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Glioblastoma (GBM) represents the most prevalent malignant tumor affecting the 

central nervous system. The current treatment regime consisting of surgery, 

chemotherapy, and radiation has remained the same for over two decades even though 

patients rarely live three years past treatment. Post-translational regulation of the 

repressor element-1 silencing transcription factor (REST) has been shown to be a 

successful method in reducing GBM derived tumors. Inhibition of REST’s regulatory 

protein small C-terminal domain phosphatase 1 (SCP1) is an effective strategy to 

modulate REST levels and therefore GBM. Guided by a structure-based drug design 
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approach over 220 final compounds were synthesized and tested generating a broad 

understanding of their structure-activity relationship. To better understand the kinetics of 

the dually activated benzo[b]thiophene 1,1-dioxide warhead, an NMR based kinetic 

study was performed to generate half-life (t1/2) data and find the target zone of reactivity. 

The GNAS gene, responsible for encoding the Gαs subunit of heterotrimeric G 

proteins, exhibits the second highest mutation frequency in mucinous appendiceal 

adenocarcinoma. Despite being a druggable target, there are currently no commercially 

available inhibitors specifically targeting Gαs. Additionally, GNASR201 stands out as a 

target because it is the most cancer-causing mutation of all heterotrimeric G-proteins. 

As guanosine-5’-triphosphate (GTP) is the Gαs’s endogenous substrate the strategy 

was to synthesize GTP derivates that covalently bind the GNASR201C mutation allowing 

selectivity of the cancerous cells. Guanosine-epoxide (2.4) and a diastereomeric pair of 

its phosphoamidate prodrugs were synthesized and tested showing a proof of concept. 

Synthetic routes affording cyclic and acyclic covalent guanosine analogues were bottle 

necked by a phosphorylation step. Although optimization efforts resulted in parameters 

generating the desired product, reaction yields were insufficient to allow the generation 

of a diverse library.  
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Synthesis and Structure-Activity Relationship of Covalent Inhibitors Targeting the 

SCP1 Phosphatase 

Glioblastoma 

 Glioblastoma (GBM) represents the most prevalent malignant tumor affecting the 

central nervous system, with a worldwide incidence rate up to 3.69 per 100,000 

individuals1. Associated with poor prognosis the median patient survives between 1-1.5 

years from diagnosis2-3 and only 3-5% of those diagnosed live to 3 years or more4-5. The 

current treatment strategy for GBM patients has remained the same for over two 

decades and includes surgery, adjuvant radiotherapy and temozolomide (TMZ) 

chemotherapy. While surgery can remove a large section of tissue, it fails to remove all 

cancerous cells and usually leads to adverse side effects like pain, infections, other 

illnesses, and blood clots6. Radiation therapy does slow and kill the growth of cancer 

cells however it is not specific and affects healthy cells as well causing downstream side 

effects that vary depending on the location of body being treated7-8. Chemotherapy 

treatment through TMZ, an alkylating agent, slows the growth of cancer cells however it 

fails to eradicate all malignant cells and remining cells can form resistance. TMZ may 

also increase the risk to the development of other types of cancer9. Three years is 

considered a long-term survival rate despite the aggressive combinatorial therapy10. 

Given the high mortality rate of GBM patients, it is essential to explore new therapeutic 

avenues to improve patient prognosis and work towards finding a cure for this deadly 

disease11-12. 
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Addressing GBM Through RE-1 Silencing Transcription Factor 

 Discovered to be overexpressed in some medulloblastoma cell lines15, the 

repressor element-1 silencing transcription factor (REST)13, also known as neuron-

restrictive silencer factor (NRSF)14, plays a critical role in the transcription of neuronal 

genes. As a silencing transcription factor, it interacts with transcriptional co-regulators at 

the promoter region of targeted genes to prevent transcription13. The imbalance of 

REST expression has been shown to correlate with a broad range of diseases16-17, 

commonly seen in neuronal diseases like epilepsy18-20, Parkinson’s21-24, and 

Huntington’s25-30. Not only are REST levels overexpressed in GBM31-34, but REST aids 

cancerous cells in their pluripotency and self-renewal leading to resistance16,32. As 

REST has been identified as a diving force in tumor formation31-32 and its elimination 

from the nucleus in animal models reduces tumor size32, treatment of GBM through the 

modulation of REST is an attractive approach. Unfortunately, because transcription 

factors’ activity depends on association with proteins over large surfaces, they lack 

active catalytic sites as seen in enzymes35. The largely disorder structure of 

transcription factors are challenging to inhibit through small molecules36 and are 

traditionally viewed as “undruggable.” With no obvious binding site or small molecules 

known to bind REST, the strategy was to modulate REST levels through its regulatory 

proteins. 
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 Small C-terminal Domain Phosphatase 1 Modulates REST 

 Post-translational regulation of REST levels through phosphorylation has been 

shown to be an effective method to induce protein turnover38-39. Figure 1.1 shows how 

REST is modulated through the key phosphorylation sites of Ser-861 and Ser-864. 

Following phosphorylation, REST translocates to the cytosol and is degraded by the 

ubiquitin ligase SCFβ−TrCP 38-39. REST’s regulatory protein, small C-terminal domain 

phosphatase 1 (SCP1), is responsible for the dephosphorylation of Ser-861 and Ser-

864 which prevents the translocation and therefore the degradation of REST. It has 

already been shown that REST levels can be decreased with the loss of SCP1 activity40-

41. As protein phosphatases contain an active site that can be modified by small 

molecules42-50 this regulatory protein is a promising strategy to control REST’s 

transcriptional functionality.  

 

 

 

 

 

 

 

 

 

  

 

Figure 1.1 Depiction of how REST 

can be modulated by SCP1 
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Identification and Anatomy of a Lead Compound 

 To find a lead compound a high-throughput screening of the molecular libraries 

small molecule repository (MLSMR) library was performed at the Chemical Genomics 

Center in La Jolla and the Burnham Institute. Twenty four of the 350,478 compounds 

were hits based on their inhibition of IC50 greater than 50M. As false positives when 

targeting phosphatases are common the more sensitive p-nitrophenyl phosphatase 

(pNPP) assay was conducted on the freshly synthesized 24 hits. Interestingly no 

inhibition was detected. Observation of the 24 hit’s structure showed a common 

structural trend. The compounds shared a phenyl sulfonamide and thiophene bridged 

by piperazine. As sulfides are prone to oxidation over time51-53 potentially the oxidized 

chemicals were responsible to inhibition in the high-throughput screening. Compound 

1a showed an IC50 of 797  4M when incubated with SCP1 for 2hours. Oxidation of 1a 

with m-chloroperoxybenzoic acid (mCPBA) led to a mixture of products of which 

contained 1b. This mixture led to the increased inhibition of 219.9  0.2M. 

 

Figure 1.2 Lead compounds towards the inhibition of SCP1 

 An initial optimization program utilizing 1b as the lead compound led to 

compound 1c54. Figure 1.3 shows the 3 segments that compose the lead compound. 

The compound is composed of an electron-deficient hydrophobic region depicted in 
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blue, an electrophilic covalent bonding group in red, connected by linked shown in 

green.  

 

Figure 1.3 Anatomy of lead compound 1c  

Derivatization of one segment while keeping the other two constant drove the 

optimization program forward and led to focused library of 100 compounds. Synthesis of 

1c starts with an excess of linker 1d, propane-1,3-diamine, and the sulfonyl chloride 1e 

which undergoes an addition-elimination reaction to yield the free amine 1f in a 30% 

yield. Linkers varying carbon chain length, rigidity, and stereochemistry were introduced 

at this stage to better understand the ideal linker. Shifting piperazine to propane-1,3-

diamine increase flexibility and distance between the warhead and hydrophobic region 

leading to increased activity. Subsequent amide formation with 1g, benzo[b]thiophene-

2-carboxylic acid, introduces the thiophene moiety. Various covalent scaffolds were 

introduced in attempts to balance reactivity to bind SCP1, but not react promiscuously. 

Substituting the cyclopentane for a phenyl group on the thiophene resulted a better 

reactivity profile. Oxidation of the sulfide intermediate 1h with dimethyl dioxirane (1i, 

DMDO) produced the vinyl sulfone 1c in a 60% yield.  
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Scheme 1.1 Synthesis of the lead compound 1c 
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Covalent Bond Formation with SCP1 

The pNPP assay generated IC50  data used to design iterative generations of lead 

compounds. Interestingly it was observed that increasing incubation time led to 

additional activity, which is indicative of covalent bond formation. To test this hypothesis 

the Zhang lab incubated SCP1 with the inhibitor 1c and measured the protein’s 

molecular weight by MALDI-TOF. Appearance of a peak with an additional 490 Da 

supports that the inhibitor covalently bonded to SCP1. Additionally when 1c, SCP1, and 

-mercaptoethanol (BME) were incubated together no phosphatase-inhibitor adduct 

was observed. As BME was able to prevent the protein-ligand adduct formation then a 

cysteine residue may be involved in the covalent linkage. Figure 1.4 shows the cysteine 

residues near SCP1’s catalytic site which are likely the thiols participating in the 

covalent bond with 1c. 

54 

Figure 1.4 Surface representation of SCP1 showing cysteine residues proximal to the catalytic site 

Single points mutation of SCP1 generated variants at C148, C92, and C181, converting 

cysteine to alanine. Each variant was tested for activity after incubation with 1c.  Variant 
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C181A was no longer inhibited by 1c showing C181 is participating in the protein-ligand 

interaction.  

 

Scheme 1.2 Reversible covalent bond formation between Cys181 and 1c 

 Covalent bond formation between cysteine residues and acrylamides55-73 as well 

as vinyl sulfones74-93 are well documented. A Thia-Michael reaction is proposed to be 

the mechanism by which the protein-inhibitor bond is formed. The lone pair on Cys181’s 

thiol can add into the dually-activated -carbon of the 1c. Interestingly dually activated 

alkenes have been shown participate in Michael addition, but also contain intrinsic 

reversibility94.  
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Docking Model 

 A docking model showing 1c covalently bound to SCP1’s Cys181 gave 

explanation to why the structural changes from to 1b to 1c generated a more potent 

inhibitor. Figure 1.5 shows the structural model of 1c and SCP1 WT. Two aromatic 

residues, F106 and Y158, provides a molecular recognition through reversible - 

stacking interactions with the inhibitor’s electron deficient aromatic section. To test the 

impact of these two residues each was mutated, and the variant was tested for 

phosphatase activity by the pNPP assay after being incubated with 1c. Variant Y158I’s 

activity diminished by 10-times (IC50 > 100 μM) while F106A showed 5-fold loss of 

activity (IC50 = 54 μM) as compared to the wild type (IC50 = 10.6 μM). Such results 

support the hypothesis that these - stacking interactions are crucial to the inhibitor’s 

potency and molecular recognition. Inhibitor analogs utilizing cyclic or aromatic linker 

regions decreased binding affinity around 1000-times. The rigidity and steric clash is 

likely the culprit for loss of inhibition. These bulky linkers may disrupt hydrogen bonding 

between the flanking amines of the linker and the proximal D98 and T152 residues.  In 

the case of the warhead switching from 1b’s cyclopentane ring to 1c’s phenyl ring 

allowed for the additional cation- interaction. K190’s hydrogen bonding and cation-- 

interactions hold the benzothiophene-[b]-1,1-dioxide warhead in proximity to Cys181 

allowing more optimal interaction with the electrophilic -carbon. Observation from the 

docking analysis provided crucial information used in the design of more SCP1 

inhibitors. Inhibitor optimization and elucidation of mechanism of action thus far led to 

the J. Med. Chem publication, Target covalent Inhibition of small CTD phosphatase 1 to 

Promote the degradation of the REST transcription factor in human cells54. 



 10 

54 

Figure 1.5 Docking model of 1c and SCP1 WT 
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Kinetics of Covalent Inhibitors 

 As covalent inhibitors have seen tremendous success in the clinical and 

commercial setting the way to describe and characterize their efficacy needs updating. 

Traditionally the half-maximal inhibitory concentration (IC50) has been the metric to 

measure a drug’s efficacy. Not only are IC50 measurements impacted by time and the 

concentration of the target protein in the assay, they fail to account for a binding 

equilibrium. A more comprehensive method to describe the kinetics of covalent 

inhibitors is visually illustrated in Figure 1.6   

 

Figure 1.6 A visual illustration explaining the kinetic parameters KI and kinact 

The first step shows a reversible process where unbound protein (P) and inhibitor (I) 

interact to form a protein-inhibitor complex (P•I). KI describes the potency of the first 

reversible binding event. KI is defined as the concentration of the inhibitor required for 

half of the maximum potential rate of covalent bond formation. In the second step a 

covalent bond forming event takes place resulting in a covalent protein-inhibitor 

complex (P-I). kinact describes this event and is the maximum potential rate of 

inactivation. Taken together the ratio of 
𝑘𝑖𝑛𝑎𝑐𝑡

𝐾𝑖
 is a second order rate equation describing 

the over all efficiency of the conversion of free protein (P) to protein-inhibitor complex 
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(P-I). This method of describing covalent inhibitors gives information on both the affinity 

a n inhibitor has for its target as well as the rate at which the covalent bond forms. 

Optimization of the Hydrophobic Region 

 Continued efforts towards optimization focused on the hydrophobic section of the 

inhibitor. The docking model showed two aromatic residues, F106 and Y158, utilizing 

reversible - stacking interactions as a molecular recognition functionality. Variants 

which contained mutation at these residues further validated this hypothesis. The 

strategy to increase inhibitor potency came by maximizing the - stacking interactions. 

Figure 1.7 shows the library compounds 1j-1ab which were designed to increased 

interactions with residues F106 and Y158. 

 

Figure 1.7 Library of inhibitors (1j-1ab) designed to increase - stacking interactions 
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Inhibitors 1m, 1o, 1t, and 1aa were showed the most desirable properties of this initial 

round of compounds. Although 1t showed the lowest IC50 (5.3 M) and contained the 

best covalent modification effects (
𝑘𝑖𝑛𝑎𝑐𝑡

𝐾𝑖
 = 1525𝑚𝑖𝑛−1𝑀−1), incorporation of two 

covalently binding motifs is risky and not ideal. The runner up ,1m, incorporates a 

biphenyl structure in the inhibitor. 1m’s IC50  was 7.7 M and contained a 
𝑘𝑖𝑛𝑎𝑐𝑡

𝐾𝑖
  of 

393𝑚𝑖𝑛−1𝑀−1. This became the new lead compound used as a starting point for further 

investigation.  

 After the biphenyl scaffold was determined to produce increased inhibition of 

SCP1, the next step was the derivatization the second phenyl ring. Altering electron 

density as well as incorporation of groups that increase the number of reversible 

interactions can play an effect on potency. To test the hypothesis if incorporation of 

additional functional groups to the biphenyl system will increase SCP1 inhibition 

compounds 1ac-1al, shown in Figure 1.8, were synthesize. 

 

Figure 1.8 Derivatization of the biphenyl moiety leading to compounds 1ac-1al 

From this subset of compounds 1ai, 1aj, and 1al led to the least SCP1 activity in the 

pNPP assay. From these top three performers compound 1aj contained the best kinetic 
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properties. The ortho methyl ether, 1aj, contained a 
𝑘𝑖𝑛𝑎𝑐𝑡

𝐾𝑖
  of 1383𝑚𝑖𝑛−1𝑀−1. As 𝐾𝐼 

represents the potency of the initial reversible binding event the decreased 𝐾𝐼 of 1aj (𝐾𝐼 

= 0.6 M) from the previously published lead compound 1c (𝐾𝐼 = 4.8M) suggests 

increased specificity and better binding of SCP1. 

 Molecular docking was used to show the new lead compound 1aj bound to the 

active of SCP1, seen in Figure 1.9. Again, residues F106 and Y158 play key roles in 

interacting with the hydrophobic region. Residues F106 and Y158 sandwich the terminal 

phenyl ring participating in - stacking interactions. The aryl methyl ether is positioned 

towards the phosphatase active site in a proximal pocket. While the internal phenyl ring 

does not show interactions with the protein its rigidity reduces the entropic cost for 

binding. Residue R178 is positioned to hydrogen bond with the carbonyl oxygen of the 

amide. 

95 

Figure 1.9 Docking model of 1aj and SCP1 WT 

 Comparing the substitutions of compounds 1ai, 1aj, and 1al, points to the 

importance of substitution at the ortho position of the terminal phenyl ring. To test effects 
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of substitution of at the ortho position on the potency compounds 1.72-1.86, seen in 

Figure 1.10, were synthesized and tested for potency and kinetic characteristics. In 

designing these compounds variation of 3-dimensional space as well as electron 

altering characteristics were included. Strategically methyl, ethyl, and benzyl 

substitutions were included for the sulfonate, carbonate, and ester groups. Interestingly 

the ethyl sulfonate (1.85) and ethyl carbonate (1.82) generated the best kinetic 

properties with  
𝑘𝑖𝑛𝑎𝑐𝑡

𝐾𝑖
  of 683 and 637𝑚𝑖𝑛−1𝑀−1 respectively. Unfortunately, these 

results are less desirable than compound 1aj. Optimization efforts towards the 

hydrophobic region up to this point in addition to the biochemical work by the Zhang lab 

led to the BMC Biology publication, Targeting of rest with rationally-designed small 

molecule compounds exhibit synergistic therapeutic potential in human glioblastoma 

cells95. 
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Figure 1.10 Compounds 1.72-1.86 designed to test the effects of derivatization at the ortho position of 

the terminal phenyl ring 

  



 17 

Optimization of the Warhead Region 

 Improvement of the overall reaction scheme, depicted in Scheme 1.3, was the 

first step towards the optimization of the warhead region. Synthesis of 1c utilizing the 

optimized reaction scheme starts with the same sulfonyl chloride 1e. Use of tert-butyl 

(3-aminopropyl)carbamate, 1am, eliminates the necessity for high equivalents of the 

linker. The addition-elimination reaction is subjected to room temperature conditions for 

3 hours in the presence of pyridine in DCM. Not only is the yield increased from 30 to 

92%, but purification of the boc-protected intermediate 1an is easier than the analogous 

free amine intermediate 1f. Deprotection of the boc-protection group in methanolic 

hydrochloric acid yields quantitative yields of the free amine (1f) which is used directly in 

the amide coupling reaction without purification. Switching from the carboxyl activating 

carbodiimide reagent EDC to HATU increased the yield of intermediate 1h by 8%. The 

last improvement came from switch the reaction solvent in the oxidation step from DCM 

to acetone. Changing the solvent increased the yield of 1c from 60 to 67%. The overall 

synthetic yield was increased from 14 to 53%.  

 

Scheme 1.3 Improved synthesis of 1c 
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While drug discovery programs used to exclude covalent drugs due to the 

potential toxicity, arising from promiscuous labeling, hapternization, and idiosyncratic 

drug reactions they recently have become more widely accepted96. Acceptance of this 

strategy is supported by the many publications97-101 and widespread utilization in FDA 

approved drugs. Figure 1.11 shows three examples of covalent inhibitors which contain 

the acrylamide warhead. Not only are acrylamides the most researched of the cysteine 

selective covalent electrophiles, but they are also the most widely used102. 

 

Figure 1.11 Examples of FDA approved drugs containing acrylamides 

 Due to the proven success of acrylamides, they were the first cysteine selective 

electrophile to be evaluated. Figure 1.12 shows the first SCP1 inhibitors (1.1-1.9), 

which contain the parent and substituted acrylamides as well the trifluoromethoxy aryl 

ether fragment. Compound activity was measured with the Para-nitrophenyl phosphate 

(pNPP) assay. In this assay SCP1 dephosphorylates the chromogenic substrate pNPP 

yielding para-nitrophenol which is an intensely yellow product whose fluorescence can 

be measure on a spectrophotometer. First an inhibitor is incubated with SCP1 and then 

pNPP is added, generating a solution of varying fluorescence based on the ability of 

inhibitor to deactivate SCP1. Results were depicted through the remaining activity of 

SCP1. The positive control, where no inhibitor is incubated with enzyme, leads to full 
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SCP1 remaining activity. Low remaining enzyme activity shows the inhibitor has a high 

ability to inhibit SCP1. From this subset of compounds 1.1 and 1.2 showed best 

inhibition effects on SCP1. In a positive control where no inhibitor is incubated with 

phosphotase, SCP1 contains full activity. Compounds 1c, 1.1, and 1.2 generated 

relative activity values of 0.15, 0.34, and 0.69 respectively showing this subset of 

compounds did not lead to a more potent lead compound. 

 

Figure 1.12 SCP1 inhibitors 1.1-1.9  

It has been shown that acrylamides reactivity can be altered through steric and 

inductive effects103-112. A subset of compounds diversifying the acrylamide’s substitution 

led to the inhibitors seen in Figure 1.13. Compounds 1.17, 1.24, and 1.34 show the 

parent acrylamide as well as a methyl group at the , and  positions. Determining 

effects of incorporating even bulkier groups including electron altering functional groups 

was generated by compounds 1.15, 1.30, and 1.31. The remaining compounds 

incorporated fumaric acid esters and amides which show low cysteine reactivity113 and 

would eventually hydrolyze to the acid. In comparison to the current lead compound 1c, 

this subset of acrylamide containing SCP1 inhibitors were less potent. Since a diverse 
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set of acrylamides was tested leading to less desirable result the search for a more 

ideal warhead continued. 

 

Figure 1.13 SCP1 inhibitors containing acrylamides and biphenyl scaffold 

While the most incorporated warhead when targeting cysteine residues is the 

acrylamide, many other electrophiles have been used with success. A variety of 

warheads are reported to react preferentially with cysteine and are susceptible to 

changes in reactivity by steric and inductive effects. Discovered independently by Huib 

Ovaa114 and Henning Moots115 nonactivated terminal alkynes were found to react with 

cysteine residues contradicting the assumption of biological inertness. Aryl halides, that 

undergo nucleophilic aromatic substitution (SNAR) proceed through a concerted 

mechanism 116-117 involving a Meisenheimer transition state have long history in covalent 

protein history118. Positioning the leaving group ortho or para to the heteroatom 

increases reactivity. This type of warhead can be incorporated anywhere in the drug due 

to the many points of attachment of the aromatic ring. Compounds depicted in Figure 
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1.14 were synthesized to find a covalent scaffold which contains improved inhibiting 

properties to SCP1. No depicted compounds led to improved potency.  

 

Figure 1.14 SCP1 inhibitors with varied warheads 

While covalent inhibitors contain the advantages of enhanced potency, selectivity, and 

prolonged duration of action119 over their reversible counterparts, they contain the risk of 

off-target modification leading to idiosyncratic toxicity and haptenization120. Jack 

Taunton was the first to describe a warhead which can covalently bind and undergo the 

reverse reaction, dissociating from off target binding partners121. The -

cyanoacrylamides contain the advantages of covalent warheads and overcome the 

potential for toxicity cause by off target interactions. Incorporation of bulky groups to the 

-position122 and replacement of the amide for a more electron withdrawing functional 

groups123 can modulate the intrinsic reactivity and dissociation rates of the reversible 

covalent inhibitor124. While relatively inert, nitriles will react with cysteines to form 
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thioimidate especially when activates by electron-withdrawing groups like 

heteroaromatic rings. Both the -cyanoacrylamides and nitrile covalent reversible 

groups incorporated into the SCP1 inhibitor. A variety of bulky groups at the -position 

of the -cyanoacrylamides were included to elucidate the necessary reactivity to bind 

the targeted cysteine residue. Additionally, a variety of reactivity altering groups was 

applied to the nitrile containing SCP1 inhibitors. Unfortunately, these covalent reversible 

inhibitors failed to yield a potency which surpasses the lead compound 1c. 

 
Figure 1.15 SCP1 inhibitors containing reversible covalent warhead 
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Figure 1.16 SCP1 inhibitor analogs containing a vinyl sulfone 

 The warhead utilized in the lead compound 1c contains an alkene dually 

activated by an amide and sulfone. In attempts to move towards an electrophile with 

suitable activity and reversibility, it was chosen to incorporate a sulfone into the 

warhead. Figure 1.16 shows the next subset of SCP1 inhibitors which contain both and 

acrylamide and vinyl sulfone to compose a dually activated alkene. After pre-incubating 

compounds 1.67, 1.68, 1.70, and 1.71 SCP1 for 3 hours and then running the pNPP 

assay, SCP1 still contained full activity showing these compounds contained low 

reactivity or high revisability. From the next subset of compounds 1.65, and 1.66 

decreased SCP1 activity the most with .11 and .12 activity remaining after 18 hours pre-

incubation. Both 1.65 and 1.66 showed signs of one-step irreversible inhibition which 

was determined by the non-saturating behavior and rapid inhibition rates in the kinetic 

analysis. 1.65 and 1.66 resulted a  
𝑘𝑖𝑛𝑎𝑐𝑡

𝐾𝑖
  of 1444  45 and 907  51 𝑚𝑖𝑛−1𝑀−1 

respectively as well as 𝐼𝐶50 measurements of 6.4 and 7.5M. As reversible covalent 

inhibition is goal, these methyl thiophenes were not used as lead compounds.  
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Figure 1.17 Benzothiophenes containing electron withdrawing halides 

 Thus far attempts to find a warhead which yields a higher potency and better 

kinetic properties than the benzothiophene has been futile. The docking study depicted 

in Figure 1.9 shows a cation- interaction that could be integral to the desirable potency 

and kinetic activity. Although previous warheads with have contained an aromatic ring in 

the warhead region, the flexibility fails to lock the orientation of the -position proximal to 

Cys181. The benzothiophene contains inherent rigidity and has been shown to place 

the dually activated electrophile proximal to the target residue. Since this warhead has 

been shown to work, alteration of the electron density could alter reactivity. Figure 1.17 

shows the next subset of SCP1 inhibitors which contain a halide at the various position 

of the benzothiophene’s aromatic ring.  Figure 1.18 shows the SCP1 activity for 

compounds 1.53-1.63. The general trend shows that the positions meta and para to the 

sulfone show highest inhibiting activity on SCP1. Compound 1.51 is the major exception 

and the most potent of this set of compounds. 1.51 produced a  𝑘𝑖𝑛𝑎𝑐𝑡 of 0.0060 𝑚𝑖𝑛−1, 
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𝐾𝑖 of 9.69M, and 
𝑘𝑖𝑛𝑎𝑐𝑡

𝐾𝑖
  of 619 𝑚𝑖𝑛−1𝑀−1.  As potency and kinetic properties are less 

ideal than the parent compound, the logical direction was to incorporate electron 

donating groups on the benzothiophene. 

 

Figure 1.18 SCP1 activity for compounds 1.53-1.63 

The next subset of SCP1 inhibitors synthesized contained electron donating 

groups positioned around the phenyl ring of the benzothiophene. Both methyl and 

methoxy groups were chosen as the electron donating groups incorporated in 

compounds 1.87-1.95, which are depicted in Figure 1.19. As many of the substituted 

benzothiophenes were not commercially available many of them were synthesized. 

Figure 1.20 shows the reaction and proposed mechanism which yielded the necessary 

benzothiophene derivatives. The starting materials needed to generate the 

benzothiophene methyl ester is 2-fluorobenzaldehyde and methyl 2-mercaptoacetate. In 

the first step of the mechanism carbonate deprotonates methyl 2-mercaptoacetate’s α-
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proton to generate an ester enolate. The enolate adds into the aldehyde and after a 

subsequent protonation a ß-hydroxyketone. Deprotonation of the acidic proton and 

elimination of a hydroxide ion leads to the αß-unsaturated ester. The thiolate generated 

after a deportation step adds into the aromatic carbon containing the fluorine. Electrons 

flow through the aromatic ring and form an extended Meisenheimer complex which 

reverts back to eliminate the fluorine ion and subsequently forms the 5-member ring.  

 

Figure 1.19 Benzothiophene derivatives containing electron donating groups 
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Figure 1.20 Synthesis and proposed mechanism of substituted benzothiophenes 

Again, phosphatase activity was tested by the pNPP assay. A control where no 

compound was preincubated with SCP1 led to full SCP1 activity whereas the GR16 

preincubated with SCP1 led to 0.61 remaining SCP1 activity. Of this set of electron-

donating SCP1 derivatives the best performing were 1.88, 1.93, and 1.94 where SCP1 

remaining activity was 0.90, 0.81, and 0.80 respectively. As 1.94 showed the best 
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results in the pNPP assay it was tested further for kinetic parameters. With 
𝑘𝑖𝑛𝑎𝑐𝑡

𝐾𝑖
  of 191 

𝑚𝑖𝑛−1𝑀−1 it shows less ideal kinetic parameters compared to the lead compound 1aj.   

 The next question to answer was if maintaining the benzothiophene can 

replacing the amide with more electron withdrawing functional groups increase potency 

towards SCP1. To answer this question compounds 1.96 and 1.97 were synthesized. 

Interestingly both compounds 1.96, and 1.97 either have negligible activity against 

SCP1 or contain high reversibility. When these compounds were preincubated 5hrs. 

with SCP1 and then the pNPP assay was conducted, SCP1 retained all activity. 

 

Figure 1.21 SCP1 inhibitors 1aj, 1.96, and 1.97  

 The docking study seen in Figure 1.5 shows a cation-pie interaction between the 

cationic lysine K190 and the phenyl ring of the benzothiophene. As cation-pie interaction 

are known for molecular recognition, the question if increasing the strength of the 

cation-pie interaction would result in increased potency or desirable kinetic properties 

arose. Mecozzi et al. released calculated data which is useful for predicting the strength 

of interaction between biologically relevant heterocycles and cationic residues125. 

Consistent with previous understanding, the general trend shows more electron rich the 
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aromatic rings interact stronger with the electron deficient residue. Their data shows a 

simple benzene ring contains a binding energy of 27.1 
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙
, while a naphthalene ring 

has an increased binding energy of 28.7 
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙
. Using this information as guidance 

towards strengthening the cation-pie interaction, the SCP1 inhibitor 1.98 was 

synthesized. As the naphtho[2,3-b]thiophene-2-carboxylic acid (1.101) intermediate was 

not commercially available it was synthesize. Scheme 1.4 shows the initial synthetic 

route which would yields the necessary carboxylic acid (1.101). This route was modeled 

after published literature126 led by Chennakesava Reddy. The initial step proceeds 

through a -C(sp3)-H arylation of 3-methylthiophene-2-carbaldehyde utilizing L-valine as 

a transient ligand directing group to generate 1.99 in 75% yields. Attempts to cyclize 

and produce naphtho[2,3-b]thiophene (1.100) were modeled after Yu’s paper published 

in Advanced Synthesis & Catalysis127. The reaction utilizes boron trifluoride etherate 

(BF3Et2O) as a catalyst in an aza-Friedel-Crafts. Unfortunately, published conditions 

failed to yield the desired product 1.100. Additional efforts of altering solvent, time, 

catalyst, and Lewis acid were fruitless. 
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Scheme 1.4 Initial route towards SCP1 inhibitor 1.98  

 The previous approach failed to produce naphtho[2,3-b]thiophene (1.100) due to 

cyclization of the internal phenyl ring. The revised synthetic scheme depicted in 

Scheme 1.5 circumvents this by starting with naphthalene-2-thiol and focusing on the 

formation of the thiophene. An SN2 reaction between naphthalene-2-thiol and 2-bromo-

1,1-diethoxyethane generates the thioether 1.104 in 92% yields. Subsequent acid 

catalyzed acetal deprotection and intermolecular cyclization generates naphtho[2,3-

b]thiophene (1.100). Introduction of CO2 to the lithiated naphtho[2,3-b]thiophene 

generates a carboxylic acid ortho to the thioether producing 1.101 in 44% yield. 

Activation of the carboxylic acid by HATU and subsequent amide formation with tert-

butyl (3-aminopropyl)carbamate generates intermediate 1.102. Cleavage of the 

carbamate followed by amide coupling with 2'-methoxy-[1,1'-biphenyl]-4-carboxylic acid 

yields 1.103. Oxidation of the sulfide to sulfone by DMDO completes the synthesis of 

the SCP1 inhibitor 1.98. Unfortunately, SCP1 retained full activity after incubation with 

1.98 for 5 hours. Thus far attachment of any substituents along the phenyl ring of the 

benzothiophene has reduced potency compared to the lead compound 1aj. It is 
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possible that SCP1’s binding site cannot accommodate substitutions on the 

benzothiophene warhead due to steric clash.  

 

Scheme 1.5 Synthetic route that affords SCP1 inhibitor 1.98 
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Reactivity Study  

While covalent inhibitors can offer advantageous properties compared to 

reversible inhibitors like an increased biochemical efficiency, lower dose sizes 

potentially leading to increased therapeutic index, potential to overcome drug 

resistance, and longer duration of action there are risks128. Off target modification 

resulting from high reactivity or lack of specificity can lead to immunotoxicity and 

idiosyncratic hypersensitivity129-131. To mitigate these risks, it is imperative to balance the 

chemical reactivity and specificity to the intended target. A second strategy to avoid 

liabilities associated with covalent modification is to incorporate reversible covalent 

electrophile into the inhibitor.  

 Dually activated Michael acceptors have received much attention and 

development for their reversible covalent properties. The -cyanoacrylamide is one of 

the first cysteine selective reversible warheads to receive research efforts toward 

illuminating kinetic reactivity and reversibility. A study conducted by Jack Taunton and 

coworkers132 shows that altering steric mass of the -position and electron withdrawing 

groups at the -position of acrylonitriles allows the capability to tune reversibility.  

132 

Figure 1.22 Tunable reversibility of -heteroaromatic acrylonitriles 
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Illuminating the electrophilic reactivity and reversibility of reversible covalent warheads 

is an essential step in the optimization process. While kinetic measurements give insight 

on general reactivity trends, they do not always transfer as expected when applied in 

biological settings. 

Literature103 produced by Pfizer describes two convenient methods to measure 

the reactivity of covalent reactive groups. The first method uses the ReactArray 

automated reaction system in combination with high pressure liquid chromatography / 

mass spectrometry (HPLC/MS) while the second method utilizes nuclear magnetic 

resonance (NMR) to monitor the reaction progress. Plotting the natural log of the 

consumption of starting material as a function of time generates the rate information 

kpsudo1st which can be used to calculate half-life (t1/2)133. 

 

ln([𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑒]) = −𝑘𝑝𝑠𝑒𝑢𝑑𝑜1𝑠𝑡  𝑥 𝑡 + ln([𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑒0)] 

 

𝑡1/2 =  
ln (2)

𝑘𝑝𝑠𝑒𝑢𝑑𝑜1𝑠𝑡
 

Scheme 1.6 shows an example reaction between glutathione (GSH) and a sample 

covalent reactive group (CRG) as well as the reaction conditions used to determine 

kinetic data by NMR. Reaction conditions as close to physiological conditions were 

used. Glutathione (GSH) is the model nucleophile because it is a biologically relevant 

thiol containing compound. A phosphate buffered solution (PBS) maintained the 

physiological pH (7.4) within the aqueous environment. Noteworthy is the necessity for 
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a cosolvent and elevated temperature to aid in solubility. Manipulation of initial 

concentration of reactants allows the use of pseudo 1st order kinetics.  

103 

Scheme 1.6 Pfizer’s reaction with standard NMR conditions used to generate rate information (kpsuedo1st 

and t1/2) 

To better understand the reactivity and reversibility of the benzothiophene CRG, 

a reactivity study was conducted based on Taunton and Pfizer’s NMR based kinetic 

studies. Scheme 1.7 shows the general reaction used to generate the pseudo first order 

rate constant and half-life data. The exact reaction conditions and procedure used in the 

Pfizer study was attempted however failed to produce reproducible data due to solubility 

issues. 

 

Scheme 1.7 General reaction scheme used to generate rate information (kpsuedo1st and t1/2) 

As the aqueous solubility of the benzothiophene compounds is less than Pfizer’s 

compounds, alteration of the reaction conditions were necessary to generate reliable 

data. Table 1.1 shows the evolution of reaction parameters leading to the optimized 

conditions used to generate kinetic data. In conditions 1 and 2 high equivalents of 
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DMSO-d6 were used to ensure the solubility of the reactants however caused the 

phosphate salts to precipitate. Additionally, the amount of phosphate buffered solution 

(PBS) used does not fit pseudo first order kinetic parameters. Conditions 3 and 4 used 

less equivalents of DMSO-d6 solving the PBS precipitation issue and brings reaction 

conditions closer to physiological conditions however these sample failed to lock in the 

NMR. Conditions 5 and 6 solved locking problems however led to the precipitation of 

reactants. Decreasing D2O, seen in conditions 7 and 8, allowed reactants to remain 

soluble however led to locking problems. Using equal volume of DMSO and PBS shows 

ideal solubility properties to solubilize both reactants and phosphate salts. Conditions 9 

show the optimized parameters allowing the generation of kinetic data. Equal volume of 

DMSO-d6 and 0.2M PBS made with H2O contained sufficient buffer capacity and 

solubility properties.  

Table 1.1 Optimization conditions for the generation of rate information (kpsuedo1st and t1/2) 

 

 

Scheme 1.8 General reaction scheme and conditions used to generate rate information (kpsuedo1st and t1/2) 

Condition DMSO-d6 DMSO D2O- 0.2M PBS H2O- 0.2M PBS Issue

1 4 1 buffer capacity & precipitation

2 3 1 buffer capacity & precipitation

3 2 1 NMR locking

4 1 1 NMR locking

5 1 4 precipitation

6 1 3 precipitation

7 1 2 NMR locking

8 1 1 NMR locking

9 1 1
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The example reaction with standard conditions are displayed in Scheme 1.8. A 

final concentration of 12mM of thioether adduct was chosen to ensure the conditions fall 

under pseudo-first-order kinetics. Excess iodoacetamide was included as a thiol trap 

ensuring the eliminated 2-hydroxyethane-1-thiolate did not undergo a thia-Micheal 

reaction. A final concentration of 100mM PBS is significantly higher than the thioether to 

ensure the conditions fall under pseudo-first-order-kinetics. The PBS was made to pH 

7.4 mimicking physiological conditions. A 1:1 volume ratio of DMSO-d6 and PBS 

ensured sufficient solubility for all reaction components allowing reaction temperatures 

to be lowered to 30C.  

 A thioether adduct stock was initially prepared as a 200mM solution in DMSO-d6.  

