τR & •τ
trivially holds. Finally, δ(∆, return e) = ∆ and Π′ = Π so Π′ � δ(∆, return e).

Inductive case: (AP-RetSeq). Trivially by the fact that return e; s reduces in one step to
s emitting ε.

Inductive case: (AP-DeclVar). We must show that:

(σ̄R,ΠR), τ x = e; s
ε−→µC∗ (σ̄R[x 7→ [e]σ̄],ΠR), s ∧

ΓR,∆R ` τ x = e; s : τR & HR ∧ΠR �∆R =⇒

∃HR′ . HR
ε−→µC∗ HR′ ∧

γ(ΓR, τ x = e; s), δ(∆R, τ x = e; s) ` s : τR & HR′∧
ΠR′ � δ(∆R, τ x = e; s).

The existence of some HR′ is given by choosing it to be HR. Also, noting that
γ(ΓR, τ x = e; s) = ΓR[x 7→ τ ] and δ(∆R, τ x = e; s) = ∆R (due to the premises
of (AP-DeclVar)) we deduce that ΓR[x 7→ τ ],∆R ` s : τR & HR. Finally, since the
ΠR is left unchanged by the semantics, thus ΠR �∆R=δ(∆R, τ x = e; s).

Inductive case: (AP-DeclFun). We must show that:

(σ̄R,ΠR), fun f (y : τy) : τf {s1}; s
ε−→µC∗ (σ̄R,ΠR[f 7→ (τy

Hf−−→ τf )]), s ∧
ΓR,∆R ` fun f (y : τy) : τf {s1}; s : τR & HR ∧ΠR �∆R =⇒

∃HR′ . HR
ε−→µC∗ HR′ ∧

γ(ΓR, fun f (y : τy) : τf {s1}; s),

δ(∆R, fun f (y : τy) : τf {s1}; s) ` s : τR & HR′∧
ΠR′ � δ(∆R, fun f (y : τy) : τf {s1}; s).

As in the previous case, let HR′ = HR.
Note that γ(ΓR, fun f (y : τy) : τf {s1}; s) = ΓR.

Also, δ(∆R, fun f (y : τy) : τf {s1}; s) = ∆R[f 7→ τy
Hs1−−→ τf ]whereHs1 is such that

[y 7→ τy ],∆R ` s1 : τf & Hs1 . Thus, by the premises of (AP-DeclFun) we can con-

cludeΓR,∆R[f 7→ τy
Hs1−−→ τf ]` s : τR & HR. Finally,ΠR′ � δ(∆R, fun f (y : τy) : τf

{s1}; s) by the definition of δ.
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Inductive case: (AP-App0). We must show that:

(σ̄R,ΠR), τ x = f (e); s
ε−→µC∗ (σ̄R,ΠR),R′ ∧

ΓR,∆R ` τ x = f (e); s : τR & HR ∧ΠR �∆R =⇒

∃HR′ . HR
ε−→µC∗ HR′ ∧

γ(ΓR, τ x = f (e); s), δ(∆R, τ x = f (e); s) ` s : τR & HR′∧
ΠR′ � δ(∆R, τ x = f (e); s).

Observe now that HR = Hf ; Hs. Hf is the latent effect of f in ∆R and by the fact
that ΠR �∆R, it is such that [y 7→ τy ],∆R ` s1 : τ & Hf . Instead, Hs is such that
ΓR[x 7→ τ ],∆R ` s : τs & Hs by the premises of (AP-App0). Let now HR′ = HR

and note that γ(ΓR, τ x = f (e); s) = ΓR and δ(∆R, τ x = f (e); s) = ∆R, thus by
the premises of (AP-App0) we can conclude ΓR,∆[f 7→ τy

Hs1−−→ τf ] ` s : τR & HR.
Finally, ΠR′ = ΠR �∆ = δ(∆R, τ x = f (e); s).

Inductive case: (AP-App1). We must show that:

(σ̄R,ΠR), τ x = (fn (y : τy) {s1}Γ1) ; s
o−→µC∗

(σ̄R′ ,ΠR), τ x =
(
fn (y : τy) {s′1}Γ′1

)
; s ∧

ΓR,∆R ` τ x = f (e); s : τR & HR ∧ΠR �∆R =⇒

∃HR′ . HR
o−→µC∗ HR′ ∧

γ(ΓR, τ x = (fn (y : τy) {s1}Γ1) ; s),

δ(∆R, τ x = (fn (y : τy) {s1}Γ1) ; s)

` τ x =
(
fn (y : τy) {s′1}Γ′1

)
; s : τR & HR′ ∧

ΠR′ � δ(∆R, τ x = (fn (y : τy) {s1}Γ1) ; s)

under the (induction) hypothesis that thepropertyholds forΓ′1[y 7→ τy ],∆R ` s1 : τs1

& Hs1 and ΓR[x 7→ τ ],∆R ` s : τR & Hs. By the first premise of (AP-App1) we have
that

(σ̄R,ΠR), s1
o−→µC∗ (σ̄R′ ,ΠR), s′1.

By the induction hypothesis, it follows that Hs1

o−→µC∗ Hs′1
, where Hs1 and Hs′1

are
the effects of s1 and s′1, respectively.Observe now thatHR = Hs1 ; Hs (Hs is the effect
of s), and thus let HR′ = Hs′1

; Hs: by rule µC∗-Seq the transition happens and emit
observable o, as requested. Note that γ(ΓR, τ x = (fn (y : τy) {s1}) ; s) = ΓR and
δ(∆R, τ x = (fn (y : τy) {s1}) ; s) = ∆R, thus by the premises of rule (AP-App1) and
by induction hypothesis we can conclude thatΓR,∆R ` τ x = (fn (y : τy) {s1}) ; s :

τR & HR′ . Finally, ΠR′ = ΠR �∆ = δ(∆R, τ x = f (e); s).

Inductive case: (AP-App2). Analogous to the previous case, with observable ε instead of
o.

Inductive case: (AP-AppNF). This rule is never used since we assume that HR 6= >, i.e.,
contexts fully specify functions needed by programs.

Inductive case: (AP-Call). The theses trivially follow from the premise of the rule.

Inductive case: (AP-If). We have two cases:



5.4 a use case for secure translation validation 106

1. Case [e]σ̄R 6= 0. In this case, we must show that:

(σ̄R,ΠR), if (e) {s1} else {s2}; s
ε−→µC∗ (σ̄R,ΠR), s1; s ∧

ΓR,∆R ` if (e) {s1} else {s2}; s : τR & HR ∧ΠR �∆R

=⇒ ∃HR′ . HR
ε−→µC∗ HR′ ∧

γ(ΓR, if (e) {s1} else {s2}; s),

δ(∆R, if (e) {s1} else {s2}; s) ` s1; s : τR & HR′ ∧
ΠR � δ(∆R, if (e) {s1} else {s2}; s).

Observe that HR = (Hs1 + Hs2); Hs where Hs1 , Hs2 , and Hs are the effects of
s1, s2, and s (resp.). Thus, we can choose HR′ = Hs1 ; Hs which is reachable by
rule µC∗-Choice by emitting ε. Noting that δ(∆R, if (e) {s1} else {s2}; s) =

∆R and γ(ΓR, if (e) {s1} else {s2}; s) = ΓR, we need to show thatΓR,∆R `
s1; s : τR & Hs1 ; Hs which follows by cases on s1 and by the premises of
rule (AP-If). Finally, Π � γ(ΓR, if (e) {s1} else {s2}; s) = ΓR follows by
hypothesis.

2. Case [e]σ̄R = 0. Follows by commutativity of +.

Finally, soundness follows easily:

Theorem 5.10 (Soundness). Let W be a whole µC∗ program. If ∅, ∅ `W : τW & HW, then

beh(W) ⊆ beh(HW).

Proof. The theorem holds trivially when W is a value or when HW = >. Otherwise, it
follows by induction on the length of traces in beh(W) by repeatedly applying Lemma 5.1
and by noting that ∅ � ∅, where � is as in the statement of Lemma 5.1.

5.4.3 An example, formally

We now illustrate our instantiation of STV to the concrete case of compilation from µow∗

to µC∗ with an example.
For the sake of this example, let Prim = {display} and SCName = Prim ∪ {send}.

Intuitively, display shows the given value on the screen, and send sends it over the
network. Let P be a source program that calls an encryption function provided by the
context on a secret value and shows the result of such a call on the screen (via the display
primitive):

let secret : int= 42 in

let enc : int= encryptc secret in

display enc

A correct compiler may compile P to the following µC∗ program, P:

int secret = 42 ;

int enc = encryptc (secret);

call (display, enc);

return ()
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As said in the introduction we want more than correctness: we want to make sure that
executing the compiled program in a given environment (i.e., context) does not break
security guarantees that the source program had. We apply Algorithm 1 and the analyses
above on a few examples of contexts to illustrate when (1) P can be executed securely;
(2) it could but our analysis generates false positives; and (3) it cannot.

According to aSTVTI -RSC , we need to define a partial b function that backtranslates target
contexts into source ones. Actually, we define our b function from abstract target contexts to
concrete source ones, so that one can compute the abstract version of a context beforehand
(e.g., in the spirit of proof-carrying compilation) and re-use it without recomputing the
backtranslation. The backtranslation function is inductively defined on abstract contexts
as follows:

b(∅) = [·]

b(HC[fc 7→ (τ
H−→ τ1)]) = let fc =λ x : τ . s : τ1 in b(HC)

where (s, τ1) = bS(H) if bS(H) is defined

where

bS(•unit) = ((), unit)

bS(•int) = (42, int)

bS(f unitsc ) = (fsc (), unit) if fsc ∈ Prim

bS(f intsc ) = (fsc 42, unit) if fsc ∈ Prim

bS(HS; H′S) = (let x : τs = s in s′, τ ′s) if bS(HS) = (s, τs),
bS(H′S) = (s′, τ ′s), and

x fresh in s, s′

bS(HS + H′S) = (if 42 then s else s′, τ) if bS(HS) = (s, τ), and
bS(H′S) = (s′, τ)

The function bS is a partial mapping from histories into concrete source programs. Also,
bS carries additional typing information to ensure the well-typedness of the backtranslated
source program. For the sake of the example, we made arbitrary choices for values: the
backtranslation needs just to testify the existence of a source context, without necessarily
trying to correctly implement the concrete behavior of the original one. Note that this is
a source of false positives, e.g., think of a case in which the target context never takes a
branch of a conditional, whereas its backtranslated counterpart always does.
Also note that we omit the algorithm for checking the inclusion between target and

source abstract behaviors, since it is standard. Indeed, both the set of behaviors of abstract
source programs and the set of behaviors of target ones are regular languages (the first
being a finite set and the second being the language generated by a history expression
with no recursion).

The last step before applying Algorithm 1 is to analyze the program and extract its
abstract counterpart. Rather straightforwardly, applying the rules from Figure 46 we get
HP:

hencryptc ; display; •unit; •unit.

Note the variable hencryptc , that denotes the fact that the implementation of encryptc is
still unknown.
We are finally ready to apply the STV algorithm to different contexts.
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a good context Consider the following µC∗ context Cgood, implementing the
encryptc as the encryption function of the Caesar’s cipher (i.e., performed by adding 3 to
the clear text):

fun encryptc (s : int) : int {
return s + 3

}; [·]

Analyzing Cgood, we get:

[encryptc 7→ (int
•int−−→ int)].

Since our backtranslation is defined on abstract contexts, we now need to check whether
Cgood can be backtranslated. First, note that the backtranslated body of encryptc is
bS(•int) = (42, int) thus the backtranslation Cgood = b(Cgood) is defined as

let encryptc =λ x : int. 42 : int in [·].

Also, it is easy to compute the linking at the target abstract level, which equals to

•int; display; •unit; •unit.

Linking the backtranslated context with P, we get that the behavior of its analyzed version
is the set of all prefixes of the following trace:

ε · ε · ε · ε · ε · ε · display = display.

Thus, it easily follows that the behavior at the source includes that of Cgood[HP] (up to
the neutral element of traces, ε) and that, according to our algorithm, it is safe to execute
P in Cgood w.r.t. P.

a false positive Consider the following µC∗ context C′good, implementing the
encryptc as the encryption function of the Caesar’s cipher, but such that it returns −1 and
displays its parameter on the screen when it is different from 0:

fun encryptc (s : int) : int {
if (s) {

call (display, s);

return −1

} else {
return s + 3

}; [·]

Analyzing C′good, we get:

[encryptc 7→ (int
(display; •int)+•int−−−−−−−−−−−−→ int)].
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Following a reasoning similar to the one above, we get C′good:

let encryptc = λx : int.

(let y : int =

if 42 then

let z : unit= display 42 in 42

else 42

in 42 ) : int

in [·]

Now, the linking at the abstract target level equals to

((display; •int) + •int); display; •unit; •unit.

Instead, the behavior of the analysis of C′good[P] is the set of all prefixes of the following
trace:

ε · ε · ε · display · ε · display = display · display

Thus, it is easy to see that the behavior at the source does not include that of C′good[HP]

and that, according to our algorithm, it might not be secure to execute P in Cgood w.r.t.
P. Indeed, this is a false positive: a more precise backtranslation (e.g., one acting directly
on concrete target contexts) combined with a more precise type and effect system (e.g.,
one also keeping track of guards of conditionals) would allow us to classify correctly this
case.2

an actually malicious context Finally, consider the target context Cevil that
implements encryptc as the encryption function of the Caesar’s cipher, but that also sends
the value of its parameter on the network:

fun encryptc (s : int) : int {
call (send, s);

return s + 3

}; [·]

In this case, our backtranslation function is undefined since send is not a primitive in
µow∗. Thus, our algorithm correctly tells us that it may be unsafe to execute P in Cevil.

5.5 discussion

assumptions and limitations of the STV framework Throughout the chapter,
we assumed that the partial target program is trusted and that the compiled code of
the context is available at link time. In this case, we can extract the abstraction of their
behavior. However, the code of the context may be very large and its analysis may become
infeasible in practice, e.g., because the time spent in the analysis grows too high. A way for
overcoming this issue could be to compute the abstraction of the context beforehand (e.g.,

2 In our case the simplicity of the type and effect system is to blame: the backtranslated context just takes one
of the two branches of the conditional, whereas in history expressions we always consider both branches as
possible.
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during its compilation), and re-use it on need. Of course, this would require to certify that
the provided context abstraction is correct and that the code of the context does not change
over time.Amore realistic alternative could be to reduce the size of the context that needs to
be checked at link time by certifying some of its parts using other mechanisms, e.g., remote
attestation [74]. In this way, the certified context parts could be included in the trusted
computing base. Another way to limit the size of the context, could be to resort to other
dynamic defense mechanisms to complete the protection of the program. For example, a
possible implementation could couple STV together with enclaved execution [148, 170].
More precisely, STV may check that a partial program P is not linked and loaded in the
same enclave as possibly malicious code, leaving to the enclave mechanism the protection
from other malicious (system) software. Studying a possible integration between STV

and enclaves is an interesting future work. In conclusion, an actual implementation of our
framework should trade security guarantees off for performance (as usual in program
analysis) and should also cooperate with existing countermeasures.

A second assumption made is that the threat model we consider is static, meaning that
we classify a context as malicious or not just by inspecting its code. Indeed, we do not
consider cases in which a harmless context becomes malicious at run-time, e.g., due to
undefined behavior. Again, a more general threat model could be faced by integrating
STV with other defense mechanisms, e.g., software sandboxing [199], software fault
isolation [232], or robustly safe compartmentalizing compilation [8]. An interesting future
work consists of relaxing the assumption on the separation between the trusted partial
program and the (malicious) context. In such a setting, we may consider a set of mutually
distrustful programs that can be compromised at run-time and become attack vectors
themselves [8].

Another limitation of our STV framework is that it currently only works for the robust
preservation of safety properties. We believe that extending the framework to safety
hyperproperties is straightforward, whereas the applicability of STV to other security
properties (like liveness hyperproperties) is still under investigation.

using STV for more complex use cases The most evident limitation of our current
use case is that the languages are not Turing-complete. We considered these languages
since we think that the problem of checking the robust preservation of all the safety
properties is of practical interest in the scenario of Protzenko et al. [193]. Actually, with
a limited amount of additional work, it is possible to apply STV to richer languages.
Indeed, in [56] we use STV to check whether the isolation properties provided by a
Turing-complete compartmentalized source language (inspired by that of Juglaret et al.
[121]) are preserved when compiling to a low-level language without isolation guarantees.

Another limitation of our current use case is that our analyses lack some precision, and
that affects the rate of false positives (i.e., safe programs that are flagged as insecure). A
major source of false positives in our analyses is that they track the control-flowof programs
but not their data-flow (roughly, how programs manipulate data during their execution).
An immediate way of mitigating this issue could be to combine the current analyses with
ones that also track the data (e.g., data-flow analyses [166] or abstract interpretation [80]).
By doing that, we would also be able to use STV on languages endowed with richer
observables, e.g., recording system call arguments and their return values. One possible
downside of these more accurate analyses is that they can be computationally expensive.
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However, this is the price we have to pay if we want a sound push-button verification
procedure and we believe that this issue can mitigated by leveraging the results from
the (very vast) literature on program analysis and verification. In the future, we plan to
investigate more in-depth which classes of static analyses may be interesting for STV .
A further direction of investigation is to understand how the requirement of the

inclusion between an over-approximation of the behavior of a target program and an
under-approximation of that of a source one may impact practical implementations of our
framework. To us this requirement is reasonable, since the under-approximation of the
behavior of the source also under-approximates the behavior of the backtranslated context.
Thus, one can choose a backtranslation that produces contexts having more behaviors
than (strictly) necessary. Moreover, the source and the target language (usually) operate at
very different levels of abstractions and the gap between them may be useful to make the
above requirement more realistic.

5.6 conclusions

In this chapter we introduced the idea of secure translation validation (STV ), which
constitutes a step forward in the direction of secure compilation and its automatic
enforcement. In doing that, we introduced a simple and general theory for STV and
mechanized it in the Coq theorem prover. Summing up, we built upon the principle
of robust safety preservation by Abate et al. [10] and adapted it to be used in the setting
of translation validation. Also, we provided sufficient conditions for the STV to work
correctly, i.e., ensuring that no non-secure code is ever executed. Finally, we illustrated
our idea on a simple case study, inspired by the recent work on the KreMLin compiler
by Protzenko et al. [193]. Differently from them, we consider the compiler as a black-box
and we just compared the behavior of the compiled program in a given environment with
that of the corresponding source program. Of course, one could directly analyze the target
program to check whether it enforces or not some security properties. But that would
mean to be unable to (easily) check the security of compiled programs for potentially
infinite classes of hyperproperties and to be unable to relate insecure behaviors at the
target with that of the source.

We are aware that more realistic use cases (and implementations) are in order to further
assess the real-world applicability of the approach. As a first case study, in [56] we applied
the STV framework to ensure that a carefully defined compiler preserves the isolation
properties between a Turing-complete compartmentalized source language and a low-level
language without any mechanism that enforce isolation.

Related work

Traditionally, secure compilation follows the approach by Abadi [2] and define secure
compilation as a full abstraction property of compilers. Indeed, in the last two decades
most of the research has been directed towards defining secure compilers and proving
them fully abstract. Recently, Patrignani and Garg [179] highlighted some shortcomings of
the traditional approach and worked towards the definition of alternative approaches to
secure compilation [10, 180]. Differently from full abstraction, that requires preservation
and reflection of a congruence relation under compilation, their principles are tailored
to the specific family of (hyper)properties that one wants to preserve. In particular, in
this chapter we built on robust safety preservation [10, 180], prescribing the preservation
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of robust satisfaction of safety properties. Recently, Abate et al. [9] further extended the
notions of compiler correctness and security (as introduced in [10]) to deal with source
and target languages whose observables are different and whose traces are related by a
relation ∼. For a longer summary on secure compilation, we refer the interested reader
to Chapter 2.
We first proposed to apply translation validation in the field of secure compilation

in [52]. Independently, Namjoshi and Tabajara [160] developed a translation validation
schema based on refinements. They develop two automaton-based refinement schemata
to handle hyperproperty preservation in the case of passive attackers. In both schemata
the idea is roughly as follows: if a witness refinement relation exists between the (suitably
encoded) source and target systems, then the hyperproperty of choice has been preserved.

Our idea of abstracting the behavior of programs using history expressions so as to be
able to prove their properties dates back to Bartoletti et al. [26–28], which in turn built upon
history effects by Skalka and Smith [214]. Actually, history expressions have been used in
a variety of applications. For instance, [27, 28] use histories to check access control policies
statically. Also, history expressions have been used for checking secure web services
composition and for web service orchestration [24–26, 29, 31, 78]. Furthermore, Bartoletti
et al. [30, 32] applied history expressions to resource usage analysis.More recently, histories
have also been applied in the scenario of context-oriented programming [115] for checking
both adaptation of programs [82–85, 101] and their security [40, 41, 50].



6
S E C U R E CO M P I L AT I O N AGA I N ST M I C RO -A RC H I T E C T U R A L
AT TAC K S

Isolation mechanisms like process isolation, virtual memory, or enclaved execution [148] are
among the standard features of modern microprocessors. Indeed, isolation mechanisms
are intended to confine the interactions between different programs to a well-defined
communication interface. In this way, different parties can safely deploy their applications
on the same system without the need of mutual trust.

However, a recent wave of attacks has shown that many of these isolation mechanisms
can be attacked via software-exploitable side-channels. Over the past few years, many major
isolation mechanisms have been successfully broken using side-channels. Among others:
Meltdown [142] broke the user/kernel isolation hindering the confidentiality of data
of victim programs; Spectre [128] did the same by exploiting pitfalls in the process
isolation mechanism; and Foreshadow [46] broke confidentiality of enclaved executions
on Intel processors. Actually, side-channels allowed attackers to violate integrity [126,
158, 221] and confidentiality of programs on both high-end [46, 102, 128, 142] and small
microprocessors [225].

Because of the complexity and variety of software-exploitable side-channel attacks, we
cannot expect silver-bullet solutions against them. Indeed, these attacks often rely on, or
even exploit, specific hardware features and implementation details. Therefore, the attack
surface exposed by modern microprocessors is wide and hard to fix (see e.g., Canella et al.
[64] for an overview of some of these attacks). Also, the potential attack vectors vary with
the attacker model that a specific isolation mechanism considers. For instance: enclaved
execution is designed to protect enclaved code from malicious operating system software,
whereas process isolation assumes that the operating system is trusted and not under
the control of the attacker. As a consequence, protection against software-exploitable
side-channel attacks is much harder for enclaved execution [239]. On top of that, solutions
will also depend on performance versus security trade-offs, e.g., whether it is acceptable
or not to disable some performance-enhancing features.
In this chapter we study how to design and prove secure these countermeasures. In

particular, we rigorously study the resistance of enclaved execution on small micropro-
cessors against interrupt-based attacks [48, 114, 225]. We base our study on the existing
open-source Sancus platform [168, 170], a small microprocessor with predictable timing
of individual instructions, that supports non-interruptible enclaved execution. Through a
variety of attacks enabled by supporting interruptibility of enclaves, we illustrate that it is
non-trivial to achieve security. Next, we provide a formal model of the existing Sancus
and we extend it with interrupts. To show that this extension does not break isolation
properties we prove our countermeasure secure by instantiating full abstraction [2] (briefly
summarized in Chapter 2).

113
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Roughly, we show that what the attacker can learn from (or do to) an enclave is exactly
the same before and after adding the support for interrupts. In other words, adding
interruptibility does not open new avenues of attack.
In summary, in this chapter we propose:

• A specific design for extending Sancus, an existing enclaved execution system, with
interrupts;

• To use full abstraction [2, 177] as a formal criterion of what it means to maintain the
security of isolation mechanisms under processor extensions. Also, we instantiate
it for proving that the mechanism of enclaved execution, extended to support
interrupts, complies with our security definition; and

• A specialization of the backtranslation proof technique (recall Chapter 2 or see [176])
to encode the attack logic within the attacker-controlled device. The novelty of our
backtranslation consists in reflecting the capability the attacker has to exploit the
device it controls (that has no limit in size), when the memory of the attacker is
inadequate (limited to 64 KB).

The chapter is structured as follows: in Section 6.1 we provide background information on
enclaved execution and interrupt-based attacks. Section 6.2 provides an informal overview
of our approach. Section 6.3 introduces our formalization, and Section 6.4 presents the
semantics of Sancus without and with interrupts. The proof that enclaved executions are
resistant to interrupt-based attacks is in Section 6.5 (auxiliary and technical definitions
and proofs are presented in full detail in the Appendix B). Section 6.6 shows how our
full abstraction result implies some other security notions when tailored to our setting.
In Section 6.7 we discuss limitations of our proposal and Section 6.8 concludes the chapter
and overviews the related work.
Finally, our co-authors from KU Leuven implemented the mechanism we describe

in this chapter in the real Sancus architecture. We discuss it in detail in our recent
papers [58, 59] and its code is open source and available online at https://github.
com/sancus-pma/sancus-core/tree/nemesis.

6.1 enclaves and interrupt-based attacks

6.1.1 Enclaved execution

Recall the notion of enclaves from Chapter 2. Roughly, an enclave is a protected section of
memory initializedwith a softwaremodule,which is isolated fromall other software on the
same platform and whose correct initialization can be remotely attested. We will focus here
just on the isolation aspect of enclaves. In fact, even though remote attestation is important
for the secure initialization of enclaves and for setting up secure communication channels
with them, it does not play an important role for the interrupt-driven attacks that we
study in this chapter. For further details on remote attestation and secure communication,
we refer the interested reader to [79] for large systems and to [129, 170] for small ones.

An enclaved software module (or simply module) consists of two contiguous memory
sections, a code section, initialized with the machine code of the module, and a data section.
The data section is initialized to zero, and the loading of confidential data happens through
a secure channel, after attesting the correct initialization of the module. For instance,
confidential data can be restored from cryptographically sealed storage, or can be obtained
from a remote trusted party.

https://github.com/sancus-pma/sancus-core/tree/nemesis
https://github.com/sancus-pma/sancus-core/tree/nemesis


6.2 overview of our approach 115

The enclaved execution platform guarantees that: (1) the code and data section of an
enclave are only accessible while executing code from the code section; and (2) the code
section can only be entered through one or more designated entry points. These isolation
guarantees are simple, but they offer the useful property that data of a module can only

be manipulated by code of the same module, i.e., an encapsulation property similar to what
programming languages offer through classes and objects. Actually, untrusted code may
reside in the same address space as the enclave, but outside its code and data sections.
Untrusted code can only interact with the enclave by jumping to an entry point. The
enclave can return control (and computation results) to the untrusted code by jumping
back out.

6.1.2 Interrupt-based attacks

As explained above, the attacker model considered for enclaved execution is a very strong
attacker that controls all the other software on the platform, including privileged system
software. Even though the isolation mechanisms for enclaves are well-understood at the
architectural level (including some successful formal verification efforts [99, 171]), it is still
a challenge to protect enclaves against side-channels. For instance, the recent research on
controlled-channel attacks [48, 49, 136, 154, 225, 239] proved that the increased control of the
attacker over privileged software allows the adversary to exploit a new class of powerful,
low-noise side-channels.
An additional consequence of this strong attacker model is that the scheduling and

handling of interrupts is also under the control of the adversary. For instance, this power
has been exploited to single-step through an enclave [48], or to mount a new class of
interrupt latency attacks [114, 225] that derive individual enclaved instruction timings from
the time it takes to dispatch to the interrupt handler of the untrusted operating system. We
provide concrete examples of interrupt-based attacks in the next section, after detailing
our model of enclaved execution.
Pure interrupt-based attacks such as interrupt latency measurements are the only

known controlled-channel attack against low-end enclaved execution platforms and all the
designs supporting interruptibility of enclaves [73, 129] are vulnerable to them. Moreover,
they have been shown to be very powerful, for instance Van Bulck et al. [225] used them to
efficiently extract secrets (like passwords or PINs) from embedded enclaves. Some designs
avoid the problem of interrupt-based attacks by completely disabling interrupts during
enclaved executions [170, 171]. However, this solution has the important downside that
system software can no longer guarantee availability: if an enclaved module goes into an
infinite loop, the system cannot progress.

6.2 overview of our approach

We set out to design an interruptible enclaved execution system that is provably resistant
against interrupt-based attacks. This section discusses our approach informally, later
sections discuss a formalization with security proofs.
As said above we base our design on Sancus [170], an existing open-source enclaved

execution system. We first describe our Sancus model, and discuss how extending Sancus
with interrupts leads to the attacks mentioned in Section 6.1.2. In other words, we show
how extending Sancus with interrupts breaks some of the isolation guarantees provided
by the original architecture.
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Instr. i Meaning Cycles Size (Words)

RETI Returns from interrupt. 5 1

NOP No-operation. 1 1

HLT Halt. 1 1

NOT r r← ¬r. (Emulated in MSP430) 2 2

IN r Reads word from the device and puts it in r. 2 1

OUT r Writes word in register r to the device. 2 1

AND r1 r2 r2 ← r1 & r2. 1 1

JMP &r Sets pc to the value in r. 2 1

JZ &r Sets pc to the value in r if bit 0 in sr is set. 2 1

MOV r1 r2 r2 ← r1. 1 1

MOV @r1 r2 Loads in r2 the word starting in location pointed to by r1. 2 1

MOV r1 0(r2) Stores the value of r1 starting at location pointed to by r2. 4 2

MOV #w r2 r2 ← w. 2 2

ADD r1 r2 r2 ← r1 + r2. 1 1

SUB r1 r2 r2 ← r1 − r2. 1 1

CMP r1 r2 Zero bit in sr set if r2 − r1 is zero. 1 1

Table 3: Summary of the assembly language considered.

Then, we propose a formal security criterion that defines what it means for interrupt-
ibility to preserve the isolation properties, and we illustrate that definition with examples.
Finally, we propose a design for an interrupt handling mechanism that is resistant

against the considered attacks and that satisfies our security definition. Crucial to our
design is the assumption that the timing of individual instructions is predictable, which is
typical of “small” microprocessors, like Sancus. Our approach of ensuring that the same
attacks are possible before and after an architecture extension is tailored here on a specific
architecture, however we expect it to be applicable in more complex settings too, as we
briefly explained in Section 6.7.

