
UC Santa Cruz
Journal of Systems Research

Title
SoK: A Generalized Multi-Leader State Machine Replication Tutorial

Permalink
https://escholarship.org/uc/item/9w79h2jg

Journal
Journal of Systems Research, 1(1)

Authors
Whittaker, Michael
Giridharan, Neil
Szekeres, Adriana
et al.

Publication Date
2021

DOI
10.5070/SR31154817

Copyright Information
Copyright 2021 by the author(s).This work is made available under the terms of a Creative
Commons Attribution-NonCommercial License, available at
https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9w79h2jg
https://escholarship.org/uc/item/9w79h2jg#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

Journal of Systems Research (JSys) Volume 1, Issue 1, Sep 2021

SOK: A GENERALIZED MULTI-LEADER STATE MACHINE REPLICATION TUTORIAL

MICHAEL WHITTAKER

UC Berkeley

mjwhittaker@berkeley.edu

NEIL GIRIDHARAN

UC Berkeley

giridhn@berkeley.edu

ADRIANA SZEKERES

VMware Research

aszekeres@vmware.com

JOSEPH M. HELLERSTEIN

UC Berkeley

hellerstein@berkeley.edu

ION STOICA

UC Berkeley

istoica@berkeley.edu

Foreword by the Area Chair

The paper overviews the most relevant state-of-the-art Multi-leader Consensus implementations, shedding light on the different

properties and design characteristics they provide. The last decade has been characterized by the availability of a number of

Multi-leader Consensus solutions. So far, no work has focused on criticizing these solutions and constructively providing a new,

mostly pedagogical Multi-leader Consensus implementation that favors simplicity and understandability over performance.

Reviewers unanimously agree: the paper is timely, and relevant to the community because it also serves the purpose of surveying

existing solutions. In addition to that, the paper analyzes design and implementation factors from a different perspective, meaning

by looking at features that encourage industry adoption.

- Roberto Palmieri, Lehigh University

Reviewers

- Suyash Gupta, University of California Davis

- Seo Jin Park, MIT

- Ling Ren, UIUC

- Denis Rystsov, Vectorized, Inc

Artifacts

Systemization of Knowledge (SoK) papers do not have associated artifacts.

Reviews

Anonymized reviews are publicly available at: https://openreview.net/forum?id=4Xo8nv5DNS

Copyright and License

Licensed under Creative Common License CC-BY-NC. Copyright retained by the authors.

https://orcid.org/0000-0002-7712-4306
https://openreview.net/forum?id=4Xo8nv5DNS
https://creativecommons.org/licenses/by-nc/4.0/

SOK: A GENERALIZED MULTI-LEADER STATE MACHINE REPLICATION TUTORIAL

Michael Whittaker

UC Berkeley

Neil Giridharan

UC Berkeley

Adriana Szekeres

University of Washington

Joseph M. Hellerstein

UC Berkeley

Ion Stoica

UC Berkeley

Abstract
MultiPaxos and Raft are the two most popular and widely

deployed state machine replication protocols. There is a more

sophisticated family of generalized multi-leader state machine

replication protocols like EPaxos, Caesar, and Atlas that have

better performance, but they are extremely complicated and

hard to understand. Due to their complexity, they have seen

little to no industry adoption, and academically there has been

a lack of clarity in analyzing, comparing, and extending the

protocols. This paper is a tutorial on generalized multi-leader

protocols. We explain why the protocols work the way they

do, what they have in common, where they differ, which parts

of the protocols are straightforward, which are more subtle

than they appear, and so on. In doing so, we present four new

generalized multi-leader protocols, identify key insights into

existing protocols, and taxonomize the space.

1 Introduction

State machine replication protocols are a critical component

of many fault tolerant distributed systems [4, 5, 8, 27, 29].

Given an arbitrary deterministic state machine, like a key-

value store or a relational database, a state machine replication

protocol can be used to deploy multiple copies, or replicas,

of the state machine while guaranteeing that the states of the

replicas stay in sync and do not diverge.

The most popular and widely deployed state machine repli-

cation protocols are Paxos [5, 8, 13] and Raft [1, 2, 23, 27].

These protocols have two distinguishing characteristics. First,

they are leader based. All communication is funneled through

a single leader. Second, these protocols totally order state

machine commands into a log and have state machine replicas

execute the commands in log order. Every replica executes

the exact same commands in the exact same order.

There is another family of generalized multi-leader state

machine replication protocols—including EPaxos [22], Cae-

sar [3], and Atlas [10]—that improve the performance of

protocols like MultiPaxos and Raft along these two dimen-

sions. These protocols are multi-leader and avoid being

throughput bottlenecked by a single leader. They are also gen-

eralized [14, 19]. This means that the protocols are based on

dependency graphs. Every replica executes non-commuting

commands in the exact same order, but the replicas are free

to execute commuting commands in any order. As a result,

commuting commands do not interfere with one another.

Unfortunately, these generalized multi-leader protocols are

extremely complicated. Paxos has a well known reputation for

being complex [16,23,30], and these generalized multi-leader

protocols are significantly more complex than that. They

require a strong understanding of more sophisticated Paxos

variants like Fast Paxos [15] and are overall less intuitive and

more nuanced. It’s hard to measure this complexity precisely,

but there are indications that the protocols are complicated.

EPaxos, for example, had several bugs go undiscovered for

years despite the popularity of the protocol [26]. Through

personal conversations, we have also found that even domain

experts find these protocols challenging to fully understand.

This complexity has negative consequences in industry

and academia. The performance advantages of generalized

multi-leader protocols make them an attractive option for

industry practitioners. Despite this, generalized multi-leader

protocols have little to no industry adoption. We postulate

that this is largely due to their complexity. The engineers

in [6] explain that implementing a state machine replication

protocol requires making many small changes to the protocol

to match the environment in which it is deployed. Making

these changes without a strong understanding of the protocol

is infeasible. Academically, it is challenging to compare and

contrast the various protocols. They all seem very similar,

yet vaguely distinct. This also makes it difficult to extend the

protocols with further innovations. There are dozens of state

machine replication protocols in the literature, yet relatively

few generalized multi-leader variants.

This paper is a tutorial on generalized multi-leader state

machine replication protocols. Our goal is to answer ques-

tions such as: What problem do these protocols address? How

can I choose between the various protocols? Why do these

protocols work the way they do? What do they have in com-

mon? Where do they differ? Which parts of the protocols are

straightforward? Which are more subtle than they appear?

Are there simpler variants out there? What trade-offs do the

protocols make, and which points in the design space are still

unexplored?

The tutorial has four parts, and in each part, we introduce a

new protocol. First, we present the simplest possible general-

ized multi-leader protocol, which we called Simple BPaxos

(Section 4). Simple BPaxos sacrifices performance for sim-

plicity and is designed with the sole goal of being easy to

understand. Simple BPaxos is the kernel from which all other

generalized multi-leader protocols can be constructed. It en-

Journal of Systems Research (JSys) 2021

capsulates all the mechanisms and invariants that are common

to the other protocols.

Second, we introduce a purely pedagogical protocol called

Fast BPaxos (Section 6). Fast BPaxos achieves higher per-

formance than Simple BPaxos, but it is unsafe. The protocol

does not properly implement state machine replication. Why

study a broken protocol? Because understanding why Fast

BPaxos does not work leads to a fundamental insight on why

other protocols do. Specifically, we discover that generalized

multi-leader protocols encounter a fundamental tension be-

tween agreeing on commands and ordering commands. The

way in which a protocol handles this tension is its key distin-

guishing feature. We taxonomize the protocols into those that

avoid the tension and those that resolve the tension.

Third, we introduce Unanimous BPaxos, a simple ten-

sion avoiding protocol (Section 7). We describe how tension

avoiding protocols carefully enlarge quorum sizes to sidestep

the tension. We also explain how Basic EPaxos [22] and At-

las [10] can be expressed as optimized variants of Unanimous

BPaxos.

Fourth, we introduce Majority Commit BPaxos, a tension

resolving protocol (Section 8). We describe how tension

resolving protocols perform detective work to resolve the

tension without enlarging quorum sizes. We also discuss

the relationship between Majority Commit BPaxos and other

tension resolving protocols like EPaxos [21] and Caesar [3].

In summary, we make the following contributions.

• We explain generalized multi-leader protocols carefully

and thoroughly, bringing clarity to an otherwise dense

area of popular research.

• We present four new generalized multi-leader state

machine replication protocols: Simple BPaxos, Fast

BPaxos, Unanimous BPaxos, and Majority Commit

BPaxos.

• We identify a fundamental tension between agreeing on

commands and ordering commands and use this insight

to taxonomize generalized multi-leader protocols into

those that avoid the tension and those that resolve it.

2 A Primer on State Machine Replication

Throughout the paper, we assume a system model in which

messages can be arbitrarily dropped, delayed, and reordered.

We assume machines can fail by crashing but do not act ma-

liciously; i.e., we do not consider Byzantine failures. We

assume that machines operate at arbitrary speeds, and we

do not assume clock synchronization. Every protocol dis-

cussed in this paper assumes that at most f machines will fail

for some configurable f . If more than f machines fail, the

protocols remain safe, but won’t be live.

2.1 State Machine Replication

State machine replication is the act of choosing a sequence

(a.k.a. log) of values. A state machine replication protocol

manages a number of copies, or replicas, of a deterministic

state machine. Over time, the protocol constructs a growing

log of state machine commands, and replicas execute the

commands in log order. By beginning in the same initial state,

and by executing the exact same commands in the exact same

order, all of the state machine replicas are kept in sync. This

is illustrated in Figure 1.

0 1 2

(a) t = 0

x

0 1 2

(b) t = 1

x

0 1

z

2

(c) t = 2

x

0

y

1

z

2

(d) t = 3

Figure 1: At time t = 0, no state machine commands are

chosen. At time t = 1 command x is chosen in slot 0. At

times t = 2 and t = 3, commands z and y are chosen in slots

2 and 1. Executed commands are shaded green. Note that all

state machines execute the commands x, y, z in log order.

State machine replication builds on the simpler problem of

consensus. Rather than choosing a sequence of values, con-

sensus involves choosing a single value. State machine repli-

cation protocols like MultiPaxos implement state machine

replication using one instance of consensus for every log en-

try, so to understand state machine replication, we must first

understand consensus. We review Paxos, the most popular

consensus algorithm, and then extend Paxos to MultiPaxos.

2.2 Paxos

A Paxos [13] deployment that tolerates f faults consists of an

arbitrary number of clients, f +1 nodes called proposers, and

2 f +1 nodes called acceptors, as illustrated in Figure 2. To

reach consensus on a value, an execution of Paxos is divided

into a number of integer valued rounds (also known as ballots,

epochs, terms, views, etc. [12]). Every round has two phases,

Phase 1 and Phase 2, and every round is orchestrated by a

single pre-determined proposer. If a proposer is responsible

for executing a round, we sometimes say the proposer is the

leader of the round.

When a proposer executes a round, say round i, it attempts

to get some value v “chosen” in that round. We’ll define

formally what it means for a value to be chosen momentarily.

Paxos is a consensus protocol, so it must only choose a single

value. Thus, Paxos must ensure that if a value v is chosen in

round i, then no other value besides v can ever be chosen in

any round less than i. This is the purpose of Paxos’ two phases.

In Phase 1 of round i, the proposer contacts the acceptors to

(a) learn of any value that may have already been chosen in

any round less than i and (b) prevent any new values from

being chosen in any round less than i. In Phase 2, the proposer

2

Journal of Systems Research (JSys) 2021

c1

c2

c3

p1

p2

a1

a2

a3

Clients
f +1

Proposers

2 f +1

Acceptors

1 2

2
3

3

1 v

2 PHASE1A〈i〉

3 PHASE1B〈i,vr,vv〉

(a) Phase 1

c1

c2

c3

p1

p2

a1

a2

a3

Clients
f +1

Proposers

2 f +1

Acceptors

4

4
5

5

6

4 PHASE2A〈i,v〉

5 PHASE2B〈i〉

6 v chosen

(b) Phase 2

Figure 2: An example execution of Paxos (f = 1).

proposes a value to the acceptors, and the acceptors vote on

whether or not to choose it. In Phase 2, the proposer is careful

to only propose a value v if it learned through Phase 1 that no

other value has been or will be chosen in a previous round.

