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Abstract

Adoption of smart mobile devices (smartphones, wearables, etc.) is rapidly grow-

ing. There are already over 2 billion smartphone users worldwide [1] and the per-

centage of smartphone users is expected to be over 50% in the next five years [2].

These devices feature rich sensing capabilities which allow inferences about mobile

device user’s surroundings and behavior. Multiple and diverse sensors common on

such mobile devices facilitate observing the environment from different perspectives,

which helps to increase robustness of inferences and enables more complex context

detection tasks. Though a larger number of sensing modalities can be beneficial for

more accurate and wider mobile context detection, integrating these sensor streams is

non-trivial.

This thesis presents how multimodal sensor data can be integrated to facilitate ro-

bust and energy efficient mobile context detection, considering three important and

challenging detection tasks: indoor localization, indoor-outdoor detection and human

activity recognition. This thesis presents three methods for multimodal sensor inte-

gration, each applied for a different type of context detection task considered in this

thesis. These are gradually decreasing in design complexity, starting with a solution

based on an engineering approach decomposing context detection to simpler tasks and

integrating these with a particle filter for indoor localization. This is followed by man-

ual extraction of features from different sensors and using an adaptive machine learn-

ing technique called semi-supervised learning for indoor-outdoor detection. Finally,

a method using deep neural networks capable of extracting non-intuitive features di-

rectly from raw sensor data is used for human activity recognition; this method also

provides higher degree of generalization to other context detection tasks.

Energy efficiency is an important consideration in general for battery powered mo-

bile devices and context detection is no exception. In the various context detection

tasks and solutions presented in this thesis, particular attention is paid to this issue by

relying largely on sensors that consume low energy and on lightweight computations.

Overall, the solutions presented improve on the state of the art in terms of accuracy

and robustness while keeping the energy consumption low, making them practical for

use on mobile devices.
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Chapter 1

Introduction

With the advancement of electronics and processor miniaturization, a new generation

of smart mobile devices has emerged for personal computing (i.e., monitoring and

private data processing). As representative of these devices, smartphones now rep-

resent the dominant computing platform around us. Their sensing capabilities (e.g.,

light sensor, accelerometer, gyroscope) allow them to collect data from their imme-

diate environment, while their compute power enables them to interpret all this data.

A common characteristic across these devices is their rich set of embedded sensors

facilitating a more diverse perception of their surroundings. Traditionally, these sen-

sors have been used independently for the specific role they were introduced for (e.g.,

radio interfaces for communication and accelerometer for screen orientation), though

increasingly these sensors are being used for other tasks such as the accelerometer

for games control and for step counting. However, beyond their current utility as just

independent sensors with limited purpose, the presence of these simple sensors in sig-

nificant numbers and diversity creates the opportunity to build more complex context

inferences (e.g., indoor localization, indoor-outdoor detection). These new forms of

context detection will be essential to the mobile applications of the future, offering

awareness and adaptability to user surroundings. Everywhere -sensing and -computing

to adapt environments to user needs have long been the vision of ubiquitous comput-

ing [3]. These smart mobile devices are in the best position to facilitate this vision

becoming a reality through mobile context sensing.

Through their diverse set of sensors, smartphones and smart watches perceive the

environment from different perspectives. These sensors span a wide range from in-

ertial sensors (e.g., accelerometer, gyroscope, electronic compass), pressure sensors

(e.g., barometer), radio frequency receivers (e.g., GPS, WiFi interface, cellular inter-

1



Chapter 1. Introduction 2

face), light sensors, proximity sensors, audio sensors (e.g., microphone), thermome-

ters and others. Perceiving the surrounding environment from so many perspectives

is beneficial for context detection, thus it is vital to exploit the multitude of sensing

modalities available. But this is far from trivial. This is due especially to their intrinsic

differences and sensing characteristics (e.g., sampling rate, data generation model, trig-

gering method, etc.). Traditionally, sensor fusion is achieved with filters (e.g., Kalman

Filter [4]) and more recently with machine learning techniques relying on features

extraction for synthesizing sensor signals into observable trends. Feature extraction

and feature selection are typically driven by data analyst’s intuition and experience,

directly impacting the quality of detection and implicitly the success of their context

driven applications. Adding to the difficulty is that each context detection task has

its own unique needs and challenges, thus requiring specialized solutions to perform

inferences.

This work proposes solutions to a set of highly representative context detection

tasks (indoor localization, indoor-outdoor detection, human activity recognition) by

integrating multiple sensing modalities, each designed specifically to address the dif-

ficulties of its context detection task. These solutions rely on low energy consuming

sensors, progressing gradually in design complexity as follows. The first solution is

based on a typical engineering approach, decomposing the context detection task into

constructing blocks (each could be seen as a simpler form of context detection on

their own), though more powerful in combination to achieve complex inferences. In

particular, we consider indoor localization task, which can be composed with the el-

ementary tasks of detecting the orientation of a device, estimating traveled distance

and comparing radio signal signatures, and results fused with a particle filter. The sec-

ond solution, considering the indoor-outdoor detection task, is based on hand crafted

features and machine learning to perform context detection. And finally, eliminating

any preliminary decomposition and prior analysis, this work presents a deep learning

based solution that can be employed for general mobile context detection tasks by en-

abling the extraction of relevant information directly from sensor signals. Even though

the work presented here can be applied even to wearable devices (smart watches, in-

pocket devices, on-clothes and in-fabrics, etc.), for practicality of demonstration, all

context detection tasks will be showcased as applications for smartphones.

Two domain specific metrics are considered in designing the proposed solutions:

from a Data Analytics perspective, accuracy and robustness of context detection are

important; and from the angle of Mobile Systems, energy efficiency is essential for
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any battery powered device.

This chapter continues with an overview of the domain where this research falls,

namely ubiquitous mobile context sensing. Following this is a description of the spe-

cific yet challenging context detection tasks explored in this work and their limitations,

each with different needs addressed by the proposed solutions. These context detection

tasks are: indoor localization that is addressed with decomposition of the context de-

tection task and fusion with a particle filter; indoor-outdoor detection addressed using

a common machine learning approach with hand crafted features; and human activity

recognition facilitated by integration of sensing modalities with deep neural networks.

A brief description of the energy consumption considerations of these mobile systems

is then presented before stating the contributions this thesis makes.

1.1 Mobile Context Sensing

Context sensing or detection is a key component of mobile and ubiquitous computing

systems for enabling context-aware applications [5]. The term “context” encompasses

a variety of aspects of a mobile user including location, time, environment, device and

activity. Some of these aspects such as time are straightforward to identify whereas

others are relatively more challenging to detect. The emergence of smartphones and

their rapid adoption have created great interest in context-aware mobile applications.

At the same time, the many sensors built into modern smartphones aid in the context

detection task. For example, the accelerometer on a smartphone is used for sensing

the device orientation and accordingly aligning the screen to switch between portrait

and landscape modes. In recent years, there has been considerable research on context

sensing with smartphones, mostly focused around (indoor) location tracking [6–9] but

also looking at other aspects of context such as activity recognition [10] and trans-

portation mode [11].

Advances in other research fields like Natural Language Processing has enabled

mobile assistants (like Apple’s Siri and others) to be featured on mobile devices. Many

other systems, built on top of Amazon’s Alexa1 are growing in popularity because of

their flexibility to integrate with Internet of Things (IoT) devices, thus accelerating

home automation systems. Currently these rely on sound and voice recognition alone,

though their easy integration with a multitude of devices makes it possible to employ

ubiquitous mobile context sensing, to increase awareness in interactions with their

1http://alexa.amazon.co.uk/
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users for contextual relevance.

Growing privacy concerns from uploading user sensor data to the cloud for infer-

ences (e.g., uploading voice data for voice recognition with Alexa), encourage more of

these inferences to be performed locally, on user’s mobile devices. Most of the com-

putation requirements are already satisfied by the majority of mobile devices, while

judicious selection of sensors and algorithms aid in managing with the limited energy

budget. This alternative assures users their sensor data is not exposed to any unneces-

sary risks through uploading data over the Internet.

There are different forms of context that can be detected with sensors available on

smartphones, each with its own characteristics and challenges, from human activity

recognition to transportation mode detection and beyond. Accurate detection of these

context detection tasks is challenging, so they require specialized algorithms to suit

their individual characteristics. The following sections introduce three such challeng-

ing and highly important context detection tasks for which this work proposes solu-

tions: indoor localization, indoor-outdoor detection and human activity recognition.

1.2 Challenging Context Detection Tasks

Three forms of context detection with mobile devices are explored in greater detail

in this thesis which drive the investigation of different approaches proposed for inte-

grating multimodal sensor data. Though each of these three has been explored before

in the literature, previous solutions are limited in addressing their fundamental chal-

lenges of attaining the best integration of sensor data to facilitate accurate, robust and

energy-efficient inferences. In view of their uniqueness and difficulty, custom solu-

tions of sensor fusion for each detection task are developed and presented in this work.

This section presents an overview of proposed solutions for each of the three context

detection tasks.

1.2.1 Indoor Localization

Indoor mobile phone localization is a popular research topic due to the increasing

number of location-based services and applications that require accurate positioning or

continuous tracking inside buildings. These applications can span from indoor naviga-

tion [12] to monitoring different aspects of the environment like the WiFi coverage [13]

and can be used in many indoor spaces like offices, shopping malls and airports.
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Dead reckoning and WiFi fingerprinting are well known approaches for indoor

localization but each has its own advantages and limitations. While dead reckoning

based schemes naturally enable continuous location tracking, error accrual over time

is a major concern; moreover, dead reckoning in indoor environments with complex

movement patterns is relatively more challenging. A WiFi fingerprinting based lo-

calization approach is an attractive alternative as it can leverage the smartphone WiFi

interface to take advantage of existing WiFi infrastructure, nowadays commonplace in

most indoor environments. However, WiFi fingerprinting has its own disadvantages

like not being suitable for continuous location tracking due to heavy energy cost of

performing WiFi scans on mobile devices. Also the applicability and effectiveness of

WiFi fingerprinting is dependent on a number of factors including WiFi Access Point

(AP) density, spatial differentiability and temporal stability of the radio environment.

In view of the above, we propose HiMLoc, a novel solution that synergistically uses

Pedestrian Dead Reckoning (PDR) and WiFi fingerprinting, exploiting their positive

aspects while limiting the impact of their negative aspects. Specifically, HiMLoc com-

bines location tracking and activity recognition using inertial sensors on mobile devices

with location-specific weighted assistance from a crowd-sourced WiFi fingerprinting

system via a particle filter. HiMLoc relies on the most common sensors available on the

large majority of smartphones: accelerometer, compass, and WiFi interface.

This novel integration of dead-reckoning with WiFi fingerprinting is based on the

observation that some spaces in a building are more accurately localizable with WiFi

fingerprinting than others. This is a consequence of the radio environment being more

stable and having unique signatures due to building structure and radio signal prop-

agation effects. This observation is exploited by associating a weight for the WiFi

fingerprinting component in a particle filter to control its impact in the hybrid system.

This weight is inversely proportional to similarity area metric computed by comparing

a run-time WiFi fingerprint with fingerprint database – smaller similarity area results

in a higher weight and vice versa.

To ease deployment, HiMLoc requires just a small set of parameters specific to

each new building, like position of stairs, position of elevators, position of main en-

trances and height of each floor. The WiFi fingerprinting component is driven by

crowd-sourcing. Unlike other particle filter systems that require a detailed knowledge

of the building layout to restrain the particles, HiMLoc uses distances to known refer-

ence points (corner, stairs, elevators and WiFi estimations) to determine the weights of

particles and opportunistic location calibration.
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Experimental evaluation of HiMLoc using Android phones shows that median loca-

tion accuracy of under 3 meters is achievable even with complex movement within a

building (e.g., going between floors using stairs and elevators).

1.2.2 Indoor-Outdoor Detection

Indoor-Outdoor (IO) detection is an environment related aspect of user context that

is important for enabling context-aware applications. While the IO distinction is im-

portant in determining context, it is also a subtle and challenging problem. Intuitively,

several physical quantities differ between the two contexts, but inferring this difference

using sensors is not straightforward and highly sensitive to environment. For example,

light intensity is likely to change as one moves from inside a building to outside, but the

nature of the change will be different depending on time of day, location, weather, and

other parameters. Environment can similarly affect sound intensity, temperature and

other quantities. WiFi and cellular signal strengths also vary from place to place, and

are affected by different local attenuation characteristics and multipath effects; sound,

light and temperature can be affected by the phone position with respect to the user

(e.g., in a bag/pocket, hand); sensors and their calibration can vary between phones.

Thus a context detection system has to have the ability to adapt to new environments

and encountered situations.

A novel solution for IO detection is presented in this thesis. This explores the

problem from a machine learning point of view, proposing a semi-supervised machine

learning approach to infer the context on smartphone sensor data. In comparison, the

most closely related piece of work, IODetector [14] has an accuracy in the range of

55-70% and GPS based technique gives an accuracy around 70% to 80%, as shown

in Chapter 4. The fundamental issue is that when a user encounters a new environ-

ment or the classifier is applied on a device different from the one used in its training,

the model needs to adapt to the new environment and/or device. Doing so naively by

collecting additional labeled training data with ground truth information requires user

involvement, which is intrusive and impractical. The semi-supervised approach pre-

sented here is superior because it can adapt to new environments by generating new

labels according to how similar they are to past experiences.
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1.2.3 Human Activity Recognition

Among the sensors available on smartphones, the accelerometer has gained much pop-

ularity in Human Activity Recognition (HAR) as it allows recognition of a wide variety

of human activities, while having relatively low energy consumption compared to other

sensors [15]. Many HAR systems use the accelerometer for detection in different en-

vironments, smart homes [16,17], health care [18], daily activity tracking [19] and fall

detection of elderly people [20].