6.2.1 Sancus model

processor Sancus is based on the TI MSP430 16-bit microprocessor [119], with a
classic von Neumann architecture where code and data share the same address space. We
formalize the subset of instructions summarized in Table 3 that is rich enough to model
all the attacks on Sancus we care about (see also Section 6.7). We have a subset of memory-
to-register and register-to-memory transfer instructions; a comparison instruction; an
unconditional and a conditional jump; and basic arithmetic instructions.

memory Sancus has a byte-addressable memory of at most 64KB, where a finite number
of enclaves can be defined. The bound on the number of enclaves is a parameter set at
processor synthesis time. In our model, we assume that there is a single enclave, made
of a code section, initialized with the machine code of the module, and a data section. The
data section is securely provisioned with data by relying on remote attestation and secure
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communication, not modeled here as they play no role in the interrupt-based attacks of
interest in this paper. Instead, our model allows direct initialization of the data section
with confidential enclave data. The rest of the memory is unprotected memory and is under
full control of the attacker.
Enclaves have a single entry point; the enclave can only be entered by jumping to the

first address of the code section. Multiple logical entry points can easily be implemented on
top of this single physical entry point. Control flow can leave the enclave by jumping to
any address in unprotected memory. Obviously, a compiler can implement higher-level
abstractions such as enclave function calls and returns, or out-calls from the enclave to
functions in the untrusted code [170].
Sancus enforces memory access control based on program counter. If the program

counter points to unprotected memory, the processor cannot access any memory location
within the enclave: the only way to interact with the enclave is to jump to its entry point.
If the program counter is within the code section of the enclave, the processor can only
access the enclave data section for reading/writing and the enclave code section for
execution. This access control is faithfully rendered in our model, see Section 6.3.8 for the
full definition of the relevant predicate.

i/o devices Sancus uses memory-mapped I/O to interact with peripherals. One
important example of a peripheral for the attacks we study is a cycle-accurate timer, which
allows software to measure time in terms of the number of CPU cycles. In our model,
we include a single very general I/O device that behaves as a state machine running
synchronously to CPU execution. In particular, it is trivial to instantiate this general I/O
device to a cycle-accurate timer.
Instead of modeling memory-mapped I/O, we introduce the two special instructions

IN and OUT that allow writing/reading a word to/from the device (see Table 3). Actually
these instructions could be implemented as memory operations, at the price of dealing
with special cases in the execution semantics. For instance, software could read the current
cycle timer value from a timer peripheral by using the IN instruction. The I/O devices
can request to interrupt the processor with single-cycle accuracy.
The original Sancus disables interrupts during enclaved execution. One of the key

objectives of this chapter is to propose a Sancus extension that does handle such interrupts
without weakening security.

6.2.2 Security definitions

attacker model An attacker controls the entire context of an enclave, i.e., (1) the whole
unprotected memory (including code interacting with the enclave, as well as data in
unprotected memory); and (2) the connected device. This is the standard attacker model
for enclaved execution. In particular, it implies that the attacker has complete control over
the interrupt service routines, i.e., pieces of code that the CPU invokes when an interrupt
is raised.

contextual equivalence formalizes isolation Informally, our security objective
is extending the Sancus processor without weakening the isolation it provides to enclaves.
Intuitively, isolation of enclaved execution should guarantee that attackers cannot see
“inside” an enclave, so enabling them to “hide” enclave data or implementation details
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from the attacker. We formalize this concept of isolation precisely by using the notion of
contextual equivalence or contextual indistinguishability, as done Abadi [2]. Two enclaved
modulesM1 andM2 are contextually equivalent if there exists no context that tells them
apart. We discuss this on the following example.

Example 6.1 (Start-to-end timing). The following enclave compares a user-provided password

in R15 with a secret in-enclave password at address pwd_addr , and stores the user-provided value

in R14 into the enclave location at store_addr if the user password was correct.

1 enclave_entry:
2 /* Load addresses for comparison */
3 MOV #store_addr, R10
4 MOV #access_ok, R11
5 MOV #endif, R12
6 MOV #pwd_addr, R13
7 /* Compare user vs. enclave password */
8 MOV @R13, R13
9 CMP R13, R15

10 JZ &R11
11 access_fail: /* Password fail: return */
12 JMP &R12
13 access_ok: /* Password ok: store user val */
14 MOV R14, 0(R10)
15 endif: /* Clear secret enclave password */
16 SUB R13, R13
17 enclave_exit:

First, consider the case in which attackers have no access to a timer device. In such a case the above

enclave code successfully hides the in-enclave password. Indeed, if we take modulesM1 andM2 to

be two instances of the above only differing in the value of the secret password, thenM1 andM2 are

indistinguishable for any context that does not have access to a cycle-accurate timer: all a context

can do is calling the entry point, but it gets no indication whether the user-provided password was

correct. This means that the enclave isolation successfully “hides” the password.

Things change with the help of a cycle-accurate timer. In this scenario, an attacker can distinguish

M1 andM2 by creating a context that measures the start-to-end execution time of an enclave call.

Right before jumping to the entry-point of the enclave the context reads and stores the value of the

timer. Afterwards, when the enclave exits the context reads the timer again and computes the total

time spent in the enclave.

We represent enclaved executions as a list of individual instructions along with the number of

cycles they take (recall Table 3, that conveniently specifies how many cycles it takes to execute a

given instruction). The first possible control-flow path is for the access_ok branch of the above

program:

MOV #store_addr, R10 → 2 cycles

MOV #access_ok, R11 → 2 cycles

MOV #endif, R12 → 2 cycles

MOV #pwd_addr, R13 → 2 cycles

MOV @R13, R13 → 2 cycles

CMP R13, R15 → 1 cycle

JZ &R11 → 2 cycles

MOV R14, 0(R10) → 4 cycles

SUB R13, R13 → 1 cycle



6.2 overview of our approach 119

and takes a total of 18 cycles. The other possible path is for the access_fail branch and goes as

follows

MOV #store_addr, R10 → 2 cycles

MOV #access_ok, R11 → 2 cycles

MOV #endif, R12 → 2 cycles

MOV #pwd_addr, R13 → 2 cycles

MOV @R13, R13 → 2 cycles

CMP R13, R15 → 1 cycle

JZ &R11 → 2 cycles

JMP &R12 → 2 cycles

SUB R13, R13 → 1 cycle

requiring just 16 cycles. The context can then distinguish the two control-flow paths, and hence

M1 fromM2. Finally, by launching a brute-force attack [106], attackers can also extract the secret

password.

The above (slightly artificial) example illustrates how contextual equivalence formalizes
isolation. It also shows that the original Sancus already has some side-channel vulner-
abilities under our attacker model. Since we assume attackers can use any I/O device,
they have the ability to setup a timer device and mount the start-to-end timing attack we
discussed.
It is important to note that it is not our goal to close these existing side-channel

vulnerabilities in Sancus. Our objective is to make sure that adding interrupts does not
introduce additional side-channels, i.e., this does not weaken the isolation properties of
Sancus.

For existing side-channels, countermeasures can be applied by the enclave programmer
or by a security-aware compiler, e.g., [66, 190, 238]. For instance, the programmer can
balance out the various secret-dependent control-flow paths as in Example 6.2.

Example 6.2 (Interrupt latency). Consider the program of Example 6.1, balanced in terms of

overall execution time by adding two NOP instructions before Line 14:

1 enclave_entry:
2 /* Load addresses for comparison */
3 MOV #store_addr, R10
4 MOV #access_ok, R11
5 MOV #endif, R12
6 MOV #pwd_addr, R13
7 /* Compare user vs. enclave password */
8 MOV @R13, R13
9 CMP R13, R15

10 JZ &R11
11 access_fail:
12 /* Password fail: constant time return */
13 NOP
14 NOP
15 JMP &R12
16 access_ok: /* Password ok: store user val */
17 MOV R14, 0(R10)
18 endif: /* Clear secret enclave password */
19 SUB R13, R13
20 enclave_exit:
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The control-flow path for access_ok remains unchanged, whereas that for access_fail
becomes:

MOV #store_addr, R10 → 2 cycles

MOV #access_ok, R11 → 2 cycles

MOV #endif, R12 → 2 cycles

MOV #pwd_addr, R13 → 2 cycles

MOV @R13, R13 → 2 cycles

CMP R13, R15 → 1 cycle

JZ &R11 → 2 cycles

NOP → 1 cycle

NOP → 1 cycle

JMP &R12 → 2 cycles

SUB R13, R13 → 1 cycle

Since now both branches take the same amount of time (18 cycles), the start-to-end timing attack is

mitigated.

interrupts can weaken isolation We now show that a straightforward implemen-
tation of interrupts in the Sancus processor would significantly weaken isolation. Consider
an implementation of interrupts similar to the TI MSP430: on arrival of an interrupt, the
processor first completes the ongoing instruction, and then it jumps to an interrupt service
routine.
The program in Example 6.2 is secure on Sancus without interrupts. However, it is

not secure against a malicious context that can schedule interrupts to be handled while
the enclave executes. To see why, assume that an interrupt is scheduled by the malicious
context to arrive within the first cycle after the conditional jump at Line 10. If the jump
was taken then the current instruction is the 4-cycles MOVat Line 17, otherwise the current
instruction is the 1-cycle NOP at Line 13. Now, since the interrupt service routine of the
attacker will only be called after completion of the current instruction, the adversary
observes an interrupt latency difference of 3 cycles, depending on the secret branch
condition inside the enclave. Van Bulck et al. [225] have shown that this difference in
latency when handling interrupts can be practically measured to precisely reconstruct
individual enclave instruction timings on both high-end and low-end enclave processors.

Using this attack technique, illustrated in Figure 50, a context can again distinguish two
instances of the module with a different password, and hence the addition of interrupts
has weakened isolation.

One could be tempted to fix the above timing leakage by modifying the implementation
of interrupt handling in the processor to always dispatch interrupt service routines in
constant time T, i.e., regardless of the duration of the interrupted instruction. However,
this is a necessary but not sufficient condition:

Example 6.3 (Resume-to-end timing). Consider the program from Example 6.2 executed on

a processor which always dispatches interrupts in constant time T. The attacker schedules an

interrupt to arrive in the first cycle after the JZ instruction, yielding constant interrupt latency

T. Next, the context resumes the enclave and measures the time it takes to let the enclave run to

completion without further interrupts. While interrupt latency timing differences are properly

masked, the time to complete enclave execution after resume from the interrupt is 1 cycle for the

access_ok path and 4 cycles for the access_fail path (cfr. Figure 50).
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Figure 50: Interrupt latency traces corresponding to the conditional control-flow paths in Exam-
ple 6.2. When interrupting after the 7th instruction, the adversary observes a distinct
latency difference for the 4-cycle MOV instruction vs. the 1-cycle NOP instruction.

Another possibility of attack comes from interrupt-counting:

Example 6.4 (Interrupt-counting attack). An alternative way to attack the program from Ex-

ample 6.2 even when interrupt latency is constant is the following, is to count how often the

enclave execution can be interrupted, e.g., by scheduling a new interrupt 1 cycle after resuming

from the previous one. Since interrupts are handled on instruction boundaries, this lets the attacker

count the number of instructions executed in the enclave, and hence to distinguish the two possible

control-flow paths (cfr. Figure 50). Such interrupt-counting attacks [154] have been shown to be

dangerous even on enclaved execution systems where timing measurements are noisy (like Intel

SGX).

defining the security of an extension The examples above show how a new
processor feature (like interrupts) can weaken isolation of an existing isolation mechanism
(like enclaved execution), and this is exactly what we want to avoid. Here we propose and
implement a defense against these attacks and formally prove that it is indeed secure. Our
security definition should now be clear: given an original system (like Sancus), and an
extension of that system (like interruptible Sancus), that extension is secure if and only if
it does not change the contextual equivalence of enclaves. Enclaves that are contextually
equivalent in the original system must be contextually equivalent in the extended system
and vice versa (we shall formalize this as a full abstraction property later on).

6.2.3 Secure interruptible Sancus

Designing an interrupt handling mechanism that is secure according to our definition
above is quite subtle. We illustrate some of the subtleties. In particular, we provide an
intuition on how an appropriate use of time padding can handle the various attacks
discussed above. We also discuss how other design aspects are crucial for achieving
security. In this section, we just provide intuition and examples. The ultimate argument
that our design is secure is our proof, discussed later.

padding We already discussed that it is insufficient for security to naively pad interrupt
latency to make it constant, thus we need a padding approach that handles all kinds of
attacks.
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Figure 51: The secure padding scheme.

Our padding scheme (see Figure 51) is as follows. Suppose the attacker schedules the
interrupt to arrive at ta, during the execution of instruction I in the enclave. Let ∆t1 be
the time needed to complete the execution of I . To make sure the attacker cannot learn
anything from the interrupt latency, we introduce padding for ∆tp1 cycles where ∆tp1 is
computed by the interrupt handling logic such that ∆t1 + ∆tp1 is a constant value T . This
value T should be chosen as small as possible to avoid wasting unnecessary time, but
must be larger than or equal to the maximal instruction cycle time MAX_TIME (to make sure
that no negative padding is required, even when an interrupt arrives right at the start of
an instruction with the maximal cycle time). This first padding ensures that an attacker
always measures a constant interrupt latency.

However, the above mitigation is not enough, as an attacker can now measure resume-
to-end time as in Example 6.3. Thus, we provide a second kind of padding. On return
from an interrupt, the interrupt handling logic will pad again for ∆tp2 cycles, ensuring
that ∆tp1 + ∆tp2 is again the constant value T (i.e., ∆tp2 = ∆t1). This makes sure that the
resume-to-end time measured by the attacker does not depend on the instruction being
interrupted.

This description of our padding scheme is still incomplete. Crucially, we need to specify
what happens if a new interrupt arrives while the processor is still performing the padding
because of a previous interrupt or the interrupt handling routine is still running (actually,
interrupts are masked when one is handled). This is important to counter attacks like that
of Example 6.4.

Intuitively, our mitigation ensures that (1) an attacker can schedule an interrupt at any
time ta during enclave execution; (2) that interrupt will always be handled with a constant
latency T ; and (3) the resume-to-end time is always exactly the time the enclave still would
have needed to complete execution from point ta if it had not been interrupted. Despite
being fundamental, the above double padding scheme just one of the ingredients of our
secure interrupt handling mechanism. Many other aspects of the design are important
for security. We now briefly discuss a number of other issues that came up during the
security proof, leading to the refinement of the implementation of Sancus.

saving execution state on interrupt When an enclaved execution is interrupted,
the processor state (contents of the registers) is saved (to allow resuming the execution
once the interrupt is handled) and is cleared (to avoid leaking confidential register contents
to the context). A straightforward implementation would be to store the processor state
on a stack in the enclave accessible memory. However, the proof of our security theorem
showed that this solution is not secure: consider two enclaved modules that monitor the
content of the memory area where processor state is saved, and behave differently on
observing a change in the content of this memory area. These modules are contextually
equivalent in the absence of interrupts (as the contents of this memory area will never
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change), but become distinguishable in the presence of interrupts. Note that this is an
actual security issue and not an artifact of the formalization. For instance, consider what
could happen if the module behaves differently depending on whether a secret is stored
or not in said area: an attacker could exploit this dependency to leak (parts of) that secret.
Hence, our design saves processor state in a storage area which is inaccessible to software.

no access to unprotected memory from within an enclave Most designs of
enclaved execution allow an enclave to access unprotected memory. However, for a single
core processor, interruptibility significantly weakens contextual equivalence for enclaves
that can access unprotected memory. Consider an enclave M1 that always returns a
constant 0, and an enclaveM2 that reads twice from the same unprotected address and
returns the difference of the values read. On a single-core processor without interrupts,
M2 will also always return 0, and hence is indistinguishable fromM1. But an interrupt
scheduled to occur between the two reads fromM2 can change the value returned by the
second read, and henceM1 andM2 become distinguishable. Hence, our design forbids
enclaves to access unprotected memory.

For similar reasons, our design forbids an interrupt handler to reenter the enclave while
it has been interrupted, and forbids the enclave to directly interact with I/O devices.

Finally, we prevent the interrupt enable bit in the status register from being changed by
the software in the enclave, as such changes are unobservable in the original Sancus and
they would be observable once interruptibility is added.
While the security proof is a significant amount of effort, an important benefit of this

formalization is that it forced us to consider all these cases and to think about secure
ways of handling them. We made our design choices to keep the model simple and the
proof manageable, although some of them may seem restrictive. Section 6.7 discusses the
practical impact of these choices and possible ways of relaxing some limitations.

6.3 the formal model of the architecture

Here we set up the formal model of the architecture that runs both the original, uninter-
ruptible Sancus (SancusH, Sancus-High) and the secure interruptible Sancus (SancusL,
Sancus-Low). The next section will define the semantics of SancusH and SancusL, and
then we will formally show that the two versions of Sancus actually provide the same
security guarantees, i.e., the isolation mechanism is not broken by adding our carefully
designed interruptible enclaved execution.

6.3.1 Memory and memory layout

Recall from Section 6.2.1 that MSP430 has a 16-bit architecture, thus we model its memory
as a (finite) function mapping 216 locations to bytes b. Given a memoryM, we denote the
operation of retrieving the byte associated with the location l asM(l). On top of that, we
define read and write operations on words (i.e., pairs of bytes) and we write w = b1b0 to
denote that the most significant byte of a word w is b1 and its least significant byte is b0.

The read operation is standard: it retrieves two consecutive bytes from a given memory
location l (in a little-endian fashion, as in the MSP430):

M[l] , b1b0 ifM(l) = b0 ∧M(l + 1) = b1
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We define the write operation as follows

(M[l 7→ b1b0])(l′) ,


b0 if l′ = l

b1 if l′ = l + 1

M(l′) o.w.

Writing b0b1 in location l inMmeans to build an updated memory mapping l to b0, l + 1

to b1 and unchanged otherwise.
Note that reads and writes in l = 0xFFFF are undefined (l + 1 would overflow hence it

is undefined). The memory access control explicitly forbids these accesses (see below).
Also, the write operation deals with unaligned memory accesses (cfr. case l′ = l + 1). We
faithfully model these aspects to prove that they do not lead to potential attacks.

Sincemodeling thememory as a function gives no clues on how the enclave is organized,
we assume a fixed memory layout L , 〈ts, te, ds, de, isr〉. It describes how the enclave and
the interrupt service routine (ISR) are placed in non-fragmented portions of memory and
is used to check memory accesses during the execution of each instruction (see below).
To reflect the memory segmentation of the real Sancus, we have two protected memory
sections, containing the code and the data of the enclave. The protected code section is
denoted by [ts, te), while [ds, de) is the protected data section, and they are placed in
non-overlapping memory sections. The first address of the protected code section is the
single entry point of the enclave. The last component of the tuple L, isr , is the address of
the ISR. Finally, we reserve the location 0xFFFE to store the address of the first instruction
to be executed when the CPU starts or when an exception happens, reflecting the behavior
of the MSP430. Thus, 0xFFFE must be outside the enclave sections and different from
isr . Note that memory operations enforce no memory access control w.r.t. L, since these
checks are performed during the execution of each instruction (see below).
Summing up, a memory layout is defined as

L , 〈ts, te, ds, de, isr〉, where

• [ts, te) and [ds, de) are the protected code and data sections, resp., with [ts, te) ∩
[ds, de) = ∅;

• isr 6∈ [ts, te) ∪ [ds, de) is the entry point for the ISR; and

• isr 6= 0xFFFE, and 0xFFFE 6∈ [ts, te)∪ [ds, de). The address 0xFFFE stores the address
where the CPU starts executing on boot, or on an exception.

6.3.2 Register files

SancusH, just like the original Sancus, has sixteen 16-bit registers three of which R0, R1,
R2 are used for dedicated functions, whereas the others are for general use (actually,
R3 is a constant generator in the real MSP430 machine, but we ignore that use in our
formalization). More precisely, R0 (hereafter denoted as pc) is the program counter and
points to the next instruction to be executed. Instruction accesses are performed by word
and the pc is aligned to even addresses. The register R1 (sp hereafter) is the stack pointer
and it is used, as usual, by the CPU to store the pointer to the activation record of the
current procedure. Also the stack pointer is aligned to even addresses. The register R2 (sr
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hereafter) is the status register and contains different pieces of information encoded as
flags. The most important here is the fourth bit, called GIE, set to 1when interrupts are
enabled. Other bits are set, e.g., when an operation produces a carry or when the result of
an operation is zero.
Formally, our register fileR is a function that maps each register r to a word. The read

operation is standard:

R[r] , w ifR(r) = w

The write operation requires instead accommodating the hardware itself and our
security requirements:

R[r 7→ w] , λ[r′].



w&0xFFFE if r′ = r ∧ (r = pc ∨ r = sp)

(w&0xFFF7) | (R[sr]&0x8) if r′ = r = sr ∧R[pc] `mode PM

w if r′ = r ∧ (r 6= pc ∧ r 6= sp) ∧

(r 6= sr ∨R[pc] `mode UM)

R[r′] o.w.

In the definition above & and | denote the standard and and or bitwise operators, and
we use the relation R[pc] `mode m, for m ∈ {PM, UM} that is defined in Section 6.3.7. It
indicates that the execution is carried on in protected or in unprotected mode. Note that
word alignment is enforced because the least-significant bit of the program counter and
of the stack pointer are alwaysmasked to 0 (as it happens in the MSP430). Also, the GIE
bit of the status register is always masked to its previous value when in protected mode,
i.e., it cannot be changed when the CPU is running in protected code (resulting from the
bitwise or between w&0xFFF7— masking the GIE bit of w— andR[sr]&0x8— masking
everything except the value of the GIE bit of the status register).
Finally, it is convenient defining the following special register files:

R0 , {pc 7→ 0, sp 7→ 0, sr 7→ 0, R3 7→ 0, . . . , R15 7→ 0}
Rinit
M , {pc 7→ M[0xFFFE], sp 7→ 0, sr 7→ 0x8, R3 7→ 0, . . . , R15 7→ 0}

where

• pc is set toM[0xFFFE] as it does in the MSP430;

• sp is set to 0 and we expect untrusted code to set it up in a setup phase, if any;

• sr is set to 0x8, i.e., register is clear except for the GIE flag.

Register fileR0 is used when we jump out from the enclave to zero the processor state;
Rinit
M denotes the initial register file of the CPU, when it starts executing.

6.3.3 I/O Devices

Recall from the previous section that the attacker can raise an interrupt and observe
the effects it has on the execution of the enclave. This kind of attack usually requires
a software component and a hardware one. The software component is settled in the
unprotected memory and is detailed below. The hardware component is a physical device
that interacts with the processor through synchronous I/O operations. Additionally, the
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progress of I/O devices is tied to that the of the CPU, making them cycle-accurate and
allowing to model the full power of the attacker considered in the real Sancus (e.g., to
use a cycle-accurate timer). In our case it is a Sancus I/O device, and we model it as a
(simplified) deterministic I/O automaton [144], as follows:

D , 〈∆, δinit,
a
;D〉, where

• a ∈ A, with A a signature that includes the following actions (below w is a word):
– ε, a silent, internal action;
– rd(w), an output action (i.e., read request from the CPU);
– wr(w), an input action (i.e., write request from the CPU);
– int? an output action telling that an interrupt was raised in the last state;

• ∆ 6= ∅ is the finite set of internal states of the device;

• δinit ∈ ∆ is the single initial state;

• δ
a
;D δ′ ⊆ ∆ × A ×∆ is the transition function that takes one step in the device

while doing action a ∈ A, starting in state δ and ending in state δ′. (We write a for a
string of actions and we omit εwhen unnecessary.) The transition function is such
that ∀δ either δ ε

;D δ′ or δ int?
;D δ′′ (i.e., one and only one of the two transitions must

be possible). Also, at most one rd(w) action must be possible starting from a given
state.

6.3.4 Software modules, contexts and whole programs

A module contains both protected code and protected data.

Definition 6.1. A software module is a memoryMM containing both protected code and

protected data sections.

Intuitively, the context is the part of the whole program that can be manipulated by an
attacker, i.e., the software component and the physical device:

Definition 6.2. A contextC is a pair 〈MC ,D〉, whereD is a device andMC defines the contents

of all memory locations outside the protected sections of the layout.

Filling in a context hole with a software module yields a whole program.

Definition 6.3. Given a context C = 〈MC ,D〉 and a software module MM such that

dom (MC) ∩ dom (MM ) = ∅, a whole program is

C[MM ] , 〈MC ]MM ,D〉.

6.3.5 Instruction set

The instruction set Inst is the same for both SancusL and SancusH and it is (almost)
that of the MSP430. An overview of the instruction set is in Table 3 (Page 116). For each
instruction i the table includes its operands, an intuitive meaning of its semantics, its
duration and the number of words it occupies in memory. The durations are used to
define the function cycles(i) and implicitly determine a value MAX_TIME, greater than or
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equal to the duration of the longest instruction. Here we choose MAX_TIME = 6, in order
to keep the compatibility with MSP430 (whose longest instruction takes 6 cycles). Since
instructions are stored in memory, for getting them we use the meta-function decode(M, l)

that decodes the contents of the cell(s) starting at location l, returning an instruction in
the table if any and ⊥ otherwise.

6.3.6 Configurations

Given an I/OdeviceD, the internal state of the entire system is described by configurations
of the form:

c , 〈δ, t, ta,M,R, pcold ,B〉 ∈ C, where

• δ is the current state of the I/O device;

• t is the current clock cycle, i.e., a natural number denoting the time elapsed since
the CPU started its execution;

• ta is the arrival time (clock cycle) of the last pending interrupt, set to ⊥ if there are
none;

• M is the current memory;

• R is the current content of the registers;

• pcold is the value of the program counter before executing the current instruction; and

• B is the backup that can assume the following values:
– ⊥, indicating that the CPU is either handling no interrupt or it is handling one
originated in unprotected mode;

– 〈R, pcold , tpad 〉, indicating that the interrupt handler is managing an interrupt
raised in protected mode. The triple includes the register fileR, the program
counter pcold at the time the interrupt was originated, and the value tpad , which
indicates the remaining padding time that must be applied before returning
into protected mode;

– 〈⊥,⊥, tpad 〉, indicating that the CPU is currently padding the resumption from
an interrupt.

The initial states of the CPU are represented by the initial configurations from which
the computation starts. The initial configuration for a whole program C[MM ] = 〈M,D〉
is:

INITC[MM ] , 〈δinit, 0,⊥,M,Rinit
MC

, 0xFFFE,⊥〉where

• the state of the I/O device D is δinit;

• the initial value of the clock is 0 and no interrupt has arrived yet;

• the memory is initialized to the whole program memoryMC ]MM ;

• all the registers are initialized to 0, their initial value, except that pc is set to 0xFFFE

(the address from which the CPU gets the initial program counter), and that sr is
set to 0x8 (the register is clear except for the GIE flag);

• the “old” program counter is also initialized to 0xFFFE; and
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• the backup is set to ⊥, as no interrupt has been raised yet.

Dually,HALT is the only configuration denoting termination.More precisely,we feel free
to use this distinguished and opaque configuration for representing graceful termination.

Also, we define exception handling configurations, that model what happens on soft reset
of the machine (e.g., on a memory access violation, or a halt in protected mode). On such
a soft reset, control returns to the attacker by jumping to the address stored in location
0xFFFE:

EXC〈δ,t,ta,M,R,pcold ,B〉 , 〈δ, t,⊥,M,R0[pc 7→ M[0xFFFE]], 0xFFFE,⊥〉.

6.3.6.1 I/O device wrapper

Since the class of interrupt-based attacks requires a cycle-accurate timer, it is convenient
to synchronize the CPU and the device time by forcing the device to take as many steps as
the number of cycles consumed for each instruction by the CPU. The following “wrapper”
around the device D models this synchronization:

D ` δ, t, ta yk
D δ′, t′, t′a

Intuitively, assume the device be in state δ, the clock time be t and the last interrupt be
raised at time ta. Then, after k cycles the new clock time will be t′ = t+k, the last interrupt
was raised at time t′a and the new state will be δ′; when no interrupt has to be handled,
ta = t′a = ⊥. Formally:

a ∈ {ε, int?}
k−1∧
i=0

δi
a
;D δi+1 t′a =


t+ j if ∃0 ≤ j < k. δj

int?
;D δj+1∧

∀j′ < j. δj′
ε
;D δj′+1

ta o.w.
D ` δ0, t, ta yk

D δk, (t+ k), t′a

6.3.7 CPU mode

We now specify when the CPU is running in protected or in unprotected mode. Actually,
the mode m ∈ {PM, UM} is determined by the value of the program counter, which can be
in either code section. Formally:

pc ∈ [L.ts,L.te)

pc `mode PM

pc 6∈ [L.ts,L.te) ∪ [L.ds,L.de)

pc `mode UM

Also, we lift the definition to configurations as follows:

R[pc] `mode m

〈δ, t, ta,M,R, pcold ,B〉 `mode m HALT `mode UM

Note in passing that no mode is defined when the program counter points within the
data section, because the memory access control introduced below prevents the program
counter to assume values therein.
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t

Entry Point Prot. code Prot. Data Other

f
Entry Point/Prot. code r-x r-x rw- –x
Other –x — — rwx

Table 4: Definition of MACL(f , rght, t) function, where f and t are locations.

6.3.8 Memory access control

We formalize the memory access control (MAC ) mechanism of Sancus using the predicate
MACL(f , rght, t) in Table 4. Roughly, the predicate holds whenever the address the CPU
is trying to read is within the same memory partition as the program counter of the
last completed instruction (pcold ). More precisely, the predicate holds whenever from the
location f (usually pcold ) we have the rights rght on location t, reflecting the mechanism
provided by Sancus. Note that when f is within unprotected code, MACL(f , rght, t)

grants it no rights on a location t in the protected memory.
Building on the above, we define the following relation

i,R, pcold ,B `mac OK

that holds whenever the instruction i can be executed in a CPU configuration in which
the previous program counter is pcold , the registers areR and the backup is B. We check
that (1) when transitioning from pcold toR[pc], the CPU has execution rights to execute
instruction i, i.e., MACL(pcold , x,R[pc] + j ) for j ∈ {0, ..., size(i) − 1}; (2) if i is an I/O
instruction, it can be executed in current CPUmode; and (3) if i is a memory operation (i.e.,
either MOV r1 0(r2) or MOV @r1 r2) fromR[pc] we have the appropriate rights to perform it.
The predicate MAC is the minimal relation satisfying the inference rules in Figure 52.
Note that (1) for each word that is accessed in memory we also check that the first location
is not the last byte of the memory (except for the program counter, for which the decode
function would fail since it would try to access undefined memory); (2) word accesses
must be checked once for each byte of the word; and (3) checks on pc guarantee that
a memory violation does not happen while decoding. We briefly comment on the rule
for i ∈ {IN r, OUT r}. The preconditions say that (1) the current value of the program
counter is in unprotected mode; (2) that the instructions pointed to by pcold andR[pc] are
executable, according to MACL; and (3) that the same holds for pcold andR[pc] + 1, i.e.,
the next instruction.

6.4 the semantics of SancusH , SancusL and their interrupt logic

As anticipated, we proceed to formally define the semantics of SancusH and SancusL.
The two share most of their structure and just differ in the way they deal with interrupts:
SancusH has none of them and so the handler is trivial, while SancusL has an appropriate
interrupt logic, based on the mitigation sketched above. Each version of Sancus is
endowed with two transitions systems: the main one specifies the operational semantics
of instructions, while the other is auxiliary and describes the relevant interrupt logic.
Therefore, we will factorize as much as possible the inference rules shared by the main
transition systems, and only indicate the differences using blue, sans-serif font for SancusH
and red,bold for SancusL.