More concretely, Paxos executes as follows. When a client

wants to propose a value v, it sends v to a proposer p. Upon

receiving v, p begins executing one round of Paxos, say round

i. First, it executes Phase 1. It sends PHASE1A〈i〉messages to

the acceptors. An acceptor ignores a PHASE1A〈i〉 message if

it has already received a message in a larger round. Otherwise,

it replies with a PHASE1B〈i,vr,vv〉 message containing the

largest round vr in which the acceptor voted and the value

it voted for, vv. If the acceptor hasn’t voted yet, then vr =
−1 and vv = null. When the proposer receives PHASE1B

messages from a majority of the acceptors, Phase 1 ends and

Phase 2 begins.

At the start of Phase 2, the proposer uses the PHASE1B

messages that it received in Phase 1 to select a value v such

that no value other than v has been or will be chosen in any

round less than i. Specifically v is the vote value associated

with the largest received vote round, or any value if no ac-

ceptor had voted (see [16] for details). Then, the proposer

sends PHASE2A〈i,v〉 messages to the acceptors. An acceptor

ignores a PHASE2A〈i,v〉 message if it has already received a

message in a larger round. Otherwise, it votes for v and sends

back a PHASE2B〈i〉 message to the proposer. If a majority

of acceptors vote for the value (i.e. if the proposer receives

PHASE2B〈i〉messages from a majority of the acceptors), then

the value is chosen—this is the formal definition of when a

value is chosen—and the proposer informs the client. This

execution is illustrated in Figure 2. If the proposer does not

receive sufficiently many PHASE1B or PHASE2B responses

from the acceptors (e.g., because of network partitions or

dueling proposers), then the proposer restarts the protocol in

a larger round.

Note that it is safe for the leader of round 0 (the smallest

round) to skip Phase 1 and proceed directly to Phase 2. Recall

that the leader of round i executes Phase 1 to learn of any

value that may have already been chosen in any round less

than i and to prevent any new values from being chosen in any

round less than i. There are no rounds less than 0, so these

properties are satisfied vacuously.

2.3 MultiPaxos

As mentioned earlier, MultiPaxos uses one instance of Paxos

for every log entry, choosing the command in the ith log entry

using the ith instance of Paxos. A MultiPaxos deployment that

tolerates f faults consists of an arbitrary number of clients, at

least f +1 proposers, and 2 f +1 acceptors (like Paxos), as

well as at least f +1 replicas, as illustrated in Figure 3.

c1

c2

c3

p1

p2

a1

a2

a3

r1

r2

Clients
f +1

Proposers

2 f +1

Acceptors

f +1

Replicas

1 2

2
3

3
4

4

5

Figure 3: An example execution of MultiPaxos (f = 1). The

leader is adorned with a crown.

Initially, one of the proposers is elected leader and runs

Phase 1 of Paxos for every log entry. Though there are an

infinite number of log entries, all but a finite prefix of the log

entries are empty, so the leader can run Phase 1 for all log

entries with only a small number of messages. When a client

wants to propose a state machine command x, it sends the

command to the leader (1). The leader assigns the command

a log entry i and then runs Phase 2 of the ith Paxos instance

to get the value x chosen in entry i. That is, the leader sends

PHASE2A messages to the acceptors to vote for value x in

slot i (2). In the normal case, the acceptors all vote for x in

slot i and respond with PHASE2B messages (3). Once the

leader learns that a command has been chosen in a given log

entry, it informs the replicas (4). Replicas insert commands

into their logs and execute the logs in prefix order.

Note that every command is sent to the leader, and the

leader performs disproportionally more work per command

compared to the other nodes in the protocol. For example,

in Figure 3, the leader must send and receive a total of 7

messages per command while the acceptors and replicas send

and receive at most 2. This is why the MultiPaxos leader is a

well known throughput bottleneck [20, 22].

3

Journal of Systems Research (JSys) 2021

3 Conflict Graphs

3.1 Defining Conflict Graphs

By totally ordering state machine commands into a log, state

machine replication protocols like MultiPaxos ensure that

every replica executes every command in exactly the same

order. This is a simple way to ensure that replicas are always

in sync, but it is sometimes unnecessary [14]. For example,

consider the log shown at the top of Figure 4. The command

a=2 (i.e. set the value of variable a to 2) is chosen in log

entry 1, and the command b=1 is chosen in log entry 2. With

MultiPaxos, every replica would execute these two commands

in exactly the same order, but this is not necessary because the

commands commute. It is safe for some replicas to execute

a=2 before b=1 while other replicas execute b=1 before a=2.

The execution order of the two commands has no effect on

the final state of the state machine, so they can be safely

reordered, as shown in Figure 4.

x

0

a=2

1

b=1

2

y

3

b=1

2

z

4

· · ·

x

0

b=1

1

a=2

2

y

3

a=2

2

z

4

· · ·

Figure 4: If two commands commute, replicas can safely

execute them in either order.

More formally, we say two commands x and y conflict

if there exists a state in which executing x and then y does

not produce the same responses or final state as executing y

and then x. We say two commands commute if they do not

conflict. If two commands conflict (e.g., a=1 and a=2), then

they need to be executed by every state machine replica in

the same order. But, if two commands commute (e.g., a=2

and b=1), then they do not need to be totally ordered. State

machine replicas can execute them in either order.

Generalized Multi-leader state machine replication proto-

cols like EPaxos, Caesar, Atlas, and all the BPaxos variants

presented in this paper take advantage of command commuta-

tivity. Rather than totally ordering commands into a log, these

protocols partially order commands into a directed graph such

that every pair of conflicting commands has an edge between

them. We call these graphs conflict graphs. An example log

and corresponding conflict graph is illustrated in Figure 5. A

log consists of a number log entries, and every log entry has

a unique log index (e.g., 4). A conflict graph consists of a

number of vertices, and every vertex has a unique vertex id

(e.g., v4). Because every vertex is assigned a globally unique

vertex id, we often refer to the vertex with vertex id v as v.

Also note that a command may appear in multiple vertices, in

a=b

0

a=2

1

b=1

2

b=a

3

a=3

4

(a)

a=b

v0

a=2

v1

b=1

v2

b=a

v3

a=3

v4

(b)

Figure 5: A log and corresponding conflict graph.

much the same way a command may appear multiple times

in a log.

Moreover, a vertex v can have directed edges to other

vertices. These are called the dependencies of v, denoted

deps(v). For example, if vertex vi depends on vertex v j, then

there is an edge from vi to v j. Note that if a pair of commands

conflict, then they must have an edge between them. This

ensures that every replica executes the two commands in the

same order. For example in Figure 5, the commands a=b (v0)

and a=2 (v1) conflict, so they have an edge between them.

If two commands commute, then they do not have an edge

between them. This allows replicas to execute the commands

in either oder. For example, the commands a=2 (v1) and b=1

(v2) commute, so there is no edge between them. Finally

note that some conflicting commands (e.g., b=a (v3) and a=3

(v4)) have edges in both directions, forming a cycle. Ideally,

conflict graphs would be acyclic, but cycles are sometimes

unavoidable. The reason for this will become clear soon.

3.2 Executing Conflict Graphs

We now explain how to execute a static conflict graph. In the

next subsection, we explain how to execute a dynamic conflict

graph that grows over time. Replicas execute logs in prefix

order. Replicas execute conflict graphs in reverse topological

order, one strongly connected component at a time. The

order of executing commands within a strongly connected

component is not important, but every replica must choose

the same order. For example, replicas can execute commands

within a component sorted by their vertex id. The conflict

graph in Figure 5 has four strongly connected components,

each shaded a different color. Vertices v0, v1, and v2 are each

in their own components, and commands v3 and v4 are in

their own component. Replicas execute these four strongly

connected components in reverse topological order as follows:

• First, replicas execute a=b (v0).

• Next, replicas either execute a=2 (v1) then b=1 (v2) or

b=1 (v2) then a=2 (v1). There are no edges between

vertex v1 and vertex v2, so every replica can execute the

two vertices in either order.

4

Journal of Systems Research (JSys) 2021

Table 1: The differences between protocols like MultiPaxos

and Raft that organize commands in logs and protocols like

EPaxos, Caesar, and Atlas that organize commands in graphs.

Logs Graphs

data structure log conflict graph

log entry vertex

log index (e.g., 4) vertex id (e.g., v4)

total order partial order

execution order log order reverse topological order

what’s chosen? commands commands & dependencies

• Finally, replicas execute b=a (v3) and a=3 (v4) in some

arbitrary but fixed order. For example, if replicas execute

commands sorted by their vertex ids, then the replicas

would all execute v3 and then v4.

Executing commands in this way, state machine replicas are

guaranteed to remain in sync. Every replica executes con-

flicting commands in the same order, but are free to execute

commuting commands in any order.

3.3 Constructing Conflict Graphs

In the previous subsection, we explained how to execute a

static conflict graph. In reality, graphs are dynamic and grow

over time. MultiPaxos constructs one log entry at a time. It

uses one instance of consensus for every log entry i to choose

which command should be placed in log entry i. Analogously,

generalized multi-leader protocols construct a conflict graph

one vertex at a time. They use one instance of consensus for

every vertex v to choose which command should be placed in

vertex v and what dependencies, or outbound edges, v should

have.

In Figure 6, we illustrate an example execution of how the

conflict graph from Figure 5 could be constructed over time.

Figure 6 also shows an analogous execution in which a log

is constructed over time. Note that a vertex v can be chosen

with dependencies deps(v) before every vertex in deps(v) has

itself been chosen. For example in Figure 6c, v3 is chosen

with deps(v3) = {v0,v1,v2,v4} before vertices v2 and v4 are

chosen. This is analogous to how a command is chosen in log

entry 3 in Figure 6h before a command is chosen in entry 2.

A summary of the differences between logs and graphs is

given in Table 1.

3.4 Two Key Invariants

Protocols like EPaxos, Caesar, Atlas, and the BPaxos pro-

tocols in this paper all differ in how they assign commands

to vertices, how they compute dependencies, how they im-

plement consensus, and so on. Despite the differences, all

the protocols construct conflict graphs one vertex at a time,

choosing a command and a set of dependencies (x,deps(v))

for every vertex v. The protocols all rely on the following

two key invariants for correctness. We call these the consen-

sus invariant (Invariant 1) and the dependency invariant

(Invariant 2).

Invariant 1 (Consensus Invariant). Consensus is imple-

mented for every vertex v. That is, at most one value

(x,deps(v)) is chosen for every vertex v.

Invariant 2 (Dependency Invariant). If (x,deps(vx)) is cho-

sen in vertex vx and (y,deps(vy)) is chosen in instance vy, and

if x and y conflict, then either vx ∈ deps(vy) or vy ∈ deps(vx)
or both. That is, if two chosen commands conflict, there is an

edge between them.

The consensus invariant ensures that replicas always agree

on the state of the conflict graph. It makes it impossible, for

example, for two replicas to disagree on which command is in

a vertex or disagree on what dependencies a vertex has. The

dependency invariant ensures that replicas execute conflicting

commands in the same order but does not require that replicas

execute commuting commands in the same order. These

two invariants are sufficient to ensure linearizable execution.

Intuitively, the history of command execution is equivalent

to a serial history following any reverse topological ordering

of the conflict graph. In fact, replicas literally do execute

commands serially according to one of the reverse topological

orderings. For a more formal proof, refer to [14] and [21].

4 Simple BPaxos

In this section, we introduce Simple BPaxos, an inefficient

protocol that is designed to be easy to understand. By un-

derstanding Simple BPaxos, we will understand of the core

mechanisms and invariants that are common to all generalized

multi-leader protocols.

4.1 Overview

As illustrated in Figure 7, a Simple BPaxos deployment con-

sists of a number of clients, a set of at least f + 1 Paxos

proposers, a set of 2 f +1 dependency service nodes, a set

of 2 f +1 Paxos acceptors, and a set of at least f +1 replicas.

These nodes have the following responsibilities.

• The dependency service nodes, collectively called the

dependency service, compute dependencies and main-

tain the dependency invariant (Invariant 2).

• The proposers and acceptors implement one instance

of Paxos for every vertex and maintain the consensus

invariant (Invariant 1).

• The replicas construct and execute conflict graphs and

send the results of executing commands back to the

clients.

5

Journal of Systems Research (JSys) 2021

a=b

v0

(a)

a=b

v0

a=2

v1

(b)

a=b

v0

a=2

v1

v2

b=a

v3 v4

(c)

a=b

v0

a=2

v1

b=1

v2

b=a

v3 v4

(d)

a=b

v0

a=2

v1

b=1

v2

b=a

v3

a=3

v4

(e)

a=b

0

(f)

a=b

0

a=2

1

(g)

a=b

0

a=2

1 2

b=a

3

(h)

a=b

0

a=2

1

b=1

2

b=a

3

b=1

2

(i)

a=b

0

a=2

1

b=1

2

b=a

3

a=3

4

(j)

Figure 6: In subfigures (a) - (e), we see a conflict graph constructed over time. The most recently chosen vertex is drawn in

red. The executed commands are shaded green. (a) The command a=b is chosen in vertex v0 without any dependencies. The

command is executed immediately. (b) The command a=2 is chosen in vertex v1 with a dependency on v0. The command is

executed immediately. (c) The command b=a is chosen in vertex v3 with dependencies on v0, v1, v2, and v4. No commands have

been chosen in v2 and v4 yet, so v3 cannot be executed. (d) The command b=1 is chosen in vertex v2 with a dependency on v0.

