THE UNIVERSITY
of EDINBURGH

This thesis has been submitted in fulfiiment of the requirements for a postgraduate degree
(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use:

* This work is protected by copyright and other intellectual property rights, which are
retained by the thesis author, unless otherwise stated.

* A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.

* This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author.

* The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author.

* When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given.

Ph.

-

by

Danny Kopec

University of Edinburgh

Ng}
g

f\\v

Abstract

Four ex1sting Knowledge-representations for tThe computation
of similar functions 1n a chess endgame were 1mplemented on thne
same computer 1n the same language. They are compared wlTh

respect to eificlency regarding time-space reguirements.

Three of these programs were then paraphrased 1nto Englisn
and all four were studied for their feasibility as 'open book'
advice texts for the human beginner in chess. A formally verifiea
set of rules was also tested for its suitability as an advice
text. The possible effectiveness of these advice texts 1in

'closed pbook' form 1s considered.

The above experiments comprise a case study of a phenomenon
known as the "human window". This phenomenon motivated an
analysis of four documented instances of mismatch between human

and machine representations. These are:

I Three Mile Island
11 Air Traffic Control
III NORAD Military Computer System

v The Hoogoven Royal Dutch Steel automation failure

ACKNOWLEDGEMENTS

I am indebted to Proifessor Donald Michie for his persistent
guidance, and encouragement. There are also many peoble without
whose assistance I could not have progressed. Foremost were my
friends and colleagues Alen Shapiro, Timothy Niblett, and Leon
Sterling; Arthur Biagi and the students at Holyrooa H.S., Mr.
McDouagall, Assistant Head Teacher at James Gillespie's H.S. and
his students, Martin Feather, and Michael Clarke at Queen Mary
College. Last but certainly not least of all I thank Jean Duck-
man for painstakingly preparing most of the typescriprt.

I express appreciation to all my colleagues over the vyears
at the Machine Intelligence Research Unit‘and Edinpurgh Universi-
ty for their moral support and help with facilltles. The wofk
reported in Chapter IX was:.made possible by a l3-month grant
from the Commission of the European Communities, Sub-programme

FAST, for which I am most grateful.

Dedicated to my parents, Vladimir and Magdalena Kopec,
who have supported me from the beginning,
and to the memory of Dr. Howard Cohen and those

who weren't as lucky as me.

—

v

—t

1.1 KPK From the (ness Master's Folnt oI View

1.2 History of KPK Programs

i.3 Huperman's Work

INADEQUACY OF THE STANDARD ALGORITHMIC APPROACH TO COMPLEX
PROBLEM~-SOLVING -

Z.1 Introductory Kemarks

2.2 Harris' KPK Program
2.1.1 Verification and Changes
2.1.2 Tests on 1001 Configurations
2.1.3 Tests on Random Sampilies
Z.1.4 Improving Efficiency
2.1.5 Vital Statistics
2.1.06 Conclusions

DESCRIPTION OF THREE NON-ALGORITHMIC APPROACHES TO KFK

3.1 beal's KPK Program

Lo

.2 Bramer's KPK Programs

.1 Goals

Z The Moael

.3 Implementation of the Model for KPK

.4.1 Construction and Organization

Page No. (s)

11

11

13

15

21

21

22
22
24
25
30
33
36

37
37
40
4o
41
43

L7
L7

COMFARING THE FOUR REPRESENTATIONS ON COMPUTATIONAL EFFICIENCY g1

K
-

Tneir Impiementation on the DEC-10
4.2 Spatlal ractors
4.3 Time Factors

EARLY EXPEKRIMENTS

5.1 Oplectives
5.2 Design of the Experiment
5.3 Metnod: The Translation Process
5.3.1 Translation oI Beal's Program
5.3.2 Examples of Beal's Decision Tablie Approach for KPK
5.3.3 Translation of Harris' Program
5.5.4 Transliation of Bramer's Program
5.3.5 Example of Bramer's 19 Egquivalence Approacn for KPK
5.4 The Advice Texts
5.4.1 The Beal Advice Text
5.4.2 Tne Harris-Kopec Advice Text
5.4.3 The Bramer Advice Text
5.4.4 pramer's KPK Program as a Human Window Example.
5.5 Results of Early Experiments

51

53

54

56

56

58

60
60
63
64
65
66

68
69
78
91
100

103

Page No.