6.4 the semantics of SancusH , SancusL and their interrupt logic 130

R[sp] 6= 0xFFFF

R[sp] + 2 6= 0xFFFF MACL(pcold , x,R[pc]) MACL(pcold , x,R[pc] + 1 ) MACL(R[pc], r,R[sp])
MACL(R[pc], r,R[sp] + 1 ) MACL(R[pc], r,R[sp] + 2 ) MACL(R[pc], r,R[sp] + 3 )

RETI,R, pcold ,⊥ `mac OK

i ∈ {NOP, AND r1 r2, ADD r1 r2, SUB r1 r2, CMP r1 r2, MOV r1 r2, JMP &r, JZ &r}
MACL(pcold , x,R[pc]) MACL(pcold , x,R[pc] + 1 )

i,R, pcold ,⊥ `mac OK

i ∈ {NOT r, MOV #w r} MACL(pcold , x,R[pc])
MACL(pcold , x,R[pc] + 1 ) MACL(pcold , x,R[pc] + 2 ) MACL(pcold , x,R[pc] + 3 )

i,R, pcold ,⊥ `mac OK

i ∈ {IN r, OUT r} R[pc] `mode UM MACL(pcold , x,R[pc]) MACL(pcold , x,R[pc] + 1 )

i,R, pcold ,⊥ `mac OK

R[r1] 6= 0xFFFF R[r1] + 1 6= 0xFFFF

MACL(R[pc], r,R[r1]) MACL(R[pc], r,R[r1] + 1 ) MACL(pcold , x,R[pc]) MACL(pcold , x,R[pc] + 1 )

MOV @r1 r2,R, pcold ,⊥ `mac OK

R[r2] 6= 0xFFFF

R[r2] + 1 6= 0xFFFF MACL(R[pc], w,R[r2]) MACL(R[pc], w,R[r2] + 1 ) MACL(pcold , x,R[pc])
MACL(pcold , x,R[pc] + 1 ) MACL(pcold , x,R[pc] + 2 ) MACL(pcold , x,R[pc] + 3 )

MOV r1 0(r2),R, pcold ,⊥ `mac OK

i 6= RETI B 6= ⊥ i,R, pcold ,⊥ `mac OK R[sr].GIE = 0 R[pc] 6= ts

i,R, pcold ,B `mac OK

B 6= ⊥
RETI,R, pcold ,B `mac OK

Figure 52: The rules defining the memory access control.

More precisely, assume hereafter as given a context C = 〈MC ,D〉, whereMC defines
the contents of the memory locations of the unprotected section and D is an I/O device,
and let c, c′ ∈ C be two configurations. Then, the main transition system of SancusH has
the transitions on the left and its auxiliary one the transitions on the right:

D ` c→ c′ D ` c ↪→I c
′

while the main and the auxiliary transition systems of SancusL have the transitions on
the left and on the right, respectively:

D ` c→ c′ D ` c ↪→I c
′

6.4.1 The Operational Semantics of SancusH

We first present the auxiliary transition system implementing the logic that decides what
happens when an interrupt arrives, and then we formalize how the instructions are
executed in SancusH.

6.4.1.1 Interrupts in SancusH

As said above, interrupts in SancusH are always ignored, thus the configuration is left
unchanged, and we have the following trivial rule:

INT

D ` 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ, t, ta,M,R, pcold ,B〉
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6.4.1.2 Main transition system

The transitions of the main transition system describe how the SancusH configurations
evolve during the execution. Figure 53 shows selected inference rules of the transition
system, on which we briefly comment below; the other rules can be found in Appendix B.2.
The rule (CPU-HLT-UM) is the only one that halts the CPU and only applies when an HLT

instruction is executed in unprotected mode. Dually the rule (CPU-HLT-PM) deals with the
case in which an HLT instruction is to be executed in protected mode. In such a case,
the exception handling configuration is reached, allowing for a cleanup and a graceful
termination. The rule (CPU-Violation-PM) takes care of the violations in protected mode:
the transition in the conclusion of the rule leads to the exception handling configuration
if there is a non-empty backup (first premise) and if the instruction i does not pass the
memory-access control relation (second premise); Rule (CPU-MovL) is for when the current
instruction i loads in r2 the word in memory at the position pointed to by r1. Its first
premise checks that the CPU is not currently padding interrupt resumption time (more
details on that later on, it can be safely ignored for now); the second one if the instruction
can be executed; the third one increments the program counter by 2 and loads in r2 the
valueM[r1]; the fourth premise registers in the device that i requires cycles(i) cycles to
complete; and the last one executes the interrupt logic to check whether an interrupt
needs to be handled or not (see below). Rules dealing with jumps are quite standard.
Upon a JZ &r instruction (jump if zero), the CPU checks the content of the Z (zero) bit
of the status register. If R[sr].Z is 0, then the rule (CPU-Jz0) is triggered and R[pc] is left
unchanged, otherwise the rule (CPU-Jz1) applies and the content of the register r is copied
into pc, so performing the jump. Another interesting rule is (CPU-In) that deals with the
case in which the instruction reads a word from the device and puts the result in r. Its
third premise holds when the device sends the word w to the CPU; the others are similar
to those of (CPU-MovL). Dually, the rule (CPU-Out) deals with outputs to the device. Note
that, the CPU is forced to halt when the I/O device is not ready for a read or a write
(rules (CPU-NoIn) and (CPU-NoOut)). As a matter of fact, this can only happen in unprotected
mode, since the MAC relation forbids I/O operations inside enclaves. Note also that the
current time of the CPU is always incremented by the time needed to complete the current
instruction.

6.4.2 The Operational Semantics of SancusL

In SancusL interrupts can be raised and must be properly handled securely both in
protected and unprotected mode, and for that we define a non-trivial auxiliary transition
system. Although the rules of the main transition system are largely the same as SancusH,
the new auxiliary transitions affect the behavior of the instruction for returning from
interrupts.

6.4.2.1 Interrupts in SancusL

The inference rules in Figure 54 formalize the mitigation outlined in Section 6.2 as a
defense against interrupt-based attacks, regardless of the CPU being in unprotected or
protected mode. For that, all the rules have a premise checking the mode in which the last
instruction was executed (pcold `mode UM or pcold `mode PM).
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The rules (INT-UM-NP) and (INT-PM-NP) take care of when the GIE bit of the status
register is set to 0, i.e., interrupts are disabled, or there is none (ta = ⊥). In this case the
configurations are simply left untouched.

When instead GIE = 1 and an interrupt is on (ta 6= ⊥), either rule (INT-UM-P) or (INT-PM-P)

handles it. When in unprotected mode, a premise of (INT-UM-P) concerns registers: the
program counter gets the entry point of the handler; the status register gets 0; and the top
of the stack is moved 4 positions ahead to allocate the activation record of the interrupt
handler.

Accordingly, the newmemoryM′ updates the locations pointed by the relevant elements
of the stack with the current program counter and the contents of the status register. The
last premise reflects that setting up this interrupt handling takes 6 cycles.
The rule (INT-PM-P) is for protected mode and it is more interesting. Besides assigning

the entry point of the handler to the program counter, it computes the padding time for
mitigation of interrupt-based timing attacks and saves the backup in B′. The padding k is
then used, causing interrupt handling to take 6 + k steps. Such a padding implements the
first part of themitigation (see Section 6.2.3) and is computed so as tomake the dispatching
time of interrupts constant. Note that the padding never gets negative. When an interrupt
arrives in protected mode two cases may arise. Either GIE = 1, and the padding is
non-negative because the interrupt is handled at the end of the current instruction; or
GIE = 0, and no padding is needed because the interrupt is handled as soon as GIE

becomes 1, which is only possible in unprotected mode. The backup stores part of the CPU
configuration (R and pcold ) and tpad = t− ta. The value of tpad will then be used as further
padding before returning, thus fully implementing themitigation (cfr. Section 6.2.3). Recall
that the register fileR0 is {pc 7→ 0, sp 7→ 0, sr 7→ 0, R3 7→ 0, . . . , R15 7→ 0}.
It is worth to briefly describe what happens upon “corner cases:”

• Whenever an interrupt has to be handled in protected mode, but the current
instruction drives the CPU in unprotected mode, the padding mechanism is applied
fully including the padding after the RETI (see rule (CPU-Reti)). Indeed, if partial
padding (resp. no padding at all) was applied then the duration of the padding
(resp. of the last instruction) would be leaked to the attacker (cf. Figure 54).

• Interrupts are ignored when arising during the time spent in padding and before

invoking the interrupt service routine. This is because the padding duration and the
instruction duration would be leaked otherwise. To avoid that, the rule (INT-PM-P)

ignores any interrupts raised during the cycles needed for the interrupt logic and
for the padding. A viable alternative would require to buffer interrupts and handle
them later on.

• Interrupts happening during the execution of the interrupt service routine are
simply “chained” and handled as soon as the current routine completes (see
rule (CPU-Reti-Chain)).

• Finally, interrupts raised during the padding time and after the interrupt service
routine are handled as any other interrupt happening in protected mode (see
rule (CPU-Reti-Pad)).
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6.4.2.2 Main transition system

The rules of the main transition system of SancusL are exactly the same used for the
semantics of SancusH, except for the blue arrows turned into red. Notably, those for the
interrupt logic: the red arrow ↪→I replaces the blue arrow ↪→I in the premises. Figure 55
shows the rules dealing with the cases that may happen when the interrupt handler
returns and the processor gives the control back to the code that was executing before the
interruptwas raised. The first rule (CPU-Reti), deals with the actual return from an interrupt.
In this case the processor restores the status register and sets the program counter to the
instruction following the interrupted one. The values to bring back have been stored in the
current activation record on the stack (i.e.,R′ = R[pc 7→ M[R[sp] + 2], sr 7→ M[R[sp]]]).
Instead, rule (CPU-Reti-Chain) applies if an interrupt arrived while returning from handling
an interrupt raised in protected mode (third and fifth premises). In this case the CPU
directly jumps to the handler of the new interrupt with no further padding. Finally, we
discuss the rules (CPU-Reti-PrePad) and (CPU-Reti-Pad). Their combination deals with the
case in which the CPU is returning from handling an interrupt raised in protected mode,
and no new interrupt arrived afterwards (or the GIE bit is off, cf. the fourth premise of
rule (CPU-Reti-PrePad)). First, the rule (CPU-Reti-PrePad) restores registers and pcold from
the backup B, so enabling the application of the rule (CPU-Reti-Pad) (note that no other
rule is applicable because of the contents of B). Then, through the rule (CPU-Reti-Pad)

the remaining padding (recorded in the backup) is applied so to prevent resume-to-end
timing attacks (note that this last padding is interruptible, as witnessed by the last
premise). This last padding is applied even though the configuration reached through
rule (CPU-Reti-PrePad) is in unprotected mode (i.e., when the interrupted instruction was
a jump out of protected mode). Otherwise, the attacker may discover the value of the
padding applied before the interrupt service routine. Actually, we model the mechanism
of restoring registers, pcold and of applying the remaining padding with two rules instead
of just one for technical reasons.

6.4.3 A progress theorem

As a sanity check we prove the following progress theorem showing that both SancusH

and SancusL get stuck only if the CPU reaches the distinguished configuration HALT.
Its proof is in Appendix B.4:

Theorem 6.1 (Progress). For all C = 〈MC ,D〉,MM and configuration c

• D ` INITC[MM ] →∗ c 6→ =⇒ c = HALT

• D ` INITC[MM ] →∗ c 6→ =⇒ c = HALT.
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(CPU-HLT-UM)
B 6= 〈⊥,⊥, tpad 〉 〈δ, t, ta,M,R, pcold ,B〉 `mode UM

D ` 〈δ, t, ta,M,R, pcold ,B〉 → HALT
decode(M,R[pc]) = HLT

(CPU-NoIN)
δ 6rd(w)

;D

D ` 〈δ, t, ta,M,R, pcold ,B〉 → HALT
decode(M,R[pc]) = IN r

(CPU-NoOUT)
δ 6wr(R[r])

;D

D ` 〈δ, t, ta,M,R, pcold ,B〉 → HALT
decode(M,R[pc]) = OUT r

(CPU-HLT-PM)
B 6= 〈⊥,⊥, tpad 〉 〈δ, t, ta,M,R, pcold ,B〉 `mode PM

D ` 〈δ, t, ta,M,R, pcold ,B〉 → EXC〈δ,t+cycles(i),ta,M,R,pcold ,B〉
i = decode(M,R[pc]) = HLT

(CPU-Decode-Fail)
B 6= 〈⊥,⊥, tpad 〉 decode(M,R[pc]) = ⊥

D ` 〈δ, t, ta,M,R, pcold ,B〉 → EXC〈δ,t,ta,M,R,pcold ,B〉

(CPU-Violation-PM)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B 6`mac OK

D ` 〈δ, t, ta,M,R, pcold ,B〉 → EXC〈δ,t+cycles(i),ta,M,R,pcold ,B〉
i = decode(M,R[pc]) 6= ⊥

(CPU-MovL)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2][r2 7→ M[R[r1]]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = MOV @r1 r2

(CPU-Jz0)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = JZ &r ∧R[sr].Z = 0

(CPU-Jz1)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[r]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = JZ &r ∧R[sr].Z = 1

(CPU-In)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK δ

rd(w)
; D δ′

R′ = R[pc 7→ R[pc] + 2][r 7→ w] D ` δ′, t, ta ycycles(i)
D δ′′, t′, t′a

D ` 〈δ′′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = IN r

(CPU-Out)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2] δ
wr(R[r])

; D δ′ D ` δ′, t, ta ycycles(i)
D δ′′, t′, t′a

D ` 〈δ′′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = OUT r

Figure 53: Some rules of the main transition system for SancusH.
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(INT-UM-P)

pcold `mode UM R[sr].GIE = 1 ta 6= ⊥ R′ = R[pc 7→ isr , sr 7→ 0, sp 7→ R[sp]− 4]

M′ =M[R[sp]− 2 7→ R[pc],R[sp]− 4 7→ R[sr]] D ` δ, t,⊥y6
D δ′, t′, t′a

D ` 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ′, t′, t′a,M′,R′, pcold ,B〉

(INT-UM-NP)

pcold `mode UM (R[sr].GIE = 0 ∨ ta = ⊥)

D ` 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ, t, ta,M,R, pcold ,B〉

(INT-PM-P)

k = MAX_TIME− (t− ta) pcold `mode PM

R[sr].GIE = 1 ta 6= ⊥ R′ = R0[pc 7→ isr ] D ` δ, t,⊥y6+k
D δ′, t′, t′a B′ = 〈R, pcold , t− ta〉

D ` 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ′, t′,⊥,M,R′, pcold ,B′〉

(INT-PM-NP)

pcold `mode PM (R[sr].GIE = 0 ∨ ta = ⊥)

D ` 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ, t, ta,M,R, pcold ,B〉

Figure 54: The transition system for handling interrupts in SancusL.

(CPU-Reti)

B 6= 〈⊥,⊥, tpad〉 i,R, pcold ,⊥ `mac OK

R′ = R[pc 7→ M[R[sp] + 2], sr 7→ M[R[sp]], sp 7→ R[sp] + 4]

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ
′, t′, t′a,M,R′,R[pc],⊥〉

i = decode(M,R[pc]) = RETI

(CPU-Reti-Chain)

B 6= 〈⊥,⊥, tpad〉
B 6= ⊥ D ` δ, t, ta ycycles(i)

D δ′, t′, t′a R[sr.GIE] = 1

t′a 6= ⊥ D ` 〈δ′, t′, t′a,M,R,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′,R[pc],B〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ

′′, t′′, t′′a ,M′,R′,R[pc],B〉
i = decode(M,R[pc]) = RETI

(CPU-Reti-PrePad)

B 6= 〈⊥,⊥, tpad〉 i,R, pcold ,B `mac OK

B 6= ⊥ D ` δ, t, ta ycycles(i)
D δ′, t′, t′a (R[sr.GIE] = 0 ∨ t′a = ⊥)

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ
′, t′, t′a,M,B.R,B.pcold , 〈⊥,⊥,B.tpad〉〉

i = decode(M,R[pc]) = RETI

(CPU-Reti-Pad)

B = 〈⊥,⊥, tpad〉
D ` δ, t, ta ytpad

D δ′, t′, t′a D ` 〈δ′, t′, t′a,M,R, pcold ,⊥〉 ↪→I 〈δ′′, t′′, t′′a ,M,R′, pcold ,B
′〉

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ
′′, t′′, t′′a ,M,R′, pcold ,B

′〉

Figure 55: Some rules from the operational semantics of SancusL.
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6.5 the security theorem

In this section we establish that SancusL enjoys the following security property: what an
attacker can learn from an enclave is exactly the same before and after adding the support
for interrupts. Technically, we show that the semantics of SancusL is fully abstractw.r.t.
the semantics of SancusH, i.e., in other words all the attacks that can be carried out in
SancusL can also be carried out in SancusH, and vice versa. Even though the technical
details are specific to our case study, we are confident that the security definition applies
also to other architectures, as outlined in Section 6.7.

Before stating the full abstraction theorem, we introduce some further notations, which
also help in the main steps of its proof. Additional, minor lemmata and definitions for
completing the proofs are in Appendices B.5 to B.9. Recall from Section 6.3.4 that C[MM ]

is a whole program, whereMM is the software module and C = 〈MC ,D〉 represents the
context (MC contains the unprotected program and data and D is the I/O device).
We first define the notion of convergence of whole programs.

Definition 6.4. LetC = 〈MC ,D〉 be a context, andMM be a software module. A whole program

C[MM ] converges in SancusH (written C[MM ]⇓H) iff

D ` INITC[MM ] →∗ HALT.

Similarly, the same whole program converges in SancusL
(written C[MM ]⇓L

) iff

D ` INITC[MM ] →∗ HALT.

The following definition introduces the notion of contextual equivalence of two software
modules. Roughly, the notion of contextual equivalence formalizes the intuitive notion of
indistinguishability: twomodules are contextually equivalent if they behave in the sameway
when they interact with an arbitrary, attacker-controlled context. Due to the quantification
over all contexts, it suffices to consider just terminating and non-terminating executions
as distinguishable, since any other distinction can be reduced to it.

Definition 6.5. Two software modulesMM andMM ′ are contextually equivalent in SancusH,

writtenMM 'HMM ′ , iff

∀C.
(
C[MM ]⇓H ⇐⇒ C[MM ′ ]⇓H

)
.

Similarly,MM andMM ′ are contextually equivalent in SancusL
, writtenMM 'L MM ′ , iff

∀C.
(
C[MM ]⇓L ⇐⇒ C[MM ′ ]⇓L

)
.

Eventually we state and prove the main theorem establishing the correctness of our
mitigation:

Theorem 6.2 (Full abstraction). ∀MM ,MM ′ . (MM 'HMM ′ ⇐⇒ MM 'L MM ′).

Proof. Here we only present the “surface” of the proof by stating the main properties,
whose proofs often require many other auxiliary definitions and properties that are
detailed in the Appendix. Actually, the proof that our mitigation guarantees absence
of interrupt-based attacks is rather long, and has the following steps. We first establish
reflection of behaviors:MM 'H MM ′ ⇐ MM 'L MM ′ (Lemma 6.2 in Section 6.5.1).
Then, the other implication, i.e., preservation of behaviors is proved by Lemma 6.8
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MM 'HMM ′

MM 'L MM ′ MM
T
=MM ′

(i)

Lemma 6.6

(ii) – Lemma 6.7
(iii) – Lemma 6.8

Figure 56: An illustration of the proof strategy of preservation of behaviors.

in Section 6.5.2 following the strategy summarized in Figure 56. We rely on the well-
known notion of traces, i.e., the sequences of actions performed by a moduleMM plugged
in a context that can be observed by an attacker. In particular, we focus on the invocations
ofMM and on the returns from it. In both cases our traces also carry information about
the contents of the registers and for returns also the flow of time. We then say that two
modulesMM andM′M are trace equivalent, in symbolsMM

T
= M′M , if they exhibit

the same traces (see Definition 6.7). Proving preservation is then done in two steps, the
composition of which gives (iii) in Figure 56. First Lemma 6.7 establishes (ii) in Figure 56:
two modules equivalent in SancusH are trace equivalent. The proof technique that we
adopt specializes backtranslation of [176], applied to the contrapositive of (ii). Roughly,
we construct a context in SancusH distinguishing two modules when they are not trace
equivalent. Then Lemma 6.6 establishes (i) in Figure 56: two modules that are trace
equivalent are also equivalent in SancusL. The proof of this lemma is rather technical:
essentially, it consists in showing that neither the context affects the behavior of the
module, nor the module affects that of the context.
Summing up:

• Case⇐. Reflection of behaviors follows from Lemma 6.2 in Section 6.5.1.

• Case⇒. Preservation of behaviors follows from Lemma 6.8 in Section 6.5.2.

6.5.1 Reflection of behaviors

Recall that SancusL differs from SancusH because of its interrupt handling mechanism,
only. Consequently, to prove the reflection of behaviors, i.e., that for allMM ,MM ′ .MM 'L

MM ′ impliesMM 'HMM ′ it suffices to inhibit interrupts in SancusL, and for that we
introduce the notion of interrupt-less context C6 I for a context C. In other words, C6 I behaves
as C but never raises any interrupt. When a module is plugged in an interrupt-less
context, it terminates according to the low level semantics if and only if it does in the high
level semantics. Technically, to obtain the interrupt-less version of a context C it suffices
removing in the device the transitions that may raise an interrupt.

Definition 6.6. Let D = 〈∆, δinit,
a
;D〉 be an I/O device. Given a context C = 〈MC ,D〉, we

define its corresponding interrupt-less context as C6 I = 〈MC ,
a
;D6 I〉 where:

• D6 I = 〈∆, δinit,
a
;D6 I〉, and

• a
;D6 I ,

a
;D ∪{(δ, ε, δ′) | (δ, int?, δ′) ∈ a

;D} \ {(δ, int?, δ′) | (δ, int?, δ′) ∈ a
;D}.

Note that D6 I is actually a device, due to the constraints on its transition function.
The behavior of interrupt-less contexts in SancusL directly correspond to the behavior

of their standard counterparts in SancusH as stated below.
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Lemma 6.1. For any moduleMM , context C, and corresponding interrupt-less context C6 I :

C6 I [MM ]⇓L ⇐⇒ C[MM ]⇓H

Reflection now follows, because whole programs in SancusH behave just like a subset of
whole programs in SancusL.

Lemma 6.2 (Reflection). ∀MM ,MM ′ . (MM 'L MM ′ =⇒ MM 'HMM ′).

6.5.2 Preservation of behaviors

Here, we prove the preservation of behaviors, i.e., the chain of implications (ii) and then
(i), resulting in (iii) in Figure 56. More precisely we perform the following steps.

In Section 6.5.2.1 we first define two notions of traces: the fine-grained and coarse-grained

traces. The first is an auxiliary notion that directly derives from the semantics of SancusL

and facilitates the proofs. Intuitively, it takes into account all the actions performed by the
system. The second kind of traces only records the actions that attackers can observe, and
are easily derived from the fine-grained ones. Also, we call trace equivalent two modules
with the same set of coarse-grained traces. Using the fine-grained traces, we state and
prove the key yet rather technical Proposition 6.1 ensuring that our mitigation reflects the
intuition described in Figure 51.

Then we prove in Section 6.5.2.2 that trace equivalence implies contextual equivalence at
SancusL (the implication (i) of Figure 56). For that Lemma 6.5 is crucial, since it ensures
that two trace equivalent modules still produce the same traces when plugged in a given
context.

Next, in Section 6.5.2.3 we prove that contextual equivalence implies trace equivalence at
SancusH (the implication (ii)of Figure 56). This is achievedbydefining a backtranslation [176]
that given an attacker (a context that differentiate two modules) at SancusL returns an
attacker at SancusH.
Finally, Section 6.5.2.4 immediately concludes our proof of item (iii) in Figure 56.

6.5.2.1 Fine-grained and coarse-grained traces

It is convenient to consider two kinds of traces: the fine-grained and the coarse-grained
ones. The first records the relevant actions performed by the processors including those
concernedwith interrupt handling. The coarse-grained, instead, presents what the attacker
is able to observe, i.e., jumping in and out an enclave.
The fine-grained observables are defined as follows:

α ::= ξ | τ(k) | reti?(k) | handle!(k) | • | jmpIn?(R) | jmpOut!(k;R).

Above, k ∈ N indicates that the observed action takes k cycles. Intuitively, ξ denotes
unobservable actionsperformedby the context; τ(k) indicates an internal action;handle!(k)

and reti?(k) denote when the processor starts executing the interrupt service routine
from protected mode and when it returns from it, respectively. Then, the observable •
indicates that termination occurred; jmpIn?(R) and jmpOut!(k;R) record when the CPU
enters and exits from protected mode, respectively, whereR is the contents of the register
file when the action ends.

The relation α
==⇒ in Figure 57 extracts observables from the execution of awhole program.

Note that each transition D ` c→ c′ has a corresponding transition D ` c α
==⇒ c′ for some

α, possibly the non-observable ξ. The transitive and reflexive closure of α
==⇒ is α

==⇒∗, where
α is a trace, i.e., a sequence of actions (ε is the empty trace).
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(Obs-Internal-PM)
R[pc] `mode PM D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′, t+ k, t′a,M′,R′, pc′old ,⊥〉 R′[pc] `mode PM

D ` 〈δ, t, ta,M,R, pcold ,B〉
τ(k)

=====⇒ 〈δ′, t+ k, t′a,M′,R′, pc′old ,⊥〉

(Obs-JmpIn)
R[pc] `mode UM D ` 〈δ, t, ta,M,R, pcold ,⊥〉 → 〈δ′, t′, t′a,M′,R′, pc′old ,⊥〉 R′[pc] `mode PM

D ` 〈δ, t, ta,M,R, pcold ,⊥〉
jmpIn?(R′)

=========⇒ 〈δ′, t′, t′a,M′,R′, pc′old ,⊥〉

(Obs-Reti)
R[pc] `mode UM B 6= ⊥ D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′, t+ k, t′a,M′,R′, pc′old , 〈⊥,⊥, tpad 〉〉

D ` 〈δ, t, ta,M,R, pcold ,B〉
reti?(k)

=======⇒ 〈δ′, t′, t′a,M′,R′, pc′old , 〈⊥,⊥, tpad 〉〉

(Obs-JmpOut)
R[pc] `mode PM D ` 〈δ, t, ta,M,R, pcold ,⊥〉 → 〈δ′, t+ k, t′a,M′,R′, pc′old ,⊥〉 R′[pc] `mode UM

D ` 〈δ, t, ta,M,R, pcold ,⊥〉
jmpOut!(k ;R′)

===========⇒ 〈δ′, t+ k, t′a,M′,R′, pc′old ,B
′〉

(Obs-JmpOut-PostPoned)
R[pc] `mode UM

D ` 〈δ, t, ta,M,R, pcold , 〈⊥,⊥, tpad 〉〉 → 〈δ′, t+ k, t′a,M′,R′, pc′old ,⊥〉 R′[pc] `mode UM

D ` 〈δ, t, ta,M,R, pcold , 〈⊥,⊥, tpad 〉〉
jmpOut!(k ;R′)

===========⇒ 〈δ′, t+ k, t′a,M′,R′, pc′old ,B
′〉

(Obs-Handle)
D ` 〈δ, t, ta,M,R, pcold ,⊥〉 → 〈δ′, t+ k, t′a,M′,R′, pc′old ,B

′〉 R′[pc] `mode UM B′ 6= ⊥

D ` 〈δ, t, ta,M,R, pcold ,⊥〉
handle!(k)

========⇒ 〈δ′, t+ k, t′a,M′,R′, pc′old ,B
′〉

(Obs-Internal-UM)
R[pc] `mode UM D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′, t′, t′a,M′,R′, pc′old ,B〉 R′[pc] `mode UM

D ` 〈δ, t, ta,M,R, pcold ,B〉
ξ

==⇒ 〈δ′, t′, t′a,M′,R′, pc′old ,B〉

(Obs-Final)
R[pc] `mode UM D ` 〈δ, t, ta,M,R, pcold ,B〉 → HALT

D ` 〈δ, t, ta,M,R, pcold ,B〉
•

===⇒ HALT

Figure 57: The relation α
===⇒ for fine-grained observables.
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D ` INITC[MM ]
ξ···ξ·jmpIn?(R)

============⇒∗ c

D `C[MM ] INITC[MM ]
jmpIn?(R)

========⇒⇒ c

D ` INITC[MM ]
ξ···ξ·•

======⇒∗ HALT

D `C[MM ] INITC[MM ]
•

===⇒⇒ HALT

D ` INITC[MM ] →∗ c D `C[MM ] c
jmpOut!(∆t;R′)

============⇒⇒ c′ D ` c′ ξ···ξ·jmpIn?(R′′)
=============⇒∗ c′′

D `C[MM ] c
′ jmpIn?(R′′)

=========⇒⇒ c′′

D ` INITC[MM ] →∗ c D `C[MM ] c
jmpOut!(∆t;R′)

============⇒⇒ c′ D ` c′ ξ···ξ·•
======⇒∗ HALT

D `C[MM ] c
′ •===⇒⇒ HALT

D ` INITC[MM ] →∗ c D `C[MM ] c
jmpIn?(R′)

=========⇒⇒ c′

D ` c′ α(0)···α(n−1)·jmpOut!(k′′;R′′)
======================⇒∗ c′′ ∀0 ≤ i < n. αi /∈ {jmpOut!(_; _), •} ∆t = k′′ +

n−1∑
i=0

time(α(i))

D `C[MM ] c
′ jmpOut!(∆t;R′′)

============⇒⇒ c′′

D ` INITC[MM ] →∗ c

D `C[MM ] c
jmpIn?(R′)

=========⇒⇒ c′ D ` c′
α0 ···αn−1 ·•

==========⇒∗ HALT ∀0 ≤ i < n. αi /∈ {jmpOut!(_; _), •}

D `C[MM ] c
′ •===⇒⇒ HALT

where time(α) =

k if α ∈ {reti?(k), handle!(k), τ(k), jmpOut!(k;R)}

0 o.w.

Figure 58: The relation β
==⇒⇒ for coarse-grained observables.

Note that in any trace α, only the observables τ(k), reti?(k) or handle!(k) may occur
between a jmpIn?(R) and a jmpOut!(k;R). When an interrupt has to be handled, the
observed trace starts with handle!(·), followed by a sequence of ξ and then a reti?(k),
provided that a RETI is executed (k always has value cycles(RETI)). If the interrupted
instruction was a jump from protected to unprotected mode, the reti?(·) is followed by a
jmpOut!(·; ·) (cfr. rules (Obs-Handle), (Obs-Internal-UM), (Obs-Reti) and (Obs-JmpOut-
PostPoned)); otherwise a τ(·) – or a handle!(·) if an interrupt has to be handled.
Actually, an attacker (i.e., the context) cannot observe all α’s, but only the following

coarse-grained observables, where jmpIn?(R) and jmpOut!(∆t;R) represent invoking a
module and returning from it.

β ::= • | jmpIn?(R) | jmpOut!(∆t;R).