The command is executed immediately. (e) The command a=3 is chosen in vertex v4 with dependencies on v0, v1, and v3. Now

v3 and v4 are executed. In subfigures (f) - (j), we see an analogous execution for a log.

c1

c2

p1 p2

d1 d2 d3 a1 a2 a3

r1 r2

Clients

f +1

Proposers

2 f +1

Dependency Service

Nodes

2 f +1

Acceptors

f +1

Replicas

1

2 2 23 3 3 4 4 4
5 5 5

6 6
7

Figure 7: An example execution of Simple BPaxos (f = 1).

More concretely, Simple BPaxos executes as follows. The

numbers here correspond to the numbered arrows in Figure 7.

• (1) When a client wants to propose a state machine com-

mand x, it sends x to any of the proposers. Note that with

MultiPaxos, only one proposer is elected leader, but in

Simple BPaxos, every proposer is a leader.

• (2) and (3) When a proposer pi receives a command x,

from a client, it places x in a vertex with globally unique

vertex id vx = (pi,m) where m is a monotonically in-

creasing integer local to pi. For example, proposer pi

places the first command that it receives in vertex (pi,0),
the next command in vertex (pi,1), the next in (pi,2),
and so on. The proposer then performs a round trip of

communication with the dependency service. It sends

vx and x to the dependency service, and the dependency

service replies with the dependencies deps(vx). For now,

we leave this process abstract. We’ll explain how the de-

pendency service computes dependencies in Section 4.2.

• (4) and (5) The proposer pi then executes Phase 2

of Paxos with the acceptors, proposing that the value

(x,deps(vx)) be chosen in the instance of Paxos asso-

ciated with vertex vx = (pi,m). This is analogous to a

MultiPaxos leader running Phase 2, proposing the com-

mand x be chosen in the instance of Paxos associated

with log entry m.

Recall from Section 2 that the Paxos proposer executing

round 0 can safely bypass Phase 1. By design, we prede-

termine that the proposer pi leads round 0 for vertices of

the form (pi,m). This is why pi can safely bypass Phase

1 and immediately execute Phase 2.

In the normal case, pi gets the value (x,deps(vx)) chosen

in vertex vx. It is also possible that some other proposer

erroneously concluded that pi had failed and proposed

some other value in vertex vx, but we discuss this sce-

nario later.

• (6) The proposer pi broadcasts vx, x, and deps(vx) to

all of the replicas. The replicas add vertex vx to their

conflict graph with command x and with edges to the

vertices in deps(vx). The replicas execute their conflict

graphs as described in Section 3.

• (7) Once a replica executes command x, it sends the

result of executing command x back to the client.

6

Journal of Systems Research (JSys) 2021

4.2 Dependency Service

The dependency service consists of 2 f +1 dependency ser-

vice nodes d1, . . . ,d2 f+1. Every dependency service node

maintains an acyclic conflict graph. These conflict graphs are

similar but not equal to the conflict graph that Simple BPaxos

ultimately executes.

When a proposer sends a vertex vx with command x to the

dependency service, it sends vx and x to every dependency

service node. When a dependency service node di receives vx

and x, it performs one of the following two actions depending

on whether di’s graph already contains vertex vx.

• If di’s conflict graph does not contain vertex vx, then di

adds vertex vx to its graph with command x. di adds an

edge from vx to every other vertex vy with command y

if x and y conflict. Letting out(vx) be the set of vertices

to which vx has an edge, di then returns out(vx) to the

proposer.

• Otherwise, if di’s conflict graph already contains ver-

tex vx, then di does not modify its conflict graph. It

immediately returns out(vx) to the proposer.

An example execution of a dependency service node is given

in Figure 8.

When a proposer receives replies from f +1 dependency

service nodes, it takes the union of these responses as the

value of deps(vx). For example, imagine f = 1 and a pro-

poser receives dependencies {vw,vy} from d1 and dependen-

cies {vw,vz} from d2. The proposer computes deps(vx) =
{vw,vy,vz}. The dependency service maintains Invariant 3.

Invariant 3. If two conflicting commands x and y in vertices

vx and vy yield dependencies deps(vx) and deps(vy) from the

dependency service, then either vx ∈ deps(vy) or vy ∈ deps(vx)
or both.

Proof. Consider conflicting commands x and y in vertices vx

and vy with dependencies deps(vx) and deps(vy) computed by

the dependency service. deps(vx) is the union of dependencies

computed by f +1 dependency service nodes Dx. Similarly,

deps(vy) is the union of dependencies computed by f + 1

dependency service nodes Dy. Because f +1 is a majority of

2 f +1, Dx and Dy necessarily intersect. That is, there is some

dependency service node di that is in Dx and Dy. di either

received vx or vy first. If it received vx first, then it returns vx

as a dependency of vy, so vx ∈ deps(vy). If it received vy first,

then it returns vy as a dependency of vx, so vy ∈ deps(vx).

4.3 An Example

An example execution of Simple BPaxos with f = 1 is illus-

trated in Figure 9.

• In Figure 9a, proposer p1 receives command x from a

client, while proposer p2 receives command y from a

client. The commands are placed in vertices vx and vy

respectively.

• In Figure 9b, p1 sends x in vx to the dependency service,

while p2 concurrently sends y in vy. Dependency service

nodes d1 and d2 receive x and then y, so they compute

deps(vx) = /0 and deps(vy) = {vx}. d3, on the other hand,

receives y and then x and computes deps(vx) = {vy} and

deps(vy) = /0

p1 receives /0 from d2 and {vy} from d3. Two de-

pendency service nodes form a majority, so p1 com-

putes deps(vx) = {vy} ∪ /0 = {vy}. Similarly, p2 re-

ceives {vx} from d2 and /0 from d3, so p2 computes

deps(vy) = {vx}∪ /0 = {vx}. Note that p1 and p2 also

receive responses from d1, but proposers form dependen-

cies from the first set of f +1 dependency service nodes

they hear from.

• In Figure 9c, p1 executes Phase 2 of Paxos to get the

value (x,{vy}) chosen in vertex vx. p2 likewise gets the

value (y,{vx}) chosen in vertex vy.

• In Figure 9d, the proposers broadcast their commands

to the replicas. The replicas add vx and vy to their con-

flict graphs and execute the commands once they have

received both. One or more of the replicas also sends

the results of executing x and y back to the clients.

Note that the replicas’ conflict graphs contain a cycle. This

is because the dependency service nodes do not receive every

command in the same order. In Figure 9, dependency service

nodes d2 and d3 receive x and y in opposite orders, leading to

the two commands depending on each other. It is tempting

to enforce that every dependency service node receive every

command in exactly the same order, but unfortunately, this

would be tantamount to solving consensus [6].

4.4 Recovery

Imagine a proposer receives a command x from a client, places

the command x in vertex vx, sends vx and x to the dependency

service, and then crashes. Because a command and a set

of dependencies have not been chosen in vertex vx yet, we

call vx unchosen. It is possible that a command y chosen

in vertex vy depends on an unchosen vertex vx. If vertex vx

remains forever unchosen, then the command y will never

be executed. To avoid this liveness violation, if any replica

notices that vertex vx has been unchosen for some time, it

notifies a proposer. The proposer then executes Phase 1 and

Phase 2 of Paxos with the acceptors to get a noop chosen in

vertex vx without any dependencies. noop is a distinguished

command that does not affect the state machine and does

not conflict with any other command. An example of this

execution is given in Figure 10.

7

Journal of Systems Research (JSys) 2021

wvw

(a) wvw

x

vx

(b)

wvw

x

vx

y

vy

(c)

wvw

x

vx

y

vy

z vz

(d)

wvw

x

vx

y

vy

z vz

(e)

Figure 8: In subfigures (a) – (e), we see the execution of a dependency service node di. (a) di receives command w in vertex vw.

di adds this vertex to its conflict graph and because there are no other vertices, it returns the dependencies deps(vw) = /0. (b) di

receives command x in vertex vx. di adds this vertex to its conflict graph. x conflicts with w, so di adds an edge from vx to vw and

returns the dependencies deps(vx) = {vw}. (c) di receives command y in vertex vy. di adds this vertex to its conflict graph. y

conflicts with w and x, so di adds an edge from vy to vw and from vy to vx. It returns the dependencies deps(vy) = {vw,vx}. (d) di

receives command z in vertex vz. di adds this vertex to its conflict graph. z conflicts with w and x, so di adds an edge from vz to

vw and from vz to vx. It returns the dependencies deps(vz) = {vw,vx}. (e) di receives command x in vertex vx. di’s graph already

contains vertex vx, so di returns the dependencies deps(vx) = {vw} and does not modify its graph.

• In Figure 10a, proposer p1 receives command x from a

client. It places x in vertex vx and sends vx and x to the

dependency service. Shortly after, it fails.

• In Figure 10b, proposer p2 receives command y from

a client. It places y in vy and contacts the dependency

service. The dependency service nodes have already

received x in vx, so they compute deps(vy) = {vx}. p2

then gets y chosen in vertex vy with a dependency on vx

and broadcasts it to the replicas.

• In Figure 10c, the replicas cannot execute vertex vy be-

cause it depends on the unchosen vertex vx. After a

timeout expires, replica r1 notifies p2 that the vertex has

been unchosen for some time.

• In Figure 10d, p2 executes Phase 1 and Phase 2 of Paxos

in some round r > 0 with the acceptors to get the com-

mand noop chosen in vertex vx without any dependen-

cies. p2 notifies the replicas, and the replicas place the

noop in vertex vx. The replicas execute their conflict

graphs in reverse topological order. They execute the

noop first (which has no effect) and then execute y.

Note that p2 must execute both phases of Paxos because

it is not in round 0. This is necessary to ensure that no

other value could have been chosen in vx.

Note that a Simple BPaxos proposer recovers a command

and proposes a noop by executing Paxos as normal. Sim-

ple BPaxos does not require an additional recovery protocol.

Rather, commands and noops are proposed in the exact same

way. This simplifies the protocol.

Also note that if a client does not receive a response for

its pending request for a sufficiently long period of time, it

resends its request. This means that if a client’s command is

replaced by a noop, the client will eventually re-propose the

command.

4.5 Safety

To ensure that Simple BPaxos is safe, we must ensure that

it maintains the consensus invariant and the dependency in-

variant. Simple BPaxos maintains the consensus invariant

because it implements Paxos. The dependency invariant fol-

lows immediately from Invariant 3 and the fact that noops

don’t conflict with any other command.

5 Fast Paxos

Simple BPaxos is designed to be easy to understand, but as

shown in Figure 9, it takes seven network delays (in the best

case) between when a client proposes a command x and when

a client receives the result of executing x. Call this duration

of time the commit time. Generalized multi-leader protocols

like EPaxos, Caesar, and Atlas all achieve a commit time of

only four network delays in the best case. They do so by

leveraging Fast Paxos [15].

Fast Paxos is a Paxos variant that allows clients to propose

values directly to the acceptors without having to initially

contact a proposer. Fast Paxos is an optimistic protocol. If all

of the acceptors happen to receive the same command from

the clients, then Fast Paxos has a commit time of only three

network delays. This is called the fast path. However, if mul-

tiple clients concurrently propose different commands, and

not all of the acceptors receive the same command, then the

protocol reverts to a slow path and introduces two additional

network delays to the commit time. In this section, we review

a slightly simplified version of Fast Paxos.

5.1 Overview

Like Paxos, a Fast Paxos deployment consists of some number

of clients, f + 1 proposers, and 2 f + 1 acceptors. We also

8

Journal of Systems Research (JSys) 2021

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x

y

(a) p1 receives command x; p2 receives command y.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y

vy

x
vx

y

vy

x
vx

y

vy

(b) The proposers contact the dependency service.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y

vy

x
vx

y

vy

x
vx

y

vy

(c) The proposers contact the acceptors.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y

vy

x
vx

y

vy

x
vx

y

vy

x
vx

y

vy

x
vx

y

vy

(d) The proposers notify the replicas.