5.6 Summary and Conclusions 110
VI THE CLARKE ADVICE TEXT 114
6.1 Objectives 114
6.2 Experimental Deaign 116
6.2.1 Example of position retrieval from the Clarke Database 119
6.3 Results 120
6.4 Concluasiona and Discussion 125
VII THE NIBLETT ADVICE TEXT 133
7.1 Objectives 133
7.2 Design and Procedure of the "Open Book" Experiment 134
7.3 Results of the Open Book Experiment 142
7.4 Design and Procedure of the "Closed Book" Experiment 145
7.5 Resulta of the Closed Book Experiment 18
7.6 Conclusions and Discussion 1
VIII OVERALL SUMMARY OF CONCLUSIONS 151
IX CASE STUDIES FROM REAL, WORLD APPLICATIONS 153
5.1 Three Mile Island 176
9.2 Air Traffic Control 158
9.3 NORAD Military Computer ; 165
9.4 Royal Dutch Steel | 168
9.5 Querview 172
REPERENCES ‘ | 176
Appendix A.1l : Correction of Type O, Type 1, and Type 2 Harris Program errors
A.2 : Correction of Type 3 and Type 0.n Harris Program errors.
Appendix B : The KPK MANUAL
Appendix C : Performance of 8 rated control subjects on a KPK Quiz.
Appendix D : Pre-Test and Post-Test performance by a small sample of

rated human chessplayers.

Appendix E Notes

e

This theslis concerns 1itself with the compar ison ot
Knowledge representations for a specialized sub-domain of chess,
namely the ending King and Pawn versus King (KPK). The side with
the pawn will ©be referred to throughout as White. The game of
chess has not been solved, even with the aid of powerful comput-
ing methods, and may possibly not be feasibly soluble in the
sense of, for example, Knuth (1976). The total problem space of
KPK contains only 98304 legal piece configurations after allowinc
for right-left symmetry, not distinguishing "White-to-move" from
"Black-to-move" ©positions, and not including positions where the
pawn 1s on the eighth rank with White-to-move (Clarke, 1977). It
may seem unclear how study of so small a fragment of so large a

problem can significantly contribute to the computational study

of chess as a whole.

It 1s generally accepted that the endgame 1s the phase or
chess where classes of players are the most clearly separated.
1.e. the hardest and most suptle phase. Therefore this 1s also
the phase where domain-specific knowledge is most significant.
As a miniature illustration of this, how 1is it that masters can
recognize the value and correct move(s) in almost any KPK posi-
Ttion at a glance? Certalnly masters have not studied or memor-
ized ail 98304 legal piece-configurations. Nor is it feasible for

a master in the general case to perform the recognition by ex-

haustive lookahead calculation: in worst case the number of nodes
on the requisite search tree greatly exceeds 1014. Instead there
must be some pattern store or "reference library" which masters
can consult internally when considering any KPK position. While
it 1s true that caliculation as opposed to pattern-—-lookup may oc-
casionally be necessary in KPK even for a master, the novice has
to rely on calculation for almost every decision, and then fre-
guently decides wrongly. It may be concluded that even for so
small a fragment of chess as KPK acquired knowleddge dominates
over calculation as a prereguisite for skilled performance.
Hence it constitutes a suitable domain for the study of machine

representation and acquisition of knowledge.
We shall discuss:

(1) the “computational efficiency" of a representation:
i.e. efficiency with regard to processor-time ana
machine memory. This comparison is made with respect to
a specified machine and computer language (DEC-10
machine, Algol-60 language). What does such a represen-

tation look like for KPK?

(2) the "“cognitive efficiency" of a representation; i.e.
computational efficiency 'with respect to the "brain
machine®. What does a ‘"brain-oriented" representation
look 1like 1in its machine-executable form as a computer

program?

(3) how four existing machine Tepresentations for the compu-~-
tation of similar KPK functions compare with regard to
(1) and (2) above. That is,
i. Do they look much the same? If not, then
ii. What does an efficient machine rTepresentation
satisfying criterion (2) 1look like when con-—

verted into human—-readable form?

Thus by identifying the Tepresentation which is most efficient in
terms of geal (2) we may illustrate how masters can so easily
cope with KPK and have a better understanding of what the neces-

sary and sufficient concepts are.