More recent adoption of gyroscopes as embedded sensor to smartphones offers the

opportunity to complement the accelerometer in performing inferences. This work

expands the research presented in [21], using the two modalities for HAR with other

forms of machine learning techniques. Building on recent developments in deep learn-

ing, this work evaluates new solutions for sensor fusion with deep neural networks.

The advantage of these new architectures is that features are extracted automatically

during training from raw data, thus replacing the initial process of feature extraction

and feature selection.

1.2.3.1 Deep Learning for Context Detection

The simple and numerous sensors available on smartphones provide the opportunity

to help with more complex inference tasks by combining capabilities across comple-

mentary modalities. But due to their intrinsic nature and sensing characteristics (e.g.,

sampling rate and statistical properties) integrating sensor streams is often very chal-

lenging.

So the aim is to investigate the ability for deep learning to advance the state of

the art in multimodal sensing on mobile and embedded devices, considering human

activity recognition task as a representative case.

Deep learning [22] is an area of machine learning that is revolutionizing several do-

mains from computer vision to speech recognition and many others. This fast growing

area of research has the potential to influence key topics like sensor data fusion, with

study of this learning paradigm applied to mobile devices only recently begun [23,24].

One attractive characteristic of deep learning is the ability to transform close to raw

sensor data into a dense representation of features through different activation patterns

of artificial neurons (i.e. units) within a deep neural network. This network is used to

perform inferences (e.g., estimating the activity class) directed by the activation pattern

of neurons in the network, and often achieves higher accuracy than classic modeling



Chapter 1. Introduction 8

methods.

With evidence from deep architectures on dual modalities like text mixed with im-

ages [25] and audio linked with video [26, 27], similar impressive gains should be

attainable with other combinations of modalities; for example, in the case of human

activity recognition, cheap sensors like accelerometer and gyroscope present on mobile

and wearable devices. The aim is to provide the initial answers to whether these algo-

rithms can increase the accuracy of ubiquitous tasks (e.g., activity recognition) using

sensor data from wearable devices, which is not well explored in the literature. This

exploration is conducted using a multimodal Restricted Boltzmann Machine (RBM) ar-

chitecture (a promising deep learning algorithm), with resource requirements make this

architecture viable to resource constrained computation units like mobile and wearable

devices.

1.3 Energy Efficiency

As previously mentioned, this work uses smartphones as the primary evaluation plat-

form, though these observations can be easily translated to other wearable devices

(e.g., smart watches, VR headsets and other wearable devices) as impacted by the

same energy constrains. To ensure limited battery resources are efficiently managed

while performing useful context detection tasks, algorithms need to be optimized to

have low energy footprint as well as using the lower energy consuming sensors. En-

ergy consumption is thus a key optimization criteria throughout the work presented in

this thesis.

In order to accurately measure power consumption of individual sensors and differ-

ent solutions presented in this thesis, the following methodology is used throughout.

This essentially involves removing the phone battery and having it instead powered

through the commonly used Monsoon Power monitor, which allows the exact power

consumption to be measured. This reflects the exact power consumption associated

with an application observed on the whole system (compute, memory, operating sys-

tem calls, internal communication, etc.). Any external variables were eliminated by

restricting communication and stopping all other running applications for the time of

experiments. With this experiment set-up only the impact of the proposed solution

affect the energy consumption. Energy consumption due to a sensor is the area un-

der the power consumption curve over the duration of that sensor’s sampling interval.

The same approach extends to measuring energy consumption from a set of sensors.
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Majority of sensors consume uniform power throughout continuous sampling, so both

energy consumption and instantaneous power consumption can characterize impact of

longer-term sampling on device battery.

1.4 Contributions

This thesis proposes three different approaches for integrating multimodal sensor data

from mobile devices to infer important and challenging contexts (indoor localization,

indoor-outdoor detection and human activity recognition). Design of the proposed

approaches was aimed at optimizing accuracy/robustness and energy-efficiency. This

work is timely due to emerging smart and adaptable applications requiring many forms

of complex context detection to facilitate better services to their users in accordance

with observed conditions in the environment.

The core contribution of this work is to present how apparently complex contexts

can be detected by efficient combinations of multimodal sensor data, starting with an

engineering approach of decomposition, followed by machine learning as core to adap-

tive sensing systems and finally using deep neural networks for more general mobile

context detection. These contributions are outlined next with respect to the context

detection task where they are introduced.

1.4.1 Indoor Localization

In the space of indoor localization, this work makes the following contributions:

• Presents the design of a hybrid indoor mobile phone localization mechanism

called HiMLoc that combines the best aspects of two well-known localization

techniques, pedestrian dead reckoning (PDR) and WiFi fingerprinting, neither

of which is sufficient – location error accumulates over time with PDR espe-

cially when based on smartphone sensors, whereas WiFi fingerprinting does not

work when there is no WiFi coverage. A key feature of HiMLoc is that it exploits

the locations deemed to be accurately localizable via WiFi fingerprinting for cor-

recting PDR based location estimates. Experiments show that HiMLoc achieves a

median location accuracy below 3 meters in a building of approximately 12,000

m2 spread over 5 floors.

• Showing that HiMLoc can be used as a localization platform for crowdsourced

mobile applications that monitor the interior radio environment, through the Pazl



Chapter 1. Introduction 10

system. This usecase has the following components: (1) an Android application

for collecting WiFi, cellular, bluetooth and sensor (accelerometer and compass)

measurements from each mobile crowdsensing participant’s smartphone; (2) a

cloud application based on the Google App Engine to localize the measurements

from different phones and to merge, store, visualize and analyze for various mon-

itoring related aspects (e.g., coverage holes, channel usage distribution, complex

interference patterns resulting from exceptionally long range of some APs as

seen from certain locations). For indoor WiFi monitoring Pazl provides similar

results to the state of the art Ekahau Mobile Survey tool [28] but in a significantly

more automated manner by drastically reducing the manual point-and-click lo-

cation determination used in the Ekahau approach.

This work was reported in the following publications:

1. Valentin Radu and Mahesh K. Marina, “HiMLoc: Indoor Smartphone Local-

ization via Activity Aware Pedestrian Dead Reckoning with Selective Crowd-

sourced WiFi Fingerprinting”. In Proceedings of IEEE International Conference

on Indoor Positioning and Indoor Navigation (IPIN), 2013.

2. Valentin Radu, Lito Kriara and Mahesh K. Marina, “Pazl: A Mobile Crowd-

sensing based Indoor WiFi Monitoring System”. In Proceedings of IEEE Inter-

national Conference on Network and Service Management (CNSM), 2013.

3. Valentin Radu, Jiwei Li, Lito Kriara, Mahesh K. Marina, Richard Mortier,

“A hybrid approach for indoor mobile phone localization”. Poster in ACM Inter-

national Conference on Mobile Systems, Applications, and Services (MobiSys),

2012.

1.4.2 Indoor-Outdoor Detection

With respect to this form of context detection, the main contributions are:

• Shows the limitations of previous systems performing indoor-outdoor detection

measured from both energy consumption and robustness/accuracy of inference.

This exploration highlights the sub-optimal performance of linear classifiers re-

lying on thresholds for detection.
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• Proposes the use of a semi-supervised learning approach that can continuously

learn in new environments, and adapt to them for indoor-outdoor detection, with-

out user involvement. Existing works on learning from mobile sensing data have

largely utilized offline methods where all the data is available for analysis. This

method instead works online – learning in real time – and on the device itself, at

a modest computational cost.

• This work explores three different semi-supervised learning methods, namely

clustering, self-training and co-training. A well-designed co-training model is

found to be most effective providing greater than 90% accuracy across diverse

and previously unseen environments. A choice of Naive Bayes classifiers gives

the highest accuracy in this adaptive setting.

• The aforementioned co-training based indoor-outdoor detection system has sev-

eral attractive properties. Naive Bayes classifiers can be designed to update on-

line at negligible computation and memory costs, thus it can update and learn on

the mobile device itself without communication costs and delay. This also makes

it privacy preserving. The method is stateless: it does not need temporal history

and can be run on-demand; thus the sensors can sleep except when responding

to a query. The approach is lightweight and uses only low power sensors. A sin-

gle state estimation costs only about 0.73 Joules, and experiments show this to

be significantly more efficient than other methods. The system is also presented

through an application designed to avoid wasteful WiFi scans while outdoors,

achieving a 63% energy saving.

This work was reported in the following publications:

1. Valentin Radu, Panagiota Katsikouli, Rik Sarkar and Mahesh K. Marina,

“A Semi-Supervised Learning Approach for Robust Indoor-Outdoor Detection

with Smartphones”. In Proceedings of ACM Conference on Embedded Net-

worked Sensor Systems (SenSys), 2014.

2. Valentin Radu, Panagiota Katsikouli, Rik Sarkar and Mahesh K. Marina,

“Am I Indoor or Outdoor?”. Poster in ACM Annual International Conference on

Mobile Computing and Networking (MobiCom), 2014.
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1.4.3 Deep Learning for Human Activity Recognition and Other

Context Detection

Leveraging a diverse set of sensors strongly aids in the inference of activities and con-

text in mobile systems. However, building models that can fully leverage the informa-

tion contained within – and across – each sensor is challenging largely due to intrinsic

differences between sensor data.

With this motivation, this thesis presents a new approach to modeling of multi-

modal mobile data, which incorporates two recent deep learning innovations previ-

ously unseen for mobile and wearable devices. First, it adopts a new variant of a

Restricted Boltzmann Machine (RBM) that supports a learning architecture that mixes

isolated sensor specific layers, and shared cross-modality layers [25, 29, 30]. Second,

the training of this deep architecture is performed with an autoencoder inspired tech-

nique [27, 29, 31] for multimodal settings to tolerate noisy data.

The contributions of this research are:

• The development of a RBM-based multimodal deep learning model designed

specifically for mobile sensor streams, and common behavior and context infer-

ences needed by wearable and mobile devices.

• An evaluation of this deep modeling approach on diverse datasets (for activity

recognition, sleep stage detection, indoor-outdoor detection) capturing a variety

of sensing modalities. Results indicate that this general purpose sensor model

is able to outperform recently published state-of-the-art purpose designed tech-

niques, as well as a range of shallow learning algorithms.

• A system resource feasibility study that verifies the overhead of the RBM-based

multimodal model. Implementations under one mobile/wearable processor shows

that the memory, battery and computational footprint of the model is manageable

by a mobile device.

Publications related to this work are listed below:

1. Valentin Radu, Nicholas D. Lane, Sourav Bhattacharya, Cecilia Mascolo,
Mahesh K. Marina, Fahim Kawsar, “Sensor Fusion using Multimodal Repre-

sentational Learning for Improved Accuracy on Wearable and Mobile Devices”.

Submitted to ACM Journal on Interactive, Mobile, Wearable and Ubiquitous

Technologies (IMWUT), currently under review.
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2. Valentin Radu, Nicholas D. Lane, Sourav Bhattacharya, Cecilia Mascolo,
Mahesh K. Marina, Fahim Kawsar, “Towards Multimodal Deep Learning

for Activity Recognition on Mobile Devices”. In Proceedings of the ACM

International Joint Conference on Pervasive and Ubiquitous Computing (Ubi-

Comp/ISWC’16) Adjunct, 2016.

1.5 Structure

The rest of this thesis is structured as follows.

Chapter 2 gives a background on the concepts and techniques used in later chap-

ters, and introduces the tools used for classification, Weka - Machine Learning

toolkit, deep learning models and Torch. For each of the context detection tasks

considered, related work is presented to discuss previous approaches and their

limitations.

Chapter 3 presents the novel system proposed for indoor localization combining in-

formation collected from multiple sensors in stages. The first step is to determine

the type of mobility action based on acceleration signals, using this to estimate

the displacement with Pedestrian Dead Reckoning. In parallel, using WiFi scans

to estimate locations based on the radio signatures. These estimations are com-

bined using a particle filter to determine the phone location. To demonstrate the

practical utility, a mobile application collecting wireless network coverage has

been deployed and evaluated.

Chapter 4 explores different approaches to combine sensor features to create an adap-

tive system that is not restricted by hard-coded thresholds for this type of infer-

ence. A special class of semi-supervised learning methods, called Co-training

achieves this goal by running two classifiers in parallel and independently ob-

serving different angles of the environment to assist each other in learning the

characteristics of new environments over time.

Chapter 5 explores the opportunity to integrate sensor streams directly from raw data

through a deep neural network, thus avoiding the tedious task of determining sen-

sor features. This facilitates a faster deployment and was demonstrated through

a set of applications, in particular human activity recognition.
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Chapter 6 summarizes the work presented in this thesis and reiterates the contribu-

tions made by this work. Some interesting future work is suggested as basis for

future development in the space of sensing with mobile devices.



Chapter 2

Background and Related Work

The first part of this chapter presents current solutions used for each of the three context

detection tasks covered in this thesis: indoor localization, indoor-outdoor detection and

activity recognition. Background information about the underlying techniques of the

proposed solutions in this thesis is presented in the second part of this chapter.

2.1 Previous Work on Mobile Context Detection

2.1.1 Indoor Localization

While outdoor location tracking can be done easily using GPS based systems [32]

even for long-term tracking of subjects with custom mobile devices [33, 34], indoor

localization is harder due to the lack of GPS signals penetrating through wall. Indoor

localization with smartphones is a well explored researched topic, with many systems

aiming to tackle this task, though none has emerged as the dominant solution, which

This also shows the difficulty of designing mobile systems to perform such a complex

task. Majority of the available solutions follow a few established methods: Pedestrian

Dead Reckoning, WiFi Fingerprinting and combinations of these two. These meth-

ods are presented in following sections, also highlighting some of their representative

systems.

2.1.1.1 Pedestrian Dead Reckoning

The presence of inertial sensors has enabled the emergence of a new class of location

tracking systems performing dead reckoning on mobile phones. These systems have

the advantage that very little physical infrastructure is required for them to function.