Figure 9: An example execution of Simple BPaxos (f = 1).

include a set of f +1 learners. These nodes are notified of

the value chosen by Fast Paxos. Note that we use the term

learner rather than replica because Fast Paxos is a consensus

protocol and not a state machine replication protocol, so there

are no state machine replicas. A Fast Paxos deployment is

illustrated in Figure 11. Proposer and acceptor pseudocode

are given in Algorithm 1 and Algorithm 2.

Like Paxos, Fast Paxos is divided into a number of integer

valued rounds. The key difference is that round 0 of Fast

Paxos is a special “fast round.” A client can propose a value

directly to an acceptor in round 0 without having to contact

a proposer first. The normal case execution of Fast Paxos is

illustrated in Figure 11a. The execution proceeds as follows:

• (1) When a client wants to propose a value v, it sends v

to all of the acceptors.

• (2) When an acceptor receives a value v from a client,

the acceptor ignores v if it has already received a mes-

sage in some round i ≥ 0. Otherwise, it votes for v by

updating its state and sending a PHASE2B〈0,v〉message

to the proposer that leads round 0. This is shown in

Algorithm 2 line 1 – line 4.

• (3) Let maj(n) = ⌈ n+1
2
⌉ be a majority of n. If the pro-

poser that leads round 0 receives PHASE2B〈0,v′〉 mes-

sages from f +maj(f +1) acceptors for the same value

v′, then v′ is chosen, and the proposer notifies the learn-

ers. This is shown in Algorithm 1 line 1 – line 3. We

consider what happens when not every value is the same

in Section 5.2.

9

Journal of Systems Research (JSys) 2021

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x

x
vx

x
vx

x
vx

(a) p1 receives x, talks to the dependency service, and fails.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y

vy

x
vx

y

vy

x
vx

y

vy

vx

y

vy

vx

y

vy

y

(b) p2 receives y, gets it chosen with a dependency on vx.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y

vy

x
vx

y

vy

x
vx

y

vy

vx

y

vy

vx

y

vy

(c) A replica notifies p2 that vx is unchosen.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y

vy

x
vx

y

vy

x
vx

y

vy

noop
vx

y

vy

noop
vx

y

vy

(d) p2 gets a noop chosen in vx.

Figure 10: An example execution of Simple BPaxos recovery (f = 1).

5.2 Recovery

Note that in Paxos, a value is chosen when f +1 acceptors

vote for it in some round i. In round 0 of Fast Paxos, a value is

chosen when f +maj(f +1) acceptors vote for it. The larger

number of required votes is needed to ensure the safety of

recovery, which we now describe.

Let p be the proposer leading round 0. Recovery is the

process by which a proposer other than p gets a value chosen.

For example, if p fails, some other proposer must take over

and get a value chosen. Recovery is illustrated in Figure 11b.

• (1) and (2) A recovering proposer performs Phase 1

of Paxos with at least f + 1 acceptors in some round

i > 0. This is shown in Algorithm 1 line 7 – line 9 and

Algorithm 2 line 5 – line 7.

• (3) and (4) The recovering proposer receives

PHASE1B〈i,vr,vv〉 messages from f + 1 accep-

tors. Call this quorum of acceptors A. The proposer

computes k as the largest received vr (line 11). This is

the largest round in which any acceptor in A has voted.

If k = −1 (line 12), then none of the acceptors have

voted in any round less than i, so the proposer is free to

propose an arbitrary value. This is the same as in Paxos.

If k > 0 (line 14), then the proposer must propose the

value vv proposed in round k. Again, this is the same

as in Paxos. vv may have been chosen in round k, so

the proposer is forced to propose it as well. If k = 0

(line 16), then there are two cases to consider.

First, if maj(f +1) of the acceptors in A have all voted

for some value v′ in round 0, then it’s possible that v′

10

Journal of Systems Research (JSys) 2021

p1

p2

p3

a1

a2

a3

a4

a5

l1

l2

l3

f +1

Proposers

2 f +1

Acceptors
f +1

Learners

1

1

1

1

2

2

2

2

3

3

3

(a) Normal case execution.

p1

p2

p3

a1

a2

a3

a4

a5

l1

l2

l3

f +1

Proposers

2 f +1

Acceptors
f +1

Learners

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

(b) Recovery.

p1

p2

p3

a1

a2

a3

a4

a5

l1

l2

l3

f +1

Proposers

2 f +1

Acceptors
f +1

Learners

1

1

1

1

2

2

2

2

3

3

3

4

4

4

5

5

5

(c) Coordinated recovery.

Figure 11: Example executions of Fast Paxos (f = 2). The leader of round 0 is adorned with a crown. Client requests are drawn

in red. Phase 1 messages are drawn in blue. Phase 2 messages are drawn in green.

was chosen in round 0 (line 17). Specifically, if all f of

the acceptors not in A voted for v′ in round 0, then along

with the maj(f + 1) of acceptors in A who also voted

for v′ in round 0, there is a quorum of f +maj(f + 1)
acceptors who voted for v′ in round 0. In this case, the

proposer must propose v′ as well since it might have

been chosen. Second, if there does not exist maj(f +1)
votes for any value v′, then the proposer concludes that

no value was chosen or every will be chosen in round

0, so it is free to propose an arbitrary value (line 19).

Once the recovering proposer determines which value

to propose, it gets the value chosen with the acceptors

using the normal Phase 2 of Paxos.

Note that a value must receive at least f +maj(f + 1)
votes in round 0 to be chosen. If this number were any

smaller, it would be possible for a recovering proposer

to find two distinct values v′ and v′′ that both could have

been chosen in round 0. In this case, the proposer cannot

make progress. It cannot propose v′ because v′′ might

have been chosen, and it cannot propose v′′ because v′

might have been chosen

More concretely, imagine an Fast Paxos deployment

with f = 2 and five acceptors a1, a2, . . ., a5. Further

imagine that a value is considered chosen after receiving

votes from only 3 (i.e. f +1) acceptors rather than the

correct number of 4 (i.e. f +maj(f + 1)). Consider a

proposer executing Phase 1 in round 1. It contacts a3,

a4, and a5. a3 voted for value x in round 0; a4 voted

for value y in round 0; and a5 didn’t vote in round 0.

What value should the proposer propose in Phase 2?

Well, x was maybe chosen in round 0 (if a1 and a2 both

voted for x in round 0), so the proposer has to propose

x. However, y was also maybe chosen in round 0 (if

a1 and a2 both voted for y in round 0), so the proposer

also has to propose y. The proposer can only propose

one value, so the protocol gets stuck. By requiring f +
maj(f +1) votes rather than f +1 votes, we eliminate

these situations. It’s not possible for two values to both

potentially have received f +maj(f + 1) votes. There

isn’t enough acceptors for this to be possible.

• (5) The proposer notifies the learners of the chosen value.

5.3 Coordinated Recovery

Finally, we consider what happens when the proposer of

round 0 receives f +maj(f + 1) PHASE1B messages from

the acceptors, but without all of them containing the same

value v′. Naively, the proposer could simply perform a re-

covery, executing both phases of Paxos is some round r > 0.

However, if we assign rounds to proposers in such a way that

the proposer of round 0 is also the proposer of round 1, then

we can take advantage of an optimization called coordinated

recovery. This is illustrated in Figure 11c and proceeds as

follows:

• (1) Multiple clients send distinct commands directly to

the acceptors.

• (2) The acceptors receive and vote for the commands

and send PHASE2B messages to the leader of round 0.

However, not every acceptor receives the same value

first, so not all the acceptors vote for the same value.

• (3) and (4) The proposer receives PHASE2B messages

from f +maj(f + 1) acceptors, but the acceptors have

not all voted for the same value. At this point, the pro-

poser could naively perform a recovery in round 1 by ex-

ecuting Phase 1 and then Phase 2 of Paxos. But, execut-

ing Phase 1 in round 1 is redundant, since the PHASE2B

11

Journal of Systems Research (JSys) 2021

Algorithm 1 Fast Paxos Proposer

State: a value v, initially null

State: a round i, initially −1

1: upon receiving PHASE2B〈0,v′〉 from f +maj(f +1)
acceptors as the proposer of round 0 with i = 0 do

2: if every value of v′ is the same then

3: v′ is chosen, notify the learners

4: else

5: i← 1

6: proceed to line 11 viewing every PHASE2B〈0,v′〉
as a PHASE1B〈1,0,v′〉

7: upon recovery do

8: i← next largest round owned by this proposer

9: send PHASE1A〈i〉 to the acceptors

10: upon receiving PHASE1B〈i,vr,vv〉 from f +1 acceptors

do

11: k← the largest vr in any PHASE1B〈i,vr,vv〉
12: if k =−1 then

13: v← an arbitrary value

14: else if k > 0 then

15: v← the corresponding vv in round k

16: else if k = 0 then

17: if there are maj(f +1) PHASE1B〈i,0,v′〉
messages for some value v′ then

18: v← v′

19: else

20: v← an arbitrary value

21: send PHASE2A〈i,v〉 to the acceptors

22: upon receiving PHASE2B〈i〉 from f +1 acceptors do

23: v is chosen, notify the learners

messages in round 0 contain exactly the same informa-

tion as the PHASE1B messages in round 1. Specifically,

the proposer can view every PHASE2B〈0,v′〉 message

as a proxy for a PHASE1B〈1,0,v′〉 message. Thus, the

proposer instead jumps immediately to Phase 2 in round

1 to get a value chosen (line 4 – line 6).

• (5) Finally, the proposer notifies the learners of the cho-

sen value.

6 Fast BPaxos

In this section, we present a purely pedagogical protocol

called Fast BPaxos. Fast BPaxos achieves a commit time of

four network delays (compared to Simple BPaxos’ seven),

but Fast BPaxos is unsafe. It does not properly implement

state machine replication. To understand why more complex

protocols like EPaxos, Caesar, and Atlas work the way they

do, it helps to understand why simpler protocols like Fast

BPaxos don’t work in the first place. Understanding why

Fast BPaxos is unsafe leads to fundamental insights into these

Algorithm 2 Fast Paxos Acceptor

State: the largest seen round r, initially −1

State: the largest round vr voted in, initially −1

State: the value vv voted for in round vr, initially null

1: upon receiving value v from client do

2: if r =−1 then

3: r,vr,vv← 0,0,v
4: send PHASE2B〈0,v〉 to proposer of round 0

5: upon receiving PHASE1A〈i〉 from p with i > r do

6: r← i

7: send PHASE1B〈i,vr,vv〉 to p

8: upon receiving PHASE2A〈i,v〉 from p with i≥ r do

9: r,vr,vv← i, i,v
10: send PHASE2B〈i〉 to p

other protocols.

6.1 The Protocol

c1

c2

d1 d2 d3

a1 a2 a3

p1 p2 p3

r1 r2 r3

Clients

2 f +1 Dependency

Service Nodes

2 f +1 Acceptors

2 f +1 Proposers

2 f +1 Replicas

Server 1 Server 2 Server 3

1

2 2

2
3 3 3

4 4 4

5 5 5
6

Figure 12: An example execution of Fast BPaxos (f = 1).

The four network delays are drawn in red.

Fast BPaxos is largely identical to Simple BPaxos with

one key observation. Rather than implementing Paxos, Fast

BPaxos implements Fast Paxos. This allows the protocol

to reduce the commit time by overlapping communication

with the dependency service (to compute dependencies) and

communication with the acceptors (to implement consensus).

As shown in Figure 12, a Fast BPaxos deployment consists

of 2 f +1 dependency service nodes, 2 f +1 Fast Paxos accep-

tors, 2 f +1 Fast Paxos proposers, and 2 f +1 replicas. These

logical nodes are co-located on a set of 2 f +1 servers, where

every physical server executes one dependency service node,

one acceptor, one proposer, and one replica. For example, in

Figure 12, server 2 executes d2, a2, p2, and r2. As illustrated

in Figure 12, the protocol executes as follows:

• (1) When a client wants to propose a state machine com-

12

Journal of Systems Research (JSys) 2021

mand x, it sends x to any of the proposers.

• (2) When a proposer pi receives a command x, from a

client, it places x in a vertex with globally unique vertex

id vx = (pi,m) where m is a monotonically increasing

integer local to pi. pi then sends vx and x to all of the

dependency service nodes. Note that we predetermine

that proposer pi is the leader of round 0 and 1 of the Fast

Paxos instance associated with vertex vx = (pi,m).

• (3) When a dependency service node d j receives a com-

mand x in vertex vx, it computes a set of dependencies

deps(vx) in the exact same way as in Simple BPaxos

(i.e. d j maintains an acyclic conflict graph). Unlike Sim-

ple BPaxos however, d j does not send deps(vx) back to

the proposer. Instead, it proposes to the co-located Fast

Paxos acceptor a j that the value (x,deps(vx)) be chosen

in the instance of Fast Paxos associated with vertex vx in

round 0.

