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Abstract

Vision-based Appliance Identification and Control with Smartphone Sensors in

Commercial Buildings

by

Kaifei Chen

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Randy Katz, Co-chair

Professor David Culler, Co-chair

Appliances in commercial buildings are connected to the Internet and becoming pro-

grammatically controllable. However, as the number of smart appliances increases, iden-

tifying and controlling one instance among thousands in a building becomes challenging.

Existing methods have various problems when deployed in large commercial buildings.

For example, proprietary remote controllers and smartphone apps becomeunmanageable.

Voice or gesture command assistants require users to memorize many control commands

in advance. Attaching visual markers (e.g., QR codes) to appliances introduces consider-

able deployment overhead and cannot work at a distance.

In this dissertation, we introduce new approaches for easier appliance selection and

interaction. We first study how several different indoor localization approaches can be

used to generate a list of nearby appliances for users to choose from. Wi-Fi signal strength

fingerprinting can provide a rough estimation with an error of 10 meters. It can also be

fused with different types of information, such as acoustic background noise. However,

indoor localization can only reduce the displayed appliance list and is not sufficient to

provide a quick and intuitive appliance selection mechanism.

In comparison, identifying an appliance by simply pointing a smartphone camera

and controlling the appliance using a graphical overlay interface is more intuitive. We

introduce SnapLink, a responsive and accurate vision-based system for mobile appliance

identification and interaction using image localization. Compared to the image retrieval

approaches used in previous vision-based appliance control systems, SnapLink exploits

3Dmodels to improve identification accuracy and reduce deployment overhead via quick

video captures and a simplified labeling process. To evaluate SnapLink, we collected

training videos from 39 rooms to represent the scale of a modern commercial building.

It achieves a 94% successful appliance identification rate among 1526 test images of 179

appliances within 120 ms average server processing time. Furthermore, we show that
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SnapLink is robust to viewing angle and distance differences, illumination changes, as

well as daily changes in the environment.

On top of SnapLink, we build MARVEL (Mobile Augmented Reality with Viable

Energy and Latency) to provide a continuous appliance identification and interaction

experience. MARVEL identifies appliances with imperceptible latency (∼100 ms) and

low energy consumption on regular mobile devices. In contrast to conventional MAR

systems,which recognize objects using image-based computationsperformed in the cloud,

MARVEL mainly utilizes a mobile device’s local inertial sensors for recognizing and

tracking multiple objects, while computing local optical flow and offloading images only

whennecessary. Wepropose a novel systemarchitecturewhich uses local inertial tracking,

local optical flow, and visual tracking in the cloud synergistically. On top of that, we

investigate how to minimize the overhead for image computation and offloading. We

have implemented and deployed a holistic prototype system in a commercial building

and extensively evaluate MARVEL’s performance. It reveals that the efficient use of a

mobile device’s capabilities significantly lowers latency and energy consumption without

sacrificing accuracy.
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Chapter 1

Introduction

The number of programmatically controllable appliances is increasing rapidly in both

commercial and residential buildings. Directly controlling or interacting with them has

become challenging for building occupants, especially in commercial buildings, where

appliances are dense and shared. In this chapter, we recognize the trends and theproblems

with appliance identification and control, and lay out the roadmap for this dissertation.

1.1 Trends in Smart Appliances
We first categorize and describe different types of smart appliances in this Section. Then

we discuss the trends of the number and complexity of the appliances, as well as the

complexity of the building infrastructures that integrate all the appliances.

1.1.1 Types of Smart Appliances
Manyappliances in today’s buildings aregraduallybeing replacedby“smart” ones that are

connected to the Internet and programmatically controllable withmanufacturer-provided

APIs. For example, smart thermostats learn occupant activity patterns using motion

sensors and adjust temperature settings accordingly to reduce energy consumption. Smart

light bulbs can be controlled using smartphone apps to change color and brightness, and

be scheduled to turn on/off at a later time.

These appliances come with a on-board processor that runs a server on top of TCP/IP

(e.g., aHTTP server that receives JSONobjects in POST requests) and act based on received

requests. Under the network layer, some have a direct Ethernet connection, and others

communicate via lowpower protocols (e.g., Bluetooth LowEnergy (BLE), ZigBee, Z-Wave)

to a dedicated relay, a.k.a. a hub, that is plugged in and connected to the Internet. The

manufacturers usually provide documentations of APIs for developers to integrate the

appliance to third party applications.
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In addition to everyday appliances that are easy and affordable to replace (e.g., printers,

lights), buildings also have many internal components that are not frequently replaced,

such as Variable Air Volume (VAV) boxes, air handling units (AHU), damper, water chiller

and heater, and different types of sensors (e.g., air flow, CO2, temperature). Since decades

ago, these components have been designed to be connected and controlled programmat-

ically, especially in commercial buildings. For example, many of them are controlled by

a Programmable Logic Controller (PLC), and communicate using BACNet. Controlling

these devices requires knowledge of not only the proprietary programming languages the

PLC supports, but also the physical configuration of the building, which are usually not

well documented and obscure. In recent years, the development of computer networks

(e.g., Ethernet, TCP/IP) and programming languages (e.g., Python) over the last decades

have been applied to commercial buildings [1], allowing these conventional components

to be controlled synergistically with modern smart appliances. This is important because

many applications, such as personalized HVAC configuration, require direct control of

these internal components in the building.

1.1.2 Increasing Number and Complexity
According to Statista [2], the number of smart home devices is predicted to increase from

370 million worldwide in 2018 to 913 million in 2025. Many useful but sophisticated

building applications, which usually require a good infiltration of smart appliances in

the buildings, also incentivize people to deploy more smart appliances, especially after

successfully making some buildings more energy efficient, comfortable, and occupant

friendly. Examples of such applications include personalized comfort control [3], anomaly

detection [4] for building analytics, and demand response [5] for energy efficiency.

In addition to the increasing number of smart appliances, the complexity of each

device is increasing. This is enabled by richer and more flexible APIs, as well as today’s

ubiquitous connected personal devices, such as smartphones. Thermostats and light bulbs

are among those that have been providing sophisticated functions. Their smartphone

control applications add many possibilities in how they can be controlled, such as setting

up complex heating, cooling, and lighting schedules based on occupancy in different

zones at different times. In recent years and the near future, we have seen and will see

many more devices augmented with new functionality. For example, door locks can be

activated and deactivated using a smartphone, and the ability to control can be delegated

to other people for certain period of time [6]. Security cameras can recognize faces and

send notifications with a scene description [7]. However, while the complexity adds more

possibilities, it also imposes more requirements on the systems that manage the devices.

1.1.3 Building Infrastructures
To allow many applications to use all the smart appliances, we must integrate them

and provide a uniform and safe execution environment, especially when the appliances
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are shared and applications are not fully trusted. In commercial buildings, building

management systems (BMS) have been used to control all devices at a central computer.

Balaji, et al. [8] shows that a commercial building already has thousands of sensors and

control points today. With the increasing number and complexity of new devices, existing

building management systems will not be able to handle the volume of data, provide

security guarantee, or adapt to different device vendors. To mitigate these problems, new

building management systems have been proposed, abstracting hardware and services

in buildings to a new standardized high-level programming interface [1, 8]. They are

to building appliances what traditional operating systems are to computer hardware,

providing an application execution environment while protecting hardware from faulty

applications.

1.2 Motivating Application: Direct Appliance Control
While many building applications can be automated with a modern BMS, building oc-

cupants still need to directly control appliances in many cases. For example, a user may

want to connect a projector to a particular laptop she has, or change the temperature or

light brightness to a personally preferred value in a room. However, it is impractical for

an application to automatically and unambiguously detect the user’s attention without

any action from her.

Conventionally, hardware controllers (e.g., light switches, remote controllers) are used

to interact with appliances. These controllers cannot scale as the density of appliances

in buildings increases, or be extensible when new functions are desired. In the era of

smart appliances, many manufacturers now provide a mobile application or website for

direct control. However, each manufacturer has their own proprietary silo of system

architecture, including the control app itself. To control a particular appliance, a building

occupant has to find the correct app on her smartphone among possibly tens of others to

control an appliance, which is tedious and cumbersome.

This problem has beenmitigated by smart voice assistant in residential buildings, such

as Amazon Echo [9] and Google Home [10]. Users can configure names and associate

voice control commands with manufacturer-defined functions, such as turning on/off

lights or setting temperature. However, many appliances in commercial buildings are

shared and occupants cannot memorize names for thousands of appliances or their voice

control commands, especially for people who are in the building for only a short period

of time (e.g., in a meeting).

In commercial buildings, we can potentially build an application that allows occupants

to select and control all appliances in a single application or website. This eliminates the

need of having one app for each manufacturer, but is still challenging for occupants to

identify the exact appliance instance among thousands effortlessly. Because the user may

not know exactly where the appliance is, what its type is named in the BMS, and how to

find it using the app (i.e., what to search for given the location and name).
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In this dissertation, we aim to solve the aforementioned problems for our target appli-

cation: direct appliance control. We aim to build a system that must meet the following

requirements:

• the system must allow users to conveniently, quickly, and unambiguously identify

any appliance they want to control among many in the building.

• the system must be robust under different circumstances, such as time of day, net-

work condition, user behavior, and change of environment.

• the system must be able to scale in both identification. accuracy and latency as the

number and complexity of appliances continue to increase in the future.

• the system must be able to adapt to future developments in building management

systems and smart appliances.

1.3 Dissertation Roadmap
The rest of this dissertation is organized as follows. Chapter 2 introduces existing ap-

proaches for users to identify and control smart appliances in related work. We conclude

that existing approaches cannot be directly used for our application in commercial build-

ings.

Chapter 3 describes our first attempt to use indoor localization to narrow down the

displayed list of appliances to only the nearby ones. By adding algorithm-aware confi-

dence values to our system, we can select the best localization results among two popular

indoor localization algorithms under different circumstances. However, even though it

can help us reduce the appliance list, we still cannot disambiguate appliances of the same

type that are close to the user.

Chapter 4 starts to solve the problem using computer vision. We introduce SnapLink,

a vision-based appliance identification system that allows users to start controlling an

appliance by taking a picture of it using their smartphones. We compare different com-

puter vision algorithms and decide 3D image localization is the best fit for our purpose.

To improve the response time without sacrificing image localization accuracy, we add a

feature sub-sampling step in the computation pipeline. We also conduct a comprehensive

evaluation to show that SnapLink is scalable with our large data set. In addition, it is

robust with different illumination conditions, different angles and distances of the image

view, as well as everyday changes in shared environments.

In Chapter 5, we remove the requirement of image capturing in SnapLink and build

MARVEL (Mobile Augmented Reality with Viable Energy and Latency). MARVEL is

an augmented reality application that displays annotation (as opposed to rendering 3D

objects) built on top of SnapLink, and provides real-time continuous augmented display

of controllable appliances in the camera view. It allows users to explore the environ-

ment without prior knowledge of what are controllable. To make MARVEL responsive
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and energy efficient, we explore the trade-offs for both latency and energy consumption

between local motion inertial tracking and correction, and vision-based tracking in the

cloud. We show that MARVEL can achieve high annotation display accuracy with only

100ms latency, which is the limitation of the Android operating system in the smartphone

we use.

Chapter 6 concludes this dissertation with several lessons learned, talks about other

potential applications using our systems, and discusses several problems to solve and

features to add in future work.
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Chapter 2

Background

Many research efforts have been focusedonprovidingmore convenientways for occupants

to directly interact with appliances. Some display a subset of all appliances based on the

estimated location of the user. This approach still cannot disambiguate appliances of the

same type. Others use different sensors and actuators to assist users to select appliances,

somewith even feedback to users. These approaches either require significant deployment

overhead, or are not suitable for commercial buildings. In this chapter, we describe these

approaches and conclude that we need more investigation into some approaches and

potentially a better approach.

2.1 Building Management Systems
Most appliance manufacturers have their own propriety protocols and applications to

control their devices today. To build a centralized control application for all appliances,

the BMS is the ideal platform to send control commands. Modern commercial buildings

contains thousands of sensors and actuators distributed across the building, such as tem-

perature sensors, heating coils, andventilationdampers. These devices communicatewith

a centralized BMS over various communication protocols (e.g., BACNet/IP, 6LoWPAN)

and follow different data schema as they are deployed by different vendors. In addition

to these built-in devices, appliances are being integrated into the BMS as well. Applica-

tions access these building components through the BMS to provide various functions,

such as demand response, HVAC scheduling, safety monitoring, and our application —

human-appliance interactions.

Today’s smart buildings aim to build a BMS with unified interface for these hetero-

geneous devices to form an easily programmable building platform. Figure 2.1 shows

an example smart building architecture proposed in BOSS (Building Operating System

Services) [1]. BOSS runs sMAP (Simple Measuring and Actuation Profile) [11] drivers as

a Hardware Representation Layer to abstract different hardware and network protocols

with points, which expose a read andwrite interface for a time series data stream. AHard-
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Figure 2.1: Example Smart Building Architecture. Building infrastructure includes
existing and new deployment of sensors and actuators. The Building Management
System abstracts them at different layers and provide necessary services for protec-
tion. Applications implement logic like energy consumption optimization and smart
appliance control.

ware Abstraction Layer builds relationships (e.g., spacial, electrical) between points and

exposes higher level interfaces. For example, changing temperature involves controlling

multiple points (e.g., chillers, heating coil, damper) in a specific feedback loop. The Au-

thentication Service handles access permissions from applications based on their function

and developers. The Transaction manager guarantees the consistency of building states

because multiple states can be modified by one operation or by multiple applications. A

database stores all history time series data for applications.

2.2 Indoor Localization
Location information can be used to filter out appliances that are far from the user,

assuming she is only interested in controlling those nearby. This is especially true in

an open environment, such as a commercial building, where appliances are shared by

many occupants. Therefore, localizing the user in the building will be extremely helpful

to simplify the appliance identification process. However, GPS is not suitable for indoor

scenarios because buildings usually block GPS signal [12].
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2.2.1 Fingerprinting
One popular approach to address indoor localization is the use of fingerprints. Any

measurable information that is dependent on location and also consistent over time with

environmental changes can be used as fingerprints. Some fingerprints can be obtained

fromuniversal existing infrastructures, such asWi-Fi received signal strength (RSS) [13] or

acoustic background features [14]. Others require extra deployments, such as ultrasound

beacons [15], Bluetooth beacons [16], and magnetic beacons [17].

Fingerprinting-based localization systems require a site survey to build a database

that annotates ground truth locations with collected fingerprints. Most surveys today

are performed manually, but others have looked at automating this process using extra

localization inference [18, 19]. To perform a location estimation, an occupant needs to

collect a new fingerprint and ask the system to find one or more nearest fingerprints

in the database to infer her location. These approaches can have different performance

depending on the fingerprints itself, the environment, and quality of the database. We

investigate more about how much fingerprinting-based indoor localization can help in

reducing the displayed appliance list in Section 3.

Some other work deploy beacons to broadcast zone-based fingerprints. The challenge

is to allow signal reception and zone detectionwithout ambiguity, which can be caused by

interference or aweak signal. Fürst, et al. [15] deploys a ultrasonic beacon in every isolated

room, using the building walls to perfectly eliminate interference. Jiang, et al. [17] creates

virtual zones with sharp boundaries using a magnetic signal, which is mostly unaffected

by objects in the environment, such as a human body or metal.

2.2.2 Multilateration and Multiangulation
Multilateration localizes people using measured distances from no less than three fixed

stations (signal beacons or receivers). It finds the intersection point of the circles centered

at each station with the distances as the radii. This approach works best in open spaces

when Line-of-Sight (LoS) distance can be directly measured, which is how GPS works in

outdoor environments. Time-of-Flight (ToF) of signal is one of the most intuitive ways

to measure distance, but it requires accurate time synchronization between transmitters

and receivers, which is challenging. Cortina [20] uses Round-trip Time-of-Flight (RToF)

to estimate distance. Cricket [21] uses the Time Difference of Arrival (TDoA) of RF and

ultrasonic signal sent from beacons for distance measurement. BeepBeep [22] uses two

acoustic chirps sent from two commodity smartphones back to back to derive the distance

without the need of accurate time synchronization.

In addition to ToF, received signal strength (RSS) can also be used to measure LoS

distance using the propagation model. However, RF signal strength can be influenced by

many immeasurable factors in the environment, such as multi-path effects, human body

absorption, and background noise, and therefore cannot be used for accurate distance

measurement [23]. Compared to RF signal, visible light has much fewermulti-path effects
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and partial absorption thanks to its short wavelengths. There is also less interference

because LED can be modulated. Therefore, visible light can be better modeled using the

Lambertian radiation pattern [24], which can be used to derive the distance based on both

the transmission power and RSS. Li, et al. [25] shows that an LED can be used to measure

distance with sub-meter errors in most cases.

Both ToF- and RSS-based LoS measurements require an open space, which may not

exist in many indoor environments because of walls and furniture. In many cases, the

signal propagates between transmitter and receiver on a Non-Line-of-Sight (NLoS) path,

which can include the attenuated signal on the LoS path in some literature [26]. Using an

UltraWideband (UWB) signal, we are usually able to filter out noises and find the smallest

NLoS distance as a good approximation to the LoS distance [26].

Sometimes, time synchronization is feasible among stations, either using wired or

wireless signal. In these situations, it is possible to obtain Time-Difference-of-Arrival

(TDoA) between the target and every two pairs of stations, allowing us to draw several

hyperbolas with the stations as the foci. The target will be the intersection point of

these hyperbolas. Acoustic signals [27, 28] are usually used to obtain TDoA, because

they propagates more slowly compared to an RF signal, which imposes a loose accuracy

requirement for the time synchronization.

Similar to multilateration, multiangulation finds the intersection point based on the

Angle-of-Arrival (AoA) of the signal between fixed beacons and the target. Different

approaches can be used to detect the AoA between a transmitter and a receiver, such as a

microphone array [29] or RF antenna array [30].

2.2.3 Sensor Fusion
Instead of using a single indoor localization algorithm or source of information, re-

searchers also combine multiple sources using various statistical models. The Bayesian

Filter [31] is one of the most popular models. It computes the possibility of the target at

each location based on the different sensor readings (or estimated locations from different

algorithms), as well as the previous location’s possibility distribution. This requires us to

know the relationship between the ground-truth location and sensor readings, which is

not specified in a Bayesian Filter. There are different implementations to represent these

relationships. One of the most popular variant is the Kalman Filter, which models the lo-

cation possibility distribution as a Gaussian distribution. It assumes a linear relationship

between ground-truth location and sensor readings. The Extended Kalman Filter gener-

alizes to non-linear relationships using Taylor expansions. When the location probability

distribution is not unimodal, a Particle Filter can be used to better model the location pos-

sibility distribution [18]. Instead of computing the distribution in the continuous space,

a Particle Filter computes the possibilities at discrete sample locations, where locations

with higher possibility in the previous distribution are more likely to be sampled.
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2.3 Direct Appliance Identification
Reducing the displayed appliance list canmitigate our problem, but still suffer when there

are multiple appliances of the same type are presented nearby, which is very common in

commercial buildings (e.g., lights, projectors, etc.). In addition to using location informa-

tion, many other work have looked at how to make direct appliance identification more

convenient for users.

2.3.1 Sensor-based Approaches
Various sensors have been used to help users to identify an appliance. Traditional remote

controllers transmit infrared control signal to appliances (e.g., TV, air conditioner), which

have built-in infrared receivers connected to their internal control logic. To extend this to

appliances without infrared receivers, some research studies install extra infrastructure

on them, such as laser receivers [32], or infrared receivers [33], Bluetooth dongles [15],

and NFC or RFID tags [34]. As the number of appliances increases, traditional remote

controllers will simply incur significant usage overhead and cannot benefit from the

flexibility and extensibility of modern BMS.

With more smart appliances connected to the BMS, researchers have built apps for

users to browse appliances, either in an inventory list [11] or on a 2D/3D-graphic map of

a building [35]. However, finding an appliance quickly from thousands requires a user to

be aware of her current location and orientation on a large buildingmap. As we discussed

in the previous Section, indoor localization is used to mitigate this problem [15].