In Figure 58 we define the relation D `C[MM ] c
β

==⇒⇒ c′, where C[MM ] is the initial whole
program from which the computation started; D is the device specified by the context
C; and c and c′ are two configurations. From now onward, we feel free to abuse the
notation and omit the index C[MM ] when clear from the context. Essentially, we remove
the observables for interrupts and silent actions from the fine-grain traces, making them
not visible any longer. More in detail, all the actions in between a jmpIn?(·) and the
immediately following jmpOut!(k;R) (or a •) are dropped; similarly for the fine-grained
observables in between a jmpOut!(k;R) (or the very first observable from the initial
configuration) and the next jmpIn?(·). In addition, the parameter k is replaced by ∆t in
the observable jmpOut!(∆t;R) to model that an attacker can only measure the end-to-end

time of a piece of code running in protected mode. Taking β
==⇒⇒∗ as the reflexive and

transitive closure of the relation β
==⇒⇒ defined in Figure 58 (where traces β are strings of

β’s), we eventually define when two modules are trace equivalent:
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Definition 6.7. Two modules are (coarse-grained) trace equivalent, writtenMM
T
=MM ′ , iff

Tr(MM ) = Tr(MM ′).

where Tr(MM ) , {β | ∃C = 〈MC ,D〉.D ` INITC[MM ]
β

==⇒⇒∗ c′}.

notation Hereafter let x ∈ {1, 2}; let c, c1, c2, . . . , possibly dashed, be configurations;
and let c(n)

x = 〈δ(n)
x , t

(n)
x , t

(n)
ax ,M

(n)
x ,R(n)

x , pcold
(n)
x ,B(n)

x 〉 be the configuration reached after
n execution steps from the initial configuration c(0)

x . We will index the elements of a trace
and the components of a context Cx in a similar way. Finally, let c(i)

x be the configuration
right before the action of index i in a given (fine- or coarse-grained) trace.
To prove a crucial property of our mitigation, it is convenient to introduce the notion

of complete interrupt segments of a fine-grained trace, which are those starting with an
handle!(·) action and ending with a reti?(·) action (see Definition B.1 in Appendix B.5).
Also, let |Iα| be the number of the complete interrupt segments in a given trace α.

The proposition below characterizes how our mitigation affects the execution time of
a module (thus excluding the time spent executing the attacker’s code). Intuitively, it
ensures that handling each interrupt contributes to the time spent in protected mode with a
constant number of cycles equal to 11 + MAX_TIME. This is crucial to guarantee a constant
delay before and after interrupt handling, otherwise an attacker would be able to observe
different timings as it happens in Examples 6.1 and 6.3.

Proposition 6.1. If c(0) `mode PM and D ` c(0) α
==⇒∗ c(n+1)

, with α = α(0) · · ·α(n−1) ·
jmpOut!(k(n);R′), then k(n) +

∑n−1
i=0 time(α(i)) =

∑n
i=0 γ(c(i))+(11+MAX_TIME) · |Iα|, where

γ(c) ,

cycles(decode(M,R[pc])) if c `mode PM ∧ B = ⊥

0 o.w.

Proof. By definition of the interrupt logic and the operational semantics of SancusL, for
each interrupt handled in protected mode we perform a 0 ≤ k ≤ MAX_TIME padding before

invoking the interrupt service routine and an additional padding of (MAX_TIME− k) cycles
after its execution, i.e., the padding time introduced for each complete interrupt segment
amounts to MAX_TIME. Also, since the interrupt logic always requires 6 cycles to jump to
the interrupt service routine and 5 cycles are required upon RETI it easily follows that:

k(n) +

n−1∑
i=0

time(α(i)) =

n∑
i=0

γ(c(i)) + (11 + MAX_TIME) · |Iα|.

6.5.2.2 Trace equivalence implies contextual equivalence at SancusL

Here we prove the implication (i) of Figure 56, i.e., thatMM
T
=MM ′ =⇒ MM 'L MM ′ .

We rely on the following proposition to ensure that a terminating program generates a
coarse-grained trace ending with •, and vice versa.

Proposition 6.2. C[MM ]⇓L iff ∃β. D ` INITC[MM ]
β·•

===⇒⇒∗ HALT.

Proof. The only-if part holds trivially. For the other direction, the definition of C[MM ]⇓L

implies that D ` INITC[MM ] →∗ HALT and the definitions of fine- and coarse-grained
traces (Figures 57 and 58) guarantee that the last observed action is • as requested.
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Consider two whole programs that share the same context. The lemma below states
that if they perform the same sequence of actions reaching an unprotected configuration,
then their next action, if any, will be the same. Intuitively, this is because the context is
deterministic and because our mitigation makes the context behavior independent of
the module. Recall that coarse-grained traces record timing information, and therefore
this lemma and the next one also express timing independence between contexts and
modules.

Lemma6.3. LetC = 〈MC ,D〉. IfD ` INITC[MM ]
β

==⇒⇒∗ c1
β

==⇒⇒ c′1,D ` INITC[MM′ ]
β

==⇒⇒∗ c2,

c1 `mode UM and c2 `mode UM, then D ` c2
β

==⇒⇒ c′2.

We introduce below the (simulation based) equivalence U
≈ that helps in proving this

lemma, because this equivalence is preserved when moving from one unprotected
configuration to another (Proposition B.19). Roughly, U≈ relates configurations that are
equivalent from an attacker’s point of view (e.g., whenever the two configurations share
the contents of registers or of the unprotected memory):

Definition 6.8 (Definition 6.8). We say that two configurations are U -equivalent (written
c
U
≈ c′) iff

(c = c′ = HALT) ∨

(c = 〈δ, t, ta,M,R, pcold ,B〉 ∧ c′ = 〈δ′, t′, t′a,M′,R′, pc′old ,B′〉 ∧ M
U
=M′ ∧

c `mode m ∧ c′ `mode m ∧ δ = δ′ ∧ t = t′ ∧ ta = t′a ∧ R
UM�m R′ ∧ B ./ B′)

where

• M U
=M′ iff ∀l 6∈ [ts, te) ∪ [ds, de). M [l] =M′[l]

• R UM�m R′ iff (m = UM =⇒ R = R′) ∧ R[sr.GIE] = R′[sr.GIE]

• B ./ B′ iff (B = ⊥ ⇐⇒ B′ = ⊥)

Conversely, the following lemma shows that the behavior of themodule is not influenced
by the context (due to the isolation mechanism offered by the enclave):

Lemma 6.4. Let C = 〈MC ,D〉. If MM
T
= MM ′ , D ` INITC[MM ]

β
==⇒⇒∗ c′′1

jmpIn?(R1)
=========⇒⇒

c1
β

==⇒⇒ c′1 and D ` INITC[MM′ ]
β

==⇒⇒∗ c′′2
jmpIn?(R2)

=========⇒⇒ c2, then D ` c2
β

==⇒⇒ c′2.

Analogously to Lemma 6.3, also this proof is based on a simulation argument. In this
case we prove the preservation of the relation P

≈, which intuitively relates configurations
that are equivalent from a module’s point of view:

Definition 6.9. We say that two configurations are P -equivalent (written c P
≈ c′) iff

(c = c′ = HALT) ∨

(c = 〈δ, t, ta,M,R, pcold ,B〉 ∧ c′ = 〈δ′, t′, t′a,M′,R′, pc′old ,B′〉 ∧ M
P
=M′ ∧

pcold `mode m ∧ pc′old `mode m ∧ R PM�m R′ ∧ B ./ B′)

where
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• M P
=M′ iff ∀l ∈ [ts, te) ∪ [ds, de). M [l] =M′[l].

• R PM�m R′ iff (m = PM =⇒ R = R′)

• B ./ B′ iff (B = ⊥ ⇐⇒ B′ = ⊥).

The two lemmata above imply the following:

Lemma 6.5. Given a context C = 〈MC ,D〉 and two modulesMM andMM ′ . IfMM
T
=MM ′

and D ` INITC[MM ]
β

==⇒⇒∗ c1, then there exists a c2 such that D ` INITC[MM′ ]
β

==⇒⇒∗ c2.

Proof. We show this by induction on the length n of β.

• Case n = 0. Since β = ε, by definition of ·==⇒⇒∗, we have c1 = INITC[MM ] = c1. Again,
by definition of ·==⇒⇒∗, we choose c2 = INITC[MM′ ]

and get the thesis.

• Case n = n′ + 1. The induction hypothesis (IHP) is then:

D ` INITC[MM ]
β
′

===⇒⇒∗ c′1 ⇒ D ` INITC[MM′ ]
β
′

===⇒⇒∗ c′2

and we must show that

D ` INITC[MM ]
β
′

===⇒⇒∗ c′1
β

==⇒⇒ c1 ⇒ D ` INITC[MM′ ]
β
′

===⇒⇒∗ c′2
β

==⇒⇒ c2

By cases on the CPU mode in c′1 and c′2:
– R′1[pc] `mode UM andR′2[pc] `mode UM: Follows by (IHP) and Lemma 6.3;
– R′1[pc] `mode PM andR′2[pc] `mode PM: Follows by (IHP) and Lemma 6.4;
– R′1[pc] `mode m and R′2[pc] `mode m′ and m 6= m′: It never happens, as observed

in Proposition B.21.

We eventually conclude the proof that if two modules are trace equivalent then they are
contextually equivalent in SancusL (arrow (i) in Figure 56):

Lemma 6.6. IfMM
T
=MM ′ thenMM 'L MM ′ .

Proof. Expanding the definition of 'L, the statement becomes:

MM
T
=MM ′ ⇒ (∀C = 〈MC ,D〉.C[MM ]⇓L ⇐⇒ C[MM ′ ]⇓L)

We split the double implication and we show the two cases independently.

• Case⇒. By Proposition 6.2 there exists β such that D ` INITC[MM ]
β·•

===⇒⇒∗ HALT.

SinceMM
T
= MM ′ , we know by Lemma 6.5 that D ` INITC[MM′ ]

β·•
===⇒⇒∗ HALT.

Thus, again by Proposition 6.2, we have C[MM ′ ]⇓L;

• Case⇐. Symmetric to the previous one.
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6.5.2.3 Contextual equivalence at SancusH implies trace equivalence

Here we prove by contraposition thatMM 'HMM ′ =⇒ MM
T
=MM ′ , i.e., implication

(ii) of Figure 56.
We first define those traces, if any, that distinguish a given a pair of modules, i.e., one

converges while the other does not. Given a context in SancusL that keeps two modules
apart through two such traces, we define two algorithms: the first builds a memory and
the other a device. Once put together, they implement a backtranslation [176] and return
a context differentiating the two modules in SancusH. Because of the strong limitations
of MSP430 (e.g., it only has 64KB of memory) building such a context in unprotected
memory only is infeasible. Since the attacker model we assumed has the strong power of
controlling everything except the enclave, it is also assumed to control the I/O device
that has unlimited memory. Therefore, the backtranslation takes full advantage of such a
strength to build a distinguishing context.
We start from two distinguishing traces, that consist of a common prefix followed by

two further traces starting with two different observables. We then make sure that there
always exist such traces for two modules that are kept apart in SancusL.

Definition 6.10 (Distinguishing traces). LetMM andMM ′ be two modules, and let β =

βs ·β ·βe ∈ Tr(MM ) and β
′
= βs ·β′ ·β

′
e ∈ Tr(MM ′). We say that β and β

′
are distinguishing

traces forMM andMM ′ iff there exist a context CL = 〈MCL ,DL〉 such that

• DL ` INITCL[MM ]
β

==⇒⇒∗ c and DL ` INITCL[MM′ ]
β
′

===⇒⇒∗ c′, for some c, c′;

• β /∈ Tr(MM ′), β
′
/∈ Tr(MM ) and β 6= β′.

Proposition 6.3. IfMM andMM ′ are two modules such thatMM 6'L MM ′ , then there always

exist β and β
′
that are distinguishing traces forMM andMM ′ .

first algorithm: memory initialization. Intuitively, given two modules and two
distinguishing traces β = βs · β · βe and β

′
= βs · β′ · β

′
e for them, the Algorithm 2 builds

the memory of the wanted distinguishing context. Actually, this memory only contains
the code that cooperates with the I/O device built in Algorithm 3 to mimic the target
context and to differentiate the two modules in hand. Intuitively, the generated code
communicates the state of the CPU to the I/O device enabling it to drive the context
execution and thus the behavior of the processor.

Assume as given an assembler function encode that returns the encoding of any assembly
instruction as one or two words – according to the size specified in Table 3 (Page 116). Also,
assume that the unprotected memory is large enough to contain the code of the context
we are building (there is almost no loss of generality since the space required for this code
is bounded by a constant (≤ 25 words) plus the number of different addresses to which
the protected code jumps – kept anyway in the unprotected memory). Suppose also to
have the five constants A_HALT, A_LOOP, A_JIN, A_EP and A_RDIFF representing addresses
in the unprotected memory: they are assumed different from (i) each other, (ii) 0xFFFE

and (iii) any addressR[pc] such that jmpOut!(∆t;R) occurs in either input distinguishing
traces. Finally, assume for simplicity that the modules never jump to 0xFFFE.1

1 Slightly changing Algorithm 2 suffices to remove this limitation: upon the jump into protected mode right
before jumping to 0xFFFE, the context writes the right code to deal with it in 0xFFFE and, afterwards, restores
the old content of that address.
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First, the algorithm initializes the memoryMC by filling it with the code in Figure 59.
It consists of five parts. The first two are for convergence (Line 1) and divergence (Line 3).
The next part (Lines 5 to 20) inputs the registers values from the device and then jumps
into the enclave. Line 25 specifies that the first instruction to be executed is at the address
specified by A_EP. Finally, the code in Lines 22 and 23 interacts with the device to get the
next instruction to execute.
Then, the algorithm compares β and β′. If they are both jmpOut!(·; ·) and at least one

register has different values in the observables, two cases arise:

• If one of the registers differentiating β and β′ is r 6= pc, then we add the code (Lines 5
to 14, Algorithm 2) to request a new program counter (that will depend on the value
of r) to the device, starting at address A_RDIFF;

• Otherwise, the register differentiating β = jmpOut!(∆t;R) and β′ = jmpOut!(∆t;R′)
is pc. In this case, we store inMC the instructions to ask the device a new program
counter at the addressR[pc] andR′[pc] for the first and second module, respectively
(Lines 15 to 19, Algorithm 2). Also, we record the differentiating values of the
program counter in joutd and joutd ′, to be used by Algorithm 3.

Finally, the algorithm adds the code to deal with jumps out from the protected module
to unprotected code for any jmpOut!(∆t;R) in βs · β or βs · β′ such thatR[pc] 6= joutd and
R[pc] 6= joutd ′. Since the code cannot track timing directly, we delegate the device to deal
with the case when the observables differ on timings, i.e., when β = jmpOut!(∆t;R) and
β′ = jmpOut!(∆t′;R) with ∆t 6= ∆t′ (see Algorithm 3). Eventually, the algorithm returns
the memory built and the values of joutd and joutd ′ (if any), used by Algorithm 3 to build
the distinguishing device.

Algorithm 2 Builds the memory of the distinguishing context.
1: procedure BuildMem(β = βs · β · βe, β

′
= βs · β′ · β

′
e)

2: . β and β′ are distinguishing traces w. common prefix βs
3: joutd = joutd ′ = ⊥
4: MC = filled as described in Figure 59
5: if β = jmpOut!(∆t;R) ∧ β′ = jmpOut!(∆t;R′) ∧ (∃r.R[r] 6= R′[r]) then

6: if r 6= pc then

7: MC =MC [A_RDIFF 7→ encode(OUT r), A_RDIFF + 1 7→ encode(IN pc)]

8: else

9: joutd = R[pc]

10: joutd ′ = R′[pc]

11: MC =MC [joutd 7→ encode(OUT pc), joutd + 1 7→ encode(IN pc)]

12: MC =MC [joutd ′ 7→ encode(OUT pc), joutd ′ + 1 7→ encode(IN pc)]

13: end if

14: end if

15: for jmpOut!(∆t;R) ∈ βs · β, βs · β′ do
16: ifR[pc] 6= joutd ∧R[pc] 6= joutd ′ then

17: MC =MC [R[pc] 7→ encode(IN pc)]

18: end if

19: end for

20: return (MC , joutd , joutd ′)

21: end procedure
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1 A_HALT. HLT
2

3 A_LOOP. JMP pc
4

5 A_JIN . IN sp
6 . IN sr
7 . IN R3
8 . IN R4
9 . IN R5

10 . IN R6
11 . IN R7
12 . IN R8
13 . IN R9
14 . IN R10
15 . IN R11
16 . IN R12
17 . IN R13
18 . IN R14
19 . IN R15
20 . IN pc
21

22 A_EP . OUT pc
23 . IN pc
24

25 0xFFFE. A_EP ; the content of 0xFFFE is A_EP

Figure 59: Initial content of unprotected memory as used by Algorithm 2.

second algorithm: device construction. This second algorithm iteratively builds
a device that cooperateswith thememory of the context given byAlgorithm2 todistinguish
MM fromMM ′ . The algorithm is in Appendix B.8, and here we only briefly comment on
it.

Let joutd and joutd ′ be the addresses returned by Algorithm 2 (if any) and that represent
the differentiating values of the program counter; let β = βs · β · βe and β

′
= βs · β′ · β

′
e

(β 6= β′) be two distinguishing traces for MM and MM ′ under CL; finally, let term

(resp. term ′) denote whetherMM (resp.MM ′) converges in a context with no interrupts
after the last jump into protected mode. The algorithm starts with an empty device and
iterates over the observables βi in βs:

• Case βi = jmpIn?(R).

In this case either this is the first observable or βi−1 = jmpOut!(·; ·). According
to Algorithm 2, in both cases we reach the instruction IN pc (either at address A_EP
or those of jumps out of protected mode), waiting for the next program counter.
The algorithm appends the behavior described in Figure 60a to the device built so
far. Intuitively, the device ignores possible write operations and outputs the special
address A_JIN. Then, it starts sending the values of the registers inR, so to simulate
in SancusH what happens in SancusL and to match the code requests.

• Case βi = jmpOut!(∆t;R).

The device is simply updated with an ε-loop on the last added state δL and ignores
write operations (to dealwithR[pc] = joutd orR[pc] = joutd ′). Figure 60b pictorially
represents this case.
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Then, as soon as β and β′ show up, the algorithm sets up the device to differentiate the
modules:

• Case β = jmpOut!(∆t;R) ∧ β′ = jmpOut!(∆t′;R′) ∧ (∃r.R[r] 6= R′[r]).

In this case the differentiation is due to a register, and two further sub-cases may
arise. If the register is pc then the device gets the differentiating value from the
context (executing code at joutd and joutd ′ by construction); based on that value, it
outputs either A_HALT or A_LOOP (see Figure 61a). For any other register than pc, the
context waits for the next program counter and replies with the address A_RDIFF.
This address points to the code that sends the differentiating register value and,
based on that, the device replies with either A_HALT or A_LOOP (see Figure 61b).

• Case β = jmpOut!(∆t;R) ∧ β′ = jmpOut!(∆t′;R) ∧∆t 6= ∆t′.

Since different timings in SancusL correspond to different timings in SancusH

(see Proposition B.24), we program the device so as to either reply with A_HALT or
with A_LOOP depending on the time value (Figure 61c).

• Case β = • ∧ β′ = jmpOut!(∆t;R).

In this case •may occur during an interrupt service routine. Two sub-cases may arise,
depending on whether the first moduleMM terminates or not when executed in a
context that raises no interrupts after the last jump into protected mode. Note that
the value of term differentiates the two sub-cases. When term holds,MM causes
a transition to an exception handling configuration from which there is a a jump
to A_EP, and the device instructs the code to jump to A_HALT. Instead, the second
module jumps to another location different from the distinguished address A_EP,
thus a jump to A_LOOP occurs (Figure 61d). When term does not hold,MM diverges
and the second module makes the CPU jump to a location in unprotected code and
the CPU is instructed to jump to A_HALT (Figure 61e).

• Case β = jmpOut!(∆t;R) ∧ β′ = ε.

Analogous to the above, with term ′ replacing term .

• Otherwise. No other cases may arise (see Proposition B.23).

At the end, the algorithm returns a device built as just summarized.
The correctness of the two algorithms is established by the Propositions B.23 and B.24

in Appendix B. The first states that, under the stated conditions, BuildDevice always
produces an actual I/O device. The second property guarantees that the context built by
joining together the results of the two algorithms is indeed a distinguishing one.

We finally prove that if two modules are contextually equivalent in SancusH, then they
are trace equivalent (implication (ii) in Figure 56).

Lemma 6.7. IfMM 'HMM ′ thenMM
T
=MM ′ .

Proof. We prove the contrapositive:MM

T
6=MM ′ thenMM 6'HMM ′ . By Proposition 6.3,

since
T
6= there exists a pair of distinguishing traces for MM and MM ′ . Algorithm 2

and Algorithm 3 witness the existence of a context CH that is an actual context and
is guaranteed to differentiate MM from MM ′ , i.e., CH [MM ]⇓H and CH [MM ′ ]6⇓H (or
vice versa). Thus, by definition of contextually equivalent modules in SancusH, we get
MM 6'HMM ′ as requested.
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rd(JIN) rd(R[sp]) rd(R[sr]) rd(R[R3]) rd(R[R4])

rd
(R

[R
5
])rd(R[R6])rd(R[R7])rd(R[R8])rd(R[R9])rd(R[R10])

rd
(R

[R
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1
]) rd(R[R12]) rd(R[R13]) rd(R[R14]) rd(R[R15]) rd(R[pc])

(a) The case of βi = β′i = jmpIn?(R).

δL

ε

wr(_)

(b) The case of βi = β′i = jmpOut!(∆t;R).

Figure 60: A graphical representation of the algorithm building the I/O device for βi and β′i being
in the longest common prefix. Here, δL denotes the final state of the I/O device being
updated, while the final state of the updated device is depicted as a solid, black circle.

6.5.2.4 Preservation of behaviors

The last step of this long proof consists in stating and proving the lemma that guarantees
preservation of behaviors, i.e., the implication (iii) in Figure 56:

Lemma 6.8 (Preservation).

∀MM ,MM ′ . (MM 'HMM ′ ⇒MM 'L MM ′).

Proof. Just compose the implications (i) and (ii) of Figure 56 (i.e., Lemmata 6.6 and 6.7,
resp.).

6.6 preservation of hyperproperties

This section shows that our full abstraction result allows us to easily derive the preservation
of some notions of non-interference and hypersafetywhen passing from SancusH to SancusL.
Since we are dealing with enclaves, the standard notions will be adapted to our framework.
From now onward, we will use the following equivalence relation — less demanding

than U
≈ (Definition 6.8, Page 142) — to express equivalent configurations:

Definition 6.11. Let c and c′ be two configurations.Wewrite c
L
= c′ iff (c = c′ = HALT)∨(c.δ =

c′.δ ∧ c.t = c′.t ∧ c.ta = c′.ta ∧ c.M U
= c′.M ∧ c.R = c′.R), with

U
= as in Definition 6.8.

The following proposition holds trivially:

Proposition 6.4. Let c and c′ be configurations such that c, c′ `mode UM. If c
U
≈ c′ then c L

= c′.
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(a) The case of βi = jmpOut!(∆t;R) ∧ β′i = jmpOut!(∆t′;R′) ∧ (∃r 6= pc.R[r] 6= R′[r]).
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(b) The case of βi = jmpOut!(∆t;R) ∧ β′i = jmpOut!(∆t′;R′) ∧R[pc] 6= R′[pc].

δL . . . . . .ε ε ε ε

rd(A_LOOP)

rd
(A_

H
A
L
T
)

min(t, t′) max(t, t′)−min(t, t′)

(c) The case of βi = jmpOut!(∆t;R)∧ β′i = jmpOut!(∆t′;R)∧∆t 6= ∆t′. Let t and t′ be the timing differences
observed by the attacker at SancusL, see Algorithm 3 in the Appendix for details.

δL

ε

wr(w), w 6= A_EP

wr(A_EP) rd(A_HALT)

rd(A_LOOP)

(d) The case of
βi = • ∧ β′i = jmpOut!(∆t;R)∧ term .

δL

ε

wr(_)

rd(A_HALT)

(e) The case of
βi = • ∧ β′i = jmpOut!(∆t;R) ∧ ¬term .

Figure 61: A graphical representation of the algorithm building the I/O device for βi and β′i being
the distinguishing observables. Here, δL denotes the final state of the I/O device being
updated, while the final state of the updated device is depicted as a solid, black circle.
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6.6.1 Take one: termination-insensitive, time-sensitive non-interference

Wenowtailor the standardnotionof termination-insensitive, time-sensitivenon-interference
(inspired by [124]) to fit in our framework. Roughly, two modules are non-interferent if
and only if no context can distinguish them, because right before termination their public
memories are equivalent. Formally:

Definition 6.12. Two modulesMM andMM ′ are termination-insensitive, time-sensitive non-

interferent (ISNI) in SancusH (writtenMM ≈ISMM ′) iff for all contexts C = 〈MC ,D〉

D ` INITC[MM ] →∗ c→ HALT ∧ D ` INITC[MM′ ]
→∗ c′ → HALT =⇒ c

L
= c′.

Similarly, we define ISNI in SancusL
,MM ≈ISMM ′ .

Commonly termination-insensitive non-interference is a property of a single program, to
which our definition actually reduces when considering initial configurations as programs
whose public input is a context and secret input is a module. Indeed, this is a good model
of what happens in reality: contexts are controlled by the attackers, whereas modules are
securely deployed (i.e., wemodel the situationwhere both code and data are confidentially
deployed, as can be done in Sancus 2.0 [170] and in Soteria [108]). Note in passing that
our definition and results still hold if the code and a portion of the data are made public
before being loaded in the enclave (see also the discussion at the end of Section 6.6.2).

In the following, we clarify the relation between non-interference as defined in Defini-
tion 6.12 and our instance of full abstraction established in Theorem 6.2. First, we relate
contextual equivalence with non-interference in SancusL:

Lemma 6.9. IfMM 'L MM ′ thenMM ≈ISMM ′ .

From that it easily follows that non-interference in SancusL is guaranteed when two
modules are contextually equivalent in SancusH:

Theorem 6.3. IfMM 'HMM ′ thenMM ≈ISMM ′ .

6.6.2 Take two: termination- and time-sensitive non-interference

In this section we consider a notion of non-interference inspired by Devriese and Piessens
[91] and distinguishes terminating modules from non-terminating ones. In the standard
notion the program is public and the memory is split in a public and a secret segment: an
attacker cannot discover any secret data by running the code with different public data. In
our framework however also the code as well as (public) data are protected, being hosted
in the enclave. Therefore, we first adapt the standard definition to our case, where the
entire module is protected. At the end of this section, we then discuss how to recover the
classic notion.

Definition 6.13 (SSNI). Two modules MM and MM ′ are termination- and time-sensitive

non-interferent (SSNI) in SancusH (writtenMM ≈SSMM ′) iff for all contexts C = 〈MC ,D〉,
and configurations c both implications hold:

• D ` INITC[MM ] →∗ c→ HALT =⇒ ∃c′. (D ` INITC[MM′ ]
→∗ c′ → HALT ∧ c

L
=

c′)

• D ` INITC[MM′ ]
→∗ c→ HALT =⇒ ∃c′. (D ` INITC[MM ] →∗ c′ → HALT ∧ c

L
=

c′)
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Similarly, we define SSNI in SancusL
,MM ≈SSMM ′ .

The following theorem is easily established:

Theorem 6.4.

1. IfMM 'L MM ′ , thenMM ≈SSMM ′ ; and

2. ifMM ≈SSMM ′ , thenMM 'HMM ′ .

Thus, due to Theorem 6.2, the preservation of SSNI holds:

Corollary 6.1. MM ≈SSMM ′ =⇒ MM ≈SSMM ′ .

To recover the standard notion of non-interference, we first formalize when twomodules
share the same code, but may differ in their data sections. Note that the code needs not
to be kept confidential, even though it is part of the enclave. Recall the notion of layout
ℒ = 〈ts, te, ds, de, isr〉, which is fixed in our model.

Definition 6.14. We say that two modulesMM andMM ′ share the code (writtenMM =sc

MM ′) iff ∀i ∈ [ts, te).MM (i) =MM ′(i).

Suppose as given two enclaves hosting two modules MM and MM ′ such that (i)
they share a piece of code considered public in their code section, i.e.,MM =sc MM ′ ;
and (ii) they have possibly different values in the data section, which are confidential.
Under these assumptions, Definition 6.13 reduces to the standard notion of termination-
and time-sensitive non-interference. Also, sinceMM ≈SSMM ′ ∧ MM =sc MM ′ =⇒
MM ≈SS MM ′ is an immediate consequence of Corollary 6.1, we easily guarantee the
preservation of the standard notion of non-interference in our enclave setting.

Corollary 6.2. For allMM ,MM ′ such thatMM =scMM ′ it is

MM ≈SSMM ′ =⇒ MM ≈SSMM ′ .

Note that Theorem 6.4 and its corollaries hold under the hypothesis that SancusH and
SancusL are fully abstract. Indeed, under the same hypothesis one could also prove the
vice versa of the cases of Theorem 6.4 and get that SSNI is equivalent to our notion of
contextual equivalence, especially for enclaves with the same code section.

6.6.3 Take three: stepwise termination- and time-sensitive non-interference

Since the attacker in our model is able to interrupt execution at every CPU cycle, one might
wonder about the preservation of a stronger, stepwise notion of non-interference.

For that, we start from SSNI and introduce stepwise termination-and time-sensitive non-

interference. It stipulates that two modules are non-interferent whenever their public
memories are kept equivalent while stepping between successive unprotected configura-
tions. For that, we first need the following definition:

Definition 6.15. D ` c�k c
′ iff

D ` c→ c1 → . . .→ cn → c′ ∧ c, c′ `mode UM ∧

∀1 ≤ i ≤ n. ci `mode PM ∧ k =

0 n = 0

2 o.w.

Also, let D ` c1 �t
K ct, whereK =

∑t
i=1 ki, be the shorthand for D ` c1 �k1

. . .�kt
ct.

Similarly, we define D ` c�k c
′
and D ` c�t

K c′.
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Intuitively k counts the interactions between the context and the module (k = 0 if there
are none and k = 2 if there is one entry and one exit) whereas the arrows�k and�k

ignore all the steps taken in protected mode and just take into account the actions of the
context.
We can now define the new notion of stepwise termination- and time-sensitive non-

interference:

Definition 6.16. Two modulesMM andMM ′ are stepwise termination- and time-sensitive

non-interferent (SSSNI) in SancusH (writtenMM ≈SSSMM ′) iff for all contexts C = 〈MC ,D〉
both implications hold

• D ` INITC[MM ] �
t
K c =⇒ ∃c′. D ` INITC[MM′ ]

�t
K c′ ∧ c

L
= c′

• D ` INITC[MM′ ]
�t
K c′ =⇒ ∃c. D ` INITC[MM ] �

t
K c ∧ c

L
= c′

Similarly, we define SSSNI in SancusL
,MM ≈SSSMM ′ .

Since the arrows�t
K and�t

K are in a clear relation with β
==⇒⇒ (see Proposition B.25), we

can prove the following results, leading to the preservation of SSSNI:

Lemma 6.10.