15
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Pedestrian Dead Reckoning (PDR) technique works by estimating successive po-

sitions starting from a known location, based on a method of estimating the traveled

distance and the direction of walking. A solution to determine the traveled distance

is to count the number of steps and estimate their length. Most typical step detection

implementations are based on analyzing the acceleration data [35], [36], [37], but data

from other sensors have also been tried, like angular velocity [38], [39], [40] and mag-

netometer data [41], or combination of these [42]. Using the acceleration magnitude,

steps detection is performed through techniques like peak detection, which looks for

peaks in the acceleration magnitude caused by the leg carrying the sensor touching the

floor [43]; zero crossing, which monitors the acceleration value zero crossings [44];

and auto-correlation, by taking advantage of the repetitiveness of human walking [45].

The traveled distance can also be estimated, either by observing the rotation of the

hip [46], or by estimating the length of the step. Probably the easiest way to estimate

the step length is to appreciate it as a linear function of the frequency of stepping [47].

The other important component of the PDR is direction, which can be obtained by a

compass or a gyroscope. The presence of a compass on a smartphone is more common

than having a gyroscope. But compass indications are subject to magnetic interference

inside buildings. Afzal et al. showed that these interferences can sometimes result in a

direction deviation from the compass of up to 100o [48]. However, our experience was

that under the normal conditions of human walking not too close to walls or other metal

structures along the way, magnetic interference is typically isolated and tolerable.

Common presence of sensors such as accelerometer and compass in smartphones

have made PDR an attractive technique for mobile phone localization [49]. While most

systems use PDR for outdoor tracking in conjunction with a map [50], others such

as GAC [8] combine it with occasional GPS correction for energy-efficient location

tracking on roads. A well-known limitation of PDR schemes is that error can get

accumulated over time unless it is corrected occasionally.

The steady increase in performance of inertial sensors opened the opportunity for

their use inside buildings with smartphones [51], [12], [50]. All of these systems have

an increasing error accumulation if they are not periodically adjusted. Assisting the

system with corrections from beacons has been experimented in [12]. For an easier

deployment, activity recognition together with some knowledge of the building layout

can provide some error correction points [51].



Chapter 2. Background and Related Work 17

2.1.1.2 WiFi Fingerprinting

WiFi fingerprinting is a well-known localization technique that can exploit the pres-

ence of WiFi interfaces now common on smartphones. WiFi infrastructure is also

prevalent these days in many indoor environments. Early WiFi fingerprinting systems

such as RADAR [52] and Horus [53] rely on an initial training phase to construct fin-

gerprint database for use as a reference in the positioning phase later but training phase

can be quite time consuming and expensive. More recent WiFi fingerprinting systems

make this training phase automated via crowdsourcing using mechanisms of increasing

sophistication (e.g., Redpin [54], OIL [55], WiFi-SLAM [56], Zee [7]).

While these systems work well with a sufficient number of samples, it is still a

challenge to know which runtime fingerprints stand a good chance to provide a more

accurate location estimation than others. Using just one fingerprint on the go requires

a way to rapidly determine the value brought by each scan.

WiFi fingerprinting can be quite expensive from an energy consumption perspec-

tive if solely relied on for continuous location tracking. Another more obvious dis-

advantage of WiFi fingerprinting is that it works only where there is WiFi coverage.

There are however usually some areas inside buildings not generally considered for

Internet connectivity requirements like the stairs, toilets and some corridors. Despite

this, WiFi fingerprinting can offer the needed correction for a PDR based system where

available and if used judiciously as shown with HiMLoc.

2.1.1.3 Hybrid Localization Solutions

Hybrid localization approaches that combine PDR with WiFi fingerprinting try to avoid

the disadvantages of either of those two individual approaches: PDR have enough

correction instances to reduce the error accumulation in the navigational component

and there always is a location estimation no matter whether is WiFi signal coverage or

not.

Combining PDR with WiFi fingerprinting has been considered in [6] and [57]. The

UnLoc system [6] combines the use of inertial sensors (accelerometer, compass, gyro-

scope) with the notion of natural and organic landmarks that are learnt over time for

indoor navigation. While UnLoc looks to find WiFi landmarks based on the set of APs

it sees, in [57] the use of WiFi fingerprinting is used only in the location where max-

imum signal strength is seen, to correct PDR at those points. While both [6] and [57]

use basic PDR scheme, HiMLoc incorporates a more sophisticated version with activ-
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ity recognition capability that would be needed in more complex environments (e.g.,

multi-floor buildings with elevators and stairs to move between floors). Moreover, un-

like [6] and [57], HiMLoc uses only accelerometer and compass for the PDR which are

present in almost every smartphone, thus achieving greater applicability. HiMLoc is

presented at a high level in its initial form in [13] in the context of Pazl mobile crowd-

sensing based indoor WiFi monitoring system. The current paper provides a detailed

design and evaluation of HiMLoc.

WiFi-SLAM [56] is a pioneer in bringing the robotics technique of SLAM (Si-

multaneous Localization and Mapping) into PDR. By using a detailed model of the

building layout, their PDR implementation can track a person inside the building and

collect WiFi scans to build the radio map at the same time. Their high accuracy is

achieved by using specialized hardware. Similarly, Zee [7] learns the WiFi environ-

ment by using a PDR assisted by particle filter, in a crowd-sourcing manner. Unlike

Zee and WiFi-SLAM, HiMLoc does not need a very detailed building model (the exact

location of each wall); instead a few natural landmarks (position of elevators, stairs and

corners) and some parameters of the building (height of each floor) are sufficient for

HiMLoc to obtain a good level of localization accuracy. Another approach presented

by Faragher et al. [58] was to use smartphones to collect acceleration data in order to

estimate the movements using a Distributed Particle Filter Simultaneous Localization

and Mapping (DPFSLAM). They relied on WiFi signal opportunistically, just to iden-

tify those places where the user has been before. Their experiment setup consisted of

a single floor in an office building, with no intention of using landmarks like elevators

and stairs and movements between floors.

HiMLoc builds on these modern solutions and takes them one step closer towards

an easily deployable and widely applicable indoor localization system.

2.1.2 Indoor-outdoor Detection

Several systems rely on low GPS confidence or inability to get a fix as a hint to infer

that the user is indoors. In [59], the authors use such a GPS based indoor vs. outdoor

hint in a wireless protocol architecture that adapts to different user contexts based on

sensor hints. In [6] and [60], similar approach is used to bootstrap indoor localization

systems. IODetector [14] takes a different approach, relying instead on light, magnetic

and cell based sensor features. It includes an intermediate semi-outdoor state that is

subjective and tricky to interpret/use in practice but has the positive effect of mak-
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ing the IO detection problem somewhat easier on suitably labeled data from a single

environment. More crucially, IODetector uses fixed thresholds for sensor features to

distinguish between indoors, outdoors and semi-outdoors, which as shown in the ear-

lier sections can lead to inaccurate estimations when used across different environment

and device types. UPCASE [61] is a context detection system that uses on-body sen-

sors connected to the phone via Bluetooth, somewhat similar to [10]. It does activity

recognition using a classifier based on various sensor features, also like [10]. From an

IO detection perspective, UPCASE allows distinguishing between user walking (run-

ning) inside and outside using accelerometer and temperature sensors. In contrast to

the above techniques, the proposed solution here is a semi-supervised learning ap-

proach for robust and adaptive IO detection across different environments and devices.

This is the first time semi-supervised learning methods are used for context detection

with smartphones. Closest other setting where semi-supervised learning has been ap-

plied before is for co-localization of sensors and access points in a wireless sensor

network [62].

2.1.3 Human Activity Recognition

Human Activity Recognition (HAR) with mobile devices is a broad topic, which has

developed with the aim to detect user behaviour that allows computer systems to proac-

tively assist users with their tasks. Applications of HAR range from very specific (such

as in assisting with indoor localization) to general recognition in unconstrained daily

life, limited only by desired classes and samples in the training set. Though very dif-

ferent in purpose, HAR applications generally build on acceleration signals predomi-

nantly and increasingly on gyroscope signals.

In the commercial space, Google provides an activity recognition service for the

Android operating system, which can be used by any application to identify when

the user is walking, running, still, cycling and in a vehicle. They make use of the

accelerometer and more recently of the Bluetooth to reduce the latency of detected ac-

tivities1. In similarity to this, Apple has a motion API for their smart watches, inferring

activities like: stationary, walking, running, automotive, cycling and unknown2. These

frameworks are not flexible to define other activity classes like climbing up stairs or

climbing down stairs relevant and small scale events like entering/exiting a room and

elevator movement, all relevant for localization or general purpose household activities

1https://www.youtube.com/watch?v=S8sugXgUVEI
2https://developer.apple.com/reference/coremotion/cmmotionactivity
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like vacuuming, washing dishes or watching TV. The small set of activities detected

by these APIs makes them suitable for limited purposes only, while for more complex

detection tasks, developers need to construct their own solutions.

Gusenbauer et. al, introduced Pedestrian Dead Reckoning with Activity Classifi-

cation, designed to navigate a person in an underground parking lot in [51]. Thus, they

only consider the case of a person walking with the phone in hand and ahead of the

user, not exploring other cases of carrying the phone and assuming no WiFi coverage

in those environments. Ftrack [63] also uses an activity classifier to perform floor de-

tection, having just a limited number of activities that can recognize, like movements

on stairs and in elevator.

Other works explore HAR with more than one sensing modalities, considering both

accelerometer and gyroscope signals from smartphones [64], [21] and smart watches [21].

Generally, the difficulty of detecting user activities comes from not capturing the

full detail of user motion from sensor signals (e.g., acceleration) due to inappropriate

feature selection, which can also be a very difficult task in itself. That is why solutions

taking advantage of the full of information in raw format are preferable, as explored in

Chapter 5 of this thesis.

2.1.4 Other Contexts

The focus of outdoor location tracking research on the other hand has been to rely on

GPS but to use it sparingly. As with indoor localization, various proposals take advan-

tage of other phone sensors (e.g., accelerometer, compass, cellular interface) [8,9,65].

Systems like Sensloc [66] aim to go beyond raw physical location, in the spirit of Sur-

roundSense mentioned above, to provide information about places visited and paths

traveled via combined and energy-efficient use of GPS, WiFi interface and accelerom-

eter on phones. A related issue is dwelling detection, i.e., identifying when user is

in a confined area (e.g., home, shop, office) but not necessarily stationary. Brouwers

and Woehrle [67] present a study of dwelling patterns of users based on three different

sensors (GPS, WiFi and phone’s location service)

There has also been work on sensing other aspects of context with smartphones

beyond location. Some research considers detection of device position (whether in

pocket, handbag etc.). For example, [68] uses combination of light and proximity

sensors on the phone to infer if it is in pocket, in bag or neither. For the same inference,

a previous work [69] has considered different set of phone sensors and a machine
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learning based classification approach. Activity recognition is another issue that has

received fair amount of attention. In [10], the authors present a system that leverages

on-body sensors and user interface of smartphone for reliably detecting various daily

user activities (e.g., walking, reading, working, eating). In an earlier work, Wang

et al. [70] presented a hierarchical sensor management strategy for energy efficient

sensing of mobile phone user activities. Somewhat related to activity recognition is

the issue of detecting user’s transportation mode (walking, traveling on bike, train, car,

etc.). In [11], the authors present a system that fuses phone GPS and accelerometer data

with GIS information to infer the user’s transportation mode. More recently, a more

energy-efficient approach that relies only on accelerometer data is presented in [71].

2.2 Multimodal Sensing and Learning Approaches

Popular methods for learning from multimodal data can be clustered into two groups

differing by which stage of processing the fusion of information from each sensor is

attempted. These are feature concatenation (FC) and classifier merger (CM). Under

FC, data from each sensor is merged immediately into a single vector presented to

classification stages. The solutions proposed for indoor-outdoor detection and human

activity recognition fall in this category. In contrast, CM will train separate classifiers

for each sensor or for a small group of sensors and delays merger until each classifier

has reached a decision. This is the case for the indoor localization solution presented

here constructing preliminary classifications like estimating distance traveled, walking

direction, activity recognition and radio map matching.

FC is highly reliant on the use of not only features that discriminate inference

classes based on single sensor types; but, also it demands the discovery of additional

cross-sensor features. The degree to which multi-modal information is maximized is

dependent on the quality of these hand-crafted features. Often feature selection in con-

cert with the extraction of a large number of candidate features for each sensor type

is attempted to automate, to a degree, this process (a technique adopted, for exam-

ple, by the MSP [72]). However, this approach is bounded by the quality of features

used and can easily overlook inter-sensor relationships – with the number of feature

combinations explored limited by factors like the curse of dimensionality [73].

Like FC, variations of CM are also commonly adopted in multimodal activity mod-

els [74–76]. One key attraction is that existing classifier designs (i.e. combinations of

features and models) that are tested and verified can be adopted for each sensor type
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available. Essentially merging sensor-specific classifier results enables the evidence of

each data type to be considered before a final inference is drawn.

2.2.1 Machine learning with hand-crafted features

This section presents a short introduction to the tools used in the later investigation of

machine learning for indoor-outdoor context detection.

Implementation of experiments was performed on top of WEKA [77], the open

source machine learning software suite. WEKA includes several classification libraries

categorized into eight types: Bayes, Functions, Lazy, Meta, Mi, Misc, Rules, Trees.

Based on popularity in applied machine learning and best performance seen with

our datasets, we focus on a smaller set of classifiers in our analysis. The set of clas-

sifiers considered are: J48 decision tree, Naive Bayes, BayesNet, Locally Weighted

Learning (LWL) and Sequential Minimal Optimization (SMO). Among these classi-

fiers, decision trees, Naive Bayes and BayesNet are popular classifiers used in machine

learning and classification tasks, because they are simple to understand and use, and in

practice often outperform more complex methods.

J48 decision tree works with a sorting of features by importance, and thus works

well where some features are more discriminative than others. Naive Bayes assumes

that features of a data instance contribute independently to determine the class of the

instance, and performs well where this holds. Note that for sensor data on mobile

phones, both these can be expected to hold to some extent. BayesNet classifier repre-

sents information as a probabilistic network of dependencies in an acyclic graph.