• (4) Fast BPaxos acceptors are unmodified Fast Paxos

acceptors. In the normal case, when an acceptor a j re-

ceives value (x,deps(vx)) in vertex vx = (pi,m), it votes

for the value and sends the vote to pi.

• (5) Fast BPaxos proposers are unmodified Fast Paxos

proposers. In the normal case, pi receives f +maj(f +1)
votes for value (x,deps(vx)) in vertex vx, so (x,deps(vx))
is chosen. The proposer broadcasts the command and

dependencies to the replicas. If pi receives f +maj(f +
1) votes, but they are not all for the same value, the

proposer executes coordinate recovery (see Algorithm 1

line 4 – line 6).

• (6) Fast BPaxos replicas are identical to Simple BPaxos

replicas. Replicas maintain and execute conflict graphs,

returning the results of executing commands to the

clients.

Note that Figure 12 illustrates six steps of execution, but

the commit time is only four network delays (drawn in red).

Communication between co-located components (e.g., be-

tween d1 and a1 and between p1 and r1) does not involve the

network and therefore does not contribute to the commit time.

6.2 Recovery

As with Simple BPaxos, it is possible that a command y

chosen in vertex vy depends on an unchosen vertex vx that

must be recovered for execution to proceed. Fast BPaxos

performs recovery in the same way as Simple BPaxos. If a

replica detects that a vertex vx has been unchosen for some

time, it notifies a proposer. The proposer then executes a

Fast Paxos recovery to get a noop chosen in vertex vx with no

dependencies.

6.3 Lack of Safety

We now demonstrate why Fast BPaxos is unsafe. Consider

the execution of Fast BPaxos (f = 2) illustrated in Figure 13.

• In Figure 13a, proposer p1 receives command x from a

client. It places x in vertex vx and sends vx and x to the de-

pendency service. d1 and d2 receive the message. They

place x in their conflict graphs without any dependencies,

and send the value (x, /0) to their co-located acceptors. a1

and a2 vote for (x, /0) in vertex vx, but p1 crashes before

it receives any of these votes. The messages sent to d3,

d4, and d5 are dropped by the network.

• Similarly in Figure 13a, proposer p5 receives a conflict-

ing command y, p5 sends vy and y to d4 and d5, d4 and

d5 propose (y, /0) to a4 and a5, a4 and a5 vote for the

proposed values, and p5 fails.

• In Figure 13b, p2 recovers vertex vx. To recover vx, p2

executes Phase 1 of Fast Paxos with acceptors a1, a2,

and a3. p2 observes that a1 and a2 both voted for the

value (x, /0) in round 0. Therefore, p2 concludes that

(x, /0) may have been chosen in round 0, so it proceeds

to Phase 2 and gets the value (x, /0) chosen in vertex

vx (Algorithm 1 line 17). p2 cannot propose any other

value (e.g., a noop) because (x, /0) may have already

been chosen. This is a core invariant of Paxos. From our

omniscient view of the execution, we know that (x, /0)
was never chosen, but from p2’s myopic view, it cannot

make this determination and so is forced to propose

(x, /0). This is a critical point in the execution, which

we will discuss further in a moment.

• In Figure 13b, proposer p4 recovers vertex vy in much

the same way as p2 recovers vx. p4 observes that a4 and

a5 voted for (y, /0) in round 0, so it is forced to get the

value (y, /0) chosen.

• Finally in Figure 13b, proposers p2 and p4 broadcast

(x, /0) and (y, /0) to all of the replicas. The replicas place

x and y in their conflict graphs without edges between

them. This violates the dependency invariant. x and y

conflict, so there must be an edge between them. Without

an edge, the replicas can execute x and y in different

orders, causing their states to diverge.

What went wrong? When p2 was recovering vx, Fast

Paxos forced it to choose (x, /0). However, the dependen-

cies deps(vx) = /0 were not computed by a majority of the

dependency service nodes. They were computed only by d1

and d2. This is what allowed conflicting commands x and y

to be chosen without a dependency on each other.

This example illustrates a fundamental tension between

preserving the consensus invariant (Invariant 1) and preserv-

ing the dependency invariant (Invariant 2). Maintaining the

consensus invariant in isolation is easy (e.g., use Paxos), and

13

Journal of Systems Research (JSys) 2021

d1 d2 d3 d4 d5

a1 a2 a3 a4 a5

p1 p2 p3 p4 p5

r1 r2 r3 r4 r5

x y

x
vx

x
vx

y

vy

y

vy

(a) p1 receives x, talks to the dependency service, and fails. p2

receives y, talks to the dependency service, and fails.

d1 d2 d3 d4 d5

a1 a2 a3 a4 a5

p1 p2 p3 p4 p5

r1 r2 r3 r4 r5

x
vx

x
vx

y

vy

y

vy

x
vx

y

vy x
vx

y

vy x
vx

y

vy x
vx

y

vy x
vx

y

vy

(b) p2 recovers vx with command x and no dependencies. p4

recovers vy with command y and no dependencies.

Figure 13: A Fast BPaxos bug (f = 2). Conflicting commands x and y are executed in different orders by different replicas.

maintaining the dependency invariant in isolation is also easy

(e.g., use the dependency service). But, maintaining both

invariants simultaneously is tricky.

When performing a recovery, like the one in our example

above, a proposer is sometimes forced to propose a particular

value (e.g., (x, /0)) in order to properly implement consen-

sus and simultaneously forced not to propose the value in

order to correctly compute dependencies. Resolving the ten-

sion between the consensus and dependency invariants during

recovery is the single most important and the single most

challenging aspect of generalized multi-leader protocols like

EPaxos, Caesar, and Atlas. All of these protocols have a

similar structure and execution on the normal path. They all

compute dependencies from a majority of servers, and they all

execute Fast Paxos variants to get these dependencies chosen.

If you understand the normal case execution of one of these

protocols, it is not difficult to understand the others. The key

feature that distinguishes the protocols is how they resolve

the fundamental tension between implementing consensus

and computing dependencies.

These protocols all take different approaches to resolving

the tension. In the next two sections, we broadly categorize

the approaches into two main techniques: tension avoidance

and tension resolution. Tension avoidance involves cleverly

manipulating quorum sizes to avoid the tension entirely. This

approach is used by Basic EPaxos [21] and Atlas [10]. The

second technique, tension resolution, is significantly more

complicated and involves detecting and resolving the tension

through various means.

7 Tension Avoidance

In this section, we explain how to implement a generalized

multi-leader state machine replication protocol using tension

avoidance. The key idea behind tension avoidance is to avoid

the tension between the consensus and dependency invariants

entirely. By manipulating quorum sizes in clever ways, we

can ensure that whenever a proposer is forced to propose

a set of dependencies deps(vx), this set of dependencies is

guaranteed to satisfy the dependency invariant.

We first introduce Unanimous BPaxos, a simple protocol

that implements tension avoidance. We then explain how

Basic EPaxos and Atlas can be expressed as two optimized

variants of Unanimous BPaxos.

7.1 Unanimous BPaxos

A Fast BPaxos deployment consists of 2 f +1 servers. A pro-

poser communicates with f +1 acceptors in Phase 1 called

a Phase 1 quorum, f +maj(f + 1) acceptors in Phase 2 of

round 0 called a fast Phase 2 quorum, and f +1 acceptors

in Phase 2 of rounds greater than 0 called a classic Phase 2

quorum. If we adjust the sizes of these quorums, we can

avoid the tension between implementing consensus and com-

puting dependencies. In [11], Howard et. al prove that Fast

Paxos is safe so long as the following two conditions are met.

1. Every Phase 1 quorum and every classic Phase 2 quorum

intersect. That is, for every Phase 1 quorum Q and for

every classic Phase 2 quorum Q′, Q∩Q′ 6= /0.

2. Every Phase 1 quorum and every pair of fast Phase 2

quorums intersect. That is, for every Phase 1 quorum Q

and for every pair of fast Phase 2 quorum Q′,Q′′, Q∩
Q′∩Q′′ 6= /0.

Unanimous BPaxos takes advantage of this result and in-

creases the size of fast Phase 2 quorums. Specifically, Unan-

imous BPaxos is identical to Fast BPaxos except with fast

Phase 2 quorums of size 2 f +1. Unanimous BPaxos proposer

pseudocode is given in Algorithm 3. It is identical to the pseu-

docode of a Fast Paxos proposer (Algorithm 1) except for a

couple small changes highlighted in red.

14

Journal of Systems Research (JSys) 2021

Algorithm 3 Unanimous BPaxos Proposer. Changes to Algo-

rithm 1 are highlighted in red.

State: a value v, initially null

State: a round i, initially −1

1: upon receiving PHASE2B〈0,v′〉 from all 2 f +1

acceptors as the proposer of round 0 with i = 0 do

2: if every value of v′ is the same then

3: v′ is chosen, notify the learners

4: else

5: i← 1

6: v← an arbitrary value satisfying the dependency

invariant

7: send PHASE2A〈i,v〉 to the acceptors

8: upon recovery do

9: i← next largest round owned by this proposer

10: send PHASE1A〈i〉 to the acceptors

11: upon receiving PHASE1B〈i,vr,vv〉 from f +1 acceptors

do

12: k← the largest vr in any PHASE1B〈i,vr,vv〉
13: if k =−1 then

14: v← an arbitrary value satisfying the dependency

invariant

15: else if k > 0 then

16: v← the corresponding vv in round k

17: else if k = 0 then

18: if all f +1 messages are of the form

PHASE1B〈i,0,v′〉 for some value v′ then

19: v← v′

20: else

21: v← an arbitrary value satisfying the

dependency invariant

22: send PHASE2A〈i,v〉 to the acceptors

23: upon receiving PHASE2B〈i〉 from f +1 acceptors do

24: v is chosen, notify the learners

Unlike Fast BPaxos, Unanimous BPaxos is safe. The criti-

cal change is on line 18. With fast Phase 2 quorums of size

2 f +1 (line 1), a recovering proposer knows that a value v′

may have been chosen in round 0 only if all f +1 acceptors

that it communicates with in Phase 1 voted for v′ in round 0.

If even a single acceptor did not vote for v′ in round 0, then v′

could not have received a unanimous vote and therefore was

not chosen in round 0.

With Fast BPaxos, a proposer executing line 17 of Algo-

rithm 1 is forced to propose a value (x,deps(vx)) if maj(f +1)
acceptors voted for it in round 0, but the dependencies

deps(vx) may have only been computed by maj(f +1) depen-

dency service nodes, violating the dependency invariant. This

is exactly what happened in Figure 13. Unanimous BPaxos

avoids the tension entirely because a proposer is only forced to

propose a value (x,deps(vx)) if f +1 acceptors voted for it in

round 0. Now, we are guaranteed that deps(vx) was computed

by a majority (i.e. f + 1) of the dependency service nodes.

Thus, Unanimous BPaxos safely maintains the consensus and

dependency service invariants.

The obvious disadvantage of Unanimous BPaxos is the pro-

tocol’s large quorum sizes. In order to get a command chosen,

a proposer has to perform a round trip of communication with

every acceptor. This not only slows down the protocol in the

normal case, it also decreases the protocol’s ability to remain

live in the face of faults. If even a single acceptor fails, the

protocol grinds to a halt. This problem can be partially fixed

by using more flexible quorums (like what Atlas [10] does)

or by using a tension resolving protocol (see Section 7).

We now present two independent optimizations that im-

prove the performance of Unanimous BPaxos. These opti-

mizations were introduced in EPaxos [22] and Atlas [10].

7.2 Basic EPaxos Optimization

Unanimous BPaxos has a lower commit time than Simple

BPaxos (4 network delays instead of 7), but has larger fast

Phase 2 quorums (2 f +1 acceptors instead of f +1). We now

discuss an optimization, used by Basic EPaxos [22], to reduce

the fast Phase 2 quorum size to 2 f .

d1

a1

p1

r1

d2

a2

p2

r2

d3

a3

p3

r3

d4

a4

p4

r4

d5

a5

p5

r5

c1

c2

Server 1 Server 2 Server 3 Server 4 Server 5

1

2

3 3 3 3

4 4 4 4 4

5
5 5 5 5

6 7

8 8 8 8 8
9

Figure 14: An example execution of Unanimous BPaxos

(f = 2) with the Basic EPaxos optimization. The messages

introduced by the optimization are drawn in red.

An execution of Unanimous BPaxos with the Basic EPaxos

optimization is shown in Figure 14. We walk through the

execution, highlighting the optimization’s key changes. We

assume f > 1 for now. Later, we discuss the case when f = 1.