In addition to displaying, someworks allow users to input query statements [8, 11, 36],

which requiresmanual typing aswell as adequate background knowledge of the building.

Voice- and gesture-based appliance identification systems [37, 38] allow users to speak a

statement or performagesture as a control command. Theyhave been successfully applied

in many residential buildings [9]. However, because they require users to memorize a

unique voice command (or gesture) for every single appliance and control command, they

cannot be deployed in a commercial building, which generally has hundreds to thousands

of appliances and is shared by occupants who may not be familiar with the building.

2.3.2 Vision-based Approaches
Instead of utilizing or deploying sensors in the building, researchers have also looked

at using computer vision to recognize appliance images. Users can take an image of an

appliance and query for its appliance ID with the image, which is usually offloaded to a

server because of high computation complexity of most computer vision algorithms. Note

that we need to recognize not only the type of the appliance in the query image, but also

which exact instance of appliance it is in the building because eventually we need to send

control commands directly targeting one specific appliance instance.
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One way to achieve this is to use image retrieval, which finds the most similar image

to the query image among a set of pre-collected images. Different features extracted from

an image can be used to compute similarity, such as SIFT [39] and SURF [40]. However, to

use image retrieval, a database of reference images of all appliances is needed, preferably

from different angles and distances, covering different parts of the background of the

appliance. Collecting, labeling, and updating the reference images can involve significant

manual effort.

Instead of using image retrieval, we can also localize the image in the building using

the geometry relationship between image features. This requires a 3D model being built

out of one short video of the appliance, which take significantly less effort to do. More

details about the comparison will be discussed in Section 4.2.3.

2.4 Summary
In this chapter, we described different layers of abstraction in modern Building Manage-

ment Systems (BMS) that run commercial buildings today. Instead of using proprietary

APIs provided by different manufactures, our appliance control application should pro-

grammatically interact with appliances on top of the BMS.

Oneway tomitigate the problem of overwhelming appliances is to use indoor localiza-

tion to reduce thedisplayedappliance list. Severalwaysof approaching indoor localization

have been extensively studied, including fingerprinting, multilateration/multiangulation,

and sensor fusion. We evaluate howmuch indoor localization can help our application in

Chapter 3.

When there are multiple appliances of the same type presented to a user, we still

need to display all of them even if her location is known. However, there is no easy

and unambiguous way to differentiate between them. We discussed how sensors and

computer vision can be used to directly help users to identify appliances, either using a

signal transmitter/receiver or an image of the appliance. We exploremore of the computer

vision approach in Chapter 4, and how it can be used together with IMU-based indoor

localization for a better user experience.
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Chapter 3

Location-based Appliance Display

In this chapter, we discuss our first attempt to reduce the appliance list to those within

vicinity of the user. This potentially reduces the size of the list from thousands to hun-

dreds or tens, and makes browsing and finding the target appliance less tedious. We

implemented two popular indoor localization systems and fused their results based on

algorithm-generated confidence values. Our results show that indoor localization can

greatly help to reduce candidate appliances, but cannot resolve all problems we are fac-

ing. This work was done in collaboration with Karthik Vadde at UC Berkeley [41].

3.1 Introduction
We start with the assumption that users usually control only the appliances they are

utilizing, especially in a shared environment like commercial buildings. Knowing the

user’s location will allow us to reduce displayed appliance list, which in turn makes

appliance selection easier for the user.

To achieve this location-based appliance listing, our system needs to know the location

of the user (or her smartphone) inside the building. However, unlike outdoor envi-

ronments, where GPS [42] can be used to calculate a rough location using triangulation

from satellites, indoor environments usually have undetectable GPS signals, attenuated by

buildingmaterials [12]. Fortunately, researchers have beenworking on indoor localization

solutions for years.

As we discussed in Chapter 2, one group of the solutions are based on the idea of

fingerprinting, which are essentially sensor measurements of the physical environment

that are unique at different locations. Examples include WiFi RSSI from all access points

in the building [13], FM radio signal features (e.g., RSSI, SNR, multi-path) [43], acoustic

background spectrum [14]. Some of the solutions require extra infrastructures as beacons

in the building, such as ultrasound [21, 44], infrared [45], magnetic induction [17], RFID

[46], andDoppler effect on radio signals [47]. Moreover, sensors available on smartphones

stimulate researchers to bring the idea of dead reckoning into trajectory estimation and
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localization [18, 48]. Basically, they use IMU embedded in commercial smartphones (e.g.

accelerometer, gyroscope, compass, magnetometers) to estimate the velocity and direction

of users, and in turn estimate the trajectory and the location given the known start point.

However, none of the state-of-the-art indoor localization techniques can be generally

applied to all buildings. Different systems operate under different assumptions, which in

turn would be their limitations in real-world deployments. As examples, IMU tracking

requires small sensor measurement error. Fingerprints need to be both unique and con-

sistent at a location over time. Certain specialized fingerprints can only be used in specific

scenarios, such as wall color distribution [49] in a shopping mall.

To use indoor localization for our application, we need to eliminate these limitations

and combine various techniques. The basic idea is that they don’t always fail at the same

time. Liu et al. [43] found it very likely that at least one of WiFi fingerprint and FM

fingerprint are consistent at one location. In addition, we can usually infer the fidelity of

estimated location. For example, abnormal movements (e.g., high speed, move through

physical objects) measured from IMU can imply erroneous tracking.

We build BearLoc [50], a framework to combine different indoor localization solutions

to provide a location service with high fidelity. Using BearLoc, we implemented two

indoor localization algorithms, one using WiFi RSSI-based fingerprinting and the other

using Acoustic Background Spectrum (ABS) fingerprinting [14]. Both of them compute

the confidence of every localization estimation. We also use a linear weighted average to

combine their results. Based on the fingerprint databasewe build for a university building,

we evaluate our confidence algorithms and frameworkwith three trajectories, alongwhich

both WiFi and ABS fingerprints are sampled. The results show that confidence is an

effective way to combine results while eliminating inaccurate estimations of both WiFi

and ABS.

The rest this chapter is organized as follows: in Section 3.2, we give an overview on

related work in indoor localization. Section 3.3 describes our system architecture. We

discuss the ideas of calculating confidences with detailed examples in WiFi and ABS in

Section 3.4, and data fusion methods to combine multiple sources of estimated location

in Section 3.5. The evaluations are described and analyzed in Section 3.6. We summarize

this chapter in Section 3.7.

3.2 Related Work
Much work has been done to combine multiple indoor localization systems. Some of

these efforts studied how different sources of localization information can be combined

for a more accurate estimation. Azizyan, et al. [49] take WiFi, sound, light, and color

features from smartphone sensors as signatures, and narrow down possible positions to

one using one or more signatures sequentially. The accuracy improvement using this

cascade approach increases as the number of available sensors increases. However, they

also observe that a sound filter sometimes rules out the correct positions, which gives us
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moremotivation to look into the confidence level before using their results. Chen, et al. [43]

combinedWiFi and FM signal indicators as one signature. They found the interference to

WiFi and FM signals happen independently. Thus, using combined signature increases

the localization accuracy from around 80% up to 98%. We believe this is also applicable

to other localization techniques. Rai, et al. [18] built a fully-automated indoor localization

system called Zee, which uses a particle filter by combining IMU-based dead reckoning

and WiFi signature-based localization, with the knowledge of movement constraints on

the map. Zee uses estimated trajectory to determine the positions on the map, and

records the WiFi signatures simultaneously to build the signature database from zero.

WiFi signatures in history are used to calibrate the localization methods. Pandya, et al.

[51] introduced the idea of combining different wireless signals because none of them is

available everywhere, and the collective coverage will provide a more continuous service.

Others have looked at how data fusion can be approached, regardless of what specific

sensors and algorithms are used. Gwon, et al. [52] propose two indoor localization fusion

algorithms: Selection Fusion Location Estimation (SELFLOC) and Region of Confidence

(RoC). SELFLOC is a linear weighted sum of multiple indoor localization results, where

the weights are determined using historical localization performance in pre-defined re-

gions. RoC is an algorithm to determine the final location when using triangulation.

However, triangulation is not generally feasible in buildings where line-of-sight distance

measurements can hardly be accurate. Bayesian Filters [31], such as the Kalman Filter and

the Particle Filter, are used to combine estimations from different sources. However, they

rely on localization systems that have consistent performance, which may not be true in

some cases.

3.3 BearLoc – An Indoor Localization Platform
To study how well indoor localization can help reduce appliance list, we built BearLoc, a

platform with abstractions to develop and run indoor localization algorithms. This work

was done in collaboration with Siyuan He, Beidi Chen, and John Kolb at UC Berkeley [50].

The BearLoc architecture is shown in Figure 3.1. From bottom to top, there are

three layers: a topic-based pub/sub network, the BearLoc framework, and component

implementations by developers. BearLoc provides wrappers for all three categories of

components: sensors, algorithms, and applications. Developers build and deploy their

components using relevant wrappers. All components can be distributed and run on

any Internet-connected device, communicating with each other on an overlay pub/sub

network. For example, a sensor driver can run on a low-power mote or a web browser,

and an application can be an HVAC system or on a light actuator.



15

Sensor
Wrapper

Publish/Subscribe Network

Algorithm 
Manager

In
sta

nc
e

Application
Wrapper

In
sta

nc
e

In
sta

nc
e

Sensor 
Driver Application

Sensor Algorithm Application

Developer
Code

BearLoc

Network

Network Data Flow
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3.3.1 Data Flow: The Concept of Binding
A binding specifies how an algorithm is “wired up” with other components, which act

as either input or output data representations. The concept of binding is illustrated in

Figure 3.2 and a typical data flow between components is shown in Figure 3.1. In a

binding, an algorithm takes data from either sensors or other algorithms and publishes

locations to applications or other algorithms. More complex configurations, such as

chaining and multiplexing, can be composed using multiple bindings. A functioning

indoor localization system consists of both running components and bindings connecting

them together. Since BearLoc is built on top of a topic-based pub/sub network, a binding

is created by publishing to an algorithm’s control topic, along with topics of required

sensors or algorithms, and a new output topic. Other applications and algorithms can get

the estimated locations by subscribing to the new output topic. This procedure is defined

by our Binding Control Protocol in Section 3.3.2.
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Algorithm 3.1: BearLoc Binding Control Protocol

1 When an algorithm starts, it automatically subscribes to its control topic.

2 An application sends a Start Binding request to the control topic. The request must

contain (1) output topics of required sensors and algorithms, (2) a new algorithm

output topic, (3) a keep-alive topic. In addition, the request must include any (4)

algorithm-specific configurations.

3 After receiving an request, the algorithm automatically (1) subscribes to the

sensor/algorithm output topics and the keep-alive topic, and (2) publishes

estimated locations to the algorithm output topic.

4 The application periodically sends keep-alive messages to the algorithms it is

interested in, otherwise the algorithm instance is killed.

3.3.2 Control Flow: Binding Control Protocol
BearLoc provides a Binding Control Protocol between algorithms and applications for easy

binding creation and maintenance. An application can start a new binding following

Algorithm 3.1. In Step 2, there are four elements in a start binding request. The first two

tell the algorithmwhere to “wire” the inputs and output respectively. The keep-alive topic

is used for applications to preserve the binding and continue processing sensor data. The

optional configuration data is useful for algorithms using shared sensors to filter data for

specific targets. For example, a vision-based human tracking algorithm may only report

locations of particular people. After a new binding is created, other applications and

algorithms can subscribe to this algorithm and get location updates as well.

The first two steps require the application to know the algorithm specifications such

as control topic, input sensor list, and configuration options. This should be simplified

using a sensor and algorithm discovery service. We leave this to our future work.

3.3.3 Component Abstractions
BearLoc provides abstractions for three types of components: sensors, algorithms, and

applications. Developers of different components can run their codes in a decoupled way.

We discuss the details of each components here.

Sensor

In Figure 3.1, the sensor driver is a data generation implementation of a Sensor Driver
interface defined in BearLoc. The interface specifies the sensor class, and lets the sensor

wrapper register a callback function for data updates. When the sensor generates new

data, the sensor wrapper relays it to the sensor’s topic on the pub/sub network.

BearLoc provides a library of commonly used sensor classes. A sensor class specifies

the data schema of a sensor, and provides data serialization and deserialization functions.
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To ensure interoperability between sensors and algorithms, sensor developers must use

the sensor classes supported by BearLoc.

Algorithm

An algorithmmanager implements the binding control protocol and multiplexes an algo-

rithm. For every start binding request it receives, it starts one algorithm instance, which is

a process that runs its algorithm executable. The algorithm executable is implemented by

algorithm developers using a BearLoc algorithm interface. The interface is an RPC server

wrapper that invokes localization computation methods. The algorithm manager relays

sensor data to an algorithm instance and then directs localization results back as an RPC

invocation.

The algorithm manager also subscribes to the keep-alive topics for all bindings. A

binding expires when no message is published to its keep-alive topic after a timeout

period. Once a binding expires, the algorithm manager kills the associated algorithm

instance, and unsubscribes from its topics. By managing algorithm instances, BearLoc

hides the multiplexing overhead from algorithm developers.

Application

An application uses a localization service by initiating a binding and registering a callback

function for location updates through the Application Wrapper. The application wrapper

implements the binding control protocol. It also subscribes to the algorithm output topic,

and has the registered callback function invoked on new estimated locations.

3.4 Localization Algorithms and Confidence Value
In this section, we introduce two indoor localization algorithms, WiFi RSSI fingerprinting

and Acoustic Background Spectrum fingerprinting, and discuss how they can compute

confidence values for every location estimation. Our intuition is that they don’t have a

consistently good (or bad) performance at different time or places. Specificailly, we focus

on both the WiFi and ABS indoor localization algorithms, and extend the discussion a

little in other algorithms. In our discussion, we normalize all confidence values be a real

number in [0, 1], where 1 means the systems are absolutely sure the estimation is accurate.

3.4.1 WiFi RSSI Fingerprinting
WiFi RSSI fingerprinting takes a set of RSSI values from all nearbyWiFi APs as a signature.

We collect signatures (a.k.a. fingerprints) on selected survey locations in advance and store

them in a database. When an application queries for the estimated location, it looks for

the closest fingerprint in the database. The distances could be any appropriate distances

that can be applied to a scalar array, such as Euclidean distance or Manhattan distance.
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The location of the closest fingerprints will be the estimated location. Practically, we find

several closest fingerprints and use the average of their locations. This process is called

KNN averaging, and is commonly used in fingerprint-based localization algorithms.

One way to compute confidence values for WiFi RSSI fingerprinting is using the dis-

tance we computed. Intuitively, smaller distance should yield higher accuracy, and there-

fore higher confidence. If the algorithm uses more than one fingerprints, the sparsity of

their location coordinates can also be used for confidence levels. The more sparse they

are, the less confidence it should be.

In addition, context information can be used to provide confidence. For example,

we can determine whether the signal is consistent at one location by recording multiple

signatures over time. Other indicators include the background noise or interference,

the network delay, and numbers of users connected to an AP. These information are all

observable with existing infrastructure, but how exactly they influence the accuracy of the

estimations require more in-depth research.

Historic performance can also be used, such as the consistency of RSSI of eachAPunder

different circumstances (e.g. time of the day, numbers of connected clients, interference,

network throughput).

3.4.2 Acoustic Background Spectrum
Acoustic Background Spectrum (ABS) [14] is another fingerprint-based approach and

uses sound features in the background as signatures. The idea is that each room has its

uniquepattern of backgroundnoise, thanks todifferent components (e.g., pipes,machines,

HVAC) behind the wall that make sounds.

Similar to WiFi RSSI, ABS can also use signature distance and fingerprint sparsity to

compute confidence. It can also use algorithm-specific context information. For example,

fingerprints in large open areas should be used with less confidence than isolated rooms,

because there are less acoustic changes over open space. Performance history is also a good

information to factor into the confidence value computation. One point to emphasize here

is that the idea for history performances in the framework and in each IPS are different.

According to the evaluation results of ABS [14], it only works properly in relative quiet

environments. Based on the noisiness of the record, ABS can adjust the confidence value

accordingly.

3.5 Data Fusion
With multiple sources of estimated location list with confidence values, we need another

algorithm to combine them for a final location estimation. Too achieve this, it needs to

decide theweights of each localization algorithm. Unfortunately, the confidence provided

by these algorithms can be inaccurate as well, because of the heterogeneity of the algo-

rithms and their implementations. We propose an credit-based method, which tracks the
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fidelity of the confidence values of each algorithm and assign weights based the credits.

To combine the results, we use both linear average of coordinates as well as basic Kalman

Filter.

3.5.1 Performance Credit
To combine localization results, the fusion algorithm assigns credits to participating al-

gorithms based on their estimated location and confidence values. Intuitively, if one

algorithm always provides accurate estimations (estimations close to the final decision)

with high confidences, it gains credits. Inaccurate estimations with high confidence will

harm the credits. If an algorithm has low confidence on some results, it shouldn’t affect

its credit no matter how accurate the estimations are.

3.5.2 Weight Assignment
Theweight of an algorithm represents howmuch the fusion algorithm uses its estimation.

For simplicity, we require weights to be normalized before use. It means all weights

Wi (i � 1, 2, 3, ..., n) for n algorithms must sum to 1:

n∑
i�0

Wi � 1, Wi > 0 (3.1)

The most intuitive way to assign weight is using the product of credit and confidence

value. Moreover, as the purpose of weights is to highlight the most possibly accurate

result, and reduce the impact from erroneous ones, when the framework detects large

sparsity among estimated locations, it may consider amplifying the differences between

all weights, to potentially reduce the effects from less-trusted algorithms.

3.5.3 Location Granularity Unification
Different indoor localization algorithms yield different representations of locations. For

example, ABS with a room-level database can only generate room IDs (or semantic repre-

sentations). WiFi RSSI fingerprinting with surveyed locations can compute an estimated

coordinate in the spatial form. To combine these results, the fusion algorithm must have

a map containing both the semantic and coordinate representations. Map creation is out

of the scope of this chapter. With a map, we propose two ways to unify the granularity as

follows.

• Semantic to Spatial: To convert estimated room to a coordinate, the fusion algorithm

can simply use the center point of the room. For large rooms, multiple coordinates in

the room can be used to fuse with other results. These coordinates can be uniformly

selected in the room at a proper granularity.
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• Spatial to Semantic: For the other direction, we can simply convert a coordinate to

room IDs they locate in. However, because of the lower granularity of semantic rep-

resentations, wemay end up having no overlapped rooms fromdifferent algorithms.

We leave solutions to this problem to future work.

3.5.4 Linear Weighted Average
With weights and unified representations of locations, the fusion algorithm can combine

them for the final estimation. In our work, we only use “Semantic to Spatial” described

previously. One of the most intuitive data fusion approaches is linear weighted average.

Specifically, the final estimated location l is

l �

n∑
i�0

(wi · li)

n
(3.2)

where vector li as the estimated location from the i-th algorithm, and wi are their weights.

3.5.5 Kalman Filter
Compared to linear weighted average, the Kalman Filter considers the rationality in the

trajectory. We used a simple form of the Kalman Filter to combine the data. It pro-

vides Bayesian recursive estimate of state space Xk using knowledge of previous state

[X1,X2,X3, ...,Xk−1
] in a linear state space system with Gaussian noise. Since the project

focus was on building the framework rather than the Kalman Filter itself, we used a basic

formof Kalman Filterwith certain assumptions. Firstly, a person’smovement in a building

is a linear system where he is moving with a constant velocity. This is a simplest case of

a person’s movement in building. So a simple variation of Kalman filter would suffice for

data fusion. Secondly, the measurements are taken from right top corner of the floor map.

Position of both sensors are considered to be fixed at (0, 0) position.
Each sensor module feeds the Kalman Filter with a location list and confidence value.

Another important assumption is that the sensors are synchronized, meaning they pro-

vide measurement of target state at same time interval. Using the linear system equations

for position estimation and the measurements from sensors Kalman Filter corrects the

errors in sensor measurements. We combine the data using weighted average after the

estimation. Weights are calculated based on the confidence value supplied to the frame-

work.