The sufficient and necessary condition of a complex
problem—domain is that all space-minimal solutions are time-
infeasible and all time—-minimal solutions are space—infeasible.
Informally, the short solutions are too long—running and the fast
solutions are too bulky. Such problem—domains are distinct from
standard problem—domains. The latter may entail large amounts of
calculation or alternatively large memories, but not to an in-
feasible degree. The distin;tion is diagrammatically illustrated

in Figure O.1.

For problems of sufficient complexity we can <talk about a
"human window" (Michie, 1982). - an interval on the memory-—

requitTement axis derived from a8 plot of execution time versus

memory space. Solution programs for complex problem domains which

lie within the bounds of the human window combine two properties.

neither of which is normally taken as paramount in standard (as
copposed to complex) information processing. One condition for a

human—-window program 1is that it be humanly intelligible as pro-—

gram text. This entails among other things that it must not be
too long relative to the limitations of human memory, —-- desir-
able for effective de—bugging of the program, for its transmis-—
sion to others, and +for trouble-shooting aberrant run—-time
behaviour (e.g. for example during suspected malfunction of an
automation system). The other condition which a human—window
program for complex domains must meet is that it be humanly exe—
cutable, €. 0. for checking purposes. This condition means that
it should not be too calculation—intensive relative to limite-
tions of human calculation capacity. This condition again has &
relevance to debugging. Human—factors research has shown that
the experienced programmer executes suspect modules "in the head"
as an important means of <fault 1location. At Tun—-time under
operational conditions sucg mental checks also have relevance
during suspected malfunction. Examples of complex problem—solving
where programs exhibit neither of the above properties can readi-

ly be found in, for example., computational meteorology and other

problems requiring calculation~intensive mathematical modellihg~
But in certain application areas., particularly in control en-
gineering, the above-—stated considerations make it desirable that
program text should wherever possible be both humanly comprehen-

sible and humanly executable.

1 |
]
Evaluation- ;I |
time (sec.) .: |
]
!
15 TI The curves join all (space x time) - optimal
10| N ! solutions of fc or fs as the case may be.
]
o
!
o
0] ! ;
10 | ! '
|
!
I |
S 'I !
10 L A
t
"
|
'!
ll l A fs
| 10 20
1 .
,i 10 10 Memory-space (bits)
]
;I '
!
1
AS C
Figure 0.1

Store-time trade-off curves for two hypothetical finite functions, f£_ and £,
The maximum acceptable worst-case waiting time has somewhat arbitrariy been placed
at 105 secs.

A complex problem, symbolised above by f., requires a far greater increment
of store to convert a sub-feasible solution-program into one which is sufficiently
fast-running to be feasible. The minimal required store increment for £, in the
diagram aRove is ¢ - A, corresponding to 6 orders of magnitude, i.e. from approxi-
mately 10 bits store-occupancy for an ideally compact program to 1010 bits (approx-
imately a thousand megabytes) in our hypothetical example.

A standard problem, symbolised above by f., either is feasibly soluble by an
ideally compact program or requires only a modest use of additional store to achieve
the needed speed-up. The diagram shows a somewhat boﬁderline case. fs has a store-
increase requirement (B - A) of ten -fold (from 10 —IOSbits), possibly equal to,
or more than, the maximum to which a professional programmer is willing to resort.
Any lesser requirement would certainly characterise a "standard" problem.

-5~

Some of the known physical limitations on the brain viewed
strictly as an information processing device are shown in Table
0., taken from Michie (1977). A given machine-feasible represen-
tation for a non-trivial problem (let us say that the representa-
tion maps all KPK positions to their game-theoretic values) may
lie outside the human window 1in either of two directions: it

may be too "intensional' or too “extensional".

By too lintensional we mean a compressed representation whose
complete human computation in an acceptable time (say 105 secs.)
would be infeasible (remember that the calculational speed of a
human 1s limited to about 20 binary discriminations per second

(see Table 0)). The intensional solution will have few concepts

(patterns) and these will have a large "grain size".

. By too extensional we mean a representation which lies at
the other end (the scale runs from compact representations with
large grain size to bulky assemblages of very many small pat-
terns). The extreme example would be a database which stores the
game-theoretic value for eachiof the 98304 configurations. Here
the grain size 1s as small as it can be. But the number of
"grains", 98304, is very large, and hence the space reguired for
their memorization is beyond practical human capacity and cannot
be comprehended mentally either in thils sense or in the sense of

intelligibility.