1. IfMM 'L MM ′ thenMM ≈SSSMM ′ ; and

2. ifMM ≈SSSMM ′ thenMM 'HMM ′ .

Thus, due to Theorem 6.2, the preservation of SSSNI holds:

Corollary 6.3. IfMM ≈SSSMM ′ thenMM ≈SSSMM ′ .

We note in passing that the same considerations made at the end of Section 6.6.2 suffice
to show that our contextual-equivalence coincides with this notion of non-interference
when the code and some data are deemed public.

6.6.4 Take four: hypersafety

In this section we briefly sketch how to reduce our notion of full abstraction to the
preservation of a much wider family of security properties than just non-interference,
building on the work of Patrignani and Garg [179].

We first recall some notation. A compiler is seen in [179] as a mapping J·K from source
to target programs. Our compiler is actually the identity function, since any moduleMM

in SancusH is mapped into the same moduleMM in SancusL. Also, Patrignani and Garg
[179] give the following notion of trace equivalence, which we call whole program trace

equivalence:

Definition 6.17 (Definition 19 [179]). We say that

MM
WT
= MM ′ ⇐⇒ ∀C.WTr(C[MM ]) = WTr(C[MM ′ ]),

where WTr(C[MM ]) , {β | ∃c.D ` INITC[MM ]
β

==⇒⇒∗ c}.

Contrary to our notion of Definition 6.7, their definition of trace equivalence requires
the programs to produce the same set of traces under a fixed context (i.e., it is defined on
whole programs).

Crucially, the following theorem links the notion of whole program trace equivalence
with ours:
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Theorem 6.5. The following relations are equivalent:

1.MM
WT
= MM ′ 2.MM

T
=MM ′

3.MM 'L MM ′ 4.MM 'HMM ′

Thus, as a consequence of Theorem 6.5, our coarse-grained traces (Figure 58) are a fully
abstract trace semantics for both SancusH and SancusL, according to Definition 20 of [179]:

Corollary 6.4.

1. ∀MM ,MM ′ .MM 'HMM ′ ⇐⇒ MM
WT
= MM ′ ;

2. ∀MM ,MM ′ .MM 'L MM ′ ⇐⇒ MM
WT
= MM ′ .

Due to this corollary, bothAssumption 1 (i.e., trace semantics of SancusH is fully abstract)
and Assumption 2 (i.e., trace semantics of SancusL is fully abstract) from [179] hold.
Recall that the compiler from SancusH to SancusL implicitly used throughout the paper
is an identity compiler (mapping a module in itself). By the assumption above, it also
follows that SancusH and SancusL share the same set of fully abstract traces. Our identity
compiler is therefore trivially correct, and also is a fail-safe-behavior compiler— roughly, a
compiler producing target programs that always halt after an invalid input (Definition
16 of [179]). We finally conclude that all the safety hyperproperties that hold for whole
programs in SancusH also hold in SancusL (Theorems 10 and 6 of [179]).

Note that the above is just a sketch of how one could prove the preservation of
hypersafety following the approach of [179]. Indeed, amore formal and complete treatment
of hyperproperty preservation would require traces to be the ground truth concerning
what an attacker might observe. This might call for a complete reworking of the notion
of traces in our setting, that are now a mere tool, beneficial to the proof, only. The
same considerations hold for other principles of secure compilation based on (robust)
hyperproperty preservation, such as those in [9, 10]; see also Section 6.7.1.

6.7 discussion

6.7.1 Full abstraction as a security objective

The security guarantee that our approach offers is quite strong: an attack is possible in
SancusH if and only if it is possible in SancusL. Recall from Section 6.2 that isolation is
defined in terms of contextual equivalence: full abstraction fits nicely in our setting, since
it ensures preservation and reflection of contextual equivalence.
The preservation part (i.e., contextual equivalence in SancusH implies it in SancusL)

guarantees that extendingSancusHwith interrupts opens no newattack avenues. Vice versa,
reflection (i.e., contextual equivalence in SancusL implies it in SancusH) is needed because
otherwise two enclaves that are distinguishable in SancusH become indistinguishable in
SancusL, making the extension not fully “backward compatible”. Although this is mainly
a functionality concern, adding interruptible enclaves without guaranteeing reflection
requires the enclave programmer to be aware of low-level implementation details of the
target (micro-)architecture. However, reflection rules out mechanisms that while closing
the interrupt side-channels also close other channels. We believe the situation is very
similar for other extensions: adding caches, pipelining, etc. should not strengthen existing
isolation mechanisms either.
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Actually, full abstraction enables us to take the security guarantees of SancusH as the
specification of the isolation required after an extension is added.
An alternative approach to full abstraction would be to require (a non-interactive

version of) robust preservation of timing-sensitive non-interference [10]. This can also
guarantee resistance against the example attacks in Section 6.2. However, this approach
offers a strictly weaker guarantee: our full abstraction result implies that timing-sensitive
non-interference properties of SancusH programs are preserved in SancusL, provided
that non-interference takes as secret the data of the enclave, i.e., its memory, code, and
initial state (see also the discussion in Section 6.6 about the role of full abstraction in
preservation of non-interference).

In addition, full abstraction implies that isolation properties that rely on code con-
fidentiality are preserved, and this matters for enclave systems that guarantee code
confidentiality, like the Soteria system [108]. An advantage however is that robust preser-
vation of timing-sensitive non-interference should be easier to prove.

In case full abstraction is considered too strong as a security criterion, it is possible to
selectivelyweaken it bymodifyingSancusH. For instance, to specify that code confidentiality
is not important, one can modify SancusH to allow contexts to read the code of an enclave.

6.7.2 The impact of our simplifications

The model we discussed in this chapter makes several simplifying assumptions w.r.t. the
actual Sancus architecture. We believe that some of them are non-essential and could
be removed with additional work, but without providing important new insights. For
instance, supporting more MSP430 instructions would not affect the strong security
guarantees offered by our approach, and only requires straightforward, yet tedious
technical work. Also, the limitation that forbids enclaves to access unprotected memory
can be lifted by making reads and writes from/to unprotected memory observable to the
untrusted context in SancusH. This means that these reads and writes become interactions
with the adversary and that the burden of considering attacks scenarios involving them
is moved to the enclave programmer. An alternative approach which puts less security
responsibility on the developer is to rely on a trusted runtime that can access unprotected
memory to copy in/out parameters and results, and then turn off access to unprotected
memory before calling enclaved code. Our model could easily be extended to deal with
such a trusted runtime by considering memory copied in/out as a large CPU register.
However, it is important to emphasize that the implementation of such trusted enclave
runtime environments has been shown to be error-prone [47]. A further alternative is
considering the secure compartmentalizing compilation proposed by Juglaret et al. [121],
who also use full abstraction to prove security.

Another non-essential limitation is the fact that we do not support nested interrupts
nor interrupt priority. It is straightforward to extend our model with the possibility of
multiple pending interrupts and a policy to select which of these pending interrupts to
handle. One only has to take care that the interrupt arrival time used to compute padding
is the arrival time of the interrupt that will be handled first.
Other assumptions are instead more essential, and removing these would require

additional research. Here, we discuss their impact on the applicability of our results to
real systems.
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First, our model made some simplifying assumptions about the enclave-based isolation
mechanism. We do not support cryptographic operations and attestation. Despite not
being fundamental to deal with interrupt-based attacks, they should be added to have a
full model of Sancus. Indeed, not supporting these features means that we assume that
loading and initializing an enclave can be done as securely in SancusL as it can be done
in SancusH. Our choice separates concerns and it is independent of the security criterion
adopted. Modelling both memory access control and cryptography would only increase
the complexity of the model, as two security mechanisms rather than one would be in
order. Also their interactions should be considered to prevent, among others, leaks of
cryptographic keys unveiling secrets protected by memory access control, and vice versa.

Furthermore, we assumed the simple setting where only a single enclave is supported.
We believe these simplifications are acceptable, as they reduce the complexity of the model
significantly, and as none of the known interrupt-driven attacks rely on these features.
Another limitation of our model is that it forbids jumps into the enclave from the interrupt
service routine (via `mac). Allowing re-entrancy would cause the same complications as
allowing multi-threaded enclaves, and these are substantial complications that also lead
to new kinds of attacks [235]. We leave investigation of these issues to future work.

Finally, we scoped our work to only consider “small” microprocessors. Both our formal
models, as well as the design and security proof of our interrupt padding countermeasure
focus very much on enclaved execution on small microprocessors, like the Sancus system.
An interesting question is to what extent the insights of our countermeasure design can
be applied to more complex platforms like Intel SGX.
The first difference we do not capture in our model is that the execution time of

instructions in high-end architectures appears to attackers as non-deterministic. This is
mainly a disadvantage for the attacker, that needs to take the average of timings of multiple
runs to reliably compute execution times and draw their conclusion. However, this has
been shown to be feasible for interrupt-based attacks (even on high-end x86 processors)
by Van Bulck et al. [225]. Actually, we think that some form of padding might still be
useful even in these cases. On the one hand, the non-deterministic nature of instruction
execution time makes it hard to choose a good value for MAX_TIME and since the worst-case
execution time on complex processors can be quite high, choosing MAX_TIME to be higher
than any possible instruction may be prohibitively expensive. On the other hand, it might
be fine to choose MAX_TIME to be smaller than the actual worst-case longest instruction
execution time. In this case, MAX_TIME would be a trade-off between performance and
security: the higher the MAX_TIME, the less an attacker can learn from a specific interrupt
latency measurement. However, in cases where the attacker can influence the execution
time of instructions (for instance, by flushing caches), the precise security gains are hard
to estimate. One could also think of adding a random padding to interrupt handling and
resume, together with measures to make it impossible for the attacker to execute the same
measurement many times (thus making it impossible to do statistical analysis).

The second difference is that optimizations (e.g., caches or speculative execution) open
new side-channels which are observable to the attacker. It is hard to estimate the impact of
padding mechanisms on these side-channels. For instance, if the attacker can distinguish
padding from regular instructions by observing side effects (e.g., monitoring for loads from
memory, which do not happen for padding), the countermeasure becomes useless. Since
removing all the possible side effects through which enclaved executions leak information
may be infeasible (e.g., for performance reasons) the question becomes instead how much
leakage we are willing to allow. This could again be formulated as a full abstraction
theorem, where we model the side-channels that we accept in the high model (similarly to
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what we did for end-to-end timing attacks in SancusH). We believe that the models in this
paper provide a good basis for such further developments, but we leave the (challenging)
elaboration of these ideas to future work. For an in-depth discussion on the applicability
of our countermeasure to high-end processors, we refer to Van Bulck’s PhD thesis [224]
and Busi et al. [59].
In summary, to provide hard mathematical security guarantees, one often abstracts

from some details and provable security only provides assurance to the extent that the
assumptions made are valid and the simplifications non-essential. The discussion above
shows that this is the case for a relevant class of attacks and systems, and hence that our
countermeasure for these attacks is well-designed. Of course, attacks remain possible
for more complex systems (e.g., including caches and speculation), or considering more
powerful attackers (e.g., with physical access to the system).

6.8 conclusions

We have proposed an approach to formally assure that extending a microprocessor with a
new feature does not weaken the isolation mechanisms that the processor offers. More
precisely, we advocate full abstraction as a formal criterion of what it means to maintain
the security of isolation mechanisms under processor extensions. We have applied our
approach to an embedded microprocessor: first, we have designed an extension of Sancus
with interruptible enclaves (SancusL) and then we have proved it fully abstract with
respect to the original Sancus without them (SancusH). Remarkably, the full abstraction
proof relies on the strong power of our attacker that controls the unprotected memory,
which is limited to 64 KB, and the I/O device which instead has unlimited memory.
Indeed, the backtranslation encodes the attack logic within the I/O device that then drives
a fixed piece of code in unprotected memory, namely the software component of the
attacker.
To further assess our full abstraction-based security criterion we have compared its

guarantees with those of some notions of non-interference preservation presented in the
literature: we have proved that they are implied by our full abstraction theorem. We also
proved that our results preserve hyperproperties, thus ensuring that modules executed in
interruptible Sancus enjoy the same hyperproperties as they would when executed by the
uninterruptible one.
The mitigation here proposed was also implemented by our co-authors from KU

Leuven, so demonstrating its feasibility. An in-depth description of the implementation is
available in [58, 59] and its source code is available online at https://github.com/
sancus-pma/sancus-core/tree/nemesis.

related work Our work is motivated by the recent wave of software-based side-
channel attacks and controlled-channel attacks that rely on architectural or micro-
architectural processor features. Recent surveys of the area include Ge et al. [102] for
timing attacks, Gruss’s PhD thesis [110] for software-based micro-architectural attacks
before Spectre/Meltdown, and Canella et al. [64] for transient execution based attacks.
Despite their strong security measures, enclaves are vulnerable to a variety of attacks.

For instance, a successful attack technique that allows to extract secrets from enclaves (see
e.g., [107, 113, 153, 209]) is Prime+Probe [117]. In its simplest form, Prime+Probe allows
attackers to discover memory accesses of their victims as follows. First, the attacker fills
the cache with its own data (primed data); then it waits for the victim to be executed; finally,
it checks (probes) whether the cache lines of the primed data are still in the cache: if this

https://github.com/sancus-pma/sancus-core/tree/nemesis
https://github.com/sancus-pma/sancus-core/tree/nemesis
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is not the case it means that the victim accessed the relevant memory addresses. Also,
controlled side-channel attacks [240] proved to be quite effective (e.g., [48, 114, 154, 225]).
Among these, we find interrupt-based attacks that are the most relevant for this chapter.
Van Bulck et al. [225] were the first to show how that measuring interrupt latency can
lead to powerful attacks against both high-end enclaved execution systems (like Intel
SGX) and against low-end systems like Sancus. Independently, He et al. [114] designed a
similar attack just for Intel SGX. Intel SGX is also vulnerable to transient-execution attacks,
i.e., attacks that exploit the side effects caused by speculative and out-of-order execution.
One of the first attacks exploiting transient-execution is Foreshadow [46, 236], which
allows an attacker to extract secrets from an enclave residing in the same core as the
attacker. Other, more recent vulnerabilities leveraging different sources of side effects
include ZombieLoad [208], RIDL [207], and CrossTalk [196]. The above list is by no means
exhaustive and for a more in-depth survey on Intel SGX attacks we refer the interested
reader to Van Bulck’s PhD thesis [224].

There is an extensive body of work also on defenses against software-based side-channel
attacks. The four surveys mentioned above ([64, 102, 110, 224]) also survey defenses,
including both software-based defenses like the constant-time programming model and
hardware-based defenses such as cache-partitioning. To the best of our knowledge, our
work proposes the first defense specifically designed and proved to protect against pure
interrupt-based side-channel attacks. Clercq et al. [73] have proposed a design for secure
interruptibility of enclaved execution, but they have not considered side-channels — their
main concern is to make sure that there are no direct leaks (e.g., of registers) on interrupts.
Most closely related to ours is the work on SecVerilog [246] that also aims for formal
assurances. To guarantee timing-sensitive non-interference properties, SecVerilog uses a
security-typed hardware description language. However, this approach has not yet been
applied to the issue of interrupt-based attacks. Similarly, Zagieboylo et al. [245] describe
an ISAwith information-flow labels and use it to guarantee timing-insensitive information
flow at the architectural level.
An alternative approach to interruptible secure remote computation is pursued by

VRASED [171]. In contrast to enclaved execution, their design only relies on memory
access control for the attestation key, not for the software modules being attested. They
prove that a carefully designed hardware/software co-design can securely do remote
attestation.
Our security criterion is directly influenced by a long line of work that considers full

abstraction as a criterion for secure compilation as already briefly surveyed in Chap-
ter 2. The idea was first coined by Abadi [2], and has been applied in many settings,
including compilation to JavaScript [100], various intermediate compiler passes [14, 15],
and compilation to platforms that support enclaved execution [13, 176, 178]. None of
the above works consider timing-sensitivity nor interrupts and they study compilations
higher up the software stack than what we consider in this chapter. Still higher up in
the computational stack, Tomé Cortiñas et al. [222] extended the MAC library [228] — a
Haskell information-flow control library—with asynchronous exceptions. Akin to interrupts
in our setting, asynchronous exceptions can be raised at any time and may break security
properties of the running code. To ensure that this never happens, they introduced a
variant of non-interference and proved that it is satisfied by their extension of the MAC
library.
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Other authors applied secure compilation techniques to prove security against side-
channel attacks. For instance, Barthe et al. [20] proved that a suitablymodifiedversion of the
CompCert compiler [139] preserves the constant-time policy. For that, they identified the
passes of CompCert that did not preserve constant-time and modified them accordingly;
afterwards, they proved them to be constant-time preserving using variants of the proof
techniques proposed in [21] (and briefly surveyed in Chapter 3). Very recently, Patrignani
and Guarnieri [182] proved secure a couple of mitigations against Spectre v1 [128]
by specializing hyperproperty preservation principles of [10] to preserve speculative

non-interference [112].
Another active area of research is that of detecting (and possibly fixing) speculative leaks

(e.g., leaks caused by Spectre attacks [128]) using programming-languages techniques. For
example, Spectector [112] is a symbolic execution tool that analyses x86_64 assembly
programs and detects the presence of possible speculative leaks or proves their absence.
Guanciale et al. [111] present a formal model capturing out-of-order execution and
speculation in single core processors. Using this model they discover three new (possible)
vulnerabilities and assess the security of existing countermeasures. Vassena et al. [227]
define a static type system that labels each expression of their language as either transient
or stable (i.e., that may include transient values or not, respectively). Crucially, their type
system rejects programs that possibly contain speculative leaks. Also, they introduce the
protect primitive that ensures that assignments containing it are performed only once
their right-hand-side is stable. Furthermore, Vassena et al. provide an algorithm that
automatically synthesizes the minimal number of protects to be inserted in the given
program to fix all the potential speculative leaks.



7
CO NC LU S I O N

In this thesis, we have argued that secure compilation is not just a concern of compilers and
their developers. Indeed, language translations and code transformations are common
across all the levels of the computational stack, from the high level down to the micro-
architecture. Thus, we have studied different techniques guaranteeing a variety of security
objectives and that are applicable at different levels of abstraction.

At the highest level, we have considered transformations whose target language is the
same as the source (e.g., program optimizations or obfuscations) and we have verified that
they preserve the security properties of source programs. In Chapter 3 we have followed
a classical approach and manually proved that the control-flow flattening program
obfuscation preserves the constant-time policy. However, this is not satisfactory: this
approach requires the user to prove her results manually [20, 21]. Our point is that we
need secure compilation to be achievable with the least human effort as possible to make
it practical. Thus, in Chapter 4 we have introduced an automatic approach that makes
secure compilation easier to achieve in the particular case of type-preserving compilation.
Indeed, our approach allows to efficiently check whether a given program transformation
preserves the type of a particular transformed program. Given a (security) type system that
statically checks whether the property of interest holds, we have provided a framework to
make its usage incremental. Since the incrementalized algorithm just analyses the diffs
between the transformed and the original program, the incrementalization allows to
re-analyze the code after each optimization step without excessively slowing down the
compiler.
Despite being efficient and automatic, the incremental approach lacks the possibility

to deal with cases in which the source language differs from the target, as typical at
lower levels of the computational stack. In Chapter 5 we have introduced secure translation

validation and lifted the requirement about the source and the target languages being equal.
Secure translation validation extends translation validation [189] to deal with security
properties. More precisely, it enables to automatically certify that a given compiled
program can be safely executed in a given environment (i.e., target context). Actually, we
verify that the compiled program plugged into the target context still enjoys the same
safety properties as its source counterpart. If not, our technique also provides (in some
cases) the source context that performs the attack invalidating the same safety that is
broken at the target level. We also instantiated our framework to a simple use case, whose
languages are inspired from Protzenko et al. [193]. Despite encouraging results, a more
realistic use case and its actual implementation could be useful to further assess our
approach. We did a first step in this direction in [56], where we apply STV to a pair of
Turing-complete programming languages so as to ensure the preservation of the isolation
properties provided by the source language into the target.

159
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Finally, inChapter 6we havemoved to the very bottomof the computational stack. At this
level, we have studied how to securely extend a given architecture with new features while
keeping backward compatibility. In this setting, we have considered attackers that can exploit
controlled side-channels to break the isolation mechanisms provided by architectures. By
observing that contextual equivalence is a good model for the isolation properties provided
by those isolation mechanisms, we have concluded that to ensure security and keep
backward compatibility it is necessary to preserve and reflect contextual equivalence, i.e.,
we need to prove a full abstraction theorem. Concretely, we have first formally modeled
the Sancus architecture [168, 170]; then, we have extended it with carefully-designed
interruptible enclaves; finally, we have proved a full abstraction theorem between the
two. These three steps ensure that the extended version of our model is resistant to
interrupt-based attacks (e.g., Nemesis [225]), while keeping backward compatibility. Also,
we have shown that our result actually implies (variants of) the more classical notions of
non-interference preservation.

7.1 future work

Here we briefly outline our in-progress and future work. As said in the introduction, the
goal of this thesis was to explore how the ideas of secure compilation can be applied at
different levels of the computational stack, with an eye to its automatization. However,
still a lot of interesting questions remain open.

foundations of secure compilation Fromour point of view, a crucial open question
about the foundations of secure compilation concerns the relation between the different
secure compilation approaches. In particular, we are interested in comparing fully-abstract

compilation [2] and trace-based compiler security principles [9, 10]. A complete answer to
the above question would allow to re-use the results from one approach into the other,
and would help developers of secure compilers to choose the right principles to use. In
collaboration with Carmine Abate [11], we have done some preliminary steps towards
bridging the two views and our initial results are quite promising. Recall that a compiler
is fully abstract if and only if it preserves and reflects contextual equivalence (that in [11]
corresponds to trace equivalence) and that a hyperproperty is a set of sets of traces (see
Chapter 2 and [72]). Consider now the definition of robust hyperproperty preservation from [9]:

Definition 7.1 (Theorem 1 of [11]).

(∀C. C[P] � H)⇒ (∀C. C[P] � τ̃(H))

where τ̃ is a map from source hyperproperties to target ones.

As a consequence of the results by Parrow [174], it is possible to show that a fully
abstract compiler also ensures robust hyperproperty preservation for some τ̃ :

Theorem 7.1. If J·K is a fully abstract compiler, then there exists a τ̃ such that J·K preserves the
robust satisfaction of hyperproperties. Moreover, τ̃ is the smallest (pointwise) with this property

and its corollary (assuming τ̃ from Theorem 7.1):

Corollary 7.1 (Corollary 1 of [11]). If J·K is a fully abstract compiler and H is a hyperproperty,

then J·K preserves the robust satisfaction of H iff τ̃(H) ⊆ H .
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Despite these initial and encouraging results, many questions remain unanswered. The
first problem is that the proof of Theorem 7.1 defines τ̃ using its knowledge about the
behavior of the compiler, thus making the compiler itself part of the trusted computing
base.We are convinced that one could consider an over-approximation of τ̃ (i.e., a largermap)
to remove the compiler from the trusted computing base, however further investigation is
needed to completely solve the issue. Another problem is that the computation of τ̃ can be
quite prohibitive: in [11] we propose to compute it by successive approximations, however
it is still unclear how to apply this methodology in more general cases. Another open
question is under which conditions (a relaxed version of) the vice versa of Theorem 7.1
holds. Indeed, turning such a theorem into a characterization would allow for a better
unifying view of the two secure compilation approaches.

security of program obfuscations In Chapter 3 we have proved that control-flow
flattening preserves the constant-time policy in a very simple setting. In the future, we
would like to extend this study to more complex scenarios. First, it would be interesting to
mechanize our formalization and to investigate how to integrate it with recent evolutions
of the CompCert compiler that already preserve the constant-time policy [20]. Also, we
would like to consider the security of other obfuscations techniques (e.g., those in [76])
and different security properties, e.g., general safety properties or hypersafety. Also,
in Chapter 3 we have just considered a passive attacker that can only observe the leakage.
An interesting problem would then be to explore if our result and the current proof
technique scale to a setting with active attackers that also interfere with the execution of
programs, e.g., those from [9, 10].

automatization of secure compilation As for incremental typing, we wish to
address a number of questions that remain open.

First, we are planning to extend our approach to combine our proposal with that of [109],
so as to also support the correct definition of type systems. Another issue to investigate
comes from the observation that other analyses could be made incremental. Supporting
type and effect systems should be rather straightforward, instead we expect that more
work is needed to apply our ideas to other syntax-directed static analyses, e.g., control
flow analysis because it requires fixed-point computations. Also, some type systems do
not fit easily in the format we have proposed in Definition 4.2. A particularly relevant
example are the bidirectional type systems, e.g., that for dependent types in [143]. A
possible generalization of the rule format used here to include this kind of rules is the
following∧

k∈Kt

(
∧
i∈Ik

trk,tit (Γ, {Rk,j}j<i) `A ti : Rk,i ∧ checkJoinkt (Γ, {Rk,i}i∈Ik , outRk)
)

Γ `A t : joint({Rk}k∈Kt)

whereKt ⊆ N and ∀k ∈ Kt. Ik ⊆ It, and the function joint combines the partial results
Rk to produce the overall result. The intuition is that with this new format one can express
rules that involve multiple and different instances of checkJoin . Finally, we would like
to investigate how to deal with typing errors, in particular we are interested in devising
which is the most appropriate policy for updating the cache when type errors arise.

The other automatic proposal of this thesis is secure translation validation, but it is still
preliminary work. For instance, we would like to further investigate the applicability of
our ideas to robust hypersafety preservation [10], which we feel to be at easy reach. Also,
our current case study is just a toy. First, one should extend the languages to support
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more realistic features (such as memory management or recursion) while, at the same
time, increasing the precision of the source and target analyses to lower the number
of false positives. Moreover, complete mechanization and implementation still lack: to
foster the adoption of secure translation validation one should at least have a working
prototype that allows one to check the security of life-like programs. Finally, we would like
to explore the applicability of this technique to languages lower in the computations stack.
For example, it would be interesting to check the security of assembly programs executed
on a processor equipped with ISA-level security features such as enclaves or capabilities.

secure compilation against micro-architectural attacks As seen in Chapter 6
for Nemesis [225] and in other recent work [181] for Spectre [128], secure compilation
may be helpful in mitigating some side-channel and micro-architectural attacks. While
our approach makes it possible to rigorously reason about timing-based side-channels,
scaling it to larger processors is not trivial at all. To handle larger processors, we need
models that can abstract away many details of the processor implementation, yet keeping
enough details to model micro-architectural attacks of interest. A promising example of a
model with such features and that could replace our cycle-accurate one was proposed
by Disselkoen et al. [93]. As a matter of fact, our model and our full abstraction result seem
to be a good starting point, although they currently apply only to “small” microprocessors
for which we can define a cycle-accurate operational semantics.
Furthermore, in our proposal the security criterion is binary: an extension is either

secure, or it is not. Therefore, low bandwidth side-channels are not kept apart from high-

bandwidth side-channels. An important challenge for future work is to introduce some
kind of measure on the weakening of security, so as to allow security policies that consider
some bounded amount of leakage acceptable.



A
I NC R E M E N TA L T Y P I NG

a.1 additional proofs for Section 4.3

Theorem 4.3.1. The predicate compatℱ expresses compatibility w.r.t. =, and ℱ preserves =.

Proof.

• The first thesis follows trivially, since compatℱ(Γ,Γ′, e) requires Γ and Γ′ to coincide
on the free variables of e, on which the typing of e only depends.

• By inspection of checkJoin of Figure 11, it easily follows that the out parameter is
uniquely determined by the other parameters of checkJoin . Thus, since by hypothesis
they are all equal, the second thesis follows.

Theorem 4.5. The predicate compatW expresses compatibility w.r.t. =, and W preserves =.

Proof.

• The first thesis follows from the fact that W is syntax-driven, thus both the tree
and the rules in a deduction (if any) only depend on e. Indeed, the implication
in Definition 4.8 holds because all the premises that use Γ still hold when Γ′ is used
instead, since Γ(y) equals to Γ′(y) for all free variables y.

• Again, the second thesis follows since the out parameter is uniquely determined by
the other parameters of checkJoin .

Theorem 4.3.2. The predicate compatS expresses compatibility w.r.t. =, and S preserves =.

Proof.

• Again, the first thesis follows trivially: compatℐS(Γ,Γ′, p) requiresΓ andΓ′ to coincide
on the free variables of p, on which the typing of p only depends.

• By inspection of checkJoin of Figure 11, it easily follows that the out parameter is
uniquely determined by the other parameters of checkJoin . Thus, since by hypothesis
they are all equal, the second thesis follows.

Theorem 4.3.3. compatℛ expresses compatibility w.r.t. =, andℛ preserves =.

Proof.

• We show the first part of the statement by induction on the rules of ℛ. The base
cases are as follows:
ℛ-Val: since val has a fixed level, the thesis follows trivially.
ℛ-Var: since x is a free variable and E(x) = E′(x) by hypothesis, the thesis follows.
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ℛ-Skip: trivial.
ℛ-Inject: Since pc′ v pc by hypothesis and sinceC(pc) vC CA, by definition ofvC it

follows that C(pc′) v C(pc), thus by transitivity of CA, we have C(pc′) vC CA.
The inductive step requires to show that, if for all t′ appearing in the premises of the
rule for t, where the induction hypothesis (IHP) reads as follows:

∀(Et′ , pct′), (E
′
t′ , pc′t′).

compat((Et′ , pct′), (E
′
t′ , pc′t′), t

′) ∧ (Et′ , pct′) `ℛ t′ : `

⇒ (E′t′ , pc′t′) `ℛ t′ : `

implies

∀(Et, pct), (E
′
t, pc′t).

compat((Et, pct), (E
′
t, pc′t), t) ∧ (Et, pct) `ℛ t : `

⇒ (E′t, pc′t) `ℛ t : `.

For that, we have the following cases:
ℛ-Op: First, observe that Et′ = Et and E′t′ = E′t. By IHP we get that (E′t′ , _) `ℛ e : `

and (E′t′ , _) `ℛ e′ : `′, thus the thesis follows.
ℛ-Assign: As above, observe that Et′ = Et and E′t′ = E′t. By (IHP) we get that

(E′t′ , _) `ℛ e : `. Also, by monotonicity of t, we have ` t pc′t v ` t pct. Finally,
by transitivity of v the thesis follows.

ℛ-Seq, ℛ-If and ℛ-While: follow directly by (IHP).
ℛ-Declassify: similar to the case of ℛ-Assign, the only additional and non-trivial

additional requirement is that we need to show that IA 6vI I(pc′t) (note that
pct, pc′t 6= _). If I(pc′t) = I(pct), then the thesis follows easily. Otherwise note
that under the hypothesis I(pc′t) 6= I(pct), 6vI coincideswith the inverse relation
of vI thus it is still a transitive relation, hence IA 6vI I(pc′t).

• Determinism ofℛ suffices to show that it preserves =.

Theorem 4.3.4. compatℐ expresses compatibility w.r.t. =, and ℐ preserves =.