3.6 Evaluation
To learn how well indoor localization practically helps to reduce appliance list, we eval-

uate the linear weighted average fusion algorithm combining both WIFI RSSI and ABS
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fingerprinting. Our experiment continuously localizes a smartphonewhile walking along

a campus office space. We first show that the confidence values are accurate for both

algorithms. With the confidence values, accuracy can be improved after combining two

algorithms, either using linearweighted average or theKalmanFilter. We also explore how

the database size can impact our results, which can help us reduce the survey overhead.

3.6.1 Experimental Setup
We implemented both WiFi RSSI and ABS fingerprinting, where data collection is on

Android and data processing is in MATLAB. InWiFi RSSI fingerprinting, we ran a mobile

application on a LG Revolution VS910 with Android 2.3.4 to sample and log WiFi RSSI

values. Every sample was saved as a (MAC address , RSSI) tuple. A WiFi signature

is represented as a list of tuples that are collected about every 800 milliseconds. In the

database, every fingerprint is corresponded to a 2D coordinate on the map.

For ABS fingerprinting, we used the default sound recorder in an Apple iPhone 5 with

iOS 6.01, which stored the audio in .m4a files. At each survey location, we recorded at

least 60 seconds for higher quality fingerprints. To make the audio file easy to analyze,

each of them is converted to a .wav file in Audacity. To make it feasible to combine with

WIFi RSSI fingerprinting, we bind every ABS fingerprint to a coordinate in the database.

Using fine-grained should not reduce the accuracy at the semantic level, because estimated

coordinates can be easily converted to an room it is in, given we have an accurate map.

In the data survey phase, we collected bothWiFi RSSI andABS signatures at 98 selected

locations in a campus office space, marked as red cross markers in Figure 3.3. At every

location, we record more than 60 seconds of both audio signal and WiFi RSSI values.

We manually measured and input the coordinate into the database. The time spent on

collecting all data in database spans one week.

Figure 3.3 also shows three paths we tested for localization. While walking along a

path, we continuously collected both WiFi RSSI and ABS signatures, while using another

smartphone camera to capture the ground truth location, as shown in Figure 3.4. We

manually extracted the ground truth locations from the video, and used the collected

signatures for localization in MATLAB. We selected an subset of these signatures for

localization, shown as circles on the path in Figure 3.3. For every circle, both WiFi RSSI

and ABS signatures collected at the location are used. The size of marker represents the

time the user spent at that point. Both path 1 and path 2 started from the bottom part

of the map, whereas path 3 started from the top part. Starting points are tags as S1, S2,

and S3 in Figure 3.3 respectively. To help the discussions in Section 3.6.2 on how the

environment can influence ABS fingerprinting performance, we also mark isolated rooms

and open areas on the map.

With the signatures sampled along the path, WiFi RSSI and ABS fingerprinting al-

gorithm localizes the signatures we selected, as we described before. We use Euclidean

distance as signature distance. In WiFi RSSI fingerprinting, the default values of RSSI

is set to −150 dBm if it is missing in either signatures compared. Instead of fixing the
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Figure 3.3: Experiment setup contains 98 survey points (red cross markers), and three
localization sessions (paths). A circle on a path indicates we performs a localization
computation based on the signatures captured at the location.
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Figure 3.4: Experimenter holds two smartphones while walking in the office space.
One smartphone is collecting both WiFi RSSI and ABS fingerprints, and the other one
is capturing a video for manual groud truth inference.

K in KNN, we average among all fingerprints within a distance threshold T � α · Dmin ,

where Dmin is the smallest signature distance, and α � 1.3 is a empirally decided constant.

Currently, we only use the sparsity of this location list to determine the confidence value

for both WiFi RSSI and ABS fingerprinting. In particular, the confidence Ci is defined as

Ci �
1

2 · e stdx
b

+
1

2 · e
std y

b

(3.3)

where Stdx and Std y denote the standard deviations on each dimension of coordinates,

and b � 100 (inch) is an empirical ratio.

After getting the estimated locations and confidence values, the fusion algorithm

obtains assigns normalized weighted Wk based on Ci using

Wk �
(Ck)3
n∑

i�0

(Ci)3
(3.4)

The purpose of the power computation is to amplify the differences between the two algo-

rithms. With weights normalized, the fusion algorithm applies linear weighted average

and Kalman Filter to the estimated coordinates from both input estimations.

In the remaining parts of this section, we examine the confidence value accuracy, data

fusion performance, and how the database size and density can impact the localization

results.

3.6.2 Confidence Value Accuracy
Figure 3.5 shows the confidence values and localization errors (distance from estimated

location to the ground truth location) over time for both algorithms in all 3 paths. Every
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Figure 3.5: ConfidenceAccuracy ofWiFiLoc andABSLoc. Localization error is generally
low when the confidence value is high.
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marker corresponds to a marker in Figure 3.1. For path 1, it samples a WiFi and ABS

signature nearly every 4 seconds, and path 2 and 3 sample every 1 or 2 seconds. We

eliminate the samples between adjacent markers along the curve to reduce the manual

labor on round truth extraction.

As we can see, in most cases when the confidence is high, the errors are low, with only

one exception in ABS fingerprinting at the end of path 1. High confidences do not happen

frequently, but the confidence between two algorithms are not highly correlated. This fits

with the intuition that WiFi signal should have nothing to do with acoustic background

noise. Experiments can be conducted to empirically future verify this, such as [43].

In path 1 of Figure 3.5b, it is also very clear that ABS fingerprinting works better in

isolated rooms,which starts near the beginning andends after 470 seconds. In comparison,

performance in open space shows a larger variation. At the same time, the confidence

values of ABS fingerprinting are also higher in isolated rooms than in the open area. This

can not be observed in path 2 and 3, because they are almost all in the open area. It

suggests that we can also use this information to infer confidence in the future.

3.6.3 Data Fusion Algorithm
Figure 3.6 shows the errors over time for WiFi RSSI and ABS fingerprinting, as well as

the linear weighted average data fusion algorithm in all 3 paths. It also shows the mean

and standard deviation of the errors in a bar plot. In the barplot, we can see that ABS

fingerprinting is more accurate than WiFi RSSI fingerprinting in path 1, but less accurate

in path 2 and 3. This is because path 1 is mostly in isolated rooms, whereas path 2 and 3

are mostly in the open area.

More importantly, no matter which algorithm performs better, both linear weighted

average and Kalman Filter can almost give a final result that has a equal or smaller error.

However, at the end of path 1, because ABS fingerprinting gives a result with both high

error and high confidence, the linear weighted average method generates a high error

too. Instead, Kalman Filter takes the human movement limitation into consideration, it

manages to reduce the spike by nearly 50%. Moreover, Kalman Filter eliminates most

other high errors where linear weighted average cannot. In the following experiment, we

choose to use Kalman Filter for better performance.

3.6.4 Fingerprint Number Per Point
At every location in the 98 surveypoints in thedatabase,we collectedmultiple fingerprints.

In WiFi RSSI fingerprinting, a 60-second log can contain more than 70 signatures. A 60-

second audio record can also be divided to several small audio sections. Because we

collect the ABS fingerprints when it was quiet, the signature can even be extracted from

a 5-second section. However, the time spent on KNN search increases linearly with the

number of fingerprints in the database (unless you perform approximate KNN search,

such as using a KD-Tree). Using more than enough fingerprints can only increase the
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Figure 3.6: Performance improvements by combingWiFi RSSI and ABS fingerprinting
using Linear Weighted Average and Kalman Filter
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Figure 3.7: Localization errors when using different number of fingerprints at every
survey location in the database. It shows we usually do not need more than three
fingerprints at each location before the accuracy saturates.
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Figure 3.8: Error Trends by the Number of Database Points. It shows we only need
certain number of survey points in each building.

system response time unnecessarily. In our experiment, whenwe use 10WiFi fingerprints

at each survey location, it can take up to 10 seconds to localize a signature.

Figure 3.7 shows indoor localization errors with different number of fingerprints we

use at every location. We can see the errors do not reduce much beyond three fingerprints

at each location.

3.6.5 Number of Survey Points
Ideally, the more survey points we have, they smaller the localization errors should be,

and the more manual work it is to build the database. To find howmany survey points we

need to build a sufficient database for an typical office space, we conduct our experiment

with different number of survey points randomly removed from our database. Based on

the results in Figure 3.7, we use 3 fingerprints in forWiFi RSSI and 1 fingerprint for ABS in

this experiment. Figure 3.8 shows the errorswhen different number of survey points used.

When removing points fromdatabase, wemanually tried to remove points uniformly from

on the map. As expected, more survey points help decreasing the localization errors, but

it saturates at around 58 points for this particular lab space. Ideally, we should optimize

the number of survey points and their locations before building a database. We leave this

to future work.
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3.7 Summary
In this chapter, we studied how indoor localization and data fusion algorithms can be used

to narrow down displayed appliance list by showing only those near a user. To conduct

the study, we design and implemented an indoor localization development platform

BearLoc. It abstracts sensors, algorithms, and applications, and connects them using an

overlap pub/sub network. In addition to conventional indoor localization systems that

only output estimated locations, we propose to have each algorithm developer provide

a confidence value along with each estimation. Confidence value computation requires

a well understanding of the mechanism of the algorithm, which is usually occlusive to

the algorithm consumers. We also implemented an data fusion algorithm that uses linear

weighted average to combine results from multiple other indoor localization algorithms.

To study how accurate indoor localization systems can be, we implemented two pop-

ular indoor localization algorithms, WiFi RSSI fingerprinting and ABS fingerprint. We

also implemented confidence value computation based on the variance of every KNN

search result. Both algorithms are deployed in an office space. The experiment results

show that both algorithms can product accurate confidence values. Taking advantage

of the confidence values, the data fusion algorithm can almost always find the better

estimation among the two algorithms. Compared to the simple linear weighted aver-

age, Kalman Filter generates a more smooth trajectory because it considers limitations of

human movements.

In conclusion, indoor localization algorithms can have an average of 200 inches (or 5

meters) in estimation errors. This constitutes a very good mechanism to narrow down

appliance list to a room. However, many rooms in commercial buildings contain multiple

instances of the same type, such as ceiling lights, projectors, and power outlets. A reduced

appliance list still have to display all these appliances, which is hard to disambiguate just

by name for smart building occupants.
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Chapter 4

SnapLink: Using Single Image
Localization

Since appliances of the same type can hardly be disambiguated with indoor location

technologies, we try to look at the problem from the perspective of direct control. As

discussed in Chapter 2, sensor-based approaches generally require installation of sensors

and even modifications to existing appliances, which is not ideal or salable in commercial

buildings that is already occupied everyday. In this chapter, we look into what are the best

solution for vision-based approach, and demonstrate this idea with a system we build,

dubbed SnapLink. We demonstrate the SnapLink is robust to different image capture

angle and distance, and works with different illumination conditions. We also show the

natural everyday environment changes will not affect our system performance over a long

period of time, which allows us to update the database infrequently. This work was done

in collaboration with Jonathan Fürst at IT University of Copenhagen, Xin Jin at Johns

Hopkins University, as well as John Kolb and Hyung-Sin Kim at UC Berkeley [53].

4.1 Introduction
We start with the intuition that it is natural for humans to use their visual senses when

interacting with appliances: “What you see is what you control.” This motivates us to design

a vision-based appliance identification and control system that allows users to interact

with any appliance they can see. Such a system needs to include a simple and intuitive

user interface that converts human vision (an appliance image) to a control interface. We

use smartphones, one of the most ubiquitous devices in modern life, as the vision sensor

(i.e., capture an image of an appliance within view) and appliance controller (i.e., control

the appliance in the captured image). Specifically, we aim to enable users to control

an appliance through a smartphone application by simply pointing at it, as depicted

in Figure 4.1. Users of this application should not be concerned with taking pictures

from a specific angle or distance from the appliance. Whatever image is taken, users
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Figure 4.1: Application scenario for our vision-based appliance identification and con-
trol system. Users can get a control interface of an appliance by capturing an image
from an arbitrary angle and distance, even when other similar appliances exist in the
same or different rooms.

should get a proper control interface of what they are pointing at (e.g., on/off button for

projector 2 in room 465) on the smartphone screen. Furthermore, no matter how many

similar appliances exist (e.g., the same projector in various meeting rooms), users should

still enjoy convenient appliance control by receiving an accurate and fast identification

response when they point their smartphone at an appliance.

Even though a number of studies have investigated the problem [33, 37, 38], their

proposals cannot scale to commercial buildings containing hundreds to thousands of

appliances. Some approaches require additional infrastructure for each appliance, such

as laser or infrared signal receivers [32, 33], introducing a large deployment overhead.

Some are not applicable when controlling appliances from an arbitrarily large distance

and angle, such as QR codes [54, 55]. Finally, some approaches are inconvenient for users,

especially in a large building, such as typing textual queries [11], memorizing vocal or

gesture commands [37, 38], or manually browsing and searching on a 2D/3D map [35].

In this chapter, we design and implement SnapLink, a prototype system that can

quickly and accurately identify an appliance among hundreds to thousands of (possibly

similar) appliances based on a query image from an arbitrary location and orientation.

SnapLink uses image localization [56] to identify an appliance by finding where a query

image is located in a pre-constructed 3D space in the database. This design choice comes

from two motivations:

1. From the user perspective, image localization provides high identification accuracy

with arbitrary query images.
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2. From a deployment perspective, 3D-model construction (the database for image

localization) requires only capturing a video with a commercial off-the-shelf RGB-

Depth camera while walking through a building.

With a 3D model, appliance labels only need to be applied once per appliance, whereas

previous vision-based systems [55, 57, 58] require many images for every appliance and

every image to be labeled. In addition, we propose two ways to further improve the

accuracy and latency of image localization-based appliance identification in commercial

buildings:

1. a Feature Sub-sampling mechanism that eliminates redundant features from query

images.

2. a Geo-partitioned 3D-model construction that does not build a monolithic 3D-model

but a group of small 3D-models (of each room) to represent the entire building.

We have built a SnapLink prototype system including an Android smartphone appli-

cation and integrated it with BOSS [1], a representative modern BMS. To evaluate it, we

construct a database with 3D models by collecting 67 minutes of video footage from 39

different rooms from 5 different buildings, which is equal to the size of a small commer-

cial building [59]. We also label an arbitrarily selected subset containing 179 appliances

in these rooms. To our knowledge, this dataset size has one order of magnitude more

modeling images and covers a much larger space than those featured in prior vision-

based object identification work [55, 57, 58], which allows us to optimize and verify the

scalability of our approach. For 1526 test query images of these appliances from various

angles and distances, our SnapLink system achieves 94% identification accuracy and 120
ms server processing time per query image, whereas our image retrieval-based baseline

system takes 177 ms to achieve only 66% accuracy.

Our contributions are as follows:

• We introduce a novel and useful application, arbitrary image-based appliance iden-

tification and control with ubiquitous smartphones. We describe several technical

requirements in designing a system to support this application.

• With the application requirements and technical challenges as the basis, we present

a set of key approaches in order to maintain low latency and deployment overhead

in large buildings: image localization in 3D models, Feature Sub-sampling, and Geo-
partitioning.

• We build an end-to-end system that integrates SnapLink with a modern BMS (i.e.,

BOSS [1]) and provides an Android smartphone application as a user interface.1

1https://github.com/SoftwareDefinedBuildings/SnapLink
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• We validate the performance of SnapLink at the scale of a commercial building that

has 39 rooms and 179 appliances, which is an order of magnitude larger than in

prior work [55, 57, 58]. In this large real-world scenario, SnapLink achieves 94%

identification accuracy and 120 ms server processing time, which are both sensitive

to the database size.

While this chapter focuses on appliance identification and control, we believe that it is

only one example of a newgeneration of smart building applications enabled by SnapLink,

including location-based authorization, augmented information display, indoor naviga-

tion, and building diagnosis and re-commissioning. The rest of this chapter is organized

as follows: In Section 4.2 we introduce our application scenario and its requirements. We

also discuss candidate vision-based identification methods for our application. Next, we

introduce details on SnapLink’s design in Section 4.3 and its implementation in Section 4.4.

We present deployment results of SnapLink in Section 4.5. We position SnapLink among

prior work in Section 4.6, and conclude with a summary in Section 4.7.

4.2 Target Application: Vision-based Appliance
Identification and Control

Recentworkon smart buildings has investigatedhow tounify various vertically integrated,

isolated BMSs and Internet of Things (IoT) devices into a common set of abstractions.

For example, BOSS (Building Operating System Services) develops a building operating

system on which various applications can run to improve building performance and

occupant comfort [1]. Applications identify the underlying heterogeneous appliances by

standardized metadata and unique identifiers [8]. Such identification models work well

for centralizedbuilding applications, but failwhenoccupantswant todirectly interactwith

appliances. Our hypothesis is that most humans want to control appliances within their

sight. Thus, user-centric, cyber-physical applications should leverage visual identification.

4.2.1 Application Scenario and System Architecture
We aim to design a vision-based appliance identification and control system that provides

an intuitive mobile user interface and can be applied in an environment as complex

as a commercial building. Consider the following application scenario. While walking

through a building, Alice encounters a networked printer in a conference roomandwishes

to use it to print out a document from her smartphone. She turns on the SnapLink app

and takes an arbitrary picture of the printer (as in Figure 4.2). The app then processes the

picture and quickly recognizes it as the specific printer in the conference room. The app

overlays the printer’s control interface on the smartphone screen so she can interact with

the printer. Alice clicks on the “Upload and Print” button to upload the document, which

is then printed out by the printer.
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Figure 4.2: Application scenario for our vision-based appliance identification and con-
trol system, consisting of controllable appliance, user smartphone, vision-based appli-
ance identification system, and BMS.

At a higher level, the entire workflow of this application and the system architecture

are depicted in Figure 4.2, which includes both user actions and the underlying system’s

behavior. It consists of a controllable appliance, the user’s smartphone, a vision-based

appliance identification system, and the BMS. After Alice takes a picture of the target

appliance, her smartphone sends the image to a vision-based appliance identification

system. Using the query image, the identification system selects the most likely appli-

ance from those in its database and sends the appliance ID to Alice’s smartphone. The

smartphone sends the appliance ID to the metadata server of the BMS and receives the

control interface for the target appliance.2 Finally, Alice can now see the control interface

on her smartphone screen and control it as needed. When she touches a command button,

the smartphone generates and delivers the control command to the BMS’s control server,

2
Alternatively, the same server could identify the appliance, use its ID to retrieve the proper handler

from the BMS, and send a control interface back to Alice’s phone. However, this is an implementation detail

that does not affect the core functionality of the system, and the round trip time between the phone and a

local BMS server is likely to be small.
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which finally controls the target appliance by sending it the proper actuation command.

Note that, during the whole appliance identification process, all Alice needs to do is touch

her smartphone screen once to take a picture before she can interact with the appliance.

4.2.2 Technical Requirements
Our system needs to meet the following requirements to enable the target application,

which motivate our subsequent design of SnapLink detailed in Section 3.

Identification Accuracy. High appliance identification accuracy is our first goal. Our

system needs to accurately identify a target appliance from an arbitrary image and dis-

tinguish it from other similar appliances. However, even a single incorrect result will be

frustrating. Therefore, while achieving high identification accuracy, our system should

also allow manual appliance selection as a fail-over. Identification accuracy should be

high under changing environments. We assume most appliances are not moved fre-

quently (e.g., printers, projectors, lights), but the environment they sit in can always have

daily occupant activities and changes in lighting conditions.

Low Latency. As an interactive system, our system needs to be responsive so that users

do not perceive a considerable delay between an action and its response. We aim to achieve

no larger than 100 ms latency, which is the time requirement to create the impression of

an instantaneous reaction [60]. However, since the most important performance metric is

identification accuracy, minimizing latency should not sacrifice accuracy.

Scalability. Given that our system targets large commercial buildings with thousands of

appliances, thedatabase of our appliance identification systemshouldhold a large number

of appliance labels. Since finding the most relevant appliance among a large number of

candidates creates a computational burden, our system should provide scalability in

terms of database size to achieve both high accuracy and low latency when applied to

large commercial buildings.