A iodoacetamide stock was initially prepared as a 500mM solution in DMSO-d6.  A 30L 

aliquot of the concentrated thioether stock and 20L aliquot of the concentrated 

iodoacetamide stock was pipetted into a 5mm outside diameter NMR tube. To this was 

added 200L DMSO-d6 and 250L of 200mM potassium phosphate buffer (pH = 7.4). 

The reaction mixture was vortexed thoroughly and placed in a Bruker 600 MHz NMR 

spectrometer (Bruker BioSpin Corporation, Bilerica, MA) controlled with Topspin V3.6.5 

equipt with a 5mm Broadband inverse detection probe. The probe temperature was set 

to 30C. 1D spectra were recorded employing water suppression by using excitation 

sculpting (zgesgp) with a sweep width of 7184 and a total recycle time of 3.3 s. The 

resulting time-averaged free induction decays were transformed using an exponential 

line broadening of 0.3 Hz to enhance signal-to-noise. The water signal at 4.45 ppm was 

placed on resonance. Each acquisition consisted of 8 dummy scans followed by 64 

scans for a total acquisition time of 3 min and 49 s. Most analyses consisted of 10 
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successive acquisitions every 10 min over 1.5 h.  Pseudo-first-order rate contants were 

determined by plotting the natural log of the consumption of thioether adduct, as defined 

by area of given resonance from a thioether adduct vs time.  

 In order to characterize and better understand the reversibility of the thioether 

adduct a subset of compounds incorporating electron altering substituents on the 

aromatic ring were synthesized. Scheme 1.9 shows the synthetic pathway used to 

generate the compounds used in the NMR based kinetic experiments.  

 

Scheme 1.9 Synthetic pathway used to generate thioether adducts used in kinetic study 

To form the benzothiophene scaffold a domino Aldol-SNAR reaction takes place 

between a 2-fluoroaldehyde and methyl 2-mercaptoacetate. The newly formed 

substituted benzothiophene, like 1.109, is saponified resulting in a carboxylic acid 

(1.110). Amide formation using HATU and tert-butyl (3-aminopropyl)carbamate forms 

the carbamate containing compound (1.111) in high yields. Sulfide oxidation with DMDO 
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quickly produces the sulfone intermediate (1.112). A thia-Micheal reaction using 2-

mercaptoethanol as the thiol source results in a thioether adduct (1.113). 
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Table 1.2 Experimental rate information (kpsuedo1st and t1/2) 
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 Utilizing the previously described experimental procedure yielded the rate 

information displayed in Table 1.2. Consistent trends are seen not only with respect to 

the electron altering nature of the substituent, but also its position on the aromatic ring. 

Half-life data shows that strong electron donating groups, such as the methoxy and 

methyl groups, decrease the half-life and speed up the elimination of 2-hydroxyethane-

1-thiolate when compared to the parent compound 1.131. Figure 1.23 helps visually 

explain the experimental trend. After a base deprotonates the acidic proton, electron 

density is spread between the sulfone and amide. Incorporation of electron withdrawing 

substituents would help stabilize this resonance while electron donating substituents 

would destabilize resonance and increase the rate of elimination.  

 

Figure 1.23 Resonance between the sulfone and amide 
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Conclusion 

Described herein is the synthesis of nonreversible and reversible covalent 

inhibitors targeting the SCP1 phosphatase. Control of this regulatory enzyme enables 

the modulation of the transcription factor REST and therefore glioblastoma. Guided by a 

structure-based drug design approach over 220 final compounds were synthesized and 

tested generating a broad understanding of their structure-activity relationship. 

Incorporation of an additional electron-rich aromatic ring to the hydrophobic region of 

the molecule, determination of the optimal linker chain length, and use of a reversible 

covalent dually activated benzo[b]thiophene 1,1-dioxide warhead led to compound 1aj 

whose 𝐾𝐼 is 0.6 M and 
𝑘𝑖𝑛𝑎𝑐𝑡

𝐾𝑖
  is 1383 min-1M-1. An NMR based kinetic study on a thia-

Micheal reaction using a benzo[b]thiophene 1,1-dioxide warhead showed that 

incorporation of electron-donating substituents promotes the reverse reaction 

(elimination) faster than electron-withdrawing substituents supported by half-life data. 
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Experimental Section 

General Information 

All reactions were performed in flame- or oven-dried glassware sealed with 

rubber septa and under a nitrogen atmosphere unless otherwise indicated. Air- and/or 

moisture-sensitive liquids or solutions were transferred by cannula or syringe. Organic 

solutions were concentrated by rotary evaporator at 30 millibars with the water bath 

heated to not more than 40°C unless specified otherwise. Tetrahydrofuran (THF), 

dichloromethane (DCM), toluene (PheMe), diethyl ether (Et2O) was purified with a Pure-

Solve MD-5 Solvent Purification System (Innovative Technology). Acetonenitrile (ACN, 

99.9%, anhydrous) was purchased from FisherScientific. N,N,-Dimethylformamide 

(DMF, 99.8%, anhydrous) was purchased from Acros. Ethanol (EtOH, 200 proof, 

absolute) and methanol (MeOH, 99.8%, anhydrous) were purchased from Sigma-

Aldrich. Analytical thin-layer chromatography (TLC) was carried out using commercial 

silica plates (silica gel 60, F254, Sigma-Aldrich) and was visualized by UV lamp, ceric 

ammonium molybdate (CAM), aqueous potassium permanganate (KMnO4), or in an 

iodine (I2) chamber. Nuclear Magnetic Resonance (NMR) spectra were collected at 298 

K on a Bruker Avance III spectrometer (1H NMR at 600 MHz; 13C NMR 151 MHz) fitted 

with a 1.7 mm or 5 mm triple resonance cryoprobe with z-axis gradients. All spectra 

were taken in Methanol-d4 with shifts reported in parts per million (ppm) referenced to 

the proton or carbon of the solvent (3.31 or 49.00, respectively). All spectra were taken 

in Chloroform-d with shifts reported in parts per million (ppm) referenced to the proton or 

carbon of the solvent (7.26 or 77.0, respectively). All spectra were taken in Dimethyl 
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sulfoxide-d6 with shifts reported in parts per million (ppm) referenced to the proton or 

carbon of the solvent (2.50 or 39.5, respectively). All spectra were taken in Benzene-d6 

with shifts reported in parts per million (ppm) referenced to the proton or carbon of the 

solvent (7.16 or 128.1, respectively). Coupling constants are reported in Hertz (Hz). 

Data for 1H-NMR are reported as follows: chemical shift (ppm, reference to protium; s = 

single, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet, 

coupling constant (Hz), and integration). 
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(Z)-4-oxo-4-((3-((4-(trifluoromethoxy)phenyl)sulfonamido)propyl)amino)but-2-

enoic acid (1.1) 

To a stirring solution of N-(3-aminopropyl)-4-

(trifluoromethoxy)benzenesulfonamide (600 mg, 1 Eq, 2.01 mmol)(1f) and triethylamine 

(611 mg, 841 μL, 3 Eq, 6.03 mmol) in DMF (4 mL) at 23 °C was added solid furan-2,5-

dione (986 mg, 5 Eq, 10.1 mmol) and stirred for 4 hour. Upon completion the reaction 

was diluted with EtOAc (20mL), washed with DI water (4x20mL), brine (20mL), dried by 

Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by 

silica gel chromatography (DCM:MeOH (0-20%)) to yield 1.1 (0.68 g, 1.7 mmol, 85 %). 

 

Rf= 0.07 (DCM:MeOH (8:2)) 1H NMR (599 MHz, MeOD) δ 7.96 (d, J = 8.8 Hz, 2H), 7.48 

(d, J = 8.5 Hz, 2H), 2.94 (t, J = 6.8 Hz, 2H), 1.73 (p, J = 6.9 Hz, 2H).  
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N-(3-((4-(trifluoromethoxy)phenyl)sulfonamido)propyl)acrylamide (1.2) 

To a stirring solution of N-(3-aminopropyl)-4-

(trifluoromethoxy)benzenesulfonamide (100 mg, 1 Eq, 335 μmol)(1f) and triethylamine 

(170 mg, 234 μL, 5 Eq, 1.68 mmol) in DCM (5 mL) at 0 °C was added neat acryloyl 

chloride (36.4 mg, 32.5 μL, 1.2 Eq, 402 μmol) dropwise. The reaction was allowed to 

come to 23 °C and stir for 1 hour after which time the reactants had been consumed as 

seen by TLC. The reaction was quenched by the addition of DI water (5mL), washed 

with brine (5mL), dried by MgSO4, filtered, and concentrated under reduced pressure. 

The residue was purified by silica gel chromatography (DCM:MeOH (0-5%)) to yield 1.2 

(0.11 g, 0.32 mmol, 95 %). 

 

Rf= 0.72 (DCM:MeOH (9:1)) 1H NMR (599 MHz, CDCl3) 7.92 (d, J = 8.8 Hz, 2H), 7.31 

(d, J = 8.3 Hz, 2H), 6.26 (d, J = 16.0 Hz, 1H), 6.04 (dd, J = 16.9, 10.3 Hz, 1H), 5.92 (t, J 

= 6.2 Hz, 1H), 5.79 (s, 1H), 5.67 (d, J = 11.2 Hz, 1H), 3.45 (dd, J = 12.2, 6.5 Hz, 2H), 

2.95 (dd, J = 12.2, 6.4 Hz, 2H), 1.74 – 1.68 (m, 2H).  
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(E)-N-(3-((4-(trifluoromethoxy)phenyl)sulfonamido)propyl)but-2-enamide (1.3) 

A solution of (E)-but-2-enoic acid (6.9 mg, 1.2 Eq, 80 μmol), 3-

(((ethylimino)methylene)amino)-N,N-dimethylpropan-1-amine, HCl (18 mg, 1.4 Eq, 94 

μmol), and triethylamine (20 mg, 28 μL, 3 Eq, 0.20 mmol) was stirred in DMF (3 mL) for 

15 min after which time N-(3-aminopropyl)-4-(trifluoromethoxy)benzenesulfonamide(1f) 

(20 mg, 1 Eq, 67 μmol) was added and allowed to react for 14 hour at 23 °C. Upon 

completion the reaction was diluted with EtOAc (15mL), washed with DI water 

(4x15mL), brine (15mL), dried by Na2SO4, filtered, and concentrated under reduced 

pressure. The residue was purified by silica gel chromatography (DCM:MeOH (0-4%)) 

to yield 1.3 (20 mg, 55 μmol, 82 %). 

 

Rf= 0.30 (DCM:MeOH (9:1)) 1H NMR (599 MHz, CDCl3) δ 7.93 (d, J = 8.8 Hz, 2H), 7.31 

(d, J = 8.5 Hz, 2H), 6.82 (dq, J = 13.8, 6.9 Hz, 1H), 6.05 (t, J = 6.7 Hz, 1H), 5.73 (dd, J = 

15.1, 1.6 Hz, 1H), 5.57 (s, 1H), 3.42 (dd, J = 12.2, 6.5 Hz, 2H), 2.93 (dd, J = 12.1, 6.5 

Hz, 2H), 1.85 (dd, J = 6.9, 1.5 Hz, 3H), 1.69 (dt, J = 11.9, 6.0 Hz, 2H).  
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methyl (Z)-4-oxo-4-((3-((4-

(trifluoromethoxy)phenyl)sulfonamido)propyl)amino)but-2-enoate (1.5) 

General Procedure A: Fischer Esterification 

To RBF was added 1.1 (17 mg, 1 Eq, 43 μmol), MeOH (4 mL), and a catalytic 

amount of sulfuric acid. The RBF was fitted with a reflux condenser and the stirring 

reaction was heated to 70 °C for 14 hour. After which time the reaction was evaporated 

to dryness, redissolved in EtOAc (5mL), washed with 1M NaHCO3 (5mL), brine (5mL), 

dried with Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (DCM:MeOH (0-4%)) to yield 1.15 (15 mg, 36 

μmol, 84 %). 

 

1H NMR (599 MHz, MeOD) δ 7.97 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 6.37 (d, 

J = 12.0 Hz, 1H), 6.16 (d, J = 12.0 Hz, 1H), 3.72 (s, 3H), 3.27 (t, J = 6.7 Hz, 2H), 2.96 (t, 

J = 6.9 Hz, 2H), 1.72 (h, J = 7.0 Hz, 2H).  
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N1,N1-dimethyl-N4-(3-((4-

(trifluoromethoxy)phenyl)sulfonamido)propyl)fumaramide (1.6) 

A solution of 1.9 (15 mg, 1 Eq, 38 μmol), EDC (10 mg, 1.4 Eq, 53 μmol), and 

triethylamine (11 mg, 16 μL, 3 Eq, 0.11 mmol) was stirred in DMF (3 mL) for 15 in after 

which time dimethylamine (3.4 mg, 38 μL, 2 molar, 2 Eq, 76 μmol) was added and 

allowed to react for 14 hour at 23 °C. Upon completion the reaction was diluted with 

EtOAc (15mL), washed with DI water (4x15mL), brine (15mL), dried by Na2SO4, filtered, 

and concentrated under reduced pressure. The residue was purified by silica gel 

chromatography (DCM:MeOH (0-10%)) to yield 1.6 (13 mg, 30 μmol, 79 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.92 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 14.6 Hz, 1H), 7.32 (d, 

J = 8.3 Hz, 2H), 6.85 (d, J = 14.9 Hz, 1H), 6.42 (s, 1H), 5.83 (s, 1H), 3.46 (dd, J = 12.5, 

6.3 Hz, 2H), 3.15 (s,3H), 3.04 (s, 3H), 2.98 (dd, J = 12.1, 6.1 Hz, 2H), 1.76 – 1.68 (m, 

2H).  
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methyl (E)-4-oxo-4-((3-((4-

(trifluoromethoxy)phenyl)sulfonamido)propyl)amino)but-2-enoate (1.7) 

General Procedure A: Fischer Esterification 

 

1H NMR (599 MHz, CDCl3) δ 7.92 (d, J = 8.8 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 6.86 (d, 

J = 15.3 Hz, 1H), 6.79 (d, J = 15.3 Hz, 1H), 6.23 (s, 1H), 5.68 (t, J = 6.6 Hz, 1H), 3.80 

(s, 3H), 3.48 (dd, J = 12.4, 6.4 Hz, 2H), 2.96 (dd, J = 12.3, 6.4 Hz, 2H), 1.78 – 1.72 (m, 

2H).  
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ethyl (E)-4-oxo-4-((3-((4-(trifluoromethoxy)phenyl)sulfonamido)propyl)amino)but-

2-enoate (1.8) 

General Procedure A: Fischer Esterification 

 

1H NMR (599 MHz, CDCl3) δ 7.92 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 6.84 (d, 

J = 15.3 Hz, 1H), 6.78 (d, J = 15.3 Hz, 1H), 6.11 (t, J = 5.7 Hz, 1H), 5.66 (t, J = 6.6 Hz, 

1H), 4.26 (q, J = 7.1 Hz, 2H), 3.48 (dd, J = 12.3, 6.4 Hz, 2H), 2.96 (dd, J = 12.2, 6.4 Hz, 

2H), 1.78 – 1.71 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H).  
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(E)-4-oxo-4-((3-((4-(trifluoromethoxy)phenyl)sulfonamido)propyl)amino)but-2-

enoic acid (1.9) 

Furan-2,5-dione (0.7 g, 1 Eq, 7 mmol) and 1f (2 g, 1 Eq, 7 mmol) were dissolved 

in EtOAc (100 mL) and were vigorously stirred for 2 hours. Then thiourea (0.04 g, .08 

Eq, 0.5 mmol), and methanesulfonic acid (0.05 g, 0.03 mL, .07 Eq, 0.5 mmol) were 

added and the reaction was refluxed for 2 hours. The mixture was cooled, washed with 

brine (100 mL), dried by Na2SO4, and concentrated in vacuo. The residue was purified 

by silica gel chromatography (DCM:MeOH (0-20%)) to yield 1.9 (2 g, 6 mmol, 83 %). 

 

Rf= 0.72 (DCM:MeOH (9:1)) 1H NMR (599 MHz, MeOD) δ 7.97 (d, J = 8.8 Hz, 2H), 7.49 

(d, J = 8.3 Hz, 2H), 6.94 (d, J = 15.5 Hz, 1H), 6.68 (d, J = 15.5 Hz, 1H), 3.32 – 3.30 (m, 

2H), 2.93 (t, J = 6.9 Hz, 2H), 1.73 (p, J = 6.9 Hz, 2H).  
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(Z)-4-((3-([1,1'-biphenyl]-4-carboxamido)propyl)amino)-4-oxobut-2-enoic 

acid (1.10) 

To a stirring solution of N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, HCl 

(550 mg, 1 Eq, 1.89 mmol) and triethylamine (574 mg, 791 μL, 3 Eq, 5.67 mmol) in 

DCM (10 mL) at 23 °C was added solid furan-2,5-dione (371 mg, 2 Eq, 3.78 mmol) and 

stirred for 4 hours. Upon completion the reaction was washed with DI water (10mL), 

brine (10mL), dried by MgSO4, filtered, and concentrated under reduced pressure. The 

residue was purified by silica gel chromatography (DCM:MeOH (0-20%)) to yield 1.10 

(0.57 g, 1.6 mmol, 86 %). 

 

1H NMR (599 MHz, MeOD) δ 7.91 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.66 (d, 

J = 7.4 Hz, 2H), 7.46 (t, J = 7.7 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 6.42 (d, J = 12.6 Hz, 

1H), 6.25 (d, J = 12.6 Hz, 1H), 3.48 (t, J = 6.8 Hz, 2H), 3.41 (t, J = 6.8 Hz, 2H), 1.90 (p, 

J = 6.8 Hz, 2H).  
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N-(3-([1,1'-biphenyl]-4-carboxamido)propyl)-6-fluoropicolinamide (1.11) 

A solution of 2-fluoronicotinic acid (36 mg, 1.5 Eq, 0.26 mmol), HATU (0.13 g, 2 

Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were stirred in DMF (3 

mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, HCl 

(50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. Upon completion the 

reaction was diluted with EtOAc (15mL), washed with DI water (4x15mL), brine (15mL), 

dried by Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (Hex:EtOAc (75-25%)) to yield 1.11 (60 mg, 0.16 

mmol, 93 %). 

 

Rf= 0.53 (DCM:MeOH (9:1)) 1H NMR (599 MHz, CDCl3) δ 8.58 (ddd, J = 9.7, 7.6, 2.0 

Hz, 1H), 8.35 (dd, J = 3.2, 1.4 Hz, 1H), 7.95 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 

7.62 (dd, J = 8.1, 0.9 Hz, 2H), 7.47 (t, J = 7.7 Hz, 2H), 7.41 – 7.35 (m, 3H), 7.25 (s, 1H), 

3.65 (dd, J = 12.0, 6.1 Hz, 2H), 3.57 (dd, J = 12.2, 6.2 Hz, 2H), 1.93 – 1.87 (m, 

2H). LRMS: m/z: [M+H]+ Calcd for [C22H21FN3O2]+ Theo mass: 378.16 ; Found: 378.30 
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N-(3-([1,1'-biphenyl]-4-carboxamido)propyl)-2,6-difluoronicotinamide (1.12) 

A solution of 2,6-difluoronicotinic acid (29 mg, 1.5 Eq, 0.18 mmol), HATU (92 mg, 

2 Eq, 0.24 mmol), and DIPEA (62 mg, 84 μL, 4 Eq, 0.48 mmol) were stirred in DMF (3 

mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, HCl 

(35 mg, 1 Eq, 0.12 mmol) which was stirred at 23 °C for 14 hour. Upon completion the 

reaction was diluted with EtOAc (15mL), washed with DI water (4x15mL), brine (15mL), 

dried by Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (Hex:EtOAc (75-25%)) to yield 1.12 (43 mg, 0.11 

mmol, 90 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.68 (dd, J = 17.2, 8.1 Hz, 1H), 7.93 (d, J = 8.3 Hz, 2H), 

7.68 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 7.5 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.4 

Hz, 1H), 7.36 (s, 1H), 7.12 (s, 1H), 6.98 (dd, J = 8.2, 2.6 Hz, 1H), 3.63 (dd, J = 12.0, 6.1 

Hz, 2H), 3.58 (dd, J = 12.1, 6.2 Hz, 2H), 1.92 – 1.87 (m, 2H).  
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N-(3-([1,1'-biphenyl]-4-carboxamido)propyl)-2-cyanoisonicotinamide (1.13) 

A solution of 2-cyanoisonicotinic acid (38 mg, 1.5 Eq, 0.26 mmol),HATU (0.13 g, 

2 Eq, 0.34 mmol)undefined, and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol)undefined 

were stirred in DMF (5 mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-

biphenyl]-4-carboxamide, HCl (50 mg, 1 Eq, 0.17 mmol)undefined which was stirred at 

23 °C for 14 hour. Upon completion the reaction was diluted with EtOAc (20mL), 

washed with DI water (4x20mL), brine (20mL), dried by Na2SO4, filtered, and 

concentrated under reduced pressure. The residue was purified by silica gel 

chromatography (DCM:MeOH (0-2%)) to yield 1.13 (57 mg, 0.15 mmol, 86 %) 

 

Rf= 0.31 (DCM:MeOH (9.5:0.5)) 1H NMR (599 MHz, CDCl3) δ 8.88 (d, J = 5.0 Hz, 1H), 

8.44 (s, 1H), 8.28 (s, 1H), 8.06 (dd, J = 5.0, 1.5 Hz, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.71 

(d, J = 8.3 Hz, 2H), 7.62 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7.6 Hz, 2H), 7.41 (t, J = 7.4 Hz, 

1H), 6.64 (t, J = 6.2 Hz, 1H), 3.65 (dd, J = 12.0, 6.4 Hz, 2H), 3.56 (dd, J = 11.8, 6.1 Hz, 

2H), 1.91 – 1.85 (m, 2H).  
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N-(3-([1,1'-biphenyl]-4-carboxamido)propyl)-2,6-dichloroisonicotinamide (1.14) 

A solution of 2,6-dichloroisonicotinic acid (50 mg, 1.5 Eq, 0.26 mmol),HATU (0.13 

g, 2 Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were stirred in DMF 

(5 mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, 

HCl (50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. Upon completion 

the reaction was diluted with EtOAc (20mL), washed with DI water (4x20mL), brine 

(20mL), dried by Na2SO4, filtered, and concentrated under reduced pressure. The 

residue was purified by silica gel chromatography (DCM:MeOH (0-2%)) to yield 1.14 (67 

mg, 0.16 mmol, 91 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.27 (t, J = 5.4 Hz, 1H), 7.90 (d, J = 8.3 Hz, 2H), 7.79 (s, 

2H), 7.68 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 7.4 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.40 (t, J 

= 7.3 Hz, 1H), 6.90 (t, J = 6.3 Hz, 1H), 3.61 (dd, J = 12.0, 6.3 Hz, 2H), 3.54 (dd, J = 

11.8, 6.1 Hz, 2H), 1.89 – 1.83 (m, 2H).  
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N-(3-cinnamamidopropyl)-[1,1'-biphenyl]-4-carboxamide (1.15) 

A solution of cinnamic acid (38 mg, 1.5 Eq, 0.26 mmol), HATU (0.13 g, 2 Eq, 

0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were stirred in DMF (5 mL) 

for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, HCl (50 

mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. Upon completion the 

reaction was diluted with EtOAc (20mL), washed with DI water (4x20mL), brine (20mL), 

dried by Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (DCM:MeOH (0-2%)) to yield 1.15 (59 mg, 0.15 

mmol, 89 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.97 (d, J = 8.3 Hz, 2H), 7.70 – 7.64 (m, 3H), 7.61 (d, J = 

7.2 Hz, 2H), 7.52 (dd, J = 7.5, 1.7 Hz, 2H), 7.46 (t, J = 7.7 Hz, 2H), 7.40 – 7.34 (m, 4H), 

6.46 (d, J = 15.6 Hz, 1H), 6.39 (t, J = 6.1 Hz, 1H), 3.57 (dd, J = 11.9, 6.2 Hz, 2H), 3.53 

(dd, J = 11.9, 6.3 Hz, 2H), 1.85 – 1.79 (m, 2H).  
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N-(3-(2-chloroacetamido)propyl)-[1,1'-biphenyl]-4-carboxamide (1.16) 

A solution of 2-chloroacetic acid (24 mg, 1.5 Eq, 0.26 mmol), HATU (0.13 g, 2 

Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol)were stirred in DMF (5 

mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, HCl 

(50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. Upon completion the 

reaction was diluted with EtOAc (20mL), washed with DI water (4x20mL), brine (20mL), 

dried by Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (DCM:MeOH (0-2%)) to yield 1.16 (38 mg, 0.12 

mmol, 67 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.85 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H), 7.55 (d, 

J = 7.3 Hz, 2H), 7.40 (t, J = 7.7 Hz, 2H), 7.32 (t, J = 7.3 Hz, 1H), 7.14 (s, 1H), 6.99 (s, 

H), 4.04 (s, 2H), 3.47 (dd, J = 12.2, 6.2 Hz, 2H), 3.40 (dd, J = 12.3, 6.4 Hz, 2H), 1.77 – 

1.72 (m, 2H).  
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N-(3-acrylamidopropyl)-[1,1'-biphenyl]-4-carboxamide (1.17) 

To a stirring solution of N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, HCl 

(100 mg, 1 Eq, 344 μmol) and triethylamine (104 mg, 144 μL, 3 Eq, 1.03 mmol) in DCM 

(10 mL) at 0 °C was added neat acryloyl chloride (46.7 mg, 41.7 μL, 1.5 Eq, 516 μmol) 

dropwise. The reaction was allowed to come to 23 °C and stir for 1 hour after which time 

the reactants had been consumed as seen by TLC. The reaction was quenched by the 

addition of DI water (10mL), washed with brine (10mL), dried by MgSO4, filtered, and 

concentrated under reduced pressure. The residue was purified by silica gel 

chromatography (DCM:MeOH (0-3%)) to yield 1.17 (99 mg, 0.32 mmol, 93 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.95 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.62 (d, 

J = 7.6 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.29 (s, 1H), 6.34 (dd, 

J = 17.0, 1.1 Hz, 1H), 6.17 (dd, J = 17.0, 10.3 Hz, 1H), 5.69 (dd, J = 10.4, 1.1 Hz, 1H), 

3.53 (dd, J = 12.1, 6.2 Hz, 2H), 3.47 (dd, J = 12.3, 6.6 Hz, 2H), 1.83 – 1.74 (m, 2H).  
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N-(3-(2-cyanoacetamido)propyl)-[1,1'-biphenyl]-4-carboxamide (1.18) 

A solution of 2-cyanoacetic acid (329 mg, 1.5 Eq, 3.87 mmol), HATU (1.96 g, 2 

Eq, 5.16 mmol), and DIPEA (1.33 g, 1.80 mL, 4 Eq, 10.3 mmol)were stirred in DMF (20 

mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, HCl 

(750 mg, 1 Eq, 2.58 mmol) which was stirred at 23 °C for 14 hour. Upon completion the 

reaction was diluted with EtOAc (80mL), washed with DI water (4x80mL), brine (80mL), 

dried by Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (DCM:MeOH (0-4%)) to yield 1.18 (0.72 g, 2.2 

mmol, 87 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.88 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.62 (d, 

J = 7.2 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 7.17 (s, 1H), 6.74 (s, 

2H), 3.57 (dd, J = 12.2, 6.3 Hz, 2H), 3.45 – 3.39 (m, 2H), 1.84 – 1.76 (m, 2H).  
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ethyl (Z)-4-((3-([1,1'-biphenyl]-4-carboxamido)propyl)amino)-4-oxobut-2-

enoate (1.19) 

General Procedure A: Fischer Esterification 

 

1H NMR (599 MHz, CDCl3) δ 8.37 (s, 1H), 7.95 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 

2H), 7.61 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.6 Hz, 3H), 7.38 (t, J = 7.4 Hz, 1H), 6.37 (d, J 

= 12.9 Hz, 1H), 6.16 (d, J = 12.9 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.54 (dd, J = 12.1, 

6.2 Hz, 2H), 3.49 (dd, J = 12.3, 6.3 Hz, 2H), 1.86 – 1.81 (m, 2H), 1.31 (t, J = 7.1 Hz, 

3H).  
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isopropyl (Z)-4-((3-([1,1'-biphenyl]-4-carboxamido)propyl)amino)-4-oxobut-2-

enoate (1.20) 

General Procedure A: Fischer Esterification 

 

1H NMR (599 MHz, CDCl3) δ 8.48 (s, 1H), 7.96 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 

2H), 7.61 (d, J = 7.3 Hz, 2H), 7.50 (s, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.4 Hz, 

1H), 6.35 (d, J = 13.0 Hz, 1H), 6.14 (d, J = 13.0 Hz, 1H), 5.12 – 5.04 (m, 1H), 3.54 (dd, 

J = 12.1, 6.1 Hz, 2H), 3.49 (dd, J = 12.2, 6.3 Hz, 2H), 1.87 – 1.80 (m, 2H), 1.30 (d, J = 

6.3 Hz, 6H).  
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N1-(3-([1,1'-biphenyl]-4-carboxamido)propyl)-N4,N4-diethylmaleamide (1.21) 

A solution of 1.10 (23.2 mg, 1 Eq, 65.8 μmol), HATU (37.6 mg, 1.5 Eq, 98.8 

μmol), and DIPEA (25.5 mg, 34.4 μL, 3 Eq, 198 μmol)were stirred in DMF (5 mL) for 15 

minutes before adding neat diethylamine (5.78 mg, 8.17 μL, 1.2 Eq, 79.0 μmol) which 

was stirred at 23 °C for 14 hour. Upon completion the reaction was diluted with EtOAc 

(20mL), washed with DI water (4x20mL), brine (20mL), dried by Na2SO4, filtered, and 

concentrated under reduced pressure. The residue was purified by silica gel 

chromatography (DCM:MeOH (0-10%)) to yield 1.21 (22 mg, 55 μmol, 83 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.72 (s, 1H), 7.98 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 

2H), 7.61 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.7 Hz, 1H), 6.44 (d, J 

= 13.0 Hz, 1H), 6.18 (d, J = 13.0 Hz, 1H), 3.48 (dd, J = 12.2, 5.9 Hz, 2H), 3.36 (q, J = 

7.1 Hz, 4H), 1.84 – 1.75 (m, 2H), 1.19 (t, J = 13.2, 7.0 Hz, 6H).  
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(Z)-N-(3-(4-oxo-4-(piperidin-1-yl)but-2-enamido)propyl)-[1,1'-biphenyl]-4-

carboxamide (1.22) 

A solution of 1.10 (22.9 mg, 1 Eq, 65.0 μmol), HATU (37.1 mg, 1.5 Eq, 97.5 

μmol), and DIPEA (25.2 mg, 34.0 μL, 3 Eq, 195 μmol) were stirred in DMF (5 mL) for 15 

minutes before adding neat piperidine (6.09 mg, 7.06 μL, 1.1 Eq, 71.5 μmol)which was 

stirred at 23 °C for 14 hour. Upon completion the reaction was diluted with EtOAc 

(20mL), washed with DI water (4x20mL), brine (20mL), dried by Na2SO4, filtered, and 

concentrated under reduced pressure. The residue was purified by silica gel 

chromatography (DCM:MeOH (0-10%)) to yield 1.22 (25 mg, 59 μmol, 91 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.20 (s, 1H), 7.97 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.3 Hz, 

5H), 7.63 (s, 2H), 7.60 (d, J = 7.7 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.3 Hz, 

1H), 6.43 (d, J = 12.8 Hz, 1H), 6.13 (d, J = 12.8 Hz, 1H), 3.63 – 3.57 (m, 2H), 3.48 (dd, 

J = 12.0, 6.1 Hz, 2H), 3.43 (dt, J = 11.0, 5.9 Hz, 4H), 1.78 (dt, J = 11.9, 6.1 Hz, 2H), 

1.64 (d, J = 4.9 Hz, 2H), 1.61 – 1.53 (m, 4H).  
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N1-(3-([1,1'-biphenyl]-4-carboxamido)propyl)-N4-phenylmaleamide (1.23) 

A solution of 1.10 (14.7 mg, 1 Eq, 41.7 μmol), HATU (23.8 mg, 1.5 Eq, 62.6 

μmol), and DIPEA (16.2 mg, 21.8 μL, 3 Eq, 125 μmol) were stirred in DMF (3 mL) for 15 

minutes before adding neat aniline (3.88 mg, 3.81 μL, 1 Eq, 41.7 μmol)which was 

stirred at 23 °C for 14 hour. Upon completion the reaction was diluted with EtOAc 

(15mL), washed with DI water (4x15mL), brine (15mL), dried by Na2SO4, filtered, and 

concentrated under reduced pressure. The residue was purified by silica gel 

chromatography (DCM:MeOH (0-10%)) to yield 1.23 (13 mg, 30 μmol, 71 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.98 (s, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.68 (t, J = 7.3 Hz, 

4H), 7.61 (d, J = 7.3 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.31 (t, J 

= 7.9 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 6.94 (t, J = 6.2 Hz, 1H), 6.28 (d, J = 13.4 Hz, 1H), 

6.23 (d, J = 13.4 Hz, 1H), 3.58 (dd, J = 12.1, 6.3 Hz, 2H), 3.47 (dd, J = 12.0, 6.2 Hz, 

2H), 1.85 (dt, J = 11.8, 6.1 Hz, 2H).  
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N-(3-methacrylamidopropyl)-[1,1'-biphenyl]-4-carboxamide (1.24) 

A solution of methacrylic acid (22 mg, 22 μL, 1.5 Eq, 0.26 mmol), HATU (98 mg, 

1.5 Eq, 0.26 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were stirred in DMF 

(5 mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, 

HCl (50 mg, 1 Eq, 0.17 mmol)which was stirred at 23 °C for 14 hour. Upon completion 

the reaction was diluted with EtOAc (15mL), washed with DI water (4x15mL), brine 

(15mL), dried by Na2SO4, filtered, and concentrated under reduced pressure. The 

residue was purified by silica gel chromatography (DCM:MeOH (0-5%)) to yield 1.24 (52 

mg, 0.16 mmol, 93 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.94 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.61 (d, 

J = 7.3 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 5.4 Hz, 1H), 

6.68 (s, 1H), 5.81 (s, 1H), 5.38 (s, 1H), 3.53 (dd, J = 12.0, 6.2 Hz, 2H), 3.45 (dd, J = 

12.0, 6.3 Hz, 2H), 2.02 (s, 3H), 1.78 (dt, J = 11.8, 6.0 Hz, 2H).  
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N-(3-propiolamidopropyl)-[1,1'-biphenyl]-4-carboxamide (1.25) 

A solution of propiolic acid (18 mg, 16 μL, 1.5 Eq, 0.26 mmol), HATU (0.13 g, 2 

Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol)were stirred in DMF (5 

mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, HCl 

(50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. Upon completion the 

reaction was diluted with EtOAc (15mL), washed with DI water (4x15mL), brine (15mL), 

dried by Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (DCM:MeOH (0-3%)) to yield 1.25 (46 mg, 0.15 

mmol, 87 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.83 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 7.53 (d, 

J = 7.4 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.4 Hz, 1H), 7.05 (s, 1H), 6.87 (s, 

1H), 3.48 (dd, J = 12.1, 6.2 Hz, 2H), 3.35 (dd, J = 12.2, 6.4 Hz, 2H), 2.77 (s, 1H), 1.75 – 

1.69 (m, 2H).  
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N-(3-(but-2-ynamido)propyl)-[1,1'-biphenyl]-4-carboxamide (1.26) 

A solution of but-2-ynoic acid (22 mg, 22 μL, 1.5 Eq, 0.26 mmol), HATU (0.13 g, 

2 Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were stirred in DMF 

(5 mL) for 15 minutes before adding NN-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, 

HCl (50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. Upon completion 

the reaction was diluted with EtOAc (15mL), washed with DI water (4x15mL), brine 

(15mL), dried by Na2SO4, filtered, and concentrated under reduced pressure. The 

residue was purified by silica gel chromatography (DCM:MeOH (0-3%)) to yield 1.26 (49 

mg, 0.15 mmol, 89 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.93 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.61 (d, 

J = 7.5 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.14 (s, 1H), 6.40 (s, 

1H), 3.54 (dd, J = 12.0, 6.2 Hz, 2H), 3.42 (dd, J = 12.1, 6.4 Hz, 2H), 1.96 (s, 3H), 1.80 – 

1.74 (m, 2H).  
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N-(3-(4-oxopentanamido)propyl)-[1,1'-biphenyl]-4-carboxamide (1.27) 

A solution of 4-oxopentanoic acid (30 mg, 26 μL, 1.5 Eq, 0.26 mmol), HATU 

(0.13 g, 2 Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were stirred 

in DMF (5 mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-

carboxamide, HCl (50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. 

Upon completion the reaction was diluted with EtOAc (15mL), washed with DI water 

(4x15mL), brine (15mL), dried by Na2SO4, filtered, and concentrated under reduced 

pressure. The residue was purified by silica gel chromatography (DCM:MeOH (0-5%)) 

to yield 1.27 (38 mg, 0.11 mmol, 63%). 