As per other methods, LWL uses an instance-based algorithm to assign instance

weights and then performs classification with the use of Naive Bayes, and is effective in

filtering noise. Finally, SMO is a training method for support vector machines, which

are effective in binary classification tasks for datasets with unknown distribution or

non-regular distribution, as is the case with our datasets. These latter methods however

are computationally more expensive.

2.2.2 Particle Filter

A Particle Filter is a numerical approximation to a Bayesian filter [78]. It has a number

of ’particles’, each representing a virtual position with its own weight to describe the

likelihood of the user having that position. Particle filters are usually used in PDR

system to incorporate maps in the system. Particles move independently on the floor
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plan and when they cross a wall they are eliminated, assigning higher weights to the

other particles following the constraints imposed by the floor plan [38]. The only

problem with this way of using Particle Filter is that a very detailed model of the

building is required at deployment time, which is hard to obtain. In our case, the

particle filter has the role of fusing activity classification and PDR estimation from

inertial sensors with an independent location estimation from the WiFi fingerprinting

positioning component.

2.2.3 Deep Learning

Overcoming the shortcomings of shallow classifiers can be achieved with modeling

multimodal context data can be overcome through the use of deep learning; and have

been successfully applied, for example, to images and text for image captioning [30]

or speech and text for machine translation [79]. Such deep algorithms (e.g., Convolu-

tional Neural Networks, Restricted Boltzmann Machines) learn a number of hierarchi-

cal layers of dense feature representations tied to the discriminative task at hand rather

than relying on domain-specific features.

Deep learning is an area of rapid machine learning innovation that is causing dis-

ruptive leaps in accuracy across numerous applications, including the recognition of

words [80], objects [81] and faces [82]. One of the defining characteristics of this

approach is its ability to learn dense hierarchical networks that transform relatively

raw forms of data into inferences (e.g., an activity class). This network merges the

roles of feature extraction and classification stages of shallow modeling methods (e.g.,

SVMs [73]); it also replaces the need for hand-engineered task-specific features with

layers of data representation that act as features and are learned directly from data.

Building evidence from deep architectures and algorithms designed for, and suc-

cessful in, dual modality settings suggest these methods may also help current bottle-

necks in learning cross-sensor features for multi-modal activity models. New training

methods that leverage variation in information [30], multi-view representations [83],

or modified autoencoders [27, 29] are showing an ability to fuse highly heteroge-

neous pairs of data types, such as: text mixed with images [25] and audio linked with

video [26, 27]. The resulting bi-modality deep models offer considerable accuracy

gains in tasks like image captioning [30] and emotion recognition [31, 84, 85] (merg-

ing facial expressions and sound). The goal of this work is to build initial answers as

to how these emerging deep learning techniques can address the challenges of multi-
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modal activity models (such as certain sensing tasks and data types) that are not yet

well explored in the literature.



Chapter 3

A Hybrid Particle Filter based

Approach for Indoor Localization

This chapter presents my work on indoor localization with smartphones. Using the

sensors available on smartphones it is possible to estimate the position of these de-

vices carried by people inside a building with a good accuracy to enable a range of

applications. The novel indoor localization system presented here, HiMLoc, is a hybrid

solution combining two classic approaches for indoor localization, Pedestrian Dead

Reckoning and WiFi Fingerprinting.

This work has been presented in Proceedings of the IEEE International Conference

on Indoor Positioning and Indoor Navigation (IPIN), 2013 [86] where the Technical

Committee nominated our paper for the Best Paper Award. An earlier version of this

work was presented in the Proceedings of the ACM International Conference on Mo-

bile Systems, Applications, and Services (MobiSys) [87]. The application built on top

of this localization system to monitor wireless networks coverage was presented in

the Proceedings of the International Conference on Network and Service Management

(CNSM) [13]. This chapter is built on the work presented in these publications. The

wireless monitoring application was developed with the help from Dr. Lito Kriara who

created the visual interface to visualize the wireless maps.

HiMLoc was started during my MSc project, where I explored an indoor local-

ization system using Pedestrian Dead Reckoning [88] for horizontal movements and

estimating transitions between floors. That earlier version of the system relied on ac-

tivity recognition for distinguishing between walking, being stationary, climbing stairs,

taking an elevator and entering/exiting door, to perform different routines for each type

of movement. This earlier work however aimed at obtaining a single deterministic esti-

25
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mation of a mobile device location each time, as it moves. Here I significantly increase

the robustness by introducing a Particle Filter to perform multiple location estimations

simultaneously considering different movements of a mobile device as well as incorpo-

rating WiFi fingerprinting based estimation. This new paradigm requires probabilistic

models for each constituent component, which was achieved by modeling the error of

measuring the walking distance, modeling the error in heading observations and mod-

eling the confidence in localizing using WiFi fingerprinting. Also note that the process

of transitioning between floors and the activity recognition component are covered in

my earlier work so are left out of this dissertation.

This chapter begins by presenting a system overview of HiMLoc, and going into

details of how each component works as part of the integrating particle filter. The eval-

uation of HiMLoc is described next. A crowdsourced wireless monitoring application,

Pazl, is built on top of HiMLoc to showcase the utility of this indoor localization system

and presented toward the end of this chapter.

3.1 Design and Implementation

This section describes the proposed hybrid indoor localization system, HiMLoc, and

goes into details for each of the fundamental components of this system.

3.1.1 HiMLoc Hybrid Localization Mechanism Overview

HiMLoc system components are presented in Figure 3.1. Phone’s sensors (accelerom-

eter, compass and WiFi card) collect sensor data (acceleration, orientation and WiFi

scans) to be used as direct input to HiMLoc. The Activity Classification component

determines what activity the user is performing within a short interval of time by sam-

pling the Acceleration data. If the estimated activity can be performed in just a very

limited number of places inside a building, like going up and down the stairs or taking

an elevator, then Map Knowledge can assist in determining these possible locations.

Acceleration and Orientation are used in the Pedestrian Dead-Reckoning (PDR) com-

ponent to track the continuous movement. Finally, if a WiFi Scan is available, it is used

to extract a runtime WiFi fingerprint. Such a fingerprint is compared with those in a

fingerprint database (created via crowd–sourcing). Estimations of these components

are merged by the Particle Filter to obtain a single location estimation. At the end of

this process, if WiFi Scan information is available, it is annotated with the estimated
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location and used to update the fingerprint database.

Figure 3.1: Schematic of HiMLoc hybrid localization mechanism.

The main two components of HiMLoc are presented next: (1) the Pedestrian Dead

Reckoning driven by Activity Classification for continuous tracking; and (2) the WiFi

fingerprinting component.

3.1.2 Pedestrian Dead Reckoning Component

The PDR estimates successive positions of a moving pedestrian starting from a known

position through estimations of traveled distance and direction of movement. HiMLoc

uses this method to track the position of a person when walking. However, in order

to know when the person is walking, HiMLoc involves an activity detection phase per-

formed by the Activity Classification component.

Based on the detected activity, the system chooses how to interpret user’s move-

ments. HiMLoc needs this component to distinguish between vertical movements (go-

ing up/down stairs and elevators) and horizontal movements (walking). With the help

of Map Knowledge, activity recognition can provide even more information about the

user’s location. Certain activities like going up or down stairs or taking an elevator can

be performed only at a limited set of known locations inside a building. Getting the

activity right has the effect of providing the needed periodic correction to the PDR in
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order to reduce the accumulation of error caused by noisy sensors and other interfer-

ence on long tracks.

The most suitable sensor for activity recognition is the accelerometer as it is an

inertial sensor permitting energy-efficient sampling at a high rate for continuous track-

ing. Most activities are performed similarly every time and their acceleration patterns

can make them recognizable. All smartphones sense the acceleration on three axes or-

thogonal to each other. Considering that the sensitivity of the accelerometer is the same

on all three axes, the acceleration magnitude will always indicate the same values, no

matter how the phone is oriented:

a =
√

a2
x +a2

y +a2
z −g (3.1)

where g is the Earth gravity, ax, ay and az represent the acceleration perceived on

the Cartesian axes Ox, Oy and Oz respectively in the phone’s frame.

HiMLoc was designed to permit two ways of carrying the phone: in pocket and in

hand. For the case with the phone in pocket only the front of trousers was considered.

In the case of carrying the phone in hand this represents the scenario of the user holding

the phone straight in front and in direction of movement. A common aspect between

these two cases is that the phone can be considered static relative to the user’s body.

The system was trained to recognize the following activities: stationary, walking,

elevator going up, elevator going down, going up on stairs, going down on stairs, open-

ing and closing doors. Each of these were considered in the two scenarios mentioned

before: carried in hand and carried in pocket.

Horizontal movements

(a) Phone in hand. (b) Phone in pocket.

Figure 3.2: Acceleration pattern (raw acceleration with red and filtered acceleration

with blue) when walking.

If the activity performed by the user is determined to be walking, either with the
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phone in pocket or with the phone in hand, the user’s movement is tracked on a hor-

izontal plane, using traveled distance estimation and direction of walking. Next, this

presents how these estimations are obtained.

3.1.2.1 Distance Estimation

Figure 3.2(a) presents the acceleration magnitude pattern of walking with the phone

in hand. The red curve indicates the raw acceleration and the blue curve is the same

acceleration after adding a weighted average smoothing filter. Each step leaves the

signature of a high spike in acceleration, caused by the heel touching the ground, fol-

lowed by a deceleration. To estimate the traveled distance, HiMLoc first smooths the

acceleration to eliminate some of the noise, then applies a zero crossing method to

count the number of steps. In the case of walking with the phone in pocket, the same

technique of counting the number of steps is used, but because the vibrations are more

intensive when holding the phone in pocket, a low-pass filter is also used.

Step length is computed as a linear function of stepping frequency [49]. HiMLoc

computes the traveled distance as the sum of each step’s length. This solution gives

good results, but has its limitations. To evaluate the efficiency of this method of dis-

tance estimation on a window size 3.2 seconds of uniform walking I designed an ex-

periment. By doing several walks at different speeds it was observed deviations of the

distance estimation from the actual traveled distance. The density of these deviations

is represented in Figures 3.3(a) and 3.3(b). Errors of up to 15% were observed that can

have negative effect on the accuracy of the system. This solution enforces the particle

filter to correct for this deviations from the exact distance, as it will be presented in

later subsections (Particle Filter).

(a) Phone in hand. (b) Phone in pocket.

Figure 3.3: Deviations of the estimated distance from the real traveled distance
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3.1.2.2 Direction Estimation

The direction of movement also needs to be estimated. Considering that each smart-

phone has a compass, this can be a good indicator of the direction of movement in the

Earth frame. It is true that compasses are sometimes affected by magnetic interference

inside a building caused by the building structure and electric equipment, but our ob-

servations indicate this interference to be just isolated and not very disturbing when the

person is moving at normal walking speed. Using a time frame to average the compass

indications can eliminate some of the local interference.

Evaluating the compass sensor on a long walk, it stands out that the human body

has a slight rotation in motion which is detected by the compass. Choosing a good size

window to average the compass data can overcome this rotation in order to provide a

more reliable direction of movement. A window size of 3.2 seconds usually captures 6

steps of movement at average walking speed, which allows for every two consecutive

steps to cancel each others rotations. This can be observed from Figures 3.4(a) and

3.4(b), where the compass indication is averaged over the time window and compared

to the true direction of movement.

(a) Phone in hand. (b) Phone in pocket.

Figure 3.4: Deviations of window averaged direction from the true direction of

movement

HiMLoc considers the phone to have a static position relative to the body through-

out the movement. To compensate any deviation of the phone from the user’s frame

orientation, a correction angle is determine after the initial few steps on the corridor,

when the information of the corridor orientation is known from the Map Knowledge,

or after two landmarks where the position of each landmark on the map is known by

assuming the walking movement to be in a straight line.
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The distance and direction corrections are considered in the Particle Filter when

choosing a distance and direction for each particle to progress the PDR.

If the compass deviation suddenly gets close to a right angle, the system infers that

the user has left the corridor, either to go into a room or made a turn to another corridor.

This event is considered as encountering a landmark and the position of the closest one

is used to correct the system as it will be described in the following subsections.

Vertical movements
Elevator movements present a specific pattern, with significant accelerations when

the elevator starts and stops. Figure 3.5 presents these two events of the elevator de-

noted by the two large spikes in opposing directions. The number of floors ascended or

descended by the elevator can be determined from the difference of times between the

start and the stop of the elevator movement. In both cases of carrying the phone (pocket

and hand), the elevator acceleration presents similar patterns. The movement between

floors is more broadly covered in my Master thesis [88], presenting the principles of

movement in the PDR component.

Figure 3.5: Elevator acceleration showing a large spike at start followed by an

opposing spike when stopping.

For the activities of going up and down the stairs, a similar method with walking

of step detection is used. By counting the number of stairs ascended or descended,

the new level can be accurately determined as shown in [88]. Figure 3.6 presents the

acceleration magnitude for the activity of going down on stairs.

Classification performance
Weka1 machine learning library was used to classify the acceleration samples into

activities. The training set consisted of 176 instances of activities from two partic-

ipants manually annotated with the right activity, each activity having at least 6 in-

1http://www.cs.waikato.ac.nz/ml/weka/
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Figure 3.6: Going down the stairs with the phone in hand.

stances. These activities were: stationary, walking, going up on stairs, going down

on stairs, going up by elevator, going down by elevator, opening and closing doors.

All these activities were considered for both cases with the phone in pocket and with

the phone in hand. Features were selected from the time domain (mean, variance,

standard deviation, first integral (velocity), second integral (distance) and interquartile

range) and from the frequency domain (energy and entropy) of the acceleration mag-

nitude. A wider description of this activity classification is presented in my Master

thesis [88], which was also the subject of that work for assisting the PDR system to

detect movements between floors. That investigation showed above 85% accuracy for

activity recognition.