Low Deployment Overhead. To enable the application, system managers/staff need

to construct a database with the information on all controllable appliances in a large

commercial building. This involves nontrivial deployment overhead. Our system should

be user-friendly but also deployment/management-friendly. To this end, we need to

carefully consider what method to use for vision-based identification since it significantly

impacts deployment overhead (e.g., image retrieval requires taking a large number of

pictures in the deployment phase).
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Figure 4.3: Comparison between three design options for vision-based instance identi-
fication: image retrieval, Convolutional Neural Networks, and image localization.

4.2.3 Design Options for Vision-based Appliance Identification
We now discuss how to enable vision-based appliance identification, the most important

function of our system, and present our core design choices for SnapLink. A modern

commercial building has hundreds to thousands of appliances, but most fall into a limited

set of categories (e.g., thermostats, projectors, lights). This means that many appliance

instances fall into the same category. To enable users to control a single target appliance,

we need to recognize an appliance instance (i.e., a specific physical object) rather than its

category.
There are several representative ways to perform instance recognition: image retrieval,

Convolutional Neural Networks (CNNs), and image localization, as depicted in Figure 4.3.

An image retrieval-based instance identification system (Figure 4.3a) needs to construct

a database of labeled appliance images. When receiving a query image as an input, it

searches for the most similar labeled image among the database based on the number of

common salient visual features (e.g., SURF (Speeded Up Robust Features) [40]). To our

knowledge, image retrieval is used by all previous vision-based instance identification
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systems for appliance control, such as [55, 57, 58, 61]. However, it has several drawbacks

that preclude its deployment at the scale of a large commercial building. First, existing

techniques require every database image to contain only one appliance and each image

must be individually labeled. Second, recognition succeedswhen the query image is taken

from a similar angle and distance as the corresponding labeled image in the database. In a

commercial building with hundreds to thousands of appliances, this results in significant

deployment overhead for building managers/staff3 to take pictures of all appliances from

various angles and distances and to label each of them (i.e., number of labels = appliances

× angles × distances). The accuracy and deployment overhead would not be an issue

when it comes to a well-constructed huge database, which already has an extremely large

number of labeled images [62]. Unfortunately, this is not the case for our target application,

which requires constructing a local database for each commercial building.

Convolutional Neural Networks (CNNs), which have been extensively used for cat-

egory recognition [63, 64], have recently been applied to instance recognition as well

(Figure 4.3b). A system trains labeled pictures into a CNN model in advance with the

instance labels as classes. A query image is classified by the model and the output class is

simply the recognized instance. However, as summarized in [65], CNNs only outperform

image retrieval on instance recognition with scenery [66] and landmarks [62, 67] datasets,

where training and testing images have a similar data distribution (e.g., number of images

of an instance) and little occlusion of the instances is present. In building environments,

the usage of appliances is unknown in advance, and occlusions are very common (espe-

cially when the viewing angle is large, such as in Figure 4.24b), therefore image retrieval is

preferable to a CNN-based approach for our purposes. Moreover, an image classification

process can take seconds to finish on a modern CPU [65], making CNNs prohibitively

expensive without a GPU for our application, which requires low latency.

An image localization-based instance identification system (Figure 4.3c) involves con-

structing a database in the form of a 3Dmodel of a building and one labeled point for each

appliance in the 3D space [56]. To infer which appliances are visible within a query image,

it localizes the query image in the 3D-space database using the most likely location and

angle, captures the image of that specific location/angle (i.e., a small fraction) from the

3D space, and finds the appliance label point closest to the center of the captured image.

Several aspects make image localization a better fit for our target application compared

to image retrieval. First, the system deployment process is extremely simple because a

3D model that covers various angles can be built by capturing a video with a modern

modeling tool, such as Project Tango [68], while walking through a building. Labeling

on a 3D model is also simple because every appliance only needs to be labeled once as

a single point in the 3D space, irrespective of the number of images containing that ap-

pliance in the database. Second, because a 3D model incorporates all image features into

3
Given that each label of the vision-based identification system must be translated to its appliance ID

in the BMS (metadata server), the labels must be added by professional building managers/staff who have

knowledge of the BMS instead of crowdsourced from building occupants.
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Figure 4.4: SnapLink overview. The offline deployment phase builds a 3D point cloud
with a set of partitioned 3D models and labeled appliances. The online identification
phase recognizes an appliance instance throughan image localizationprocess including
feature sub-sampling and room identification based on the set of 3D room models.

a 3D space, it can represent all angles and distances, resulting in a higher identification

accuracy with an arbitrary query image compared to image retrieval. As an example, in a

room that contains 100 appliances, each of which needs to be captured from 10 different

viewing locations, image retrieval would require 1,000 reference images, whereas image

localization only requires a video and 100 labeled points. Thus, our system uses image

localization for vision-based appliance instance identification.

However, a naive approach to image localization is not suitable for our target applica-

tion due to a number of problems. Constructing a properly functioning 3D model for a

large commercial building involves many unsolved problems, such as failure to identify

a previously visited place (loop closure detection [69]) caused by cumulative errors while

constructing a 3D model. Furthermore, image localization imposes a significant compu-

tational burden, resulting in unsatisfactory latency according to our system requirements.

To apply image localization to our target application, these issues need to be addressed,

which is the focus of our SnapLink design in Section 4.3.

4.3 SnapLink System Design
In this section we introduce the details of the SnapLink design, which addresses three

issues of image localization to support our target application: (1) how to construct a

properly working 3D model in a large building (i.e., geo-partitioning), (2) how to identify

appliances through image localization with a given 3D model, and (3) how to minimize

the computation time without losing accuracy (i.e., feature sub-sampling). We first give an

overview and then introduce the details of each design element.

4.3.1 SnapLink Overview
Figure 4.4 shows an overview of SnapLink, which comprises the offline deployment phase
and the online appliance identification phase. In the deployment phase, a user or a building
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manager needs to capture videos inside the building using an RGB-Depth (RGB-D) cam-

era. In doing this, SnapLink uses geo-partitioning to enable easy and scalable 3D model

construction without cumulative errors [69]; it uses a set of room-based 3D models, not a

single building 3D model, to represent the whole building. Each video for a room is fed

into a standard 3D reconstruction tool, which generates a 3D point cloud for the room.

Then, the manager labels each appliance point within each room’s 3D model and stores

these labeled 3D models in the database. We also build our own labeling tool to simplify

the labeling process.

In the appliance identification phase, SnapLink localizes a query image in a set of

3D models in the database to infer the labels that are visible in the image. On top of

the standard image localization process, SnapLink adds two pre-processing stages before

image localization: feature sub-sampling and room identification. The feature sub-sampling

stage randomly selects features in the query image to reduce computation time while still

providing adequate information for correct localization. The room identification stage is

necessary to operate with the database partitioned by room.

4.3.2 Building a 3DModel Database with Geo-partitioning
In the offline deployment phase, we build a 3Dmodel of the building and label appliances

for the runtime appliance identification phase. To model a building, we collect a separate

video for each room. This partitions our database into a collection of 3D room models,

which is critical for a successful building model for several reasons. First, it simplifies

the database construction process. We need to capture only a short video to model a

room, which takes about 100 seconds on average in our case. When a room’s environment

is changed (e.g., furniture is rearranged or the room is remodeled), a building manager

is required to recapture a video only for that room, not the whole building. Our 64-day

evaluation described in Section 4.5.9 demonstrates that a roommodel is robust to everyday

changes (e.g., content on whiteboard, items on table) as long as the appliance itself is still

present. Second, geo-partitioning reduces cumulative errors in the 3D reconstruction

process because it is applied for each room (small scale). Note that 3D reconstruction,

which converts a video captured by an RGB-Depth camera to a 3D point cloud, is a

necessary procedure for building an image localization database. Also note that it causes

cumulative errors at a large scale due to drifting and loop closure detection failures [69].

Third, since geo-partitioning constructs the whole building dataset as a group of room

datasets, the whole dataset can easily be hierarchically partitioned (e.g., to floor datasets).

This enables the system to use the closest local server (e.g., a floor-specific server) for

a partitioned dataset, instead of a single server for the whole dataset, which reduces

network latency in a large scale building. The closest local server can be identified by

using localization methods, such as WiFi fingerprints or GPS.

Figure 4.5 shows how a building manager can construct a 3D roommodel. She simply

needs to connect a commercial off-the-shelf RGB-Depth camera to a laptop, run a 3D

reconstruction program (e.g., Project Tango [68] or RTABMap [70]) on the laptop, and
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Figure 4.5: An example of SnapLink’s 3D modeling. Using an off-the-shelf RGB-
Depth camera, a building manager captures a video of a room, which is automatically
converted to a room 3Dmodel by a 3D reconstruction program, such as RTABMap [70].
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Figure 4.6: An example of SnapLink’s labeling process. A building manager can label
an appliance by clicking on a pixel and typing a label while browsing captured images.
Multiple appliances can be labeled in a single image. All labels are projected to the 3D
space and therefore show up in all images containing it.

point the camera at appliances while walking through the room. With the captured

room images, the 3D reconstruction program automatically computes the relative 3D

transformations between similar image pairs by using the three-point-algorithm inside a

RANSAC loop [71], projects the images onto a 3D space, and creates a list of 3D points,

resulting in a 3D point cloud of the room.

Once a 3D point cloud is constructed for a room, a building manager needs to label

each appliance in the room only one time on a 3D point in the 3D point cloud. To simplify

this process, we built a labeling tool as depicted in Figure 4.6. A buildingmanager browses

room images captured by the camera. When she finds an appliance in an image, she clicks

on any point on the appliance, types its label, and clicks on the “Save Label” button. Since
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Figure 4.7: SnapLink appliance identification pipeline. The extracted query image
features are subsampled and quantized into words using KD-trees. Subsequently,
room, image location and orientation are identified. Finally an appliance is identified
by projecting labeled 3D points onto the query image.

our labeling tool can match each 2D point in a captured image to a 3D point in the 3D

point cloud, it automatically labels the appliance on the corresponding 3D point. While

she browses further, the tool displays the appliance label if the browsed image includes

the labeled point, which prevents her from relabeling the same appliance. Furthermore,

she is allowed to label multiple appliances in a single image (e.g., “colorprinter” and

“monoprinter” in Figure 4.6), which is not the case for image retrieval because each image

is expected to contain only a single appliance instance. Undoubtedly, there are many

possible ways to simplify the labeling process, such as using voice recognition to label

appliances in a smartphone camera view.

4.3.3 Identifying Appliances in Partitioned 3DModels
Figure 4.7 depicts the appliance identification pipeline of SnapLink. As in the standard

image localization approach, SnapLink first extracts salient features from the query im-

ages. We use SURF for its speed and accuracy [40, 57]. However, unlike previous work

that uses all features, we only use randomly sub-sampled features to achieve lower latency

without sacrificing accuracy, which we discuss in Section 4.3.4. We then quantize the sub-

sampled features to their closest cluster among many clusters of features, whose centers

are dubbed words [72]. These clusters are generated from all database features in advance

using the distance ratio test [40]. We use randomized KD-Trees of these words to find the

nearest cluster of a feature, because it outperforms other approaches in both speed and

accuracy on visual feature descriptors [73]. The feature quantization greatly reduces the

computation in later steps. We use an empirically optimal distance ratio threshold 0.7 and

use the default of 4 randomized KD-Trees, as implemented in FLANN [73].

As we discussed in Section 4.3.2, to overcome problems in large scale 3D reconstruc-

tions, our database consists of 3D models of separate rooms. Consequently, we need

to identify the room before we can localize the query image. We define the similarity
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between the query image q and room r as

sq ,r �

��Wq ∩Wr
��

|Wr |
(4.1)

where Wq is the set of words in image q, and Wr is the set of words in room r. To quickly

compute

��Wq ∩Wr
��
, we tally all words for room r contained in query image q. Then we

compute sq ,r for every room and find the one with the highest similarity. Note that this

is done efficiently in one traversal of all words in image q, maintaining a running total

for each room r and selecting the room with the highest total once all words have been

processed. This approach is also described in [74].

With a room r identified, we can localize the query image q within it. We solve this

as a standard Perspective-N-Point (PnP) [75] problem with a list of 2D points in image q
and their corresponding 3D points in room r. To get the list, for every 2D SURF point p
in image q, we find its closest 3D point whose SURF descriptor is in the same cluster of p.
Specifically, we compute

argmin

i ,wp�wr
i

‖fp − fr
i ‖ (4.2)

where wp and fp are the word and SURF descriptor of p, and wr
i and fr

i are the word and

SURF descriptor of the ith 3D point in r. In addition, we perform two optimizations when

obtaining the list, inspired by [56]. First, we start our search with 2D points whose SURF

descriptors are in smaller clusters to reduce noise. Second, we limit the size of the list to

reduce redundant information. We use the empirically optimal value of 100, as in [56], for

our list size limit.

After we know the location and orientation of the query image, we can compute where

every appliance appears in the image by projecting their labeled 3D points onto the query

image plane. Our server returns the appliance IDwhose label is closest to the center of the

query image. As described in Section 4.2, the mobile client can then query for a control

interface from the BMS server using the identified appliance ID to enable user interactions

with that appliance.

To examine the placement of computation for our identification pipeline, we conducted

two similar experiments as in [57]. The first experiment measures the computation time

of SURF [40] using OpenCV [76] on a server GPU, server CPU, and smartphone CPU. The

second experimentmeasures the transmission time of an image from a smartphone to four

servers at different locations: on campus, San Jose, Virginia, and Ireland. Figure 4.8 and

Figure 4.9 show the respective results. As we can see, it takes 70 ms on average to transmit

an image and compute SURF on a server GPU, but more than 1000 ms to compute SURF

on the phone. Figure 4.9 also substantiates the necessity of geographically partitioning the

database in order to run computation nearby and reduce end-to-end latency. In SnapLink,

we therefore offload all appliance identification computation to a server that is physically

close.
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Figure 4.8: CDF of SURF computation time of a 640 × 480 image on a server GPU
(NVIDIA GeForce GTX 970), a server CPU (Intel i7-4790), and a smartphone CPU
(Qualcomm Snapdragon 400).

Figure 4.9: CDFof JPEGcompression time+upload time of a 640×480 image to different
servers: on campus, in San Jose (43 miles away), in Virginia (2350 miles away), and in
Ireland (5050 miles away).
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Features
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Figure 4.10: Feature Subsampling

4.3.4 Feature Sub-sampling
Since appliance identification is an interactive process, we aim to reduce the end-to-end

latency to an imperceptible range. Even though it is not practical to achieve our 100 ms

response time goal [77] while network transmission takes 80 ms on average (as shown in

Figure 4.9), we try to minimize server computation without sacrificing accuracy.

Table 4.1 shows the time complexity of every step in the standard image localization

process. Feature extraction complexity depends on the content of the query image, but can
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Stage Mean Time Complexity Note

Feature Extraction Depends on image Can run on GPU.

Feature Quantization O(F log W) F: № of features, W : № of words.

Room Identification O(F + R) F: № of features, R: № of rooms.

Image Localization O(P) P: № of 2D-3D point pairs.

Label Projection O(L) L: № of labels.

Table 4.1: Time complexity of every stage in the standard image localization pipeline.
Note that F, R, P, and L are usually several orders of magnitude smaller than W .

usually finish in 10 ms when parallelized on a GPU, as shown in Figure 4.8. The average

KD-Tree search time in the feature quantization stage is O(log F), where F is the number

of features. However, because of the recursive nature of KD-Tree search, it cannot benefit

from GPU parallelization, especially when data dimensionality is high [78], such as SURF

descriptors. Since feature quantization reduces image features to a much smaller set of

words, it makes room identification, image localization, and label projection consume

little time. Therefore, feature quantization is the bottleneck of the pipeline.

KD-Tree search time increases linearlywith the number of features. Thereforewe try to

use a subset of the image features. A 640×480 image can generate hundreds to thousands

of features, but not all of them are useful. Conceptually, the features that are both unique

and robust are the most useful because they help match 2D points to 3D points with less

ambiguity. Jain, et al. [79] use a counting bloom filter to get a uniqueness score for every

word in the query image. However, this approach only works after features are quantized

to words.

Instead of trying to find unique and robust features, we propose a simple random

feature sub-sampling scheme. We argue that enough randomly sub-sampled features can

provide the requisite information for image localization, while keeping theKD-Tree search

time low. Furthermore, by introducing a tunable number of sub-sampled features, the

system can adjust the trade-off between accuracy and latency based on the average KD-

Tree search time, which depends on the number ofwords in the database. Similarly, we can

use this mechanism to adjust end-to-end latency based on current network transmission

time. Our evaluation in Section 4.5.4 shows the effectiveness of this approach.

4.4 System Implementation
In this section, we describe our implementation of the labeling tool, appliance identifica-

tion runtime, and Android mobile client.
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Figure 4.11: SnapLink android application. The capture button sends a new image
to a server. When an appliance is identified, it displays its name and control widgets
retrieved from a BMS server.

4.4.1 SnapLink Server
For the deployment phase, we choose to use RTABMap because it is open source and

supports various types of hardware (e.g., stereo camera, RGB-Depth camera). We also

implemented a SnapLink labeling tool in 400+ lines of C++ code, using Qt as the GUI

library. It currently reads RTABMap [70] databases and presents images to users for label-

ing. Labels are saved to the original database file. In the future, we plan to add adapters

to other popular 3D reconstruction tools, such as Google Tango [68] and Bundler [80].

We implemented our SnapLink runtime in 3200+ lines of C++ code. It receives queries

in a RESTful interface using HTTP. We use the Qt event system to construct the image lo-

calization pipeline. In the pipeline, we use OpenCV [76] to extract SURF, solve perspective

in point (PnP) problems, and project points between 2D and 3D. We use the randomized

KD-Tree implementation in FLANN [73] and transformation utilities from PCL [81].

4.4.2 Android Mobile Application
We developed an Android client using 1700+ lines of Java code. Figure 4.11 shows an

example screenshot. It has a full screen see-through camera view with control widgets

overlaid on top. A capture button is at the bottom right. The bottom left shows the

currently identified appliance. Appliance control buttons are shown at the bottom center.

Tominimize the identification latency, we disabled auto focus, auto exposure, and auto

white balance, which can take up to 1 second to complete if enabled. However, if a user

clicks on the capture button while moving the smartphone, it will create a blurry image

that deteriorates salient feature extraction performance [39], and the user can choose

to capture another still image if she sees an identification failure. Several approaches

have been proposed to detect blurry images, such as using a Canny edge detector [57]

or gyroscope readings [82]. We are currently implementing blurry image detection in

the app, which will either ask the user to capture another image or automatically find a
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clear image in the image view stream. After the client sends a clear image and receives

the identified appliance ID from a SnapLink server, it retrieves its control interface and

metadata from BOSS [1] and updates the UI accordingly. In addition, it uses the secure

publish/subscribe overlay network [83] designed for BOSS to send control commands.

4.5 Evaluation
In this section, we first compare the accuracy and latency of image retrieval, image local-

ization, and image localizationwith feature subsampling. Thenwe examine the scalability

of SnapLink when database size increases as well as its robustness for identifying appli-

ance instances in the same category, viewing angles, distances, illumination conditions,

and changes in the environment. We also conduct a micro-benchmark and a field study

to show how QR codes and SnapLink can compensate each other. Finally, we examine

failure cases as well as the energy consumption of our Android mobile client.

4.5.1 Experimental Setup
We use an RGB-Depth camera (an ASUS Xtion PRO LIVE in some rooms, and a Kinect

in others) to capture videos and use RTABMap [70] to create 3D models. Our dataset

contains videos of 39 rooms across 5 buildings in two university campuses, and 4 of

the rooms are captured by a first-time user. The rooms include conference rooms, office

cubicles, lounges, kitchens, hallways, etc. We estimate the average room size to be 150

sq. ft., meaning our deployment covers about 5, 850 sq. ft. of total space, which is about

the size of a typical small office building [59]. To our knowledge, our dataset covers a

much larger space than those in previous vision-based object identification systems [55,

57, 58]. Our videos are sampled at 1 frame per second, and our entire dataset contains

4034 images, whichmeans we can capture a room in 100 seconds and an entire small office

building in about 67 minutes.