 

1H NMR (599 MHz, CDCl3) δ 7.93 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.61 (d, 

J = 7.3 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 7.34 (s, 1H), 6.27 (s, 

1H), 3.50 (dd, J = 12.1, 6.2 Hz, 2H), 3.38 (dd, J = 12.1, 6.3 Hz, 2H), 2.84 (t, J = 6.4 Hz, 

2H), 2.48 (t, J = 6.4 Hz, 2H), 2.19 (s, 3H), 1.74 (dt, J = 11.9, 6.0 Hz, 2H).  
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N-(3-(4-cyanobenzamido)propyl)-[1,1'-biphenyl]-4-carboxamide (1.28) 

A solution of 4-cyanobenzoic acid (38 mg, 1.5 Eq, 0.26 mmol), HATU (0.13 g, 2 

Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were stirred in DMF (5 

mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, HCl 

(50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. Upon completion the 

reaction was diluted with EtOAc (15mL), washed with DI water (4x15mL), brine (15mL), 

dried by Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (DCM:MeOH (0-5%)) to yield 1.28 (59 mg, 0.15 

mmol, 89 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.05 (d, J = 8.3 Hz, 2H), 7.90 (d, J = 8.3 Hz, 2H), 7.86 (s, 

1H), 7.76 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 7.4 Hz, 2H), 7.48 (t, J 

= 7.6 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 6.81 (s, 1H), 3.63 (dd, J = 12.0, 6.3 Hz, 2H), 3.57 

(dd, J = 11.8, 6.1 Hz, 2H), 1.89 – 1.83 (m, 2H).  
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N-(3-((2-oxo-2H-chromene)-6-sulfonamido)propyl)-[1,1'-biphenyl]-4-

carboxamide (1.29) 

To a stirring solution of N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, HCl (50 

mg, 1 Eq, 0.17 mmol) and DIPEA (67 mg, 90 μL, 3 Eq, 0.52 mmol) in DCM (5 mL) at 0 

°C was added 2-oxo-2H-chromene-6-sulfonyl chloride (63 mg, 1.5 Eq, 0.26 mmol) 

portion wise. After allowing the reaction to come to 23 °C slowly over 1 hour and 

monitoring for the consumption of reactants by TLC, the reaction was quenched with DI 

water (5mL), washed with brine (5mL), dried by MgSO4, filtered, and concentrated 

under reduced pressure. The residue was purified by silica gel chromatography 

(DCM:MeOH (0-5%)) to yield 1.29 (65 mg, 0.14 mmol, 82 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.05 (d, J = 2.1 Hz, 1H), 8.02 (dd, J = 8.7, 2.1 Hz, 1H), 

7.77 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 9.6 Hz, 2H), 7.64 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 

7.3 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.42 – 7.37 (m, 2H), 6.51 (t, J = 6.3 Hz, 1H), 6.47 

(d, J = 9.6 Hz, 1H), 6.17 (t, J = 6.6 Hz, 1H), 3.61 (dd, J = 12.1, 6.4 Hz, 2H), 3.01 (dd, J = 

12.0, 6.4 Hz, 2H), 1.84 – 1.78 (m, 2H).  
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 (E)-N-(3-(3-(4-methoxyphenyl)acrylamido)propyl)-[1,1'-biphenyl]-4-

carboxamide (1.30) 

A solution of (E)-3-(4-methoxyphenyl)acrylic acid (46 mg, 1.5 Eq, 0.26 mmol), 

HATU (0.13 g, 2 Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were 

stirred in DMF (5 mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-

carboxamide, HCl (50 mg, 1 Eq, 0.17 mmol)which was stirred at 23 °C for 14 hour. 

Upon completion the reaction was diluted with EtOAc (15mL), washed with DI water 

(4x15mL), brine (15mL), dried by Na2SO4, filtered, and concentrated under reduced 

pressure. The residue was purified by silica gel chromatography (DCM:MeOH (0-5%)) 

to yield 1.30 (61 mg, 0.15 mmol, 86 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.98 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 7.61 (d, 

J = 7.4 Hz, 2H), 7.49 – 7.43 (m, 5H), 7.39 (t, J = 7.3 Hz, 1H), 6.89 (d, J = 8.6 Hz, 2H), 

6.33 (d, J = 15.6 Hz, 1H), 6.27 (s, 1H), 3.83 (s, 3H), 3.56 (dd, J = 11.8, 6.2 Hz, 2H), 3.53 

(dd, J = 11.9, 6.4 Hz, 2H), 1.84 – 1.77 (m, 2H).  
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(E)-N-(3-(3-(4-nitrophenyl)acrylamido)propyl)-[1,1'-biphenyl]-4-carboxamide (1.31) 

A solution of (E)-3-(4-nitrophenyl)acrylic acid (50 mg, 1.5 Eq, 0.26 mmol), HATU 

(0.13 g, 2 Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were stirred 

in DMF (5 mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-

carboxamide, HCl (50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. 

Upon completion the reaction was diluted with EtOAc (15mL), washed with DI water 

(4x15mL), brine (15mL), dried by Na2SO4, filtered, and concentrated under reduced 

pressure. The residue was purified by silica gel chromatography (DCM:MeOH (0-5%)) 

to yield 1.31 (61 mg, 0.14 mmol, 82 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.22 (d, J = 8.7 Hz, 2H), 7.93 (d, J = 8.2 Hz, 2H), 7.71 – 

7.66 (m, 3H), 7.64 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 7.4 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 

7.39 (t, J = 7.3 Hz, 1H), 7.08 (s, 1H), 6.84 (s, 1H), 6.60 (d, J = 15.6 Hz, 1H), 3.59 (dd, J 

= 11.7, 6.1 Hz, 2H), 3.52 (dd, J = 11.6, 6.1 Hz, 2H), 1.83 (s, 2H).  
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N-(3-(2-oxoacetamido)propyl)-[1,1'-biphenyl]-4-carboxamide (1.32) 

A solution of 2-oxoacetic acid (38 mg, 29 μL, 50% Wt, 1.5 Eq, 0.26 mmol), HATU 

(0.13 g, 2 Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were stirred 

in DMF (5 mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-

carboxamide, HCl (50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. 

Upon completion the reaction was diluted with EtOAc (15mL), washed with DI water 

(4x15mL), brine (15mL), dried by Na2SO4, filtered, and concentrated under reduced 

pressure. The residue was purified by silica gel chromatography (DCM:MeOH (0-7%)) 

to yield 1.32 (34 mg, 0.11 mmol, 63 %). 

 

1H NMR (599 MHz, CDCl3) δ 9.29 (s, 1H), 7.85 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.2 Hz, 

2H), 7.55 (d, J = 7.3 Hz, 2H), 7.40 (t, J = 7.6 Hz, 3H), 7.33 (t, J = 6.2 Hz, 2H), 3.46 (dd, 

J = 12.3, 6.3 Hz, 2H), 3.42 (dd, J = 11.5, 5.6 Hz, 2H), 1.79 (dt, J = 12.2, 6.1 Hz, 2H).  
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chloromethyl (3-([1,1'-biphenyl]-4-carboxamido)propyl)carbamate (1.33) 

To a stirring solution of chloromethyl carbonochloridate (76 mg, 52 μL, 3 Eq, 0.59 

mmol) and DIPEA (0.13 g, 0.17 mL, 5 Eq, 0.98 mmol) in DCM (5mL) at 0 °C was added 

N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide (50 mg, 1 Eq, 0.20 mmol) portionwise. 

The reaction was allowed to warm to 23 °C and was stirred for 1 hour until all starting 

material had been consumed. The reaction was quenched with DI water (10mL), 

washed with brine (10mL), dried by MgSO4, filtered, and concentrated under reduced 

pressure. The residue was purified by silica gel chromatography (DCM:MeOH (0-3%)) 

to yield chloromethyl 1.33 (50 mg, 0.15 mmol, 74 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.89 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.62 (d, 

J = 7.3 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 6.78 (s, 1H), 5.78 (s, 

2H), 5.69 (s, 1H), 3.57 (dd, J = 12.2, 6.2 Hz, 2H), 3.36 (dd, J = 12.2, 6.3 Hz, 2H), 1.83 – 

1.76 (m, 2H).  
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(E)-N-(3-(but-2-enamido)propyl)-[1,1'-biphenyl]-4-carboxamide  (1.34) 

A solution of (E)-but-2-enoic acid (22 mg, 1.5 Eq, 0.26 mmol), HATU (0.13 g, 2 

Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were stirred in DMF (3 

mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, HCl 

(50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. Upon completion the 

reaction was diluted with EtOAc (9mL), washed with DI water (4x9mL), brine (9mL), 

dried by Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (DCM:MeOH (0-3%)) to yield 1.34 (51 mg, 0.16 

mmol, 92 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.89 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.54 (d, 

J = 7.2 Hz, 2H), 7.39 (t, J = 7.7 Hz, 3H), 7.31 (t, J = 7.4 Hz, 1H), 6.82 (dq, J = 13.8, 6.9 

Hz, 1H), 6.09 (s, 1H), 5.80 (dd, J = 15.2, 1.6 Hz, 1H), 3.45 (dd, J = 12.0, 6.2 Hz, 2H), 

3.38 (dd, J = 12.0, 6.4 Hz, 2H), 1.80 (dd, J = 6.8, 1.5 Hz, 3H), 1.72 – 1.66 (m, 2H).  
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N-(3-(3-cyanopropanamido)propyl)-[1,1'-biphenyl]-4-carboxamide (1.35) 

A solution of 3-cyanopropanoic acid (26 mg, 1.5 Eq, 0.26 mmol), HATU (0.13 g, 

2 Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were stirred in DMF 

(3 mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, 

HCl (50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. Upon completion 

the reaction was diluted with EtOAc (9mL), washed with DI water (4x9mL), brine (9mL), 

dried by Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (DCM:MeOH (0-4%)) to yield 1.35 (49 mg, 0.15 

mmol, 85 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.89 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.62 (d, 

J = 7.2 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 6.88 (s, 1H), 6.65 (s, 

1H), 3.55 (dd, J = 12.2, 6.3 Hz, 2H), 3.39 (dd, J = 12.0, 6.2 Hz, 2H), 2.72 (t, J = 7.3 Hz, 

2H), 2.60 (t, J = 7.3 Hz, 2H), 1.81 – 1.74 (m, 2H).  
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methyl (E)-4-((3-([1,1'-biphenyl]-4-carboxamido)propyl)amino)-4-oxobut-2-

enoate (1.36) 

A solution of (E)-4-methoxy-4-oxobut-2-enoic acid (336 mg, 1.5 Eq, 2.58 mmol), 

HATU (1.31 g, 2 Eq, 3.44 mmol), and DIPEA (889 mg, 1.20 mL, 4 Eq, 6.88 mmol) were 

stirred in DMF (15 mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-

4-carboxamide, HCl (500 mg, 1 Eq, 1.72 mmol) which was stirred at 23 °C for 14 hour. 

Upon completion the reaction was diluted with EtOAc (45mL), washed with DI water 

(4x45mL), brine (45mL), dried by Na2SO4, filtered, and concentrated under reduced 

pressure. The residue was purified by silica gel chromatography (DCM:MeOH (0-4%)) 

to yield 1.36 (0.56 g, 1.5 mmol, 89 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.91 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.62 (d, 

J = 7.3 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 6.98 (d, J = 15.4 Hz, 

2H), 6.86 (d, J = 15.4 Hz, 2H), 3.80 (s, 3H), 3.55 (dd, J = 12.0, 6.2 Hz, 2H), 3.48 (dd, J = 

12.0, 6.2 Hz, 2H), 1.81 (dt, J = 11.7, 6.0 Hz, 2H).  
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methyl (Z)-4-((3-([1,1'-biphenyl]-4-carboxamido)propyl)amino)-4-oxobut-2-

enoate (1.37) 

To a stirring solution of 1.10 (22.5 mg, 1 Eq, 63.8 μmol) in DCM (5 mL) and 

MeOH (1 mL) at 0 °C was added TMS-diazomethane (43.8 mg, 192 μL, 2 molar, 6 Eq, 

383 μmol) dropwise. After 30 minutes the reaction was concentrated under reduced 

pressure. The residue was purified by silica gel chromatography (DCM:MeOH (0-4%)) 

to yield 1.37 (15 mg, 42 μmol, 65 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.22 (s, 1H), 7.95 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 

2H), 7.61 (d, J = 7.4 Hz, 2H), 7.45 (t, J = 7.6 Hz, 3H), 7.38 (t, J = 7.4 Hz, 1H), 6.39 (d, J 

= 12.8 Hz, 1H), 6.16 (d, J = 12.8 Hz, 1H), 3.79 (s, 3H), 3.55 (dd, J = 12.1, 6.1 Hz, 2H), 

3.49 (dd, J = 12.1, 6.3 Hz, 2H), 1.88 – 1.80 (m, 2H).  
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N-(3-(3-mercaptopropanamido)propyl)-[1,1'-biphenyl]-4-carboxamide (1.38) 

A solution of 3-mercaptopropanoic acid (27 mg, 22 μL, 1.5 Eq, 0.26 mmol), 

HATU (0.13 g, 2 Eq, 0.34 mmol), and DIPEA (89 mg, 0.12 mL, 4 Eq, 0.69 mmol) were 

stirred in DMF (5 mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-

carboxamide, HCl (50 mg, 1 Eq, 0.17 mmol) which was stirred at 23 °C for 14 hour. 

Upon completion the reaction was diluted with EtOAc (15mL), washed with DI water 

(4x15mL), brine (15mL), dried by Na2SO4, filtered, and concentrated under reduced 

pressure. The residue was purified by silica gel chromatography (DCM:MeOH (0-5%)) 

to yield 1.38 (37 mg, 0.11 mmol, 63 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.93 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.61 (d, 

J = 7.3 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 7.16 (s, 1H), 6.69 (s, 

1H), 3.50 (q, J = 6.1 Hz, 2H), 3.39 (dd, J = 11.9, 6.1 Hz, 2H), 3.27 (t, J = 6.5 Hz, 2H), 

2.70 (t, J = 6.6 Hz, 2H), 1.86 – 1.78 (m, 2H).  
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(E)-N-(3-(2-cyano-3-phenylacrylamido)propyl)-[1,1'-biphenyl]-4-carboxamide (1.39) 

A solution of 1.18 (50 mg, 1 Eq, 0.16 mmol), benzaldehyde (17 mg, 16 μL, 1 Eq, 

0.16 mmol), and piperidine (1.3 mg, 1.5 μL, 0.1 Eq, 16 μmol) was stirred in DMF (3 mL) 

at 60 °C for 4 hour. After which time the reaction was diluted with EtOAc (15mL), 

washed with DI water (4x15mL), brine (15mL), dried with Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by silica gel chromatography 

(DCM:MeOH (0-5%)) to yield 1.39 (43 mg, 0.10 mmol, 67 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.36 (s, 1H), 7.96 (d, J = 8.2 Hz, 4H), 7.68 (d, J = 8.3 Hz, 

2H), 7.61 (d, J = 7.3 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.50 (t, J = 7.4 Hz, 2H), 7.46 (t, J 

= 7.6 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.15 (s, 1H), 7.04 (s, 1H), 3.58 (td, J = 12.5, 6.2 

Hz, 4H), 1.92 – 1.85 (m, 2H).  
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(E)-N-(3-(2-cyano-3-(4-methoxyphenyl)acrylamido)propyl)-[1,1'-biphenyl]-4-

carboxamide (1.40) 

A solution of 1.18 (50 mg, 1 Eq, 0.16 mmol), 4-methoxybenzaldehyde (21 mg, 19 

μL, 1 Eq, 0.16 mmol), and piperidine (0.13 mg, 0.01 Eq, 1.6 μmol) was stirred in DMF (3 

mL) at 60 °C for 4 hour. After which time the reaction was diluted with EtOAc (15mL), 

washed with DI water (4x15mL), brine (15mL), dried with Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by silica gel chromatography 

(DCM:MeOH (0-5%)) to yield 1.40 (44 mg, 0.10 mmol, 65 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.27 (s, 1H), 7.96 (d, J = 7.1 Hz, 4H), 7.68 (d, J = 8.3 Hz, 

2H), 7.61 (d, J = 7.3 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.4 Hz, 1H), 7.24 (s, 

1H), 6.99 (d, J = 8.8 Hz, 2H), 6.87 (s, 1H), 3.89 (s, 3H), 3.57 (ddd, J = 18.2, 12.1, 6.2 

Hz, 4H), 1.90 – 1.83 (m, 2H).  
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(E)-N-(3-(2-cyano-3-(4-hydroxyphenyl)acrylamido)propyl)-[1,1'-biphenyl]-4-

carboxamide (1.41) 

A solution of 1.18 (50 mg, 1 Eq, 0.16 mmol), 4-hydroxybenzaldehyde (19 mg, 1 

Eq, 0.16 mmol), and piperidine (0.13 mg, 0.01 Eq, 1.6 μmol) was stirred in DMF (3 mL) 

at 60 °C for 4 hour. After which time the reaction was diluted with EtOAc (15mL), 

washed with DI water (4x15mL), brine (15mL), dried with Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by silica gel chromatography 

(DCM:MeOH (0-7%)) to yield 1.41 (42 mg, 98 μmol, 63 %). 

 

1H NMR (599 MHz, MeOD) δ 7.99 (s, 1H), 7.83 (d, J = 8.3 Hz, 2H), 7.80 (d, J = 8.8 Hz, 

2H), 7.61 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 7.4 Hz, 2H), 7.36 (t, J = 7.8 Hz, 2H), 7.28 (t, J 

= 7.4 Hz, 1H), 6.80 (d, J = 8.7 Hz, 1H), 3.39 (t, J = 6.7 Hz, 2H), 3.36 (t, J = 6.7 Hz, 2H), 

1.84 – 1.78 (m, 2H).  
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(E)-N-(3-(2-cyano-3-(furan-2-yl)acrylamido)propyl)-[1,1'-biphenyl]-4-

carboxamide (1.42) 

A solution of 1.18 (50 mg, 1 Eq, 0.16 mmol), furan-2-carbaldehyde (15 mg, 13 

μL, 1 Eq, 0.16 mmol), and piperidine (0.13 mg, 0.01 Eq, 1.6 μmol) was stirred in DMF (3 

mL) at 60 °C for 4 hour. After which time the reaction was diluted with EtOAc (15mL), 

washed with DI water (4x15mL), brine (15mL), dried with Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by silica gel chromatography 

(DCM:MeOH (0-5%)) to yield 1.42 (44 mg, 0.11 mmol, 70 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.09 (s, 1H), 7.95 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 1.2 Hz, 

1H), 7.67 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 (t, J 

= 7.4 Hz, 1H), 7.24 (s, 1H), 7.22 (d, J = 3.5 Hz, 1H), 6.94 (s, 1H), 6.63 (dd, J = 3.5, 1.7 

Hz, 1H), 3.57 (dd, J = 11.0, 5.0 Hz, 2H), 3.54 (dd, J = 10.8, 4.9 Hz, 2H), 1.89 – 1.83 (m, 

2H).  
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(E)-N-(3-(2-cyano-3-(pyridin-2-yl)acrylamido)propyl)-[1,1'-biphenyl]-4-

carboxamide (1.43) 

A solution 1.18 (50 mg, 1 Eq, 0.16 mmol), picolinaldehyde (17 mg, 15 μL, 1 Eq, 

0.16 mmol), and piperidine (0.13 mg, 0.01 Eq, 1.6 μmol) was stirred in DMF (3 mL) at 

60 °C for 4 hour. After which time the reaction was diluted with EtOAc (15mL), washed 

with DI water (4x15mL), brine (15mL), dried with Na2SO4, filtered, and concentrated in 

vacuo. The residue was purified by silica gel chromatography (DCM:MeOH (0-5%)) to 

yield 1.43 (46 mg, 0.11 mmol, 72 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.82 (d, J = 4.1 Hz, 1H), 8.34 (s, 1H), 7.96 (d, J = 8.3 Hz, 

2H), 7.82 (td, J = 7.7, 1.7 Hz, 1H), 7.67 (t, J = 8.4 Hz, 3H), 7.61 (d, J = 7.2 Hz, 2H), 7.46 

(t, J = 7.7 Hz, 2H), 7.43 – 7.35 (m, 2H), 7.20 (s, 1H), 7.12 (s, 1H), 3.61 (dd, J = 12.3, 6.3 

Hz, 2H), 3.56 (dd, J = 12.1, 6.2 Hz, 2H), 1.94 – 1.85 (m, 2H).  

  



 86 

 

(E)-N-(3-(2-cyano-3-(4-fluorophenyl)acrylamido)propyl)-[1,1'-biphenyl]-4-

carboxamide (1.44) 

A solution 1.18 (50 mg, 1 Eq, 0.16 mmol), 4-fluorobenzaldehyde (19 mg, 17 μL, 1 

Eq, 0.16 mmol), and piperidine (0.13 mg, 0.01 Eq, 1.6 μmol) was stirred in DMF (3 mL) 

at 60 °C for 4 hour. After which time the reaction was diluted with EtOAc (15mL), 

washed with DI water (4x15mL), brine (15mL), dried with Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by silica gel chromatography 

(DCM:MeOH (0-3%)) to yield 1.44 (49 mg, 0.11 mmol, 73 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.29 (s, 1H), 7.97 (dd, J = 8.7, 5.2 Hz, 2H), 7.94 (d, J = 8.3 

Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 7.3 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.39 

(t, J = 7.4 Hz, 1H), 7.18 (t, J = 8.5 Hz, 2H), 7.16 – 7.09 (m, 2H), 3.57 (dt, J = 12.9, 6.7 

Hz, 4H), 1.87 (dt, J = 12.0, 6.2 Hz, 2H).  

  



 87 

 

(E)-N-(3-(2-cyano-3-(2-fluorophenyl)acrylamido)propyl)-[1,1'-biphenyl]-4-

carboxamide (1.45) 

A solution 1.18 (50 mg, 1 Eq, 0.16 mmol), 2-fluorobenzaldehyde (19 mg, 16 μL, 1 

Eq, 0.16 mmol), and piperidine (0.13 mg, 0.01 Eq, 1.6 μmol) was stirred in DMF (5 mL) 

at 60 °C for 4 hour. After which time the reaction was diluted with EtOAc (20mL), 

washed with DI water (4x20mL), brine (20mL), dried with Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by silica gel chromatography 

(DCM:MeOH (0-3%)) to yield 1.45 (47 mg, 0.11 mmol, 70 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.63 (s, 1H), 8.25 (t, J = 7.0 Hz, 1H), 7.95 (d, J = 8.3 Hz, 

2H), 7.68 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 7.5 Hz, 2H), 7.55 – 7.50 (m, 1H), 7.46 (t, J = 

7.6 Hz, 2H), 7.38 (t, J = 7.3 Hz, 1H), 7.28 (t, J = 7.7 Hz, 1H), 7.20 – 7.15 (m, 1H), 7.13 

(d, J = 2.5 Hz, 2H), 3.58 (td, J = 12.6, 6.5 Hz, 4H), 1.93 – 1.84 (m, 2H).  

  



 88 

 

N-(3-([1,1'-biphenyl]-4-carboxamido)propyl)oxirane-2-carboxamide (1.46) 

A solution of oxirane-2-carboxylic acid (27 mg, 1.2 Eq, 0.31 mmol), HATU (0.20 

g, 2 Eq, 0.52 mmol), and DIPEA (0.10 g, 0.13 mL, 3 Eq, 0.77 mmol) were stirred in DMF 

(3 mL) for 15 minutes before adding N-(3-aminopropyl)-[1,1'-biphenyl]-4-carboxamide, 

HCl (75 mg, 1 Eq, 0.26 mmol) which was stirred at 23 °C for 14 hour. Upon completion 

the reaction was diluted with EtOAc (15mL), washed with DI water (4x15mL), brine 

(15mL), dried by Na2SO4, filtered, and concentrated under reduced pressure. The 

residue was purified by silica gel chromatography (DCM:MeOH (0-3%)) to yield 1.46 (36 

mg, 0.11 mmol, 43 %). 

 

1H NMR (599 MHz, MeOD) δ 7.81 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 7.56 (d, 

J = 8.3 Hz, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 3.33 (t, J = 6.8 Hz, 3H), 

3.29 (dd, J = 4.4, 2.4 Hz, 1H), 3.22 (t, J = 4.7 Hz, 2H), 2.86 (dd, J = 5.9, 4.6 Hz, 2H), 

2.72 (dd, J = 6.0, 2.4 Hz, 2H), 1.71 (p, J = 6.8 Hz, 2H).  

  



 89 

 

4-bromo-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.53) 

General Procedure B: DMDO oxidation 

To a stirring solution of 4-bromo-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-

carboxamido)propyl)benzo[b]thiophene-2-carboxamide (27 mg, 1 Eq, 52 μmol) in 0 °C 

Acetone (3 mL) was added dimethyldioxirane (11 mg, 1.5 mL, 0.1 molar, 3 Eq, 0.15 

mmol) and the reaction was allowed to warm to 23 °C over 1 hour. After which time the 

starting material had been consumed (visualized by TLC) and the reaction was 

concentrated in vacuo. The residue was purified by silica gel chromatography (Hex: 

EtOAc (80-33%)) to yield 4-bromo-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-

carboxamido)propyl)cinnamamide 1,1-dioxide (19 mg, 34 μmol, 65 %). 

 

1H NMR (599 MHz, MeOD) δ 8.11 (s, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.2 Hz, 

2H), 7.80 (d, J = 7.5 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.37 (t, J 

= 7.9 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 8.2 Hz, 1H), 7.04 (t, J = 7.4 Hz, 1H), 

3.82 (s, 3H), 3.56 – 3.47 (m, 4H), 1.99 – 1.94 (m, 2H).  

  



 90 

 

3-chloro-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.54) 

General Procedure B: DMDO oxidation 

Rf= 0.05 (Hex:EtOAc (1:1))  1H NMR (599 MHz, CDCl3) δ 7.89 (d, J = 8.2 Hz, 2H), 7.80 

(d, J = 6.9 Hz, 2H), 7.77 – 7.71 (m, 2H), 7.61 (d, J = 8.2 Hz, 2H), 7.35 (t, J = 7.8 Hz, 

1H), 7.32 (dd, J = 7.5, 1.4 Hz, 1H), 7.04 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 8.1 Hz, 1H), 

3.82 (s, 3H), 3.59 (dd, J = 12.3, 6.4 Hz, 4H), 1.93 – 1.86 (m, 2H).  

  



 91 

 

4-chloro-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.55) 

General Procedure B: DMDO oxidation 

 

Rf= 0.05 (Hex:EtOAc (1:1))  1H NMR (599 MHz, CDCl3) δ 8.10 (s, 1H), 7.90 (d, J = 8.2 

Hz, 2H), 7.65 (d, J = 7.3 Hz, 1H), 7.61 (d, J = 8.1 Hz, 3H), 7.59 – 7.53 (m, 1H), 7.35 (t, J 

= 7.8 Hz, 1H), 7.34 – 7.31 (m, 1H), 7.14 – 7.08 (m, 2H), 7.04 (t, J = 7.4 Hz, 1H), 7.00 (d, 

J = 8.2 Hz, 1H), 3.81 (s, 3H), 3.58 (td, J = 12.6, 6.2 Hz, 4H), 1.92 – 1.85 (m, 2H).  

  



 92 

 

4-fluoro-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.56) 

General Procedure B: DMDO oxidation 

 

Rf= 0.05 (Hex:EtOAc (1:1))  1H NMR (599 MHz, CDCl3) δ 8.03 (s,1H), 7.90 (d, J = 8.2 

Hz, 2H), 7.68 – 7.63 (m, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 7.5 Hz, 1H), 7.36 (t, J 

= 9.1 Hz, 2H), 7.33 (dd, J = 7.5, 1.4 Hz, 1H), 7.05 (t, J = 7.4 Hz, 2H), 7.00 (d, J = 8.2 

Hz, 1H), 3.82 (s, 3H), 3.58 (dt, J = 21.2, 6.2 Hz, 4H), 1.92 – 1.87 (m, 2H).  

  



 93 

 

5-bromo-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.57) 

General Procedure B: DMDO oxidation 

 

Rf= 0.05 (Hex:EtOAc (1:1)) 1H NMR (599 MHz, CDCl3) δ 7.89 (d, J = 8.1 Hz, 2H), 7.78 

(t, J = 3.8 Hz, 2H), 7.66 (s, 1H), 7.62 (dd, J = 8.2, 3.2 Hz, 3H), 7.36 (t, J = 7.8 Hz, 1H), 

7.33 (d, J = 7.5 Hz, 1H), 7.10 – 7.02 (m, 1H), 7.01 (d, J = 8.2 Hz, 2H), 3.82 (s, 3H), 3.58 

(td, J = 11.4, 5.7 Hz, 4H), 1.92 – 1.86 (m, 2H).  

  



 94 

 

5-fluoro-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.58) 

General Procedure B: DMDO oxidation 

 

Rf= 0.05 (Hex:EtOAc (1:1)) 1H NMR (599 MHz, CDCl3) δ 7.83 (d, J = 8.2 Hz, 2H), 7.71 

(s, 1H), 7.69 (dd, J = 8.4, 4.6 Hz, 1H), 7.55 (d, J = 8.2 Hz, 2H), 7.31 – 7.27 (m, 1H), 

7.27 – 7.22 (m, 2H), 7.15 (dd, J = 7.7, 1.8 Hz, 1H), 6.97 (dd, J = 14.2, 6.7 Hz, 2H), 6.94 

(t, J = 8.1 Hz, 2H), 3.75 (s, 3H), 3.51 (td, J = 12.6, 6.3 Hz, 4H), 1.87 – 1.79 (m, 2H).  

  



 95 

 

6-chloro-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.59) 

General Procedure B: DMDO oxidation 

 

Rf= 0.05 (Hex:EtOAc (1:1)) 1H NMR (599 MHz, CDCl3) δ 7.89 (d, J = 8.3 Hz, 2H), 7.81 

(s, 1H), 7.74 (s, 1H), 7.63 – 7.59 (m, 3H), 7.45 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 7.7 Hz, 

1H), 7.33 (dd, J = 7.5, 1.6 Hz, 1H), 7.05 (t, J = 7.4 Hz, 2H), 7.00 (dd, J = 13.2, 5.2 Hz, 

2H), 3.82 (s, 3H), 3.58 (td, J = 12.1, 6.3 Hz, 4H), 1.92 – 1.86 (m, 2H).  

  



 96 

 

6-bromo-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.60) 

General Procedure B: DMDO oxidation 

 

Rf= 0.05 (Hex:EtOAc (1:1)) 1H NMR (599 MHz, CDCl3) δ 7.89 (d, J = 8.5 Hz, 3H), 7.80 

(s, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.34 (ddd, J = 22.3, 15.3, 7.5 

Hz, 3H), 7.05 (t, J = 7.3 Hz, 2H), 7.00 (d, J = 8.3 Hz, 2H), 3.82 (s, 3H), 3.61 – 3.52 (m, 

4H), 1.91 – 1.85 (m, 2H).  

  



 97 

 

7-fluoro-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.61) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.90 (d, J = 8.2 Hz, 2H), 7.81 (s, 1H), 7.62 (d, J = 8.2 Hz, 

3H), 7.36 (t, J = 8.0 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.05 (t, J = 7.3 Hz, 2H), 7.01 (d, J = 

8.2 Hz, 2H), 3.82 (s, 3H), 3.58 (td, J = 12.6, 6.0 Hz, 4H), 1.93 – 1.86 (m, 2H).  

  



 98 

 

7-bromo-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.62) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, DMSO) δ 8.74 (t, J = 5.7 Hz, 1H), 8.59 (t, J = 5.4 Hz, 1H), 7.94 (s, 

1H), 7.85 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 7.7 Hz, 1H), 7.61 (t, J 

= 7.7 Hz, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.36 (t, J = 7.1 Hz, 1H), 7.28 (dd, J = 7.4, 1.3 

Hz, 1H), 7.10 (d, J = 8.8 Hz, 1H), 7.04 (t, J = 7.1 Hz, 1H), 3.73 (s, 6H), 3.34 (q, J = 5.9 

Hz, 2H), 3.29 (q, J = 6.1 Hz, 1H), 1.84 – 1.74 (m, 2H).  



 99 

 

7-chloro-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.63) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.89 (d, J = 7.6 Hz, 2H), 7.79 (s, 1H), 7.61 (d, J = 7.9 Hz, 

1H), 7.59 – 7.49 (m, 3H), 7.39 (d, J = 6.9 Hz, 1H), 7.37 – 7.28 (m, 2H), 7.14 – 6.88 (m, 

4H), 3.82 (s, 3H), 3.58 (dd, J = 13.3, 6.3 Hz, 4H), 1.93 – 1.86 (m, 2H).  

  



 100 

 

N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)-5,6-dihydro-4H-

cyclopenta[b]thiophene-2-carboxamide 1,1-dioxide (1.64) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.89 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 8.2 Hz, 2H), 7.38 – 

7.30 (m, 3H), 7.37 – 7.31 (m, 1H), 7.14 (t, J = 6.0 Hz, 1H), 7.04 (t, J = 7.4 Hz, 1H), 7.00 

(d, J = 8.2 Hz, 1H), 6.76 (t, J = 5.9 Hz, 1H), 3.82 (s, 3H), 3.54 (td, J = 12.2, 6.3 Hz, 4H), 

2.81 – 2.76 (m, 2H), 2.67 – 2.62 (m, 2H), 2.46 (p, J = 7.5 Hz, 2H), 1.91 – 1.80 (m, 2H).  

  



 101 

 

N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)-4-methylthiophene-2-

carboxamide 1,1-dioxide (1.65) 

General Procedure B: DMDO oxidation 

 

Rf= 0.5 (EtOAc) 1H NMR (599 MHz, CDCl3) δ 7.89 (d, J = 8.1 Hz, 2H), 7.61 (d, J = 8.1 

Hz, 2H), 7.34 (dd, J = 18.8, 7.8 Hz, 2H), 7.22 (s, 1H), 7.08 (s, 1H), 7.05 (t, J = 7.5 Hz, 

1H), 7.00 (d, J = 8.2 Hz, 1H), 6.81 (s, 1H), 6.38 (s, 1H), 3.82 (s, 3H), 3.54 (td, J = 12.4, 

6.2 Hz, 4H), 2.16 (s, 3H), 1.90 – 1.80 (m, 2H).  

  



 102 

 

N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)-5-methylthiophene-2-

carboxamide 1,1-dioxide (1.66) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.88 (d, J = 7.3 Hz, 2H), 7.63 (d, J = 7.5 Hz, 2H), 7.43 (d, 

J = 4.1 Hz, 1H), 7.41 (s, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.33 (d, J = 7.5 Hz, 1H), 7.05 (t, J 

= 7.4 Hz, 1H), 7.00 (d, J = 8.2 Hz, 1H), 6.82 (s, 1H), 6.49 (d, J = 1.8 Hz, 1H), 3.82 (s, 

3H), 3.59 – 3.52 (m, 4H), 2.21 (s, 3H), 1.92 – 1.84 (m, 2H).  

  



 103 

 

(Z)-2'-methoxy-N-(3-(2-(methylsulfonyl)-3-phenylacrylamido)propyl)-[1,1'-

biphenyl]-4-carboxamide (1.67) 

A solution 2'-methoxy-N-(3-(2-(methylsulfonyl)acetamido)propyl)-[1,1'-biphenyl]-

4-carboxamide (45 mg, 1 Eq, 0.11 mmol), benzaldehyde (12 mg, 11 μL, 1 Eq, 0.11 

mmol), and piperidine (0.95 mg, 1.1 μL, 0.1 Eq, 11 μmol) was stirred in DMF (3 mL) at 

60 °C for 4 hour. After which time the reaction was diluted with EtOAc (15mL), washed 

with DI water (4x15mL), brine (15mL), dried with Na2SO4, filtered, and concentrated in 

vacuo. The residue was purified by silica gel chromatography (Hex:EtOAc (80-33%)) to 

yield 1.67 (37 mg, 76 μmol, 68 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.82 (d, J = 8.2 Hz, 2H), 7.70 (s, 1H), 7.60 (d, J = 8.2 Hz, 

2H), 7.55 (d, J = 7.3 Hz, 2H), 7.47 – 7.39 (m, 3H), 7.35 (t, J = 7.8 Hz, 1H), 7.32 (d, J = 

7.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 8.2 Hz, 1H), 6.84 (s, 1H), 6.75 (s, 1H), 

3.81 (s, 3H), 3.46 (p, J = 6.3 Hz, 4H), 3.24 (s, 3H), 1.83 – 1.76 (m, 2H).  

  



 104 

 

(Z)-N-(3-(3-(4-cyanophenyl)-2-(methylsulfonyl)acrylamido)propyl)-2'-methoxy-[1,1'-

biphenyl]-4-carboxamide (1.68) 

A solution 2'-methoxy-N-(3-(2-(methylsulfonyl)acetamido)propyl)-[1,1'-biphenyl]-

4-carboxamide (45 mg, 1 Eq, 0.11 mmol), 4-formylbenzonitrile (18 mg, 1.2 Eq, 0.13 

mmol), and piperidine (95 μg, 0.01 Eq, 1.1 μmol) was stirred in DMF (3 mL) at 60 °C for 

4 hour. After which time the reaction was diluted with EtOAc (15mL), washed with DI 

water (4x15mL), brine (15mL), dried with Na2SO4, filtered, and concentrated in vacuo. 

The residue was purified by silica gel chromatography (Hex:EtOAc (80-33%)) to yield 

1.68 (41 mg, 80 μmol, 72 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.74 (d, J = 8.1 Hz, 2H), 7.71 – 7.67 (m, 3H), 7.65 (d, J = 

8.2 Hz, 2H), 7.36 (t, J = 7.8 Hz, 2H), 7.33 – 7.27 (m, 1H), 7.05 (t, J = 7.4 Hz, 1H), 7.00 

(d, J = 8.2 Hz, 1H), 6.56 (s, 1H), 3.82 (s, 3H), 3.46 – 3.37 (m, 4H), 3.25 (s, 3H), 1.80 – 

1.75 (m, 2H).  

  



 105 

 

(Z)-2'-methoxy-N-(3-(3-phenyl-2-(phenylsulfonyl)acrylamido)propyl)-[1,1'-

biphenyl]-4-carboxamide (1.70) 

A solution 2'-methoxy-N-(3-(2-(phenylsulfonyl)acetamido)propyl)-[1,1'-biphenyl]-

4-carboxamide (40 mg, 1 Eq, 86 μmol), benzaldehyde (11 mg, 10 μL, 1.2 Eq, 0.10 

mmol), and piperidine (73 μg, 85 nL, 0.01 Eq, 0.86 μmol) was stirred in DMF (3 mL) at 

60 °C for 4 hour. After which time the reaction was diluted with EtOAc (15mL), washed 

with DI water (4x15mL), brine (15mL), dried with Na2SO4, filtered, and concentrated in 

vacuo. The residue was purified by silica gel chromatography (Hex:EtOAc (80-33%)) to 

yield 1.69 (32 mg, 57 μmol, 67 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.95 (d, J = 7.8 Hz, 2H), 7.88 (s, 1H), 7.79 (d, J = 8.1 Hz, 

2H), 7.60 (dd, J = 20.5, 13.2 Hz, 1H), 7.55 (dt, J = 15.6, 7.7 Hz, 6H), 7.44 – 7.33 (m, 

4H), 7.31 (d, J = 7.4 Hz, 1H), 7.04 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 8.2 Hz, 1H), 6.97 (s, 

1H), 6.80 (s, 1H), 3.81 (s, 3H), 3.41 (ddd, J = 18.4, 11.9, 6.1 Hz, 4H), 1.78 – 1.71 (m, 

2H).  