• (1) When a client wants to propose a state machine com-

mand x, it sends x to any of the proposers.

• (2) When a proposer pi receives a command x, from a

client, it places x in a vertex with globally unique vertex

id vx = (pi,m). Change: pi then sends vx and x to the

15

Journal of Systems Research (JSys) 2021

co-located dependency service node di. It does not yet

communicate with the other dependency service nodes.

• (3) Change: When di receives vx and x, it computes the

dependencies deps(vx)i as usual using its acyclic conflict

graph. di then sends vx, x, and deps(vx)i to all the other

dependency service nodes.

• (4) When a dependency service node d j receives vx, x,

and deps(vx)i, it computes the dependencies deps(vx) j

as usual using its acyclic conflict graph. Change: Then,

d j proposes to its co-located acceptor a j that the value

(x,deps(vx)i∪deps(vx) j) be chosen in vertex vx in round

0. d j combines the dependencies that it computed with

the dependencies computed by di.

• (5) The acceptors are unchanged. In the normal case,

when an acceptor a j receives value (x,deps(vx)) in ver-

tex vx = (pi,m), it votes for the value and sends the vote

to pi.

• (6) and (7) Change: In Unanimous BPaxos, a value

v = (x,deps(vx)) is considered chosen in round 0 if all

2 f + 1 acceptors vote for v in round 0. With the Ba-

sic EPaxos optimization, we only require 2 f votes, and

the act of choosing a value in round 0 is made more

explicit. Specifically, if pi receives 2 f votes for value

v = (x,deps(vx)) in round 0, including a vote from ai,

then it sends v to the co-located acceptor ai. When ai re-

ceives v and is still in round 0 (i.e. r = 0 on Algorithm 2

line 0), then it records v as chosen and responds to pi.

The value v is considered chosen precisely when it is

recorded by the acceptor. In the future ai responds to

every PHASE1A and PHASE2A message with a notifi-

cation that v is chosen. If ai receives v but is already in

a round larger than 0 (i.e. r > 0), then it ignores v and

sends a negative acknowledgement back to pi. Note that

these messages are all performed locally on the server

hosting pi and do not incur any network delay.

• (8) In the normal case, pi learns that v was successfully

chosen by ai and it broadcasts v to all the acceptors. If

pi receives a negative acknowledgement, it performs

coordinated recovery as in Unanimous BPaxos.

• (9) The replicas are unchanged. They maintain and

execute conflict graphs, returning the results of executing

commands to the clients.

In addition to these changes made to the normal path of

execution, the Basic EPaxos optimization also introduces

a key change to the recovery procedure. Specifically, we

replace line 18 – line 21 in Algorithm 3 with the following

procedure.

Assume that proposer p is recovering vertex vx = (p j,m)
in round i > 0. Either p received a message from a j or it did

not. We consider each case separately. First, assume that

p does receive a message from a j. If p receives a message

indicating that some value v′ has already been chosen in round

0, then p can terminate the recovery immediately. Otherwise,

p receives a PHASE1B message from a j. From this, p can

conclude that a j is in a round at least as large as i and therefore

did not and will not record any value v′ chosen in round 0.

Because of this, p is safe to propose any value that satisfies

the dependency invariant (e.g., (noop, /0)).
Otherwise, p does not receive a message from a j. If p

receives f PHASE1B〈i,0,v′〉 messages for the same value

v′ = (x,deps(vx)), then v′ may have been chosen in round

0, so p must propose v′ in order to maintain the consensus

invariant. Note that deps(vx) also satisfies the dependency

invariant despite the fact that p only received deps(vx) from

f , as opposed to f + 1, dependency service nodes. This is

because the dependency service nodes that are not co-located

with d j all propose dependencies that include the dependen-

cies computed by d j. Therefore, p determines that deps(vx)
is the union of f +1 dependencies and maintains the depen-

dency invariant. If p does not receive f PHASE1B〈i,0,v′〉 for

the same value v′, then p concludes no value was chosen or

will be chosen in round 0, so p is safe to propose any value

that satisfies the dependency invariant.

Note that when f = 1 and n = 3, Phase 1 quorums, classic

Phase 2 quorums, and fast Phase 2 quorums are all of size

2. This does not satisfy the conditions outlined by Howard

et. al [11]. As a result, our protocol as stated is not safe for

f = 1. The reason is that a recovering proposer may receive

two different values in two separate PHASE1B messages from

the two non-leader acceptors with values v′ and v′′. In this

situation, the proposer is unable to determine which value to

propose. Thankfully, we can avoid this situation by having

the leader send only to 2 f acceptors rather than to all 2 f +1

acceptors.

Ignoring some minor cosmetic differences, Unanimous

BPaxos with the Basic EPaxos optimization is roughly equiv-

alent to Basic EPaxos [22].

7.3 Atlas Optimization

In the best case, also called the fast path, Unanimous BPaxos

achieves a commit time of four network delays. As shown

in line 2 of Algorithm 3, a proposer executes the fast path

only when every single acceptor votes for the exact same

set of dependencies. As we saw in Figure 13, if any two

dependency service nodes receive conflicting commands in

different orders, their computed dependencies will not be

the same. If a proposer does not receive a unanimous vote,

it executes coordinated recovery, adding two more network

delays to the commit time.

Atlas [10] introduces the following optimization to re-

lax the requirement of a unanimous vote and increase the

probability of a proposer executing the fast path. Let

X1, . . . ,X2 f+1 be 2 f + 1 sets. Let popular(X1, . . . ,X2 f+1) =

16

Journal of Systems Research (JSys) 2021

{x |x appears in at least f +1 of the sets}.

We change line 2 as follows. When a proposer re-

ceives dependencies deps(vx)1, . . . ,deps(vx)2 f+1 from the

2 f + 1 acceptors, it executes the fast path with dependen-

cies deps(vx) = deps(vx)1∪·· ·∪deps(vx)2 f+1 if deps(vx) =
popular(deps(vx)1, . . . ,deps(vx)2 f+1). That is, the proposer

takes the fast path only if every dependency vy computed

by any of the dependency service nodes was computed by a

majority of the dependency service nodes.

We also simplify line 18 – line 21. If a recovering proposer

receives f +1 sets of dependencies, it proposes their union.

Otherwise, it proposes an arbitrary value. This is safe because

a set of dependencies deps(vx) can be chosen in round 0, only

if every dependency in deps(vx) was computed by a majority

of the dependency service nodes. Thus, every such element

will appear in at least one of the f +1 dependency sets. Thus,

the recovering proposer is sure to propose a dependency set

if it was previously chosen (maintaining the consensus invari-

ant), and it also proposes the union of f +1 dependency sets

(maintaining the dependency invariant).

Atlas [10] is roughly equivalent to Unanimous BPaxos with

the Basic EPaxos optimization, the Atlas optimization, and

the flexible constraints on quorum sizes outlined in [11].

8 Tension Resolution

The advantage of tension avoidance is that it is simple. The

disadvantage is that it requires large fast Phase 2 quorums.

In this section, we explain how to implement a generalized

multi-leader state machine replication protocol using tension

resolution. Tension resolution is significantly more compli-

cated than tension avoidance, but it does not require large fast

Phase 2 quorums.

Instead of avoiding the tension between the consensus and

dependency invariant, tension resolution uses additional ma-

chinery to resolve it when it arrives. Consider a scenario

where a proposer p is forced to propose a set of deps(vx) in

round i to maintain the consensus invariant because deps(vx)
may have been chosen in a previous round. Simultaneously, p

is forced not to propose deps(vx) because it cannot guarantee

that deps(vx) was computed by a majority of the dependency

service nodes. This is the moment of tension that tension

avoidance avoids. Tension resolution, on the other hand, al-

lows this to happen. When it does, the proposer p leverages

additional machinery built into the protocol to determine ei-

ther that (a) deps(vx) was not chosen or (b) deps(vx) was

computed by a majority of dependency service nodes.

We introduce Majority Commit BPaxos, a protocol that

implements tension resolution. We then discuss the protocol’s

relationship with EPaxos [22] and Caesar [10].

8.1 Pruned Dependencies

Before we discuss Majority Commit BPaxos, we introduce

the notion of pruned dependencies. Imagine a proposer p

sends command x to the dependency service in vertex vx, and

the dependency service computes the dependencies deps(vx).
Let vy ∈ deps(vx) be one of vx’s dependencies. To maintain

the dependency invariant, all of the protocols that we have

discussed thus far would get vx chosen with a dependency on

vy, but this is not always necessary.

Assume that that the proposer p knows that vy has been

chosen with command y and dependencies deps(vy). Further

assume that vx ∈ deps(vy). That is, vy has already been chosen

with a dependency on vx. In this case, there is no need for

vx to depend on vy. The dependency invariant asserts that if

two vertices va and vb are chosen with conflicting commands

a and b, then either va ∈ deps(vb) or vb ∈ deps(va). Thus, in

our example, if vy has already been chosen with a dependency

on vx, then there is no need to propose vx with a dependency

on vy. Similarly, if vy has been chosen with noop as part

of a recovery, then there is no need to propose vx with a

dependency on vy because x and noop do not conflict.

Let deps(vx) be a set of dependencies computed by the

dependency service. Let P⊆ deps(vx) be a set of vertices vy

such that vy has been chosen with noop or vy has been chosen

with vx ∈ deps(vy). We call deps(vx)−P the pruned depen-

dencies of vx with respect to P. Majority Commit BPaxos

maintains Invariant 4, the pruned dependency invariant.

The pruned dependency invariant is a relaxation of the depen-

dency invariant. If a protocol maintains the pruned depen-

dency invariant, it is guaranteed to maintain the dependency

invariant.

Invariant 4 (Pruned Dependency Invariant). For every vertex

vx, either (noop, /0) is chosen in vx or (x,deps(vx)− P) is

chosen in vx where deps(vx) are dependencies computed by

the dependency service and where deps(vx)−P are the pruned

dependencies of vx with respect to some set P.

8.2 Majority Commit BPaxos

For clarity of exposition, we first introduce a version of Major-

ity Commit BPaxos that can sometimes deadlock. Later, we

modify the protocol to eliminate the possibility of deadlock.

Majority Commit BPaxos is identical to Fast BPaxos ex-

cept for the following two modifications. First, every Fast

Paxos acceptor maintains a conflict graph in exactly the same

way as the replicas do. That is, when an acceptor learns that

a vertex vx has been chosen with command x and dependen-

cies deps(vx)), it adds vx to its conflict graph with command

x and with edges to every vertex in deps(vx). We will see

momentarily that whenever a Majority Commit BPaxos pro-

poser sends a PHASE2A message to the acceptors with value

v = (x,deps(vx)−P), the proposer also sends P and all of

the commands and dependencies chosen in in the vertices in

17

Journal of Systems Research (JSys) 2021

P. Thus, when an acceptor receives a PHASE2A message, it

updates its conflict graph with the values chosen in P. Second

and more substantially, a proposer executes a significantly

more complex recovery procedure. This is shown in Algo-

rithm 4.

As with Fast BPaxos, if k =−1 (line 3), if k > 1 (line 6), or

if k = 0 and there does not exist maj(f +1) matching values

(line 29), recovery is straightforward.

Otherwise, there does exist a v′ = (x,deps(vx)) voted for by

at least maj(f +1) acceptors in round 0 (line 9). As with Fast

BPaxos, v′ may have been chosen in round 0, so the proposer

must propose v′ in order to maintain the consensus invariant.

But deps(vx) may not be the union of dependencies computed

by f +1 dependency service nodes, so the proposer is simul-

taneously forced not to propose v′ in order to maintain the

dependency invariant. Unanimous BPaxos avoided this ten-

sion by increasing the size of fast Phase 2 quorums. Majority

Commit BPaxos instead resolves the tension by performing

a more sophisticated recovery procedure. In particular, the

proposer does a bit of detective work to conclude either that v′

was definitely not chosen in round 0 (in which case, the pro-

poser can propose a different value) or that deps(vx) happens

to be a pruned set of dependencies (in which case, proposer

is safe to propose v′).

On line 11 and line 12, the proposer sends vx and x to the

dependency service nodes co-located with the acceptors in

A (i.e. the f +1 acceptors from which the proposer received

PHASE1B messages). The proposer then computes the union

of the returned dependencies, called deps(vx)A. Note that

this communication can be piggybacked on the PHASE1A

messages that the proposer previously sent to avoid the extra

round trip of communication. Also note that deps(vx) was

returned by maj(f +1) nodes in A, so deps(vx) is a subset of

deps(vx)A.