Proof.

• We show the first part of the statement by structural induction on patterns and
terms. The base cases are trivial:
ℐ-PVar, ℐ-PInt and ℐ-PcConstr: easy by definition of compatpℐ and since fresh

variable are chosen algorithmically.
ℐ-Const, ℐ-Var and ℐ-cConstr: easy by definition of compataℐ and since fresh vari-

able are chosen algorithmically.
The inductive step requires to show that, if for all t′ appearing in the premises of the
rule for t:

∀Γt′ ,Γ′t′ . compat(Γt′ ,Γ
′
t′ , t
′) ∧ Γ `ℐ t′ : R⇒ Γ′t′ `ℐ t′ : R (IHP)

implies

∀Γt,Γ′t. compat(Γt,Γ
′
t, t) ∧ Γ `ℐ t : R⇒ Γ′t `ℐ t : R

For that, we have the following cases:
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ℐ-PdConstr: directly follows from (IHP) and the fact that fresh variable are chosen
algorithmically.

ℐ-Abs and ℐ-dConstr: follow from (IHP), the determinism of mgu and the fact that
fresh variable are chosen algorithmically.

ℐ-App, ℐ-Match, ℐ-Let and ℐ-Try: as above, with the additional observation that
if for some set of variables S, E|S = E′|S then for any substitution θ it holds
(θE)|S = (θE′)|S .

• Determinism of ℐ suffices to show that it preserves =.

Theorem 4.3.5. compatD expresses compatibility w.r.t. =, and D preserves =.

Proof.

• Easily follows by induction on the rules of the type system.

• Determinism of D suffices to show that it preserves =.

Theorem 4.3.6. compatP expresses compatibility w.r.t. =, and P preserves =.

Proof.

• Easily follows by induction on the rules of the type system.

• Determinism of P suffices to show that it preserves =.
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a.2 additional plots for Section 4.4

a.2.1 Original vs. Incremental with simulated changes
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Figure 62: Experimental results for trees with depth = 10 comparing the number of re-typings
per second vs. the number of nodes of the diff sub-tree. The blue, dashed plot is for
the original type checking, while the orange, solid one is for the incrementalized one.
Dotted plots report the behavior of the incrementalized type checker for various values
of the threshold T . The x-axis is logarithmic, while the y-axis is scaled as necessary. The
plots on the right consider the maximum number of variables.
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Figure 63: Experimental results for trees with depth = 12 comparing the number of re-typings
per second vs. the number of nodes of the diff sub-tree. The blue, dashed plot is for
the original type checking, while the orange, solid one is for the incrementalized one.
Dotted plots report the behavior of the incrementalized type checker for various values
of the threshold T . The x-axis is logarithmic, while the y-axis is scaled as necessary. The
plots on the right consider the maximum number of variables.
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Figure 64: Experimental results for trees with depth = 14 comparing the number of re-typings
per second vs. the number of nodes of the diff sub-tree. The blue, dashed plot is for
the original type checking, while the orange, solid one is for the incrementalized one.
Dotted plots report the behavior of the incrementalized type checker for various values
of the threshold T . The x-axis is logarithmic, while the y-axis is scaled as necessary. The
plots on the right consider the maximum number of variables.
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Figure 65: Experimental results for trees with depth = 16 comparing the number of re-typings
per second vs. the number of nodes of the diff sub-tree. The blue, dashed plot is for
the original type checking, while the orange, solid one is for the incrementalized one.
Dotted plots report the behavior of the incrementalized type checker for various values
of the threshold T . The x-axis is logarithmic, while the y-axis is scaled as necessary. The
plots on the right consider the maximum number of variables.
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a.2.2 Original vs. Incremental with inter-dependencies
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Figure 66: Experimental results comparing the number of re-typings per second vs. the number of
nodes of the diff on two unrolling of the factorial function. The dashed, star-marked plot
is for the original type checking, the orange, solid one is for the incrementalized one.
Dotted plots report the behavior of the incrementalized type checker for various values
of the threshold T . The x-axis is logarithmic, while the y-axis is scaled as necessary.



B
S E C U R E CO M P I L AT I O N AGA I N ST M I C RO -A RC H I T E C T U R A L
AT TAC K S

b.1 the device of Section 6.3.6.1 is deterministic

Proposition B.1. If D ` δ, t, ta yk
D δ′, t′, t′a and D ` δ, t, ta yk

D δ′′, t′′, t′′a, then δ
′ = δ′′,

t′ = t′′ and t′a = t′′a.

Proof. Trivial.

b.2 complete operational semantics rules of SancusH

INT

D ` 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ, t, ta,M,R, pcold ,B〉

(CPU-HLT-UM)
B 6= 〈⊥,⊥, tpad 〉 〈δ, t, ta,M,R, pcold ,B〉 `mode UM

D ` 〈δ, t, ta,M,R, pcold ,B〉 → HALT
decode(M,R[pc]) = HLT

(CPU-NoIN)
δ 6rd(w)

;D

D ` 〈δ, t, ta,M,R, pcold ,B〉 → HALT
decode(M,R[pc]) = IN r

(CPU-NoOUT)
δ 6wr(R[r])

;D

D ` 〈δ, t, ta,M,R, pcold ,B〉 → HALT
decode(M,R[pc]) = OUT r

(CPU-HLT-PM)
B 6= 〈⊥,⊥, tpad 〉 〈δ, t, ta,M,R, pcold ,B〉 `mode PM

D ` 〈δ, t, ta,M,R, pcold ,B〉 → EXC〈δ,t+cycles(i),ta,M,R,pcold ,B〉
i = decode(M,R[pc]) = HLT

(CPU-Decode-Fail)
B 6= 〈⊥,⊥, tpad 〉 decode(M,R[pc]) = ⊥

D ` 〈δ, t, ta,M,R, pcold ,B〉 → EXC〈δ,t,ta,M,R,pcold ,B〉

(CPU-Violation-PM)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B 6`mac OK

D ` 〈δ, t, ta,M,R, pcold ,B〉 → EXC〈δ,t+cycles(i),ta,M,R,pcold ,B〉
i = decode(M,R[pc]) 6= ⊥

171
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(CPU-MovL)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2][r2 7→ M[R[r1]]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = MOV @r1 r2

(CPU-MovS)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK R′ = R[pc 7→ R[pc] + 4]

M′ =M[R[r2] 7→ R[r1]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M′,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = MOV r1 0(r2)

(CPU-Mov)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2][r2 7→ R[r1]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = MOV r1 r2

(CPU-MovI)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 4][r 7→ w] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = MOV #w r

(CPU-Cmp) i = decode(M,R[pc]) = CMP r1 r2
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK R′ = R[pc 7→ R[pc] + 2][r2 7→ R[r1]−R[r2]]

R′′ = R′[sr.N 7→ (R′[r2] < 0), sr.Z 7→ (R′[r2] == 0), sr.C 7→ (R′[r2] 6= 0), sr.V 7→ overflow(R[r1]−R[r2])]

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a D ` 〈δ′, t′, t′a,M,R′′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

(CPU-Nop)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = NOP

(CPU-Reti-Chain)
B 6= 〈⊥,⊥, tpad 〉 B 6= ⊥

i,R, pcold ,B `mac OK D ` δ, t, ta ycycles(i)
D δ′, t′, t′a R[sr.GIE] = 1

t′a 6= ⊥ D ` 〈δ′, t′, t′a,M,R,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′,R[pc],B〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′,R[pc],B〉

i = decode(M,R[pc]) = RETI

(CPU-Reti-PrePad)
B 6= 〈⊥,⊥, tpad 〉 B 6= ⊥ i,R, pcold ,B `mac OK

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a (R[sr.GIE] = 0 ∨ t′a = ⊥)

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′, t′, t′a,M,B.R,B.pcold , 〈⊥,⊥,B.tpad 〉〉
i = decode(M,R[pc]) = RETI

(CPU-Reti-Pad)
B = 〈⊥,⊥, tpad 〉

D ` δ, t, ta ytpad
D δ′, t′, t′a D ` 〈δ′, t′, t′a,M,R, pcold ,⊥〉 ↪→I 〈δ′′, t′′, t′′a ,M,R′, pcold ,B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M,R′, pcold ,B′〉
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(CPU-Reti)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,⊥ `mac OK

R′ = R[pc 7→ M[R[sp] + 2], sr 7→ M[R[sp]], sp 7→ R[sp] + 4]

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ, t, ta,M,R, pcold ,⊥〉 → 〈δ′, t′, t′a,M,R′,R[pc],⊥〉
i = decode(M,R[pc]) = RETI

(CPU-Jz0)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = JZ &r ∧R[sr].Z = 0

(CPU-Jz1)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[r]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = JZ &r ∧R[sr].Z = 1

(CPU-Jmp)
B 6= 〈⊥,⊥, tpad 〉

i,R, pcold ,B `mac OK R′ = R[pc 7→ R[r]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = JMP &r

(CPU-In)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK δ

rd(w)
; D δ′

R′ = R[pc 7→ R[pc] + 2][r 7→ w] D ` δ′, t, ta ycycles(i)
D δ′′, t′, t′a

D ` 〈δ′′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = IN r

(CPU-Out)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2] δ
wr(R[r])

; D δ′ D ` δ′, t, ta ycycles(i)
D δ′′, t′, t′a

D ` 〈δ′′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = OUT r

(CPU-Not)
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2][r 7→ ¬R[r]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = NOT r

(CPU-And) i = decode(M,R[pc]) = AND r1 r2
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK R′ = R[pc 7→ R[pc] + 2][r2 7→ R[r1]&R[r2]]
R′′ = R′[sr.N 7→ R′[r2]&0x8000, sr.Z 7→ (R′[r2] == 0), sr.C 7→ (R′[r2] 6= 0), sr.V 7→ 0]

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a D ` 〈δ′, t′, t′a,M,R′′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

(CPU-Add) i = decode(M,R[pc]) = ADD r1 r2
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK R′ = R[pc 7→ R[pc] + 2][r2 7→ R[r1] +R[r2]]

R′′ = R′[sr.N 7→ (R′[r2] < 0), sr.Z 7→ (R′[r2] == 0), sr.C 7→ (R′[r2] 6= 0), sr.V 7→ overflow(R[r1] +R[r2])]

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a D ` 〈δ′, t′, t′a,M,R′′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

(CPU-Sub) i = decode(M,R[pc]) = SUB r1 r2
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK R′ = R[pc 7→ R[pc] + 2][r2 7→ R[r1]−R[r2]]

R′′ = R′[sr.N 7→ (R′[r2] < 0), sr.Z 7→ (R′[r2] == 0), sr.C 7→ (R′[r2] 6= 0), sr.V 7→ overflow(R[r1]−R[r2])]

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a D ` 〈δ′, t′, t′a,M,R′′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉
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b.3 complete operational semantics rules of SancusL

(INT-UM-P)

pcold `mode UM R[sr].GIE = 1 ta 6= ⊥ R′ = R[pc 7→ isr , sr 7→ 0, sp 7→ R[sp]− 4]

M′ =M[R[sp]− 2 7→ R[pc],R[sp]− 4 7→ R[sr]] D ` δ, t,⊥y6
D δ′, t′, t′a

D ` 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ′, t′, t′a,M′,R′, pcold ,B〉

(INT-UM-NP)

pcold `mode UM (R[sr].GIE = 0 ∨ ta = ⊥)

D ` 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ, t, ta,M,R, pcold ,B〉

(INT-PM-P)

k = MAX_TIME− (t− ta) pcold `mode PM

R[sr].GIE = 1 ta 6= ⊥ R′ = R0[pc 7→ isr ] D ` δ, t,⊥y6+k
D δ′, t′, t′a B′ = 〈R, pcold , t− ta〉

D ` 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ′, t′,⊥,M,R′, pcold ,B′〉

(INT-PM-NP)

pcold `mode PM (R[sr].GIE = 0 ∨ ta = ⊥)

D ` 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ, t, ta,M,R, pcold ,B〉

(CPU-HLT-UM)

B 6= 〈⊥,⊥, tpad 〉 〈δ, t, ta,M,R, pcold ,B〉 `mode UM

D ` 〈δ, t, ta,M,R, pcold ,B〉 → HALT
decode(M,R[pc]) = HLT

(CPU-NoIN)

δ 6rd(w)
;D

D ` 〈δ, t, ta,M,R, pcold ,B〉 → HALT
decode(M,R[pc]) = IN r

(CPU-NoOUT)

δ 6wr(R[r])
;D

D ` 〈δ, t, ta,M,R, pcold ,B〉 → HALT
decode(M,R[pc]) = OUT r

(CPU-HLT-PM)

B 6= 〈⊥,⊥, tpad 〉 〈δ, t, ta,M,R, pcold ,B〉 `mode PM

D ` 〈δ, t, ta,M,R, pcold ,B〉 → EXC〈δ,t+cycles(i),ta,M,R,pcold ,B〉
i = decode(M,R[pc]) = HLT
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(CPU-Decode-Fail)

B 6= 〈⊥,⊥, tpad 〉 decode(M,R[pc]) = ⊥
D ` 〈δ, t, ta,M,R, pcold ,B〉 → EXC〈δ,t,ta,M,R,pcold ,B〉

(CPU-Violation-PM)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B 6`mac OK

D ` 〈δ, t, ta,M,R, pcold ,B〉 → EXC〈δ,t+cycles(i),ta,M,R,pcold ,B〉
i = decode(M,R[pc]) 6= ⊥

(CPU-MovL)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2][r2 7→ M[R[r1]]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = MOV @r1 r2

(CPU-MovS)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK R′ = R[pc 7→ R[pc] + 4]

M′ =M[R[r2] 7→ R[r1]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M′,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = MOV r1 0(r2)

(CPU-Mov)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2][r2 7→ R[r1]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = MOV r1 r2

(CPU-MovI)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 4][r 7→ w] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = MOV #w r

(CPU-Cmp) i = decode(M,R[pc]) = CMP r1 r2
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK R′ = R[pc 7→ R[pc] + 2][r2 7→ R[r1]−R[r2]]

R′′ = R′[sr.N 7→ (R′[r2] < 0), sr.Z 7→ (R′[r2] == 0), sr.C 7→ (R′[r2] 6= 0), sr.V 7→ overflow(R[r1]−R[r2])]

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a D ` 〈δ′, t′, t′a,M,R′′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

(CPU-Nop)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = NOP

(CPU-Reti-Chain)

B 6= 〈⊥,⊥, tpad 〉 B 6= ⊥
i,R, pcold ,B `mac OK D ` δ, t, ta ycycles(i)

D δ′, t′, t′a R[sr.GIE] = 1

t′a 6= ⊥ D ` 〈δ′, t′, t′a,M,R,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′,R[pc],B〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′,R[pc],B〉

i = decode(M,R[pc]) = RETI

(CPU-Reti-PrePad)

B 6= 〈⊥,⊥, tpad 〉 B 6= ⊥ i,R, pcold ,B `mac OK

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a (R[sr.GIE] = 0 ∨ t′a = ⊥)

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′, t′, t′a,M,B.R,B.pcold , 〈⊥,⊥,B.tpad 〉〉
i = decode(M,R[pc]) = RETI
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(CPU-Reti-Pad)

B = 〈⊥,⊥, tpad 〉
D ` δ, t, ta ytpad

D δ′, t′, t′a D ` 〈δ′, t′, t′a,M,R, pcold ,⊥〉 ↪→I 〈δ′′, t′′, t′′a ,M,R′, pcold ,B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M,R′, pcold ,B′〉

(CPU-Reti)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,⊥ `mac OK

R′ = R[pc 7→ M[R[sp] + 2], sr 7→ M[R[sp]], sp 7→ R[sp] + 4]

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ, t, ta,M,R, pcold ,⊥〉 → 〈δ′, t′, t′a,M,R′,R[pc],⊥〉
i = decode(M,R[pc]) = RETI

(CPU-Jz0)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = JZ &r ∧R[sr].Z = 0

(CPU-Jz1)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[r]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = JZ &r ∧R[sr].Z = 1

(CPU-Jmp)

B 6= 〈⊥,⊥, tpad 〉
i,R, pcold ,B `mac OK R′ = R[pc 7→ R[r]] D ` δ, t, ta ycycles(i)

D δ′, t′, t′a
D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = JMP &r

(CPU-In)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK δ
rd(w)
; D δ′

R′ = R[pc 7→ R[pc] + 2][r 7→ w] D ` δ′, t, ta ycycles(i)
D δ′′, t′, t′a

D ` 〈δ′′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = IN r

(CPU-Out)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2] δ
wr(R[r])

; D δ′ D ` δ′, t, ta ycycles(i)
D δ′′, t′, t′a

D ` 〈δ′′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = OUT r

(CPU-Not)

B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK

R′ = R[pc 7→ R[pc] + 2][r 7→ ¬R[r]] D ` δ, t, ta ycycles(i)
D δ′, t′, t′a

D ` 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉
D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

i = decode(M,R[pc]) = NOT r

(CPU-And) i = decode(M,R[pc]) = AND r1 r2
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK R′ = R[pc 7→ R[pc] + 2][r2 7→ R[r1]&R[r2]]
R′′ = R′[sr.N 7→ R′[r2]&0x8000, sr.Z 7→ (R′[r2] == 0), sr.C 7→ (R′[r2] 6= 0), sr.V 7→ 0]

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a D ` 〈δ′, t′, t′a,M,R′′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉
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(CPU-Add) i = decode(M,R[pc]) = ADD r1 r2
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK R′ = R[pc 7→ R[pc] + 2][r2 7→ R[r1] +R[r2]]

R′′ = R′[sr.N 7→ (R′[r2] < 0), sr.Z 7→ (R′[r2] == 0), sr.C 7→ (R′[r2] 6= 0), sr.V 7→ overflow(R[r1] +R[r2])]

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a D ` 〈δ′, t′, t′a,M,R′′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

(CPU-Sub) i = decode(M,R[pc]) = SUB r1 r2
B 6= 〈⊥,⊥, tpad 〉 i,R, pcold ,B `mac OK R′ = R[pc 7→ R[pc] + 2][r2 7→ R[r1]−R[r2]]

R′′ = R′[sr.N 7→ (R′[r2] < 0), sr.Z 7→ (R′[r2] == 0), sr.C 7→ (R′[r2] 6= 0), sr.V 7→ overflow(R[r1]−R[r2])]

D ` δ, t, ta ycycles(i)
D δ′, t′, t′a D ` 〈δ′, t′, t′a,M,R′′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

D ` 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′′,R[pc],B′〉

b.4 proof of progress of Section 6.4.3

Theorem 6.1 (Progress). For all C = 〈MC ,D〉,MM and configuration c

• D ` INITC[MM ] →∗ c 6→ =⇒ c = HALT

• D ` INITC[MM ] →∗ c 6→ =⇒ c = HALT.

Proof. Since no conclusion of the SancusH and SancusL semantic rules has HALT as
starting configuration, this distinguished configuration is trivially stuck.
Also, HALT is the only stuck configuration because any c = 〈δ, t, ta,M,R, pcold ,B〉 6=

HALT can progress. We show this for SancusH; for SancusL just substitute→ for→.
If B 6= 〈⊥,⊥, tpad 〉, the following four cases arise:

1. If decode(M,R[pc]) = ⊥, then (CPU-Decode-Fail) applies.

2. If decode(M,R[pc]) 6= ⊥ ∧ i,R, pcold ,B 6`mac OK, then (CPU-Violation-PM) applies.

3. If the device is not willing to synchronize with the CPU, either rule (CPU-NoIN) or
rule (CPU-NoOUT) applies.

4. Otherwise, there is a rule for each i = decode(M,R[pc]) leading to a target configu-
ration. Indeed, all the cases that may arise are covered by the premises that

• check well-formedness of i and non-violation of MAC ;
• are all mutually exclusive (e.g., B 6= ⊥ in (CPU-Reti-Chain) and (CPU-Reti-PrePad) is

dealt with in rule (CPU-Reti) or the requirements of the values ofR[sr.GIE] and
t′a in (CPU-Reti-Chain) appear negated in (CPU-Reti-PrePad)); and

• require the existence of values either built explicitly (e.g., the value of sr.N
in (CPU-And)) or through relations that are always defined (e.g., through the
transition system for interrupts).

Otherwise, B = 〈⊥,⊥, tpad 〉 and the rule (CPU-Reti-Pad) applies.

b.5 proofs and additional definition for Section 6.5.1

Lemma 6.1. For any moduleMM , context C, and corresponding interrupt-less context C6 I :

C6 I [MM ]⇓L ⇐⇒ C[MM ]⇓H
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Proof. By definition of D ` ·yk
D ·, the value ta in the CPU configuration (that signals the

presence of an unhandled interrupt) is changed only when an interrupt has been raised
since the last time it was checked.

Since any int? action has been substituted with an ε, ta is never changed from its initial
⊥ value.
Since the only difference in behavior between the two levels is in the interrupt logic,

and since the ISR in C6 I is never invoked (thus, it does not affect the program behavior),
D ` · ↪→I · behaves exactly as D ` · ↪→I ·. So, C6 I [MM ]⇓L implies C[MM ]⇓H and vice
versa.

Lemma 6.2 (Reflection). ∀MM ,MM ′ . (MM 'L MM ′ =⇒ MM 'HMM ′).

Proof. We can expand the hypothesis using the definition of 'L and 'H as follows:

(∀C.C[MM ]⇓L ⇐⇒ C[MM ′ ]⇓L) =⇒ (∀C ′. C ′[MM ]⇓H ⇐⇒ C ′[MM ′ ]⇓H).

For any C ′ we can build the corresponding interrupt-less context C ′6 I .
Since interrupt-less contexts are a (strict) subset of all the contexts, by hypothesis:

C ′6 I [MM ]⇓L ⇐⇒ C ′6 I [MM ′ ]⇓L.

But from Lemma 6.1 it follows that

C ′[MM ]⇓H ⇐⇒ C ′[MM ′ ]⇓H.

Definition B.1 (Complete interrupt segments). Let α = α0 · · · αn be a fine-grained trace.

The set Iα of complete interrupt segments of α is defined as follows:

Iα , {(i, j) | αi = handle!(k) ∧ αj = reti?(k′) ∧ i < j ∧ ∀i < l < j. αl = ξ}.

b.6 definitions and proofs for Lemmata 6.3 and 6.4

The following proposition easily follows from the above definitions:

Proposition B.2. Both

P
≈ and

U
≈ (Definition 6.8, Page 142) are equivalence relations.

Proof. Trivial.

b.6.1 Properties of Definition 6.9

The first proposition says that if a configuration can take a step, also another P-equivalent
configuration can.

Proposition B.3. If c1
P
≈ c2, c1 `mode PM, D′ ` c1 → c′1 then decode(M1,R1[pc]) =

decode(M2,R2[pc]) and D′ ` c2 → c′2.

Proof. Since c1
P
≈ c2 and c1 `mode PM, it also holds that c2 `mode PM. Also, the instruction

decode(M1,R1[pc]) is decoded in bothM1 andM2 at the same protected address, hence
decode(M1,R1[pc]) = decode(M2,R2[pc]), and D′ ` c2 → c′2.

Proposition B.4. If c1
P
≈ c2, c1 `mode PM, D ` c1 → c′1, D′ ` c2 → c′2 and B′1 ./ B′2 then

c′1
P
≈ c′2.
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Proof.

Since c1
P
≈ c2, c1 `mode PM and D ` c1 → c′1, by Proposition B.3, i = decode(M1,R1[pc]) =

decode(M2,R2[pc]) and D′ ` c2 → c′2.
Since B′1 ./ B′2, we have two cases:

1. Case B′1 = B′2 = ⊥. In this case we know that no interrupt handling started during
the step, and by exhaustive cases on iwe can show c′1

P
≈ c′2:

• Case i ∈ {HLT, IN r, OUT r}. In both cases we have c′1 = EXCc1

P
≈ EXCc2 = c′2.

• Otherwise. The relevant values in c′1 and c′2 just depend on values that coincide
also in c1 and c2. Hence, by determinism of the rules, we get c′1

P
≈ c′2.

2. Case B′1 6= ⊥ and B′2 6= ⊥. In this case an interrupt was handled, but the same
instruction was indeed executed in protected mode, henceM′1

P
=M′2. Also,R′1

PM�UM

R′2 holds trivially, B′1 ./ B′2 by hypothesis and pc′old 1 `mode UM and pc′old 2 `mode UM.
Thus, c′1

P
≈ c′2.

Some sequences of fine-grained traces preserve P -equivalence.

PropositionB.5. If c1
P
≈ c2,D ` c1

`1︷︸︸︷
ξ ··· ξ

=====⇒∗ c′1
jmpIn?(R)

========⇒ c′′1 ,D′ ` c2

`2︷︸︸︷
ξ ··· ξ

=====⇒∗ c′2
jmpIn?(R)

========⇒ c′′2 ,

then c′′1
P
≈ c′′2 .

Proof. We show by Noetherian induction over (`1, `2) thatM′1
P
= M′2. For that, we use

well-founded relation (`1, `2) ≺ (`′1, `
′
2) iff `1 < `′1 ∧ `2 < `′2.

• Case (0, 0). Trivial.

• Case (0, `2), with `2 > 0. (and symmetrically (`1, 0), with `1 > 0) We have to show that

D ` c1
ε

==⇒∗ c′1 ∧ D′ ` c2

`2︷︸︸︷
ξ ··· ξ

=====⇒∗ c′2 ⇒M′1
P
=M′2

Since from c1 there is no step, c1 = c′1. Moreover a sequence of ξ was observed
starting from c2, and since both configurations are in unprotected mode and no
violation occurred (see Table 4) the protected memory is unchanged. Thus, by
transitivity of P=, we haveM′1 =M1

P
=M2

P
=M′2.

• Case (`1, `2) = (`′1 + 1, `′2 + 1). If

D ` c1

`′1︷︸︸︷
ξ ··· ξ

=====⇒∗ c′′′1 ∧ D′ ` c2

`′2︷︸︸︷
ξ ··· ξ

=====⇒∗ c′′′2 ⇒M′′′1
P
=M′′′2 (IHP)

then

D ` c1

`′1︷︸︸︷
ξ ··· ξ

=====⇒∗ c′′′1
ξ

==⇒ c′1 ∧ D′ ` c2

`′2︷︸︸︷
ξ ··· ξ

=====⇒∗ c′′′2
ξ

==⇒ c′2 ⇒M′1
P
=M′2.

By (IHP) we know thatM′′′1
P
= M′′′2 . Indeed, since we observed ξ it means that

pcold
′
1 `mode m ∧ pcold

′
2 `mode m. Moreover (see Figure 57) since ξ was observed

starting from c′′′1 and from c′′′2 and since both configurations are in unprotected mode,
protected memory is unchanged. Thus,M′1

P
=M′′′1

P
=M′′′2

P
=M′2.
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Since the instruction generating α = jmpIn?(R) was executed in unprotected mode,
we have thatM′′1

P
=M′′2 . Also R′′1 = R PM�PM R = R′′2 , pc′old

′′
1 `mode UM, pc′old

′′
2 `mode UM and

B′′1 ./ B′′2 .

Proposition B.6. If c1
P
≈ c2, D ` c1

handle!(k1 )
=========⇒∗ c′1

`1︷︸︸︷
ξ ··· ξ

=====⇒∗ c′′1
reti?(k ′1 )

=======⇒ c′′′1 ,

D′ ` c2
handle!(k2 )

=========⇒∗ c′2

`2︷︸︸︷
ξ ··· ξ

=====⇒∗ c′′2
reti?(k ′2 )

=======⇒ c′′′2 , then c
′′′
1

P
≈ c′′′2 .

Proof. Since upon observation of handle!(kx) the protected memory cannot be modified,
we know thatM′1

P
=M′2.

We show by Noetherian induction over (`1, `2) that M′′1
P
= M′′2 . For that, we use

well-founded relation (`1, `2) ≺ (`′1, `
′
2) iff `1 < `′1 ∧ `2 < `′2.

• Case (0, 0). Trivial.

• Case (0, `2), with `2 > 0 (and symmetrically (`1, 0), with `1 > 0). We have to show that

D ` c′1
ε

==⇒∗ c′′1 ∧ D′ ` c′2

`2︷︸︸︷
ξ ··· ξ

=====⇒∗ c′′2 ⇒M′′1
P
=M′′2

Since from c′1 there is no step, c′′1 = c′1. Moreover a sequence of ξ was observed
starting from c′2, and since both configurations are in unprotected mode and no
violation occurred (see Table 4) the protected memory is unchanged. Thus, by
transitivity of P=, we haveM′′1 =M′1

P
=M′2

P
=M′′2 .

• Case (`1, `2) = (`′1 + 1, `′2 + 1). If

D ` c′1

`′1︷︸︸︷
ξ ··· ξ

=====⇒∗ civ1 ∧ D′ ` c′2

`′2︷︸︸︷
ξ ··· ξ

=====⇒∗ civ2 ⇒Miv
1

P
=Miv

2 (IHP)

then

D ` c′1

`′1︷︸︸︷
ξ ··· ξ

=====⇒∗ civ1
ξ

==⇒ c′′1 ∧ D′ ` c′2

`′2︷︸︸︷
ξ ··· ξ

=====⇒∗ civ2
ξ

==⇒ c′′2 ⇒M′′1
P
=M′′2.

By (IHP) we know thatMiv
1

P
= Miv

2 . Indeed, since we observed ξ it means that
pcold

′′
1 `mode UM ∧ `mode UMpcold

′′
2 . Moreover (see Figure 57) since ξ was observed

starting from civ1 and from civ2 and since both configurations are in unprotected
mode, no violation occurred and by Table 4 protected memory is unchanged. Thus,
by transitivity of P=, we haveM′′1

P
=Miv

1
P
=Miv

2
P
=M′′2 .

Thus, we have thatM′′′1
P
=M′′′2 , since α = reti?(·) does not modify protected memory.

Also R′′′1
PM�UM R′′′2 , B′′′1 ./ B′′′2 , pc′old 1 `mode UM and pc′old 2 `mode UM, by definition of

α = reti?(·).

Proposition B.7. If c1
P
≈ c2, c1 `mode PM, D ` c1

α1===⇒ c′1, D′ ` c2
α2===⇒ c′2, α1, α2 6=

handle!(·) then α1 = α2 and c′1
P
≈ c′2.
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Proof. By definition of fine-grained traces we know that the transition leading to the
observation of α1 happens upon the execution of an instruction that must also be executed
starting from c2 (by Proposition B.3) and that c′1

P
≈ c′2 (by Proposition B.4). Also, since

c1 `mode PM, we know that α1 ∈ {τ(k1), jmpOut!(k1;R1)}. Thus, in both cases and since by
hypothesis α2 6= handle!(·), it must be that α2 = α1.

PropositionB.8. If c1
P
≈ c2,D ` c1

τ(k
(0)
1 ) ··· τ(k

(n1−1)
1 )·α1

================⇒∗ c′1,D′ ` c2
τ(k

(0)
2 ) ··· τ(k

(n2−1)
2 )·α2

================⇒∗

c′2, and α1, α2 6= handle!(·) then τ(k
(0)
1 ) · · · τ(k

(n1−1)
1 ) · α1 = τ(k

(0)
2 ) · · · τ(k

(n2−1)
2 ) · α2 and

c′1
P
≈ c′2.