  



 106 

 

(Z)-N-(3-(3-cyclopropyl-2-(methylsulfonyl)acrylamido)propyl)-2'-methoxy-[1,1'-

biphenyl]-4-carboxamide (1.71) 

A solution 2'-methoxy-N-(3-(2-(methylsulfonyl)acetamido)propyl)-[1,1'-biphenyl]-

4-carboxamide (37 mg, 1 Eq, 91 μmol), cyclopropanecarboxaldehyde (7.7 mg, 8.2 μL, 

1.2 Eq, 0.11 mmol), and piperidine (78 μg, 0.01 Eq, 0.91 μmol) was stirred in DMF (3 

mL) at 60 °C for 4 hour. After which time the reaction was diluted with EtOAc (15mL), 

washed with DI water (4x15mL), brine (15mL), dried with Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by silica gel chromatography 

(Hex:EtOAc (80-33%)) to yield 1.71 (29 mg, 64 μmol, 70 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.88 (d, J = 8.1 Hz, 2H), 7.61 (d, J = 8.1 Hz, 2H), 7.35 (t, J 

= 7.4 Hz, 2H), 7.32 (d, J = 7.5 Hz, 1H), 7.12 (s, 1H), 7.04 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 

8.2 Hz, 1H), 6.44 (d, J = 11.2 Hz, 1H), 3.81 (s, 3H), 3.54 (td, J = 12.2, 6.2 Hz, 4H), 3.08 

(s, 3H), 2.29 (pd, J = 8.1, 4.3 Hz, 1H), 1.91 – 1.80 (m, 2H), 1.24 – 1.19 (m, 2H), 0.89 – 

0.84 (m, 2H).  

  



 107 

 

N-(3-(2'-(2-(2-methoxyethoxy)ethoxy)-[1,1'-biphenyl]-4-

carboxamido)propyl)cinnamamide 1,1-dioxide (1.72) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.91 (dt, J = 15.0, 6.2 Hz, 3H), 7.85 (s, 1H), 7.78 – 7.75 

(m, 1H), 7.67 – 7.60 (m, 5H), 7.52 (t, J = 6.5 Hz, 1H), 7.30 (d, J = 2.0 Hz, 1H), 7.17 (s, 

1H), 6.92 (d, J = 8.7 Hz, 2H), 3.77 – 3.74 (m, 2H), 3.57 (ddd, J = 19.8, 12.7, 6.0 Hz, 

8H), 3.52 – 3.46 (m, 2H), 3.36 (s, 3H), 1.92 – 1.88 (m, 2H). 

  



 108 

 

N-(3-(2'-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[1,1'-biphenyl]-4-

carboxamido)propyl)cinnamamide 1,1-dioxide  (1.73) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.90 (dd, J = 7.7, 5.2 Hz, 2H), 7.86 (s, 1H), 7.79 – 7.74 (m, 

1H), 7.67 (d, J = 8.1 Hz, 1H), 7.66 – 7.61 (m, 3H), 7.53 (dd, J = 8.1, 4.9 Hz, 1H), 7.33 

(dd, J = 16.4, 8.4 Hz, 2H), 7.19 (t, J = 5.9 Hz, 1H), 7.06 (dd, J = 16.8, 9.3 Hz, 1H), 7.02 

– 6.97 (m, 2H), 4.14 (t, J = 4.7 Hz, 1H), 4.14 (t, J = 4.7 Hz, 1H), 4.12 – 4.09 (m, 1H), 

4.12 – 4.09 (m, 1H), 3.79 – 3.73 (m, 3H), 3.80 – 3.74 (m, 3H), 3.63 (d, J = 11.5 Hz, 4H), 

3.60 – 3.54 (m, 3H), 3.55 – 3.51 (m, 2H), 3.36 (s, 3H), 1.94 – 1.87 (m, 2H).  
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N-(3-(2'-(benzyloxy)-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 1,1-

dioxide (1.74) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, MeOD) δ 8.56 (s, 1H), 7.92 (s, 1H), 7.86 (d, J = 8.3 Hz, 2H), 7.80 – 

7.74 (m, 1H), 7.69 (dd, J = 4.7, 3.8 Hz, 2H), 7.63 (d, J = 8.3 Hz, 3H), 7.37 – 7.28 (m, 

6H), 7.25 (t, J = 5.8 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 5.09 (s, 

2H), 3.49 (dt, J = 13.8, 6.3 Hz, 4H), 1.92 (p, J = 6.7 Hz, 2H).  
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4'-((3-(1,1-dioxidocinnamamido)propyl)carbamoyl)-[1,1'-biphenyl]-2-yl 

acetate (1.75) 

General Procedure B: DMDO oxidation 

 

1H NMR (300 MHz, CDCl3) δ 7.92 (d, J = 8.4 Hz, 2H), 7.87 (s, 1H), 7.81 – 7.74 (m, 2H), 

7.69 – 7.60 (m, 2H), 7.52 (dd, J = 8.4, 4.8 Hz, 3H), 7.45 – 7.37 (m, 2H), 7.35 (dd, J = 

7.0, 1.4 Hz, 1H), 7.21 (t, J = 5.1 Hz, 1H), 7.15 (d, J = 9.3 Hz, 1H), 6.93 (t, J = 5.2 Hz, 

1H), 3.59 (td, J = 12.3, 6.2 Hz, 4H), 2.10 (s, 3H), 1.96 – 1.84 (m, 2H).  
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4'-((3-(1,1-dioxidocinnamamido)propyl)carbamoyl)-[1,1'-biphenyl]-2-yl 2-

phenylacetate (1.77) 

General Procedure B: DMDO oxidation 

 

1H NMR (300 MHz, CDCl3) δ 7.88 (s, 1H), 7.82 (d, J = 8.3 Hz, 2H), 7.78 (dd, J = 6.5, 3.1 

Hz, 1H), 7.66 (dd, J = 5.5, 3.1 Hz, 2H), 7.53 (dd, J = 5.5, 2.9 Hz, 1H), 7.44 – 7.38 (m, 

4H), 7.37 – 7.29 (m, 4H), 7.23 – 7.10 (m, 4H), 7.00 (t, J = 5.8 Hz, 1H), 3.65 (s, 2H), 3.62 

(dt, J = 11.4, 6.6 Hz, 4H), 1.99 – 1.87 (m, 2H).  
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4'-((3-(1,1-dioxidocinnamamido)propyl)carbamoyl)-[1,1'-biphenyl]-2-yl 

propionate (1.78) 

General Procedure B: DMDO oxidation 

 

1H NMR (300 MHz, CDCl3) δ 7.94 (d, J = 8.3 Hz, 2H), 7.89 (s, 1H), 7.79 (dd, J = 5.2, 3.5 

Hz, 1H), 7.71 – 7.63 (m, 2H), 7.59 – 7.54 (m, 1H), 7.52 (d, J = 8.3 Hz, 2H), 7.43 (ddd, J 

= 6.7, 4.0, 1.9 Hz, 2H), 7.38 – 7.31 (m, 1H), 7.23 (t, J = 5.9 Hz, 1H), 7.17 (d, J = 7.8 Hz, 

1H), 6.97 (t, J = 5.9 Hz, 1H), 3.60 (td, J = 11.9, 6.3 Hz, 4H), 2.41 (q, J = 7.6 Hz, 2H), 

2.01 – 1.81 (m, 2H), 1.09 (t, J = 7.6 Hz, 3H).  

  



 113 

 

4'-((3-(1,1-dioxidocinnamamido)propyl)carbamoyl)-[1,1'-biphenyl]-2-yl methyl 

carbonate (1.79) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.86 (d, J = 8.3 Hz, 2H), 7.80 (s, 1H), 7.70 (dd, J = 5.2, 3.4 

Hz, 1H), 7.66 – 7.62 (m, 2H), 7.61 – 7.56 (m, 2H), 7.48 (d, J = 8.9 Hz, 2H), 7.47 – 7.44 

(m, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.29 (t, J = 6.9 Hz, 1H), 7.13 (s, 1H), 6.87 (s, 1H), 3.66 

(s, 3H), 3.54 (dd, J = 12.1, 6.5 Hz, 2H), 3.50 (dd, J = 12.2, 6.3 Hz, 2H), 1.64 – 1.58 (m, 

2H).  
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benzyl (4'-((3-(1,1-dioxidocinnamamido)propyl)carbamoyl)-[1,1'-biphenyl]-2-yl) 

carbonate (1.80) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.87 (s, 1H), 7.86 (d, J = 5.3 Hz, 2H), 7.79 – 7.73 (m, 1H), 

7.66 – 7.61 (m, 2H), 7.53 – 7.48 (m, 3H), 7.43 – 7.38 (m, 2H), 7.37 – 7.29 (m, 4H), 7.25 

– 7.22 (m, 3H), 7.20 (s, 1H), 6.98 (s, 1H), 5.09 (s, 2H), 3.62 – 3.55 (m, 4H), 1.94 – 1.87 

(m, 2H). 13C NMR (151 MHz, CDCl3) δ 167.3, 158.1, 153.3, 148.0, 140.2, 137.0, 136.9, 

136.5, 134.7, 134.3, 133.8, 133.4, 132.4, 130.9, 129.2, 129.2, 129.1, 128.6, 128.6, 

128.3, 127.2, 127.1, 126.8, 122.5, 122.0, 70.3, 36.8, 36.2, 29.6.  

  



 115 

 

4'-((3-(1,1-dioxidocinnamamido)propyl)carbamoyl)-[1,1'-biphenyl]-2-yl phenyl 

carbonate (1.81) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.96 (d, J = 8.3 Hz, 1H), 7.84 (s, 1H), 7.75 – 7.69 (m, 1H), 

7.59 (dd, J = 5.6, 3.0 Hz, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.46 (dd, J = 5.7, 2.7 Hz, 1H), 

7.44 – 7.39 (m, 2H), 7.37 (d, J = 6.9 Hz, 1H), 7.35 – 7.32 (m, 1H), 7.29 (t, J = 8.0 Hz, 

1H), 7.16 (dd, J = 14.0, 6.8 Hz, 1H), 6.95 (d, J = 7.8 Hz, 1H), 3.61 – 3.50 (m, 4H), 1.89 

– 1.80 (m, 2H).  13C NMR (151 MHz, CDCl3) δ 167.5, 158.2, 151.7, 150.9, 148.0, 140.2, 

137.1, 136.9, 136.2, 134.3, 133.8, 133.6, 132.5, 131.0, 129.6, 129.4, 129.3, 129.1, 

127.4, 127.2, 127.2, 126.4, 122.4, 122.0, 120.8, 53.6, 36.8, 36.4, 29.6.  
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4'-((3-(1,1-dioxidocinnamamido)propyl)carbamoyl)-[1,1'-biphenyl]-2-yl ethyl 

carbonate (1.82) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.93 (d, J = 8.3 Hz, 2H), 7.86 (s, 1H), 7.76 (dt, J = 7.8, 3.8 

Hz, 1H), 7.68 – 7.62 (m, 2H), 7.54 (d, J = 8.3 Hz, 2H), 7.53 – 7.50 (m, 2H), 7.41 (t, J = 

7.6 Hz, 2H), 7.37 – 7.33 (m, 1H), 7.25 (d, J = 8.1 Hz, 1H), 7.22 (t, J = 6.2 Hz, 1H), 6.95 

(t, J = 6.1 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.60 (dd, J = 12.4, 6.3 Hz, 2H), 3.56 (dd, J = 

12.2, 6.2 Hz, 2H), 1.92 – 1.86 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H).  

  



 117 

 

4'-((3-(1,1-dioxidocinnamamido)propyl)carbamoyl)-[1,1'-biphenyl]-2-yl 

methanesulfonate (1.83) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.92 (d, J = 7.9 Hz, 2H), 7.82 (s, 1H), 7.73 – 7.68 (m, 1H), 

7.61 – 7.57 (m, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.48 – 7.45 (m, 1H), 7.43 (d, J = 7.4 Hz, 

1H), 7.38 (t, J = 8.3 Hz, 3H), 7.37 – 7.32 (m, 1H), 7.28 – 7.24 (m, 1H), 6.85 (t, J = 6.7 

Hz, 1H), 3.55 (dd, J = 11.9, 6.3 Hz, 2H), 3.51 (dd, J = 11.3, 5.7 Hz, 2H), 2.54 (s, 3H), 

1.88 – 1.80 (m, 2H).  
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4'-((3-(1,1-dioxidocinnamamido)propyl)carbamoyl)-[1,1'-biphenyl]-2-yl 

ethanesulfonate (1.85) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.96 (d, J = 8.2 Hz, 2H), 7.88 (s, 1H), 7.78 – 7.73 (m, 1H), 

7.66 – 7.62 (m, 2H), 7.58 (d, J = 8.2 Hz, 2H), 7.53 (dd, J = 5.6, 2.5 Hz, 1H), 7.51 (d, J = 

7.3 Hz, 1H), 7.41 (ddd, J = 17.1, 8.0, 4.1 Hz, 3H), 7.36 (dd, J = 11.6, 5.5 Hz, 1H), 7.03 

(t, J = 5.9 Hz, 1H), 3.57 (tt, J = 12.0, 6.1 Hz, 4H), 2.82 (q, J = 7.4 Hz, 2H), 1.92 – 1.86 

(m, 2H), 1.15 (t, J = 7.4 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 167.2, 158.1, 146.1, 

140.1, 137.0, 136.8, 136.5, 134.3, 134.2, 133.7, 132.5, 131.3, 129.7, 129.4, 129.1, 

127.5, 127.2, 127.2, 123.5, 122.0, 45.9, 36.8, 36.3, 29.5, 7.8.  

  



 119 

 

4'-((3-(1,1-dioxidocinnamamido)propyl)carbamoyl)-[1,1'-biphenyl]-2-yl 

phenylmethanesulfonate (1.86) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.95 (d, J = 8.3 Hz, 2H), 7.86 (s, 1H), 7.76 (dt, J = 7.8, 3.8 

Hz, 1H), 7.66 – 7.62 (m, 2H), 7.58 (d, J = 8.3 Hz, 2H), 7.54 – 7.50 (m, 1H), 7.42 (dt, J = 

9.8, 3.0 Hz, 1H), 7.41 – 7.36 (m, 3H), 7.33 (ddd, J = 14.4, 7.1, 2.1 Hz, 4H), 7.23 (d, J = 

7.1 Hz, 2H), 6.97 (t, J = 6.0 Hz, 1H), 4.04 (s, 2H), 3.60 (dd, J = 12.9, 6.9 Hz, 2H), 3.56 

(dd, J = 12.3, 6.4 Hz, 2H), 1.93 – 1.86 (m, 2H).  
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 5,6-dimethoxy-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-

carboxamido)propyl)cinnamamide 1,1-dioxide (1.87) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.90 (d, J = 8.2 Hz, 2H), 7.73 (s, 1H), 7.60 (d, J = 8.2 Hz, 

2H), 7.34 (t, J = 7.8 Hz, 1H), 7.29 (dd, J = 17.0, 6.8 Hz, 2H), 7.22 (s, 1H), 7.03 (t, J = 7.4 

Hz, 1H), 6.98 (dd, J = 13.0, 7.2 Hz, 2H), 6.91 (s, 1H), 3.97 (s, 3H), 3.92 (s, 3H), 3.80 (s, 

3H), 3.60 – 3.51 (m, 4H), 1.87 (dd, J = 12.0, 6.2 Hz, 2H).  
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7-methoxy-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 

1,1-dioxide (1.88) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.91 (d, J = 8.2 Hz, 2H), 7.76 (s, 1H), 7.61 (d, J = 8.2 Hz, 

2H), 7.58 – 7.54 (m, 1H), 7.34 (dd, J = 16.7, 7.8 Hz, 2H), 7.22 (s, 1H), 7.11 (d, J = 8.5 

Hz, 1H), 7.05 (t, J = 8.1 Hz, 2H), 7.00 (d, J = 8.2 Hz, 1H), 6.89 (s, 1H), 4.02 (s, 3H), 

3.82 (s, 3H), 3.60 (dd, J = 12.4, 6.3 Hz, 2H), 3.55 (dd, J = 12.1, 6.2 Hz, 2H), 1.91 – 1.86 

(m, 2H).  
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6-methoxy-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 

1,1-dioxide (1.89) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.83 (d, J = 8.2 Hz, 2H), 7.75 (s, 1H), 7.53 (d, J = 8.2 Hz, 

2H), 7.33 (d, J = 8.4 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.25 – 7.20 (m, 2H), 7.20 (d, J = 1.7 

Hz, 1H), 6.99 (dd, J = 8.4, 2.2 Hz, 1H), 6.97 (t, J = 7.4 Hz, 2H), 6.91 (t, J = 8.4 Hz, 1H), 

3.83 (s, 3H), 3.73 (s, 3H), 3.53 – 3.45 (m, 4H), 1.84 – 1.77 (m, 2H).  
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 5-methoxy-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 

1,1-dioxide (1.90) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.89 (d, J = 8.2 Hz, 2H), 7.75 (s, 1H), 7.64 (d, J = 8.5 Hz, 

1H), 7.59 (d, J = 8.2 Hz, 2H), 7.34 (t, J = 7.8 Hz, 1H), 7.29 (dd, J = 13.8, 7.3 Hz, 2H), 

7.09 (t, J = 6.0 Hz, 1H), 7.05 – 7.01 (m, 2H), 6.99 (d, J = 8.2 Hz, 1H), 6.96 (d, J = 2.0 

Hz, 1H), 3.86 (s, 3H), 3.80 (s, 3H), 3.55 (td, J = 11.9, 6.2 Hz, 4H), 1.90 – 1.84 (m, 2H).  
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4-methoxy-N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)cinnamamide 

1,1-dioxide (1.91) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 8.10 (s, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.65 – 7.52 (m, 3H), 

7.37 – 7.28 (m, 4H), 7.11 (d, J = 8.4 Hz, 1H), 7.04 (t, J = 7.4 Hz, 1H), 6.99 (d, J = 8.2 

Hz, 1H), 6.92 (s, 1H), 3.93 (s, 3H), 3.81 (s, 3H), 3.60 – 3.52 (m, 4H), 1.92 – 1.84 (m, 

2H).  
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N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)-5-methylcinnamamide 1,1-

dioxide (1.94) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.91 (d, J = 8.2 Hz, 2H), 7.80 (s, 1H), 7.64 (d, J = 7.8 Hz, 

1H), 7.61 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 8.6 Hz, 1H), 7.34 – 

7.32 (m, 1H), 7.30 (s, 1H), 7.18 (t, J = 6.0 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 

8.2 Hz, 1H), 6.92 (t, J = 6.1 Hz, 1H), 3.82 (s, 3H), 3.59 (q, J = 6.4 Hz, 2H), 3.56 (dd, J = 

13.0, 7.1 Hz, 2H), 2.46 (s, 3H), 1.92 – 1.86 (m, 2H).  
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N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)-4-methylcinnamamide 1,1-

dioxide (1.95) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 8.04 (s, 1H), 7.91 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 8.2 Hz, 

2H), 7.56 (d, J = 7.5 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.34 (t, J 

= 7.8 Hz, 1H), 7.31 (d, J = 7.0 Hz, 2H), 7.04 (q, J = 7.5 Hz, 2H), 6.99 (d, J = 8.2 Hz, 1H), 

3.80 (s, 3H), 3.58 (dd, J = 12.3, 6.2 Hz, 2H), 3.55 (dd, J = 12.0, 6.1 Hz, 2H), 2.47 (s, 

3H), 1.90 – 1.84 (m, 2H).  
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3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl cinnamate 1,1-dioxide (1.96) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.95 (s, 1H), 7.85 (d, J = 8.3 Hz, 2H), 7.75 (d, J = 7.5 Hz, 

1H), 7.66 (t, J = 7.4 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.56 (d, J = 8.3 Hz, 2H), 7.48 (d, J 

= 7.4 Hz, 1H), 7.36 – 7.31 (m, 1H), 7.28 (dd, J = 7.5, 1.7 Hz, 1H), 7.02 (d, J = 7.4 Hz, 

1H), 6.98 (d, J = 8.2 Hz, 1H), 6.86 (t, J = 5.7 Hz, 1H), 4.50 (t, J = 6.0 Hz, 2H), 3.79 (s, 

3H), 3.66 (q, J = 6.2 Hz, 2H), 2.14 (p, J = 6.2 Hz, 2H).  
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N-(5-(1,1-dioxidobenzo[b]thiophen-2-yl)-5-oxopentyl)-2'-methoxy-[1,1'-biphenyl]-4-

carboxamide (1.97) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.92 (s, 1H), 7.82 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 7.4 Hz, 

1H), 7.66 (t, J = 7.5 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.58 (d, J = 8.2 Hz, 2H), 7.54 (d, J 

= 7.4 Hz, 1H), 7.37 – 7.32 (m, 1H), 7.31 (d, J = 7.5 Hz, 1H), 7.03 (t, J = 7.4 Hz, 1H), 

6.99 (d, J = 8.2 Hz, 1H), 3.80 (s, 3H), 3.52 (q, J = 6.5 Hz, 2H), 2.97 (t, J = 7.1 Hz, 2H), 

1.90 – 1.79 (m, 2H), 1.73 (p, J = 6.9 Hz, 2H).  
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N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)naphtho[2,3-b]thiophene-

2-carboxamide 1,1-dioxide (1.98) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 8.51 (s, 1H), 8.16 (t, J = 7.5 Hz, 2H), 7.99 (d, J = 8.0 Hz, 

1H), 7.94 (d, J = 8.2 Hz, 2H), 7.80 (d, J = 8.4 Hz, 1H), 7.75 (t, J = 7.1 Hz, 1H), 7.72 (dd, 

J = 13.3, 6.0 Hz, 1H), 7.63 (d, J = 8.2 Hz, 2H), 7.38 – 7.34 (m, 1H), 7.33 (dd, J = 7.5, 

1.4 Hz, 1H), 7.20 (t, J = 5.9 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 8.3 Hz, 1H), 

6.98 (s, 1H), 3.82 (s, 3H), 3.65 (dd, J = 12.4, 6.3 Hz, 2H), 3.60 (dd, J = 12.1, 6.2 Hz, 

2H), 1.96 – 1.89 (m, 2H).  
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3-benzylthiophene-2-carbaldehyde (1.99) 

To a 50mL pressure flask with a stir bar was added 3-methylthiophene-2-

carbaldehyde (500 mg, 1 Eq, 3.96 mmol), iodobenzene (1.21 g, 665 μL, 1.5 Eq, 5.94 

mmol), palladium(II) acetate (89.0 mg, 0.1 Eq, 396 μmol), and silver trifluoroacetate 

(1.31 g, 1.5 Eq, 5.94 mmol), followed by a mixture of 1,1,1,3,3,3-Hexafluoroisopropanol 

(20 mL) and Acetic Acid (2.2 mL) at 23 °C. The reaction was degassed by bubbling 

argon through the solvent for around 2 minutes while vigorously stirring, after which the 

reaction flask was sealed and stirred for 15 minutes at 23 °C. The reaction was then 

heated to 110 °C for 14 hour, upon completion the reaction was cooled and diluted with 

EtOAc (150mL). The diluted reaction mixture was passed through celite and 

concentrated under reduced pressure. The residue was purified by silica gel 

chromatography (Hex:EtOAc (100-95%)) to yield 1.99 (0.60 g, 3.0 mmol, 75 %) as a 

yellow oil. 

 

Rf= 0.5 (Hex:EtOAc (9:1)) 1H NMR (599 MHz, CDCl3) δ 10.09 (s, 1H), 7.64 (d, J = 4.8 

Hz, 1H), 7.31 (t, J = 7.7 Hz, 2H), 7.23 (t, J = 7.2 Hz, 1H), 7.19 (d, J = 7.5 Hz, 2H), 6.94 

(d, J = 4.8 Hz, 1H), 4.34 (s, 2H). 
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(2,2-diethoxyethyl)(naphthalen-2-yl)sulfane (1.104) 

To a stirring solution of naphthalene-2-thiol (2150 mg, 1 Eq, 13.42 mmol) in THF 

(100 mL) at 0 °C was added sodium hydride (697.7 mg, 60% Wt, 1.3 Eq, 17.44 mmol) 

portionwise. The reaction was allowed to come to 23 °C and was stirred until no more 

hydrogen gas bubble could be detected (30 min). To the reaction was added 2-bromo-

1,1-diethoxyethane (3.966 g, 3.1 mL, 1.5 Eq, 20.13 mmol) and stirred 14 hour. Upon 

completion the excess hydride was quenched with the slow addition of DI water 

(100mL). The organic layer was seperated, washed with brine (100mL), dried by 

Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by 

silica gel chromatography (Hex:EtOAc (100-94%)) to yield 1.104 (3.4 g, 12 mmol, 92 

%). 

 

1H NMR (599 MHz, CDCl3) δ 7.81 (s, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.74 (dd, J = 8.6, 4.2 

Hz, 2H), 7.47 (t, J = 7.2 Hz, 2H), 7.43 (t, J = 6.8 Hz, 1H), 4.71 (t, J = 5.7 Hz, 1H), 3.70 

(dq, J = 9.2, 7.0 Hz, 2H), 3.57 (dq, J = 9.6, 7.0 Hz, 2H), 3.25 (d, J = 5.7 Hz, 2H), 1.21 (t, 

J = 7.0 Hz, 6H). 
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naphtho[2,3-b]thiophene (1.100) 

A mixture of 1.104 (3.4 g, 1 Eq, 12 mmol) and polyphosphoric acid (1.3 g, 0.64 

mL, 0.6 Eq, 7.4 mmol) in Toluene (40 mL)was heated to 110 °C for 12 hour. Upon 

completion the reaction was diluted with EtOAc (40mL), washed with brine (80mL), 

dried with Na2SO4, filtered, and concentrated in vacuo. The residue was purified by 

silica gel chromatography (Hex (100%)) to yield 1.100 (0.95 g, 5.2 mmol, 42 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.36 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 5.7 Hz, 1H), 7.97 (d, 

J = 7.9 Hz, 1H), 7.91 (d, J = 8.8 Hz, 1H), 7.76 (d, J = 8.8 Hz, 1H), 7.63 (t, J = 7.0 Hz, 

1H), 7.60 (d, J = 5.3 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H). 
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tert-butyl (3-(naphtho[2,3-b]thiophene-2-carboxamido)propyl)carbamate (1.102) 

A solution of 1.101(200 mg, 1 Eq, 876 μmol), HATU (500 mg, 1.5 Eq, 1.31 mmol), 

and DIPEA (340 mg, 458 μL, 3 Eq, 2.63 mmol) were stirred in DMF (15 mL) for 15 

minutes before adding tert-butyl (3-aminopropyl)carbamate (198 mg, 1.3 Eq, 1.14 

mmol) which was stirred at 23 °C for 14 hour. Upon completion the reaction was diluted 

with EtOAc (45mL), washed with DI water (4x45mL), brine (45mL), dried by Na2SO4, 

filtered, and concentrated under reduced pressure. The residue was purified by silica 

gel chromatography (DCM:MeOH (100-97%)) to yield 1.102 (0.31 g, 0.81 mmol, 93 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.54 (s, 1H), 8.29 (d, J = 7.9 Hz, 1H), 7.90 (d, J = 7.9 Hz, 

1H), 7.80 (d, J = 8.8 Hz, 2H), 7.76 (d, J = 8.8 Hz, 1H), 7.71 (t, J = 6.4 Hz, 1H), 7.57 (d, J 

= 7.9 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 5.07 (t, J = 6.8 Hz, 1H), 3.56 (q, J = 6.4 Hz, 2H), 

3.30 (q, J = 6.6 Hz, 2H), 1.76 (p, J = 6.6 Hz, 2H), 1.49 (s, 9H). 
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N-(3-(2'-methoxy-[1,1'-biphenyl]-4-carboxamido)propyl)naphtho[2,3-b]thiophene-

2-carboxamide (1.103) 

To a stirring solution of HCl (4M in dioxane, 5mL) at 0 °C was added 1.102 

(136.6 mg, 1 Eq, 355.3 μmol). The reaction was allowed to come to 23 °C and 

consumption of starting material was monitored by TLC. Upon completion (15 min) the 

reaction was rotovaped to dryness. A separate flask of 2'-methoxy-[1,1'-biphenyl]-4-

carboxylic acid (105.4 mg, 1.3 Eq, 461.9 μmol), HATU (405.3 mg, 3 Eq, 1.066 mmol), 

and DIPEA (91.84 mg, 124 μL, 2 Eq, 710.6 μmol) were stirred in DMF (10 mL) for 15 

minutes before adding the newly formed amine salt which was stirred at 23 °C for 14 

hour. Upon completion the reaction was diluted with EtOAc (30mL), washed with DI 

water (4x30mL), brine (30mL), dried by Na2SO4, filtered, and concentrated under 

reduced pressure. The residue was purified by silica gel chromatography (DCM:MeOH 

(100-97%)) to yield 1.103 (0.15 g, 0.31 mmol, 87 %). 

 

1H NMR (599 MHz, CDCl3) δ 8.60 (s, 1H), 8.32 (d, J = 7.9 Hz, 1H), 7.94 (d, J = 7.9 Hz, 

2H), 7.92 (d, J = 7.9 Hz, 1H), 7.85 – 7.77 (m, 2H), 7.74 (t, J = 6.4 Hz, 1H), 7.61 (d, J = 

8.3 Hz, 2H), 7.59 (d, J = 7.5 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 8.8 Hz, 1H), 

7.28 (d, J = 7.5 Hz, 0H), 7.24 (t, J = 6.6 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 8.3 
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Hz, 1H), 3.79 (s, 3H), 3.65 (q, J = 6.4 Hz, 2zH), 3.61 (q, J = 6.4 Hz, 2H), 1.88 (q, J = 5.5 

Hz, 2H). 
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UTA148: methyl 5,6-dimethoxybenzo[b]thiophene-2-carboxylate (1.104) 

General Procedure C: Domino Aldol-SNAR 

To a stirring mixture of 2-fluoro-4,5-dimethoxybenzaldehyde (1000 mg, 1 Eq, 

5.430 mmol) and 2-fluoro-4,5-dimethoxybenzaldehyde (1000 mg, 1 Eq, 5.430 mmol) in 

DMF (15 mL) at 23 °C was added neat methyl 2-mercaptoacetate (633.9 mg, 533 μL, 

1.1 Eq, 5.973 mmol) dropwise. After the reaction was heated to 60 °C for 14 hour, it was 

cooled to 23 °C, and then ice cold DI water (60mL) was poured in. The mixture was 

vigorously stirred for 15 minutes before filtering. The filtrate was washed with water and 

dried on high vac. The residue was purified by silica gel chromatography (Hex:EtOAc 

(90-50%)) to yield 1.104 (0.86 g, 3.4 mmol, 63 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.92 (s, 1H), 7.23 (s, 1H), 7.22 (s, 1H), 3.96 (s, 3H), 3.94 

(s, 3H), 3.91 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 163.4, 150.7, 148.9, 136.2, 132.4, 

131.0, 130.5, 105.7, 103.5, 56.3, 56.2, 52.4. HRMS: m/z: [M+H]+ Calcd for [C12H13O4S]+ 

Theo mass: 253.0529; Found: 253.0531 
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UTA166: 5,6-dimethoxybenzo[b]thiophene-2-carboxylic acid 

General Procedure D: Saponification 

To a solution of methyl 5,6-dimethoxybenzo[b]thiophene-2-carboxylate (605 mg, 

1 Eq, 2.40 mmol) in a Methanol (5 mL)/THF (5 mL)/Water (5 mL) solvent mixture was 

added KOH (404 mg, 3 Eq, 7.19 mmol) and heated to 60 °C for 1 hour. Upon 

completion the reaction was cooled and concentrated to remove methanol. The reaction 

mixture was wash with diethyl ether (2x5 mL), brought to pH 3 with dilute HCl, and 

extracted with EtOAc (3x 5mL). The organic solution washed with brine (15mL), dried by 

Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by 

silica gel chromatography (DCM:MeOH (100-97%)) to yield 5,6-

dimethoxybenzo[b]thiophene-2-carboxylic acid (0.49 g, 2.0 mmol, 85 %). 

 

Rf= 0.15 (DCM:MeOH (9:1))  1H NMR (599 MHz, MeOD) δ 7.93 (s, 1H), 7.43 (s, 1H), 

7.40 (s, 1H), 3.92 (s, 3H), 3.90 (s, 3H). 13C NMR (151 MHz, MeOD) δ 166.1, 152.1, 

150.2, 137.7, 134.0, 131.5, 56.6, 56.5 HRMS: m/z: [M-H]- Calcd for [C11H9O4S]- Theo 

mass: 237.0227; Found: 237.0227 
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UTA237: tert-butyl (3-(5,6-dimethoxybenzo[b]thiophene-2-

carboxamido)propyl)carbamate (1.106) 

General Procedure E: HATU Amide Coupling 

A solution of 1.105 (290 mg, 1 Eq, 1.22 mmol), HATU (694 mg, 1.5 Eq, 1.83 

mmol), and DIPEA (472 mg, 636 μL, 3 Eq, 3.65 mmol) were stirred in DMF (15 mL) for 

15 minutes before adding tert-butyl (3-aminopropyl)carbamate (276 mg, 1.3 Eq, 1.58 

mmol) which was stirred at 23 °C for 14 hour. Upon completion the reaction was diluted 

with EtOAc (45mL), washed with DI water (4x45mL), brine (45mL), dried by Na2SO4, 

filtered, and concentrated under reduced pressure. The residue was purified by silica 

gel chromatography (DCM:MeOH (100-97%)) to yield 1.106 (0.44 g, 1.1 mmol, 92 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.69 (s, 1H), 7.43 (s, 1H), 7.22 (s, 1H), 7.16 (s, 1H), 5.05 

(s, 1H), 3.93 (s, 3H), 3.89 (s, 3H), 3.48 (dd, J = 12.2, 6.2 Hz, 2H), 3.24 (d, J = 4.7 Hz, 

2H), 1.74 – 1.65 (m, 2H), 1.44 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 161.7, 156.1, 

148.8, 147.5, 135.8, 133.5, 131.7, 123.6, 104.4, 102.6, 78.6, 55.1, 55.0, 36.0, 35.1, 

29.2, 27.4 HRMS: m/z: [M+H]+ Calcd for [C19H26OsSNa]+ Theo mass: 417.1455; Found: 

417.1456 
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UTA239: tert-butyl (3-(5,6-dimethoxy-1,1-dioxidocinnamamido)propyl)carbamate 

(1.107) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.74 (s, 1H), 7.23 (s, 1H), 6.93 (s, 1H), 6.72 (s, 1H), 4.96 

(s, 1H), 3.98 (s, 3H), 3.97 (s, 3H), 3.50 (dd, J = 6.4 Hz, 2H), 3.21 (d, J = 5.8 Hz, 2H), 

1.77 (p, J = 6.5 Hz, 2H), 1.45 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 157.7, 156.4, 153.5, 

152.6, 136.3, 129.4, 122.5, 109.0, 104.8, 56.8, 56.7, 37.4, 37.0, 30.1, 28.5. HRMS: m/z: 

[M+MeOH+Na]+ Calcd for [C20H30N2O8SNa]+ Theo mass: 481.1615; Found: 481.1616 
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UTA252: tert-butyl (3-(3-((2-hydroxyethyl)thio)-5,6-dimethoxy-1,1-dioxido-2,3-

dihydrobenzo[b]thiophene-2-carboxamido)propyl)carbamate (1.108) 

General Procedure E: Thia-Micheal Addition 

To a stirring solution of 2-mercaptoethan-1-ol (35 mg, 31 μL, 2 Eq, 0.45 mmol) 

and triethylamine (45 mg, 62 μL, 2 Eq, 0.45 mmol) in DCM (3 mL) was added 1.107 (95 

mg, 1 Eq, 0.22 mmol). The reaction was left to stir at 23 °C for 14 hour. Upon 

completion to the reaction was washed with DI water (3x 5mL), brine (5mL), dried with 

MgSO4, filtered. and concentrated under reduced pressure. The residue was purified by 

silica gel chromatography (DCM:MeOH (100-97%)) to yield 1.108 (96 mg, 0.19 mmol, 

85 %). 