1. Rate of information transmission
along any input or output channel 30 bitsper second

2. Maximum amount of information
explicitly storable by the age of 50 1010 pjts

3. Number of mental discriminations
per second during intellectual work B -

4. Number of addresses which can be
held in short-term memory Y

5. Time to access an addressable
"chunk" in long-term memory « « « « + +« « 2 seconds

6. Rate of transfer from long-term to

short—-term memory of successive elements _
of one "chunk" « « « « « « « 3 elements per seconc §

Table 0. Some information-processing parameters of the human brain.
Estimation errors can be taken to be around 30 per cent.
Sources:
1. Miller (1956) summarises knowledge up to that date.
* Subsequent determinations are reviewed in any modern
text in physiological psychology.
2. Calculated fromil above.
3. B8troud (1966), cited by Halstead (1977).

4, 5 and 6. Sources cited by Chase and Simon (1973).

To lie within the bounds of the human window a solution
must regulre neither too much computation time nor too much
memory space. If too much computation time 1s needed then the
solution cannot be executed (e.g. for checking) by humans; 1if
too much memory requirement, then it cannot be memorized or un-
derstood. Furthermore, representations which are not too exten-
sional for memorization (given an effort) may nonetheless stilil
be too memory-intensive for intelligibility from the user's point

of view.

It is to the experimental examination of the propositions
advanced 1in the above paragraph that this dissertation 1is

directed.

When we compare a text-book representation for any domain of
human expertise with a machine-feasible representation we see a
distinction between information and knowledge. Any standard text
on chess will have a number of concepts laid out in some ordered
fashion with supporting prose :and game examples. The specific ex-
amples are geared towards imparting general concepts. Thus the
chess student more often learns general concepts by primary 1in-
duction on examples rather than by reading text-book descriptions
reinforcea by trial of specific applications deduced from
these. Rules comprising a human window representation are both
obvious to the expert human practitioner and intelligible to the
human student. Typically a KPK solution which falls within the

bounds of the human window will have around twenty concepts

(rules) each representing an easily distinguishable gestalt, no-
tion, oOr plece of Knowledge. For the complete game of chess,
Knowledge—-pased machine representations resulting in hignh quality
play nave not yet been achieved. It has been estimated (Chase
and Simon, 1973, Nieveragelt, 1977) that the number of concepts to
be represented as machine-implemented patterns would lie 1n <the

qu—lO5 range.

Our four test programs may be arranged as follows:

Name of program: Harris Bramer Beal Clarke
Approx.
No. of concepts: 7 20 50 100000

"Grain size": large intermediate small minimal

"Transparency": g?%%%%%%% Eﬁ%%%%%%{x

8120 8

Key: Intensity of shading indicates trend from transparent

(no shading) to opague (much shading).

We nypothesize, as indicated by the "transparency" shading
of the Taple, that representations of the Bramer level will prove
persplcuous and manageaple for people, but that departure of
machine representations in eilther direction will be penalized by
loss of this conceptual interface. If this is right, then les-
sons of some importance should be drawn for the engineering of
soclally critical software systems of high complexity (medical
information systems, nuclear power statiqns, air-traffic controi,

large-scale automation, etc.).

By carrying out experiments on human chess novices using
English-language translations of these four machine representa-
tions presented as open-pook "cribs" (which we shall call "advice
texts") we (a) obtain evidence for the existence and extent of
the human window , and (b) in the process gain some 1nsight into
wnat a machiline representation must look like if it is to fall

within this window.

-1Q-

1. BACKGROUND

Before proceeding further we direct attention to Table 1 in
wnicn are collected various symbolic and abbreviative forms em-

ployed throughout this Thesis.

- -

1.1 KPK from the Chess Master's Point of View

In reality, KPK is uninteresting for the chess master. It
1s surprising how the addition of a mere pawn to the opposing
side allows us to enter a domain of much greater interest (see
Piasetski, ' 1977). For the stronger side the entire problem
domain of KPK can be generalized into the following two simple

rules:

(1) If you can run the pawn to the queening square, do so.
(2) If you can gain the opposition ahead of your pawn, make

the necessary King move to achieve this.