3.1.3 WiFi Fingerprinting Component

This on its own can be seen as a stand alone indoor localization method, but in HiMLoc

is used to complement the PDR estimation by providing additional fix points to reduce

the accumulating error in PDR, integrated by a particle filter.

At run time, the vector of top five strongest APs and their signal strength values

are selected and compared to the fingerprints in the database. The closest matching

fingerprints are selected using Euclidean distance in the signal space (as in [89]). Fin-

gerprints are stored in the database in groups representing cells. Each cell is a square

with the sides of 1 meter and together they form the grid covering a floor plan. To

support continuous update of the training set of WiFi fingerprints, all fingerprint are

annotated with the time when they were collected. Newer fingerprints get a higher

priority in fingerprint selection, thus creating a simple solution to adapt for wireless

infrastructure changes or other changes over time. The centroid of the closest three

fingerprints gives the location estimation of the component.

A crucial observation underlying this use of WiFi fingerprinting is that accuracy
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of WiFi fingerprinting varies in space – some areas provide a higher accuracy of lo-

calization than others. Figure 3.7 illustrates this point. Here accuracy is based on

the distance between ground-truth position and the estimated position with WiFi fin-

gerprinting. Positions with highest accuracy are shown in green whereas those with

lowest accuracy are colored red.

Figure 3.7: Spatial distribution of WiFi fingerprinting based location estimation errors

on the floor plan.

In order to know when a WiFi location estimation is reliable, we introduced the

notion of similarity area of a WiFi fingerprint, which is the area described by all points

in the fingerprint database with a fingerprint close to the one at runtime. A threshold

for the Euclidean distance in the signal space between the runtime fingerprint and each

fingerprint in the database is used to define closeness. We set this threshold empiri-

cally to 12.5 in our implementation. The area spanning all close points determines the

similarity area. Figure 3.8 shows the correlation between the estimation error and the

similarity area.

It was observed that errors of estimation are much lower when the similarity area

is small. While the errors are not necessarily larger when the similarity area is higher,

they are more variable than to the left of the chart, so the solution was to consider the

estimations with a low similarity area as offering a higher certainty of their indica-

tion. In fact, having a small similarity area is an indicator that the fingerprint is well

distinguishable from other fingerprints and similar fingerprints can be found in just a



Chapter 3. A Hybrid Particle Filter based Approach for Indoor Localization 34

Figure 3.8: Overlaying the estimation error and the similarity area indicates a smaller

error rate where similarity area is small, while more larger errors are seen for larger

similarity areas.

small area in the building. HiMLoc assigns higher weights to the estimations with a low

similarity area as they are considered to be more accurate.

3.1.4 Fusion via Particle Filter

HiMLoc uses a Particle Filter to integrate all estimations from Activity Classifier, Map

Knowledge, WiFi positioning component and PDR’s variables (distance and direction).

The role of the particle filter is to correct these estimations that are possibly affected

by noise. This is done by investigating all possible activities based on their probabil-

ity, determining the possible distance deviation and compass deviation in each time

window.

Each particle has its own PDR component where it chooses an activity for each

time window based on the probabilities provided by the Activity Classifier for each

activity, a distance deviation for walking in the time window and a compass devia-

tion. The compass deviation at the window level (Figures 3.4(a) and 3.4(b)) and the

distance deviation (Figures 3.3(a) and 3.3(b)) can be tightly fitted by a normal distri-

bution. Based on their observed behavior in practice, the probability of encountering

any deviation is:

f (x) =
1√

2πσ2
e−(x−µ)2/2σ2

(3.2)

where, x is the chosen deviation, µ is the mean and σ2 the variance of observed

model.
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Based on the probability, each particle selects its own correction values to com-

pensate for the estimated value. In turn, this probability will affect the weight of the

particle. The activity recognition variable gets its probability from the classification

confidence of the Activity Classifier.

The other purpose of the Particle Filter is to prevent the system from getting lost

when the PDR starts accumulating errors. When there is an external assistance, for

instance a position is indicated by the Map Knowledge (e.g. because of a corner), par-

ticles weights are updated inversely proportional to the distance between the particle’s

position and the assistance indicated position. In the case of the WiFi component es-

timations, the confidence of the estimation is determined based on the similarity area.

As it can be observed from Figure 3.8, when similarity area is small, the errors of

WiFi location estimation tends to be small, so these estimations should be assigned

a higher confidence. An exponential model provides the confidence of WiFi location

estimations by indicating high confidence when the similarity area is small and low

confidence when the similarity area is high. The weight of each particle is updated

based on WiFi estimation confidence and on the distance between the position of the

particle and the WiFi estimation.

So, the weight of a particle is updated as a sum of all the weights of the probabilistic

variables:

wi = w0⊕wa⊕wo⊕wd⊕w f (3.3)

where wi is the final weight, w0 is the initial weight of the particle and wa, wo, wd ,

w f are the weights computed for the particle’s variables (activity selection, orienta-

tion, distance and WiFi fingerprinting based fix assistance if available) based on their

likelihoods.

The life cycle of the Particle Filter begins with all the particles having the same

weight at the starting point. There are three steps repeated by the Particle Filter in a

loop:

• Selection of particles. At the start of an iteration, some particles are sampled to

progress and create the new group of particles. This selection is done based on

their weight.

• Weight update based on the variables selected by the PDR. Each particle ran-

domly creates its own set of variables and progresses the particle, updating its

weight accordingly.
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• Observations about the environment update the particles’ weight. If there is an

external contributor like the Map Knowledge or the WiFi positioning, particles

closest to the specific positions get higher weights.

• Weight normalization. The weight of all particles are normalized so that they

sum up to one.

3.2 HiMLoc Evaluation

The performance of HiMLoc was evaluated in three different scenarios. First scenario

was designed to evaluate the performance of the localization system on one floor of

an office environment where frequent landmarks were present, corners and WiFi assis-

tance, with a large training set of WiFi fingerprint-location pairs. The second scenario

was to evaluate HiMLoc performance for movements that span multiple floors. Lastly,

the benefits of hybrid approach taken in HiMLoc are assessed in comparison with the

underlying approaches (WiFi fingerprinting and PDR) on which it is based.

Single floor of an office building
For this an experiment was conducted in the Informatics Forum, which is a mod-

ern office building. Before the experiment, the WiFi fingerprinting component was

trained by collecting multiple fingerprints on the first floor annotating them with their

precise location. This was done in a crowd-sourced manner, data being collected my

multiple users to be joined in a single database on the server side application. There

are already solutions available that can automate this process much faster, like WiFi-

SLAM [56], but we chose this approach to avoid the complexity of other systems and

to have a higher confidence on the training set for the WiFi localization component

that would serve all the other participants. Similarly, the activity classifier was trained

with the sample acceleration patterns from two participants and the classifier was used

to classify activities of all the other participants.

The experimental evaluation of the system involved 5 participants, all with Nexus

One phones running Android 2.3. To evaluate the accuracy of the localization solution,

the following experiment setup was used. A track of about 100m was chosen on the

corridors with multiple points (20 points), representing entrances to offices adjacent

to a corridor, selected to offer the ground truth of our evaluation. Three participants

walked on the track with the phone in hand and two with the phone in pocket. At

the beginning of the track their time was synchronized with a clock and for every
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encounter of a ground truth position, the time was recorded. Location estimation errors

were computed for each ground truth location as the Euclidean distance to HiMLoc’s

location estimation.

Figure 3.9: CDF of location estimation errors.

The localization error of HiMLoc is presented in Figure 3.9. It can be seen that the

accuracy for the case of carrying the phone in pocket tends to be lower than the case

with the phone in hand. This is because counting the number of steps with the phone

in pocket is relatively a harder task.

For the following experiments only the case of carrying the phone in hand was

considered.

Moving between floors
For the second experiment, the second floor of the same building was also added to

the experiment to span the movement over two floors. Starting from the same starting

point on the first floor, the route went up the stairs and followed the second floor

corridor similar to the first floor track. This experiment was designed to evaluate the

training set of the WiFi component when moving between floors in addition to the

normal walking conditions. In the first instance all the WiFi fingerprints from the

entire building were in a single training set. The effect of this was a lot of confusion

in the WiFi component of HiMLoc, making mistakes between floors (Figure 3.10). As

a consequence, we decided to rely on the PDR to estimate the floor and use only the

fingerprints from the same floor as training set for the WiFi component. An extended

evaluation of floor detection when moving between floors is provided in my Master

thesis [88] as part of the proposed PDR system in there. That indicated a very high

accuracy performance which is transferred to HiMLoc.
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Figure 3.10: CDF of localization errors moving between two floors.

Benefit of hybrid approach
The next evaluation was to compare the performance of the hybrid approach HiMLoc

with each of its two underlying localization components: PDR and WiFi fingerprinting.

WiFi fingerprinting alone does not work where there is no proper WiFi coverage and

continuous scanning has negative implications on the battery life. Figure 3.11 presents

the power consumption for two different smartphones. While the accelerometer is

about 5mW and the magnetic about 60mW, the power consumption for performing

WiFi scans is an order of magnitude higher than the magnetic sensor and two orders of

magnitude greater than the accelerometer. HiMLoc uses the cheaper sensors (compass

and accelerometer) for continuous sensing and occasionally WiFi scans, with the effect

of reducing the power consumption of the system.

Figure 3.11: Power consumption comparison between the three sensors on two

devices, Nexus One and Galaxy S3.

To evaluate the improvement of HiMLoc over just PDR, the same scenario over

two floors was used, as presented in the previous section. The route involved walking
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on the corridor at the first floor, going up on stairs to the second floor, walking on

the corridor at the second floor, walking in a large open space, resting on the couch,

walking on the corridor again, taking the elevator back to the first floor and walking

back to the starting point. Using this track, we compared the performance of the PDR

(with activity recognition) with the performance of HiMLoc (Fig. 3.12). We can see

that HiMLoc as a whole performs better as median error (improving from 3.4 meters

to 2.2 meters) but also having lower errors overall, due to occasional assistance from

WiFi fingerprinting when there are long periods of no assistance from Map Knowledge

in the PDR, with the 90-percentile improving from 9 meters to 4.4 meters.

Figure 3.12: Comparison between PDR alone (without the WiFi component) and

complete HiMLoc.

The effect of the WiFi component is to penalize particles that deviate from the

proper direction of movement (when they choose higher deviation from the value in-

dicated by the compass) and reinforce those who are moving closer to the corridor

line.

3.3 Pazl: Using HiMLoc for Crowdsourced Indoor Wire-

less Network Monitoring

This section presents an application built on top of HiMLoc we call Pazl that can gen-

erate radio coverage maps through crowdsourcing wireless measurements from many
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people inside a common space. Figure 3.13 shows the high-level system architecture

of Pazl. Measurement and sensor data is collected on phones and then uploaded to

the cloud where, annotated with location is stored for later use. In the merging phase

measurement data from different phones is aggregated to create reports and render the

required coverage maps.

Figure 3.13: Pazl system components.

3.3.1 Pazl System Components

Pazl implementation consists of two parts: a mobile application that collects data from

the phone’s sensors and wireless measurement data (e.g., WiFi scans, cellular signal

strength) and a server application that receives the data to be processed for estimat-

ing the locations of wireless measurements following the hybrid mechanism described

above as well as for associated map visualization and analysis. The phone application

is developed to run on a large variety of Android phones. To provide increased avail-

ability and concurrent access, the server application is developed to run on the cloud

(Google App Engine in our implementation).

On the phone, acceleration, orientation and WiFi scans are collected only when the

user is moving. When the phone is stationary, the compass and the radio interface are

not used to save energy. Only the accelerometer is left on to run at a lower frequency

just to sense when the user is moving again.

The frequency of WiFi scans was chosen to be one scan every 20 seconds, which

is a compromise between keeping the energy consumption low, with each WiFi scan

imposing an extra energy consumption on the phones, but also gather enough data to
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assist the PDR estimation more often.

Data Upload
Data can be uploaded on demand, at a specified frequency, or it can be dependent

on available connectivity options. If the phone is connected to a 3G network, data

upload can be delayed until a connection to a WiFi network is established. Other

upload policies can include other statuses of the phone like if the phone is charging

and others. In the current implementation we considered only upload on demand.

Merging data and Map rendering
When the wireless measurement samples are obtained from different devices, they

are stored in the cloud backend together with the time and estimated location of where

they were collected (via HiMLoc). For visualization of the WiFi/cellular coverage

maps, we use the Inverse Distance Weight based spatial interpolation [90]. Data is

aggregated at a cell level of size 1 m2, by the median value if there are more mea-

surements collected within the same cell. Selecting just a small set of wireless mea-

surement samples based on the time when they were collected, dynamic reports can

be generated, like the behavior of the network in a particular time period over several

days or between different times within a day.

3.3.2 Case Study 1: Indoor WiFi Monitoring

(a) With Pazl (b) With Ekahau Mobile Survey

Figure 3.14: WiFi coverage on a floor in dBm.

Next, Pazl was evaluated in a small scale experiment that reflects crowd–sourced

indoor WiFi site survey. The experiment was performed during a full working day

(from 10am to 6pm), with 5 participants. They were asked to carry their Nexus One

phones with them while moving freely during the day inside the building. No spe-

cific training was required beforehand other than just installing the Android app. This
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analysis focuses only on the first floor, even though participants were allowed to move

freely in the rest of the building using elevators and stairs as demanded by their day

tasks.

(a) With Pazl (b) With Ekahau Mobile Survey

Figure 3.15: Coverage of an AP in dBm.