Proof. Corollary of Proposition B.7.

P -equivalence is preserved by complete interrupt segments (recall Definition B.1). Indeed,
from now onward denote

αx ∈{ε}∪

{α(0)
x · · ·α(nx−1)

x | nx ≥ 1 ∧ α(nx−1)
x = reti?(k(nx−1)

x )∧

∀i. 0 ≤ i ≤ nx − 1. α(i)
x /∈ {•, jmpIn?(R(i)

x ), jmpOut!(k(i)
x ;R(i)

x )}}.

Proposition B.9. Let D and D′ be two devices.
If c

(0)
1

P
≈ c

(0)
2 , D ` c1

jmpIn?(R)
========⇒ c

(0)
1

α1===⇒∗ c(n1)
1 and D′ ` c2

jmpIn?(R)
========⇒ c

(0)
2

α2===⇒∗ c(n2)
2 then

c
(n1)
1

P
≈ c(n2)

2 .

Proof. We first show by induction on |Iα1 | (see Definition B.1) that

D ` c(0)
1

α1===⇒∗ c(n1)
1 ∧ D′ ` c(0)

2
α2===⇒∗ c(n2)

1 ⇒ c
(n1)
1

P
≈ c(n2)

2

assuming wlog that |Iα2 | ≤ |Iα1 |.

• Case |Iα1 | = 0. Trivial.

• Case |Iα1 | = |Iα′1 |+ 1. If

D ` c(0)
1

α′1===⇒∗ c(n′1)
1 ∧ D′ ` c(0)

2

α′2===⇒∗ c(n′2)
2 ⇒ c

(n′1)
1

P
≈ c(n′2)

2 (IHP)

then

D ` c(0)
1

α1===⇒∗ c(n1)
1 ∧ D′ ` c(0)

2
α2===⇒∗ c(n2)

2 ⇒ c
(n1)
1

P
≈ c(n2)

2

Now let (i1, j1) be the new interrupt segment of α1 that we split it as follows:

α1 = α′1 · τ(k
(n′1)
1 ) · · · τ(k

(i1−1)
1 ) · handle!(k

(i1)
1 ) · · · reti?(k

(j1)
1 )

The following two exhaustive cases may arise.
1. Case |Iα1 | = |Iα2 |. For some (i2, j2) we then have:

α2 = α′2 · τ(k
(n′2)
2 ) · · · τ(k

(i2−1)
2 ) · handle!(k

(i2)
2 ) · · · reti?(k

(j2)
2 )

By Propositions B.6 and B.8 we know that c(n1)
1

P
≈ c(n2)

2 , being reached through
α

(j1)
1 and α(j2)

2 .
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2. Case |Iα2 | < |Iα1 |. In this case we have

α2 = α′2 · τ(k
(n′2)
2 ) · · · τ(k

(n2−2)
2 ) · τ(k

(n2−1)
2 )

with c`1
P
≈ c`2 for n′2 ≤ ` ≤ n2− 2 = i1− 1, where the last equality holds because

the module is executing from configurations that are P -equivalent. As soon as
the interrupt arrives, the same instruction is executed (Proposition B.3) that
causes the same changes in the registers, the old program counter and the
protectedmemory. In turn the first two are stored in the backup before handling
the interrupt. They are then restored by the RETI, observed as α(j1)

1 , while the
protected memory is left untouched. Consequently, we have that c(n1)

1

P
≈ c(n2)

2 ,
that are the configurations reached through α(j1)

1 and τ(k
(n2)−1
2 ).

Finally, we can show that P -equivalence is preserved by coarse-grained traces:

Proposition B.10.

If D ` INITC[MM ]
jmpIn?(R)

========⇒⇒ c1 and D′ ` INITC′[MM ]
jmpIn?(R)

========⇒⇒ c2 then c1
P
≈ c2.

Proof. By definition of coarse-grained traces, we have that in both premises jmpIn?(R)

is preceded by a sequence of ξ actions (possibly in different numbers). Since neither
ξ actions nor jmpIn?(R) ever change the protected memory (by definition of memory
access control) and since the jmpIn?(R) sets the registers to the values in R, it follows
that c1

P
≈ c2.

The following definition gives an equality up to timings among coarse-grained traces:

Definition B.2. Let β = β0 . . . βn and β
′
= β′0 . . . β

′
n′ be two coarse-grained traces. We say that

β is equal up to timings to β′ (written β ≈ β′) iff

n = n′ ∧ (∀i ∈ {0, . . . , n}. βi = β′i ∨ (βi = jmpOut!(∆t;R) ∧ β′i = jmpOut!(∆t′;R))).

Finally, the proposition below shows that the traces that are equal up to timings preserve
the P -equivalence:

Proposition B.11. If c1
P
≈ c2, D ` c1

β
==⇒⇒∗ c′1, D′ ` c2

β
′

===⇒⇒∗ c′2 and β ≈ β′ then c′1
P
≈ c′2.

Proof. The thesis easily follows from Proposition B.5 and Proposition B.9.

b.6.2 Properties of Definition 6.8

Also for U-equivalent configurations it holds that when one takes a step, also the other
does.

Proposition B.12. If c1
U
≈ c2, c1 `mode UM then decode(M1,R1[pc]) = decode(M2,R2[pc]).

Proof. Since c1
U
≈ c2 and c1 `mode UM, it also holds that c2 `mode UM. Also, the instruction

decode(M1,R1[pc]) is decoded in bothM1 andM2 at the same unprotected address,
hence decode(M1,R1[pc]) = decode(M2,R2[pc]).

Next we prove that U≈ is preserved by unprotected-mode steps of the SancusL opera-
tional semantics:
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Proposition B.13. If c1
U
≈ c2, c1 `mode UM and D ` c1 → c′1, then D ` c2 → c′2 ∧ c′1

U
≈ c′2.

Proof.

Since c1
U
≈ c2, c1 `mode UM andD ` c1 → c′1, by Proposition B.12, i = decode(M1,R1[pc]) =

decode(M2,R2[pc]).
To show that c′1

U
≈ c′2, we consider the following exhaustive cases:

• Case i = ⊥. Since c1
U
≈ c2 we get c2 `mode UM and by definition of · ` · → · we

get c′1 = EXCc1 and c′2 = EXCc2 . However, by definition of EXC·, we have that
M′1

U
= M′2, c′1 `mode UM, c′2 `mode UM, δ′1 = δ1 = δ2 = δ′2, t′1 = t1 = t2 = t′2,

t′a1
= ta1 = ta2 = t′a2

,R′1
UM�m R′2, and ⊥ = B′1 ./ B′2 = ⊥, i.e., c′1

U
≈ c′2.

• Case i = HLT. Trivial, since c′1 = HALT = c′2.

• Case i 6= ⊥.We have the following exhaustive sub-cases, depending on c′1:
– Case c′1 = EXCc1 . In this case a violation occurred, i.e., i,R1, pcold 1,B1 6`mac OK.
However, the same violation also occurs for c2, since the only parts that may
keep c1 apart from c2 are pcold and B, and thus c′1

U
≈ c′2 because:

∗ pcold 2 6= pcold 1, cannot cause a failure since unprotected code is executable
from anywhere,

∗ B1 = 〈R1, pcold 1, tpad1
〉 6= 〈R2, pcold 2, tpad2

〉 = B2, cannot cause a failure
since the additional conditions on the configuration imposed by the
memory access control only concern values that are the same in both
configurations.

– Case c′1 6= EXCc1 and i = RETI. If B1 = ⊥, then B1 = B2 = B′1 = B′2 = ⊥, hence
rule (CPU-Reti) applies and we get c′1

U
≈ c′2 since R′1 = R′2 and D ` · y·D ·

is a deterministic relation (Proposition B.1). If B1 6= ⊥ it must also be that
B2 6= ⊥byU -equivalence, so either rule (CPU-Reti-Chain)or rule (CPU-Reti-PrePad)

applies. In the first case we get c′1
U
≈ c′2 because c1

U
≈ c2 and by determinism

of D ` · y·D · and D ` · ↪→I ·. In the second case we get c′1
U
≈ c′2 since

〈⊥,⊥, t′pad1
〉 = B′1 ./ B′2 = 〈⊥,⊥, t′pad2

〉 andR′1
UM�PM R′2 holds since we restored

the register files from backups in which the interrupts were enabled (otherwise
the CPU would not have handled the interrupt it is returning from).

– Case c′1 6= EXCc1 and i 6∈ {⊥, HLT, RETI}. All the other rules depend on both
(1) parts of the configurations that are equal due to c1

U
≈ c2, and on (2)D ` ·y5

D ·
andD ` · ↪→I ·which are deterministic and have the same inputs (since c1

U
≈ c2).

Hence, c′1
U
≈ c′2 as requested.

The above proposition carries on fine-grained traces, provided that the computation is
carried on in unprotected mode:

Proposition B.14. If c1
U
≈ c2, c1 `mode UM, D ` c1

α
==⇒ c′1 then D ` c2

α
==⇒ c′2 and c′1

U
≈ c′2.

Proof.

By Propositions B.12 and B.13, c′1
U
≈ c′2 and i = decode(M1,R1[pc]) = decode(M2,R2[pc]).

Thus, since the same i is executed under U -equivalent configurations and since c′1
U
≈ c′2,

we have that D ` c2
α

==⇒ c′2.
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Proposition B.15.

If c1
U
≈ c2, c1 `mode UM, D ` c1

ξ···ξ·α
=====⇒∗ c′1 and α ∈ {ξ, •, jmpIn?(R), reti?(k)} then

D ` c2
ξ···ξ·α

=====⇒∗ c′2 and c′1
U
≈ c′2.

Proof. The proof goes by induction on the length n of ξ · · · ξ.

• Case n = 0. Proposition B.14 applies.

• Case n′ = n + 1. By induction hypothesis for some c′′′1 , c′′′2 , c′′1 and c′′2 we have

D ` c1

n′︷︸︸︷
ξ···ξ

=====⇒ c′′′1
α

==⇒ c′′1 ,D ` c2

n′︷︸︸︷
ξ···ξ

=====⇒ c′′′2
α

==⇒ c′′2 and c′′1
U
≈ c′′2 . Thus, ifD ` c′′′1

ξ
==⇒ civ1

(i.e.,we observe a further ξ starting from c1), by PropositionB.14wegetD ` c′′′2
ξ

==⇒ civ2

and civ1
U
≈ civ2 . Finally, by Proposition B.14 applies on civ1 and civ2 we get the thesis.

Now we move our attention to handle!(·).

Proposition B.16. If c
(0)
1

U
≈ c(0)

2 , D ` c(0)
1

τ(k
(0)
1 ) ··· τ(k

(n1−1)
1 )·handle!(k

(n1 )
1 )

========================⇒∗ c(n1+1)
1 and

D ` c(0)
2

τ(k
(0)
2 ) ··· τ(k

(n2−1)
2 )·handle!(k

(n2 )
2 )

========================⇒∗ c(n2+1)
2 then c

(n1+1)
1

U
≈ c(n2+1)

2 .

Proof.

• By definition of fine-grained semantics, handle!(k
(nx)
x ) only happens when an

interrupt is handled with c(nx)
x in protected mode.

• By definition of D ` · ↪→I ·,R(n1+1)
1 = R(n2+1)

2 = R0[pc 7→ isr ].

• Since unprotected memory cannot be changed by protected mode actions without
causing a violation (that would cause the observation of a jmpOut!(·; ·)) and is not
changed upon RETI when it happens in a configuration with backup different from
⊥ (cfr. rules (CPU-Reti-*)),M(n1+1)

1
U
=M(n2+1)

2 .

• Since we observe handle!(k
(nx)
x ) it must be that GIE = 1 and it had to be such also

in c(0)
x (because by definition the operations on registers cannot modified this flag in

protected mode). Hence, tiax = ⊥ for 0 ≤ i ≤ nx. Let tint
a1

and tint
a2

be the arrival times
of the interrupt that originated the observations handle!(k

(n1)
1 ) and handle!(k

(n2)
2 ),

resp. By definition of D ` ·y·D ·, tint
a1

and tint
a2

are the first absolute times after t(n1)
1

and t(n2)
2 in which an interrupt was raised and, since D is deterministic and t(i)ax = ⊥

for 0 ≤ i ≤ nx, it must be that tint
a1

= tint
a2

= tint (recall that c(0)
1

U
≈ c(0)

2 and that INor
OUTinstructions are forbidden in protected mode).
Assume now that the instruction during which the interrupt occurred ended at time
tfx. Then we can write t(nx+1) as:

t(nx+1) = t(nx) + k(nx)
x

= t(nx) + tint − t(nx) + tfx − tint︸ ︷︷ ︸
Duration of the instruction

+ MAX_TIME− tfx + tint︸ ︷︷ ︸
Mitigation from (INT-PM-P)

+6

= ���t(nx) + tint −���t(nx) + ��t
f
x −�

�tint + MAX_TIME− ��t
f
x + �

�tint + 6

= tint + MAX_TIME + 6

and therefore t(n1+1) = t(n2+1).
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• Since t(n1+1) = t(n2+1), c(0)
1

U
≈ c(0)

2 and no interaction with D via INor OUTcan occur
in protected mode, the deterministic device D performed the same number of steps
in both computations, and then t(n1+1)

a1 = t
(n2+1)
a2 and δ(n1+1)

1 = δ
(n2+1)
2 .

Hence, c(n1+1)
1

U
≈ c(n2+1)

2 as requested.

The following properties show that the combination of U -equivalence and trace equiva-
lence induces some useful properties of modules and sequences of complete interrupt
segments. Before doing that we define the (a, n)-interrupt-limited version of a context
C as the context that behaves as C but such that (1) the transition relation of its device
results from unrolling at most n steps of its transition relation and (2) its device never
raises interrupts after observing the sequence of actions a:

Definition B.3. Let D = 〈∆, δinit,
a
;D〉 be an I/O device. Let a be a string over the signature A

of I/O devices and denote ` as the function that associates to each string over A a unique natural

number (e.g., its position in a suitable lexicographic order). Given a context C = 〈MC ,D〉,
we define its corresponding (a, n)-interrupt-limited context as C≤a,n = 〈MC ,D≤a,n〉 where
D≤a,n = 〈img(

a
;D≤a,n) ∪ dom

(
a
;D≤a,n

)
, 0,

a
;D≤a,n〉 and

a
;D≤a,n ,(

{(p, a, p′) | ∀a′. p = `(a′) ∧ p′ = `(a′ · a) ∧ δinit
a′
;∗D δ

a
;D δ′ ∧ |a′ · a| ≤ n} \

{(p, int?, p′) | ∀a′. p = `(a · a′) ∧ p′ = `(a · a′ · int?)}
)
∪

{(p, ε, p′) | ∀a′. p = `(a · a′) ∧ p′ = `(a · a′ · int?) ∧

δinit
a·a′
;∗D δ

int?
;D δ′ ∧ |a · a′ · int?| ≤ n}.

(Note that any (a, n)-interrupt-limited context is actually a device, due to the constraint
on its transition function).
Now, let

αx ∈{ε} ∪ {α(0)
x · · ·α(nx−1)

x | nx ≥ 1 ∧ α(nx−1)
x = reti?(k(nx−1)

x )∧

∀i. 0 ≤ i ≤ nx − 1. α(i)
x /∈ {•, jmpIn?(R(i)

x ), jmpOut!(k(i)
x ;R(i)

x )}}.

Proposition B.17. If

• MM
T
=MM ′

• D ` INITC[MM ]
β·jmpIn?(R)

=========⇒⇒∗ c(0)
1

• D ` INITC[MM′ ]
β·jmpIn?(R)

=========⇒⇒∗ c(0)
2

• c
(0)
1

U
≈ c(0)

2

• for somem1 ≥ 0, D ` c(0)
1

α1 ·τ(k
(n1 )
1 )···τ(k

(n1 +m1−1)
1 )·jmpOut!(k

(n1 +m1 )
1 ;R′)

=================================⇒∗ c(n1+m1+1)
1

• for somem2 ≥ 0, D ` c(0)
2

α2 ·τ(k
(n2 )
2 )···τ(k

(n2 +m2−1)
2 )·jmpOut!(k

(n2 +m2 )
2 ;R′)

=================================⇒∗ c(n2+m2+1)
2

then

∑n1+m1
i=0 γ(c

(i)
1 ) =

∑n2+m2
i=0 γ(c

(i)
2 ).
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Proof. We show this proposition by contraposition, by showing that
∑n1+m1

i=0 γ(c
(i)
1 ) 6=∑n2+m2

i=0 γ(c
(i)
2 ) thenMM

T
6=MM ′ . For that it suffices to show that

∃C ′.D′ ` INITC′[MM ]
β·jmpIn?(R)

=========⇒⇒∗ c(0)
3

jmpOut!(∆t3;R(n3+m3)
3 )

================⇒⇒ c
(n3+m3+1)
3

(i.e., D ` c(0)
3

α3 ·τ(k
(n3 )
3 )···τ(k

(n3 +m3−1)
3 )·jmpOut!(k

(n3 +m3 )
3 ;R(n3 +m3 )

3 )
======================================⇒∗ c(n3+m3+1)

3 )
such that

∀C ′′.D′′ ` INITC′′[MM′ ]
β·jmpIn?(R)

=========⇒⇒∗ c(0)
4

jmpOut!(∆t4;R(n4+m4+1)
4 )

==================⇒⇒ c
(n4+m4+1)
4

with ∆t3 6= ∆t4

(i.e., D ` c(0)
4

α4 ·τ(k
(n4 )

4 )···τ(k
(n4 +m4−1)

4 )·jmpOut!(k
(n4 +m4 )

4 ;R
(n4 +m4 )

4 )
======================================⇒∗ c(n4+m4+1)

4 ).
Assume wlog that

∑n1+m1
i=0 γ(c

(i)
1 ) <

∑n2+m2
i=0 γ(c

(i)
2 ). Noting that the first observable of

β · jmpIn?(R) must be a jmpIn?(·), by Propositions B.10 and B.11, we have that c(0)
1

P
≈ c(0)

3

and, similarly, c(0)
2

P
≈ c

(0)
4 . Thus, as a consequence of Propositions B.3, B.8 and B.9,∑n1+m1

i=0 γ(c
(i)
1 ) =

∑n3+m3
i=0 γ(c

(i)
3 ) and

∑n2+m2
i=0 γ(c

(i)
2 ) =

∑n4+m4
i=0 γ(c

(i)
4 ).

Let n ∈ N be greater than the number of steps over the relation ·
;D in the com-

putation D ` INITC[MM ] →∗ c
(n1+m1+1)
1 and let a be the sequence of actions over

·
;D in the computation D ` INITC[MM ] →∗ c

(0)
1 . Choosing C ′ = C≤a,n we get ∆t3 =∑n1+m1

i=0 γ(c
(i)
1 ) =

∑n3+m3
i=0 γ(c

(i)
3 ). Any other context C ′′ that allows to observe the same

β · jmpIn?(R) from INITC′′[MM′ ]
raises 0 or more interrupts “after” c0

4, hence taking
additional S ≥ 0 cycles on top of those required for the instructions to be executed. Thus

MM

T
6=MM ′ , since

∑n1+m1
i=0 γ(c

(i)
1 ) <

∑n2+m2
i=0 γ(c

(i)
2 ) and

∑n1+m1
i=0 γ(c

(i)
1 ) = ∆t3 < ∆t4 =∑n2+m2

i=0 γ(c
(i)
2 ) + S.

Proposition B.18. If

• D ` INITC[MM ]
β·jmpIn?(R)

=========⇒⇒∗ c(0)
1

• D ` INITC[MM′ ]
β
′·jmpIn?(R)

==========⇒⇒∗ c(0)
2

• c
(0)
1

U
≈ c(0)

2

• D ` c(0)
1

α1 ·τ(k
(n1 )
1 )···τ(k

(n1 +m1−1)
1 )·α1

=====================⇒∗ c(n1+m1+1)
1 for somem1 ≥ 0 and

α1 ∈ {jmpOut!(k
(n1+m1)
1 ;R′), handle!(k

(n1+m1)
1 )}

• D ` c(0)
2

α2 ·τ(k
(n2 )
2 )···τ(k

(n2 +m2−1)
2 )·α2

=====================⇒∗ c(n2+m2+1)
2 for somem2 ≥ 0 and

α2 ∈ {jmpOut!(k
(n2+m2)
2 ;R′), handle!(k

(n2+m2)
2 )}

then

1. |Iα1 | = |Iα2 |

2. c
(n1)
1

U
≈ c(n2)

2 .
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Proof. Assume wlog that
∑n1+m1

i=0 γ(c
(i)
1 ) ≤

∑n2+m2
i=0 γ(c

(i)
2 ), and we prove by induction on

|Iα1 | that

D ` c(0)
1

α1===⇒∗ c(n1)
1 ∧ D ` c(0)

2
α2===⇒∗ c(n2)

1 imply c
(n1)
1

U
≈ c(n2)

2 ∧ |Iα1 | = |Iα2 |

• Case |Iα1 | = 0. Since no complete interrupt segment was observed it means that α1

cannot end with a reti?(·), so it must be α1 = ε. Moreover, since c(0)
1

U
≈ c(0)

2 and the
value of the GIE bit cannot be changed in protected mode, we know that:

– Case R(0)
1 [sr.GIE] = R(0)

2 [sr.GIE] = 0. Then no handle!(·) can be observed in
α2, hence it must be that α2 = ε and the two thesis easily follow.

– Case R(0)
1 [sr.GIE] = R(0)

2 [sr.GIE] = 1. Then it means that no interrupt was
raised by the device in the computation starting with c(0)

1 and the same must
happen in c(0)

2 because of U -equivalence and
∑n1+m1

i=0 γ(c
(i)
1 ) ≤

∑n2+m2
i=0 γ(c

(i)
2 ).

Hence it must be that α2 = ε and the two thesis easily follow.

• Case |Iα1 | = |Iα′1 |+ 1. If

D ` c(0)
1

α′1===⇒∗ c(n′1)
1 ∧ D ` c(0)

2

α′2===⇒∗ c(n′2)
2 imply c

(n′1)
1

U
≈ c(n′2)

2 ∧ |Iα′1 | = |Iα′2 | (IHP)

then

D ` c(0)
1

α1===⇒∗ c(n1)
1 ∧ D ` c(0)

2
α2===⇒∗ c(n2)

2 imply c
(n1)
1

U
≈ c(n2)

2 ∧ |Iα1 | = |Iα2 |

Now let (i1, j1) be the new interrupt segment of α1, that we split as follows:

α1 = α′1 · τ(k
(n′1)
1 ) · · · τ(k

(i1−1)
1 ) · handle!(k

(i1)
1 ) · · · reti?(k

(j1)
1 ).

Since by (IHP) c(n′1)
1

U
≈ c

(n′2)
2 and D is deterministic and no successfully I/O ever

happens in protected mode, the first new interrupt (i.e., the one leading to the
observation of handle!(k

(i1)
1 )) is raised at the same cycle in both computations.

Call c(i2)
2 the configuration at the beginning of the step of computation in which

such interrupt was raised (the choice of indexes will be clear below). From this
configuration only three cases for the fine-grained action might be observed:

– Case τ(·) and jmpOut!(·; ·). Never happens, since B(i2+1)
2 6= ⊥.

– Case handle!(k
(i2)
2 ). Proposition B.16 ensures that c(i2+1)

2

U
≈ c(i1+1)

1 , and Propo-
sition B.15 that at some index j2 a reti?(k

(j2)
2 ) is observed in α2, i.e., a new

interrupt segment (i2, j2) is observed. Thus, |Iα2 | = |Iα′2 |+ 1 = |Iα′1 |+ 1 = |Iα1 |
(where the second equality holds by (IHP)). Finally, by definition of α2, we
have that n1 = j1 + 1 and n2 = j2 + 2, hence c(n1)

1

U
≈ c(n2)

2 .

The following proposition states that U -equivalent unprotected-mode configurations
perform the same single coarse-grained action:

Proposition B.19. If c1
U
≈ c2, c1 `mode UM andD ` c1

β
==⇒⇒ c′1, thenD ` c2

β
==⇒⇒ c′2 and c

′
1

U
≈ c′2.
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Proof. Since c1 `mode UM, the segment of fine-grained trace that originated β (see Figure 58)
is in the form:

D ` c1
ξ···ξ·α

=====⇒∗ c′1
with either α = • or α = jmpIn?(R).
Proposition B.15 guarantees that:

D ` c2
ξ···ξ·α

=====⇒∗ c′2 ∧ c′1
U
≈ c′2.

Thus, D ` c2
β

==⇒⇒ c′2 and c′1
U
≈ c′2.

Finally, we can show that U -equivalence is preserved by coarse-grained traces:

Proposition B.20. If c1
U
≈ c2, c1 `mode UM, D ` c1

β
==⇒⇒∗ c′1, D ` c2

β
==⇒⇒∗ c′2, c′1 `mode UM and

c′2 `mode UM then c′1
U
≈ c′2.

Proof. We show the proposition by induction on n, the length of β:

• Case n = 0. By definition of ε
==⇒⇒∗ we know that it must be c′1 = c1 and c′2 = c′2 and

the thesis easily follows.

• Case n = n′ + 1. The only case in which a coarse-grained trace can be extended by
just one action, while remaining in unprotected mode, is when the action is •. In
this case the hypothesis easily follows from the definition of • and U -equivalence.

• Case n = n′ + 2. If

D ` c1
β

==⇒⇒∗ c′′1 ∧D ` c2
β

==⇒⇒∗ c′′2 ∧R′′1[pc] `mode UM∧R′′2[pc] `mode UM imply c′′1
U
≈ c′′2

then

D ` c1
β

==⇒⇒∗ c′′1
ββ′

====⇒⇒ c′1 ∧ D ` c2
β

==⇒⇒∗ c′′2
ββ′

====⇒⇒ c′2 ∧ R′1[pc] `mode UM ∧

R′2[pc] `mode UM , imply c′1
U
≈ c′2.

By cases on ββ′:

– Case ββ′ = jmpIn?(R) •. Directly follows from definition of • and U
≈.

– Case ββ′ = jmpIn?(R) jmpOut!(∆t;R′). By definition they are originated by

D ` c′′1
ξ···ξ·jmpIn?(R)

===========⇒∗ c(0)
1

α
(0)
1 ··· α(n1−1)

1===========⇒∗ c(n1)
1

jmpOut!(k
(n1 )
1 ;R′)

============⇒ c′1

D ` c′′2
ξ···ξ·jmpIn?(R)

===========⇒∗ c(0)
2

α
(0)
2 ··· α(n2−1)

2===========⇒∗ c(n2)
2

jmpOut!(k
(n2 )
2 ;R′)

============⇒ c′2.

By (IHP) and by Proposition B.15 we can conclude that c(0)
1

U
≈ c(0)

2 .

Let c(Mx)
x be the configuration generated by the last reti?(·) in α(0)

x · · · α(nx−1)
x .

By Proposition B.18 the number of completely handled interrupts is the same
in the two traces and c(M1)

1

U
≈ c(M2)

2 . Also:

∗ By definition of jmpOut!(k
(n1)
1 ;R′) and jmpOut!(k

(n2)
2 ;R′) we trivially get

R′1 = R′2 = R′.
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∗ Since unprotected memory cannot be changed in protected mode (see Ta-
ble 4) and c(M1)

1

U
≈ c(M2)

2 ,M′1
U
=M′2.

∗ Let αx = α
(0)
x · · · α(nx−1)

x · jmpOut!(k
(nx)
x ;R′).

By definition of β = jmpOut!(∆t;R′):

t′1 = t
(0)
1 + ∆t+

∑
(i1,j1)∈|Iα1

|

(t
(j1)
1 − t(i1+1)

1 )

t′2 = t
(0)
2 + ∆t+

∑
(i2,j2)∈|Iα2

|

(t
(j2)
2 − t(i2+1)

2 )

But t(0)
1 = t

(0)
2 since c(0)

1

U
≈ c

(0)
2 . Also, each operand in (t

(j1)
1 − t

(i1+1)
1 )

equals the corresponding (t
(j2)
2 − t(i2+1)

2 ) because for each (pth element)
(i1, j1) ∈ Iα1 and corresponding (i2, j2) ∈ Iα2 , Proposition B.16 guarantees
that t(i1+1)

1 = t
(i2+1)
2 and Proposition B.15 guarantees that t(j1)

1 = t
(j2)
2 .

∗ Finally, since no interaction with D via INor OUToccurs in protected mode
and since the same deterministic device performed the same number of
steps (starting from c

(0)
1

U
≈ c(0)

2 ), it follows that t′a1
= t′a2

and δ′1 = δ′2.

b.7 proofs of Lemmata 6.3 and 6.4

Proposition B.21. Let C = 〈MC ,D〉. IfD ` INITC[MM ]
β

==⇒⇒∗ c1 andD ` INITC[MM′ ]
β

==⇒⇒∗
c2, then c1 `mode m and c2 `mode m.

Proof. Let β the last observable of β. By definition c1 and c2 are such that, for some c′1 and
c′2:

D ` c′1
α

==⇒ c1 D ` c′2
α

==⇒ c2

with α equal to •, jmpIn?(·) or jmpOut!(·; ·) (depending on the value of β). In either case,
since c′1 and c′1 are the configuration right after α and by definition of fine-grained traces,
we have c1 `mode m and c2 `mode m.

PropositionB.22. For any contextC = 〈MC ,D〉 andmoduleMM , ifD ` INITC[MM ]
β0 ··· βn

=======⇒⇒∗
c with n ≥ 0, then the observables occurring

(1) in even positions (β0, β2, . . . ) are either • or jmpIn?(R) (for someR)

(2) in odd positions (β1, β3, . . . ) are either • or jmpOut!(∆t;R) (for some ∆t andR)

Proof. Both easily follow from Figures 57 and 58.

First, we show that, due to the mitigation, the behavior of the context does not depend
on the behavior of the module:

Lemma6.3. LetC = 〈MC ,D〉. IfD ` INITC[MM ]
β

==⇒⇒∗ c1
β

==⇒⇒ c′1,D ` INITC[MM′ ]
β

==⇒⇒∗ c2,

c1 `mode UM and c2 `mode UM, then D ` c2
β

==⇒⇒ c′2.
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Proof. First, observe that INITC[MM ]
U
≈ INITC[MM′ ]

, because

INITC[MM ] = 〈δinit, 0,⊥,MC ]MM ,Rinit
MC

, 0xFFFE,⊥〉
INITC[MM′ ]

= 〈δinit, 0,⊥,MC ]MM ′ ,Rinit
MC

, 0xFFFE,⊥〉.

Since INITC[MM ] `mode UM, INITC[MM ]
U
≈ INITC[MM′ ]

, D ` INITC[MM ]
β

==⇒⇒∗ c1,

D ` INITC[MM′ ]
β

==⇒⇒∗ c2, c1 `mode UM and c2 `mode UM, by Proposition B.20 we have

c1
U
≈ c2. Finally, since D ` c1

β
==⇒⇒ c′1 and by Proposition B.19 we get D ` c2

β
==⇒⇒ c′2.

