Criterio de la primera derivada

Se llama primera derivada al método o teorema utilizado frecuentemente en el cálculo matemático para determinar los mínimos y máximos relativos que pueden existir en una función mediante el uso de la primera derivada o derivada principal, donde se observa el cambio de signo, en un intervalo abierto señalado que contiene al punto crítico .

Teorema valor máximo y mínimo

editar

"Sea   un punto crítico de una función   que es continua en un intervalo abierto   que contiene a  . Si   es derivable en el intervalo, excepto posiblemente en  , entonces   puede clasificarse como sigue." [1][2]

  1. Si   en algún intervalo a la izquierda de   y   en algún intervalo a la derecha de   entonces   tiene un máximo relativo en  .
  2. Si   en algún intervalo a la izquierda de   y   en algún intervalo a la derecha de   entonces   tiene un mínimo relativo en  .
  3. Si   en ambos lados de   o   en ambos lados de c entonces   no es ni un mínimo ni un máximo relativo.

Véase también

editar

Referencias

editar
  1. Llopis, José L. «Demostración del criterio de la primera derivada». ISSN 2659-8442. Consultado el 2 de agosto de 2019. 
  2. Chiang, Alpha C. (1984). McGraw-Hill, ed. Fundamental Methods of Mathematical Economics. p. 231–267. ISBN 0-07-010813-7. 

Enlaces externos

editar