After recording a video, we use Android phones (an LG G2 Mini in some rooms,

and a Nexus 5x in others) to capture 480 × 640 (or 640 × 480) test pictures of appliances

from different angles and distances. The appliances are arbitrarily selected from all

appliances and objects in the rooms, including both controllable objects (e.g., lights) and

non-controllable objects (e.g., bookshelves) in our evaluation. Note that if we want to

include more appliances from the captured rooms later, there is no need to go back and

capture extra data (as required in image retrieval), since they are already included in our

3D models. In total, we added 263 labels for 179 appliances (some large appliances are

labeled on multiple points, but will work with only one) using our labeling tool, and

collected 1526 images for testing.

Our setup includes a SnapLink server running in a docker container on an Ubuntu

machine, which has an Intel Xeon E5-2670 CPU and 256 GB of memory. We run a Python

script as a client in the same docker container to send test images to the server over HTTP.
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To compare SnapLink with other vision-based systems ([55, 57, 58]), we also implemented

an image retrieval based system, which simply finds the image with the most salient

features in common with the query image. Specifically, we find the image p such that

p � argmax

i

��Wordsi ∩Wordsq
��

(4.3)

whereWordsi andWordsq are featurewords of image i and the query image, respectively.

To achieve efficient search, we build a word-image map, then vote and tally all database

images while iterating through all words in the query image as described in [74]. It uses

the same database we collected, but with every image labeled by the appliance closest to

the image center.

4.5.2 Metrics
Our evaluation focuses on two figures of merit: accuracy and latency. Since users cap-

ture a query image of an appliance to initialize interactions, we argue that our system

performance is more important for test images containing an appliance, as opposed to

those containing no appliance (e.g., a blurry image captured by accident, or a white wall).

Therefore, we define accuracy as recall:

Accuracy �
Number of Correctly Identified Images

Number of Images Containing an Appliance

(4.4)

When a test image contains multiple appliances, we regard the appliance closest to the

center of the image as the ground truth, which is also how the SnapLink server identi-

fies the target appliance when multiple appliance labels are visible in the query image

(Section 4.3.3).

Given that we have already showed the average local network latency to upload an 640

image is 70ms in Figure 4.9, we only focus on server side latency in our evaluation.

4.5.3 Accuracy and Latency
We first look at the accuracy and latency of image retrieval, image localization, and image

localization with feature subsampling, by running and testing these three configurations

on all our data. We choose to subsample 300 features, which is empirically optimal as

shown in Section 4.5.4. Figure 4.12 shows the average accuracy as well as the average

server processing times with standard deviations for each technique. Image retrieval only

yields 66% accuracy with 177 ms average computation time, whereas image localization

yields 94% accuracy with 198 ms average computation time. After applying our feature

subsampling mechanism, SnapLink maintains 94% accuracy while reducing the compu-

tation time by 39% to 120 ms with a smaller standard deviation. This time reduction

significantly helps to push the end-to-end latency down to an imperceptible value.
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Figure 4.12: Accuracy and identification time for image retrieval, image localization,
and image localization with feature subsampling.

Figure 4.13: Accuracy and identification time for different numbers of subsampled
features. Accuracy does not further improve when the number of features exceeds 300.

4.5.4 Feature Subsampling
To further study how feature subsampling influences the accuracy and latency, we run

image localization using our entire database while varying the number of subsampled

features per image. Figure 4.13 shows that the accuracy saturates at 94%with 300 features

subsampled for the kind of appliances we need to recognize in building environments,

and adding more features only increases the server computation time. This shows that

we do not need all features from the query image. Therefore, we choose to subsample 300

features in our system, as well as in the following evaluations.

4.5.5 Scalability
One of our design goals is to make SnapLink scale to the size of a commercial building. To

further understand how feature subsampling reduces our server processing time, we run

image localization with and without feature subsampling on different numbers of rooms

and test with images from the respectively used rooms. Figure 4.14 shows a breakdown
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Figure 4.14: Time breakdown vs. the size of point cloud using image localization
without subsampling

Figure 4.15: Time breakdown vs. the size of point cloud using image localization with
300 features subsampled
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of the server processing time when performing image localization without subsampling

for different sizes of 3D point clouds. The point clouds are created by selecting different

combinations of rooms from the overall database. SURF takes about 50 ms, but can easily

be reduced to less than 10 ms by using a GPU. Because we perform feature quantization,

room identification and image localization both take a small amount of time. Label

projection also takes a negligible amount time because of the small number of labels.

However, because of the nature of KD-Trees, the feature quantization time increases

logarithmically with the number of words. This generally increases as the size of the point

cloud increases. This results in noticeable latency in the appliance identification process,

which gets worse when deployed with more data in a larger building.

Figure 4.15 shows that feature subsampling effectively reduces the feature quantization

time when the data size increases. It provides a tunable parameter to choose between

accuracy and latency. When the data size gets larger, we can reduce the number of

subsampled features to further reduce the latency, while sacrificing a small amount of

accuracy. In future work, we plan to explore different subsampling strategies to select

“better” features (rather than random ones) before the quantization.

4.5.6 Instance Recognition In Categories
Since a building contains many instances of appliances from the same category, it is

important for SnapLink to distinguish instances among the same category with image

localization. To study how SnapLink performs, we select the six most common categories

among all 179 labeled appliances and summarize their identification accuracy among all

instances in the category in Table 4.2. SnapLink achieves more than 95% accuracy for four

out of the six categories and 89.2% for projector. However, it can only get 77.1% accuracy

when identifying lights. We investigated this in our dataset, and found that many lights

were turned on when we built the 3D model, which caused the image to underexpose,

such as in Figure 4.16. This likely degrades the feature extraction performance of the

image. In addition, many lights are located on the ceiling, where few distinct visual

features can be found. In future work, we plan to add continuous trajectory estimation

between query images using smartphone motion sensors to mitigate this problem.

4.5.7 Angle and Distance
Since users can control appliances from arbitrary locations, SnapLink should be robust to

different viewing angles and distances. To evaluate this, we select two sufficiently large

lounges (i.e., Lounge 1 and Lounge 2, both in the 39 rooms in our dataset) and create a

3D model of each. Each lounge has three appliances labeled, one of which is our target

appliance in this evaluation. We capture test images (50 per location in Lounge 2, and 10

in Lounge 2) of the target appliance from 5 different angles with 30
◦
intervals, each with

different distances with 50 cm intervals (Because Lounge 1 is not spacious enough, we

cannot take images from more than 200 cm except when the viewing angle is 0
◦
). All test
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Appliance Category № Instances Accuracy in Category

Printer 25 99.1%

Monitor 15 98.3%

Projector 12 89.2%

Light 12 77.1%

Wall Clock 10 98.7%

Microphone 9 95.8%

Table 4.2: Summary of instance identification accuracy among the six most common
categories. SnapLink achieves high accuracy among each category except lights, which
suffer from underexposure and a lack of visual features present on ceilings.

Figure 4.16: Example underexposed image caused by a light, which can degrade feature
extraction.

images are sent to a SnapLink server to be identified among the three appliances in the

lounge along with all appliances in the other 38 rooms in our dataset. All tests are done

with 300 features subsampled.

Figure 4.17 shows the identification accuracy at all locations. SnapLink only experi-

ences significant failures when the viewing distance is small (i.e., ≤ 50 cm). The main

reason is that when the query is taken from a close distance, not enough features may

be captured, especially those providing distinctive contextual information. We argue that

this will not happen often in practice, because most times users try to control appliances

outside their arm range, such as a ceiling light or a projector. Another option to solve this

problem is the attachment of a visual marker (e.g., QR code) to appliances that are usually

within an occupant’s arm range (see section 4.5.10).
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(a) Lounge 1

(b) Lounge 2

Figure 4.17: Identification accuracy at different angles and distances with Image Lo-
calization and 300 Features Subsampled. Query images close to the appliance tend to
fail because they contain less visual context. Note there is no data from oblique angles
when distances > 200 cm in Lounge 2 due to limited physical space.

3D Model

Testing

Lights On Lights Off

Lights On + 39 Rooms 90.4% 93.7%

Lights Off + 39 Rooms 91.9% 100%

Table 4.3: Identification accuracy when images are tested against the 3Dmodel and the
39 rooms in our dataset. It shows SnapLink is robust to illumination changes.
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Figure 4.18: CDF of average scene luminance (cd/m2) (C � 1) when lights are on and
off.

4.5.8 Illumination Conditions
The illumination conditions in a building can be affected by various factors, such as lights

turning on and off and window shades being opened and closed. SnapLink needs to be

robust to common illumination changes when deployed. We conduct an experiment in

an office room with 5 appliances (2 monitors, 2 speakers, and 1 fan) under two different

illumination conditions: all lights on (bright) and all lights off (dark), while all window

shades are put down. Under each illumination condition, we capture a video to construct

a 3D model, and capture at least 25 test images of each appliance from different viewing

angles and distances.

To quantify the illumination condition when lights are on and off, we compute the

average scene luminance (in cd/m2
) from the EXIF data of the test images using the

following equation (described in [84]):

L � C
k2

S · t (4.5)

where L is the average scene luminance (in cd/m2
), k denotes the f-number, S denotes the

ISO speed setting value, t denotes the exposure time (in seconds), and C is the hardware-

dependent reflected-light meter calibration constant. k, S, and t can be found in the EXIF

data, and we arbitrarily set C to be 1. Since we are only comparing relative luminances

captured using the same camera, the value of C can be an arbitrary constant. Figure 4.18

shows the CDF of the average luminance (when C � 1) with a log-scale x axis. We can see

that the scene is about 10 times brighter when lights are on than off.
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Room Appliances

Lounge 1 Fridge, 1 Speaker, and 1 Printer

Conference Room 2 Projectors, 1 Clock

Kitchen 1 Microwave, 1 Coffee Machine, and 1 Printer

Table 4.4: Summary of appliances in the changing environment experiment.

Fridge Speaker Printer

(a) Lounge

Projector

Projector

Clock

(b) Conference Room

Printer Coffee 
Machine

Micro-
wave

(c) Kitchen

Figure 4.19: Changing environment experiment setup. Each room contains 3 appli-
ances and is shared by many people in a commercial building, where changes to the
environment happen every day. We capture 20 test images of each appliance at each
capture location every day (57,600 images in total).

Table 4.3 summarizes the identification accuracy when test images are tested against a

3Dmodel and the 39 rooms. Test images captured under different illumination conditions

do not yield worse identification accuracy than those captured under the same illumina-

tion condition. This is because of the robust nature of salient features [40] as well as the

auto exposure adjustment in modern smartphone cameras. Note that dark test images

have higher identification accuracy than the bright test images in the bright 3D model,

which is because the two test image sets are taken from different arbitrary angles and

distances.
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Figure 4.20: Identification accuracy over time as the environment changes. The accuracy
fluctuates caused by everyday changes in the environment and occasional blurry test
images. We see no clear trend of degrading accuracy, meaning the database can be used
for a longer period of time.

4.5.9 Changes in the Environment
To show how SnapLink is robust to everyday changes after a 3D model is captured, we

construct 3Dmodels of 3 rooms (which are among the 39 rooms in our dataset) containing

9 appliances, and evaluate SnapLink everyday thereafter for 64 consecutive days. Table 4.4

summarizes the 3 rooms and 9 appliances, and Figure 4.19 shows pictures of the 3 rooms,

which are all shared bymany occupants in a commercial building and naturally change all

the time without our intervention. As examples, actively changed items include: objects

on the coffee table and chairs in the lounge, content on the whiteboard and projector

screen in the conference room, and items on the table and countertop in the kitchen. To

ensure images captured every day have the same distribution in terms of viewing angles

and distances, we capture 20 test images of every appliance from five locations in each

room, with minor viewing point movements in the arm’s range between images. The

lower part of Figure 4.19 shows test image capture locations.4 In total, this experiment

generates 57600 test images (20 images ×5 locations ×3 appliances ×3 rooms ×64 days).

To reduce the authors’ bias, we also asked a volunteer to collect about half of all the test

images, captured on dates when they were available. While identifying appliances in the

test images, out search space also include all appliances from the remaining 36 rooms.

Figure 4.20 shows the identification accuracy for each of the three rooms as an increas-

ing number of days have elapsed since the initial 3D models were captured. SnapLink’s

accuracy is mostly above 90% during the entire experiment, but varies day by day due to

environmental changes and varying quality in the captured test images. For example, the

dip in accuracy for the conference room from day 43 to day 45 is caused by blurry test

images. Furthermore, our 64-day experiment shows no clear trend of degrading accuracy,

4
The room dimension ratios are not to exact scale.
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Figure 4.21: QR code recognition rate at different viewing distances and angles, as well
as under different illumination conditions.

which suggests that SnapLink can retain high accuracy throughout an even longer period.

This robustness comes from two factors: (1) the RANSAC algorithm that we use while

solving the PnP problem, and (2) the environments did not change dramatically, which

we argue is generally true for most commercial buildings.

4.5.10 Comparison with QR Codes
QR Codes are two-dimensional machine-readable barcodes that are quick to decode with

error correction. They form the basis of a very popular technique for object identification.

We use a micro-benchmark to show the advantages and disadvantages of QR codes for

our application. We also show how QR codes can help improve SnapLink performance

with a field study involving 7 appliances.

Micro-benchmark

In the micro-benchmark experiment, a QR code encoding an 11-byte string with error

correction level “L” [85] is printed at size 7.5 cm × 7.5 cm and attached to a wall in a well-

lit conference room. From different viewing distances and angles, we capture 50 images

of the QR code at each location using an LG G2 Mini Android phone. Since QR codes

can be quickly decoded on phones with no need for offloading, the images are captured

at resolution 2448× 3264, which is much higher than the image resolution (i.e., 640× 480)

used in SnapLink. We also did the same experiment from a viewing angle of 0
◦
in a darker

environment, where with all lights are turned off while there is still ambient light from

the windows and adjacent rooms. We use ZBar5, a popular open source barcode reader,

to decode QR codes in the images on a Linux machine. Since QR codes yield few false

5http://zbar.sourceforge.net/
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Figure 4.22: 4 of the 7 appliances in the field study setup, with 7.5 cm × 7.5 cmQR codes
attached.

positives with Reed-Solomon error correction [85], we consider a QR code to be correctly

decoded if the encoded string is among the set of decoded content.

Figure 4.21 shows the QR code recognition accuracy at different locations and under

different illumination conditions. It shows that accuracy drops sharply when the viewing

distance is larger than 150 cm or when the viewing angle is larger than 60
◦
. A darker

environment also diminishes the recognition accuracy. As we show in Section 4.5.7,

SnapLink performs poorly when viewing distance is lowwith insufficient salient features.

Hence, QR codes perfectly compensate for this drawback of SnapLink.

Field Study

To showhowQR codes can be integrated into SnapLink and compensate for its drawbacks,

we conduct a field study in a room (which is among the 39 rooms in our dataset) with 7

appliances (3 fridges, 3 printers, and 1 speaker). Each appliance is attached with a 7.5 cm

× 7.5cm QR code encoding its unique ID. We capture more than 50 test images of each

appliance fromdifferent angles and distances, including from lowdistances (e.g., < 30 cm)

where SnapLink performs poorly. All images are tested using bothZBar [86] and Snaplink,

as well as a fusing system, which first uses ZBar and subsequently uses SnapLink if no QR

Code is decoded. Because QR code identification features a low rate of false positives, we

consider the identification successful as long as the ground truth appliance ID is among

all decoded QR codes from ZBar. When using Snaplink, we distinguish among the 7
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Figure 4.23: Identification accuracy of QR codes, SnapLink, and a fusing system that
combines both.

appliances as well as all appliances in the other 38 rooms in our dataset.

Figure 4.23 shows the identification accuracy achieved by each of the three approaches.

QR codes and SnapLink yield 34% and 81% accuracy respectively, and the fused result

improves the accuracy to 88%. This shows that QR codes and SnapLink can complement

each other very well for the purpose of appliance identification from an arbitrary viewing

distance and angle.

4.5.11 Failure Analytics
To examine the causes of failures in our system, we summarize six categories of common

failures that we have found over our deployment period. Figure 4.24 shows these failure

cases with examples. In each example, the lefthand image is the query image, and the

righthand image is its closest image using image retrieval, which helps demonstrate the

problem. In the results, (a) contains a water machine and a coffee machine that are close

to each other, and the same is true of their respective labels. This situation is sensitive

to image localization accuracy. (b) shows that the user intends to identify the fridge, but

a printer is occluded by the fridge and has a label that is closer to the image center. (c)

shows two scenes that look similar, and our system cannot distinguish between them

using their SURFs. In (d), the flowerpot is the target appliance, but it is barely captured by

any image in the training video. (e) shows that the ceiling light does not have a sufficiently

unique visual context, so our system mistakenly localizes it as another ceiling light. (f)

shows the query image was identified as the light, but labeled incorrectly as the projector.

These failures cases can be useful to guide our future work on improving the success rate
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(a) Labels Too Close (b) Label Occluded

(c) Similar Scenes

(d) Not Covered in DB (e) Lack of Features

(f) Incorrect Label

Figure 4.24: Common failure cases (left is query image, right is the image in database
found by image retrieval)

Figure 4.25: Energy Usage over Time

and demonstrate that most failures are due to external factors rather than artifacts of the

system itself.

4.5.12 App Energy Usage
Our design goal is to make the SnapLink mobile client power efficient. Because the LG

G2 Mini uses the Qualcomm MSM8226 Snapdragon 400 SoC, we use the Qualcomm

Trepn Power Profiler [87] to measure accurate per-app power usage by leveraging specific

Snapdragon features. We adjust the screen brightness to 100% andmeasure three different

power consumption traces for 60 seconds: overall power usage while showing the home
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screen (idle), SnapLink power usage while streaming a camera view to screen (preview),

and SnapLink power usage while sequentially sending query images as fast as possible

usingWiFi. Figure 4.25 shows the power usage trends, where idling consumes on average

0.48Watts, preview consumes on average 1.64Watts, andpreviewwith continuous queries

consumes on average 2.78 Watts. With the 3.8V 2440 mAh battery in the test phone,

the expected battery life when using SnapLink to preview and continuously identify

appliances is 2.84 hours (

(2.44 Amp hour)∗(3.8 Volt)
0.48+2.78 Watt

).

4.6 Related Work
In this section, we discuss existing appliance identification approaches and compare them

with SnapLink.

With many recent improvements in computer vision (e.g., deep learning [63, 64] aug-

mented reality [57]), vision-basedhumanobject interactions have beenwell studied. While

general augmented reality systems focus on understanding a scene and how to naturally

overlay virtual objects, we focus on quick and accurate image localization based appli-

ance instance identification in a commercial building. Mayer, et al. [61] built a mobile

interface to display information and to control appliances, which internally uses image

retrieval to find the appliance in the current view. Overlay [57] is an object tagging appli-

cation that uses image retrieval to find the object in the current camera view. It relies on

an always-on camera to provide a continuous video stream to narrow down the search

space, whereas our application requires the user to be able to take her phone out to start

controlling appliances at an arbitrary time. Kong, et al. [58] used convolutional neural

networks to recognize the category of appliances in the current camera view and identify

the instances using unsupervised activity recognition andWiFi-based indoor localization

systems. However, activity recognition and indoor localization cannot differentiate appli-

ances of the same type in the same room, such as ceiling lights and printers in a copy room.

Snap-To-It [55] allows users to take a picture to identify an appliance using image retrieval,

using smartphone sensors for location validation. All of these works use image retrieval

for instance recognition that requires many images to be captured for every appliance and

each of the images to be labeled, which is a prohibitive effort for large scale deployment

in a commercial building. Instead, SnapLink overcomes this problem by constructing a

3D model and allowing people to label 3D points with a labeling tool.

Fiducial markers (e.g., QR codes [54], ARToolKit [88], AprilTags [89]) are also used for

vision-basedobject interactions. They encode appliance IDs and are attached to appliances

for visual identification. However, as we discussed in Section 4.5.10, markers of practical

sizes are hardly recognizable from a room size distance (e.g., 3 meters) or a large angle.