 

1H NMR (599 MHz, CDCl3) δ 7.43 (s, 1H), 7.12 (s, 1H), 7.06 (s, 1H), 5.08 (d, J = 6.1 Hz, 

1H), 5.04 (s, 1H), 4.59 (d, J = 6.1 Hz, 1H), 3.94 (s, 3H), 3.90 (s, 3H), 3.80 – 3.71 (m, 

2H), 3.45-3.33 (m, 2H), 3.22 – 3.11 (m, 2H), 2.79 – 2.68 (m, 2H), 1.71 – 1.62 (m, 2H), 

1.40 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 162.6, 156.7, 154.5, 150.8, 130.9, 129.3, 

108.2, 102.1, 79.5, 73.5, 61.6, 56.5, 56.5, 44.3, 37.3, 34.1, 29.7, 28.5 HRMS: m/z: 

[M+Na]+ Calcd for [C21H32N2O8S2Na]+ Theo mass: 527.1492; Found: 527.1490 

  



 141 

 

UTA155: methyl 6-methoxybenzo[b]thiophene-2-carboxylate (1.109) 

General Procedure C: Domino Aldol-SNAR 

 

1H NMR (599 MHz, MeOD) δ 7.99 (s, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.44 (d, J = 1.8 Hz, 

1H), 7.04 (dd, J = 8.8, 2.2 Hz, 1H), 3.90 (s, 3H), 3.88 (s, 3H). 13C NMR (151 MHz, 

MeOD) δ 161.3, 145.7, 134.1, 131.7, 127.5, 117.1, 105.3, 56.1, 52.8. HRMS: m/z: 

[M+H]+ Calcd for [C11H11O3S]+ Theo mass: 223.0423; Found: 223.0424 
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UTA165: 6-methoxybenzo[b]thiophene-2-carboxylic acid (1.110) 

General Procedure D: Saponification 

 

1H NMR (599 MHz, DMSO) δ 8.00 (s, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.59 (d, J = 2.1 Hz, 

1H), 7.06 (dd, J = 8.8, 2.3 Hz, 1H), 3.84 (s, 3H). 13C NMR (151 MHz, DMSO) δ 163.7, 

159.1, 143.5, 132.6, 131.9, 130.2, 126.6, 115.8, 104.9, 55.6. HRMS: m/z: [M-H]- Calcd 

for [C10H7O3S]- Theo mass: 207.0121; Found: 207.0125 
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UTA229: tert-butyl (3-(6-methoxybenzo[b]thiophene-2-

carboxamido)propyl)carbamate (1.111) 

General Procedure E: HATU Amide Coupling 

 

1H NMR (599 MHz, CDCl3) δ 7.74 (s, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.38 (s, 1H), 7.28 (d, 

J = 1.3 Hz, 1H), 6.99 (dd, J = 8.8, 2.1 Hz, 1H), 4.98 (s, 1H), 3.87 (s, 3H), 3.50 (dd, J = 

12.2, 6.2 Hz, 2H), 3.26 (d, J = 5.5 Hz, 2H), 1.76 – 1.65 (m, 2H), 1.46 (s, 9H). 13C NMR 

(151 MHz, CDCl3) δ 162.8, 158.9, 157.3, 143.0, 133.4, 125.9, 124.7, 115.6, 104.6, 55.7, 

38.8, 37.1, 36.2, 30.4, 28.6 HRMS: m/z: [M+Na]+ Calcd for [C18H24N2O4SNa]+ Theo 

mass: 387.1349; Found: 387.1350 
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UTA245: tert-butyl (3-(6-methoxy-1,1-dioxidocinnamamido)propyl)carbamate 

(1.112) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.78 (s, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.26 (s, 1H), 7.08 

(dd, J = 8.4, 2.2 Hz, 1H), 6.76 (s, 1H), 4.97 (s, 1H), 3.91 (s, 3H), 3.49 (q, J = 6.4 Hz, 

2H), 3.20 (d, J = 5.6 Hz, 2H), 1.79-1.71 (m, 2H), 1.44 (s, 9H). 13C NMR (151 MHz, 

MeOD) δ 165.09 (s), 160.4, 158.6, 141.0, 136.5, 135.9, 129.8, 122.0, 109.0, 108.9, 

80.1, 56.9, 38.7, 38.1, 30.7, 28.8, 28.7. HRMS: m/z: [M+MeOH+Na]+ Calcd for 

[C19H28N2O7SNa]+ Theo mass: 451.1509; Found: 451.1511 
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UTA256: tert-butyl (3-(3-((2-hydroxyethyl)thio)-6-methoxy-1,1-dioxido-2,3-

dihydrobenzo[b]thiophene-2-carboxamido)propyl)carbamate (1.113) 

General Procedure E: Thia-Micheal Addition 

 

1H NMR (599 MHz, CDCl3) δ 7.63 (d, J = 8.7 Hz, 1H), 7.27 (s, 1H), 7.18 (dd, J = 8.6, 2.4 

Hz, 1H), 7.11 (d, J = 2.2 Hz, 1H), 5.09 (d, J = 6.8 Hz, 1H), 4.96 (s, 1H), 4.57 (d, J = 6.8 

Hz, 1H), 3.85 (s, 3H), 3.82 – 3.74 (m, 2H), 3.50 – 3.34 (m, 2H), 3.26 – 3.14 (m, 2H), 

2.85-2.70 (m, 2H), 1.76 – 1.67 (m, 2H), 1.42 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 

162.2, 160.9, 156.8, 138.9, 129.2, 128.5, 122.8, 103.9, 79.7, 73.7, 61.8, 56.1, 44.0, 

37.3, 34.2, 29.9, 28.5. HRMS: m/z: [M+Na]+ Calcd for [C20H30N2O7S2Na]+ Theo mass: 

497.1387; Found: 497.1386 

  



 146 

 

UTA156: methyl 5-methoxybenzo[b]thiophene-2-carboxylate (1.114) 

General Procedure C: Domino Aldol-SNAR 

 

1H NMR (599 MHz, CDCl3) δ 7.98 (s, 1H), 7.72 (d, J = 8.9 Hz, 1H), 7.28 (d, J = 2.4 Hz, 

1H), 7.11 (dd, J = 8.9, 2.5 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H). 13C NMR (151 MHz, 

CDCl3) δ 163.4, 158.0, 139.8, 135.1, 134.4, 130.4, 123.6, 118.3, 106.6, 55.7, 52.6. 

HRMS: m/z: [M+H]+ Calcd for [C11H11O3S]+ Theo mass: 223.0423; Found: 223.0425 
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UTA169: 5-methoxybenzo[b]thiophene-2-carboxylic acid (1.115) 

General Procedure D: Saponification 

 

1H NMR (599 MHz, MeOD) δ 7.98 (s, 1H), 7.76 (d, J = 8.9 Hz, 1H), 7.41 (d, J = 2.0 Hz, 

1H), 7.11 (dd, J = 8.9, 2.3 Hz, 1H), 3.86 (s, 3H). 13C NMR (151 MHz, MeOD) δ 165.9, 

159.4, 141.4, 136.6, 136.2, 131.4, 124.4, 119.2, 107.5, 56.0. HRMS: m/z: [M-H]- Calcd 

for [C10H7O3S]- Theo mass: 207.0122; Found: 207.0122 
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UTA232: tert-butyl (3-(5-methoxybenzo[b]thiophene-2-

carboxamido)propyl)carbamate (1.116) 

General Procedure E: HATU Amide Coupling 

 

1H NMR (599 MHz, CDCl3) δ 7.75 (s, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.39 (s, 1H), 7.25 (d, 

J = 2.2 Hz, 1H), 7.06 (dd, J = 8.9, 2.4 Hz, 1H), 4.93 (s, 1H), 3.86 (s, 3H), 3.51 (dd, J = 

12.3, 6.2 Hz, 2H), 3.27 (dd, J = 12.0, 6.1 Hz, 2H), 1.76-1.70 (m, 2H), 1.47 (s, 9H). 13C 

NMR (151 MHz, CDCl3) δ 162.7, 157.9, 157.3, 140.4, 133.7, 124.8, 123.5, 117.1, 106.5, 

79.8, 55.7, 37.1, 36.2, 30.4, 28.1. HRMS: m/z: [M+H]+ Calcd for [C18H24N2O4SNa]+ Theo 

mass: 387.1349; Found: 387.1347 
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UTA244: tert-butyl (3-(5-methoxy-1,1-

dioxidocinnamamido)propyl)carbamate(1.117) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.72 (s, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.01 (dd, J = 8.4, 1.8 

Hz, 1H), 6.96 (d, J = 1.9 Hz, 1H), 6.91 (s, 1H), 5.04 (s, 1H), 3.87 (s, 3H), 3.46 (q, J = 6.4 

Hz, 2H), 3.17 (d, J = 4.9 Hz, 2H), 1.76 – 1.70 (m, 2H), 1.41 (s, 9H). 13C NMR (151 MHz, 

CDCl3) δ 164.4, 157.6, 156.5, 138.4, 135.9, 131.7, 128.7, 123.7, 116.4, 113.3, 56.2, 

37.1, 37.1, 30.1, 28.6. HRMS: m/z: [M+MeOH+Na]+ Calcd for [C19H28N2O7SNa]+ Theo 

mass: 451.1509; Found: 451.1513 
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UTA255: tert-butyl (3-(3-((2-hydroxyethyl)thio)-5-methoxy-1,1-dioxido-2,3-

dihydrobenzo[b]thiophene-2-carboxamido)propyl)carbamate (1.118) 

General Procedure E: Thia-Micheal Addition 

 

1H NMR (599 MHz, CDCl3) δ 7.58 (d, J = 8.7 Hz, 1H), 7.39 (s, 1H), 7.19 (d, J = 1.5 Hz, 

1H), 6.98 (dd, J = 8.7, 2.0 Hz, 1H), 5.11 (d, J = 7.0 Hz, 1H), 5.02 (s, 1H), 4.57 (d, J = 7.0 

Hz, 1H), 3.87 (s, 3H), 3.81 – 3.73 (m, 2H), 3.44 – 3.35 (m, 2H), 3.25 – 3.13 (m, 2H), 

2.82 – 2.71 (m, 2H), 1.71 – 1.66 (m, 2H), 1.41 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 

164.7, 162.3, 156.8, 140.4, 129.9, 123.0, 117.1, 111.0, 79.7, 73.5, 61.8, 56.1, 44.2, 37.3, 

34.2, 29.8, 28.5. HRMS: m/z: [M+Na]+ Calcd for [C20H30N2O7S2Na]+ Theo mass: 

497.1387; Found: 497.1384 
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UTA159: methyl 6-methylbenzo[b]thiophene-2-carboxylate (1.119) 

General Procedure C: Domino Aldol-SNAR 

 

1H NMR (599 MHz, MeOD) δ 8.03 (s, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.72 (s, 1H), 7.27 

(d, J = 8.2 Hz, 1H), 3.92 (s, 3H), 2.48 (s, 3H). 13C NMR (151 MHz, MeOD) δ 164.8, 

143.9, 139.0, 138.0, 133.1, 131.7, 128.0, 126.3, 123.2, 52.9, 21.8. HRMS: m/z: [M+H]+ 

Calcd for [C11H11O2S]+ Theo mass: 207.0474; Found: 207.0471 
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UTA172: 6-methylbenzo[b]thiophene-2-carboxylic acid (1.120) 

General Procedure D: Saponification 

 

1H NMR (599 MHz, MeOD) δ 7.98 (s, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.70 (s, 1H), 7.25 

(d, J = 8.2 Hz, 1H), 2.47 (s, 3H). 

13C NMR 

HRMS: m/z: [M-H]- Calcd for [C10H7O2S]- Theo mass: 191.0167; Found: 191.0165 
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UTA230: tert-butyl (3-(6-methylbenzo[b]thiophene-2-

carboxamido)propyl)carbamate (1.121) 

General Procedure E: HATU Amide Coupling 

 

1H NMR (599 MHz, CDCl3) δ 7.78 (s, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.63 (s, 1H), 7.40 (s, 

1H), 7.19 (dd, J = 8.1, 0.8 Hz, 1H), 3.50 (dd, J = 12.3, 6.2 Hz, 2H), 3.26 (d, J = 5.6 Hz, 

2H), 2.47 (s, 3H), 1.75 – 1.68 (m, 2H), 1.46 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 

162.9, 157.2, 141.5, 138.0, 137.2, 136.5, 126.8, 124.8, 124.8, 122.5, 37.1, 36.2, 30.3, 

28.5, 21.9. HRMS: m/z: [M+Na]+ Calcd for [C18H24N2O3SNa]+ Theo mass: 341.1400; 

Found: 341.1401 
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UTA243: tert-butyl (3-(6-methyl-1,1-dioxidocinnamamido)propyl)carbamate (1.122) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.77 (s, 1H), 7.53 (s, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.37 (d, 

J = 7.7 Hz, 1H), 6.80 (s, 1H), 4.99 (s, 1H), 3.48 (dd, J = 12.8, 6.4 Hz, 2H), 3.19 (d, J = 

5.6 Hz, 2H), 2.46 (s, 3H), 1.79 – 1.71 (m, 2H), 1.43 (s, 9H). 13C NMR (151 MHz, CDCl3) 

δ 157.7, 156.4, 143.9, 137.4, 136.4, 134.8, 126.9, 126.6, 122.6, 79.4, 37.4, 37.0, 30.1, 

28.5, 21.9. HRMS: m/z: [M+Na]+ Calcd for [C18H24N2O5SNa]+ Theo mass: 403.1298; 

Found: 403.1301 
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UTA254: tert-butyl (3-(3-((2-hydroxyethyl)thio)-6-methyl-1,1-dioxido-2,3-

dihydrobenzo[b]thiophene-2-carboxamido)propyl)carbamate (1.123) 

General Procedure E: Thia-Micheal Addition 

 

1H NMR (599 MHz, CDCl3) δ 7.66 (d, J = 8.0 Hz, 1H), 7.49 (s, 1H), 7.47 (d, J = 8.1 Hz, 

1H), 7.11 (s, 1H), 5.12 (d, J = 7.3 Hz, 1H), 4.89 (s, 1H), 4.51 (d, J = 7.3 Hz, 1H), 3.81 

(qdd, J = 11.5, 6.4, 4.7 Hz, 2H), 3.50 – 3.38 (m, 2H), 3.23 (qd, J = 14.2, 7.5 Hz, 2H), 

2.83 (ddd, J = 14.2, 5.8, 4.6 Hz, 1H), 2.76 (ddd, J = 14.3, 7.1, 4.8 Hz, 1H), 1.75-1.66 (m, 

2H), 1.43 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 162.3, 156.6, 140.4, 137.6, 135.4, 

134.7, 127.1, 121.1, 79.3, 73.1, 61.5, 44.0, 37.3, 37.2, 34.0, 29.5, 28.4, 21.1. HRMS: 

m/z: [M+Na]+ Calcd for [C20H30N2O6S2Na]+ Theo mass: 481.1437; Found: 481.1438 
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UTA160: methyl 5-methylbenzo[b]thiophene-2-carboxylate (1.124) 

General Procedure C: Domino Aldol-SNAR 

 

1H NMR (599 MHz, CDCl3) δ 7.99 (s, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.66 (s, 1H), 7.29 

(dd, J = 8.3, 1.1 Hz, 1H), 3.94 (s, 3H), 2.47 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 163.3, 

139.5, 139.0, 134.8, 133.3, 130.4, 128.9, 125.3, 122.4, 52.4, 21.4. HRMS: m/z: [M+H]+ 

Calcd for [C11H11O2S]+ Theo mass: 207.0474; Found: 207.0474 
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UTA234: 5-methylbenzo[b]thiophene-2-carboxylic acid (1.125) 

General Procedure D: Saponification 

 

1H NMR (599 MHz, MeOD) δ 7.96 (s, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.71 (s, 1H), 7.31 

(d, J = 8.3 Hz, 1H), 2.46 (s, 3H). 13C NMR (151 MHz, MeOD) δ 166.0, 140.9, 140.7, 

136.1, 135.7, 131.4, 130.0, 126.2, 123.3, 21.3. HRMS: m/z: [M-H]- Calcd for [C10H7O2S]- 

Theo mass: 191.0172; Found: 191.0173 
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UTA218: tert-butyl (3-(5-methylbenzo[b]thiophene-2-

carboxamido)propyl)carbamate (1.126) 

General Procedure E: HATU Amide Coupling 

 

1H NMR (599 MHz, CDCl3) δ 7.76 (s, 1H), 7.70 (d, J = 8.3 Hz, 1H), 7.57 (s, 1H), 7.56 (s, 

1H), 7.21 (dd, J = 8.3, 0.9 Hz, 1H), 5.09 (s, 1H), 3.50 (dd, J = 12.2, 6.2 Hz, 2H), 3.25 (d, 

J = 5.7 Hz, 2H), 2.43 (s, 3H), 1.75 – 1.67 (m, 2H), 1.45 (s, 9H). 13C NMR (151 MHz, 

CDCl3) δ 162.9, 157.2, 139.7, 139.2, 138.3, 134.6, 128.1, 124.9, 124.7, 122.4, 79.7, 

37.1, 36.3, 30.2, 28.5, 21.4. HRMS: m/z: [M+Na]+ Calcd for [C18H24N2O3SNa]+ Theo 

mass: 341.1400; Found: 341.1403 
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UTA242: tert-butyl (3-(5-methyl-1,1-dioxidocinnamamido)propyl)carbamate (1.127) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.76 (s, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 7.7 Hz, 

1H), 7.29 (s, 1H), 6.82 (s, 1H), 4.97 (s, 1H), 3.49 (q, J = 6.4 Hz, 2H), 3.20 (d, J = 5.6 Hz, 

2H), 2.45 (s, 3H), 1.83 – 1.72 (m, 2H), 1.44 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 

157.7, 156.5, 145.6, 137.4, 136.4, 134.4, 132.8, 129.6, 127.8, 121.9, 37.4, 37.0, 30.1, 

28.5, 21.9. HRMS: m/z: [M+MeOH+Na]+ Calcd for [C19H28N2O6SNa]+ Theo mass: 

435.1560; Found: 435.1559 
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UTA246: tert-butyl (3-(3-((2-hydroxyethyl)thio)-5-methyl-1,1-dioxido-2,3-

dihydrobenzo[b]thiophene-2-carboxamido)propyl)carbamate (1.128) 

General Procedure E: Thia-Micheal Addition 

 

1H NMR (599 MHz, CDCl3) δ 7.60 (s, 1H), 7.51 (d, J = 7.2 Hz, 2H), 7.24 (d, J = 8.1 Hz, 

1H), 5.18 (s, 1H), 5.08 (d, J = 6.6 Hz, 1H), 4.54 (d, J = 6.5 Hz, 1H), 3.74-3.71 (m, 2H), 

3.35-3.30 (m, 2H), 3.16 – 3.08 (m, 3H), 2.76 – 2.67 (m, 2H), 2.40 (s, 2H), 1.67 – 1.58 

(m, 2H), 1.37 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 162.4, 156.6, 145.6, 137.8, 135.0, 

130.7, 127.6, 121.1, 79.4, 73.2, 61.6, 44.2, 37.3, 34.2, 29.6, 28.4, 21.9. HRMS: m/z: 

[M+Na]+ Calcd for [C20H30N2O6S2Na]+ Theo mass: 481.1437; Found: 481.1440 
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UTA219: tert-butyl (3-(benzo[b]thiophene-2-carboxamido)propyl)carbamate (1.129) 

General Procedure E: HATU Amide Coupling 

 

1H NMR (599 MHz, MeOD) δ 7.92 (s, 1H), 7.89 (dd, J = 14.1, 8.0 Hz, 2H), 7.42 (p, J = 

7.1 Hz, 2H), 6.67 (s, 1H), 3.43 (t, J = 6.8 Hz, 2H), 3.15 (t, J = 6.3 Hz, 2H), 1.83 – 1.71 

(m, 2H), 1.44 (s, 9H). 13C NMR (151 MHz, MeOD) δ 164.6, 158.5, 142.1, 140.6, 139.9, 

127.3, 126.3, 126.1, 125.9, 123.5, 80.0, 38.8, 38.4, 30.7, 28.8. HRMS: m/z: [M+Na]+ 

Calcd for [C17H22N2O3SNa]+ Theo mass: 357.1243; Found: 357.1242 
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UTA228: tert-butyl (3-(1,1-dioxidocinnamamido)propyl)carbamate (1.130) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.82 (s, 1H), 7.76 – 7.73 (m, 1H), 7.65 – 7.61 (m, 2H), 

7.53 – 7.49 (m, 1H), 6.84 (s, 1H), 4.94 (s, 1H), 3.51 (q, J = 6.4 Hz, 2H), 3.21 (d, J = 4.9 

Hz, 2H), 1.77 (p, J = 6.5 Hz, 2H), 1.45 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 157.5, 

156.5, 137.2, 136.2, 134.3, 132.4, 129.3, 127.1, 122.1, 79.5, 37.4, 37.0, 30.1, 28.5. 

HRMS: m/z: [M+Na]+ Calcd for [C17H22N2O5SNa]+ Theo mass: 389.1142; Found: 

389.1143 
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UTA132: tert-butyl (3-(3-((2-hydroxyethyl)thio)-1,1-dioxido-2,3-

dihydrobenzo[b]thiophene-2-carboxamido)propyl)carbamate (1.131) 

General Procedure E: Thia-Micheal Addition 

 

1H NMR (599 MHz, CDCl3) δ 7.79 (d, J = 7.8 Hz, 1H), 7.71 – 7.65 (m, 2H), 7.51 (t, J = 

7.5 Hz, 1H), 7.23 (s, 1H), 5.17 (d, J = 7.3 Hz, 1H), 4.92 (s, 1H), 4.55 (d, J = 7.3 Hz, 1H), 

3.86 – 3.74 (m, 2H), 3.44 (qd, J = 14.3, 7.6 Hz, 2H), 3.28 – 3.14 (m, 2H), 2.86 – 2.80 

(m, 1H), 2.79 – 2.72 (m, 1H), 1.76 – 1.67 (m, 2H), 1.43 (s, 9H). 13C NMR (151 MHz, 

CDCl3) δ 162.2, 156.9, 137.9, 137.7, 134.5, 129.9, 127.5, 121.5, 79.8, 73.1, 61.8, 44.4, 

37.3, 37.3, 34.3, 29.9, 28.5. HRMS: m/z: [M+Na]+ Calcd for [C19H28N2O6S2Na]+ Theo 

mass: 467.1281; Found: 467.1285 
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UTA216: tert-butyl (3-(6-chlorobenzo[b]thiophene-2-

carboxamido)propyl)carbamate (1.132) 

General Procedure E: HATU Amide Coupling 

 

1H NMR (599 MHz, CDCl3) δ 7.83 (d, J = 1.5 Hz, 1H), 7.79 (s, 1H), 7.74 (d, J = 8.5 Hz, 

1H), 7.60 (s, 1H), 7.34 (dd, J = 8.5, 1.9 Hz, 1H), 4.92 (s, 1H), 3.51 (dd, J = 12.2, 6.2 Hz, 

2H), 3.27 (dd, J = 11.7, 6.0 Hz, 2H), 1.76 – 1.68 (m, 2H), 1.47 (s, 9H). 13C NMR (151 

MHz, CDCl3) δ 162.4, 157.5, 142.1, 137.8, 132.5, 126.0, 125.9, 124.3, 122.4, 37.1, 

36.3, 30.2, 28.5. HRMS: m/z: [M+Na]+ Calcd for [C17H21ClN2O3SNa]+ Theo mass: 

391.0854 ; Found: 391.0856 
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UTA227: tert-butyl (3-(6-chloro-1,1-dioxidocinnamamido)propyl)carbamate (1.133) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.78 (s, 1H), 7.71 (s, 1H), 7.59 (dd, J = 8.0, 1.8 Hz, 1H), 

7.45 (d, J = 8.0 Hz, 1H), 6.91 (s, 1H), 4.93 (s, 1H), 3.49 (q, J = 6.4 Hz, 2H), 3.21 (d, J = 

5.8 Hz, 2H), 1.79 – 1.71 (m, 2H), 1.44 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 157.2, 

156.6, 139.0, 138.6, 137.6, 135.1, 134.3, 127.9, 127.6, 122.7, 37.4, 37.0, 30.1, 28.5. 

HRMS: m/z: [M+MeOH+Na]+ Calcd for [C18H25ClN2O6SNa]+ Theo mass: 455.1014; 

Found: 455.1010 
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UTA250: tert-butyl (3-(6-chloro-3-((3-hydroxypropyl)thio)-1,1-dioxido-2,3-

dihydrobenzo[b]thiophene-2-carboxamido)propyl)carbamate (1.134) 

General Procedure E: Thia-Micheal Addition 

 

1H NMR (599 MHz, CDCl3) δ 7.70 (d, J = 8.4 Hz, 1H), 7.61 (s, 1H), 7.58 (d, J = 1.9 Hz, 

1H), 7.57 (d, J = 1.9 Hz, 1H), 5.11 (d, J = 6.9 Hz, 1H), 5.05 (s, 1H), 4.62 (d, J = 6.8 Hz, 

1H), 3.82 – 3.68 (m, 2H), 3.38 (qd, J = 13.2, 7.0 Hz, 2H), 3.18 (qd, J = 14.1, 7.2 Hz, 

2H), 2.85 – 2.68 (m, 2H), 1.68 (p, J = 6.2 Hz, 2H), 1.41 (s, 9H). 13C NMR (151 MHz, 

CDCl3) δ 161.9, 156.9, 139.2, 136.2, 135.8, 134.7, 129.0, 121.4, 79.7, 73.4, 61.6, 44.1, 

37.3, 34.4, 29.8, 28.5. HRMS: m/z: [M+Na]+ Calcd for [C19H27ClN2O6S2Na]+ Theo mass: 

501.0891 ; Found: 501.0887 
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UTA221: tert-butyl (3-(5-chlorobenzo[b]thiophene-2-

carboxamido)propyl)carbamate (1.135) 

General Procedure E: HATU Amide Coupling 

 

1H NMR (599 MHz, CDCl3) δ 7.80-7.73 (m, 3H), 7.70 (s, 1H), 7.35 (dd, J = 8.6, 1.8 Hz, 

1H), 4.97 (s, 1H), 3.51 (dd, J = 12.1, 6.1 Hz, 2H), 3.27 (dd, J = 11.6, 5.9 Hz, 2H), 1.78 – 

1.65 (m, 2H), 1.46 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 162.3, 157.3, 141.4, 140.4, 

139.0, 131.0, 126.6, 124.4, 123.8, 123.8, 79.7, 53.5, 37.1, 36.3, 30.1, 28.5. HRMS: m/z: 

[M+Na]+ Calcd for [C17H21ClN2O3SNa]+ Theo mass: 391.0854 ; Found: 391.0854 
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UTA226: tert-butyl (3-(5-chloro-1,1-dioxidocinnamamido)propyl)carbamate (1.136) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, MeOD) δ 7.88 (s, 1H), 7.78 (d, J = 8.5 Hz, 1H), 7.72 (s, 1H), 7.71 (s, 

1H), 6.65 (s, 1H), 3.39 (t, J = 6.8 Hz, 2H), 3.15-3.08 (m, 2H), 1.78 – 1.70 (m, 2H), 1.44 

(s, 9H). 13C NMR (151 MHz, MeOD) δ 159.8, 158.6, 141.2, 139.5, 137.2, 134.2, 133.9, 

132.3, 128.5, 123.8, 80.1, 38.7, 38.2, 30.6, 28.8. HRMS: m/z: [M+Na]+ Calcd for 

[C17H21ClN2O5SNa]+ Theo mass: 423.0752 ; Found: 423.0749 
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UTA249: tert-butyl (3-(5-chloro-3-((2-hydroxyethyl)thio)-1,1-dioxido-2,3-

dihydrobenzo[b]thiophene-2-carboxamido)propyl)carbamate (1.137) 

General Procedure E: Thia-Micheal Addition 

 

1H NMR (599 MHz, CDCl3) δ 7.74 (s, 1H), 7.59 (d, J = 8.3 Hz, 1H), 7.54 (s, 1H), 7.43 

(dd, J = 8.3, 0.8 Hz, 1H), 5.11 (d, J = 7.0 Hz, 1H), 5.07 (s, 1H), 4.60 (d, J = 6.9 Hz, 1H), 

3.82 – 3.71 (m, 2H), 3.44-3.32 (m, 2H), 3.23 – 3.07 (m, 2H), 2.82-2.77 (m, 1H), 2.77 – 

2.71 (m, 1H), 1.68 (p, J = 6.2 Hz, 2H), 1.40 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 162.0, 

156.8, 140.9, 140.0, 136.2, 130.3, 127.7, 122.7, 79.6, 73.1, 61.7, 44.1, 37.4, 37.3, 34.4, 

29.7, 28.5. HRMS: m/z: [M+Na]+ Calcd for [C19H27ClN2O6S2Na]+ Theo mass: 501.0891 ; 

Found: 501.0894 
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UTA231: tert-butyl (3-(6-fluorobenzo[b]thiophene-2-

carboxamido)propyl)carbamate (1.138) 

General Procedure E: HATU Amide Coupling 

 

1H NMR (599 MHz, CDCl3) δ 7.79 (s, 1H), 7.74 (dd, J = 8.5, 5.2 Hz, 1H), 7.67 (s, 1H), 

7.50 (dd, J = 8.7, 2.0 Hz, 1H), 7.11 (td, J = 8.8, 2.3 Hz, 1H), 5.05 (s, 1H), 3.49 (dd, J = 

12.2, 6.1 Hz, 2H), 3.25 (d, J = 5.7 Hz, 2H), 1.76 – 1.66 (m, 2H), 1.45 (s, 9H). 13C NMR 

(151 MHz, CDCl3) δ 162.4 (d, J = 4.5 Hz), 160.7, 157.3, 142.2 (d, J = 10.9 Hz), 139.3 

(d, J = 4.5 Hz), 135.9, 126.4 (d, J = 9.7 Hz), 124.2, 114.2 (d, J = 24.8 Hz), 108.7 (d, J = 

25.5 Hz), 79.8, 37.1, 36.2, 30.2, 28.5. HRMS: m/z: [M+Na]+ Calcd for 

[C17H21FN2O3SNa]+ Theo mass: 375.1149 ; Found: 375.1149 
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UTA241: tert-butyl (3-(6-fluoro-1,1-dioxidocinnamamido)propyl)carbamate (1.139) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, CDCl3) δ 7.79 (s, 1H), 7.51 (dd, J = 8.3, 4.5 Hz, 1H), 7.47 (dd, J = 

6.3, 1.9 Hz, 1H), 7.32 (td, J = 8.3, 2.1 Hz, 1H), 6.87 (s, 1H), 3.50 (q, J = 6.3 Hz, 2H), 

3.21 (d, J = 5.6 Hz, 2H), 1.76 (p, J = 6.4 Hz, 2H), 1.45 (s, 9H). 13C NMR (151 MHz, 

CDCl3) δ 165.9, 164.1, 157.2, 156.6, 139.3 (d, J = 10.1 Hz), 137.9 (d, J = 5.6 Hz), 

135.2, 128.8 (d, J = 9.1 Hz), 125.2 (d, J = 3.8 Hz), 121.2 (d, J = 23.4 Hz), 110.8 (d, J = 

26.9 Hz), 79.6, 37.4, 37.0, 30.1, 28.5. HRMS: m/z: [M+MeOH+Na]+ Calcd for 

[C18H25FN2O6SNa]+ Theo mass: 439.1310; Found: 439.1312 
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UTA253: tert-butyl (3-(6-fluoro-3-((2-hydroxyethyl)thio)-1,1-dioxido-2,3-

dihydrobenzo[b]thiophene-2-carboxamido)propyl)carbamate (1.140) 

General Procedure E: Thia-Micheal Addition 

 

1H NMR (599 MHz, CDCl3) δ 7.75 (dd, J = 9.2, 4.3 Hz, 1H), 7.46 (s, 1H), 7.38 – 7.30 (m, 

2H), 5.12 (d, J = 6.8 Hz, 1H), 5.02 (s, 1H), 4.64 (d, J = 6.8 Hz, 1H), 3.84 – 3.73 (m, 2H), 

3.47 – 3.32 (m, 2H), 3.19 (tt, J = 14.2, 7.3 Hz, 2H), 2.84 – 2.71 (m, 2H), 1.72 – 1.65 (m, 

2H), 1.41 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 163.7 (s), 162.0 (d, J = 8.0 Hz), 156.9 

(s), 139.4 (d, J = 8.2 Hz), 133.4 (d, J = 3.0 Hz), 129.6 (d, J = 8.8 Hz), 122.2 (d, J = 23.4 

Hz), 108.4 (d, J = 25.5 Hz), 79.8, 73.7, 61.8, 44.1, 37.3, 34.4, 29.8, 28.5. HRMS: m/z: 

[M+Na]+ Calcd for [C19H27FN2O6S2Na]+ Theo mass: 485.1187 ; Found: 485.1184 
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UTA217: tert-butyl (3-(5-fluorobenzo[b]thiophene-2-

carboxamido)propyl)carbamate (1.141) 

General Procedure E: HATU Amide Coupling 

 

1H NMR (599 MHz, MeOD) δ 7.89 (dd, J = 9.0, 4.9 Hz, 1H), 7.87 (s, 1H), 7.57 (dd, J = 

9.3, 2.1 Hz, 1H), 7.23 (td, J = 8.9, 2.2 Hz, 1H), 3.42 (t, J = 6.9 Hz, 2H), 3.15 (t, J = 6.5 

Hz, 2H), 1.82 – 1.74 (m, 2H), 1.43 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 162.3 (d, J = 

12.7 Hz), 161.8, 160.2, 157.3 (d, J = 3.7 Hz), 141.9, 140.3 (d, J = 9.8 Hz), 136.5, 124.3 

(d, J = 5.5 Hz), 124.1 (d, J = 9.6 Hz), 115.3 (d, J = 25.8 Hz), 110.2 (d, J = 23.0 Hz), 79.9, 

37.1, 36.2, 30.2, 28.5. HRMS: m/z: [M+Na]+ Calcd for [C17H21FN2O3SNa]+ Theo mass: 

375.1149 ; Found: 375.1146 

  



 174 

 

UTA225: tert-butyl (3-(5-fluoro-1,1-dioxidocinnamamido)propyl)carbamate (1.142) 

General Procedure B: DMDO oxidation 

 

1H NMR (599 MHz, MeOD) δ 7.88 (s, 1H), 7.84 (dd, J = 8.3, 4.7 Hz, 1H), 7.49 – 7.42 

(m, 2H), 3.39 (t, J = 6.9 Hz, 2H), 3.12 (t, J = 6.6 Hz, 2H), 1.75 (p, J = 6.6 Hz, 2H), 1.44 

(s, 9H). 13C NMR (151 MHz, CDCl3) δ 166.9, 165.2, 157.1, 156.6, 139.1, 134.5 (s), 

132.9 (d, J = 3.7 Hz), 132.3 (d, J = 10.2 Hz), 124.2 (d, J = 10.1 Hz), 119.0 (d, J = 24.1 

Hz), 114.8 (d, J = 25.1 Hz), 79.6, 37.4, 37.0, 30.1, 28.5. HRMS: m/z: [M+Na]+ Calcd for 

[C17H21FN2O5SNa]+ Theo mass: 407.1047 ; Found: 407.1048 
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UTA248: tert-butyl (3-(5-fluoro-3-((2-hydroxyethyl)thio)-1,1-dioxido-2,3-

dihydrobenzo[b]thiophene-2-carboxamido)propyl)carbamate (1.143) 

General Procedure E: Thia-Micheal Addition 

 

1H NMR (599 MHz, CDCl3) δ 7.65 (dd, J = 8.4, 4.6 Hz, 1H), 7.56 (s, 1H), 7.42 (d, J = 7.7 

Hz, 1H), 7.15 (t, J = 8.2 Hz, 1H), 5.12 (s, 1H), 5.11 (d, J = 7.0 Hz, 1H), 4.61 (d, J = 6.7 

Hz, 1H), 3.76 (dt, J = 13.0, 6.5 Hz, 2H), 3.36 (d, J = 3.7 Hz, 2H), 3.21 – 3.06 (m, 2H), 

2.81 – 2.65 (m, 2H), 1.70 – 1.61 (m, 2H), 1.39 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 

167.1, 165.4, 162.0, 156.7, 141.4 (d, J = 9.4 Hz), 133.6, 123.8 (d, J = 9.8 Hz), 117.8 (d, 

J = 24.1 Hz), 114.5 (d, J = 24.3 Hz), 79.5, 73.2, 61.6, 44.0, 37.3 (d, J = 10.8 Hz), 34.2, 

29.5, 28.4. HRMS: m/z: [M+Na]+ Calcd for [C19H27FN2O7S2Na]+ Theo mass: 485.1187 ; 

Found: 485.1190 
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Spectra 1.1 1H NMR Spectrum of compound 1.2  

 

 
Spectra 1.2 1H NMR Spectrum of compound 1.3  
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Spectra 1.3 1H NMR Spectrum of compound 1.5  

 

 
Spectra 1.4 1H NMR Spectrum of compound 1.6  
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Spectra 1.5 1H NMR Spectrum of compound 1.7  

 

 
Spectra 1.6 1H NMR Spectrum of compound 1.8  
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Spectra 1.7 1H NMR Spectrum of compound 1.9  

 

 
Spectra 1.8 1H NMR Spectrum of compound 1.10  
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Spectra 1.9 1H NMR Spectrum of compound 1.11  

 

 
Spectra 1.10 1H NMR Spectrum of compound 1.12  
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Spectra 1.11 1H NMR Spectrum of compound 1.13  

 

 
Spectra 1.12 1H NMR Spectrum of compound 1.14  
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Spectra 1.13 1H NMR Spectrum of compound 1.15  

 

 
Spectra 1.14 1H NMR Spectrum of compound 1.16  
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Spectra 1.15 1H NMR Spectrum of compound 1.17  

 

 
Spectra 1.16 1H NMR Spectrum of compound 1.16  
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Spectra 1.17 1H NMR Spectrum of compound 1.19  

 

 
Spectra 1.18 1H NMR Spectrum of compound 1.20  



 185 

 

 
Spectra 1.19 1H NMR Spectrum of compound 1.21  

 

 
Spectra 1.20 1H NMR Spectrum of compound 1.22  
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Spectra 1.21 1H NMR Spectrum of compound 1.23  

 

 
Spectra 1.22 1H NMR Spectrum of compound 1.24  
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Spectra 1.23 1H NMR Spectrum of compound 1.25  

 

 
Spectra 1.24 1H NMR Spectrum of compound 1.26  
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Spectra 1.25 1H NMR Spectrum of compound 1.27  

 

 
Spectra 1.26 1H NMR Spectrum of compound 1.28  
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Spectra 1.27 1H NMR Spectrum of compound 1.29  

 

 
Spectra 1.28 1H NMR Spectrum of compound 1.30 
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Spectra 1.29 1H NMR Spectrum of compound 1.31 

 

 
Spectra 1.30 1H NMR Spectrum of compound 1.33 
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Spectra 1.31 1H NMR Spectrum of compound 1.34 

 

 
Spectra 1.32 1H NMR Spectrum of compound 1.35 
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Spectra 1.33 1H NMR Spectrum of compound 1.36 

 

 
Spectra 1.34 1H NMR Spectrum of compound 1.37 



 193 

 

 
Spectra 1.35 1H NMR Spectrum of compound 1.38 

 

 
Spectra 1.36 1H NMR Spectrum of compound 1.39 
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Spectra 1.37 1H NMR Spectrum of compound 1.40 

 

 
Spectra 1.38 1H NMR Spectrum of compound 1.41 
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Spectra 1.39 1H NMR Spectrum of compound 1.42 

 

 
Spectra 1.40 1H NMR Spectrum of compound 1.43 
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Spectra 1.41 1H NMR Spectrum of compound 1.44 

 

 
Spectra 1.42 1H NMR Spectrum of compound 1.45 
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Spectra 1.43 1H NMR Spectrum of compound 1.46 