For the weaker side, the correct defence 1s simply the antidote
to the above two rules. There are a few special cases which
deserve mention. One occurs when the White and Black Kinags are
onn the 5th and 7th ranks respectively, in file opposition, and a
pawn advance (non-RP) to the 6th, on a non-adlacent file,
achieves a wilnning position, e.g. WK:d5,BK:d7,WP:f5, White-to-
move. Another occurs when the WK is able to get on the other

side of his P before the BK can, and thereby the WK 1is able to

-11-

a4l
i}

o
=

3

2

<2

~

Table 1.

The

The

The

The

The

The

The

The

The

Pawn's File

(always a White Pawn)

Fawn's Rank (always a Wnite Pawn)

White
White
Bliack
Black
White
Black

Pawn

Equal to

King's File

King's Rank

King's File

King's Rank

King

King

Not Eqgqual to

Greater than

Less Than

Greater than
Less than or

The absolute

Notation employed.

or equal to
equal to

value of, 1i.

-12-~

e.

the positive value

achieve diagonal opposition in front of his pawn, leading to a
win. This is one of the few special concepts which needs to be
known, for even atrong players have missed the key firat move in
the position with White to play, WK:dl,BK:£8,WP:c3 (Clarke, 1977;

see also Section 6.2.1).

However, if the precise machine representation for correct
play in this ending were as aimple as the rules stated above,

then most of the following pages would be unnecessary.
1.2 Hiastory of KPK Programs

The first record of a program designed specifically to play
KPK, the least mobile of chess endinga, was written by S. Tan in
1972. Since then this endgame has been programmed by (among oth-
ers) Larry Harris, at Dartmouth College in 1975, Michael Clarke
(1977) and Don Beal (1977,1980) at Queen Mary College, Max Bramer
(1977) at the Open Univeraiﬁy, Milton Keynesa, Leon Piasgetaki
(1977) at McGill University and by my colleagues A. Shapiro and
T. Niblett (1982). Clarke's program generated a database which
stored the game-theoretic value and the minimax-optimal number of
moves to termination for each of his computed 98304 legal confi-
gurations of the three pieces with White-to-move and Black-to-
move. Beal developed the firat proven correct algorithm, based
on other than exhaustive enumeration, for computing the game-
theoretic values for KPK. It was implemented as a decision tree

in a Fortran subroutine called by a larger program used to compute other KPK

-13-

quantities of interest. Bramer (1977) employed 19 "equivalence
classes" acting as goal patterns for a l-move lookahead to try to
find a "correct" move in any position where White-to-move can
win. This version of the program played correctly in all criti-
cal positions (i.e. positions where White-to-play has only one
winning move (Bramer,1977)) and was known to perform correctly
for very nearly the entire space of White-to-move positions. More
recently Bramer (198l1) reported the development of a 20-class
program which plays correctly in all White-to-play positions.
Piasetski's work involved a Fortran subroutine, ONEPAWN, which
gives 300 "masks® encoding the game-theoretic value of every pos-
sible KPK configuration. Harris's program occupies approximately
128000 bits in core, Beal's approximately 42000 bits, and
Bramer's reguires on the order of 58000 bits of source code which
is interpreted. For comparison, Clarke's database is stored in

786432 bits of memory.

Bramer (1980a) reported the modification of his KPK model by
the addition of a further 19 equivalence claases, so that it not
only found correct moves, but optimal ones. This was verified by
tests with Clarke's database. Optimal programs guarantee pawn
promotion in the shortest possible number of moves, while correct
programs may take more than the minimum number of moves to win.
Bramer's original "19-class" version was in fact optimal in 96.6%
of the cases. Such "diminishing returns" effects in the program-
ming of cheas endgames will be discussed later. Bramer's is the

only endgame program currently in existence which plays optimally

-l4-

(as contrasted with merely evaluating the game-theoretic value of
a position, or where applicable 1ts minimax-optimal distance from
safe pawn promotion). We here exclude programs which generate
optimal play by direct lookup of an exhaustive database. Shapiro
and Niblett were able to use the ID3 (Iterative Dichotomiser
Three) pfogram (Quinlan, 1979) based on Hunt's Concept Learning
System (1966) coupled with a powerful programming tool, the CLIP
parallel array processor (Zdrahal, Bratko & Shapiro, 1981) to in-
ductively derive a set of decision rules which correctly classify

all legal Black-to-move (B-T-M) positions.