Nevertheless, fiducial markers complement SnapLink very well when query images are

taken from a small distance.
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4.7 Summary
In this chapter, wepresented SnapLink, an accurate and responsive vision-based appliance

identification system that enables users to control building appliances in their sight by

using ubiquitous smartphones. This work started with an intuition: “What we see is what

we control.” SnapLink leverages image localization for better appliance identification

accuracy and much lower deployment overhead in commercial buildings. On top of

the standard image localization process, we introduce geo-partitioning to enable easy

and accurate 3D model construction, and provide a labeling tool to simplify appliance

labeling process. In addition, SnapLink uses a feature sub-sampling mechanism which

reduces computation time and scales well when database size increases, without losing

identification accuracy.

We built an end-to-end system, including SnapLink and a smartphone application,

and test it at a building scale using 1526 test images among 39 rooms captured by 4034

images. Our results show that SnapLink achieves 94% identification accuracy with 120

ms of server processing time and is robust to different viewing distances and angles, as

well as changes in the environment (e.g., illumination, daily occupant activities).

We believe that SnapLink forms a significant step in enabling users to interact with

their environments using computer vision technologies. However, it still requires user to

take a picture of the target appliance to initiate an identification process. It is inconvenient

if the user wants to explore what appliances are actually controllable, especially if many

appliances are still not “smart” in the building, which is quite common today. Augmented

Reality can solve this by continuously performing image localization and displaying iden-

tified appliance on the smartphone screen. We discuss the challenges and howwe pursue

in this direction in Chapter 5.
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Chapter 5

MARVEL: Continuous Tracking

In this chapter, we explore the idea of continuous 6DOF (Degrees of Freedom) localization

and appliance identification, which is essentially one form of Mobile Augmented Reality

(MAR) that only shows annotations. We identify the challenges of image offloading

latency and propose to use local motion sensor 6DOF tracking to minimize the need of

offloading. Our system shows we can provide continuous appliance annotation display

with very low latency (< 100ms), which is basically limited by smartphone hardware and

the operating system. This work was done in collaboration with Tong Li and Hyung-Sin

Kim at UC Berkeley [90].

5.1 Introduction
Augmented Reality (AR) has seenwide adoptionwith recent advances in computer vision

and robotics. The basic concept of AR is to show a user additional information overlaid on

the original view when she sees the real world through the screen. A user expects to see

the augmented information both accurately and in real time, while moving her device. To

this end, an AR device must perform intense computations on a large amount of (visual)

data with imperceptible latency, from capturing an image to extracting the corresponding

information (e.g., image localization and surface detection) and overlaying it on the proper

location of the screen.

While this challenge has been addressed by using powerful and expensiveAR-oriented

hardware platforms, such as Microsoft HoloLens [91] and Google Tango [68], another

approach has been also investigated: ARwith regular mobile devices, such as a smartphone,

called Mobile AR (MAR). MAR is attractive in that it does not require users to purchase

and carry additional devices [92]. However, MAR has its own challenges since mobile

devices have significantly less storage and computation speed than AR-oriented devices. In

addition, given that mobile platforms are not only for MAR but also for many other daily

tasks (e.g., social network services and web search), MAR is expected to avoid excessive

battery consumption. There are relatively lightweight MAR software tools, such as Google
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ARCore [93] and Apple ARKit [94], but they operate only on the latest generation of

smartphones and consume considerable energy.

This work investigates how to enable real-time MAR on ordinary mobile devices.

Specifically, we aim to provide an annotation-based MAR servicewhich understands objects

that the device points at and overlays the corresponding annotations on the relevant

location of the screen in real time. This application is viable even with the restricted

capabilities of mobile devices, in contrast to more demanding AR that naturally embeds

3D objects into a 3D model using a game engine [91]. More importantly, it has a variety

of practical usage scenarios, such as museums, buildings, and airports [53, 57]. Through

the annotation service, a user can obtain information about an object by pointing at it.

Furthermore, she is able to interact with (or control) the object by touching annotations

on the screen.

A number of MAR studies have attempted to implement these applications. They

offload computation and storage to the cloud to overcome the restrictions ofmobile devices.

However, the work in [53, 57] is excessively dependent on the cloud, using amobile device

simply to send large volumes of data to the cloud, resulting in high latency and energy

consumption. Despite some effort to reduce offloading latency in [79, 95], the lowest

latency is still 250 ms [96] to the best of our knowledge, which is 2.5x higher than the

requirement for a smooth AR user interface (i.e., 100 ms [60])). Some work enables fast

tracking of an identifiedobject on the screenbyusing local optical flow, but the identification
procedure when new objects appear still relies on the cloud [95, 97]. In addition, optical

flow only works with clear images that have sufficient overlap, forcing a user to move her

device slowly [97]. Furthermore, energy consumption has been significantly overlooked

in this regime.

To overcome these challenges, we design MARVEL (MAR with Viable Energy and

Latency) which fully utilizes the potential of both the cloud and the mobile device. To

identify and track objects on the screen, MARVEL uses visual and inertial localization,

rather than image retrieval and convolutional neural network (CNN) in previous MAR

work, which facilitates cooperation between the cloud and the mobile device. MARVEL

mainly relies on (light/fast) local inertial data processing while using (heavy/slow) local

optical flow and cloud offloading selectively; it locally computes optical flow only when

the device’s position changes significantly and offloads images only when local results

need to be calibrated. This significantly reduces latency, resulting in <100 ms for both

object recognition and tracking. Inertial data is more robust to device movement than

optical flow and its processing is light enough to localize multiple objects simultaneously.

With this low-latency system architecture, we aim to minimize energy consumption

on the mobile device (both computation and offloading overhead) without sacrificing

accuracy. To this end, we explore several essential issues: (1) when to offload, (2) what

to offload, and (3) what to do locally while not offloading. MARVEL performs image

offloading-based calibration only when it detects an inconsistency between inertial and

visual data. For image offloading, the mobile device selects only a few recently captured

images with two criteria: sharpness and the number of features (more features means
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the image contains more information). We obtain these two metrics not by heavy image

computationbut indirectly fromsimplegyroscope readings andedgedetection [82]. When

not offloading, themobile device uses inertial data for anAR service and corrects its errors

by processing visual data selectively. In addition, it continuously monitors inconsistency

by comparing its inertial and visual information.

MARVEL’s performance is evaluated in a holistic system,which implements a real-time

appliance annotation service in a commercial building. The results verify that the above

design choices enable MARVEL to achieve high accuracy, low latency, and low energy

consumption together.

The contributions of this work are fourfold:

• We realize an annotation-based AR service on ordinary mobile devices with imper-
ceptible latency (<100 ms), which is the first practical real-timeMAR system to the best

of our knowledge.

• We propose a novel MAR system architecturewhich synergistically utilizes processing

capability and storage of the cloud and a mobile device while using both visual and

inertial information.

• We investigate how to effectively use visual and inertial data for identifying and

tracking multiple objects with low latency, low energy, and high accuracy. This

involves the following questions: (1) when to offload, (2) what to offload, and (3)

what to do while not offloading.

• We implement and deploy a holistic system, where MARVEL’s performance is eval-

uated and compared with other techniques, providing a better understanding of

MAR system operation.

5.2 Annotation-based MAR Systems
This section describes the motivation of MARVEL. We first describe the application sce-

nario and technical requirements of annotation-based MAR systems. Then we introduce

possible design options and show our preliminary study which motivates MARVEL de-

sign choices.

5.2.1 Desired User Experience
We aim to provide an annotation-based MAR service, where a regular mobile device under-

stands objects that it points at and overlays their annotations on the relevant location of

the screen in real time. This application is viable with the restricted capability of mobile

devices, in contrast tomore demanding approaches to AR that naturally embed 3D objects

into a 3D model using a game engine [91]. Furthermore, it has a variety of practical usage

scenarios [53, 57]. For example, when going on a field trip to a museum, a user may see
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Figure 5.1: Target application: Real-time, multi-object annotation service on a regular
mobile device

the description of each exhibit simply by pointing the mobile device at it. In a building,

she may get a control interface for an appliance, such as a projector on the ceiling or a

printer, by pointing at it.

Figure 5.1 depicts the desired user experience in this application scenario. A user

expects the five following benefits, which give technical challenges for a MAR system

design.

• Fast identification: When pointing at a new object, she expects its annotation to

immediately pop up on the relevant location of the screen. She wants to see the

annotation even before the new object is fully captured on the screen (i.e., the second

case of Figure 5.1). To this end, an object recognition process should be finished

within 100 ms [60].

• Fast tracking: After the annotation pops up, she expects it to smoothly move along
with the corresponding object while moving her device. To this end, whenever the

image on the screen changes, the annotation view should be updated within 100

ms [60].

• Multi-object support: Whenmultiple objects are captured in the screen, she expects

fast identification and tracking for each object simultaneously (i.e., the second and

the third cases of Figure 5.1). To this end, the latency of annotation placement

process should be decoupled from the number of objects.

• Robustness to arbitrarymovement: Theuserdoesnot have to intentionallymoveher

device slowly to use this service. To this end, the accuracy of annotation placement

should be consistent regardless of device movement.
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• Low energy consumption: Her device is a regular smartphone, used not only for

this application but also for other various purposes. She does not want to recharge

the device’s battery more frequently while using this application.

5.2.2 Design Options
To fulfill the above requirements, system design choices need to be made carefully. It

is important to decide how to recognize and track objects and where to compute core

algorithms, which impact accuracy, latency, and energy consumption.

How to Recognize and Track Objects?

In our application scenario, we are not only recognizing the categories of objects, but

also instances. For example, two printers of the same model in two rooms need to be

differentiated based on the background information. There are three representative ways

to recognize instances and track objects: image retrieval [57], Convolutional Neural Net-

works (CNN) [65], and localization [53]. With a query image on the screen, image retrieval

selects the most similar labeled image in the database in terms of the number of common

salient features (e.g., SURF [40]), while CNN extracts features from the query image and

use them to classify the image on a pre-trained neural network. These require heavy

image computation and a large database [53]. Even with recent work on running image

retrieval or CNN on smartphones [98, 99], they require a on-board GPU and still are not

energy efficient.

On the other hand, localization recognizes and tracks an object by its location informa-

tion. Various localization techniques have beendeveloped for decades, which use different

types of information (e.g., image, light, inertial data, and RF signal) and have different

accuracy, latency, and storage. For example, image localization [53] and visual simul-

taneous localization and mapping (SLAM) [70] are accurate but extremely heavy, while

inertial localization is lightweight but more error-prone [100]. We choose localization-based
object recognition and tracking. Our intuition is that a synergistic combination of heteroge-

neous localization techniques has the potential to achieve the above five requirements by

overcoming the weakness of each technique.

Where to Perform Computation?

Another question is how to efficiently use the capabilities of a cloud server and a mobile

device [101]. Offloading heavy computation to the cloud reduces computation overhead

on amobile device. However, energy consumption and latency costs now come from com-

munication rather than computation. Therefore it is important to decide what algorithm

to compute locally or on the cloud, what information to offload, and when to offload, as

these factors significantly impact performance.
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Operation Power (Watt)

Preview only 1.96 ± 0.64

Inertial localization 1.94 ± 0.74

Image offloading 2.24 ± 0.68

Optical flow 2.54 ± 1.06

RTABMap [70] 5.74 ± 2.44

Table 5.1: Power usage of different applications. Image offloading and optical flow
consume more power than inertial localization. RTABMap (local image localization)
consumes 2.5× power than image offloading.

Operation Time (ms)

Rotation 0.01 ± 0.03

Translation 0.03 ± 0.08

Optical flow 30.68 ± 5.16

Image offloading ≥ 250 [96]

Table 5.2: Processing time of different operations. Optical flow and offloading take
significantly more time than inertial localization.

When making these design choices, a localization-based system provides more op-

tions with diverse techniques than an image-based system. However, each localization

technique’s characteristics need to be carefully analyzed in order for the proper design

decisions.

5.2.3 Preliminary Study
To design a localization-based MAR system satisfying the five requirements in Sec-

tion 5.2.1, we evaluate some candidates: (1) inertial localization, (2) image localization, (3)

optical flow, and (4) visual SLAM. Image localization is offloaded on the cloud as in [53]

and other algorithms are computed locally.

We run five applications on a Lenovo Phab 2 Pro Android smartphone: (1) a preview

app (see-through camera), (2) a preview app that performs 6 degree-of-freedom (DOF)

inertial localization in the background (translation and rotation), (3) a preview app that

offloads a 640 × 360 image to the cloud for 6DOF image localization sequentially (i.e., it

only offloads the next imagewhen the current image result comes back), (4) a preview app

that performs optical flow tracking on 640 × 360 images sequentially, (5) RTABMap [70],

a purely local visual SLAM application. We measure the system power usage using

the Trepn Profiler [87], which works with the Qualcomm Snapdragon CPUs present in

smartphones, for accurate battery usage.

Tables 5.1 and 5.2 show the power consumption and processing time of each operation
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respectively. Since network performance varies from place to place, we use the data

summarized in [96] for offloading latency. First, visual SLAM consumes much more

energy than the other operations. Along with significant local storage overhead, it only

runs on the latest hardware, which confirms that using the cloud is necessary for MAR.

Second, both image offloading and optical flow consume significant energy, which reveals

that both of them need to be triggered minimally, if at all. Between the two, offloading

an image not only consumes more energy but also takes longer than computing one

optical flow. Lastly, 6DOF inertial localization does not add noticeable energy overhead

compared to the basic preview app. This is consistent to the priorwork [102], which shows

that inertial measurement unit (IMU) consumes at most ≈30 mW. Processing inertial data

(both rotation and translation) is orders of magnitude faster than optical flow and image

offloading.

These results confirm that local computation of 6DOF inertial localization is the fastest

and themost energy-efficient localizationmethod forMAR.Given that inertial localization

is error-prone [100], the question is how to compensate for its errors while maintaining

energy efficiency. We use both image localization on the cloud and local optical flow

to improve localization accuracy. At the same time, we try to use these more expensive

methods only when necessary to minimize energy consumption on a mobile device.

5.3 MARVEL Overview
This section gives an overview of MARVEL, a new localization-based MAR system for

real-time annotation services which fulfills the five application requirements: (1) fast

identification, (2) fast tracking, (3) multi-object support, (4) robustness to arbitrary move-

ment, and (5) low energy consumption. To provide annotation services with localization,

MARVEL should detect what objects are captured by the mobile device’s screen (what

annotations to display) and where they are located on the screen (where to display the

annotations). To this end, the following two types of location information need to be

obtained with low energy consumption and low latency:

• 6DOF location of the mobile device in the 3D space (i.e., 3D location and 3D orientation

of the screen).

• 2D locations of objects on the device screen surface.

As a holistic MAR system, the primary contribution of MARVEL is its comprehensive

system architecture. While it uses existing algorithms, such as 6DOF inertial localization

with Zero Velocity Update (ZUPT) [100], 6DOF image localization [56], and optical

flow [103], MARVEL’s design focuses on how to combine these algorithms aswell as when

and where to run each algorithm considering both cloud offloading and local computing.

Each design choice has a significant impact onMARperformance and a synergistic system

design is the key factor to achieve both low energy and low latency.
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To obtain the mobile device’s 6DOF location, MARVEL uses 6DOF inertial localization

and 6DOF image localization together. While inertial localization is lightweight but

accurate only for a short time [48], image localization is accurate but computationally

heavy and involves a large volume of data. MARVEL achieves the sweet spot of this

trade-off; it mainly performs inertial localization on the mobile device while triggering image
localization on the cloud only when IMU-based results need calibration.

Next,MARVELuses themobile device’s 6DOF location to obtain 2D locations of objects

on the screen. Themobile device projects 3D locations of nearby objects (given as the local

database) onto the 2D screen surface. In addition, MARVEL uses optical flow to improve

accuracy. Optical flow provides its own 2D location information for objects, which is

used to correct IMU-based results and to detect inconsistency (triggering calibration on

the cloud). Optical flow is performed only when necessary, minimizing local image computation
while achieving high accuracy.

Overall, the main idea of MARVEL is to primarily use local computations involving

IMU data while triggering heavy image computation (optical flow) and offloading (image

localization on the cloud) only when necessary. This design choice aims to achieve low

latency and low energy consumption without sacrificing accuracy.

5.4 System Design
Figure 5.2 illustratesMARVEL’s architecture and operational flow,which involves amobile

client (carried by a user) and a cloud server. The client has a local database and performs

AR locally most of the time with 6DOF inertial localization and optical flow. The client

communicates with the cloud server for calibrating its inertial localization results, only

when necessary. For calibration, the cloud server has a pre-built 3D point cloud database

and provides 6DOF image localization when receiving a query image from the client.

5.4.1 Initialization: Database Construction
Initially, the point cloud of the complete service area (e.g., a building), along with all

annotated 3D points, is created and stored in the cloud server as the MARVEL database,
which has its own frameM, as shown in Figure 5.3. It is known that a database for 6DOF

image localization is easier to deploy than that for image retrieval or CNN [53].

Specifically, when a client offloads a query image, which is captured at time t0 and has

frame I 1, 6DOF image localization on the cloud results in PMI (t0). Note that PAB (t) is the
4 × 4 homogeneous transformation from frameA to frame B at time t, represented as

PAB (t) �
(

RAB (t) TAB (t)
0 0 0 1

)
(5.1)

1
Note that the image frame I is the same as the frame of device screen and it changes over time as the

device moves.



70

3D	Point
Cloud

Mobile	Client

IMU	Input

6DOF	Calibration
Offset

6DOF	Image	
Localization

Camera	Input

Sc
re
en

Downloading	
object	 labels
(only	at	

the	initial	 stage)

Original	
View

IMU-based	
6DOF	localization

Image	Check	for	
Optical	Flow

Optical	Flow

Image	Selection	
for	Calibration

Inertial	Data	
Cleansing

2D	Localization	of	
Objects	on	Screen

(IMU-based)

2D	Localization	of	
Objects	on	Screen

(Optical	Flow-based)

3D	Points	of	
Nearby	Objects

Consistent?

Annotation	Placement	on	Screen
(IMU	+	Optical	Flow)

Cloud	Server

Annotation
View

Final	View

No

Yes
Offloading	selected	images

6DOF	image	location	
in	the	3D	model

Local	Computing

6DOF	location	 of	the	device

2D	Points	of	Objects	
(Optical	Flow-based)

2D	points	of	objects	
(IMU-based)

Update

Clear	and	
distinguished	 image

Cleansed	inertial	 data

6DOF	Coordinate	
Conversion

Figure 5.2: MARVEL system operation overview. There are a mobile client and a cloud
server. The mobile client’s local computing module takes the main role for generating
annotation view by using inertial localization and optical flow. The cloud does image
localization for calibrating local tracking errors, which is selectively triggered.

Px

z

y

Earth Frame
x

z

y

Model Frame

x
z

y
Image Frame

Using script fonts in LATEX

There are three “script-like” fonts available in most standard LATEX distributions. Here’s
how to use them. Some of these require special macro packages to be used—to do this, you

insert an appropriate \usepackage command just after your \documentclass command,
and before \begin{document}.

1. Standard LATEX “calligraphic” font: No special package needed.

$\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRST UVWXYZ

2. Euler Script font: Use the “euscript” package.

\usepackage[mathscr]{euscript}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3. Ralph Smith’s Formal Script Font (rsfs): Use the “mathrsfs” package.

\usepackage{mathrsfs}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

A BC DE FGH I J K L MN OPQRS T U V W X Y Z

Using script fonts in LATEX

There are three “script-like” fonts available in most standard LATEX distributions. Here’s
how to use them. Some of these require special macro packages to be used—to do this, you

insert an appropriate \usepackage command just after your \documentclass command,
and before \begin{document}.

1. Standard LATEX “calligraphic” font: No special package needed.

$\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRST UVWXYZ

2. Euler Script font: Use the “euscript” package.

\usepackage[mathscr]{euscript}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3. Ralph Smith’s Formal Script Font (rsfs): Use the “mathrsfs” package.