 

 
Spectra 1.44 1H NMR Spectrum of compound 1.53 
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Spectra 1.45 1H NMR Spectrum of compound 1.54 

 

 
Spectra 1.46 1H NMR Spectrum of compound 1.55 
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Spectra 1.47 1H NMR Spectrum of compound 1.56 

 

 
Spectra 1.48 1H NMR Spectrum of compound 1.57 
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Spectra 1.49 1H NMR Spectrum of compound 1.58 

 

 
Spectra 1.50 1H NMR Spectrum of compound 1.59 
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Spectra 1.51 1H NMR Spectrum of compound 1.60 

 

 
Spectra 1.52 1H NMR Spectrum of compound 1.61 
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Spectra 1.53 1H NMR Spectrum of compound 1.62 

 

 
Spectra 1.54 1H NMR Spectrum of compound 1.63 
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Spectra 1.55 1H NMR Spectrum of compound 1.64 

 

 
Spectra 1.56 1H NMR Spectrum of compound 1.65 
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Spectra 1.57 1H NMR Spectrum of compound 1.66 

 

 
Spectra 1.58 1H NMR Spectrum of compound 1.67 
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Spectra 1.59 1H NMR Spectrum of compound 1.68 

 

 
Spectra 1.60 1H NMR Spectrum of compound 1.69 
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Spectra 1.61 1H NMR Spectrum of compound 1.71 

 

 
Spectra 1.62 1H NMR Spectrum of compound 1.72 
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Spectra 1.63 1H NMR Spectrum of compound 1.73 

 

 
Spectra 1.64 1H NMR Spectrum of compound 1.74 
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Spectra 1.65 1H NMR Spectrum of compound 1.75 

 

 
Spectra 1.66 1H NMR Spectrum of compound 1.77 
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Spectra 1.67 1H NMR Spectrum of compound 1.78 

 

 
Spectra 1.68 1H NMR Spectrum of compound 1.79 
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Spectra 1.69 1H NMR Spectrum of compound 1.80 

 

 
Spectra 1.70 13C NMR Spectrum of compound 1.80 
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Spectra 1.71 1H NMR Spectrum of compound 1.81 

 

 
Spectra 1.72 13C NMR Spectrum of compound 1.81 
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Spectra 1.73 1H NMR Spectrum of compound 1.82 

 

 
Spectra 1.74 1H NMR Spectrum of compound 1.83 
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Spectra 1.75 1H NMR Spectrum of compound 1.84 

 

 
Spectra 1.76 13C NMR Spectrum of compound 1.85 
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Spectra 1.77 1H NMR Spectrum of compound 1.86 

 

 
Spectra 1.78 1H NMR Spectrum of compound 1.87 
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Spectra 1.79 1H NMR Spectrum of compound 1.88 

 

 
Spectra 1.80 1H NMR Spectrum of compound 1.89 
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Spectra 1.81 1H NMR Spectrum of compound 1.90 

 

 
Spectra 1.82 1H NMR Spectrum of compound 1.91 
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Spectra 1.83 1H NMR Spectrum of compound 1.94 

 

 
Spectra 1.84 1H NMR Spectrum of compound 1.95 
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Spectra 1.85 1H NMR Spectrum of compound 1.96 

 

 
Spectra 1.86 1H NMR Spectrum of compound 1.97 



 219 

 

 
Spectra 1.87 1H NMR Spectrum of compound 1.98 

 

 
Spectra 1.88 1H NMR Spectrum of compound 1.99 
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Spectra 1.89 1H NMR Spectrum of compound 1.104 

 

 
Spectra 1.90 1H NMR Spectrum of compound 1.100 
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Spectra 1.91 1H NMR Spectrum of compound 1.102 

 

 
Spectra 1.92 1H NMR Spectrum of compound 1.103 
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Spectra 1.93 1H NMR Spectrum of compound 1.104 

 

 
Spectra 1.94 13C NMR Spectrum of compound 1.104 
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Spectra 1.95 1H NMR Spectrum of compound 1.105 

 

 
Spectra 1.95 13C NMR Spectrum of compound 1.105 
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Spectra 1.96 1H NMR Spectrum of compound 1.106 

 

 
Spectra 1.97 13C NMR Spectrum of compound 1.106 
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Spectra 1.98 1H NMR Spectrum of compound 1.107 

 

 
Spectra 1.99 13C NMR Spectrum of compound 1.107 
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Spectra 1.100 1H NMR Spectrum of compound 1.108 

 

 
Spectra 1.101 13C NMR Spectrum of compound 1.108 
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Spectra 1.102 1H NMR Spectrum of compound 1.109 

 

 
Spectra 1.103 13C NMR Spectrum of compound 1.109 
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Spectra 1.104 1H NMR Spectrum of compound 1.110 

 

 
Spectra 1.105 13C NMR Spectrum of compound 1.110 
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Spectra 1.106 1H NMR Spectrum of compound 1.111 

 

 
Spectra 1.107 13C NMR Spectrum of compound 1.111 
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Spectra 1.108 1H NMR Spectrum of compound 1.112 

 

 
Spectra 1.109 13C NMR Spectrum of compound 1.112 
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Spectra 1.110 1H NMR Spectrum of compound 1.113 

 

 
Spectra 1.111 13C NMR Spectrum of compound 1.113 
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Spectra 1.112 1H NMR Spectrum of compound 1.114 

 

 
Spectra 1.113 13C NMR Spectrum of compound 1.114 
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Spectra 1.114 1H NMR Spectrum of compound 1.115 

 

 
Spectra 1.115 13C NMR Spectrum of compound 1.115 
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Spectra 1.116 1H NMR Spectrum of compound 1.116 

 

 
Spectra 1.117 13C NMR Spectrum of compound 1.116 
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Spectra 1.118 1H NMR Spectrum of compound 1.117 

 

 
Spectra 1.119 13C NMR Spectrum of compound 1.117 
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Spectra 1.120 1H NMR Spectrum of compound 1.118 

 

 
Spectra 1.121 13C NMR Spectrum of compound 1.118 
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Spectra 1.122 1H NMR Spectrum of compound 1.119 

 

 
Spectra 1.123 13C NMR Spectrum of compound 1.119 
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Spectra 1.124 1H NMR Spectrum of compound 1.120 

 

 
Spectra 1.125 1H NMR Spectrum of compound 1.121 
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Spectra 1.126 13C NMR Spectrum of compound 1.121 

 

 
Spectra 1.127 1H NMR Spectrum of compound 1.122 
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Spectra 1.128 13C NMR Spectrum of compound 1.122 

 

 
Spectra 1.129 1H NMR Spectrum of compound 1.123 
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Spectra 1.130 13C NMR Spectrum of compound 1.123 

 

 
Spectra 1.131 1H NMR Spectrum of compound 1.124 
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Spectra 1.132 13C NMR Spectrum of compound 1.124 

 

 
Spectra 1.133 1H NMR Spectrum of compound 1.125 
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Spectra 1.134 13C NMR Spectrum of compound 1.125 

 

 
Spectra 1.135 1H NMR Spectrum of compound 1.126 
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Spectra 1.136 13C NMR Spectrum of compound 1.126 

 

 
Spectra 1.137 1H NMR Spectrum of compound 1.127 



 245 

 
Spectra 1.138 13C NMR Spectrum of compound 1.127 

 

 
Spectra 1.139 1H NMR Spectrum of compound 1.128 
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Spectra 1.140 13C NMR Spectrum of compound 1.128 

 

 
Spectra 1.141 1H NMR Spectrum of compound 1.129 
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Spectra 1.142 13C NMR Spectrum of compound 1.129 

 

 
Spectra 1.143 1H NMR Spectrum of compound 1.130 
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Spectra 1.144 13C NMR Spectrum of compound 1.130 

 

 
Spectra 1.145 1H NMR Spectrum of compound 1.131 
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Spectra 1.146 13C NMR Spectrum of compound 1.131 

 

 
Spectra 1.147 1H NMR Spectrum of compound 1.132 
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Spectra 1.148 13C NMR Spectrum of compound 1.132 

 

 
Spectra 1.149 1H NMR Spectrum of compound 1.133 
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Spectra 1.150 13C NMR Spectrum of compound 1.133 

 

 
Spectra 1.151 1H NMR Spectrum of compound 1.134 
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Spectra 1.152 13C NMR Spectrum of compound 1.134 

 

 
Spectra 1.153 1H NMR Spectrum of compound 1.135 
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Spectra 1.154 13C NMR Spectrum of compound 1.135 

 

 
Spectra 1.155 1H NMR Spectrum of compound 1.136 
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Spectra 1.156 13C NMR Spectrum of compound 1.136 

 

 
Spectra 1.157 1H NMR Spectrum of compound 1.137 
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Spectra 1.158 13C NMR Spectrum of compound 1.137 

 

 
Spectra 1.159 1H NMR Spectrum of compound 1.138 
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Spectra 1.160 13C NMR Spectrum of compound 1.138 

 

 
Spectra 1.161 1H NMR Spectrum of compound 1.139 
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Spectra 1.162 13C NMR Spectrum of compound 1.139 

 

 
Spectra 1.163 1H NMR Spectrum of compound 1.140 
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Spectra 1.164 13C NMR Spectrum of compound 1.140 

 

 
Spectra 1.165 1H NMR Spectrum of compound 1.141 
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Spectra 1.166 13C NMR Spectrum of compound 1.141 

 

 
Spectra 1.167 1H NMR Spectrum of compound 1.142 
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Spectra 1.168 13C NMR Spectrum of compound 1.142 

 

 
Spectra 1.169 1H NMR Spectrum of compound 1.143 
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Spectra 1.170 13C NMR Spectrum of compound 1.143 
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Covalent Guanosine GNAS Inhibitors 

Introduction 

Natural Nucleosides 

Nucleosides constitute a group of small intracellular compounds crucially involved in 

various biochemical processes. Primarily, they serve as the biochemical precursors to 

nucleotides, the fundamental building blocks of nucleic acids (DNA and RNA), which are 

responsible for transmitting genetic information1. While both nucleosides and 

nucleotides are composed of a heterocyclic nitrogenous base (pyrimidine or purine) that 

are linked to a 5-carbon sugar through a -N-glycosidic bond, the key difference is the 

presence of one to three phosphate groups attached at the 5’ position of the pentose 

sugar. Nucleotides play essential roles in metabolic regulation, such as facilitating ATP-

dependent phosphorylation of crucial metabolic enzymes, modulating enzyme activity 

through allosteric regulation by ATP, AMP, and CTP, and governing the rate of oxidative 

phosphorylation through ADP control1. 

 

Figure 2.1 General structure of nucleosides and nucleotides 
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 Purine and pyrimidines make up the two categories of nitrogenous bases found 

in DNA and RNA. The three pyrimidines are uracil (Ura), thymine (Thy), and cytosine 

(Cyt) and the two purines are guanine (Gua), and adenine (Ade). Presence of a 

hydroxyl substituent at the 2’ position of the pentose sugar dictates whether it is D-

ribose or 2-deoxy-D-ribose. D-ribose nucleosides and 2-deoxy-D-ribose nucleosides are 

labeled ribonucleosides and deoxyribonucleosides respectively. Ribonucleotides are the 

monomer units that make up RNA. These monomers consist of adenosine (Ado), 

guanosine (Guo), cytidine (Cyd), and uridine (Urd). Deoxyribonucleotides are the 

monomer units that make up DNA. These monomer units consist of deoxyadenosine 

(dAdo), deoxycytidine (dCyt), deoxyguanosine (dGuo), and thymidine (Thd).  

 

Figure 2.2 DNA and RNA nitrogenous bases 
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Mechanism of Action of Nucleoside Analogues 

Therapeutic nucleoside analogues currently in use leverage the same metabolic 

pathways as naturally occurring nucleosides or nucleotides. NAs gain access to the 

cytoplasm by utilizing integral membrane proteins such as nucleoside transporters11-12. 

The first phosphorylation step is the rate-limiting step for pharmacological activation, 

and the nucleoside monophosphate can be dephosphorylated by 5’-nucleosidases (5’-

NT)13-14. Additionally catabolic enzymes, such as deaminases, can decrease the 

amount of active metabolites2. The incorporation of the second and third phosphates 

proceed smoothly to furnish the active nucleoside analogue 5’-triphosphate. Once 

endogenous kinase enzymes generate the di- and tri- phosphate form of the NAs, they 

accumulate and are available to be incorporated into the cancerous or virally infected 

cells, however they are susceptible to inhibition by enzymes involved in nucleotide 

metabolism such as Ribonucleotide reductase M1 (RR)2. Active phosphorylated NAs 

that do not contain the 3’ hydroxyl group prevent the formation of 3’-5’ phosphodiester 

bond formation and lead to termination of chain elongation18. DNA damage sensors 

identify these occurrences and initiate survival mechanisms like cell cycle arrest and 

DNA repair. Nevertheless, if the extent of DNA damage surpasses the capacity of these 

processes, the sensors may also initiate signals for the apoptotic pathway15-17. 
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Figure 2.3 Nucleoside analogues mechanism of action 

 

Nucleoside 
transporter

Nucleoside analogue

Nucleoside analogue

Nucleoside analogue

Nucleoside analogue

Nucleoside analogue

Nucleoside 
kinase

5’-nucleotidase

P

P P

P P P

Deaminase

Deamination

Nucleoside 
monophosphate

kinase

Nucleoside 
diphosphate

kinase

DNA incorporation

RNA incorporation
DNA synthesis

Apoptosis

RR



 277 

Anticancer Nucleoside Analogues 

Due to the versatile mechanisms of action and proven track record as cancer 

therapeutics, the number of FDA approved purine and pyrimidine nucleobase and 

nucleosides is growing.  

 

Figure 2.4 Anticancer purine nucleobases and nucleosides 

 Although more accurately described as nucleobases, thioguanine (6-TG, 2a) can 

be viewed as a guanine derivative just as 6-mercaptopurine (6-MP, 2b) is a derivative of 

hypoxanthine. These nucleobases become activated when hypoxanthine-guanine 

phosphoribosyl-transferase phosphorylates them generating the monophosphate that 
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will subsequently be converted into the triphosphates and be misincorporated into 

DNA19. Thiopurines play an integral role in the management of childhood acute 

lymphoblastic leukaemia19.  

 Cladribine (2Cda, 2d), Fludarabine (FA, 2e), and Clofarabine (CAFdA, 2f), are 

adenosine derivatives. 2Cda shows cytotoxicity in both resting and dividing cells by 

incorporating its active triphosphate metabolite form into DNA20-21. Both 2Cda and FA 

show resistance to deamination by adenosine deaminase (ADA)22. FA initiates the 

termination of chain elongation mediated by DNA polymerases 23. While CAFdA 

utilizes the same mechanisms of action as 2Cda and FA it was designed for improved 

efficacy. CAFdA showed improved plasma stability, higher cell retention, higher affinity 

for nucleoside transporters, and highest lipophilicity among purine analogs this next 

generation deoxyadenosine derivative and activity against DNA polymerase24. 

 Nelarabine (2g) is a guanosine analogue functionalized with a 6-methoxy thereby 

increasing water solubility by 10x and generating a prodrug of arabinosylguanine (Ara-

G). Adenosine deaminase is responsible for the conversion of nelarabine to the parent 

nucleoside Ara-G. Nelarabine was shown to be toxic towards T-lymphocytes and T-

lymphoblastoid cells25. 

 Deoxycoformycin (dCF, 2h) is an effective treatment against hairy cell leukemia. 

As the exact mechanism of action has not been elucidated, it is speculated that dCF is 

an inhibitor of ADA resulting in increased levels of deoxyadenosine (dAdo) and 

adenosine (Ado) in the plasma. Down stream effects are seen through the accumulation 

of DNA strand breaks in lymphocytes, leading to the activation of p53, the release of 

cytochrome c from mitochondria, and ultimately triggering apoptosis26. 
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Figure 2.5 Anticancer pyrimidine nucleobases and nucleosides  

The uracil nucleobase analogue 5-fluorouracil (5-FU, 2c) is used for a wide range 

of cancers including colorectal, breast, and ovarian. In order to become activated 5-FU 

must be converted into one of the nucleoside forms like floxuridine (FUdR, 2j). After a 

phosphorylation event the nucleotide forms can form covalent linkages with thymidylate 

synthase (TS) forming a quaternary complex and thus inhibiting the enzyme. The 

nucleotide triphosphate is produces through a series of enzymatic step leading to 

inhibition of DNA synthesis and downstream function27. Capeciteabine (2k) is a 5-FU 

prodrug containing a liable carbamate group. This orally available fluoropyrimidine 

carbamate was designed to generate 5-FU in the liver by sequential metabolism by a 

carboxylesterase, deaminase, and lastly thymidine phosphorylase27.  
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Although cytrabine (2m) does not show activity against solid tumors, is a 

common treatment used for haematological malignant diseases. Cytarabine cytotoxicity 

arises from direct inhibition of DNA polymerases and the incorporation of arabinosyl 

cytidine triphosphate (CTP) into DNA. This incorporation leads to chain termination and 

arrest of DNA synthesis19. Due to low affinity for deoxycytidine kinase and rapid 

elimination of the active triphosphate alternative deoxycytidine derivatives were 

explored. 

Gemcitabine (2l) is a deoxycytidine derivative and one of the most active agents 

in cancer treatment and unlike cytrabine does have effect on solid tumors. It has shown 

activity among non-small cell lung cancer, pancreatic, bladder, and breast cancer. After 

crossing into the cell via nucleoside transporters and enzymatic transformation into the 

di (dFdCDP) and tri (dFdCTP) nucleotide forms, both of which are responsible for 

cytotoxic actions, it can be incorporated into the DNA and cause strand termination. 

Synergy between gemcitabine and several other antineoplastic agents has been 

observed in experimental models, indicating specific pharmacodynamic interactions28. 

Although decitabine (DAC, 2n) and azacytidine (5-AC, 2o) are structurally similar 

to the deoxycytidine analogues they induce altered physiological effects. The discovery 

that these compounds inhibit DNA methylation in human cell lines, offered a 

mechanistic explanation for their activity in modulating differentiation29. After 

azanucleosides have been metabolized to 5-aza-2′-deoxycytidine-triphosphate, they 

can become substrates for the DNA replication machinery and will be incorporated into 

DNA. DNA methyltransferase recognizes the azacytosine-guanine dinucleotides as 
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natural substrates and the azanucleotide remains covalently bound leading to enzyme 

degredation30. 
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Nucleoside and Nucleotide Analogues as Therapeutics 

Apart from being monomers composing RNA and DNA, nucleoside and nucleotide 

compounds are fundamental to other biological processes such as cellular metabolism2, 

cell signaling3, neurotransmission4, and regulation of cardiovascular activity5. Due to the 

widespread physiological utility of nucleoside and nucleotides, their chemical analogs, 

nucleoside analogs (NAs) are promising therapeutics.  

 

Figure 2.6 Modifications to the nucleobase, carbohydrate, and phosphate group 

Nucleobases in which functional groups have been strategically moved or 

substituted, named pseudo-bases, can enhance stability by resisting the cleavage of the 

glycosidic bond and incorporate more or stronger intermolecular interactions. Even 

though slight alteration to the heterobase moiety is tolerated a close correlation to the 

endogenous counterpart is necessary to undergo cellular metabolism and be 

incorporated into nucleic acids. Drastic alteration to the heterobase has been shown to 

be associated with ineffectiveness against Tick-borne encephalitis virus (TBEV) and 
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cytotoxic effects6. A structure activity relationship study altering the substitutions at the 

2’, 3’, and 4’ positions of the sugar has shown low tolerance for substitution when tested 

against TBEV and cytotoxicicity6. Chemical alteration to the sugar moiety has proved to 

alter both selectivity and effectiveness in both anticancer and antiviral agents7. While 

initial efforts to optimize NAs were focused on alteration to the nitrogenous base and 

sugar, much focus has shifted towards optimization of the phosphate group. Although 

various nucleoside and nucleotide analogs are currently used in clinical practice, there 

remains a necessity for the development of novel agents with enhanced properties to 

address challenges such as drug resistance8, limited oral bioavailability9, and long-term 

toxicity10. A review composed by Seley-Radtke and Yates describes the diverse 

structural variations to both heterobase and carbohydrate, examples of each, and their 

biological implications31. 
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Prodrug Strategy 

 Prodrugs are a biologically inactive component that convert into the active parent 

drug within the body. Used to treat dopamine deficiency in those who have Parkinson’s 

disease, levodopa is the prodrug to the active component dopamine. Dopamine itself is 

not lipophilic enough to cross the blood-brain barrier (BBB) and so addition of a carboxy 

group increases its amino acid characteristics enough to enable transportation across 

the BBB using transporters of neutral amino acids (LAT1). Once across the BBB, 

levodopa is decarboxylated by the endogenous aromatic L-amino acid decarboxylase 

revealing the active drug dopamine33. 

 

Figure 2.7 Endogenous decarboxylation of levodopa to dopamine 

The ideal prodrug would address parameters including solubility, barrier 

permeability, good enzymatic and chemical stability, low toxicity, and efficient 

transformation to active metabolite in the desired cell32. Modification of drug’s physio-

chemical properties is a powerful, well-developed strategy in overcoming some of these 

problems34-35.  



 285 

 

Figure 2.8 General depiction of the prodrug strategy 

 The prodrug strategy has been successfully applied to nucleoside analogs as the 

active triphosphates are too polar which hinders their translocation across cell 

membrane. In the process of nucleoside analog phosphate activation, the initial 

phosphorylation step is frequently recognized as the bottleneck. This recognition has 

prompted medicinal chemists to develop stable masked monophosphate nucleosides, 

enabling the delivery of nucleoside monophosphates into the cell36. Addition of the first 

phosphate group circumvents the rate limiting step however at physiological pH, the 

monophosphate’s anionic characteristic hinders cell membrane permeability. To 

overcome this issue numerous prodrug strategies have been developed increasing 

bioavailability by masking the negative charge. The masked monophosphate can now 

translocate to the intracellular environment, shed the masking components through 

bioactivation, and convert to the active triphosphate through endogenous enzymes. 
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Figure 2.9 The pronucleotide “ProTide” strategy 

 In 1983 Farquhar published his investigations into the use of acyloxymethyl 

groups as biologically reversible phosphate protecting groups used to increase cell 

membrane permeability of nucleotides37. This was the first published work using 

bis(carbonyloxymethyl) as a masking group. Since then both masking groups have 

shown to increase oral bioavaliability46-47. 

 

Figure 2.10 Generic structure of bis(POM) (A) and bis(POC) (B) pronucleotides 
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Utilization of the bis(POM) and bis (POC) groups have been applied many other 

nucleosides including tenofovir38, acyclic nucleoside phosphonates adefovir39, AZT40, 

thymidine41, and 2’,3’-dideoxyuridine (ddU)42. Adefovir dipivoxil (2p) is an orally 

available prodrug to adefovir which was discontinued in 1999 due to renal toxicity, yet 

gained FDA approval in 2002 for treatment of chronic HBV infections at decreased 

dosages43. Tenofovir disproxil fumarate (2q) is the prodrug to tenofovir used to treat HIV. 

It is also orally available and gained FDA approval44. Also used as an HBV treatment, 

LB80380 (2r), has made it through phase II clinical trials45. 

 

Figure 2.11 FDA approved POM and POC nucleotide prodrugs 

 The first step in the bioactivation of bio(POM) prodrug cleavage of pivalic acid by 

a carboxylase leaving an unstable hydroxymethyl alcoholate intermediate. This unstable 

intermediate undergoes a chemical rearrangement liberating one molecule of 

formaldehyde resulting in the mono-ester form. After repetition of this cycle one more 

time, or by direct cleavage by a phosphodiesterase, the free monophosphate 
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nucleoside is formed. In the bioactivation of a bis(POM) protected analogue two 

molecules of pivalic acid and formaldehyde are released in the cell. These potentially 

toxic metabolites spurred the use of bis(POC) as a protecting group instead. Following a 

similar bioactivation pathway, a carboxylase catalyzes the release of one molecule of 

isopropanol. The unstable carbamate rearranges leading to the release of formaldehyde 

and carbon dioxide. Following a second cycle or by cleavage by a phosphodiesterase, 

the monophosphate nucleoside is free from masking groups. Although both bis(POM) 

and bis(POC) were successful in masking the phosphate group, their degradation 

generated potentially toxic metabolite in the cell. The need for a better solution is 

desirable.  

 

Scheme 2.1 The endogenous activation mechanism of bis(POM) (A) and bis(POC) (B) pronucleotides 

 The synthetic approaches to carbonyloxylmethyl phosphate nucleoside prodrugs 

can be seen in Figure 2.12. A shows the coupling of a nucleoside monophosphate with 

a halogenated carbonyloxymethyl derivative such as POM-Cl. The direct substitution of 

nucleoside alcohol and bis(POM)-Cl under basic conditions is shown by B. A Mitsunobu 

between the nucleoside and bis(POM)-OH is depicted by C. Iodination of the 5’ position 
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of the nucleoside followed by substitution using the bis(POM) alkoxide salt can lead to 

the desired substitution product (D).  

 

Figure 2.12 Common routes to access carbonyloxymethyl phosphate nucleoside prodrugs 

In order to address the poor yields and reactivity seen from both routes C and D, 

Hwang and Cole develop a route utilizing the bis(POM)-phosphochloridate48. Scheme 

2.2 shows the synthesis of the more reactive bis(POM)-chloridate (2w) starting from a 

common intermediate trimethylphosphate (2s). Refluxing 2s with sodium iodide and 

chloromethyl pivalate in ACN yields the trisubstituted tri(POM) (2t) in 65% yields. 

Stirring 2t in piperidine gives rise to the piperidine salt (2u) that leads to the bis(POM)-

OH intermediate (2v). This intermediate can be used as seen in C, talking advantage of 

the Mitsunobu reaction or be further processed into the increasingly reactive bis(POM)-

Cl (2w). Coupling 2w and AZT in a basic environment led to the desired AZT bis(POM)-

monophspahte prodrug 2x in a 47% yield.  
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Scheme 2.2 Hwang and Cole’s route to bis(POM)-phosphochloridate 

A more recent phosphorous masking strategy that does not introduce a 

potentially toxic metabolite to the intracellular environment is seen through the 

aryloxyphosphoamidates, also known as ProTides. The first description of this strategy 

came from the pioneering work of Chris McGuigan and coworkers seen though its 

application on AZT49-50. The general structure of a ProTide can be seen in Figure 2.13. 

The phosphorous atom contains an amino acid alkyl ester and an aryloxy group which 

mask the negative charges of the monophosphate nucleoside. Presently the ProTides 

are generally synthesized as diastereomeric mixtures, however there is a great surge in 

research efforts to enable the generation of single enantiomers of the ProTide 

nucleotide analogues. 

INX189 (2aa), a deoxyguanosine phophoamidate analogue, was the leading 

antiviral compounds developed by McGuigan’s group. Sofosbuvir (2z) was originally 

developed by the company Pharmasset, however it was acquired by Gilead and gained 

FDA approval in 2013 as a treatment of HCV infections54. Gilead Sciences also 

developed compound 2y known as Remdesivir. Although being an inhibitor of RNA-
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dependent RNA polymerase and being used as a treatment for COVID-1951 it did not 

meet efficacy endpoints in clinical trials for the treatment of Ebola virus52. Even though 

the FDA utilized an emergency authorization approval in 2020 the world health 

organization (WHO) recommended against the use of Remdesivir regardless of disease 

severity53.  

 

Figure 2.13 Generic phosphoamidate structure and FDA-approved nucleoside protides 

 Scheme 2.3 shows the proposed biochemical activation. Although the fully 

elucidated mechanism is not known, much research has led to this current 

understanding55-56. Unlike the carbonyloxylmethyl phosphate nucleoside prodrugs, the 

Protide nucleotide prodrugs can pass the cell membrane through diffusion56. After 

crossing the cell membrane endogenous carboxlic-ester hydrolases or 

carboxypeptidase enzymes catalyze the ester cleavage leading to a carboxylate 

intermediate57. Spontaneous cyclization proceeding though an addition-elimination 
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reaction generates the transient cyclized intermediate. The combination of mass 

spectrometry and ion spectroscopy showed the first experimental evidence of this 

elusive intermediate58. Hydrolysis of the cyclic anhydride leads to a phosphodamidate 

diester. Cleavage of the P-N bond by phosphoamidase enzymes leads to the parent 

monophosphate nucleoside. Subsequent phosphoylations generate the 

triphosphorylated nucleotide which can generate the biological effect. 

 

Scheme 2.3 The endogenous activation mechanism of aryloxyphosphoramidates pronucleotides 

 Even though recent efforts have given methods to leading to enantiopure 

phosphoamidate nucleosides, these methods rely on intricate chiral auxiliaries51, costly 

catalysts59, or microwave reactors62. Most preparations of phophochloridates generate 

1:1 mixtures of Rp and Sp diastereomers. Subsequent reaction of diastereomeric 

phosphochloridates with enantiopure nucleosides generates the formation of two 

diastereomer products which are notoriously difficult to separate by chromatography 

and crystallization methods. Scheme 2.4 shows the two main reaction conditions used 

to attach phosphochloridates to nucleosides. First seen in the synthesis of AZT 

aryloxyphosphosmidate prodrug, McGuigan laid the path for the synthesis of many 

other ProTide analogues60-61. In the NMI-mediated coupling, n-methylimidazole forms 
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an activated imidazolium intermediate than can be attacked by the 5’ hydroxyl of the 

nucleoside63. The second method incorporates tert-butyl magnesium chloride as a 

strong base to deprotonates the 5’ hydroxyl forming and alkoxide that participates in a 

substitution reaction with the phophochloridate. In both methods the reaction is 

substrate dependent leading to unpredictable outcomes.  

 

Scheme 2.4 Main pathways to conjugate phosphochloridates and nucleosides 

Factors that impact reaction efficiency include the presence of other free hydroxyl 

on the carbohydrate backbone and the nature of the heterobase. The presence of 

multiple free hydroxyl groups can lead to the mono and di-substituted phosphorylation 

products. While a mixture of 5’-mono and 3’,5’-disubstituted products can be separated 

by chromatography, the regioisomers 3’ and 5’-mono phosphorylated products are 

generally inseparable64-66. The reactivity of the heterobase also impacts the efficiency 

which the ProTide can be incorporated onto the nucleoside. While uridine and adenine 

are well behaved in both methods, it is nucleobases with competitive nucleophiles 
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where challenges arise. Scheme 2.5 shows the case where a guanosine analog 2ab 

has competitive reactivity at the amide’s carbonyl oxygen. Difunctionalization at both the 

5’ hydroxyl and O6 position has been proven to be the major product in many 

nucleosides67 as shown in 2ac. A subsequent hydrolysis step under acid conditions led 

to the desired monophosphorylated ProTide 2ad. Not only does competitive O6 

phosphorylation impact guanosine like heterobases efficiency but their low solubility 

lead NMI-mediated reaction to fail68. Methylation at the O6 position prior to coupling with 

phosphochloridates increases solubility and protects from phosphorylation at this 

position. 2aa is an example of a deoxyguanosine ProTide analogue with an O6 

methylation.  

 

Scheme 2.5 Competitive O6-phosphorylation and hydrolysis 
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Increasing solubility and mitigating N4 reactivity, use of a protecting group may be 

necessary. McGuigan69 opted to utilize the N2-dimethylformaidine protection group after 

failing to phosphorylate acyclovir (2af) via the NMI-mediated coupling pathway and only 

yielding 11% by the grignard route. N2-dimethylformaidine protection of acyclovir yielded 

the monophosphorylated intermediate in as much as 93% yield. Subsequent 

deprotection by reflux in isopropanol generated a 90% yield however much of the 

product is lost to multiple purification steps. Nevertheless, protection of competing 

reactive sites produced the desired acyclovir aryloxyphosphoamidate prodrug (2ah) in 

higher yields than direct phosphorylation.  

 

Scheme 2.6 Masking the competitive 2-NH2 with the dimethylforamidine group 
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G-Protein Coupled Receptors (GPCRs) 

G-protein coupled receptors are one of the largest and most diverse families of 

membrane proteins found in eukaryotic cells. Interaction with extracellular chemical 

messengers induce a complex chain of events linked to signal transduction.  

 

Figure 2.14 Extracellular activation and signal transduction through a G-protein coupled receptor 

Figure 2.14 shows the activation of G-protein coupled receptors and its 

interactions with G-proteins. Box 1 shows an activator compound, such as a 

neurotransmitter, that is on the outside of the cell binding to the transmembrane GPCR. 

A conformation change in the receptor generates a binding site for the G-proteins. Once 

the G-proteins have interacted with the newly formed binding site, conformational 

change to the guanyl binding site causes the G subunit (Gs) to release Guanosine 

diphosphate (GDP). Box 4 shows that the guanyl binding site does not stay empty yet is 

now the correct shape to bind guanosine triphosphate (GTP). The binding on GTP 
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induces a conformation shift in the Gs which weaken its attraction with the  (Gs) and 

 (Gs) subunits. Box 6 shows the dissociation of all G-proteins from the receptor, 

however Gs and Gs remain dimerized as a complex, Gs, and Gs dissociates 

entirely still bound to GTP. 

 

Figure 2.15 Interaction of Gs and adenylate cyclase leading to intracellular signal transduction as well 

as conversion of ATP to cAMP 

 Figure 2.15 shows the interaction of the Gs with adenylate cyclase and the 

synthesis of cyclic AMP (cAMP). Gs still bound to GTP can interact with adenylate 

cyclase another membrane bound protein. The binding of Gs and GTP activates a 

proximal catalytic site on adenylate cyclase which subsequently converts adenosine 

triphosphate (ATP) to cAMP. cAMP is a secondary messenger, a molecule that moves 

into the cytoplasm and continues the signal transduction. As long as Gs is bound to 

adenylate cyclase the conversion of ATP to cAMP will occur generating an amplification 
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effect. The Gs can hydrolyze GTP back to GDP which finally deactivates adenylate 

cyclase.  
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GαsR201C as a Target to Modulate Tumorigenesis 

 The GNAS gene, responsible for encoding the Gαs subunit of heterotrimeric G 

proteins, exhibits the second highest mutation frequency in mucinous appendiceal 

adenocarcinoma (AA), occurring in approximately 50% of tumors, and in 

Pseudomyxoma Peritonei (PMP), affecting around 75% of tumors. In non-mucinous AA, 

it ranks third, observed in roughly 25% of tumors. These statistics show its potential as a 

promising target for therapeutic intervention in addressing this rare medical condition70. 

As GNAS has been identified to play a key role in oncogenic processes in various 

cancers including gastric adenocarcinoma71, pancreatic72, colon73, appendicidal74, as 

well as others75. Despite being traditionally considered as druggable targets, there are 

currently no commercially available inhibitors specifically targeting Gαs. Additionally 

GNASR201 stands out because it is the most cancer-causing mutation of all 

heterotrimeric G-proteins76. For these reasons chemical modulation of Gs is a 

promising strategy.  

 The point mutation GNASR201C has been shown by Dr. Shen at the MD Anderson 

Cancer Center to significantly increase tumor growth in Ls174T cells. With use of his 

self-developed software Pocket Finder77-78, Dr. Ruben Abagayan utilized x-ray 

crystallographic structures of GDP bound to GNASR201C to identify a druggable site79. It 

was discovered that cysteine 201 is close enough to the GDP binding site in order to 

utilize target covalent inhibitors to inhibit the mutated Gαs. Figure 2.16 shows GDP (on 

left) bound to GNASR201C and for comparison a covalent guanosine analog containing 

an electrophilic epoxide ingrained in the carbohydrate structure. The epoxide has 

demonstrated close enough proximity to form a covalent linkage with cysteine 201. The 
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Abagayan lab used Molsoft ICM software to model both GDP and the guanosine-

epoxide ligands within the GNASR201C binding site77-78.  

   

Figure 2.16 GDP and guanosine-epoxide bound to the GNASR201C active site 

 An early example of generating an electrophilic epoxide on the carbohydrate of a 

nucleoside comes from Morris Robins80 seen in Scheme 2.7 . Adenosine, as the 

starting material, was subjected to 4 molar equivalents of -acetoxyisobutryl bromide in 

ACN with trace amounts of water (10:1). These reaction conditions yielded both 

regioisomers 2ai and 2aj. This crude reaction product was treated with hydroxide bound 

resin, leading to the formation of the epoxide. Others have successfully applied the 

same synthetic scheme to other nucleosides81-84. 

Scheme 2.7 Traditional route to generate epoxide on carbohydrate of nucleoside 

Moffatt was the first to use -acetoxyisobutryl halides on diols imbedded in 

nucleosides which is an abnormal Mattocks reaction85-87. It was found that -
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acetoxyisobutryl chloride in hot ACN led to cleavage of the glycosidic bond, while 

utilization of the more reactive -acetoxyisobutryl bromide in room temperature solvent 

generated the desired product. cis-Cycloalkane-1,2-diols are converted into trans-2-

bromocycloalkyl acetates with inversion of one stereocenter. Scheme 2.8 shows the 

proposed mechanism through which this abnormal Mattocks reaction proceeds. 

Adenosine’s primary alcohol acts as a nucleophile adding into the ester of -

acetoxyisobutryl bromide. Electrons flow to the acid bromide eliminating a bromide ion. 

The same reaction takes place at one of the sugar alcohols generating an intermediate 

(II) containing two dioxalone moieties. An acid catalyzed rearrangement leads to the 

elimination of 2-hydroxy-2-methylpropanoic acid (VI) resulting in the formation of 

acetoxonium ion intermediate (VII). Depending on which carbon is attacked by a 

bromide ion both trans-2-bromocycloalkyl acetates isomers VIII and VIV are formed. 
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Scheme 2.8 Proposed mechanism through which the abnormal Mattocks reaction proceeds 
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Results 

Synthesis of Guanosine-Epoxide and its Prodrug 

Although adenosine could be reacted directly with -acetoxyisobutryl bromide, 

guanosine was unreactive in the 0-23C temperature range which was also 

encountered by Gong-Xin He from the Gilead group83. Guanosines low solubility in 

organic solvents may to be blame.  Additionally, a complex mixture of products at 

elevated temperatures was also encountered like what Lei Zhang encountered88. The 2-

NH2 group on the purine is an additional reactivity center leading to unintended 

products. To address the reactivity and solubility issues unique to guanosine, it was 

reacted with N,N-dimethylformamide dimethyl acetal in methanol yielding the more 

soluble intermediate (2.2) bearing a methylene dimethylamine protecting group. This 

heterogeneous reaction allowed for the easy purification by filtration and generated a 

high yield of 95%. Now that 2.2 contains a 2-NH2 protection group it is suitable of the 

abnormal Mattocks reaction. 2.2 was stirred at room temp in neat -acetoxyisobutryl 

bromide overnight at room temperature. The next day the reaction was heated to 35C 

with ACN until the solution went clear (15-30min) at which time the reaction was worked 

up with NaHCO3 and purified on a silica column to yield 2.3 and its regioisomer in a 

75% yield. Following the many literature examples85-87, 2.3 was stirred in resin bound 

hydroxide which yielded the desired product 2.4, however it led to unsatisfactory yields. 