The WiFi coverage maps obtained with Pazl are compared with the ones from us-

ing Ekahau Mobile Survey tool [28] in Figures 3.14 and 3.15. The Ekahau application

shows the signal coverage only near the locations where measurements were collected,

indicated with distinctive colors, representing different values of the Received Signal

Strength (RSS). For the coverage representation using Pazl, we tried to keep the same

color scheme as Ekahau to allow comparison between the two systems. Pazl estimates

an extended coverage map via spatial interpolation for the entire floor plan, even for

areas with no measurements. In the coloring scheme green indicates very good RSS,

red indicates poor RSS, and other values of RSS are represented with a mixture of the

two colors. Comparison between the two systems can be done through color correla-

tion or values comparisons in areas where they could both estimate the coverage, in

particular on the corridors.

The coverage for the floor is shown in Figure 3.14 and as it can be observed, the

poor RSS was identified by both systems in the bottom left (Pazl indicated -78dBm,

while Ekahau indicated -75dBm) and bottom right sides of the floor plan (Pazl indi-

cated -66dBm, whereas Ekahau indicated -70dBm). We can also observe that both

systems detect stronger RSS in almost the same places, in vicinity of APs. As for dif-

ferences, Pazl estimated a region with low signal strength in the middle of the corridor,

near the elevator, indicating -75dBm, whereas Ekahau recorded the signal strength in

that area to be -65dBm.2

2Based on manual wireless site survey in that area, we observed that the max signal strength varies
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The corresponding results for a single AP is presented in Figure 3.15, with very

close match observed between the two systems. A good coverage of the AP is detected

by both systems closer to where the AP is located and also on the corridor going top to

bottom in the figures. Coverage is relatively worse along the other corridor going from

right to left which we believe is because AP does not have a clear view of that corridor

as it is occluded somewhat by the corner where the two corridors intersect.

Figure 3.16: Channel usage distribution.

Channel usage distribution obtained with Pazl for a floor was compared with a

manual site survey (Figure 3.16). The difference is between 1 and 3 APs per chan-

nel. This maybe because some of the APs located in other parts of the building can

be sensed only in specific areas, which might not have been reached by any of our

participants over the period of the experiment.

Pazl was provided with physical location of campus WLAN APs in the building to

estimate the coverage range (maximum distance of propagation) of APs that are seen

from a floor (Figure 3.17). These are not the exact maximum coverage range of APs

because samples are limited to the areas traversed by participants. Still this experiment

demonstrates that Pazl can detect problematic scenarios such as the APs that have

unusual coverage. Analyzing a particular case, an AP located at the fifth floor was

sensed at the first floor, over 55 meters away. This is due to the layout of the building

which is mostly glass inside and has a large open area in the center. Observing this

in addition to the fact that this fifth floor AP shares one of the heavily used 2.4GHz

channel with other APs on the first floor, it is obvious that channel allocation is poorly

done risking interference related performance degradation from a user perspective.

between -71 and -76dBm and that the nearest AP is shadowed by the corner of the wall. With only one
run, this area may have witnessed direct line of sight when surveyed using the Ekahau tool.



Chapter 3. A Hybrid Particle Filter based Approach for Indoor Localization 44

Figure 3.17: Coverage range of APs on a single floor obtained with Pazl.

3.3.3 Case Study 2: Indoor Cellular Coverage Measurement

The functionality of Pazl was extended to collect measurements of the cellular signal

strength as well. Cellular signal strength was collected in an experiment involving

three participants in similar conditions as presented in the case of WiFi mapping. The

phones used in this experiment were two Nexus 4 devices (collecting 85% of the mea-

surements) and a Samsung Galaxy S3 (15% of the number of measurements). The

mapping is presented in Figure 3.18.

Figure 3.18: Cellular coverage estimated by Pazl in ASU.

To validate the results we did a direct comparison between the cellular signal indi-

cated by Pazl at a location and the actual observable value at that location. Figure 3.19

presents the CDF of errors in ASU3 (Arbitrary Strength Unit) between Pazl and a man-

ual measurement of ground truth cellular coverage for 20 distinct locations. As can be

seen, the median error is 0 ASU, while the 90-percentile is 2 ASU.

3conversion from ASU to dBm: dBm = ASU – 116
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Figure 3.19: Error in cellular estimation by Pazl compared with the ground-truth.

An important observation is that the position of the phone in relation to the hu-

man body affects the signal strength in a significant amount. For example rotating 360

degrees with the phone in hand indicates differences in signal strength up to 4 ASU.

In mapping the cellular signal strength the exact position of the phone in relation to

the human body was not considered. By measuring the ground-truth, multiple mea-

surements were collected in different directions and using an average to factor out this

effect. Thus, the close match seen in signal strength measurements with automatically

annotated locations using Pazl and manual ground truth at those estimated locations

indirectly validates the effectiveness of HiMLoc localization mechanism employed in

Pazl.

3.4 Discussion

One important subsystem directly affecting the overall performance of HiMLoc is

the activity recognition component. Although explored in greater detail in my ear-

lier work [88], it is worth discussing the impact of this component and the approach

taken in this exploration with regards to activity recognition.

The activity recognition component of HiMLoc was trained using training data col-

lected from two participants, both males in their twenties. Although a small number

of participants contributed data to train the system, the rest of the experiments were

conducted with users reflecting very similar physical construction, thus the impact on

activity recognition across users being limited as also identified in other works [6].

Nevertheless, activity patterns vary substantially between different demographics [49],

and the importance of training on a large population cannot be neglected for a produc-
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tion system that needs to operate across a larger diverse population. Chapter 5 also

highlights the importance and need to customise the estimator to specific users, pre-

senting differences of up to 10% which can be observed between a general population

trained classifier and a specialized classifier for each individual. This aspect of existing

differences between user patterns is also highlighted by the potential to perform iden-

tity detection simply from gait acceleration patterns [91], indicating subtle variations

in how different people perform these actions.

3.5 Summary

This section presented a new hybrid indoor localization system that combines in stages

the information inferred from multiple sensors. Such, the acceleration signal is used

to estimate the user activity, and traveled distance. The orientation of the phone is

estimated with assistance from an electronic compass. WiFi scans are used to estimate

a location which is assessed for accuracy based on previous observations. These are

integrated through a particles filter to estimate a single location. Achieved accuracy of

location estimation is within 3 meters on average.

An application was created based on this indoor localization system to generate

radio maps from participants moving freely through a building. Comparing with com-

mercial applications this achieves similar performances for WiFi networks and it ex-

tends to cellular coverage as well.



Chapter 4

A Semi-Supervised Learning based

Approach for Indoor-Outdoor

Detection

The environmental context of a mobile device determines how it is used and how

the device can optimize operations for greater efficiency and usability. This chap-

ter explored the problem of detecting if a device is indoors or outdoors by employing

semi-supervised machine learning methods and using only the lightweight sensors on a

smartphone. Among the methods explored in this chapter, a particular semi-supervised

learning method called co-training is observed to perform best on this task. It is able

to automatically learn characteristics of new environments and devices, and thereby

provides a detection accuracy exceeding 90% even in unfamiliar circumstances. It can

learn and adapt online, in real time, at modest computational costs. Thus the method

is suitable for on-device learning. Implementation of the indoor-outdoor detection ser-

vice based on this method is lightweight in energy use. It is shown to outperform

existing indoor-outdoor detection techniques that rely on static algorithms or GPS, in

terms of both accuracy and energy-efficiency. It uses fast classification and incremen-

tal learning techniques which can be run entirely on the phone, thus preserving user

privacy and saving communication costs.

This research was a joint work with Panagiota Katsikouli, Rik Sarkar and Mahesh

K. Marina and was presented in the Proceedings of the ACM International Conference

on Embedded Networked Sensor Systems (SenSys) [76], with an earlier version ap-

pearing as a poster in Proceedings of the ACM International Conference on Mobile

Computing and Networking (MobiCom) [92]. As part of this collaboration I led the

47
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development and experiments and unless stated otherwise, the work presented here was

undertaken by myself. Significant contribution by Panagiota Katsikouli is reflected in

assessing the feasibility of using machine learning for indoor-outdoor detection and

characterizing the collected dataset.

The chapter begins by presenting the limitations of previous methods for indoor-

outdoor detection and showing the opportunity for machine learning to bridge this gap.

After presenting the collected dataset, a set of machine learning techniques are eval-

uated for their performance on our task, including unsupervised learning and semi-

supervised learning. It was observed that Co-training performs the best on this task

and details of how this was achieved is presented further in this chapter. Taking these

observations, co-training is employed in a real-world application running on a smart-

phone to enable and disable the WiFi interface based on context (switch off outdoors

and switch on indoors). The energy savings of 60% clearly show the benefit of using

this method.

4.1 Preliminary Exploration and Critique of Existing Indoor-

Outdoor Detection Techniques

This section presents the characteristics of sensor signals in indoor and outdoor envi-

ronments, and how existing approaches perform with respect to detecting those envi-

ronments. As previously mentioned, the most common methods are detection using

GPS based methods (as in [6, 59]) and using IODetector [14]. I developed an Android

application that records continuously or on demand the values of sensors available on

the smartphone, and through a graphical interface users can indicate the ground-truth

state (indoor or outdoor) as they transition from one to the other in different environ-

ments, which is also recorded. This initial exploration is intended to show the limita-

tion of the two most commonly used methods for distinguishing the contexts. A small

dataset was collected in the campus area across 5 university buildings, capturing the

transition between indoors and outdoors, which is the basis for this initial analysis.

4.1.1 GPS based IO Detection

GPS signals are usually available outdoors where the sky is directly visible, and are

often weak or unavailable indoors where the sky is obscured by ceilings and walls.

Thus, the estimated accuracy of GPS localization can be used to infer if a user has
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moved from outdoors to indoors or vice versa [6].

The main drawback of GPS is its high power consumption – it is the most power

hungry sensor on a smartphone. This was observed using a custom mobile application

developed to enable and disable each sensors and measure their power consumption on

a Samsung Galaxy S3 phone. Using the Monsoon Power Monitor1 device the power

consumption was measured precisely the by bypassing the battery input to the device

with the measurement tool as a power source as shown in Figure 4.1.

Figure 4.1: The setup for measuring the power consumption from a Samsung Galaxy

S3 devices, replacing the battery input with the Monsoon Power Monitor device.

This experiment shows that GPS consumes 370mW in operation (Figure 4.2) –

much higher than all other sensors. Note that power consumption for WiFi interface in

Figure 4.2 refers to the average over one WiFi scan while the power consumption for

the cellular interface is for obtaining a passive signal strength measurement. Repeating

the experiment with other smartphones shows similar behavior.

Evaluating the GPS-based localization as a method to detect indoor/outdoor state

indicates that it is not particularly reliable. Figure 4.3 shows how GPS locations can be

estimated inside of a building frequently with high confidence, similar to the outdoor

behavior. GPS can sometimes get a satellite fix indoors, for example when the user is

close to a door or window, which can be beneficial in localization [60], but reduces its

reliability as an indoor-outdoor classifier. Based on these experiments, it was observed

that GPS often continues to report fixes for up to 10-35 seconds after the transition

from outdoors to indoors has happened; this is illustrated in Figure 4.3. Consequently,

as shown in the following sections, this only gets an accuracy in range of 70% to 80%

1https://www.msoon.com/LabEquipment/PowerMonitor
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Figure 4.2: Power consumption of various sensors on a modern smartphone

(Samsung Galaxy S3).

when using GPS localization inaccuracy (in comparison with an appropriately chosen

threshold) as an indicator to detect indoor/outdoor state.

Figure 4.3: GPS accuracy at outdoor-indoor transition: GPS continues to provide fixes

indoors; localization accuracy worsens gradually. Gaps indicate that GPS fix was not

obtained at those instances.

4.1.2 IODetector

IODetector [14] is a recent work using primarily the cell, light and magnetic field

sensors to determine indoor/outdoor state. Based on experimental data, IODetector

establishes some characteristics of these quantities from empirical observation: (1) In

daytime, in outdoors, light intensity is typically much higher than indoors; (2) When

the user’s context changes from outdoors to indoors, the cell signal strength drops

rapidly due to attenuation from walls and ceilings; and (3) Magnetic field intensity
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measured on phone tends to fluctuate rapidly when the user is moving indoors due

to appliances, electric currents and metallic objects nearby, compared to open spaces

outdoors. IODetector correspondingly runs 3 primary detectors which provide their

individual estimates for three environment states (indoor, outdoor, semi-outdoor), and

corresponding confidence in those estimates. Then IODetector aggregates these results

together. The state that receives the most overall confidence in estimations, is output

as the current state.

The semi-outdoor state in IODetector is intended to cover the situation when a user

is close to a building but still outside, or is in a semi-open environment, and the signals

from the sensors do not easily distinguish between indoor and outdoor. However, for

this work we decided to concentrate on the basic states, which are indoor and outdoor,

since these are the ones most relevant to context adaptive applications. An uncertain

state like semi-outdoor is difficult for many applications to interpret since the environ-

ment characteristics there are not defined. Indoor/outdoor transitions are relatively ob-

jectively defined, by crossing a threshold such as a door, but the determination of a state

to be semi-outdoor is subjective, since in absence of a precise definition, any state can

be treated as semi-outdoor. This makes it difficult to obtain meaningful ground-truths

from users to evaluate the accuracy of a method using semi-outdoor state. As shown

here, even though more challenging, it is possible to design a system that produces

accurate indoor/outdoor detection without relying on uncertain intermediate states.

I evaluated the individual primary detectors as well as combined IODetector on

our dataset. This data was collected in the ideal way for IODetector, with the phone in

hand and in front of the user, exposed to the light and electromagnetic signals. Note

that IODetector paper also describes a stateful detector based on a Hidden Markov

Model. As the stateful scheme was shown to provide only a marginal improvement in

accuracy over the simpler stateless scheme outlined above, so the focus in the detailed

examination below is only on the latter.

Light Detector. Broadly speaking, the light component of IODetector operates using

two thresholds. If it is daytime then it checks for light intensity L > 2,000Lux, in

which case it outputs Outdoor, else it outputs Indoor, with high confidence. At night

time, it checks for L < 50Lux to produce a low confidence output of Outdoor, else it

outputs Indoor.