1.3 Huberman's Work

The first success in the programming of correct play in
chess endgames was reported by Barbara Huberman (1968). Her goal
was to study the translation of standard textbook information on
the correct play of certain elementary chess endgames to some
nigher level computer language (LISP). The machine-encoded ver-
sions for King and Rook vs. Kinag (KRK), King and Two Bishops vs.
King (KBBK), and King and Bishop and Knight vs. King (KBNK). were
continuously revised and refined, until they seemed to play
correctly in any position. Then these final implementationé were
assessed on thelr correspondence to the textbook methods which
they originated from. Textbook conceptualizations were found to
be sufficiently clear for this purpose, though too incomplete and
imprecise for direct translation. Huberman's final programmed

versions turned out to be quite successful, forcing mate within

-15%

the 50-move limit 1n each case. In the description which follows

I have been aided by Bramer's (1977) earlier analytic assessment

of Huberman's work.

The foundation for Huberman's model 1is the concept of a
forcing tree. This model assures that from any starting position,
p, wnere the program has the move, it will search until it finds
a position, g, which satisfies a relation bhetier than p, anad
reachable from p for every se@uence of moves by the opposition.
This process repeats until checkmate is reached (Huberman, 19068§;

see Fig.1l.]).

Basic to this formulation are two truth functions, bhetter
and worse, which take as arguments any initial position, p, with
White-to-move and a successor position, g, (at some depth) wilth
BEilack-to-move. A Dbreadth-first search 1s performed to rind the
bertfer positions as White's goals. Any variations which lead to
worse positions as a result of Black's best play are immediately
rejecteda. The purpose of pefter and worse is to prune the search
tree and they are in no respect complementary. Both functions
are usea to define STAGEs whose increasing integer value 1ndi-
cates proximity to checkmate, STAGEs are further subdivided intc
MEASUREs. The lower the MEASURE the closer we are to entering
the next stage. Terminal positions in the forcing tree are all
ones where Black 1s to move and hetter evaluates true. Since
these truth functions are defined in such a way that White can
always force a petfer position, and that a position, g, can be

evaluated on the basis of STAGE's and MEASURE's as closer to

~-16-

P o— ——

-

Figure 1.1 Example of a Forcing tree. The program has the move in
p; it must make a move leading to a position q judged better than p
for every sequence of moves by the opposition. Each iteration of the
program will produce a tree like this; several iterations will be re-
quired to reach checkmate. (reproduction of Figure 1.1 plus caption
from Huberman, 1968)

=17~

checkmate than p, we are assured the process will ultimately con-
verge. Worge is used to avoid disasters such as stalemate or the
loss orf a piece, deemed too high a price to pay for attaining a
given Dpetter condition. Each STAGE with its MEASUREs, supported
by petter and waorse, was intended to roughly correspond to one

textbook neuristic (rule of thump).

In ner final versions for the three endgames mentioned,
Huperman requires the following combinations of STAGEs and MEAS-
UREs:

KRK 4 STAGEs, 1 with MEASURE
KBBK 5 STAGEs, 3 with MEASURE

KBNK 7 STAGEs, 2 with MEASURE

However, the resulting definition of these STAGEs and the neces-
sary extensions to petter and worse to bring the searcnh down to
reasonable proportions is in each case an extremely complex com-
bination of predicates, bearing 1little resemblance to book
heuristics. Huberman consideréd the process of deciding rougnly
what the STAGEs are rather straightforward, closely corresponding
to book information. What she found difficult were the exact de-

finitions of STAGEs and MEASUREs, and generally it was even more

The play for KRK 18 quite strong (where by strong we mean
correct and not far from the shortest path to victory) in the ex-
ampies given. It is considerably less strong for the <tTtwo more

difficult endgames (KBBK, KBNK), but particularly effective 1n

-18-

the final stages of each endgame. Huberman paid special atten-
tion To these stages since diversions and falterings near the end

could have rather detrimental erfects on the efrort as a whole.

Huberman's work was the first serious, practical model for
the programming of chess endgames. In addition, one orf the

endgames successfully modelled (KBNK) 1s considered hard, even by

human standards. Nonetheless there are some problems with ner
approach:
1) All perter positions are equally good. Therefore the pro-

grams tend to make "acceptable" moves, though rarely the best.

2) There 1is little control of the depth and breadth of search,
and attempts to do so necessarily led to very complex definitions

tor STAGEs, hetter, and worse.

3) Other than a few examples of program play, there is no indi-

cation of empirical testing.