Then the following lemma shows that the isolation mechanism offered by the enclave
guarantees that the behavior of the module is not influenced by the one of the context:

Lemma 6.4. Let C = 〈MC ,D〉. If MM
T
= MM ′ , D ` INITC[MM ]

β
==⇒⇒∗ c′′1

jmpIn?(R1)
=========⇒⇒

c1
β

==⇒⇒ c′1 and D ` INITC[MM′ ]
β

==⇒⇒∗ c′′2
jmpIn?(R2)

=========⇒⇒ c2, then D ` c2
β

==⇒⇒ c′2.

Proof. Noting that c1 `mode PM and that the last observable of β is a jmpIn?(·), by definition
of coarse-grained traces (see Figure 58) we have the following fine-grained traces starting
from c′′1 :

D ` c′′1
ξ ··· ξ·jmpIn?(R1 )

=============⇒∗ c1
α1===⇒∗ c(n1)

1

τ(k
(n1 )
1 ) ··· τ(k

(n1 +m1−1)
1 )·α′1====================⇒∗ c′1

with α′1 ∈ {jmpOut!(k1;R′1), handle!(k1) · ξ · · · ξ · •}.
Similarly for c2 it must be:

D ` c′′2
ξ ··· ξ·jmpIn?(R2 )

=============⇒∗ c2
α2===⇒∗ c(n2)

2

τ(k
(n2 )
2 ) ··· τ(k

(n2 +m2−1)
1 )·α′2====================⇒∗ c′2.

with α′2 ∈ {jmpOut!(k2;R′2), handle!(k2) · ξ · · · ξ · •}.
We have now two cases:

• Case β = jmpOut!(∆t;R). MM
T
= MM ′ implies the existence of a context C ′ =

〈MC′ ,D′〉 that allow us to observe D′ ` INITC′[MM′ ]
β

==⇒⇒ c3
β

==⇒⇒ c′3, i.e.,

D′ ` c3
α3===⇒∗ c(n3)

3

τ(k
(n3 )
3 ) ··· τ(k

(n3 +m3−1)
3 )·α′3====================⇒ c′3

with α′3 ∈ {jmpOut!(k3;R′3), handle!(k3) · ξ · · · ξ · •}.

By Propositions B.10 and B.11 we have that c2
P
≈ c3, and by Proposition B.9 we

conclude that c(n3)
3

P
≈ c(n2)

2 .
Proposition B.8 guarantees that

τ(k
(n2)
2 ) · · · τ(k

(n2+m2−1)
2 ) · α′2 = τ(k

(n3)
3 ) · · · τ(k

(n3+m3−1)
3 ) · α′3.

Since α′2 = α′3 = jmpOut!(k3;R1), we know that D ` c(n2)
2

jmpOut!(∆t′;R1)
============⇒⇒ c′2.

By Proposition 6.1, we have

∆t =

n1+m1∑
i=0

γ(c
(i)
1 ) + (11 + MAX_TIME) · |Iα1 |

∆t′ =

n2+m2∑
i=0

γ(c
(i)
2 ) + (11 + MAX_TIME) · |Iα2 |.

Since by Propositions B.17 and B.18 we have
∑n1+m1

i=0 γ(c
(i)
1 ) =

∑n2+m2
i=0 γ(c

(i)
2 ) and

|Iα1 | = |Iα2 |, we get ∆t = ∆t′ as requested.
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• Case β = •. It must be thatα′1 = handle!(k1) ·ξ · · · ξ ·• andα′2 = handle!(k2) ·ξ · · · ξ ·•.
If this was not the case (i.e., if α′2 = jmpOut!(k2;R′2)), then c2 could be swapped with
c1 (and c1 with c2) in the statement of this Lemma and the previous case would
apply. Thus, the thesis follows.

b.8 proof of Proposition 6.3 and Algorithm 3

From now onward, we simply write β = ε (resp. β′ = ε) if β (resp. β′) is shorter than β′

(resp. β).

Proposition 6.3. IfMM andMM ′ are two modules such thatMM 6'L MM ′ , then there always

exist β and β
′
that are distinguishing traces forMM andMM ′ .

Proof. From the contrapositive of Lemma 6.6 we know that MM

T
6= MM ′ , i.e., there

exist β ∈ Tr(MM ) and β′ ∈ Tr(MM ′) such that β /∈ Tr(MM ′) and β ∈ Tr(MM ). Also,
sinceMM 6'L MM ′ , we have that there exists a context CL such that CL[MM ]⇓L and
CL[MM ′ ] 6⇓L (or vice versa) – assume wlog CL[MM ]⇓L and CL[MM ′ ]6⇓L.
Thus, by Proposition 6.2:

DL ` INITCL[MM ]
β
′′

===⇒⇒∗ HALT

DL ` INITCL[MM′ ]
β
′′′

====⇒⇒∗ c 6= HALT

for some β′′ (ending in •), c and for all β′′′ that can be observed.
Indeed, we can always write that β′′ = βs · β · βe and β

′′′
= βs · β′ · β

′
e where:

• βs is the longest (possibly empty) common prefix of the two traces

• β and β′ 6= • are the first different observables – one of the two may be ε or,
by Proposition 6.2, it may be β = •

• βe and β
′
e are the (possibly empty) remainders of the two traces.

Thus, since β′′ and β′′′ are also observed under the same contextCL, they are distinguishing
traces.

The first two parameters of BuildDevice – joutd and joutd ′ – are differentiating
jmpOut!(·; ·) addresses (if any), as returned by the BuildMem (Algorithm 2). Parame-
ters β and β′ are distinguishing traces forMM andMM ′ generated under the context
CL (cfr. Definition 6.10). Finally, term (resp. term ′) denotes whetherMM (resp.MM ′)
converges in a context with no interrupts after the last jump into protected mode.

The first two lines define the initial set of states, which will be a finite subset of N in the
end, and the initial empty transition function.
Line 7 defines δL that records the last state that was added to the I/O device. At the

beginning it is initialized to 0.
The algorithm then proceeds by iterating over all the observables in βs (all the steps

below also update ∆ and δL, but we omit to state it explicitly):



B.8 proof of Proposition 6.3 and Algorithm 3 192

Algorithm 3 Builds the device of the distinguishing context.

1: procedure BuildDevice(joutd , joutd ′, β = β0 · · ·βn−1 · β · βe, β
′

= β0 · · ·βn−1 · β′ ·
β
′
e, term, term ′, CL)

2: . joutd , joutd ′ are differentiating jmpOut!(·; ·) addresses, if any
3: . β and β′ are distinguishing traces generated by the context CL
4: . term (resp. term ′) denotes whetherMM (resp.MM ′) converges in a context

with no interrupts after the last jump into protected mode
5: ∆ = {0}
6: ·

;D = ∅
7: δL = 0 . This variable keeps track of the last added device state.
8: for i ∈ 0..n− 1 do

9: if βi = jmpIn?(R) then

10: ∆ = ∆ ∪ {δL + 1, . . . , δL + 17}
11: ·

;D =
·
;D ∪{(δL, wr(w), δL) | w ∈Word}

12: ·
;D =

·
;D ∪{(δL, rd(A_JIN), δL + 1)}

13: ·
;D =

·
;D ∪{(δL + 1, rd(R[sp]), δL + 2)}

14: ·
;D =

·
;D ∪{(δL + 2, rd(R[sr]), δL + 3)}

15: ·
;D =

·
;D ∪{(δL + i, rd(R[i]), δL + i+ 1) | 3 ≤ i ≤ 15}

16: ·
;D =

·
;D ∪{(δL + 16, rd(R[pc]), δL + 17)}

17: ·
;D =

·
;D ∪{(δL + i, ε, δL + i) | 0 ≤ i ≤ 16}

18: δL = δL + 17

19: else if βi = jmpOut!(∆t;R) then

20: ·
;D =

·
;D ∪{(δL, ε, δL)} ∪ {(δL, wr(w), δL) | w ∈Word}

21: end if

22: end for

23: if β = jmpOut!(∆t;R) ∧ β′ = jmpOut!(∆t′;R′) ∧ (∃r.R[r] 6= R′[r]) then

24: if r 6= pc then

25: ∆ = ∆ ∪ {δL + 1, . . . , δL + 4}
26: ·

;D =
·
;D ∪{(δL, rd(A_RDIFF), δL + 1)}

27: ·
;D =

·
;D ∪{(δL + 1, wr(R[pc]), δL + 2)}

28: ·
;D =

·
;D ∪{(δL + 1, wr(R′[pc]), δL + 3)}

29: ·
;D =

·
;D ∪{(δL + 2, rd(A_HALT), δL + 4)}

30: ·
;D =

·
;D ∪{(δL + 3, rd(A_LOOP), δL + 4)}

31: ·
;D =

·
;D ∪{(δL + i, ε, δL + i) | 0 ≤ i ≤ 3}

32: δL = δL + 4

33: else

34: ∆ = ∆ ∪ {δL + 1, . . . , δL + 3}
35: ·

;D =
·
;D ∪{(δL, wr(joutd), δL + 1)}

36: ·
;D =

·
;D ∪{(δL, wr(joutd ′), δL + 2)}

37: ·
;D =

·
;D ∪{(δL + 1, rd(A_HALT), δL + 3)}

38: ·
;D =

·
;D ∪{(δL + 2, rd(A_LOOP), δL + 3)}

39: ·
;D =

·
;D ∪{(δL + i, ε, δL + i) | 0 ≤ i ≤ 2}

40: δL = δL + 3

41: end if

42: continues ...
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43: ... continued
44: else if β = jmpOut!(∆t;R) ∧ β′ = jmpOut!(∆t′;R) ∧∆t 6= ∆t′ then

45: . Let DL ` INITC[MM ]
βs===⇒⇒∗ c1 and DL6 I ` c1

jmpOut!(∆t6 I ;R)
===========⇒⇒ c′1.

46: . Let DL ` INITC[MM′ ]
βs===⇒⇒∗ c2 and DL6 I ` c2

jmpOut!(∆t′6 I ;R)
============⇒⇒ c′2.

47: t = t′1 − t1
48: t′ = t′2 − t2
49: ∆ = ∆ ∪ {δL + 1, . . . , δL + max (t, t′) + 1}
50: ·

;D =
·
;D ∪{(δL + min(t, t′), rd(A_HALT), δL + max (t, t′) + 1)}

51: ·
;D =

·
;D ∪{(δL + max (t, t′), rd(A_LOOP), δL + max (t, t′) + 1))}

52: ·
;D =

·
;D ∪{(δL + k, ε, δL + k + 1) | 0 ≤ k ≤ max (i, i′)}

53: δL = δL + max (t, t′) + 1

54: else if β = • ∧ β′ = jmpOut!(∆t;R) then

55: if term then

56: ∆ = ∆ ∪ {δL + 1, . . . , δL + 2}
57: ·

;D =
·
;D ∪{(δL, wr(A_EP), δL + 1)}

58: ·
;D =

·
;D ∪{(δL + 1, rd(A_HALT), δL + 2)}

59: ·
;D =

·
;D ∪{(δL, rd(A_LOOP), δL + 2)}

60: ·
;D =

·
;D ∪{(δL, wr(w), δL) | w ∈Word \ {A_EP}}

61: ·
;D =

·
;D ∪{(δL + i, ε, δL + i) | 0 ≤ i ≤ 1}

62: δL = δL + 2

63: else

64: ∆ = ∆ ∪ {δL + 1}
65: ·

;D =
·
;D ∪{(δL, rd(A_HALT), δL + 1)}

66: ·
;D =

·
;D ∪{(δL, wr(w), δL) | w ∈Word}

67: ·
;D =

·
;D ∪{(δL, ε, δL)}

68: δL = δL + 2

69: end if

70: else if β = jmpOut!(∆t;R) ∧ β′ = ε then

71: . As the previous case, with term ′ in place of term .
72: else

73: return ⊥
74: end if

75: D = 〈∆, 0, ·;D〉
76: return D
77: end procedure
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• Case βi = β′i = jmpIn?(R). In this case we know that either this is the first observable
or previous one was a jmpOut!(·; ·). Since the memory is obtained following Algo-
rithm 2, we know that in both cases we reach the instruction IN pc (either at address
A_EP or those of jumps out of protected mode), waiting for the next program counter
(sometimes before that we perform a write, which shall be ignored). Thus, the device
ignores any write operation and replies with A_JIN (Line 12). Then it starts to send
the values of the registers in R, to simulate in SancusH what happens in SancusL

and to match the requests from the code. To help the intuition Figure 60a depicts
how the transition function looks after the update (the solid black state denotes the
new value of δL).

• Case βi = β′i = jmpOut!(∆t;R). The device is simply updated with a loop on δL
with action ε and ignores any write operation (so as to deal withR[pc] = joutd or
R[pc] = joutd ′). Figure 60b pictorially represents this case.

Then, when βs ends, the algorithm analyses β and β′ and sets up the device to
differentiate the two modules:

• Case β = jmpOut!(∆t;R)∧β′ = jmpOut!(∆t′;R′)∧(∃r.R[r] 6= R′[r]). In this case the
differentiation is due to a register, and two further sub-casesmay arise, depending on
whether it is pc. If the register is pc then the device waits for the differentiating value
for the context (that is executing code at joutd and joutd ′ by construction) and based
on that value, it replies with either A_HALT (Line 37) or A_LOOP (Line 38). Instead, if
the differentiation register is not pc then the code of the context is waiting for the
next program counter and the context replies with A_RDIFF. From this address we
find the code that sends the differentiating register and, based on that value, the
device replies with either A_HALT (Line 29) or A_LOOP (Line 30). Figures 61a and 61b
may help the intuition.

• Case β = jmpOut!(∆t;R)∧β′ = jmpOut!(∆t′;R)∧∆t 6= ∆t′. This case is probably the
most interesting since differentiation happens in SancusL due to timings. However,
different timings inSancusL correspond to different timings in SancusH (as observed
in proof of Proposition B.24), and the device is programmed to reply with either
A_HALT (Line 50) or A_LOOP (Line 51) depending on the time value. Figure 61c
intuitively depicts this situation.

• Case β = • ∧ β′ = jmpOut!(∆t;R). In this case • may occur during an interrupt
service routine. We then have two sub-cases, depending on whether the first module
terminates when executed in a context with no interrupts after the last jump into
protected mode or not (i.e., encoded by the value of term). When term holds, the
first module makes the CPU go through an exception handling configuration that
jumps to A_EP and the device instructs the code to jump to A_HALT (Line 58), while
for the second module the CPU jumps to any other location (A_EP is chosen to be
different from any other jump out address!) and is instructed to jump to A_LOOP
(Line 59). When term does not hold, the first module diverges, while for the second
module the CPU jumps to a location in unprotected code and it is instructed to jump
to A_HALT (Line 65). Figures 61d and 61e may help the intuition.

• Case β = jmpOut!(∆t;R) ∧ β′ = ε. Analogous to the previous case.

• Otherwise. No other cases may arise, as noted in Proposition B.23.
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Finally, the algorithm returns a device with the set of states ∆, the initial state 0 and the
transition function built as just explained.

Proposition B.23. LetMM

T
6=MM ′ , β, β

′
be distinguishing traces ofMM andMM ′ originated

by some context CL and let term and term ′ be any pair of booleans, then

D = BuildDevice(β, β
′
, joutd , joutd ′, term, term ′, CL) 6= ⊥ and D is an I/O device.

Proof. We first show that BuildDevice never returns ⊥ when β and β′ are distinguishing
traces. For that, let β = βs · β · βe and β

′
= βs · β′ · β

′
e, and note that the only cases for

which ⊥ is returned are the following:

• Case β = β′ = •. Since β 6= β′ by hypothesis, this case never happens.

• Case β = jmpOut!(∆t;R) and β′ = jmpIn?(R′) (or vice versa). This case never happens
due to Proposition B.22.

• Case {•, jmpIn?(R)} 3 β 6= β′ ∈ {•, jmpIn?(R′)}. Roughly, this means that the same

context performed two different actions upon observation of the same trace (βs).
Formally, we know by hypothesis that for the context CL = 〈MC ,DL〉

DL ` INITCL[MM ]
βs===⇒⇒∗ c1

DL ` INITCL[MM′ ]
βs===⇒⇒∗ c2.

with c1 `mode UM and c2 `mode UM. Proposition B.20 guarantees that c1
U
≈ c2, thus

by Proposition B.19 the same observable must originate from both c1 and c2, but
that is against the hypothesis that β 6= β′.

Finally, it is easy to see that D returned by BuildDevice is an actual device. Indeed, its set
of states ∆ is finite (the algorithm always terminates in a finite number of steps and each
step adds a finite number of state); its initial state 0 belongs to ∆; no int? transitions are
ever added and a single rd(w) transition outgoes from any given state: thus the transition
relation respects the definition of I/O devices.

The following proposition states that the context built by joining together the results of
the two algorithms above is a distinguishing one:

Proposition B.24. LetMM

T
6=MM ′ ; let C

L = 〈MC ,DL〉; let

DL ` INITCL[MM ]
βs===⇒⇒∗ c′1

β
==⇒⇒ c1

DL ` INITCL[MM′ ]
βs===⇒⇒∗ c′2

β′
===⇒⇒ c2

be such that β = βs · β · βe and β
′
= βs · β′ · βe distinguishing traces ofMM andMM ′ ; and let

term ⇐⇒ DL6 I ` c′1 →∗ HALT

term ′ ⇐⇒ DL6 I ` c′2 →∗ HALT.

If CH = 〈MC ,D〉, (MC , joutd , joutd ′) = BuildMem(β, β
′
), and D = BuildDevice(β, β

′
,

joutd , joutd ′, term, term ′), then CH [MM ]⇓H and CH [MM ′ ]6⇓H (or vice versa).
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Proof. Assume wlog that CL[MM ]⇓L and CL[MM ′ ]6⇓L. By Lemma 6.1

CH [MM ]⇓H ⇐⇒ CH6 I [MM ]⇓L and CH [MM ′ ]⇓H ⇐⇒ CH6 I [MM ′ ]⇓L

It suffices thus proving that CH6 I distinguishesMM andMM ′ , i.e., CH6 I [MM ]⇓L and
CH6 I [MM ′ ] 6⇓L or vice versa.
We show by induction on the length 2n+ 1 of βs that if

DL ` INITCL[MM ]
βs===⇒⇒∗ c′1

DL ` INITCL[MM′ ]
βs===⇒⇒∗ c′2

then ∃β′s s.t.

DH
6 I ` INITCH6 I [MM ]

β
′
s===⇒⇒∗ c3 and

DH
6 I ` INITCH6 I [MM′ ]

β
′
s===⇒⇒∗ c4 with β′s ≈ βs (see Definition B.2).

Note that the length of βs must be odd as a consequence of Propositions B.19 and B.20
and no • appears in it since otherwise it would mean that β = β

′.

• Case n = 0. Then, βs is jmpIn?(R). Thus, Algorithm 2 guarantees that the current
instruction is IN pc (at address A_EP) and its execution leads to address A_JIN (by Al-
gorithm 3) and the same jmpIn?(R) is observed starting from both INITCH6 I [MM ]

and INITCH6 I [MM′ ]
and also β′s ≈ βs.

• Case n = n′ + 1. If

DL ` INITCL[MM ]
β
′′
s===⇒⇒∗ c′′1 ∧ DL ` INITCL[MM′ ]

β
′′
s===⇒⇒∗ c′′′2

⇓

DH
6 I ` INITCH6 I [MM ]

β
′′′
s====⇒⇒∗ c′3 ∧DH

6 I ` INITCH6 I [MM′ ]
β
′′′
s====⇒⇒∗ c′4 ∧ β

′′′
s ≈ β

′′
s (IHP)

then

DL ` INITCL[MM ]
β
′′
s===⇒⇒∗ c′′1

β
′′

===⇒⇒∗ c′1 ∧ DL ` INITCL[MM′ ]
β
′′

===⇒⇒∗ c′′2
β
′′

===⇒⇒∗ c′2
⇓

DH
6 I ` INITCH6 I [MM ]

β
′′′
s====⇒⇒∗ c′3

β
′′′

====⇒⇒∗ c3 ∧ DH
6 I ` INITCH6 I [MM′ ]

β
′′′
s====⇒⇒∗ c′4

β
′′′

====⇒⇒∗ c4

∧β′′′s · β
′′′ ≈ β′′s · β

′′
.

Note that it must be that β′′ = jmpOut!(∆t;R) · jmpIn?(R′) by Proposition B.22 and
because we never observe • in the common prefix. By (IHP) and Proposition B.11
we have c′′1

P
≈ c′3 and c′′2

P
≈ c′4. Thus, by Propositions B.8 and B.9, it must be that

jmpOut!(∆t′;R) is observed when starting in c′3 and jmpOut!(∆t′′;R) is observed
when starting in c′4 (for some ∆t′ and ∆t′′).
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By definition of coarse-grained traces, each of the computations above is generated
by fine-grained trace in the form (we write _ to denote a generic configuration):

DL ` _ jmpIn?(R′′)
=========⇒ c′′1 = c

(0)
1

α
(0)
1====⇒ · · ·

α
(n1−1)
1=======⇒ c

(n1)
1

jmpOut!(k
(n1 )
1 ;R)

============⇒

c(n1)+1 ξ···ξjmpIn?(R′)
===========⇒∗ c′1

DL ` _ jmpIn?(R′′)
=========⇒ c′′2 = c

(0)
2

α
(0)
2====⇒ · · ·

α
(n2−1)
2=======⇒ c

(n2)
2

jmpOut!(k
(n2 )
2 ;R)

============⇒

c(n2)+1 ξ···ξjmpIn?(R′)
===========⇒∗ c′2

DH
6 I ` _ jmpIn?(R′′)

=========⇒ c′3 = c
(0)
3

α
(0)
3====⇒ · · ·

α
(n3−1)
3=======⇒ c

(n3)
3

jmpOut!(k
(n3 )
3 ;R)

============⇒ c
(n3+1)
3

DH
6 I ` _ jmpIn?(R′′)

=========⇒ c′4 = c
(0)
4

α
(0)
4

====⇒ · · ·
α

(n4−1)

4
=======⇒ c

(n4)
4

jmpOut!(k
(n4 )

4 ;R)
============⇒ c

(n4+1)
4 .

Thus, due to Proposition 6.1 and by hypothesis, it holds that ∆t =
∑n1

i=0 γ(c
(i)
1 ) +

(11 + MAX_TIME) · |I
α

(0)
1 ···α

(n1)
1

| =
∑n2

i=0 γ(c
(i)
2 ) + (11 + MAX_TIME) · |I

α
(0)
2 ···α

(n2)
2

|. Also,

since by (IHP) and Propositions B.19 and B.20 it follows that c(0)
1 = c′′1

U
≈ c′′2 = c

(0)
2 ,

we know |I
α

(0)
1 ···α

(n1)
1

| = |I
α

(0)
2 ···α

(n2)
2

| (by Proposition B.18) and thus
∑n1

i=0 γ(c
(i)
1 ) =∑n2

i=0 γ(c
(i)
2 ). Moreover, by (IHP) and Proposition B.11, we get c(0)

1 = c′′1
P
≈ c′3 = c

(0)
3

and c(0)
2 = c′′2

P
≈ c′4 = c

(0)
4 . Now, as a consequence of Propositions B.3, B.8 and B.9 we

know that ∆t′ =
∑n3

i=0 γ(c
(i)
3 ) =

∑n1
i=0 γ(c

(i)
1 ) =

∑n2
i=0 γ(c

(i)
2 ) =

∑n3
i=0 γ(c

(i)
3 ) = ∆t′′.

By (IHP) and since the first observable after c′3 and c′4 is the same, by Proposition B.20
it follows c(n3+1)

3

U
≈ c

(n4+1)
4 . Thus, due to Proposition B.19, we get that the same

coarse-grained observable jmpIn?(R′′′) is observed after c(n3+1)
3 and c(n4+1)

4 . Finally,
R′′′ is equal toR′ since after any jmpOut!(·; ·) a IN pc instruction is executed and its
execution leads to address A_JIN (by Algorithm 3) that performs jmpIn?(R), and
the thesis follows.

Since we proved that

DH
6 I ` INITCH6 I [MM ]

β
′
s===⇒⇒∗ c3 and

DH
6 I ` INITCH6 I [MM′ ]

β
′
s===⇒⇒∗ c4

we also have that c3
U
≈ c4 by Propositions B.19 and B.20.

Let DH
6 I ` c3

β3===⇒⇒∗ c′′3 and DH
6 I ` c4

β4===⇒⇒∗ c′′4 , with β3 and β4 either empty or made of
a single observable (either • or jmpOut!(·; ·), since no difference cannot be observed upon
jmpIn?(·) as observed above). By exhaustive cases on β and β′ we have:

• Case β = • and β′ = jmpOut!(∆t′′′;R′′). Note that, since term ⇐⇒ DL6 I ` c′1 →∗

HALT and c′1
P
≈ c3 (by Propositions B.10 and B.11), we get term ⇐⇒ DH6 I ` c3 →∗

HALT by Proposition B.8 and since neither DL6 I nor DH6 I raise any interrupt. Thus,
by definition of DL (cfr. Algorithm 3) the context CH distinguishes the two modules.

• Case β = jmpOut!(∆t′′′;R′′) and β′ = ε. Similar to the previous case (with term ′ in
place of term).
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• Case β = jmpOut!(∆t′′′;R′′) and β′ = jmpOut!(∆t′′′;R′′′)withR′′ 6= R′′′. Since c′1
P
≈ c3

and c′2
P
≈ c4, it must be that β3 = jmpOut!(∆tv;R′′) and β4 = jmpOut!(∆tvi;R′′).

Thus, by Algorithms 2 and 3, CH distinguishes the two modules.

• Case β = jmpOut!(∆t′′′;R′′) and β′ = jmpOut!(∆tiv;R′′). In this case it holds that
β3 = jmpOut!(∆tv;R′′) and β4 = jmpOut!(∆tvi;R′′) with the same timings of the
instructions (by Proposition 6.1). Since c3

U
≈ c4, the two times must differ one

from each other otherwise, by the contrapositive of Proposition B.17, we would
getMM

T
= MM ′ . Again, by definition of Algorithms 2 and 3, one computation

converges and one diverges, hence CH distinguishes the two modules.

b.9 proofs and additional definitions of Section 6.6

Proposition 6.4. Let c and c′ be configurations such that c, c′ `mode UM. If c
U
≈ c′ then c L

= c′.

Proof. Since c, c′ `mode UM, the proposition follows directly from Definitions 6.8 and 6.11.

Lemma 6.9. IfMM 'L MM ′ thenMM ≈ISMM ′ .

Proof. Assuming contextual equivalence in SancusL and that:

D ` INITC[MM ] →∗ c→ HALT ∧ D ` INITC[MM′ ]
→∗ c′ → HALT,

our goal is to prove that c L
= c′. From contextual equivalence it follows thatMM

T
=MM ′ .

By Lemma 6.5 we also know that for some c′′:

D ` INITC[MM ]
β

==⇒⇒∗ c ∧ D ` INITC[MM′ ]
β

==⇒⇒∗ c′′.

Proposition B.21 and Proposition B.20 guarantee that c U
≈ c′′. Then, since c → HALT,

it must be c′′ → HALT. For that and by determinism of the operational semantics of
SancusL we have that c′ = c′′ and c U

≈ c′, which by Proposition 6.4 implies c L
= c′.

Theorem 6.3. IfMM 'HMM ′ thenMM ≈ISMM ′ .

Proof. SinceMM 'HMM ′ , byTheorem6.2wealsohave thatMM 'L MM ′ andLemma6.9
concludes the proof.

Theorem 6.4.

1. IfMM 'L MM ′ , thenMM ≈SSMM ′ ; and

2. ifMM ≈SSMM ′ , thenMM 'HMM ′ .

Proof.
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1. Lemma6.9 guarantees thatMM ≈ISMM ′ .Wenowset out to show thatMM ≈SSMM ′

is implied byMM ≈IS MM ′ in our setting. Indeed, by definition of SSNI we can
assume (wlog) that D ` INITC[MM ] →∗ c→ HALT, i.e., C[MM ]⇓L. By hypothesis
it also follows that C[MM ′ ]⇓L. For that and by definition of ISNI, it then follows
MM ≈SSMM ′ .

2. By definition of SSNI it follows that for any C if C[MM ]⇓H, then C[MM ′ ]⇓H and
vice versa, i.e., C[MM ]⇓H ⇐⇒ C[MM ′ ]⇓H which coincides with the definition of
MM 'HMM ′ .

Proposition B.25.

1. If D ` c β
==⇒⇒∗ c′ then ∃!t,K. D ` c�t

K c′ ∧ β ∝ K.

2. If D ` c�t
K c′ then ∃β. D ` c β

==⇒⇒∗ c′ ∧ β ∝ K.

where

β ∝ K iff |β| =

K β 6= β
′ · •

K + 1 o.w.

Proof.

1. By determinism, there is a single computation χ from c to c′ generating β. From
uniqueness of χ and by Definition 6.15, one gets existence and uniqueness of t and
K.

2. Directly follows from Definition 6.15 and Figure 58.

Lemma 6.10.

1. IfMM 'L MM ′ thenMM ≈SSSMM ′ ; and

2. ifMM ≈SSSMM ′ thenMM 'HMM ′ .

Proof.

1. Assuming contextual equivalence in SancusL and that:

D ` INITC[MM ] �
t
K c,

our goal is to prove that c L
= c′. From contextual equivalence it follows that

MM
T
=MM ′ . By Lemma 6.5 we also know that for some c′′:

D ` INITC[MM ]
β

==⇒⇒∗ c =⇒ D ` INITC[MM ]
β

==⇒⇒∗ c′′.

Proposition B.21 and Proposition B.20 guarantee that c U
≈ c′′. By Proposition B.25.(1)

there exist unique t andK such that

D ` INITC[MM ] �
t
K c

and
D ` INITC[MM′ ]

�t
K c′′

thus by determinism of operational semantics of SancusL, we have that c′′ = c′ and
c
U
≈ c′, which by Proposition 6.4 implies c L

= c′.
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2. Suppose that C[MM ]⇓H and C[MM ′ ] 6⇓H. But then they cannot beMM ≈SSSMM ′

(since HALT is in relation just with itself), which contradicts the hypothesis.

Theorem 6.5. The following relations are equivalent:

1.MM
WT
= MM ′ 2.MM

T
=MM ′

3.MM 'L MM ′ 4.MM 'HMM ′

Proof. We only prove (1) ⇐⇒ (2); The other equivalences follow from Theorem 6.2.

• (1)⇐ (2). SinceMM
T
=MM ′ , by Lemma 6.5 we know that:

D ` INITC[MM ]
β

==⇒⇒∗ c ⇐⇒ D ` INITC[MM′ ]
β

==⇒⇒∗ c′.

Thus, ∀C.WTr(C[MM ]) = WTr(C[MM ′ ]) as requested.

• (1)⇒ (2). Easy.
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