Although the same reaction conditions described by Zhang88 and Porcari89 are reported 

to give different products, utilization of this method produced the intended product 2.4. 

Stirring 2.3 with 7M methanolic ammonia in a pressurized round bottom overnight 
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removed all protecting groups and led to the formation of the epoxide in 70% yield after 

purification of C18 silica column.  

Scheme 2.9 Reaction path to guanosine-epoxide and its prodrug 

Following McGuigan’s strategy to increase solubility and mitigate competitive reactivity 

at the N4 amine the isobutryl group was installed. Yupeng Fan describes a convenient 

method to install acyl protecting groups to the amine of guanosine90. This method firstly 

utilizes TMS-Cl for the transient protection of the oxygen atoms, followed by the 

introduction of an acid chloride which reacts at the desired amino group. Both classic 

method (NMI- coupling and t-BuMgCl) to introduce carbonyloxylmethyl masked 

phosphate through bis(POM)-Cl failed. A thorough optimization effort altering conditions 

including solvent, base, temperature, equivalents was fruitless. Interestingly activation 

of bis(POM)-OH with BOP-Cl and NMI in the presence of DIPEA did generate the 

desired carbonyloxylmethyl phosphate guanosine prodrug 2.6. Although the yield was 

extremely poor, scale up of material was enough to provide sufficient material to attempt 

cleavage of the isobutryl protection group.  
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Figure 2.17 Deprotection of isobutryl amide (2.6) failed 

 Deprotection of the isobutryl protected amine was attempted using a variety of 

conditions. Attempting an optimization strategy by altering base (NH3 or EtNH2), solvent 

(THF or MeOH), and temperature (0-23C) failed to remove the isobutryl group before 

5’-OH-P bond was cleaved. Use the conditions 1.3% methylamine, 2.6% ethanol, and 

96% DCM by weight of starting material generated cleavage of 50% of the isobutryl 

group on guanosine’s amine in 18 hours90. Same reaction conditions for the acetyl and 

phenoxyacetyl protected guanosines took 4.5 hours and 4.7 min respectively to cleave 

50%. Cleavage of the 5’-OH-P bond was observed by TLC instantaneously, so an 

alternative strategy was necessary. Orthogonal reactivity could provide a solution. 

Moving away from deprotection conditions using a nucleophile seems logical. The 

carboxybenzyl (Cbz) protection group on guanosine can be removed under 

hydrogenation conditions in 1 hour91. 
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Covalent Acyclic Guanosine Inhibitors 

The nucleotide prodrug strategy has been proven to be effective. Merging the 

target covalent inhibitor strategy with nucleotide prodrugs has exciting potential. 

Addition of a chemical attachment point for the incorporation of electrophiles on the 

nucleoside would allow a perfectly tuned covalent warhead to be incorporated into the 

nucleotide. Ganciclovir prodrugs have already shown potent cytotoxicity and contain an 

attachment point for electrophilic warhead92. 

 

Scheme 2.10 Route towards acyclic guanosine prodrugs 

The synthetic pathway chosen to yield an acyclic guanosine analogue starts with 

commercially available solketal (2.11) as seen in Scheme 2.10. Tosylation of the 

primary alcohol generates a good leaving group which is displaced by sodium azide. 

The azide in 2.13 is the amine synthon that will be used for attachment of electrophilic 
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warheads. Cleavage of the acetonide with aqueous hydrochloric acid in methanol 

released the diol 2.14. Use of the bulky protection group DPTBS-Cl allows the selective 

protection of the primary alcohol in 80% yield. Attachment of the masked phosphate 

diisopropyl (bromomethyl)phosphonate using Finkelstein conditions failed. Instead, 

generation of the secondary alkoxide with sodium hydride by heating in DMF and then 

addition of diisopropyl (bromomethyl)phosphonate generated the desired product 2.16 

in modest yields. Deprotection of the silyl ether to the free alcohol through acidic 

conditions generated product 2.17 in 83% yield. Initial efforts to attach the chloro-purine 

via the tosylated acyclic sugar failed potentially due to steric hinderance. Shifting 

towards a smaller leaving group, 2.17’s primary alcohol was mesylated with 

methanesulfonyl chloride to give 2.18. The mesylate’s acyclic sugar fragment was 

attached to 2-amino-6-chloropurine using Cs2CO3 in 90C DMF.  

 

Scheme 2.11 Mechanism through which the McKenna reaction proceeds 

Employment of the McKenna reaction generates the phosphorous acid from the 

organophosphorus ester 2.19. Scheme 2.11 shows the reaction method through which 
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the McKenna reaction proceeds. Initially the organophosphorus ester 2.19 undergoes 

two cycles transesterification generating the trimethylsilyl ester 2ao. Next, the 

trimethylsilyl esters are cleaved through a solvolysis reaction forming the phosphorous 

acid 2aq. Hydrolysis under acidic conditions leads to the conversion of chloro-purine to 

guanosine analog 2.20. The next step was transformation of the free phosphoric acid 

into the bis(POM) phosphorous ester 2ar. Hydrogenation of the azide, reducing it to a 

free amine, allows for the attachment of electrophilic warheads. 

 

Scheme 2.12 Continuation of the route towards acyclic guanosine prodrugs 

Although the esterification of phosphoric acids such as 2au-2aw and others is well 

documented93-102, the yields are very low and often leads to inseparable mixtures. The 

conversion of 2.20 to 2ar was unsuccessful even after optimization efforts including 

systematically changing bases, temperature, and solvents. 
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Figure 2.18 Esterification of phosphoric acid intermediates with POM-Cl 

 As efforts towards esterifying phosphoric acid intermediates were fruitless, the 

strategy was shifted toward use of the phosphoamidates. Scheme 2.13 shows the 

commercially available 2-amino-6-chloropurine reacting with racemic epichlorohydrin to 

generate the epoxide intermediate 2.21. Opening the epoxide ring with sodium azide 

gave the amine synthon which will be used for attachment of the electrophilic warhead. 

Hydrolysis in 3:1 TFA/H2O of the chloro-purine leads to the increasingly polar 

intermediate 2.23. Generation of the acyclic guanosine phosphoamidate (2.24) was 

achieved using NMI-coupling and a phosphochloridate, however yields were less than 

optimal and not consistent. Use of diastereomeric phosphochloridate generates a 

diastereomer pair of isomers in 2.24, which complicates NMR interpretation. Reducing 

conditions converting azide (2.24) to amine (2ax) failed. Both catalytic hydrogenation 

and attempts of the Staudinger reaction failed to generate the desired amine. 

Additionally, hydrogenation and Staudinger with Boc2O in the reaction failed to yield the 
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desired amine protected carbamate which could have aided in the purification. The next 

step, functionalization of the amine with a warhead, would have given rise to the final 

product. 

 

Scheme 2.13 Alternate route towards acyclic guanosine prodrugs 

 In attempts to produce acyclic guanosine phosphoamidates in a more concise 

manor, Scheme 2.14 was devise. NMI and t-BuMgCl coupling were potentially failing 

due to sterics so use of ganciclovir gives more space between the phosphochloridate 

and nucleoside compared to the last scheme. The arrangement of atoms between the 

purine’s nitrogen and primary alcohol is the same.  

 

Figure 2.19 Comparing the structural similarity of guanosine and ganciclovir 
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Starting at the commercially available acyclic guanosine analog, ganciclovir is protected 

using the bulky monomethoxy trityl group (MMt) on the 2-NH2 and one of the primary 

hydroxyls. Strategically a bulky protecting group was chosen to leave one hydroxy open 

for subsequent reaction. Attempts to attach the phosphochloridate at this stage were 

futile. Tosylation of the free alcohol generates a good leaving group (2.26). 

Displacement of the tosylate allows substitution for an azide, the amine synthon used 

for attachment of the warhead. Use of MMt has been widely employed in the synthesis 

of nucleotides103-109, yet despite the many examples and reaction conditions, removal of 

the MMt protecting group was inconsistent. After a systematic optimization experiment, 

the best reaction conditions entailed stirring 2.27 in 80% HOAc initially at 0C and 

allowing it to warm to room temperature. This was stirred for 3 days generating a 75% 

yield. Again, the attachment of phosphochloridate to the nucleoside failed. NMI, t-

BuMgCl, and Bop-Cl coupling failed to generate the desired acyclic guanosine 

phosphoamindate 2ba. 

 

Scheme 2.14 Route towards acyclic guanosine analogs starting with ganciclovir 
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 Although compound 2.25 masked competitive reactive site, the (MMt) groups are 

very bulky. Coupling of 2.28 does not contain the bulky protecting groups however does 

contain competitive reactive site potentially leading to the failed coupling with the 

phosphochloridate. To address the bulky protecting groups and competitive reactive 

sites the Scheme 2.15 was devised. Ganciclovir’s 2-NH2 was protected using a 

dimethylformamidine group to yield 2.29 in a 95% yield. Cold temperatures, slow 

addition, and strict controlling equivalents of TBDMS-Cl allows the monosilyl ether 2.30 

in 30% yield. TBDMS-Cl was chosen as it is a smaller oxygen selective protecting group 

compared to MMt. Tosylation of the primary hydroxyl and subsequent substitution with 

sodium azide generates intermediate 2.32. Catalytic hydrogenation reduced the azide to 

amine however purification was difficult, so addition of Boc2O to the reaction allowed for 

an easier purification. Selective deprotection of the silyl ether with TBAF generates a 

free hydroxyl which is now available to couple with a phosphochloridate. Even with the 

competitive reactive site protected, and a less bulky protection group near the free 

hydroxy, coupling with the phosphochloridate were not successful.   
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Scheme 2.15 Route towards acyclic guanosine prodrug using less bulky protecting groups. 

The common point at which most of these reaction schemes fail is the coupling of 

nucleoside and masked phosphate. To determine the optimal conditions for this 

coupling reaction a model study was undertaken. Using benzyl alcohol or p-methoxy 
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acid intermediate. Conditions 2-3 used the phosphonium salt PyBOP as the coupling 

agent and varied catalysts. No shift of the benzylic protons or consumption of the 

bis(POM)-OH was observed. Shifting to the carbodiimide EDC (4-5), and altering the 

catalyst showed trace amounts of product however it was heavily dominated by starting 

material. Mitsunobu conditions (6) led to an undesirable complex reaction mixture. 

Activation of bis(POM)-OH with BOP-Cl, DIPEA as a base, and NMI as a catalyst did 

consume all bis(POM)-OH starting material, generate a product with shifted benzylic 

protons, and had a clean spectrum. These encouraging results became the framework 

for further optimization. Because changes in chemical shifts were easier to identify the 

nucleoside surrogate was changed to p-methoxy benzyl alcohol. While conditions 8 

used DMAP in excess intending it to function as both a base and catalyst, these 

conditions showed only trace amounts of the conjugated product. Conditions 9 excluded 

DIPEA and used NMI in excess as a base and catalyst. While these conditions were 

better than 8, there was still incomplete conversion of starting materials. 10 showed the 

most promise as all starting bis(POM)-OH was consumed and the desired conjugated 

product was the major product. As NMI participates as catalyst and generates the 

imidazolium intermediate, incorporation of an electron withdrawing group would 

destabilize the cation intermediate makeing it more reactive. 11 utilized the top 

performing conditions but included 2-nitro-1,2,4-triazole as a catalyst. While these 

conditions did lead to the desired product conditions, 10 provided a higher conversion 

and a cleaner spectrum. 
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Table 2.1 Optimization conditions for the conjugation of nucleoside and masked phosphate 
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Updated Covalent Guanosine Phosphoamidates 

 Similar to the acyclic guanosine analogs the goal is to generate a library of 

covalent guanosine phosphoamidate. Incorporation of an amine to the carbohydrate 

moiety would allow a reactive group for the attachment of electrophilic warheads. 

Starting with the commercially available D-xylose a diacetonide (2.35) is formed using 

acetone in acidic conditions. Selective cleave of the 1,3 acetonide under aqueous acidic 

conditions yields xylofuranose (2.36). Dropwise addition of benzoyl chloride at 0C in 

pyridine ensured the reaction took place at the intended primary alcohol, resulting in the 

desired monoester. Oxidation of the secondary alcohol using TEMPO/PIDA conditions 

generates the desired ketone. Although, it was found that TEMPO/bleach oxidation 

generated the desired product with an easier purification. Reductive hydrogenation 

outperformed classical reductive amination conditions using NaBH4, although both 

generated the benzylamine intermediate 2.39. Subsequent reductive amination failed 

however the substitution conditions using benzyl bromide and Hunig’s base succeeded 

in producing the desired tertiary amine 2.40. Deprotection of the acetonide revealed the 

1,2 diols that were subsequently benzoylated. To form the glycosidic bond Vorbruggen 

conditions were employed. When 2.41 is activated with BSA and TMSOTf it forms a 

cyclic carbocation intermediate on the -face directing substitution to occur on the -

face of the carbohydrate. 6-chloro-2-aminopurine is silylated at the 2 and 7 amino 

positions allowing the 9-NH to form the glycosidic bond on the -face of the 

carbohydrate, generating the desired protected chloro-nucleoside 2.42. Hydrolysis of 

the chloro-purine with TFA in a H2O/toluene mixture gives rise to 2.43 in 85% yield. 

Cleaving the benzoyl group by hydrazine in 2-propanol generated a complex mixture of 
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products. Use of KOH in a H2O/THF solvent gave rise to a better yield and a less 

complex mixture to purify. The next step was to protect the 2-NH2 in order to reduce 

competitive reactive site when going into the phosphate coupling. Use of a Cbz group 

will reduce the number of synthetic steps as hydrogenation conditions will be used to 

deprotect the benzyl protected amine. NMI coupling with BOP-Cl, DIPEA, and the 

phoshochloridate would result in the masked nucleotide 2bc. Hydrogenation conditions 

would reveal both the 2-NH2 and the 3’-NH2 free amines. Incorporation of an 

electrophilic warhead to the more reactive 3’-NH2 followed by silyl ether deprotection 

with TBAF would give rise to the final covalent guanosine nucleotide 2bf. 
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Scheme 2.16 Synthetic approach towards covalent guanosine prodrugs 
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Conclusion 

Described herein are synthetic routes affording both cyclic and acyclic covalent 

guanosine inhibitors targeting the most cancer-causing mutation of all heterotrimeric G-

proteins, GNASR201. Throughout the life cycle of this project the common bottleneck 

arose in the transformation of nucleoside to nucleotide prodrug. Although optimized 

reaction parameters were developed and described, yields were not sufficient enough to 

generate the desired library of covalent guanosine phosphoamidates or 

carbonyloxylmethyl phosphate guanosine prodrugs. 
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Experimental Section 

General Information 

All reactions were performed in flame- or oven-dried glassware sealed with 

rubber septa and under a nitrogen atmosphere unless otherwise indicated. Air- and/or 

moisture-sensitive liquids or solutions were transferred by cannula or syringe. Organic 

solutions were concentrated by rotary evaporator at 30 millibars with the water bath 

heated to not more than 40°C unless specified otherwise. Tetrahydrofuran (THF), 

dichloromethane (DCM), toluene (PheMe), diethyl ether (Et2O) was purified with a Pure-

Solve MD-5 Solvent Purification System (Innovative Technology). Acetonenitrile (ACN, 

99.9%, anhydrous) was purchased from FisherScientific. N,N,-Dimethylformamide 

(DMF, 99.8%, anhydrous) was purchased from Acros. Ethanol (EtOH, 200 proof, 

absolute) and methanol (MeOH, 99.8%, anhydrous) were purchased from Sigma-

Aldrich. Analytical thin-layer chromatography (TLC) was carried out using commercial 

silica plates (silica gel 60, F254, Sigma-Aldrich) and was visualized by UV lamp, ceric 

ammonium molybdate (CAM), aqueous potassium permanganate (KMnO4), or in an 

iodine (I2) chamber. Nuclear Magnetic Resonance (NMR) spectra were collected at 298 

K on a Bruker Avance III spectrometer (1H NMR at 600 MHz; 13C NMR 151 MHz) fitted 

with a 1.7 mm or 5 mm triple resonance cryoprobe with z-axis gradients. All spectra 

were taken in Methanol-d4 with shifts reported in parts per million (ppm) referenced to 

the proton or carbon of the solvent (3.31 or 49.00, respectively). All spectra were taken 

in chloroform-d with shifts reported in parts per million (ppm) referenced to the proton or 

carbon of the solvent (7.26 or 77.0, respectively). All spectra were taken in dimethyl 

sulfoxide-d6 with shifts reported in parts per million (ppm) referenced to the proton or 
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carbon of the solvent (2.50 or 39.5, respectively). All spectra were taken in benzene-d6 

with shifts reported in parts per million (ppm) referenced to the proton or carbon of the 

solvent (7.16 or 128.1, respectively). Coupling constants are reported in Hertz (Hz). 

Data for 1H-NMR are reported as follows: chemical shift (ppm, reference to protium; s = 

single, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet, 

coupling constant (Hz), and integration). 
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(E)-N'-(9-((2R,3S,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-6-

oxo-6,9-dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide (2.2) 

Guanosine 2.1 (10.0 g, 35 mmol, 1 eq.) was dissolved in 100 mL of anhydrous 

methanol, and  (17.4 mL, 0.13 mol, 3.7 eq.) of dimethylformamide dimethyl acetal was 

added under argon. The suspension was stirred for 96 h at 23 °C. The resulting white 

precipitate was removed by filtration, washed with cold methanol (20 mL), and dried 

under reduced pressure to afford the product 2.2 (11.3 g, 33.5mmol, 95%) as a white 

solid.  

 

1H NMR (599 MHz, DMSO) δ 8.53 (s, 1H), 8.04 (s, 1H), 5.79 (d, J = 6.1 Hz, 1H), 5.41 

(d, J = 6.2 Hz, 1H), 5.17 (d, J = 4.6 Hz, 1H), 5.02 (t, J = 5.6 Hz, 1H), 4.48 (dd, J = 11.3, 

5.9 Hz, 1H), 4.11 (dd, J = 8.1, 4.6 Hz, 1H), 3.90 (q, J = 3.8 Hz, 1H), 3.63 (dt, J = 11.8, 

4.6 Hz, 1H), 3.54 (ddd, J = 11.8, 5.8, 4.1 Hz, 1H), 3.15 (s, 3H), 3.03 (s, 3H). 
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((2S,3R,4R,5R)-4-acetoxy-3-bromo-5-(2-(((E)-(dimethylamino)methylene)amino)-6-

oxo-1,6-dihydro-9H-purin-9-yl)tetrahydrofuran-2-yl)methyl 2-acetoxy-2-

methylpropanoate (2.3) 

In an oven dried 20mL scintillation vial with 1-bromo-2-methyl-1-oxopropan-2-yl 

acetate (1.04mL, 7.09 mmol, 12 eq.) was added 2.2 (200mg, 591µmol, 1eq.)  and put 

under Argon. The reaction was stirred at room temp. for 14hr at which time 3mL of 

MeCN was added and heated to 35°C for 30 minutes. The crude reaction mixture was 

evaporated to dryness and dissolved in DCM (10mL). The organic solution was carefully 

washed with water (10mL), NaHCO3 solution (3x10mL), and brine (10mL). The organic 

solution was dried (MgSO4) and concentrated under reduced pressure. The crude 

residue was purified by silica gel chromatography (DCM:MeOH (0-5%)) to afford 2 

isomers of 2.3 (250 mg , 0.44 mmol, 75%).  

 

Rf = 0.36 (DCM:MeOH 9:1) 1H NMR (599 MHz, CDCl3) δ 8.63 (s, 1H), 7.95 (s, 1H), 6.06 

(s, 1H), 5.96 (d, J = 2.0 Hz, 1H), 4.55 – 4.43 (m, 3H), 4.38 (d, J = 3.4 Hz, 1H), 3.19 (s, 

3H), 3.08 (s, 3H), 2.18 (s, 3H), 2.05 (s, 3H), 1.56 (d, J = 4.9 Hz, 6H). 
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2-amino-9-((1S,2R,4S,5S)-4-(hydroxymethyl)-3,6-dioxabicyclo[3.1.0]hexan-2-yl)-

1,9-dihydro-6H-purin-6-one (2.4) 

To a pressure flask was added solid 2.3 (50mg, 88 µmol, 1 eq.) and dissolved in 

10 mL of methanol. After cooling the flask to -78°C and initiating rapid stirring, liquid 

ammonia (0.19 mL, 8.8 mmol, 100 eq.) was added slowly. The flask was sealed, 

allowed to come to room temperature and then heated to 40°C for 14 hours. The crude 

reaction mixture was evaporated to dryness and purified utilizing C18 silica gel 

chromatography (H2O:MeCN:TFA (100:3:0.01-100:10:0.01)) to afford 2.4 as a white 

solid (16 mg, 61 µmol, 70%) 

 

Rf = 0.28 (DCM:MeOH 8:2) 1H NMR (599 MHz, DMSO) δ 7.89 (s, 1H), 6.54 (s, 2H), 

5.95 (s, 1H), 5.06 (t, J = 5.0 Hz, 1H), 4.35 (d, J = 2.6 Hz, 1H), 4.15 (d, J = 2.5 Hz, 1H), 

3.55 – 3.46 (m, 2H), 3.16 (d, J = 4.7 Hz, 1H). 
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N-(9-((1S,2R,4S,5S)-4-(hydroxymethyl)-3,6-dioxabicyclo[3.1.0]hexan-2-yl)-6-oxo-

6,9-dihydro-1H-purin-2-yl)isobutyramide (2.5) 

2.4 (1.0 g, 4 mmol, 1 eq.) was dried by co-evaporation in dry pyridine (3x10 mL). 

The residue was redissolved in dry pyridine (25mL), put under argon, and neat 

chlorotrimethylsilane (4.0 mL, 0.03 mol, 7.5 eq.)  was added. After the reaction was 

stirred at room temperature for 2 hours and then cooled to 0°C, neat isobutryl chloride 

(0.5 mL, 4 mmol, 1.15 eq.) was added dropwise over 20 minutes. The reaction mixture 

was allowed to come to room temperature and stir for 3 hours. Cooling the reaction 

back down to 0°C, the reaction was quenched with 5 mL of water and stirred for 15 min. 

Subsequently concentrated aqueous NH4OH (10 mL) was added and allowed to stir for 

another 15 min. The reaction was diluted with H2O (50 mL) and DCM (30 mL). The 

aqueous layer was collected and evaporated in vaccuo. The residue was purified silica 

gel chromatography (DCM:MeOH (2-10%)) to yield the product 2.5 (0.7 g, 4 mmol, 

55%) as a white solid. 

 

Rf = 0.1 (DCM:MeOH 9:1) 1H NMR (599 MHz, DMSO) δ 8.21 (s, 1H), 6.05 (s, 1H), 5.05 

(t, J = 5.0 Hz, 1H), 4.46 (d, J = 2.6 Hz, 1H), 4.19 (t, J = 3.9 Hz, 2H), 3.55 – 3.48 (m, 2H), 

2.82 – 2.71 (m, 1H), 1.13 (s, J = 6.8 Hz, 3H), 1.12 (s, 3H). 
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To a stirring solution of DIPEA (231 mg, 312 μL, 3 Eq, 1.79 mmol) in dry dmf (5 

mL)was added 1-methyl-1H-imidazole (147 mg, 143 μL, 3 Eq, 1.79 mmol), BOP-Cl (182 

mg, 1.2 Eq, 716 μmol),((hydroxyphosphoryl)bis(oxy))bis(methylene) bis(2,2-

dimethylpropanoate) (234 mg, 1.2 Eq, 716 μmol), and allowed to stir for 5 min before 

adding 2.5 (200 mg, 1 Eq, 596 μmol). The reaction was put under argon atmosphere 

and allowed to stir for 14 hours. Upon completion the reaction was diluted with EtOAc 

(20 mL), washed with water (4x 20mL), brine (20mL), dried with Na2SO4, filtered, and 

concentrated under reduced pressure. The residue was purified by silica gel 

chromatography (DCM:MeOH (0-3%)) to yield the product 2.6 (19 mg, 30 μmol, 5.0 %). 

 

Rf = 0.45 (DCM:MeOH 9.5:0.5) 1H NMR (599 MHz, CDCl3) δ 7.66 (s, 1H), 5.96 (s, 1H), 

5.77 (dd, J = 13.3, 5.2 Hz, 1H), 5.70 (dd, J = 14.0, 5.2 Hz, 1H), 5.59 (d, J = 12.9 Hz, 

2H), 5.27 (dd, J = 20.8, 9.9 Hz, 1H), 4.44 (dd, J = 11.2, 5.2 Hz, 1H), 4.38 (d, J = 2.6 Hz, 

1H), 4.01 (d, J = 2.6 Hz, 1H), 3.97 (ddd, J = 9.5, 6.9, 5.3 Hz, 1H), 2.81 – 2.74 (m, 1H), 

1.27 (s, 9H), 1.22 (s, 3H), 1.21 (s, 3H), 1.16 (s, 9H). 

LRMS: m/z: [M+Na]+ Calcd for [C19H26OsSNa]+ Theo mass: 666.22; Found: 666.31 
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(2,2-dimethyl-1,3-dioxolan-4-yl)methyl 4-methylbenzenesulfonate (2.12) 

Solketal 2.11 (19 mL, 0.15 mol, 1 eq.) was added to a RBF and dissolved in DCM 

(10 mL) at 0°C. To this was added pyridine (61 mL, 0.76 mol, 5 eq.) and then tosyl-Cl 

(35 g, 0.18 mol, 1.2 eq.). The reaction was stirred at 0 °C for 15 min and then allowed to 

come to 23 °C for 14 hour. After this time 2M aqueous HCl was added to the reaction 

and allowed to stir. The organic phase was collected, washed with brine, filtered, dried 

over Na2SO4, and concentrated in vaccuo. The crude oil was purified by silica gel 

chromatography (Hexanes:EtOAc (0-20%)) to afford the tosylated product 2.12 (42.5 g, 

0.15 mol, 98%) as a yellow oil.  

 

1H NMR (599 MHz, CDCl3) δ 7.79 (d, J = 8.3 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 4.30 – 

4.23 (m, 1H), 4.07 – 3.99 (m, 1H), 3.97 (dd, J = 10.1, 6.1 Hz, 1H), 3.76 (dd, J = 8.8, 5.1 

Hz, 1H), 2.45 (s, 3H), 1.33 (s, 3H), 1.31 (s, 3H). 
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4-(azidomethyl)-2,2-dimethyl-1,3-dioxolane (2.13) 

To a stirring solution of 2.12 (46.34 g, 161.8 mmol, 1 eq.) in DMF (300mL) was 

added sodium azide (21.04 g, 323.7 mmol, 2 eq.) and the reaction was heated to 70°C 

for 14 hr. The reaction was then diluted with EtOAc (400 mL), washed with 2M LiCl (4 x 

200 mL), brine (200 mL), dried with Na2SO4, and concentrated in vaccuo to yield 2.13 

(19.0 g, 161.8 mmol, 76%) as a brown oil. No purification was necessary. 

 

1H NMR (599 MHz, CDCl3) δ 4.20-4.27 (m, 1H), 4.00 (dd, J=6.4, 8.4 Hz, 1H), 3.74 (dd, 

J=6.0, 8.4 Hz, 1H), 3.36 (dd, J=4.8, 12.8 Hz, 1H), 3.26 (dd, J=5.6, 12.8 Hz, 1H), 1.43 (s, 

3H), 1.33 (s, 3H). 
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3-azidopropane-1,2-diol (2.14) 

To A stirring solution of 2.13(450 mg, 1 Eq, 2.86 mmol) dissolved in MeOH (10 

mL) was added conc. HCl (313 mg, 4.29 mL, 2 molar, 3 Eq, 8.59 mmol) and stirred at 

23 °C for 14 hour. Upon completion the solvent was evaporated and yielded the product 

2.14 (0.24 g, 2.1 mmol, 73 %) without need for purification. 

 

1H NMR (599 MHz, CDCl3) δ 3.90 (m, 1H), 3.81-3.58 (m, 2H), 3.44 (m, 2H) 
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1-azido-3-((tert-butyldiphenylsilyl)oxy)propan-2-ol (2.15) 

To a stirring solution of 2.14 (1.72 g, 1 Eq, 14.7 mmol) and pyridine (1.43 mL, 

17.6 mmol, 1.2 eq)in DCM (30 mL) at 23 °C was added tert-butylchlorodiphenylsilane ( 

4.58 mL, 17.6 mmol, 1.2 eq.). After 14 hour the reaction was washed with 2M HCl 

(15mL), brine (15mL), dried by MgSO4, and concentrated in vaccuo, The crude residue 

was purified by silica gel chromatography (Hexanes:EtOAc (10-20%)) and visualized by 

CAM stain to afford the product 2.15 (4.2 g, 12 mmol, 80 %). 

 

Rf = 0.4 (Hexanes:EtOAc (4:1)) 1H NMR (599 MHz, CDCl3) δ 7.68 – 7.64 (m, 4H), 7.46 

(t, J = 7.3 Hz, 2H), 7.43 – 7.36 (m, 4H), 3.88 (d, J = 4.4 Hz, 1H), 3.73 – 3.64 (m, 2H), 

3.38 (d, J = 5.5 Hz, 2H), 2.46 (d, J = 3.7 Hz, 1H), 1.08 (s, 9H). 
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diisopropyl (((1-azido-3-((tert-butyldiphenylsilyl)oxy)propan-2-

yl)oxy)methyl)phosphonate (2.16) 

Sodium hydride (1.36 g, 60% Wt, 33.9 mmol, 2.5 eq.) was added to a solution of 

2.15 (4.88 g, 13.6 mmol, , 1 eq.) in DMF (200 mL) and was stirred at 60 °C for 15 min. 

After diisopropyl (bromomethyl)phosphonate (5.28 g, 20.4 mmol, 1.5 eq.) was added 

the reaction was put under argon and stirred at 23 °C for 14 hour. The reaction was 

quenched with H20 (20 mL), evaporated to dryness, redissolved in EtOAc (300mL), 

washed with H20 (200 mL), brine (200 mL), dried by Na2SO4, and concentrated under 

vaccuo. The residue was purified by silica gel chromatography (Hexanes:EtOAc (16-

50%)) to afford the product 2.16 (4.7 g, 8.8 mmol, 65 %) as a colorless oil. 

 

Rf = 0.52 (Hexanes:EtOAc (1:1)) 1H NMR (599 MHz, CDCl3) δ 7.35 (d, J = 7.6 Hz, 4H), 

7.24 (t, J = 7.6 Hz, 4H), 7.20-7.15 (m, 2H), 4.73 – 4.60 (m, 1H), 3.77 (dd, J = 13.6, 9.0 

Hz, 1H), 3.69 (dd, J = 13.6, 8.8 Hz, 1H), 3.57 – 3.52 (m, 1H), 3.37 (qd, J = 12.9, 5.2 Hz, 

2H), 3.18 (qd, J = 10.2, 5.3 Hz, 2H), 1.31 – 1.17 (m, 12H). 
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diisopropyl (((1-azido-3-hydroxypropan-2-yl)oxy)methyl)phosphonate (2.17) 

To a stirring solution 2.16 (100 mg, 186 μmol, 1eq.) in CHCl3 (5 mL) at 0 °C was 

added conc. HCl (5.01 μL, 205 μmol, 1.1 eq.) and allowed stir for 1 hour. Once all 

starting material had been consumed the solvent was evaporated and the crude product 

was purified by silica gel chromatography (Hexanes:EtOAc (25-50%)) which afforded 

the product 2.17 (50 mg, 0.17 mmol, 91 %). 

 

1H NMR (599 MHz, CDCl3)f δ 4.84 – 4.77 (m, 1H), 4.77 – 4.70 (m, 1H), 4.08 (dd, J = 

14.2, 6.9 Hz, 1H), 3.97 (s, 1H), 3.79 (dd, J = 14.2, 8.9 Hz, 1H), 3.75 (d, J = 12.3 Hz, 

1H), 3.67 – 3.62 (m, 1H), 3.59 (d, J = 12.0 Hz, 1H), 3.43 (dd, J = 13.0, 7.5 Hz, 1H), 3.25 

(dd, J = 13.0, 4.0 Hz, 1H), 1.36 (dd, J = 6.1, 3.5 Hz, 6H), 1.34 (d, J = 6.2 Hz, 6H). 
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3-azido-2-((diisopropoxyphosphoryl)methoxy)propyl methanesulfonate (2.18) 

To a solution of 2.17 (0.82 g, 1 Eq, 2.8 mmol) and triethylamine (0.77 mL, 2 Eq, 

5.6 mmol) in DCM (7 mL) was added mesyl-Cl (0.38 g, 0.26 mL, 1.2 Eq, 3.3 mmol) at 0 

°C under an argon atmosphere wihch was stirred for 1 hour and slowly warmed to 23 °C 

for 1hr. Water (7 mL) was added to the reaction and was extracted from with DCM (2x 

7mL). The combined organics were washed with brine, dried by MgSO4, filtered, and 

concentrated. The residue was purified by silica gel chromatography (DCM:Acetone 

(10-30%)) to afford the product 2.18 (0.90 g, 2.4 mmol, 87 %) as an oil. 

 

Rf = 0.26 (Hexanes:EtOAc (4:1)) visualized by KMnO4 
1H NMR (599 MHz, CDCl3) δ 

4.80 – 4.69 (m, 2H), 4.34 (dd, J = 11.1, 4.5 Hz, 1H), 4.29 (dd, J = 11.1, 5.1 Hz, 1H), 3.91 

– 3.84 (m, 3H), 3.52 (dd, J = 13.1, 4.7 Hz, 1H), 3.45 (dd, J = 13.1, 5.6 Hz, 1H), 3.07 (s, 

3H), 1.34 (s, 6H), 1.33 (s, 6H). 
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diisopropyl (((1-(2-amino-6-chloro-9H-purin-9-yl)-3-azidopropan-2-

yl)oxy)methyl)phosphonate (2.19) 

2.18 (1.47 g, 1 Eq, 3.94 mmol), 6-chloro-9H-purin-2-amine (1.34 g, 2 Eq, 7.87 

mmol), and cesium carbonate (2.82 g, 2.2 Eq, 8.66 mmol) were added to a RBF which 

containing dry DMF (15 mL), put under an argon atmosphere, and vigorously spun at 90 

°C for 3 hour. Upon completion the reaction was brought to room temperature and 

filtered. The filtrate was diluted with EtOAc (40mL), washed with water (4x 30mL), brine 

(30mL), dried with Na2SO4, filtered, and concentrated under reduced pressure. The 

residue was purified by silica gel chromatography (DCM:MeOH (0-10%)) to afford the 

product 2.19 (0.83 g, 1.9 mmol, 47 %). 

 

Rf = 0.43 (DCM:MeOH (9:1)) 1H NMR (599 MHz, CDCl3) δ 7.92 (s, 1H), 5.23 (s, 2H), 

4.76 – 4.64 (m, 2H), 4.31 (dd, J = 14.6, 4.0 Hz, 1H), 4.25 (dd, J = 14.6, 5.8 Hz, 1H), 

3.94 – 3.90 (m, 1H), 3.85 (dd, J = 13.8, 8.4 Hz, 1H), 3.76 (dd, J = 13.8, 8.8 Hz, 1H), 

3.48 (dd, J = 13.1, 5.0 Hz, 1H), 3.31 (dd, J = 13.1, 5.1 Hz, 1H), 1.32 (dd, J = 9.7, 6.3 Hz, 

6H), 1.28 (dd, J = 18.0, 6.3 Hz, 6H). 
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(((1-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-3-azidopropan-2-

yl)oxy)methyl)phosphonic acid (2.20) 

TMS-Br (874 mg, 740 μL, 10 Eq, 5.71 mmol) was added drop wise to a solution 

of 2.19 (255 mg, 1 Eq, 571 μmol) in dry ACN (250 μL) which was under an argon 

atmosphere. This was stirred at 23 °C for 14 hour at which time the solvent was 

evaporated and subsequently dried under high vacuum. To this was added Acetone 

(2mL) and water (0.5mL) and was stirred at 23 °C for 6 hours. The precipitate was 

filtered, washed with Acetone (2mL) and water (0.5mL) and then stirred in HCl (20.8 mg, 

285 μL, 2 molar, 1 Eq, 571 μmol) at 80 °C for 5 hours. Evaporation of the solvent left a 

residue that was crystalized from water to give the product 2.20 (49 mg, 0.14 mmol, 25 

%).  

 

1H NMR (599 MHz, D2O) δ 8.95 (s, 1H), 4.51 (d, J = 15.0 Hz, 1H), 4.41 (dd, J = 14.7, 

7.3 Hz, 1H), 4.05 (d, J = 2.7 Hz, 1H), 3.91 (dd, J = 12.9, 9.0 Hz, 1H), 3.75 (dd, J = 13.3, 

3.8 Hz, 1H), 3.65 (dd, J = 12.4, 10.8 Hz, 1H), 3.47 (dd, J = 13.1, 3.7 Hz, 1H). LRMS: 

m/z: [M-H]- Calcd for [C9H12N8OsP]- Theo mass: 343.07; Found: 343.15 
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6-chloro-9-(oxiran-2-ylmethyl)-9H-purin-2-amine (2.21) 

To a stirring solution of 6-chloro-9H-purin-2-amine (10 g, 1 Eq, 59 mmol) and 

cesium carbonate (29 g, 1.5 Eq, 88 mmol) in dry DMF (100 mL)was added 2-

(chloromethyl)oxirane (27 g, 23 mL, 5 Eq, 0.29 mol) slowly. After the reaction was 

heated to 70 °C for 1 hour it was allowed to come to room temperature, diluted with 

EtOAc (300mL), washed with water (4x 200mL), brine (200mL), dried with Na2SO4, 

filtered, and concentrated under reduced pressure. The crude residue was purified by 

silica gel chromatography (DCM:MeOH (0-5%)) to yield 2.21 (8.6 g, 38 mmol, 65 %).  