4) Huberman informally proves that her programs are correct
(Chapter 7) in the sense that White would eventually win regard-
less of how Black plays. Yet for more complex endings sucnh proot

methods would be severely taxed.

5) While in principle the model is generalizable, 1n practice it
might be virtually impossible to program for more complex end-

ings.

6) The model is only applicable 1n positions wnere White has a

-19-

forced win. Bramer (1977) states, "It is difficult to specify
precisely the subset of positions in which White has a forced
win, even 1n the case of KBNK". Against this, however, it might
be argued that KBNK only poses problems with regard to a few
stalemate positions and those where the Bishop and Knight can be

forked by the Black King.

7; There 1s no gimple a priori way of knowing that a move will
actually be found by the program. That 1is to say. as refine-
ments are made to the program, very precise definitions of STAGEs
and extension to hetter and worse are required to ensure tha; a

move will always be returned.

The groundwork for programming chess endgames in a systemat-
ic, 1f tedious manner, was laid by Huberman. Of the efforts to
program KPK, Bramer's equivalende class model bears the closest

resemplance to Huberman's approacn.

-20-

I1 INADEQUACY OF THE STANDARD ALGORITHMIC APPROACH

JO COMPLEX PROBLEM-SOLVING

2.1 Introductory Remarks

The work reported in this Chapter <concerns an attempt to

solve a complex problem, namely the value (a White win or a drauw)

of all KPK configurations, in the conventional algorithmic pro-

gramming style. A program written in the classical or convention~—

al algorithmic style 1is characterised by two properties:

1. it is relatively compact.

2. any domain—-specific knowledge which the programmer may
have put into the program is embedded in the bodies of
the procedures in a way which is in some sense implicit
only, as opposed to the clear separation of knowledge-—
base and knowledge—in%erpreter which characterises the

knowledge—engineering style.

The difficulties encountered are an example of the limitations of

the

lems,

classical programming approach when used for complex prob-
namely:

(1) proliferation of special cases each requiring its own
code written to supply ad hoc fixes, these in turn leading

to special cases at lower levels, and so forth;

(2) in consequence a virtually undebuggable program in which
location and characterisation of errors grows in difficulty,

(3) the introduction of cures for each local disease Te—
quires exhaustively checking for subtle maladies which may
have been introduced by side—effect in other parts of the

same program.

Zuidema (1974) reported that the work involved in program—
ming by classical methods and debugging even the comparatively
simple King and Rook vs. King (KRK) was enormous. For KPK our
experience indicates that while the programming task by conven-—
tional algorithmic methods may be feasible in a matter of months,
the debugging task is not. At the next level of complexity lies
the King and Rook vs. King and Knight (KRKN) endgame which Bratko
and Michie (1980) regard as not programmable by classical
methods. The programming task posed by KPK appears to lie in an
interval on the <complexity scale which 1is transitional with
respect to intractability of debugging, suspended, as it were,
between the hard but tractable KRK level, of which Zuidema com-—
plained, and .the KéKN and harder levels. The remainder of this
Chapter 1is devoted to recerding a detailed investigation of

Harris’ KPK program, a worthy representative of the classical &l-

gerithmic style, from this point of vieuw.

2.2 Harris’ KPK Program

2.1.1 Verification and Changes

Circa 1975 Larry Harris wrote a KPK program in Algol-60 for
The Dartmouth Timesharing System (Honeywell 635). The program,
l1ke Beal's, gives as its output the game-theoretic valiue of anv

inoput position for both White-to-move and Black-to-move. It aiso

-22-

produces a test sStatlng reasons wny the position 15 drawn or won.
J. Bitner & B. Hansche (1976) translated the Harris program 1nto
Algol-W for an IBM 360/75. After mounting the Clarke database on
the disc of the IBM 360,75, these authors used it as a standard
of comparison to determine the correctness orf the Harris KPK Pro-
gram. From thelr tests on the entire data-space of 98304 legal
poard configurations, each having a value with White and Black-
to-move, the program was rfound to be 99.11% correct. They claim

that 45% of the errors were trivial programming errors (p.7 of

thelr report) and they give a conceptual classification and dis-

cussion of the remainder.

Part of this work has involved an effort to substantiate
Bitner & Hansche's conclusions and to make necessary corrections
to the program. The original Honeywell version of the Harris Al-
gol program was initially (1977) translated int