Next, the proposer enters a for loop in an attempt to prune

deps(vx)A until it is equal to deps(vx). That is, the proposer

attempts to construct a set of vertices P such that deps(vx) =
deps(vx)A−P is a set of pruned dependencies. For every,

vy ∈ deps(vx)A− deps(vx), the proposer first recovers vy if

it does not know if a value has been chosen in vertex vy

(line 17). After recovering vy, assume the proposer learns

that vy is chosen with command y and dependencies deps(vy).
If y = noop or if vx ∈ deps(vy), then the proposer can safely

prune vy from deps(vx)A, so it adds vy to P (line 19).

Otherwise, the proposer contacts some quorum A′ of accep-

tors (line 21). If any acceptor a j in A′ knows that vertex vx has

already been chosen, then the proposer can abort the recovery

of vx and retrieve the chosen value directly from a j (line 23).

Otherwise, the proposer concludes that no value was chosen

in vx in round 0 and is free to propose any value that maintains

the dependency invariant (line 25). We will explain momen-

tarily why the proposer is able to make such a conclusion.

It is not obvious. Note that the proposer can piggyback its

communication with A′ on its PHASE1A messages.

Finally, if the proposer exits the for loop, then it has success-

fully pruned deps(vx)A into deps(vx)A−P= deps(vx) and can

safely propose it without violating the consensus or pruned

dependency invariant (line 28). As described above, when

the proposer sends a PHASE2A message with value v′, it also

includes the values chosen in every vertex in P.

We now return to line 25 and explain how the proposer

is able to conclude that v′ was not chosen in round 0. On

line 25, the proposer has already concluded that vy was not

chosen with noop and that vx /∈ deps(vy). By the pruned

dependency invariant, deps(vy) = deps(vy)D−P′ is a set of

pruned dependencies where deps(vy)D is a set of dependen-

cies computed by a set D of f +1 dependency service nodes.

Because vx /∈ deps(vy)D−P′, either vx /∈ deps(vy)D or vx ∈ P′.

vx cannot be in P′ because if vy were chosen with dependen-

cies deps(vy)D−P′, then some quorum of acceptors would

have received P′ and learned that vx was chosen. But, when

the proposer contacted the quorum A′ of acceptors, none knew

that vx was chosen, and any two quorums intersect.

Thus, vx /∈ deps(vy)D. Thus, every dependency service

node in D processed instance vy before instance vx. If not,

then a dependency service node in D would have computed vx

as a dependency of vy. However, if every dependency service

node in D processed vy before vx, then there cannot exist a fast

Phase 2 quorum of dependency service nodes that processed

vx before vy. In this case, v′ = (x,deps(vx)) could not have

been chosen in round 0 because it necessitates a fast Phase 2

quorum of dependency service nodes processing vx before vy

because vy /∈ deps(vx).

8.3 Ensuring Liveness

Majority Commit BPaxos is safe, but it is not very live. There

are certain failure-free situations in which Majority Commit

BPaxos can permanently deadlock. The reason for this is

line 17 in which a proposer defers the recovery of one vertex

for the recovery of another. There exist executions of Majority

Commit BPaxos with a chain of vertices v1, . . . ,vm where the

recovery of every vertex vi depends on the recovery of vertex

vi+1 mod m.

We now modify Majority Commit BPaxos to prevent dead-

lock. First, we change the condition under which a value is

considered chosen on the fast path. A proposer considers a

value v = (x,deps(vx)) chosen on the fast path if a fast Phase

2 quorum F of acceptors voted for v in round 0 and for every

vertex vy ∈ deps(vx), there exists a quorum A ⊆ F of f + 1

acceptors that knew vy was chosen at the time of voting for

v. Second, when an acceptor ai sends a PHASE2B vote in

round 0 for value v = (x,deps(vx)), ai also includes the subset

of vertices in deps(vx) that ai knows are chosen, as well as

the values chosen in these vertices. Third, proposers execute

Algorithm 4 but with the lines of code shown in Algorithm 5

inserted after line 10.

We now explain Algorithm 5. On line 11, the proposer

18

Journal of Systems Research (JSys) 2021

Algorithm 4 Majority Commit BPaxos Proposer. Pseudocode for initiating recovery and handling PHASE2B messages is

ommitted because it is identical to the pseudocode in Algorithm 1.

State: a value v, initially null

State: a round i, initially −1

1: upon receiving PHASE1B〈i,vr,vv〉 from f +1 acceptors A do

2: k← the largest vr in any PHASE1B〈i,vr,vv〉
3: if k =−1 then

4: v← an arbitrary value satisfying the dependency invariant

5: send PHASE2A〈i,v〉 to the acceptors

6: else if k > 0 then

7: v← the corresponding vv in round k

8: send PHASE2A〈i,v〉 to the acceptors

9: else if there are maj(f +1) PHASE1B〈i,0,v′〉 messages for some value v′ then

10: (x,deps(vx))← v′

11: send vx and x to the dependency service nodes co-located with the acceptors in A

12: deps(vx)A← the union of the dependencies returned by these dependency service nodes

13:

14: P← /0

15: for vy ∈ deps(vx)A−deps(vx) do

16: if we don’t know if vy is chosen then

17: recover vy, blocking until vy is recovered

18: if vy chosen with noop or with vx ∈ deps(vy) then

19: P← P∪{vy}
20: else

21: contact a quorum A′ of acceptors

22: if an acceptor in A′ knows vx is chosen then

23: abort recovery; vx has already been chosen

24: else

25: v← an arbitrary value satisfying the dependency invariant

26: send PHASE2A〈i,v〉 to the acceptors

27: v← v′

28: send PHASE2A〈i,v〉 and the values chosen in P to at least f +1 acceptors

29: else

30: v← an arbitrary value satisfying the dependency invariant

31: send PHASE2A〈i,v〉 to the acceptors

computes the subset M ⊆ A of acceptors that voted for v′ in

round 0. On line 12, the proposer determines whether there

exists some instance vy ∈ deps(vx) such that no acceptor in M

knows that vy is chosen. If such an vy exists, then v′ was not

chosen in round 0. To see why, assume for contradiction that

v′ was chosen in round 0. Then, there exists some fast Phase 2

quorum F of acceptors that voted for v′ in round 0, and there

exists some quorum A′ ⊆ F of acceptors that know vy has

been chosen. However, A and A′ intersect, but no acceptor in

A both voted for v′ in round 0 and knows that vy was chosen.

This is a contradiction. Thus, the proposer is free to propose

any value satisfying the dependency invariant.

Next, it’s possible that the proposer was previously recov-

ering instance vz with value (z,deps(vz)) and executed line 17

of Algorithm 4, deferring the recovery of instance vz until

after the recovery of instance vx. If so and if vz ∈ deps(vx),

then some acceptor a j ∈ M knows that vz is chosen. Thus,

the proposer can abort the recovery of instance vz and re-

trieve the chosen value directly from a j (line 16). Other-

wise, vz /∈ deps(vx). In this case, no value was chosen in

round 0 of instance vz, so the proposer is free to propose

any value satisfying the pruned dependency invariant in in-

stance vz. Here’s why. vz /∈ deps(vx), so every dependency

service node co-located with an acceptor in M processed vx

before vz. |M| ≥ maj(f + 1), so there strictly fewer than

f + maj(f + 1) remaining dependency service nodes that

could have processed vz before vx. If the proposer was re-

covering instance vz but deferred to the recovery of instance

vx, then vx /∈ deps(vz). In order for vz to have been chosen in

round 0 with vx /∈ deps(vy), it requires that at least f +maj(f)
dependency service nodes processed vz before vx, which we

just concluded is impossible. Thus, vz was not chosen in

19

Journal of Systems Research (JSys) 2021

Algorithm 5 Majority Commit BPaxos proposer modification

to prevent deadlock.

11: M← the set of acceptors in A that voted for v′ in round 0

12: if ∃vy ∈ deps(vx) such that no acceptor in M knows

that vy is chosen then

13: send any value satisfying the dependency invariant

14: if the proposer was recovering vz and deferred to the

recovery of vx then

15: if vz ∈ deps(vx) then

16: abort recovery of vz; vz has already been chosen

17: else

18: in vertex vz, send any value satisfying the

dependency invariant

round 0.

Majority Commit BPaxos is deadlock free for the following

reason. If a proposer is recovering instance vz and defers to the

recovery of instance vx, then either the proposer will recover

vx using line 12 of Algorithm 5 or the proposer will recover

vz using line 16 or line 18 of Algorithm 5. In either case, any

potential deadlock is avoided.

8.4 EPaxos and Caesar

EPaxos [22] and Caesar [3] are two generalized multi-leader

protocols that implement tension resolution. EPaxos is very

similar Majority Commit BPaxos with the Basic EPaxos opti-

mization from Section 7.2 used to reduce fast Phase 2 quorum

sizes by 1. Majority Commit BPaxos and EPaxos both prune

dependencies and perform a recursive recovery procedure

with extra machinery to avoid deadlocks. Caesar improves on

EPaxos in two dimensions. First, much like Atlas, a Caesar

proposer does not require that a fast Phase 2 quorum of accep-

tors vote for the exact same value in order to take the fast path.

Second, Caesar avoids a recursive recovery procedure. Caesar

accomplishes this using a combination of logical timestamps

and carefully placed barriers in the protocol.

9 Related Work

MultiPaxos, Raft, Viewstamped Replication General-

ized multi-leader protocols have a number of advantages over

single leader protocols like MultiPaxos [16], Raft [23], and

Viewstamped Replication [18] that totally order commands

into a log. See [22] for more details and experimental valida-

tion.

First, generalized multi-leader protocols avoid being bot-

tlenecked by a single leader. In protocols like MultiPaxos

and Raft, all state machine commands are funneled through

a single leader, making the leader the throughput bottleneck.

In multi-leader protocols on the other hand, state machine

commands can be processed by any of the multiple leaders,

preventing any one leader from becoming a bottleneck. This

allows multi-leader protocols to achieve higher throughput.

Second, generalized multi-leader protocols like EPaxos are

more resilient to leader failures. With protocols like Multi-

Paxos and Raft, when the leader fails, the protocol’s through-

put drops to zero and stays at zero until the failure is detected

and a new leader is elected. Depending on the deployment,

this delay could be seconds or minutes. With protocols like

EPaxos on the other hand, when a leader fails, the protocol’s

throughput drops, but not to zero. All other non-failed leaders

can still process commands, so the throughput remains high.

When the failed leader is replaced, the throughput returns to

normal.

Third, generalized multi-leader protocols achieve lower

latency in geo-distributed applications. Consider a geo-

replicated deployment of MultiPaxos. If the MultiPaxos

leader is in Europe, the clients in North America will ex-

perience much higher latency than the clients in Europe. In

general, the clients that are geographically close to the sin-

gle leader will experience low latency, while all other clients

will experience significantly higher latency. With generalized

multi-leader protocols, the multiple leaders can be distributed

across the deployment so that every client has a leader that is

geographically close by. This reduces the overall latency of

the protocol.

Fourth, generalized multi-leader protocols have lower tail

latencies for applications with little interdependence between

commands. With protocols like MultiPaxos, if a single log

entry is delayed (e.g., because of a network failure), all subse-

quent commands in the log are also delayed. Thus, any slow-

down in the execution of a single command can affect many

commands serialized after it. With generalized multi-leader

protocols, independent commands are executed independently

and do not wait for each other. Thus, if a single command

is slow to execute, the other independent commands are not

affected.

A Family of Leaderless Generalized Consensus Algo-

rithms In [19], Losa et al. propose a generic generalized

consensus algorithm that is structured as the composition

of a generic dependency-set algorithm and a generic map-

agreement algorithm. The invariants of the dependency-set

and map-agreement algorithm are very similar to the consen-

sus and dependency invariants, and the example implemen-

tations of these two algorithms in [19] form an algorithm

similar to Simple BPaxos. Our paper builds on this body of

work by introducing Fast BPaxos, Unanimous BPaxos, and

Majority Commit BPaxos. We also identify the tension be-

tween the two invariants as the key distinguishing feature of

most protocols and taxonimize existing protocols by how they

handle the tension.

Generalized Paxos and GPaxos Generalized Paxos [14]

and GPaxos [26] are generalized protocols but are not fully

20

Journal of Systems Research (JSys) 2021

multi-leader. Clients send commands directly to acceptors,

behaving very much like a leader. However, in the face of

collisions, Generalized Paxos and GPaxos rely on a single

leader to resolve the collision. This single leader becomes a

bottleneck in high contention workloads and prevents scaling.