 

Rf = 0.2 (DCM:MeOH (9:1)) 1H NMR (599 MHz, MeOD) δ 8.05 (s, 1H), 4.51 (dd, J = 

14.9, 3.3 Hz, 1H), 4.19 (dd, J = 15.0, 5.8 Hz, 1H), 3.38 (dt, J = 6.0, 3.5 Hz, 1H), 2.85 (t, 

J = 4.3 Hz, 1H), 2.57 (dd, J = 4.6, 2.5 Hz, 1H). 
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1-(2-amino-6-chloro-9H-purin-9-yl)-3-azidopropan-2-ol (2.22) 

To a stirring solution of 2.21 (1.33 g, 1 Eq, 5.89 mmol) in MeOH (20 mL) was 

added ammonium chloride (946 mg, 3 Eq, 17.7 mmol) and sodium azide (1.15 g, 3 Eq, 

17.7 mmol). The reaction was heated to 50 °C for 14 hour after which the reaction was 

evaporated to dryness and purified by silica gel chromatography (Hexanes: EtOAc (50-

80%)) to yield 2.22 (1.3 g, 5.0 mmol, 85 %). 

 

Rf = 0.5 (EtOAc) 1H NMR (599 MHz, DMSO) δ 8.05 (s, 1H), 6.88 (s, 2H), 5.66 (d, J = 

5.1 Hz, 1H), 4.12 – 4.05 (m, 2H), 4.01 (dd, J = 14.6, 9.3 Hz, 1H), 3.36 (dd, J = 13.0, 3.5 

Hz, 1H), 3.26 (dd, J = 12.8, 6.0 Hz, 1H). 
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2-amino-9-(3-azido-2-hydroxypropyl)-1,9-dihydro-6H-purin-6-one (2.23) 

2.22 (200 mg, 1 Eq, 744 μmol) was dissolved in a mixture of TFA (1.5 mL) and 

h2O (0.50 mL). This was stirred at 23 °C for 14 hour at which time toluene (4mL) was 

added and the solvents were evaporated off to dryness leaving and the orange solid 

2.23 (0.18 g, 0.73 mmol, 98 %). Purification was not necessary. 

 

1H NMR (599 MHz, MeOD) δ 8.37 (s, 1H), 4.44 (dd, J = 13.9, 2.8 Hz, 1H), 4.31 (dd, J = 

13.8, 8.1 Hz, 1H), 4.26-4.20 (m, 1H), 3.46 (dd, J = 12.7, 3.9 Hz, 1H), 3.37 (dd, J = 12.6, 

6.0 Hz, 1H). 
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2-ethylbutyl (((1-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-3-azidopropan-2-

yl)oxy)(phenoxy)phosphoryl)-L-alaninate (2.24) 

To a stirring solution of 2.23 (630 mg, 1 Eq, 2.52 mmol) and 1-methyl-1H-

imidazole (413 mg, 401 μL, 2 Eq, 5.04 mmol) at 0 °C in dry DMF (15 mL) under an 

argon atmosphere was added 2-ethylbutyl (chloro(phenoxy)phosphoryl)alaninate (963 

mg, 1.1 Eq, 2.77 mmol) drop wise which was dissolved in dry DMF (3mL). The reaction 

was allowed to slowly come to 23 °C and was stirred for 14 hour. Upon competition the 

reaction was diluted with EtOAc (45mL), washed with water (4x 30 mL), brine (30mL), 

dried with Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (DCM:MeOH (0-10%)) to yield 2.24 (0.28 g, 0.50 

mmol, 20 %) as a pair of diastereomers.  

 

Rf = 0.3 (DCM:MeOH(9:1)) 1H NMR (599 MHz, MeOD) δ 8.04 (s, 1H), 7.39 – 6.99 (m, 

5H), 4.30-4.20 (m 2H), 4.17 – 4.07 (m, 3H), 4.08-3.95 (m, 2H), 3.40 (d, J = 3.8 Hz, 1H), 

1.53 (d, J = 7.3 Hz, 1H), 1.42 – 1.28 (m, 5H), 0.95-0.86 (m, 9H). 
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1,9-Dihydro-9-[[2-hydroxy-1-[[(4-methoxyphenyl)diphenylmethoxy] 

methyl]ethoxy]methyl]-2-[[(4-  methoxyphenyl)diphenylmethyl]amino]-6H-purin-6-

one (2.25) 

A solution of ganciclovir (6000 mg, 1 Eq, 23.51 mmol), (chloro(4-

methoxyphenyl)methylene)dibenzene (18.15 g, 2.5 Eq, 58.77 mmol), triethylamine 

(7.136 g, 9.83 mL, 3 Eq, 70.52 mmol), and DMAP (71.80 mg, 0.025 Eq, 587.7 μmol) in 

DMF (40 mL) was stirred at 23 °C for 2 hour. The reaction was quenched with methanol 

(1mL), diluted with EtOAc (160mL), washed with water (4x 50mL), brine (50mL), dried 

by Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified 

by silica gel chromatography (DCM:MeOH (2-6%)) to yield the colorless solid 2.25 (10 

g, 12 mmol, 53 %).  

 

Rf = 0.6 (DCM:MeOH (9.5:0.5) 1H NMR (599 MHz, MeOD) δ 7.78 (s, 1H), 7.30 – 7.24 

(m, 11H), 7.21 (dd, J = 8.1, 5.1 Hz, 2H), 7.20 – 7.12 (m, 7H), 7.07 (t, J = 7.3 Hz, 2H), 

6.85 (d, J = 8.8 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 5.06 – 5.01 (m, 2H), 3.80 (s, 3H), 3.63 

(s, 3H), 3.57 – 3.51 (m, 1H), 3.24 (dd, J = 11.9, 2.8 Hz, 1H), 3.17 (dd, J = 11.9, 6.1 Hz, 

1H), 2.82 (dd, J = 10.1, 6.1 Hz, 1H), 2.77 (dd, J = 10.1, 2.8 Hz, 1H). 
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N2-(p-anisyldiphenylmethyl)-9-[(1-(p-anisyldiphenylmethoxy)-3-tosyloxy-2-

propoxy)methyl]guanine (2.26) 

2.25 (9.87 g, 1 Eq, 12.3 mmol) was dissolved in Pyridine (200 mL) under argon 

and cooled to 0 °C and tosyl-Cl (9.41 g, 4 Eq, 49.4 mmol) was added to it. After stirring 

at 0 °C for 30 min. the reaction was allowed to come to 23 °C for 48 hours. Ice water 

was added to quench the reaction and the majority of solvent was removed under 

reduced pressure. The residue was dissolved in toluene and removed on the rotary 

evaporator. The residue wsa purified by silica gel chromatography (DCM:MeOH (0-4%)) 

to yield 2.26 (8.2 g, 8.6 mmol, 70 %) as a white foam. 

 

Rf = 0.5 (DCM:MeOH (9:1) 1H NMR (599 MHz, MeOD) δ 7.69 (s, 1H), 7.65 (d, J = 8.1 

Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.30 – 7.18 (m, 14H), 7.16 (d, J = 8.7 Hz, 2H), 7.10 

(dd, J = 17.9, 8.2 Hz, 6H), 7.01 (dd, J = 14.0, 7.0 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 6.69 

(d, J = 8.6 Hz, 2H), 4.93 (s, 1H), 3.79 (s, 3H), 3.68 – 3.54 (m, 6H), 2.70 (d, J = 4.0 Hz, 

2H), 2.46 (s, 3H). 
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N2-(p-anisyldiphenylmethyl)-9-((1-(p-anisyldiphenylmethoxy)-3-azido-2-

propoxy)methyl)guanine (2.27) 

A solution of 2.26 (4.52 g, 1 Eq, 4.74 mmol) and sodium azide (1.94 g, 6.3 Eq, 

29.8 mmol) in DMF (20 mL) were heated to 105 °C for 72 hour. Upon completion the 

reaction was cooled and diluted with EtOAc (60mL), washed with water (4x 60mL), 

brine (60mL), dried by Na2SO4, filtered, and concentrated under reduced pressure. The 

product 2.27 (3.3 g, 4.0 mmol, 85 %) was obtained as a white foam by recrystallization 

with Hexanes and EtOAc.  

 

1H NMR (599 MHz, MeOD) δ 7.76 (s, 1H), 7.30 (dt, J = 19.6, 8.4 Hz, 13H), 7.25 – 7.22 

(m, 3H), 7.18 (dd, J = 8.8, 4.6 Hz, 4H), 7.13 (td, J = 7.6, 2.6 Hz, 4H), 7.07 (dd, J = 7.7, 

5.5 Hz, 2H), 5.09 (d, J = 11.5 Hz, 1H), 4.99 (d, J = 11.5 Hz, 1H), 3.81 (s, 3H), 3.63 (s, 

3H), 3.62 – 3.58 (m, 1H), 3.09 (dd, J = 13.1, 7.9 Hz, 1H), 2.86 (dd, J = 13.0, 2.8 Hz, 

1H), 2.80 (dd, J = 10.2, 3.0 Hz, 1H). 
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2-amino-9-(((1-azido-3-hydroxypropan-2-yl)oxy)methyl)-1,9-dihydro-6H-

purin-6-one (2.28) 

To a stirring solution of acetic acid (80 mL) and water (20 mL) chilled to 0 °C was 

added 2.27 (1 g, 1 Eq, 1 mmol). This was held at 0 °C for 30min and then allowed to 

come to 23 °C for 72hr. Upon completion the solvent was removed under reduced 

pressure and the remaining residue was triturated with diethyl ether (40mL) to yield 2.28 

(0.3 g, 0.9 mmol, 75 %). 

 

1H NMR (599 MHz, MeOD) δ 7.87 (s, 1H), 5.59 (s, 2H), 3.92 – 3.87 (m, 1H), 3.57 (dd, J 

= 11.8, 5.0 Hz, 1H), 3.52 (dd, J = 11.8, 5.6 Hz, 1H), 3.35 (dd, J = 13.1, 3.8 Hz, 1H), 3.31 

– 3.25 (m, 1H). 
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(E)-N'-(9-(((1,3-dihydroxypropan-2-yl)oxy)methyl)-6-oxo-6,9-dihydro-1H-purin-2-yl)-

N,N-dimethylformimidamide (2.29) 

To a stirring suspension of Ganciclovir (20 g, 1 Eq, 78 mmol) in DMF (250 mL) 

was added 1,1-dimethoxy-N,N-dimethylmethanamine (47 g, 52 mL, 5 Eq, 0.39 mol). 

The reaction was stirred at 23 °C for 14 hour at which time the bulk of solvent was 

evaporated. The remaining solution was filtered and triturated with ether (200 mL). The 

remaining solid was dried on high vacuum to yield 2.29 (23 g, 74 mmol, 95 %) as a 

white solid.  

 

1H NMR (599 MHz, MeOD) δ 8.61 (s, 1H), 7.86 (s, 1H), 5.57 (s, 2H), 3.69 – 3.64 (m, 

1H), 3.50 (dd, J = 11.7, 4.5 Hz, 2H), 3.42 (dd, J = 11.7, 6.1 Hz, 2H), 3.12 (s, 3H), 3.03 

(s, 3H). 
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(E)-N'-(9-(((1-((tert-butyldimethylsilyl)oxy)-3-hydroxypropan-2-yl)oxy)methyl)-6-

oxo-6,9-dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide (2.30) 

2.29 (100 mg, 1 Eq, 322 μmol) and imidazole (43.9 mg, 2 Eq, 645 μmol) were 

added to a scintillation vial containing NMP (15 mL) and was heated to create a 

homogeneous solution. The reaction was brought back down to 23 °C and tert-

butylchlorodimethylsilane (31.6 mg, 0.65 Eq, 209 μmol) was added in very small 

portions. The reaction was allowed to continue until all starting material had been 

consumed by TLC. Upon completion the reaction was diluted with EtOAc (45mL), 

washed with water (4x40mL), brine (40mL), dried by Na2SO4, filtered, and concentrated 

under reduced pressure. The residue was purified by silica gel chromatography 

(DCM:MeOH (0-10%)) to yield 2.30 (41 mg, 97 μmol, 30 %). 

 

Rf = 0.27 (DCM:MeOH (9:1)) 1H NMR (599 MHz, MeOD) δ 8.71 (s, 1H), 7.95 (s, 1H), 

5.66 (s, 2H), 3.80 (dt, J = 10.3, 5.3 Hz, 1H), 3.66 – 3.60 (m, 2H), 3.52 (ddd, J = 10.6, 

5.9, 3.2 Hz, 2H), 3.21 (s, 3H), 3.13 (s, 3H), 0.84 (s, 9H), -0.00 (s, 3H), -0.02 (s, 3H). 
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(E)-3-((tert-butyldimethylsilyl)oxy)-2-((2-(((dimethylamino)methylene)amino)-6-

oxo-1,6-dihydro-9H-purin-9-yl)methoxy)propyl 4-methylbenzenesulfonate (2.31) 

To a stirring solution of 2.30 (143 mg, 1 Eq, 337 μmol) in Pyridine (10 mL) at 23 

°C was added tosyl-Cl (257 mg, 4 Eq, 1.35 mmol) and stirred for 14 hour. Upon 

completion the reaction was diluted with EtOAc (30mL), washed with a saturated 

solution of CuSO4 (3x 60mL), brine (30mL), dried by Na2SO4, filtered, and concentrated 

under reduced pressure. The residue was purified by silica gel chromatography 

(DCM:MeOH (0-2%)) to yield 2.31 (0.12 g, 0.21 mmol, 63 %). 

 

Rf = 0.33 (DCM:MeOH (9:1)) 1H NMR (599 MHz, CDCl3) δ 8.82 (s, 1H), 7.74 (d, J = 8.2 

Hz, 2H), 7.67 (s, 1H), 7.34 (d, J = 8.0 Hz, 2H), 5.64 (d, J = 11.1 Hz, 1H), 5.49 (d, J = 

11.1 Hz, 1H), 4.22 (d, J = 9.0 Hz, 1H), 4.02 – 3.93 (m, 2H), 3.49 – 3.41 (m, 2H), 3.33 (s, 

23), 3.25 (s, 3H), 2.45 (s, 3H), 0.79 (s, 9H), -0.06 (s, 3H), -0.07 (s, 3H). 
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(E)-N'-(9-(((1-azido-3-((tert-butyldimethylsilyl)oxy)propan-2-yl)oxy)methyl)-6-oxo-

6,9-dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide (2.32) 

To a stirring solution of 2.31 (950 mg, 1 Eq, 1.64 mmol) in DMF (20 mL) was 

added sodium azide (320 mg, 3 Eq, 4.92 mmol). After reaction was heated to 70 °C for 

14 hour it was cooled to 23 °C, diluted with EtOAc (70mL), washed with water (4x 

50mL), brine (50mL), dried by Na2SO4, filtered, and concentrated under reduced 

pressure. The residue was purified by silica gel chromatography (DCM:MeOH (0-4%)) 

to yield 2.32 (0.63 g, 1.4 mmol, 85 %). 

 

Rf = 0.42 (DCM:MeOH (9:1)) 1H NMR (599 MHz, MeOD) δ 8.72 (s, 1H), 7.96 (s, 1H), 

5.67 (s, 2H), 3.95 (dt, J = 11.5, 5.6 Hz, 1H), 3.61 (dd, J = 10.7, 5.4 Hz, 1H), 3.56 (dd, J = 

10.7, 5.6 Hz, 1H), 3.37 (dd, J = 13.0, 3.9 Hz, 1H), 3.21 (s, 3H), 3.14 (s, 3H), 0.86 (s, 

9H), 0.02 (s, 3H), 0.01 (s, 3H). 

  



 348 

 

tert-butyl (E)-(3-((tert-butyldimethylsilyl)oxy)-2-((2-

(((dimethylamino)methylene)amino)-6-oxo-1,6-dihydro-9H-purin-9-

yl)methoxy)propyl)carbamate (2.33) 

A mixture of 2.32 (212.2 mg, 1 Eq, 472.0 μmol) and boc2o (154.5 mg, 163 μL, 

1.5 Eq, 708.0 μmol) in Ethanol (10 mL) was treated with palladium on carbon (25.11 mg, 

10% Wt, 0.05 Eq, 23.60 μmol). The mixture was vigorously stirred under a hydrogen 

atmosphere for 14 hours. Upon completion the suspension was filtered through a pad of 

celite and washed with EtOH (5mL). The filtrate was concentrated in vacuo and purified 

by silica gel chromatography (DCM:MeOH (0-5%)) to afford 2.33 (0.21 g, 0.41 mmol, 86 

%). 

 

Rf = 0.25 (DCM:MeOH (9:1)) 1H NMR (599 MHz, MeOD) δ 8.74 (s, 1H), 7.93 (s, 1H), 

5.62 (q, J = 11.3 Hz, 2H), 3.87 (s, 1H), 3.63 (dd, J = 11.0, 4.4 Hz, 1H), 3.53 (dd, J = 

10.9, 6.1 Hz, 1H), 3.27 – 3.20 (m, 3H), 3.14 (s, 3H), 3.01 (dd, J = 14.2, 7.2 Hz, 1H), 1.39 

(s, 9H), 0.86 (s, 9H), 0.02 (s, 3H), 0.01 (s, 3H). 
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tert-butyl (E)-(2-((2-(((dimethylamino)methylene)amino)-6-oxo-1,6-dihydro-9H-

purin-9-yl)methoxy)-3-hydroxypropyl)carbamate (2.34) 

To a stirring solution 2.33 (112 mg, 1 Eq, 214 μmol) in THF (5 mL) was added 

TBAF (72.7 mg, 278 μL, 1 molar, 1.3 Eq, 278 μmol) dropwise at 23 °C and stirred for 3 

hour. After the starting material had been consumed by TLC the reaction was diluted 

with EtOAc (20mL), washed with water (20mL), brine (20mL), dried by Na2SO4, filtered, 

and concentrated under reduced pressure. The residue was purified by silica gel 

chromatography (DCM:MeOH (0-10%)) to yield 2.34 (73 mg, 0.18 mmol, 83 %). 

 

Rf = 0.2 (DCM:MeOH (9:1)) 1H NMR (599 MHz, MeOD) δ 8.73 (s, 1H), 7.94 (s, 1H), 

5.62 (s, 2H), 3.80 (s, 1H), 3.58 (dd, J = 11.9, 4.1 Hz, 1H), 3.50 (dd, J = 11.9, 5.9 Hz, 

1H), 3.26 – 3.20 (m, 4H), 3.13 (s, 3H), 3.03 (dd, J = 14.2, 7.1 Hz, 1H), 1.38 (s, 9H). 
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(3aR,3bS,7aR,8aR)-2,2,5,5-tetramethyltetrahydro-7H-[1,3]dioxolo[4',5':4,5]furo[3,2-

d][1,3]dioxine (2.35) 

To a stirring solution of D-xylose (32 g, 1 Eq, 0.21 mol) in acetone (780 mL) was 

added sulfuric acid (1.8 g, 28 mL, .66 molar, 0.088 Eq, 19 mmol) and allow to stir for 

48hr at 23°C. Upon completion the reaction was filtered through celite and to the filtrate 

was added ammonia (5mL), and filtered again to remove ammonium sulfate. The filtrate 

was concentrated under reduced pressure and the residue was eluted through a silica 

plug with (Hexanes:EtOAc (3:2)) yielding 2.35 (49 g, 0.21 mol, 99 %) as yellow oil. 

 

Rf = 0.65 (Hexanes:EtOAc (1:1)) 1H NMR (599 MHz, CDCl3) δ 6.00 (d, J = 3.7 Hz, 1H), 

4.52 (d, J = 3.6 Hz, 1H), 4.29 (d, J = 2.1 Hz, 1H), 4.10 (d, J = 11.2 Hz, 1H), 4.06 (d, J = 

13.5 Hz, 1H), 4.02 (d, J = 1.3 Hz, 1H), 1.49 (s, 3H), 1.44 (s, 3H), 1.38 (s, 3H), 1.32 (s, 

3H). Spectrum matched: J. Org. Chem. 2022, 87, 1925−1933 
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(3aR,5R,6S,6aR)-5-(hydroxymethyl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-

ol (2.36) 

2.35 (49g , 1 Eq, 0.21 mol) was dissolved in 0.24M HCl (400mL) and stirred at 

23°C for 1.5 hours, after which time the majority of solvent was removed with the 

rotovap. To the remaining solution was added ethanol (30mL) and toluene (30mL) in 

order to codistill the remaining water. The residue was loaded onto a silica plug and with 

eluted with (Hexanes:EtOAc (66-100%)) to yield 2.36 (39 g, 0.20 mol, 95 %) as a yellow 

oil.  

 

Rf = 0.13 (Hexanes:EtOAc (1:1)) 1H NMR (599 MHz, CDCl3) δ 5.99 (d, J = 3.6 Hz, 1H), 

4.53 (d, J = 3.6 Hz, 1H), 4.34 (d, J = 2.2 Hz, 1H), 4.18 (d, J = 3.6 Hz, 1H), 4.15 (d, J = 

3.7 Hz, 1H), 4.06 (d, J = 10.7 Hz, 1H), 1.49 (s, 3H), 1.33 (s, 3H). Spectrum matched: J. 

Org. Chem. 2022, 87, 1925−1933 
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((3aR,5R,6S,6aR)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-

yl)methyl benzoate (2.37) 

2.36 (5 g, 1 Eq, 0.03 mol) and pyridine (4 g, 4 mL, 2 Eq, 0.05 mol) were added to 

an argon flushed scintillation vial containing DCM (5 mL) at 0°C. To this was added 

benzoyl chloride (4 g, 3 mL, 1.08 Eq, 0.03 mol) dropwise over a 1 hour period and 

stirred for another hour. After the reaction was quenched with water (10mL), and the 

organic phase was washed with a 10% citric acid solution (20mL), saturated NaHCO3 

solution (20mL), brine (20mL), dried by Na2SO4, filtered, and concentrated in vacuo. 

The residue was purified by silica gel chromatography (Hexanes: EtOAc (10-50%)) to 

yield 2.37 (6 g, 0.02 mol, 80 %). This material can be telescoped to next reaction 

without purification. 

 

1H NMR (599 MHz, CDCl3) δ 8.06 (dd, J = 8.3, 1.1 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 

7.46 (t, J = 7.8 Hz, 2H), 5.98 (d, J = 3.6 Hz, 1H), 4.79 (dd, J = 13.5, 9.4 Hz, 1H), 4.60 (d, 

J = 3.6 Hz, 1H), 4.42 (q, J = 5.0 Hz, 2H), 4.22 (d, J = 1.6 Hz, 1H), 1.52 (s, 3H), 1.33 (s, 

3H). Spectrum matched: J. Org. Chem. 2022, 87, 1925−1933 
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((3aR,5R,6aS)-2,2-dimethyl-6-oxotetrahydrofuro[2,3-d][1,3]dioxol-5-yl)methyl 

benzoate (2.38) 

To a stirring solution of 2.37 (6 g, 0.02 mol, 80 %) in DCM (25mL) was added 

TEMPO (0.2 g, 0.05 Eq, 1 mmol) and phenyl-l3-iodanediyl diacetate (0.01 kg, 1.5 Eq, 

0.04 mol) portion wise at 23 °C and was allowed to react for 4 hours until the 

consumption of starting material was observed by TLC. To the reaction was added 

saturated sodium sulfite (25mL). The organic phase was washed with brine (25mL), 

dried by MgSO4, filtered, and concentrated in vacuo. The residue was purified by silica 

gel chromatography (Hexanes: EtOAc (10-50%)) to yield 2.38 (6 g, 0.02 mol, 80 %). On 

large scale purification by recrystallizing with Hexanes is suitable.  

 

1H NMR (599 MHz, CDCl3) δ 7.95 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.44 (t, J 

= 7.8 Hz, 2H), 6.14 (d, J = 4.4 Hz, 1H), 4.70 (dd, J = 16.7, 2.9 Hz, 1H), 4.46 (dd, J = 

11.1, 2.7 Hz, 2H), 4.43 (d, J = 4.4 Hz, 1H), 1.51 (s, 3H), 1.43 (s, 3H). Spectrum 

matched: J. Org. Chem. 2022, 87, 1925−1933 
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((3aR,5S,6R,6aR)-6-benzamido-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-

yl)methyl benzoate (2.39) 

To an oven dried round bottom flask was added 2.38 (10.4 g, 1 Eq, 35.6 mmol) 

and dissolved in anhydrous EtOH (150 mL). To this was added benzylamine (5.72 g, 

5.83 mL, 1.5 Eq, 53.4 mmol) and palladium on carbon (1.14 g, 10% Wt, 0.03 Eq, 1.07 

mmol) with vigorous stirring. The reaction was put under a hydrogen atmosphere and 

stirred at 23 °C for 14 hour. Upon completion the reaction was filtered through a celite 

pad which was then washed with additional EtOH (30mL). The filtrate was concentrated 

in vacuo and purified by silica gel chromatography (Hexanes: EtOAc (10-30%)) to 2.39 

(12 g, 31 mmol, 86 %). The crude product is clean enough to be telescoped to next 

reaction if needed. 

 

1H NMR (599 MHz, CDCl3) δ 7.88 (d, J = 7.5 Hz, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.33 (t, J 

= 7.7 Hz, 2H), 7.28 (d, J = 7.5 Hz, 2H), 7.19 (dd, J = 8.6, 6.5 Hz, 2H), 7.11 (t, J = 7.3 Hz, 

1H), 5.74 (d, J = 3.8 Hz, 1H), 4.65 (dd, J = 12.1, 1.9 Hz, 1H), 4.54 (t, J = 4.2 Hz, 1H), 

4.29 (dd, J = 12.1, 5.3 Hz, 1H), 3.94 (dd, J = 5.3, 1.9 Hz, 1H), 3.91 (d, J = 13.4 Hz, 2H), 

3.71 (d, J = 13.2 Hz, 1H), 2.94 (dd, J = 9.9, 4.6 Hz, 1H), 1.48 (s, 3H), 1.30 (s, 3H). 

Spectrum matched: J. Org. Chem. 2022, 87, 1925−1933 
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((3aR,5S,6R,6aR)-6-(dibenzylamino)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-

5-yl)methyl benzoate (2.40) 

To a stirring solution of 2.39 (13.6 g, 1 Eq, 35.5 mmol) in acn (150 mL) was 

added benzyl bromide (12.1 g, 8.44 mL, 2 Eq, 70.9 mmol) and DIPEA (13.8 g, 18.5 mL, 

3 Eq, 106 mmol). This was stirred at 70 °C for 14 hour at which time the reaction was 

diluted with EtOAc (200mL), washed with 10% citric acid solution (200mL), brine 

(200mL), dried by Na2SO4, filtered, and concentrated under vacuum. The residue was 

purified and by silica gel chromatography (Hexanes: EtOAc (5-20%)) to yield 2.40 (13 g, 

28 mmol, 79 %) as a yellow oil. 

 

Rf = 0.46 (Hexanes:EtOAc (1:1)) 1H NMR (300 MHz, CDCl3) δ 7.82 (dd, J = 5.1, 3.3 Hz, 

2H), 7.53 (t, J = 7.4 Hz, 1H), 7.37 (dd, J = 7.3, 6.0 Hz, 5H), 7.28 – 7.20 (m, 5H), 7.14 (t, 

J = 7.2 Hz, 2H), 5.70 (d, J = 3.7 Hz, 1H), 4.80 (t, J = 4.0 Hz, 1H), 4.76 (dd, J = 13.0, 2.5 

Hz, 1H), 4.60 (ddd, J = 10.5, 4.6, 1.9 Hz, 1H), 4.31 (dd, J = 12.3, 4.6 Hz, 1H), 4.10 (d, J 

= 14.1 Hz, 2H), 3.80 (d, J = 14.0 Hz, 2H), 3.14 (dd, J = 10.4, 4.0 Hz, 1H), 1.61 (s, 3H), 

1.39 (s, 3H). Spectrum matched: J. Org. Chem. 2022, 87, 1925−1933 
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((2S,3S,4R,5S)-3-(N-benzoylbenzamido)-4,5-dihydroxytetrahydrofuran-2-yl)methyl 

benzoate (2.41) 

To an argon flushed 100 mL flask, 2.40 (5.5 g, 1 Eq, 12 mmol), THF (16 mL), and 

water (8.0 mL) were charged to stir to a homogeneous solution. TFA (16 mL) was added 

to the reactor, and the solution was aged for 8 h at 70 °C on a heating mantle. The 

solution was then cooled to 10 °C and diluted with toluene (50 mL). The layer was 

separated, and the organic crude was washed with saturated NaHCO3 (2x 20mL). The 

organic layer was washed with brine (20 mL), and the solution was used in the next step 

without further purification. To the solution was added DMAP (71 mg, 0.05 Eq, 0.58 

mmol), triethylamine (3.5 g, 4.9 mL, 3 Eq, 35 mmol), and benzoic anhydride (6.6 g, 2.5 

Eq, 29 mmol). The crude was aged at 45 °C on a heating mantle for 16 h. The reaction 

was washed with brine (40 mL), dried with Na2SO4, filtered, and concentrated on the 

rotovap. The residue was purified and by silica gel chromatography (Hexanes: EtOAc 

(10-20%)) to 2.41 (5.8 g, 9.1 mmol, 78 %) as a tan solid. 

 

Rf = 0.4 (Hexanes:EtOAc (1:1)) 1H NMR (599 MHz, CDCl3) δ 8.17 – 8.12 (m, 2H), 7.77 

(d, J = 7.8 Hz, 2H), 7.68 (d, J = 7.2 Hz, 5H), 7.64 (dt, J = 14.8, 7.4 Hz, 1H), 7.57 (t, J = 

7.5 Hz, 1H), 7.51 (dt, J = 15.7, 7.8 Hz, 7H), 7.41 (t, J = 7.4 Hz, 1H), 7.39 – 7.31 (m, 6H), 

7.24 (t, J = 7.6 Hz, 4H), 7.14 (t, J = 7.3 Hz, 2H), 7.09 (t, J = 7.8 Hz, 2H), 6.43 (s, 1H), 

O O

BzO O

(Bn)2N

2.40

O OBz

BzO OBz

(Bn)2N

2.41

1.TFA 
H2O/THF, 70°C

2. Bz2O, NEt3, DMAP
THF, 45°C
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5.87 (d, J = 4.1 Hz, 1H), 4.94 – 4.91 (m, 1H), 4.71 (dd, J = 12.2, 2.3 Hz, 1H), 4.44 (dd, J 

= 12.2, 3.8 Hz, 1H), 4.17 (d, J = 13.6 Hz, 2H), 4.00 (dd, J = 9.8, 4.2 Hz, 1H), 3.72 (d, J = 

13.6 Hz, 2H). Spectrum matched: J. Org. Chem. 2022, 87, 1925−1933 
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((2S,3R,4R,5R)-5-(2-amino-6-chloro-9H-purin-9-yl)-4-(benzoyloxy)-3-

(dibenzylamino) tetrahydrofuran-2-yl)methyl benzoate (2.42) 

To an argon backfilled flask with 2.41 (4.17 g, 1 Eq, 6.50 mmol) was added ACN 

(40 mL).  To this solution was deed 6-chloro-9H-purin-2-amine (2.20 g, 2 Eq, 13.0 

mmol) and trimethylsilyl (E)-N-(trimethylsilyl)acetimidate (1.98 g, 2.38 mL, 1.5 Eq, 9.75 

mmol) at 23°C to generate some precipitate. This was heated to 65°C for 20 minutes 

and then trimethylsilyl (E)-N-(trimethylsilyl)acetimidate (1.98 g, 2.38 mL, 1.5 Eq, 9.75 

mmol) was added resulting in a homogeneous solution which was heated to 70°C for 7 

hours. After the solution was cooled to 23°C it was quenched with a saturated NaHCO3 

solution (35mL). The reaction was extracted with toluene (40mL) and the organic phase 

was washed with a saturated NaHCO3 solution (35mL), brine (35mL), dried with 

Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel 

chromatography (Hexanes: EtOAc (10-50%)) to 2.42 (3.1 g, 4.5 mmol, 70 %) as a tan 

solid. The product of this step can be telescoped to the next reaction without need for 

purification. 

 

Rf = 0.5 (DCM:MeOH (9.5:0.5)) 1H NMR (300 MHz, CDCl3) δ 8.13 (d, J = 7.1 Hz, 2H), 

7.77 (dd, J = 8.3, 1.2 Hz, 2H), 7.66 (s, 1H), 7.52 (q, J = 7.5 Hz, 3H), 7.39 – 7.33 (m, 

O OBz

BzO OBz

(Bn)2N

2-amino-6-chloropurine
TMSOTf, BSA

ACN, 70°C

N

NN

N

Cl

NH2
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BzO OBz
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5H), 7.25 – 7.14 (m, 5H), 6.31 (dd, J = 5.9, 1.6 Hz, 1H), 5.94 (d, J = 1.6 Hz, 1H), 4.99 – 

4.85 (m, 2H), 4.62 – 4.49 (m, 3H), 4.17 (d, J = 14.1 Hz, 2H), 3.93 (d, J = 14.1 Hz, 2H). 

Spectrum matched: J. Org. Chem. 2022, 87, 1925−1933 
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((2S,3R,4R,5R)-5-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-4-(benzoyloxy)-3-

(dibenzylamino) tetrahydrofuran-2-yl)methyl benzoate (2.42) 

To a stirring solution of 2.41 (3.5 g, 1 Eq, 5.1 mmol) in toluene (15mL) and water 

(5mL) was added TFA (58 g, 39 mL, 100 Eq, 0.51 mol). This was stirred at 40C for 20 

hours. After cooling back down to 23C the reaction was diluted with water (75mL) and 

toluene (30mL). The toluene layer was washed with saturated NaHCO3 (3x 50mL), 

brine (50mL), dried by Na2SO4, filtered, and concentrated under reduced pressure. The 

residue was purified by silica gel chromatography (DCM: MeOH (0-4%)) to 2.42 (2.8 g, 

4.2 mmol, 83 %) as a tan solid. 

 

Rf = 0.14 (DCM:MeOH (9.5:0.5)) 1H NMR (599 MHz, DMSO) δ 10.73 (s, 1H), 8.11 (d, J 

= 7.3 Hz, 2H), 7.77 (d, J = 7.5 Hz, 2H), 7.74 (t, J = 7.3 Hz, 1H), 7.68 – 7.64 (m, 2H), 

7.60 (t, J = 7.7 Hz, 2H), 7.48 (t, J = 7.7 Hz, 3H), 7.29 (d, J = 7.4 Hz, 5H), 7.20 (t, J = 7.4 

Hz, 5H), 7.14 (t, J = 7.2 Hz, 3H), 6.14 (s, 4H), 5.02 – 4.96 (m, 1H), 4.72 (dd, J = 12.0, 

2.5 Hz, 1H), 4.51 (dd, J = 12.0, 4.6 Hz, 1H), 4.15 (t, J = 7.4 Hz, 1H), 4.05 (d, J = 14.1 

Hz, 2H), 3.86 (d, J = 14.2 Hz, 2H). Spectrum matched: J. Org. Chem. 2022, 87, 

1925−1933 
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Spectra 2.1 1H NMR Spectrum of compound 2.2 

 

Spectra 2.2 1H NMR Spectrum of compound 2.3 
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Spectra 2.3 1H NMR Spectrum of compound 2.4 

 

Spectra 2.4 1H NMR Spectrum of compound 2.5 



 363 

 

Spectra 2.5 1H NMR Spectrum of compound 2.6 

 

Spectra 2.6 1H NMR Spectrum of compound 2.12 
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Spectra 2.7 1H NMR Spectrum of compound 2.13 

 

Spectra 2.8 1H NMR Spectrum of compound 2.14 
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Spectra 2.9 1H NMR Spectrum of compound 2.15 

 

Spectra 2.10 1H NMR Spectrum of compound 2.16 
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Spectra 2.11 1H NMR Spectrum of compound 2.17 

 

Spectra 2.12 1H NMR Spectrum of compound 2.18 
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Spectra 2.13 1H NMR Spectrum of compound 2.19 

 

Spectra 2.14 1H NMR Spectrum of compound 2.20 
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Spectra 2.15 1H NMR Spectrum of compound 2.21 

 

Spectra 2.16 1H NMR Spectrum of compound 2.22 
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Spectra 2.17 1H NMR Spectrum of compound 2.23 

 

Spectra 2.18 1H NMR Spectrum of compound 2.24 
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Spectra 2.19 1H NMR Spectrum of compound 2.25 

 

Spectra 2.20 1H NMR Spectrum of compound 2.26 



 371 

 

Spectra 2.21 1H NMR Spectrum of compound 2.27 

 

Spectra 2.22 1H NMR Spectrum of compound 2.28 
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Spectra 2.23 1H NMR Spectrum of compound 2.29 

 

Spectra 2.24 1H NMR Spectrum of compound 2.30 
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Spectra 2.25 1H NMR Spectrum of compound 2.31 

 

Spectra 2.26 1H NMR Spectrum of compound 2.32 
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Spectra 2.27 1H NMR Spectrum of compound 2.33 

 

Spectra 2.28 1H NMR Spectrum of compound 2.34 
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Spectra 2.29 1H NMR Spectrum of compound 2.35 

 

Spectra 2.30 1H NMR Spectrum of compound 2.36 
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Spectra 2.31 1H NMR Spectrum of compound 2.37 

 

Spectra 2.32 1H NMR Spectrum of compound 2.38 
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Spectra 2.33 1H NMR Spectrum of compound 2.39 

 

Spectra 2.34 1H NMR Spectrum of compound 2.40 
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Spectra 2.35 1H NMR Spectrum of compound 2.41 

 

Spectra 2.36 1H NMR Spectrum of compound 2.42 
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Spectra 2.37 1H NMR Spectrum of compound 2.43 
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