Evaluating the light detector on our dataset it was found that even the high confi-

dence results do not always hold due to differences in climate and weather conditions.

As observed from these experiments, in 4 out of 5 cases the light intensity did not go
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beyond 2,000Lux even in the plain open area outdoors. This behavior is closely tied to

the weather: in a day with heavy clouds, the value of 2,000Lux is never reached. The

observation was tested on multiple phones with the same outcome. This discrepancy

is clearly a result of testing in a different place and in different weather conditions

compared to the original development conditions for IODetector.

Figure 4.4: Light intensity at outdoor-indoor transition: light intensity drops on move to

indoors, but outdoor intensity can be lower than IODetector threshold to detect outdoor

state.

Figure 4.4 shows variation in light intensity at an outdoor to indoor transition,

where a different threshold could have easily detected the state change. This suggests

that light intensity is in fact a good feature to consider, provided the threshold can be

determined suitably. But light sensor has the drawback that it is easily obstructed. If

the phone is in a pocket or handbag, light does not help. IODetector uses the proximity

sensor to detect when the phone may be in pocket or bag, and thus disregards the light

sensor readings at those times.

Cell Detector. The cell detector component of IODetector looks for change of cellular

signal strengths by 15 dBm (7.5 ASU) in an interval of 10 seconds, to detect transitions

between indoor and outdoor. IODetector uses aggregate signal strengths of multiple

towers, which on Android will require the phone to operate in GSM mode disrupting

its normal use. Thus for these experiments the signal strength from the cell tower the

phone is associated with at the time of measurement was used as cellular information.

In many cases, transitions between contexts do not have this slope. Figure 4.5(a)

shows such a case where the change in signal strength is slower than the threshold at

the transitions. On the other hand, when the user is moving from room to room inside
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a building, the presence of walls can cause the signal to change rapidly (Fig. 4.5(b)).

(a) Cell signal at transition (b) Cell signal variations indoor

Figure 4.5: (a) At a transition, cell signal can change by less than 15dBm in 10

seconds. (b) During movements inside a building, cell signals can change faster than

15dBm in 10 seconds.

Derivatives (slopes, rate of change etc) of signals, while useful in principle, are

sensitive quantities susceptible to noise, and as a result, can produce erroneous results

as shown in Figure 4.5. Further, such quantities can only detect transitions; they cannot

detect the state when the user is static. To make use of the cell signal derivative, the

detection system has to be running continuously, since it cannot provide any informa-

tion until a transition happens. Thus it cannot be used for a power efficient detector

that can be activated on demand.

Magnetic Detector. The magnetic detector component of IODetector works by in-

specting the variance of magnetic field strength measured in µT in a time window of

10 seconds. If this variance is above 18 then the environment state is determined to be

indoors, otherwise the component outputs an outdoor state.

The finding here is that this component has the lowest accuracy of all at 40% or

lower. One example is shown in Figure 4.6, indicating that outdoors the magnetic

variance is usually below the threshold but indoors there are very few situations when

the variance in a 10 second time window goes above the threshold of 18.

IODetector with all components. The results of all components combined can be

seen in Table 4.1, for data from university campus with the user entering and leaving

5 different buildings. The overall accuracy is about 71.30%. The data was collected

in partially cloudy weather, and included approximately equal volumes of indoor and

outdoor samples. This table shows results for a single device (a Galaxy S3 phone),
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Figure 4.6: Magnetic variance fails to detect an indoor state with given threshold.

results are in the same range with those obtained by other devices (Nexus 4 and Nexus

5).

Building IODetector IODetector –
Accuracy(%) without light sensor(%)

Building1 78.32 66.2

Building2 85.87 41.12

Building3 57.19 41.67

Building4 60.11 88.6

Building5 75.02 39.68

Average 71.30 55.45

Table 4.1: Accuracy of IODetector inside/outside 5 different buildings in our campus.

Since light sensor tends to be often unavailable due to the phone being inside a

pocket or handbag, Table 4.1 shows results for detection without light information.

The overall accuracy falls to 55.45%, which suggests that IODetector is in fact heavily

dependent on light for accurate detection.

Also, Figure 4.7 shows the results for a specific time slice, where the IODetector

is first confused by the Light Detector that the environment state is indoors for the first

30 seconds, whereas the Cell detector reacts only at around 110 seconds mark to detect

the outdoor transition.
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Figure 4.7: Decisions of all components, IODetector, and ground truth in a specific

case. Blue: Indoors, Red: Outdoors, Gray: Undetermined. Cell signal derivative fails to

produce results until the second transition.

4.1.3 Summary of preliminary investigation

To summarize these findings, the GPS based method is impractical due to its high

power requirements, and is also not very accurate. IODetector is lightweight, but the

plots shown above suggest that a difference in environment between where IODetector

was designed and where our experiments were made causes it to produce poor results.

While the essential trends utilized by IODetector were clearly present, the hard-coded

thresholds it uses to estimate the indoor/outdoor states do not hold. The use of different

phones is also a contributor to the poor performance observed with IODetector.

4.2 Opportunity for Indoor-Outdoor Detection with Ma-

chine Learning

Indoor-outdoor detection is essentially a classification type problem in machine learn-

ing: given a tuple of features based on measured sensor values, this can be classified

to either Indoor or Outdoor. The most common classification technique – called su-

pervised classification – works as follows. It is first provided some feature tuples with

associated class labels (i.e., in our case, ground truth environment state — indoor or

outdoor), from which a classifier is built or trained. This classifier essentially encodes

the pattern of classes found in the labeled data. Afterwards, this encoded pattern or

classifier can be used to infer labels of new data with unknown class. This works,

provided the fresh data follows similar patterns as the training labeled data used to
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Figure 4.8: Accuracy of IODetector and GPS compared with several supervised

learning techniques on the original smaller dataset. Classifiers used the primary set of

features similar to IODetector, while the threshold for GPS was determined using the

J48 classifier on another dataset. Supervised classification easily outperform the two

existing methods

build the classifier. Supervised classification can deduce relatively complex relations

between different features (attributes) in the labeled data. Thus classifiers are more

general and powerful than methods that treat features separately (e.g., [14]).

The set of features (sensor data) considered for this investigation of supervised

learning are:

1. Primary features: Light intensity, Cellular signal strength and Magnetic vari-

ance. (This is analogous to IOdetector, but we use cell signal strength instead of

its derivative.)

2. Extended feature set: light intensity, sound intensity from microphone, tem-

perature from battery thermometer, magnetic variance, cellular signal strength

and proximity sensor value.

The extended set of features intuitively contains elements to detect important phys-

ical variations expected between indoor and outdoor – light, sound, electromagnetic

signal in different bands etc. The primary set of sensors allows a direct comparison

with IODetector for reference and to gain better understanding of benefits by using

multiple sensors.

Using the dataset presented in Section 4.1 for direct comparison between classifiers

with the primary set of features and IODetector, we can observe that supervised clas-

sifiers clearly outperform IODetector by identifying better patterns between features.

This evaluation was performed with a 10-folds cross-validation for classifiers using
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the university campus (5 buildings) dataset. To compare with the GPS based method,

a threshold for the GPS inaccuracy values was determined from the larger dataset to

be beyond 8m, or 1 minute without a GPS fix for the indoors state.

Results presented in Figure 4.8 show that supervised learning classifiers produce

better detection of indoor/outdoor state than GPS based method and IODetector. While

existing methods detect the environment with an accuracy of at most 80%, the use of

popular supervised classifiers give results with accuracy greater than 95%.

These observations clearly indicate the opportunity for using machine learning to

distinguish between indoor and outdoor spaces better than previous solutions. The

following section extends the study in this section using a larger dataset comprising

measurements collected from different environments.

4.3 Large Experiment across Multiple Environments

After identifying the limitations of existing systems for IO detection and the opportu-

nity for using Machine Learning to improve accuracy, this section expands the evalua-

tion to a wider dataset covering multiple environments.

4.3.1 Experimental Setup

Data collection. We collected indoor and outdoor data from several different types

of environments such as university campus, city center and residential areas, with two

different types of phones (Nexus 5 and Galaxy S3). Two participants took part in this

experiment and they were asked to move freely in those environments with normal use

of the phone, including putting them in pocket or handbag when not in use. The only

constraint was to input their transition between indoor and outdoor, which is necessary

for having ground truth to generate labeled training data as well as for assessing the

accuracy of different classification techniques.

Data consisted of sensor readings from the set of sensors available on smartphones

(light, proximity, magnetic, microphone, cell, WiFi, GPS, battery thermometer). The

type of environment where data was collected was also recorded:

• Campus area – buildings of university, concentrated in a small area inside the

city.

• City center – downtown area with public buildings (like shopping centers, train

stations, restaurants etc.) situated in the city center.
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Figure 4.9: Accuracy with supervised classification on the larger and diverse dataset

but using labeled data for training from all environments.

• Residential area – private buildings in residential area, i.e. homes of participants

and friends.

Dataset Campus Area City Center Residential Area

Dataset 1 1,259 1,337 1,271

Table 4.2: Number of instances in each environment collected as part of the larger

dataset for the machine learning approaches.

Distribution of the collected data across environments is presented in Table 4.2.

This larger dataset was collected with a Google Nexus 5 phone and in time this was

two months later than the earlier described dataset used for the characterization of the

two previous methods for IO detection.

4.3.2 Baseline with Supervised Learning

Using this larger dataset, supervised classifiers with a 10-fold cross-validation over the

entire dataset achieve accuracy typically over 90% (Fig. 4.9).

The results in Figure 4.9 are deceptive though, as the use of 10-fold cross validation

implicitly means that labeled data for training the classifiers spans all the environments

across which they are tested. It is impractical to ensure labeled data from all possible

environments that a mobile user may encounter. What the results suggest, however, is

that sensor data from mobile phones contains sufficient information such that good de-

tectors based on classification are possible, provided the training data is representative
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of the overall dataset. They also show that extended feature set is beneficial in most

cases, though marginally.

The important questions is whether a classifier trained on labeled data from a sub-

set of environments is effective when used for IO detection in a new previously unseen

type of environment. To emulate this, the larger dataset was split into the three broad

environments (campus, city center and residential area), with the classifiers trained on

one of the three environments and evaluating them on the other two for classifying

indoor/outdoor states. These experiments performed by my colleague, Panagiota Kat-

sikouli, indicate that supervised classifiers fail to transfer to unfamiliar environments,

giving results well below 90%. Results for each of the three scenarios (training on one

environment and evaluating on the other two) are presented in the paper [76], as well

as explanations for why this is the case from an environment diversity perspective.

Main conclusions from supervised classification:

1. Learning based classification produces substantially better results (with over

90% accuracy) than static detection algorithms.

2. Supervised learning on one environment does not translate to unfamiliar envi-

ronments, as observed by my colleague Panagiota Katsikouli in [76].

These results are promising: they show that sensor signal data contains enough

information to effectively discriminate indoor vs. outdoor. But they also imply that

a more adaptive method to automatically learn the properties of new environments

continuously. Next sections investigate such methods for continuous learning in new

environments.

4.4 Robust Indoor-Outdoor Detection with Semi-Supervised

Learning

This section presents the exploration of machine learning methods to continuously

improve the system learning process while the phone is used across different environ-

ments. This requires a way to continue learning in a new environment without the

need for involvement from users to gather ground-truth indoor/outdoor state informa-

tion (for labeling training data).

Semi-supervised learning [93] offers a good solution for this problem: using the

available “unlabeled” data to improve classification tasks when labeled data is scarce

or expensive, as it is the case for the IO detection problem.
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The three different solutions to learn from unlabeled data considered here are: (1)

clustering which tries to group completely unlabeled data, then associate class labels

to groups using small amount of labeled data; (2) self-training where a classifier built

from some labeled data, tries to learn subsequently from its own outputs on unlabeled

data; and (3) co-training where multiple classifiers learn from each other’s outputs.

These methods fall under the category of semi-supervised learning since they make

use of both labeled and unlabeled data, and we show in the following that in fact

these methods work well for indoor-outdoor detection. See [94] for a survey of semi-

supervised learning techniques.

4.4.1 Cluster-then-Label

Clustering methods (also sometimes referred to as unsupervised learning) group in-

put data points into subsets of similar items. Clustering methods do not need any

labeled data, and are thus useful in uncovering unsuspected pattern/structure in the

data. See [95] for more discussion of clustering. However, when clustering is applied

for classification problems, the absence of any supervision might result in wrong as-

sociation between clusters and classes. This is where some (even if small) amount of

labeled data can help. This semi-supervised learning method is called “Cluster-then-

Label” [93] and works in two steps. In the first step, all available data instances are

clustered using a clustering technique (e.g., K-Means). In the second step, labeled

data instances within each cluster are used to train a supervised classifier (e.g., Naive

Bayes) which is then used for inferring the class labels of remaining instances of each

cluster. In other words, classification is done using a set of supervised classifiers (one

per each cluster).

This cluster-then-label method was explored considering two different clustering

algorithms (K-Means and Expectation Maximization (EM)) and three different super-

vised classification techniques (Naive Bayes, LWL and J48 decision tree). For this

evaluation the larger collected dataset is used. Specifically, this dataset contains more

than 3,000 data instances and spanning three different environments (campus, city,

home); of these, 300 instances taken from one of the environments (campus) make

up the labeled data. Results from this investigation are presented in Figure 4.10 which

shows detection accuracy in the region of 70%. This result, while confirming the earlier

observation from supervised classification that there is some information in the data to

aid classification, also indicates that the cluster-then-label method cannot effectively
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learn across environments.

50 60 70 80 90 100

K−Means

EM

Accuracy (%)

 

 

71.81%
65.04%

67.30%

72.22%
70.85%

71.96%

NB classifiers

J48 classifiers

LWL classifiers

Figure 4.10: Indoor-outdoor detection accuracy with cluster-then-label method.

Performance not good enough for our problem.