\usepackage{mathrsfs}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

A BC DE FGH I J K L MN OPQRS T U V W X Y Z

P

Using script fonts in LATEX

There are three “script-like” fonts available in most standard LATEX distributions. Here’s
how to use them. Some of these require special macro packages to be used—to do this, you

insert an appropriate \usepackage command just after your \documentclass command,
and before \begin{document}.

1. Standard LATEX “calligraphic” font: No special package needed.

$\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRST UVWXYZ

2. Euler Script font: Use the “euscript” package.

\usepackage[mathscr]{euscript}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3. Ralph Smith’s Formal Script Font (rsfs): Use the “mathrsfs” package.

\usepackage{mathrsfs}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

A BC DE FGH I J K L MN OPQRS T U V W X Y Z

Using script fonts in LATEX

There are three “script-like” fonts available in most standard LATEX distributions. Here’s
how to use them. Some of these require special macro packages to be used—to do this, you

insert an appropriate \usepackage command just after your \documentclass command,
and before \begin{document}.

1. Standard LATEX “calligraphic” font: No special package needed.

$\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRST UVWXYZ

2. Euler Script font: Use the “euscript” package.

\usepackage[mathscr]{euscript}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3. Ralph Smith’s Formal Script Font (rsfs): Use the “mathrsfs” package.

\usepackage{mathrsfs}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

A BC DE FGH I J K L MN OPQRS T U V W X Y Z

P Using script fonts in LATEX

There are three “script-like” fonts available in most standard LATEX distributions. Here’s
how to use them. Some of these require special macro packages to be used—to do this, you

insert an appropriate \usepackage command just after your \documentclass command,
and before \begin{document}.

1. Standard LATEX “calligraphic” font: No special package needed.

$\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRST UVWXYZ

2. Euler Script font: Use the “euscript” package.

\usepackage[mathscr]{euscript}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3. Ralph Smith’s Formal Script Font (rsfs): Use the “mathrsfs” package.

\usepackage{mathrsfs}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

A BC DE FGH I J K L MN OPQRS T U V W X Y Z

Using script fonts in LATEX

There are three “script-like” fonts available in most standard LATEX distributions. Here’s
how to use them. Some of these require special macro packages to be used—to do this, you

insert an appropriate \usepackage command just after your \documentclass command,
and before \begin{document}.

1. Standard LATEX “calligraphic” font: No special package needed.

$\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRST UVWXYZ

2. Euler Script font: Use the “euscript” package.

\usepackage[mathscr]{euscript}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3. Ralph Smith’s Formal Script Font (rsfs): Use the “mathrsfs” package.

\usepackage{mathrsfs}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

A BC DE FGH I J K L MN OPQRS T U V W X Y Z

Using script fonts in LATEX

There are three “script-like” fonts available in most standard LATEX distributions. Here’s
how to use them. Some of these require special macro packages to be used—to do this, you

insert an appropriate \usepackage command just after your \documentclass command,
and before \begin{document}.

1. Standard LATEX “calligraphic” font: No special package needed.

$\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRST UVWXYZ

2. Euler Script font: Use the “euscript” package.

\usepackage[mathscr]{euscript}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3. Ralph Smith’s Formal Script Font (rsfs): Use the “mathrsfs” package.

\usepackage{mathrsfs}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

A BC DE FGH I J K L MN OPQRS T U V W X Y Z

Using script fonts in LATEX

There are three “script-like” fonts available in most standard LATEX distributions. Here’s
how to use them. Some of these require special macro packages to be used—to do this, you

insert an appropriate \usepackage command just after your \documentclass command,
and before \begin{document}.

1. Standard LATEX “calligraphic” font: No special package needed.

$\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRST UVWXYZ

2. Euler Script font: Use the “euscript” package.

\usepackage[mathscr]{euscript}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3. Ralph Smith’s Formal Script Font (rsfs): Use the “mathrsfs” package.

\usepackage{mathrsfs}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

A BC DE FGH I J K L MN OPQRS T U V W X Y Z

Using script fonts in LATEX

There are three “script-like” fonts available in most standard LATEX distributions. Here’s
how to use them. Some of these require special macro packages to be used—to do this, you

insert an appropriate \usepackage command just after your \documentclass command,
and before \begin{document}.

1. Standard LATEX “calligraphic” font: No special package needed.

$\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRST UVWXYZ

2. Euler Script font: Use the “euscript” package.

\usepackage[mathscr]{euscript}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3. Ralph Smith’s Formal Script Font (rsfs): Use the “mathrsfs” package.

\usepackage{mathrsfs}
...
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

A BC DE FGH I J K L MN OPQRS T U V W X Y Z

changes over time

Figure 5.3: Three frames for 6DOF localization with inertial and visual Data: earth
frame E, model frameM, and image frame I. While E andM are static, I changes as
the device screen moves.
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where RAB (t) and TAB (t) are 3 × 3 rotation matrix and 3 × 1 translation vector from frame

A to B at time t, respectively.
Unlike previous MAR systems that maintain all of their data in the cloud, MAR-

VEL constructs a local database in the mobile client, enabling it to compute its 6DOF

inertial location completely locally. When a user enters the service area, the mobile client

constructs its local database by downloading the 3D-location labels and annotations of ‘nearby’
objects from the cloud. Each object’s label L has its annotation AL

and its coordinate in the

model frameM, pL
M � (xL

M , yL
M , z

L
M). The mobile client converts the model frame to the

earth frame E (from pL
M to pL

E) and stores pL
E and AL

in the local database.

While the 3D point cloud on the server involves a large amount of data, this local

database is lightweight. Assuming that the average annotation length is 100 bytes, an

entire building that contains 10,000 labels will incur only 1.12MB (� 10, 000×(3∗4Bytes+
100Bytes)) ofmemory overhead. Furthermore, this label downloading happens very rarely
(e.g., when entering into another building), incurring negligible communication overhead.

While MARVEL is running, the mobile client’s local computing module continuously

receives inertial data (acceleration and rotation) (in the earth frame E) and camera frames,

and computes the two types of data in parallel as below.

5.4.2 Local Inertial Tracking
When receiving new, noisy accelerometer data from the sensor, the client first cleans this

data by setting all readings below a threshold (0.2 m/s2
in any dimension in our system)

to be 0. Then the client computes its 6DOF location by using the cleaned accelerometer

data, latest rotation sensor data, and the stored 6DOF calibration offset (provided by 6DOF

image localization on the cloud). The client can update the calibration offset by triggering

a calibration on the cloud, receiving the 6DOF image location on themodel frameM from

the cloud, and converting it to the 6DOF device location on the earth frame E (coordinate

conversion).

Specifically, if the mobile client triggers a calibration and offloads a query image (of

frame I) at time t0, it receives PMI (t0) from the cloud at time t1(> t0), due to offloading

latency. Then the client converts PMI (t0) to the calibration offset for inertial localization,

PEI(t0), as
PEI(t0) � PEM · P

M
I (t0). (5.2)

Since the mobile client obtains the calibration offset PEI(t0) at time t1, it is already out-

dated by as much as the offloading latency (t1 − t0). However, this is fresh enough to

accurately calibrate inertial localization. Until receiving another calibration offset, the

client continues to update PEI(t) locally by using PEI(t0) as the offset and ZUPT [100] as the

inertial localization algorithm. The calibration is triggered only when necessary tominimize

offloading overhead.



72

Update Labels from 6DOF IMU-based Localization

Selectively Update Labels from Optical Flow

Newer Images

ZUPT
Event

ZUPT
Event

Skip when blurred
or little movement

Figure 5.4: Correcting the results of local inertial tracking with those of selective local
visual tracking (optical flow).

After getting its 6DOF location information PEI(t), the mobile client projects 3D-points

of nearby objects, pL
E in the local database, onto the screen. To this end, the client extracts

REI(t) and TEI(t) from PEI(t) and computes Eq. (3) [104].[
sL

imu(t)
1

]
� K3×3[REI(t)|T

E
I(t)]

[
pL
E
1

]
(5.3)

Here K3×3 is a hardware-dependent intrinsic matrix obtained out-of-band, which converts

2D location on the screen to the 2D pixel location on the screen. The result is sL
imu(t), a

2 × 1 vector that represents IMU-based estimation of 2D pixel location on the screen, for

label L at time t. Note that sL
imu(t) is generated only with local computation.

5.4.3 Selective Local Visual Tracking
After receiving a new image from the camera, the client first checks if it is sharp enough

for accurate optical flow using Sobel edge detection [105], which only takes around 4 ms

to compute. If the sum of detected edge intensities is above a threshold (500, 000 for a

640 × 360 image in our settings), it does not consider the image for optical flow. If the

new image is sharp enough, the client computes optical flow only when the new image is

significantly different from the previous image, as depicted in Figure 5.4. Our idea is that

optical flow between two very similar images consumes nontrivial energy (as shown in

Section 5.2.3) without contributing to accuracy improvement, which should be avoided.

How can we measure difference between two images? the pixel-wise image com-

parison adopted by previous work on car-mounted cameras [97] does not work well for
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smartphones, because inconsistent hand movements can cause different levels of blurri-

ness (even among the sharp images). Instead, we indirectly use the location difference

provided by the IMU (both rotation and translation). We compare the two IMU data

points, each of which is sampled when each of the two images is taken. If the rotation or

translation accumulated since the previous optical flow computation is sufficiently large

(more than 5
◦
or 1 cm in our settings), the client triggers a new optical flow computation.

This results in sL
o f (t), which is optical flow-based estimation of 2D pixel location on the

screen, for label L at time t.

5.4.4 Smoothing Annotation Movement
Now the mobile client has two sets of 2D points (pixel location) for each object on the

screen, sL
imu(t) from inertial localization and sL

o f (t
′) from optical flow. t is the current

time and t′ (< t) is the last time when optical flow was computed. Again, optical flow

computation is not always triggered for energy savings and takes longer than inertial data

computation. sL
o f (t

′) is good enough to be used at time t when the client does not move

significantly between time t′ and t.
To compensate for the cumulative errors of sL

imu(t) caused by translation and to achieve

smooth movement of annotations on the screen, MARVEL combines sL
imu(t) and sL

o f (t
′) to

compute sL
f inal(t), the final 2D pixel location of label L at time t which determines where

to place annotation AL on the screen. sL
f inal(t) is given by

sL
f inal(t) �

cimusL
imu(t) + co f sL

o f (t
′)

cimu + co f
(5.4)

where cimu , and co f are the confidence level for sL
imu(t) and sL

o f (t
′) respectively.

Given that inertial localization’s error mainly comes from translation (double integra-

tion of linear acceleration) [100], we decrease cimu as translation between time t0 (when

the last calibration was triggered) and t increases. On the other hand, we define co f as the

quality of the last optical flow performed. We measure the quality as Glimpse [97] does:

using standard deviation of feature differences around all labels between the two images.

Lastly, the client decides where to put each annotation AL using Equation 5.4 and overlays

the annotation view on the original view.

The whole process until generating the annotation view is performed completely locally.
The mobile client does not wait for any response from the cloud since it has all the

necessary information for processing (i.e., the local database and the 6DOF calibration

offset), avoiding >250 ms of latency. The latency of MARVEL comes from local inertial

data processing and selective optical flow computation.
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Figure 5.5: Correlation between feature number and sum of edge intensity. We use
SURF as features andSobel edge detection, both using the defaultOpenCVparameters.
The experiment is conducted with 207 640 × 360 images.

5.4.5 Selective Image Offloading
When the mobile client detects an inconsistency while performing the above local compu-

tation, it triggers calibration on the cloud server. The mobile client detects inconsistency

in two ways: (1) when both of two confidence values, cimu and co f , are zero, or (2) when

dist(sL
imu(t), s

L
o f (t

′)) > φ (i.e., 2D points generated by inertial localization and optical flow

are significantly different), where φ is called calibration threshold. As φ decreases, accu-

racy increases but offloading overhead also increases. This trade-off will be investigated

in Section 5.6.2.

If the client decides to trigger a calibration, it offloads images to the cloud. In doing

so, it offloads only several of the recently taken images to reduce communication overhead.

The impact of the number of offloading images N will be investigated in Section 5.6.3. To

avoid losing image localization accuracy while offloading only a few images, the client

needs to extract each image’s features and measure the feature uniqueness [79]. However,

this process requires very heavy image computation on the client, making computation

overhead exceed even the offloading overhead [57], especially when we want to use a

robust feature, such as SURF [40].

To avoid this, in MARVEL, the client does not consider feature uniqueness but image

sharpness and the number of features when selecting the best query images. Offloading

a clear image can help the cloud to extract meaningful features from it. Another intuition

is that an image with more features is likely to have more unique features at the same

time (which is not always true but good enough as a rule of thumb). The client infers

image sharpness (or blurriness) from both gyroscope readings and edge detection, because
blurry images mostly come from rotations [82], and sharp images tend to show more

edges. In addition, images with more edges should have more features, because features
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are essentially descriptors of high-contract areas, most of which are on edges. To verify

this, we test 207 images captured in a campus building. Figure 5.5 shows that sum of edge

pixels (given by edge detection) and the number of features of the 207 images are highly

correlated.

To select the best images for calibration, the mobile client ranks the images in its cache

based on the sum of edge pixels and the gyroscope reading at the time of the image

capture, resulting redge
i and r g yro

i for image i, respectively (smaller rank is better). Then it

ranks the images by (redge
i + r g yro

i ) and offloads the top N images to the cloud. Overall, this

image selection process is much faster and more energy-efficient than computing feature

uniqueness directly.

5.4.6 Calibration
Upon receiving the N images, the server performs image localization for all of them, and

returns N results to the client: 6DOF location PMI (ti) for i ∈ {1, 2, . . . ,N}, where ti is the

time when image i was captured. Then, the client tries to select the most accurate PMI (ti)
among the N results and uses it for the calibration offset. Although PMI (t1) (the result

from the best ranked offloading image) mostly gives the best calibration offset, other N −1

results still need to be considered since sometimes PMI (t1) can be an outlier2.

To compare the N results together, the client shifts time ti of each PMI (ti) to time t1. We

define PMI (t1 |ti) to be the estimation of PMI (t1) derived from PMI (ti), which can be obtained

by using inertial localization results:

PMI (t1 |ti) � PMI (ti)PEI(ti)
−1PEI(t1) (5.5)

If both the image localization and inertial localization are ideal, PMI (t1 |ti) is the same for all

i in ∈ {1, 2, . . . ,N}. But in practice, both localization methods have errors, which causes

difference among them.

When selecting the best result, our intuition is that if PMI (t1 |ti) is similar to the N − 1

others, PMI (ti)may be secure to use for the calibration offset (i.e., it has little chance to be an

outlier). To measure the similarity, the client gets RMI (t1 |ti) and TMI (t1 |ti) from PMI (t1 |ti)
2
Note that we do not directly consider feature uniqueness when ranking offloading images.
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and obtains the translation difference D(i) and the rotation difference A(i), respectively as

D(i) �
N∑

j�1

j,i

dist(TMI (t1 |ti),TMI (t1 |t j)) (5.6)

A(i) �
N∑

j�1

j,i

an gle(RMI (t1 |ti),RMI (t1 |t j)). (5.7)

The client ranksPMI (ti)with D(i) and A(i), resulting in r trans
i and rrot

i , respectively. Finally,

it selects the best result PMI (tc) where c � arg mini(r trans
i + rrot

i ), and converts it to the

calibration offset PEI(tc).

5.5 System Implementation
Most smartphone operating systems today (e.g., Android) already perform data fusion

and provide virtual sensors. We implementedMARVEL inAndroid, and use the provided

rotation vector sensor for absolute rotation in the earth frame and the linear acceleration

sensor for acceleration without gravity. Our app reads them as fast as possible, at a rate

of 200 samples per second, on a Lenovo Phab 2 Pro. We use OpenCV manager (with

OpenCV 3.2.0), an Android application that provides system-wide service to perform

OpenCV computation for all applications. The optical flow computations use the Lucas-

Kanade algorithm [106] provided by OpenCV. With the Lenovo Phab 2 Pro, all images

we process are at resolution 640 × 360. To ensure fastest image processing, we get raw

pixels from the camera hardware (e.g., without JPEG compression), and compress only

the images we decide to offload using OpenCV. Even though the Lenovo Phab 2 pro offers

a depth camera, we do not use it in MARVEL.

On the server side, we build on top of SnapLink [53], an open source image localization

system designed for appliance control. It provides a GRPC API, and our Android client

uses GRPC 1.3.0 to communicate with it. The server is implemented in C++ and uses

OpenCV 3.3.0-rc and PCL 1.8.0.

5.6 Evaluation
In this section, we conduct several micro-benchmarks to demonstrate the effectiveness of

optimizations proposed earlier, as well as the end-to-end performance of MARVEL.
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Figure 5.6: Evaluation tool to browse images, display identified labels, and manually
label ground truth locations, assisted by optical flow.

5.6.1 Experimental Setup and Metrics
To ensure a accurate label placement at any point of time, our system must achieve both

high accuracy and low latency. Instead of evaluating accuracy and latency separately,

we examine the end-to-end label placement error from the client side. To do that, we

video capture the phone screen while operating MARVEL and analyze the video using

an analytic tool we built, as shown in Figure 5.6. We make MARVEL encode relevant

information (e.g., label location, offloading event, and ZUPT event) into a QR code that is

displayed on the left bottom corner. The tool reads all frames from the video, and shows

a slide bar to allow a user to browse any image. For every image, it decodes the QR code

to get the MARVEL recognized label locations and displays them on the screen, such as

the white circle in Figure 5.6. To get the ground truth, a user must manually click on

the correct label location on an image, which will trigger an optical flow tracking for all

images afterwards. Since optical flow can fail with blurred images and large movements,

the user must browse all images and manually click all incorrectly tracked ground truth
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Figure 5.7: We record a 240 FPS video to measure the time for a basic camera app to
reflect an LED change.

location, which will trigger another optical flow tracking starting from that frame. The

user performs this labeling procedure until the ground truth locations in all frames are

labeled correctly.

Wedeploy the server in the same local network on aUbuntumachinewith an Intel Xeon

E5-2670 CPU and 256 GB of memory. It runs inside a Docker container (Docker version

17.09.0-ce). The server is lightly loaded most of the time. The smartphone communicates

with the server using GRPC. When deploying the server, we collected a 3D model in a

lounge in a campus building. Without loss of generality, we label one object (a speaker)

in the lounge for our micro-benchmarks.

All images we use in this evaluation have the resolution 360 × 640. Our goal on

accuracy is to minimize the distance (in pixel) of displayed label center and manually

labelled ground truth. Note that low-resolution images are sufficient for accurate image

localization [53], and MARVEL still displays identified labels on high-resolution camera

feed (e.g., 1080 × 1920 on Lenovo Phab 2 Pro).
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Figure 5.8: Number of calibrations happened during a 20-second linear movement, and
label placement errors with different calibration threshold φ. We select φ � 25 for few
calibrations and low errors.

5.6.2 Calibration Threshold φ
Since offloading adds themost power overhead to the system,we studyhow the calibration

threshold φ (in pixel) in Section 5.4.5 impacts the calibration performance. We perform

the same linear movement with 5 different φ values during 5 runs, each takes about 20

seconds. Since image localization may return results with different accuracy between

different runs, we use an AprilTag [89] in this experiment as the target object to minimize

image localization errors.

Figure 5.8 shows the number of calibration happened and the errors in pixel during

each run with different φ value. As expected, with a lower φ value, MARVEL client

becomesmore sensitive to the difference between optical flow and inertial tracking results.

Therefore, as the φ value increases, less calibrations are triggered, and larger errors are

observed. Based on our experiment, we choose 25 pixels to be the default calibration

threshold in MARVEL. Note that users can easily change this value based on personal

preferences on latency and accuracy.

5.6.3 Number of Images for Localization
As discussed in Section 5.4.5, we offload N selected images for calibration to ensure

that the image localization is accurate by cross-validating localization results. There is

a trade-off between accuracy and latency when deciding N . As N increases, accuracy
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Figure 5.9: Error and offloading time according to the number of offloading images, N .
Transmitting 3 images yields good accuracy as well as reasonable offloading time.

may increase but uploading time (communication overhead) and cloud processing time

may also increase. To find the optimal number of images to offload, we conduct a micro-

benchmark by uploading the top 7 images among the recent 20 images, and obtain all the

returned 7 image locations. To get the performance of offloading N (N ≤ 7) images, we

use the returned locations of only the top N images to compute the label location and

encode it into the QR code. So the QR code contains 7 label locations at every moment.