SpecPaxos, NOPaxos, CURP SpecPaxos [25] and

NOPaxos [17] combine speculative execution and ideas from

Fast Paxos in order to reduce commit delay as low as two

network delays. CURP [24] further introduces generalization,

allowing commuting commands to be executed in any

order. These protocols represent yet another point in the

design space of state machine replication protocols. As the

commit delay decreases, the complexity of the protocols

generally increases. We think this is an exciting avenue

of research and hope that an improved understanding of

generalized multi-leader protocols can accelerate research in

this direction.

Mencius Mencius [20] is a multi-leader, non-generalized

protocol in which MultiPaxos log entries are round-robin

partitioned among a set of leaders. Because Mencius is not

generalized, a log entry cannot be executed until all previ-

ous log entries have been executed. To ensure log entries

are being filled in appropriately, Mencius leaders perform

all-to-all communication between each other. Mencius is

significantly less complex that generalized multi-leader pro-

tocols like EPaxos, Caesar, and Atlas. This demonstrates that

much of the complexity of these protocols come from being

generalized rather than being multi-leader, though both play

a role.

Chain Replication Chain Replication [31] is a state ma-

chine replication protocol in which the set of state machine

replicas are arranged in a totally ordered chain. Writes are

propagated through the chain from head to tail, and reads are

serviced exclusively by the tail. Chain Replication has high

throughput compared to MultiPaxos because load is more

evenly distributed between the replicas. This shows that the

leader bottleneck can be addressed without necessarily having

multiple leaders.

Scalog Scalog [9] is a replicated shared log protocol that

achieves high throughput using a sophisticated form of batch-

ing. A client does not send values directly to a centralized

leader for sequencing in the log. Instead, the client sends its

values to one of a number of batchers. Periodically, the batch-

ers’ batches are sealed and assigned an id. This id is then sent

to a state machine replication protocol, like MultiPaxos, for

sequencing. Like Mencius, Scalog represents a way to avoid

a leader bottleneck without needing multiple leaders.

PQR, Harmonia, and CRAQ PQR [7], Harmonia [32],

and CRAQ [28] all implement optimizations so that reads

(i.e. state machine commands that do not modify the state

of the state machine) can be executed without contacting a

leader, while writes are still processed by the leader. An

interesting direction of future work could explore whether or

not these read optimizations could be applied to generalized

multi-leader protocols.

10 Conclusion

In this paper, we explained, analyzed, and taxonomized gen-

eralized multi-leader state machine replication protocols. Our

taxonomy of state machine replication protocols is summa-

rized in Figure 15, and a summary of the generalized multi-

leader protocols that we discuss in this paper is given in

Table 2. We showed via Simple BPaxos that simple gen-

eralized multi-leader protocols do exist, but they have high

commit time. Reducing the commit time with Fast BPaxos,

we discovered the fundamental tension between implementing

consensus and computing dependencies between commands.

We taxonomized existing protocols according to whether they

avoid the tension (like Unanimous BPaxos) or they resolve the

tension (like Majority Commit BPaxos). Ultimately, we hope

that the clarity we have brought to the space can encourage

more industry adoption of generalized multi-leader protocols

and can spur new academic innovations in this space.

Acknowledgement

This research is supported in part by DHS Award HSHQDC-

16-3-00083, NSF CISE Expeditions Award CCF-1139158,

and gifts from Alibaba, Amazon Web Services, Ant Finan-

cial, CapitalOne, Ericsson, GE, Google, Huawei, Intel, IBM,

Microsoft, Scotiabank, Splunk and VMware.

References

[1] A brief introduction of tidb. https://pingcap.

github.io/blog/2017-05-23-perconalive17/.

Accessed: 2019-10-21.

[2] Raft replication in yugabyte db. https:

//www.yugabyte.com/resources/

raft-replication-in-yugabyte-db/. Accessed:

2019-10-21.

[3] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giu-

liano Losa, and Binoy Ravindran. Speeding up consen-

sus by chasing fast decisions. In Dependable Systems

and Networks (DSN), 2017 47th Annual IEEE/IFIP In-

ternational Conference on, pages 49–60. IEEE, 2017.

21

https://pingcap.github.io/blog/2017-05-23-perconalive17/
https://pingcap.github.io/blog/2017-05-23-perconalive17/
https://www.yugabyte.com/resources/raft-replication-in-yugabyte-db/
https://www.yugabyte.com/resources/raft-replication-in-yugabyte-db/
https://www.yugabyte.com/resources/raft-replication-in-yugabyte-db/

Journal of Systems Research (JSys) 2021

number of

leaders?

generalized? generalized?

commit

time?

tension

handling?

MultiPaxos [13]

Raft [23]

VRR [18]

Chain Replication [31]

Generalized Paxos [14]

GPaxos [26]
Mencius [20]

Simple BPaxos (§4)

Unanimous BPaxos (§7.1)

Basic EPaxos [22]

Atlas [10]

Maj. Commit BPaxos (§8.2)

EPaxos [21]

Caesar [3]

one many

no yes no yes

> 4 ≤ 4

avoiding resolving

Figure 15: A non-exhaustive taxonomy of state machine replication protocols. The generalized multi-leader protocols that we

discuss in this paper are shaded green.

Table 2: A summary of generalized multi-leader state machine replication protocols.

Commit Tension Number of Phase 1 Classic Phase 2 Fast Phase 2

Protocol Safe Time Handling Nodes Quorum Size Quorum Size Quorum Size

Simple BPaxos (§4) yes 7 N/A 2 f +1 f +1 f +1 N/A

Fast BPaxos (§6) no 4 N/A 2 f +1 f +1 f +1 f +maj(f +1)
Unanimous BPaxos (§7.1) yes 4 avoidance 2 f +1 f +1 f +1 2 f +1

Basic EPaxos [22] yes 4 avoidance 2 f +1 f +1 f +1 2 f

Atlas [10] yes 4 avoidance n f +1 n− f ⌊ n
2 ⌋+ f

Maj. Commit BPaxos (§8.2) yes 4 resolution 2 f +1 f +1 f +1 f +maj(f +1)
EPaxos [21] yes 4 resolution 2 f +1 f +1 f +1 f +maj(f +1)−1

Caesar [3] yes 4 resolution 2 f +1 f +1 f +1 f +maj(f +1)

[4] Jason Baker, Chris Bond, James C Corbett, JJ Fur-

man, Andrey Khorlin, James Larson, Jean-Michel Leon,

Yawei Li, Alexander Lloyd, and Vadim Yushprakh.

Megastore: Providing scalable, highly available stor-

age for interactive services. In CIDR, volume 11, pages

223–234, 2011.

[5] Mike Burrows. The chubby lock service for loosely-

coupled distributed systems. In Proceedings of the 7th

symposium on Operating systems design and implemen-

tation, pages 335–350. USENIX Association, 2006.

[6] Tushar D Chandra, Robert Griesemer, and Joshua Red-

stone. Paxos made live: an engineering perspective. In

Proceedings of the twenty-sixth annual ACM symposium

on Principles of distributed computing, pages 398–407.

ACM, 2007.

[7] Aleksey Charapko, Ailidani Ailijiang, and Murat Demir-

bas. Linearizable quorum reads in paxos. In 11th

USENIX Workshop on Hot Topics in Storage and File

Systems (HotStorage 19), 2019.

[8] James C Corbett, Jeffrey Dean, Michael Epstein, An-

drew Fikes, Christopher Frost, Jeffrey John Furman,

Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, et al. Spanner: Google’s globally dis-

tributed database. ACM Transactions on Computer

Systems (TOCS), 31(3):8, 2013.

[9] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo

Alvisi, and Robbert van Renesse. Scalog: Seamless re-

configuration and total order in a scalable shared log. In

17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 20), pages 325–338, 2020.

[10] Vitor Enes, Carlos Baquero, Tuanir França Rezende,

Alexey Gotsman, Matthieu Perrin, and Pierre Sutra.

State-machine replication for planet-scale systems. In

22

Journal of Systems Research (JSys) 2021

Proceedings of the Fifteenth European Conference on

Computer Systems, pages 1–15, 2020.

[11] Heidi Howard, Aleksey Charapko, and Richard Mortier.

Fast flexible paxos: Relaxing quorum intersection for

fast paxos. In International Conference on Distributed

Computing and Networking 2021, pages 186–190, 2021.

[12] Heidi Howard and Richard Mortier. Paxos vs raft:

Have we reached consensus on distributed consensus?

In Proceedings of the 7th Workshop on Principles and

Practice of Consistency for Distributed Data, pages 1–9,

2020.

[13] Leslie Lamport. The part-time parliament. ACM Trans-

actions on Computer Systems (TOCS), 16(2):133–169,

1998.

[14] Leslie Lamport. Generalized consensus and paxos.

2005.

[15] Leslie Lamport. Fast paxos. Distributed Computing,

19(2):79–103, 2006.

[16] Leslie Lamport et al. Paxos made simple. ACM Sigact

News, 32(4):18–25, 2001.

[17] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana

Szekeres, and Dan RK Ports. Just say NO to paxos over-

head: Replacing consensus with network ordering. In

12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), pages 467–483, 2016.

[18] Barbara Liskov and James Cowling. Viewstamped

replication revisited. 2012.

[19] Giuliano Losa, Sebastiano Peluso, and Binoy Ravin-

dran. Brief announcement: A family of leaderless

generalized-consensus algorithms. In Proceedings of

the 2016 ACM Symposium on Principles of Distributed

Computing, pages 345–347. ACM, 2016.

[20] Yanhua Mao, Flavio P Junqueira, and Keith Marzullo.

Mencius: building efficient replicated state machines for

wans. In 8th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 08), pages 369–384,

2008.

[21] Iulian Moraru, David G Andersen, and Michael Kamin-

sky. A proof of correctness for egalitarian paxos. Tech-

nical report, Technical report, Parallel Data Laboratory,

Carnegie Mellon University, 2013.

[22] Iulian Moraru, David G Andersen, and Michael Kamin-

sky. There is more consensus in egalitarian parliaments.

In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, pages 358–372. ACM,

2013.

[23] Diego Ongaro and John K Ousterhout. In search of

an understandable consensus algorithm. In USENIX

Annual Technical Conference, pages 305–319, 2014.

[24] Seo Jin Park and John Ousterhout. Exploiting commu-

tativity for practical fast replication. In 16th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI 19), pages 47–64, 2019.

[25] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr

Sharma, and Arvind Krishnamurthy. Designing dis-

tributed systems using approximate synchrony in data

center networks. In NSDI, pages 43–57, 2015.

[26] Pierre Sutra and Marc Shapiro. Fast genuine generalized

consensus. In Reliable Distributed Systems (SRDS),

2011 30th IEEE Symposium on, pages 255–264. IEEE,

2011.

[27] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-

Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,

Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,

Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaf-

fray, Lucy Zhang, and Peter Mattis. Cockroachdb: The

resilient geo-distributed sql database. In Proceedings of

the 2020 ACM SIGMOD International Conference on

Management of Data, pages 1493–1509. ACM, 2020.

[28] Jeff Terrace and Michael J Freedman. Object storage on

craq: High-throughput chain replication for read-mostly

workloads. In USENIX Annual Technical Conference,

number June, pages 1–16. San Diego, CA, 2009.

[29] Alexander Thomson, Thaddeus Diamond, Shu-Chun

Weng, Kun Ren, Philip Shao, and Daniel J Abadi.

Calvin: fast distributed transactions for partitioned

database systems. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of

Data, pages 1–12. ACM, 2012.

[30] Robbert Van Renesse and Deniz Altinbuken. Paxos

made moderately complex. ACM Computing Surveys

(CSUR), 47(3):42, 2015.

[31] Robbert Van Renesse and Fred B Schneider. Chain repli-

cation for supporting high throughput and availability.

In OSDI, volume 4, 2004.

[32] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan RK

Ports, Ion Stoica, and Xin Jin. Harmonia: Near-linear

scalability for replicated storage with in-network con-

flict detection. Proceedings of the VLDB Endowment,

13(3):376–389, 2019.

23

	Introduction
	A Primer on State Machine Replication
	State Machine Replication
	Paxos
	MultiPaxos

	Conflict Graphs
	Defining Conflict Graphs
	Executing Conflict Graphs
	Constructing Conflict Graphs
	Two Key Invariants

	Simple BPaxos
	Overview
	Dependency Service
	An Example
	Recovery
	Safety

	Fast Paxos
	Overview
	Recovery
	Coordinated Recovery

	Fast BPaxos
	The Protocol
	Recovery
	Lack of Safety

	Tension Avoidance
	Unanimous BPaxos
	Basic EPaxos Optimization
	Atlas Optimization

	Tension Resolution
	Pruned Dependencies
	Majority Commit BPaxos
	Ensuring Liveness
	EPaxos and Caesar

	Related Work
	Conclusion