Figure 5.9a shows the bar plot of the average errors of 109 samples with different N .

As expected, transmitting 1 or 2 images yields larger errors than offloading more than 3

images. This happens because the 1 or 2 images can contain insufficient unique features,

and more images give higher possibility of an easy-to-localize image. Note that when

selectingoffloading images,MARVELdoesnotdirectly extract featureuniqueness butuses

indirect methods (i.e., gyroscope and edge detection) to avoid heavy image computation.

In our experiment, offloading 3 images is good enough for accurate calibration even with

these indirect methods.

Figure 5.9b shows the offloading time according to N . It shows that transmitting

more images incurs higher offloading time, which can be problematic not only because

it causes more energy consumption for communication but also because the returned

calibration result can be too stale with accumulated IMU errors. Empirically, we observe

acceptable IMU errors within 500 ms. Given that offloading time is just below 500 ms

when transmitting 3 images, we set N � 3 as an optimal value in our environments. This

verifies why MAR’s latency should be decoupled from offloading latency. Note that this
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Pixel (ms) Phab 2 Pro (ms)

Operation Wi-Fi Wi-Fi Cellular

B
a
s
e
l
i
n
e Camera→ App 67.3 71.0

App→ Cloud→ App 177.7 287.8 4299.5

App→ Screen 36.9 70.7

Total 281.9 429.5 4441.2

M
A
R
V
E
L IMU→ App 8.7 12.6

IMU Computation 0.3 0.4

App→ Screen 36.9 70.7

Total 45.9 83.7

Table 5.3: Average latency in millisecond at different steps in the baseline system and
MARVEL. MARVEL has lower latency because it performs identification using only
local information, including the calibration offset PEI(t).

500 ms latency does not affect our system latency.

5.6.4 End-to-End Latency
One of our primary design goal is to minimize the end-to-end localization latency, mea-

sured from the timeof the sensor sampling (i.e., IMUor camera) to the timewhen identified

labels are displayed on the smartphone screen. However, previous work [57, 97] over-

looked the time spent on moving data between hardware buffer and user space memory,

which can be categorized into two parts: (1) moving sampled data (e.g., IMU data or

image) from sensor buffer to user space memory, and (2) moving images from user space

memory to screen. To measure the time of (1) (denoted as tIMU→App and tCamera→App), we

simply compute

tsensor→App � tapp_callback − tsensor_event (5.8)

where ‘sensor’ can be either ‘IMU’ or ‘Camera’. tsensor_event is the timestamp of sampling

recorded in the hardware driver in Android, and tapp_callback is acquired at the invocation

of sensor data callback function. To measure the time of (2) (denoted as tApp→Screen), we

measure tCamera→App + tApp→ together using a basic camera application3, which contin-

uously reads images from the camera to memory and sends them to screen. As shown

in Figure 5.7, we use a GoPro Hero 3+ high frequency camera to record at 240 FPS, and

manually count the number of frames it takes for the smartphone screen to reflect an LED

change. On average, the results count 25 frames delay for Google Pixel and 34 frames de-

lay for Lenovo Phab 2 Pro, which translates to 104.2 milliseconds and 141.7 milliseconds,

respectively. We then subtract tCamera→App from the total time to get tApp→Screen. It is

3https://github.com/googlesamples/android-Camera2Basic
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impossible to accurately measure the time to updating an UI component (e.g., drawing a

box) from user space memory to screen, we assume its time is not longer than (2) because

image data is usually larger.

Table 5.3 shows the end-to-end latencyof abaselineMARandMARVELrunningon two

different smartphones. The baseline MAR simply offloads image once at a time to a local

server continuously for image localization and label identification. We measure the time

it takes from serializing an image localization request to the return of identified labels,

denoted as tApp→Cloud→App. In MARVEL, because IMU-based tracking only depends

on the latest calibration offset PEI(t) stored locally, the only additional latency besides

data moving is integration of sensor readings, which takes less than 0.4 ms on both

smartphones.

Overall, the baseline system has 281.9 ms, and 429.5 ms end-to-end latency on each

smartphone withWi-Fi, whereas MARVEL introduces 45.9 ms and 83.7 ms latency, which

are lower than our 100 ms latency goal. Note that this latency is even shorter than the

basic camera app, which makes the camera app’s latency (which we cannot control) will

be the overall latency of MARVEL.

5.6.5 Label Placement Accuracy
Micro-benchmark

MARVEL is designed for high label recognition accuracy. We conduct three micro-

benchmarks to show its effectiveness with three different operations of the smartphone:

(1) holding still, (2) rotating only at a natural speed, and (3) moving around (e.g., translate)

at a natural speed. Figure 5.10a-5.10c shows the pixel errors over a 60 second period of

the experiment for the three different operations. For comparison, we plot the errors for

three types of results, ‘IMU’ (sL
imu(t)), ‘Optical Flow’ (sL

o f (t)), and ‘Corrected’ (sL
f inal(t)). To

clearly visualize the effectiveness of our label placement correction using IMU and optical

flow, we use calibration threshold φ � 100 for less image offloading.

There is no ZUPT or image offloading event in Figures 5.10a and 5.10b. This verifies

that the IMU’s rotation data (from fusing gyroscope and gravity) can be accurate for a long

time. Furthermore, Figure 5.10b shows that ‘Optical Flow’ generates larger errors than

‘IMU’. Since optical flow fails with fast image changes or blurred images, the accuracy of

‘Optical Flow’ is degraded when the mobile device rotates quickly. Note that rotating a

mobile device changes images on the screen faster than linearly moving it. As expected,

‘Corrected’ generates a better performance than ‘Optical Flow’ when rotating, because

it combines IMU and optical flow results by using their own confidence values, inertial

tracking compensates optical flow’s errors with a higher confidence value.

Figure 5.10c shows that whenmoving the mobile device with translation, the situation

becomes different. Now ‘IMU’ accumulates errors while ‘Optical Flow’ works better than

Figure 5.10b. Because of cumulative errors of accelerometer, ‘IMU’ errors increases fast

when moving, but are eventually corrected by either image offloading (1st and 4th spikes
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Figure 5.10: (a)-(c) shows label placement error (pixel) while conducting different ac-
tions, and (d) shows error comparison between a baseline system and MARVEL.

of IMU errors) or ZUPT (other spikes of IMU errors). We can see these local ZUPT events

often occur before MARVEL detects visual-inertial inconsistency and avoid unnecessary

offloading event. Compared to previous MAR systems relying on the cloud offloading

for every object recognition [57, 95, 97, 107], MARVEL’s selective offloading can reduce

communication overhead significantly. When ‘IMU’ accumulates errors, ‘Corrected’ still

maintains good accuracy by combining optical flow-based results with higher confidence

values. There are also some points where ‘IMU’ is better than ‘Optical Flow’, where

‘Corrected’ is not affected by optical flow’s errors. Overall, these results verify that our

idea of using inertial and visual tracking together for annotation placement is valid in

various movement scenarios.

End-to-End Accuracy

We also conduct experiments to compare the final accuracy between the baseline system

and MARVEL for 2 objects (i.e., a speaker and a fan) in 2 different rooms, as shown

in Figure 5.10d with mean and standard deviation. In these experiments, we perform

the same natural motions for both systems, which include static periods, rotations, and

translations. The baseline system continuously offloads one image to a local server and

displays recognized label when server returns (without local optical flow). Note that the
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Figure 5.11: MARVEL incurs less optical flow and offloading than baseline (i.e., con-
tinuously optical flow and offloading), but also uses energy on IMU.

network overhead can be higher if the server is not deployed locally, which in turn can

cause higher errors for the baseline system because of the delay. We use our default

calibration threshold φ � 25 for MARVEL.

Figure 5.10d shows that, even though MARVEL incurs less image localization, it pro-

vides higher accuracy than the baseline system due to the help of fast IMU processing and

selective optical flow. This confirms that local computing is necessary to achieve accurate

results in time-sensitive MAR applications.

5.6.6 Power Consumption
We measure MARVEL’s power usage while performing different actions. Same as in

Section 5.2.3, we use Trepn Profiler to measure the system-wide power consumption on

a Lenovo Phab 2 Pro Android phone. To ensure a consistent displaying power con-

sumption [108], we set the screen brightness to the same value, and conduct all energy

measurements in the same room with all lights turned on.

We perform the following five actions: (1) idle (only system background tasks without

MARVEL, for comparison), (2) baseline (continuously performing optical flow and image

offloading, which is what previous work do), (3) static (pointing the smartphone to the

object without moving, i.e., only inertial tracking), (4) rotation at a natural speed (inertial

tracking,with occasional optical flowand imageoffloading), and (5)moving (i.e., translate)

at a natural speed (inertial tracking, with occasional optical flow and image offloading).

Each action is performed for around 90 seconds.

Figure 5.11 shows the average power usage of these actions. As expected, both baseline

and MARVEL add significantly more power to the system. Even thought MARVEL uses

IMU, it consumes around 0.2 Watt less of power than the baseline. Moreover, because of

our selective optical flow and image offloading mechanism, rotation and translation do
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not introduce more power consumption than static. Since the phone has a 3.8V 2440 mAh

battery, MARVEL can run approximately 0.58 hour longer than the baseline system if both

run continuously4. In comparison, when operating with Wi-Fi connection, Overlay [57]

consumes 4.5 Watt, and Glimpse [97] consumes 2.1 Watt.

5.7 Related Work
As a holistic MAR system, MARVEL builds on, but is clearly differentiated from a large

body of prior work including computer vision, cloud offloading, and indoor localization.

Computer Vision:

Computer vision technology is a key enabler to identify an object on the screen. There

are three common methods of object identification: image retrieval, CNN, and image

localization. To the best of our knowledge, prior MAR work exploits image retrieval (e.g.,

Overlay [57], VisualPrint [79], and CloudAR [95]) or CNN (e.g., Glimpse [97]). However,

as discussed in [53], image retrieval andCNNs involve amuch higher overhead than image

localization, which requires a database for accurate instance identification. Furthermore,

when these two approaches are applied to MAR, both database and computation are

offloaded to the cloud due to the limited capability of mobile devices, making an MAR

system unable to identify objects without using the cloud, generating long identification

latency.

In contrast, since image localization identifies an object through its location, it can be

easily combined with other localization methods constructively. MARVEL takes this ad-

vantage and combines IMU-based localization, which can be quickly perofrmed locally,
with more expensive image localization. This design choice enables the object identifica-

tion procedure to be much less dependent on the cloud.

Cloud Offloading:

While cloud offloading has been common in the MAR regime due to the limited capabil-

ities of mobile devices [109], it induces significant latency and energy consumption for

communication [110, 111]. A number of studies have tried to use local computing to alle-

viate the problem. Overlay [57] obtains the mobile device’s location from its sensor data,

using it for offloading fewer images and reducing the visual search space on the cloud.

VisualPrint [79] locally processes an image to extract its most distinct visual features and

offloads these features instead of the complete image, which shifts offloading overhead

to local image computation overhead. Glimpse [97] and CloudAR [95] rely on the cloud

to identify an object but locally keep track of the identified object’s location on the screen

by using optical flow, enabling the object’s annotation to move accordingly in real time,

4
because

(2.44 Amp hour)∗(3.8 Volt)
1.8 Watt

− (2.44 Amp hour)∗(3.8 Volt)
2.03 Watt

≈ 0.58 Hour
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regardless of offloading latency. However, they still suffer from long latency (dependent

on offloading) for identifying a new object on the screen. The prior work has something

in common: the cloud takes the main role to identify objects and local computing performs

auxiliary work to help the cloud; these systems cannot identify an object without using the

cloud.

More generic cloud offloading work tries to find a sweet spot between offloading over-

head and local computation overhead by opportunistic offloading according to network

condition; offloading when network conditions are favorable enough to make it more

efficient than local computing [112, 113]. These adaptive techniques cannot be applied

to the above MAR work (image retrieval- or CNN-based identification) where using the

cloud is not an option but a requirement for each object identification.

In contrast to the prior work, MARVEL lets local computing assume the main role

for object identification (intertial localization) while the cloud assists it (sporadic calibra-

tion based on image localization). This approach decouples identification latency from

offloading latency and significantly reduces offloading overhead.

Indoor Localization:

Indoor localization is a very well-researched topic. Along with various other techniques

we discussed in Chapter 2, using IMUs on smartphones has also been investigated [48,

100, 114, 115]. While rotation is quite accurate by fusing gyroscope and gravity, a linear

accelerometer is still error-prone due to cumulative errors [100], which makes inertial

sensor-based localization valid only for a short period of time [48]. Various methods have

been explored to calibrate the IMU errors, such as Wi-Fi signal strength [114] and light

sensors [115]. Nevertheless, none of them achieve sufficient accuracy to support MAR.

In contrast, MARVEL’s image-based calibration significantly improves the accuracy of

inertial localization.

On the other hand, the robotics community has shown that visual-inertial SLAM can

achieve accurate and real-time indoor navigation locally on relatively powerful comput-

ers [107, 116, 117]. State-of-the-art visual-inertial SLAM uses both visual and inertial

localization and fuses them together using the Extended Kalman Filter [118]. However,

these techniques are too heavyweight to operate on ordinary mobile devices due to their

limited storage and computation capabilities. More light-weighted software, such as

Google ARCore [93] and Apple ARKit [94], can perform VSLAM on the latest smart-

phones using RGB cameras and IMU sensors, but are still limited by storage and consume

considerable energy due to continuous image processing. SnapLink [53] offloads image

localization computations to the cloud, which reduces local computation and storage de-

mands but increases communication overhead by completely relying on the cloud (latency

and energy consumption).

In contrast, MARVEL mainly uses local inertial information for localization and of-

floads images only when calibration is necessary. This reduces both computation and

communication, improving latency and energy consumption.
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5.8 Summary
In this chapter, we presented MARVEL, an MAR system for real-time annotation service,

which is designed to run on regular mobile devices while achieving low latency and low

energy consumption. Unlike previous MAR systems which suffer from high offloading

latency and large energy consumption for image offloading and local image computation,

MARVEL mainly uses local inertial data processing which is much faster (from 250 ms

to <100 ms) and consumes less energy. While fast placing annotations continuously with

local inertial tracking, MARVEL compensates its errors by using optical flow and image

offloading. However, in doing so, MARVEL does its best to avoid any redundant image

computation and image offloading. In MARVEL, a mobile device maximizes offloading

interval, selects only a fewquery imageswhenoffloading, avoids image computationwhen

selecting these query images, and minimizes optical flow computations. Experimental

results show that theMARVEL system design enables to achieve low energy consumption

without sacrificing accuracy.
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Chapter 6

Conclusion

In this chapter, we draw lessons learned in this series of work, discuss other applications

that can potentially benefit from our results and lessons, and talk about several directions

of future work.

6.1 Lessons Learned
During the exploration of the solution to achieve accurate, intuitive, and fast appliance

identification,we summarize several lessons learned,whichwehope canhelp other people

tackling the same set of problems.

Image localization is not perfect. Even though image localization has improved signifi-

cantly with the advances in computer vision and robotics in recent years, its accuracy still

depends on many factors, such as the quality of camera calibration, feature selection, and

feature uniqueness in the environment [79]. The 3D model constructed in advance must

cover features extracted from different viewing angles. Errors caused by those factors are

not always easy to eliminate. Therefore it would be helpful to be able to detect those errors

and react on them.

Data fusion is helpful. As we discussed in this dissertation, data fusion is used exten-

sively in indoor localization. For our application, it will be helpful if more sensors and

context information can be used together. For example, security cameras installed in a

building can be used to detect or confirm user’s location and orientation.

More powerful smartphones are on the market now. For example, many smartphones

are equipped with a separate GPU, which can be used to perform simple computer vision

algorithms in an energy efficient way. In fact, companies have been working on using

them [93, 94]. We can definitely look into how local computer vision computation can

help us rule out more image offloading.
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User experience is important. Accurate, fast, and continuous image localization is cru-

cial to our appliance identification application. However, when localization fails, a good

design is also important to provide a smooth user experience. We can indicate that our

localization failed and direct the user to point her camera to another location, which po-

tentially has more unique visual features, before proceeding. Moreover, given a better

understanding of the localization failure, a natural user experience can help us correct

errors. For example, if a user’s camera is too close to an appliance, we can ask her to move

a bit further away to provide more visual context information.

6.2 Broader Impacts
In addition to appliance identification, we can imagine our work to inspire many other

applications. Examples are included but not limited to the following applications.

Location-based Authorization. We demonstrated the robustness and ease of use of im-

age localization inside buildings. This inspires us to build a location-based authorization

service by asking a user to capture and upload an arbitrary video of her current room.

The video can be localized by our system to validate the location, and the randomness of

the video can be utilized to avoid replay attacks. This is useful in scenarios where only

occupants in a room are allowed to control appliances in that room.

Indoor Navigation. We can use continuous image localization to localize people and

display navigation guidance. For example, we can build an app in a museum that shows

information about nearby art and navigate people to certain locations.

BuildingChronology. InspiredbySceneChronology [119],we can collectedusers’ query

images over time and construct a visual chronology of a building model. This not only

visualizes the history of building change, but also can potentially help find lost items.

6.3 Future Work
With SnapLink and MARVEL developed, we can still envision more work to be done for

better reliability and performance.

Integrate with category recognition. Although we have shown that image localization

is robust to daily changes in the environment for months after the initial 3D model is

created, image localization may fail to provide robust instance recognition when appli-

ances themselves are moved, or enough of the environment is changed. We plan to add

category recognition to validate localization results and detect environmental changes.
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For example, if an appliance is removed, category recognition can detect that and issue an

alert for label updates.

Crowd-source data. A3Dmodel can also be built from crowdsourced images and videos

from building occupants. We plan to add this feature to reduce deployment overhead

for building manager. Moreover, crowdsourced data can be used to detect changes and

update 3D models over time.

Improve the labeling process. Besides data collection, labeling is the only aspect of

SnapLink that requires human intervention. Tominimize human effort, we have a labeling

tool that enables one simple click-and-type interaction to label each appliance. We plan

to push this further with more intuitive and automatic mechanisms. For example, we can

allow users to point their smartphone camera at an appliance and label it by speaking its

ID aloud. We can also use category recognition to provide an initial guess for appliance

IDs.

Extract more from images. Apart from SURF, many other features can be utilized to

help identify instances, including SIFT [39] and BRISK [120]. other information can be

also extracted from the image. For example, Optical Character Recognition (OCR) [121],

which recognizes text from images, can be used for places where text is present, such as

room number plates.

Use visual markers. Our experiments show that image localization accuracy can be

low when the viewing distance is small because these kinds of images cannot capture

sufficient unique visual features. We have shown how QR codes can be used to mitigate

this problem, although with some deployment overhead. We plan to integrate SnapLink

with various visual markers, such as QR codes and AprilTags [89], and therefore improve

its accuracy on appliances that are usually controlled within arm’s range.

Handlemovedobjects. Localization-based instance recognitionhas a strong assumption

that objects do not move. We recognize that is a limitation, but argue that many objects in

our usage scenario are not usually moved. For example, exhibited items in a museum do

not change often. Big appliances in a building, such as projectors andprinters, do notmove

frequently either. Even if they are moved, obtaining an updated 3D model of a room only

involves capturing a short video as well as clicking and typing several annotations [53].

Integrating MARVEL with neural network-based systems, such as Glimpse [97], can also

help recognizing mobile objects.
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6.4 Final Remarks
With the explosive number of smart appliances, our work made a step forward towards

better interactions with them. Many existing technologies, such as image localization and

indoor localization, are utilized in our systems. However, recognizing the advantages and

disadvantages of each technology in our context, and learning the best ways to integrate

them together for our purpose, has imposed many challenges along the way. We hope

and believe our work and lessons can be a stepping stone for all future explorations in this

area.
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