4.4.2 Self-Training

Another semi-supervised learning method worth exploring is self-training. In this

method, a classifier is first built with the available labeled data using a standard super-

vised learning technique (e.g., Naive Bayes, decision tree). Afterwards, as the system

generates class labels for new unlabeled input, these output labels are used to re-train

the classifier. The idea is illustrated in Figure 4.11. The classifier thus attempts to learn

over time as it incorporates more data into its model. More detailed discussion can be

found in [94, 96].

Classifier
construction

Classifier
Labeled data

unlabeled data

output=
(input, class)

Figure 4.11: Self training. The output of the classifier is treated as labeled data to build

improved classifier.

This strategy is evaluated with different classifiers and the extended feature set on

the larger dataset. In each case, the initial classifier is trained on labeled data from

one particular environment, then it is left to self-train with unlabeled data from the
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Classifier Environment Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)
Unlabeled data 100 200 300 400 500

Naive Bayes home+city 76.6 76.83 76.91 79.16 82

campus+city 75.58 75.58 75.58 77.91 80.58

campus+home 89.4 92.3 92.5 91.5 92.3

J48 home+city 77.16 77.16 77.16 79.5 82.16

campus+city 75.58 75.58 75.58 77.9 80.58

campus+home 79.16 80.25 81.91 79.16 80.58

Table 4.3: Self-training accuracy performance with the indicated environments being

the ones from which the unlabeled data come from, while labeled data was taken from

the other (third) environment. The number of labeled data is 300 in all cases, the

number of unlabeled data varies as shown, and a separate set of 1,200 instances

(drawn equally from all environments) are used for evaluation in all cases. Self training

makes some improvement, but not enough.

unfamiliar environments. Evaluation was done on distinctive instances in the dataset,

different than the ones used for the initial training, all from unfamiliar environments in

the dataset.

As seen from Table 4.3, the accuracy of self-training is better than the previous

clustering based method by about 5% in most cases. The table presents the accuracy

of self-training by varying the number of instances used for additional training with

unlabeled data before the evaluation. The accuracy is generally below 90%, with a few

exceptions going above this. As observed from these results, self-training is not good

enough to our task as some instances have poor performance for a reliable system.

4.4.2.1 Online learning with a ground truth provider

In order to understand if the failure of self-training to learn from unlabeled data is sim-

ply due to its own created labels being unreliable or due to some more complex reason

related to the nature of the inaccuracy, this section explores the impact of additional

training labels accuracy to the performance of self-training.

This is explored using an Unreliable Ground-truth Provider (UGP); it is built using

the manually obtained ground-truth state information in our datasets2. UGP works as

follows: it returns the correct label with a specified probability p, and with probability

1− p it returns the incorrect label. After building the initial classifier with labeled data,

the system continues to train on a small set of data labeled correctly by the UGP with

the probability p. The results are shown in Figure 4.12 as a function of the probability

2This is unrealistic in practice. This ground-truth information is used simply to understand the
shortcomings of self-training.
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Figure 4.12: Accuracy using unreliable ground truth provider (UGP) on dataset 1. 300

correct labels for initial training from a training environment, 1,000 unreliable labels

with probability p from other environments, and rest for evaluation; averaged over all

training environments. Results show very good performance even with small values of

p∼ 0.65 to 0.80.

Even with a very unreliable ground truth provider – one that gives correct labels

only 65 to 80 percent of the time, the results are very good at about 90% or more. But

self training fails to get comparable results with an underlying classifier that produces

the similar quality of data.

The quality of ground truth provider output that distinguishes it from the classifier

output is that its unreliability is completely random, and therefore unbiased, while the

classifier output suffers from biases. Therefore, the failure of self-training does not

stem simply from the data being unreliable, it is likely due to specific properties of the

classifiers and their outputs and self-training itself, reinforcing its own errors and not

learning suitably.

Thus, if we can find a source of probabilistically labeled data independent from the

classifier’s own output, we may be able to get better results as that source and the clas-

sifier would not then have same biases. This observation naturally corresponds with

the next semi-supervised learning method, co-training, explored in the next subsection.

4.4.3 Co-Training

Co-training [97] is a semi-supervised learning method using 2 classifiers in parallel

to improve predictions. The classifiers work with different features (sensors) to gain

different perspectives and uncover different patterns. Each data instance is classified
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by the two different classifiers and the result with higher confidence is used to retrain

and improve both classifiers3. The idea is shown in schematically in Figure 4.13.

See [94, 96, 97] for more details on co-training.

Classifier 1
construction
& Update

Classifier 1

Labeled data

unlabeled data

Classifier 2
construction
& Update

Classifier 2

Select higher 
confidence
result

Labeled data

Figure 4.13: Co-training with 2 classifiers operating with different feature sets. The

higher confidence classification for each data is used as the training label to improve

classification.

As concluded in the previous subsection, IO classification methods can do well

even with erroneous input, provided the error in the input does not have the same bias

as the classifier itself. Co-training is a natural choice for such an extensions, since

classifiers working with different sets of features (sensors) are able to complement

each other in online training of indoor-outdoor classification.

4.4.3.1 Feature ranking and selection for co-training

In building the two classifiers for co-training, it is important to balance the feature sets

in terms of quality. Some features like cellular signal or light are clearly good pre-

dictors of indoor/outdoor state, while features like magnetic variance and proximity

sensor value are not so effective. Each classifier needs to have its fair share of effective

features to produce meaningful results. These features are analyzed from an effective-

ness ranking perspective in conjunction with machine learning techniques. This was

done using tools provided in WEKA for attribute selection based on different classifi-

cation techniques. The rankings are shown in Table 4.4.

These features were then split into disjoint pairs of sets considering their ranking,

and assign them to underlying classifiers of co-training method as shown in Table 4.5.

Note that for each ranking of features (Naive Bayes or SVM), there is a a different

distribution of features to classifiers, which is comparatively evaluated shortly.

3Co-training refers to the general idea of two classifiers learning from each other. The implementa-
tion can have many variations. See the cited references.
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Rank Naive Bayes SVM Attribute

precision Evaluation

1 light intensity cell signal strength

2 sound amplitude battery temperature

3 time of day light intensity

4 proximity sound amplitude

5 cell signal strength time of day

6 battery temperature proximity

7 magnetic variance magnetic variance

Table 4.4: Ranking of features by their importance with different methods.

Naive Bayes based selection

Classifier 1 Classifier 2

light intensity, time of the day,

proximity value, battery tempera-

ture

sound amplitude, cell signal

strength, magnetic variance

SVM based selection

Classifier 1 Classifier 2

cell signal strength, light inten-

sity, time of day, proximity value

battery temperature, sound ampli-

tude, magnetic variance

Table 4.5: Assignment of features (sensors) to co-training classifiers with the two

different feature ranking methods.
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4.4.3.2 Evaluation of co-training

Using the large dataset presented in Section 4.3 again, the co-training method described

above is evaluated as follows. First, 300 labeled instances are chosen from the campus

environment for initial training of the two underlying classifiers. Then 1,000 unlabeled

instances are taken from the other two unfamiliar environments. Each such unlabeled

instance is classified using the two classifiers and the higher confidence classification

of the two is associated to the data instance as the “label” for online automatic re-

training of both classifiers. This process is repeated for each unlabeled instance. The

classifiers system so built are then evaluated using a separate set of 1,200 instances in

the dataset with equal representation from all environments.

Figure 4.6 shows the results of this approach. Clearly, co-training performs bet-

ter than self-training with the right choice of classifiers. Naive Bayes and J48 decision

tree outperform the others, with Naive Bayes providing more than 90% accurate detec-

tions with both distributions of features, and better accuracy with SVM based feature

ranking.

4.4.4 Learning Curve

To get a better insight on the process of learning with co-training that was found to be

effective, the learning curve was also explored showing the improvement of classifier

performance with increasing labeled/unlabeled data. The focus was set on Naive Bayes

classifiers and SVM based feature ranking, the combination that provided the best

accuracy results overall in the previous experiment.

First investigation was for the impact of unlabeled data. This was done by taking

the two classifiers working in co-training which are initially trained with 300 labeled

instances from campus environment, then varying the number of unlabeled instances

taken from the three environments in the following order: first 500 instances from

home environment, next 500 instances from campus and the last 500 instances from

city environment. Figure 4.14 shows the resulting learning curve from using a sepa-

rate but identical 1,200 instances taken from all three environments for each data point

(number of unlabeled instances) on the Ox-axis. This clearly shows the learning of

the co-training model in action, especially in the final third of data points. With un-

labeled data from home environment (initial part), learning is modest as most of the

data from this environment is from indoors. The middle part of the graph shows a

steady flat learning curve as there is not much more to learn from unlabeled campus
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Features Classifier 1 Classifier 2 Performance (%) Performance (%) Performance (%)

Distribution Classifier 1 Classifier 2 Co-training

Naive Bayes J48 J48 67.58 83.50 83.0

based LWL LWL 78.17 93.16 78.17

Naive Bayes Naive Bayes 80.00 91.25 91.66
J48 Naive Bayes 67.66 86.67 78.5

Naive Bayes J48 68.41 88.91 89.33

Naive Bayes LWL 74.25 93.16 74.25

LWL Naive Bayes 78.17 86.67 78.17

J48 LWL 67.66 93.16 78.0

LWL J48 78.17 83.33 86.0

SVM Attribute J48 J48 85.58 79.25 86.67

ranking based LWL LWL 78.16 81.91 78.16

Naive Bayes Naive Bayes 94.08 87.33 93.33
J48 Naive Bayes 89.16 87.16 90.25

Naive Bayes J48 82.83 79.66 81.16

Naive Bayes LWL 77.16 81.91 77.83

LWL Naive Bayes 78.16 86.91 86.33

J48 LWL 78.16 81.91 78.16

LWL J48 91.16 77.58 78.25

Table 4.6: Co-training of two classifiers working with different sets of features.

Supervised training was done with 300 data items from campus environment,

co-training on 1,000 random items from the other two environments, and tested on

1,200 items equally from all environments. Produces better performance than

self-training, with Nave Bayes performing best – over 90%.
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data beyond what is already learned from labeled campus data used for initial training.

Ultimately, the co-training model achieves an accuracy over 90% after encountering

sufficient unlabeled data from all different environments.

Figure 4.14: Learning curve of co-training as a function of number of unlabeled

instances.

Also important is the impact of labeled data on the accuracy performance of Co-

training. Figure 4.15 presents this by varying the number of labeled instances (from

campus environment) and for each data point (on the Ox-axis in Figure 4.15) it uses the

same 1,000 unlabeled instances from the other two environments and 1,200 instances

evaluation set as in section 4.4.3.2. It is obvious that after about only around 50 labeled

instances, Co-training model accuracy improves rapidly and stabilizes to peak levels.

This suggests that a fairly small amount of labeled training data is needed up-front for

the Co-training method to function effectively.

Figure 4.15: Learning curve of co-training as a function of number of labeled instances.

4.4.5 Learning across Devices

The evaluation so far was performed on the larger dataset collected with the Nexus

5 phone as indicated in Section 4.3. In practice it is desirable to have a method that
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operates well across different phone device types. For example, a developer can train

and deploy a detection system using their own development devices, while users may

run this on their personal device which is different from that used for the initial training

and possibly with different sensor characteristics. For that reason we collected a second

dataset resembling the dataset collected with the Nexus 5 device, but this time using

the Samsung Galaxy S3 device.

To evaluate co-training across devices, the following experiment setup was devel-

oped. Labeled data collected with the same device in one environment (city) was used

for the initial training of classifiers. Similar to the process presented in previous sub-

sections, additional co-training of classifiers was performed with instances from the

remaining environments, but this time the data was collected with a second device and

different in characteristics. The results presented in Figure 4.16 show that co-training

can successfully learn across devices, with a small drop in performance (compared to

learning on the same device) due to different make and qualities of sensors on different

phones.

65 70 75 80 85 90 95 100

91.25%NB + NB
82.10%J48 + J48

86.00%LWL + LWL
79.34%NB + J48

86.75%J48 + NB
77.53%NB + LWL

87.00%LWL + NB
83.50%LWL + J48

86.50%J48 + LWL

Accuracy (%)

Figure 4.16: Performance of co-training across devices, using the SVM based feature

ranking. Naive Bayes classifiers again provide the best accuracy.

An important observation to make here is that important differences may exist be-

tween phone sensors, which in turn can impact portability of context detection solu-

tions between devices. Although in these experiments the Nexus 5 and Galaxy S3 have

very similar sensor characteristics, clear differences can be observed when comparing

with previous generation of smartphones like the Nexus One, which reports the light

sensor values in discrete values with large gaps between levels, in contrast to most

modern smartphones reporting continuous values. The difficulty of transferring obser-

vations between sensors should not be underestimated. Recent work shows that even
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phones of the same model have unique sensor patterns, which despite being minute,

are enough to identify each phone in a large population [98]. This in fact highlights

the utility of having an adaptive learning system to specialize trained models for each

device sensing characteristics, which is what our Co-training based solution does.

4.4.6 Discussion for Semi-supervised Learning

Semi-supervised learning encompasses a set of solutions taking advantage of the more

abundant unlabeled data with just a small set of initial labeled instances. In addition,

the incremental nature of some of these solutions assures an adaptive characteristic of

the system, which is important for our task.

Accuracy (%)
50 55 60 65 70 75 80 85 90 95 100

Co-trining

Self-training

Cluster & label

Figure 4.17: Direct comparison between the best performing three semi-supervised

methods across all three type of environments.

The three semi-supervised methods considered here, Clustering and Label, Self-

training and Co-training were built around two classifiers, Naive Bayes and Decision

Tree (J48), due to their light overhead and computational efficiency ideal for running

on mobile devices. For the same reasons these two classifiers are the preferred option

for many mobile sensing applications [21]. A direct comparison of the different semi-

supervised learning methods considered is presented in Figure 4.17. This shows that

the best performing solution across all environments is Co-training, taking advantage

of two independent classifiers assisting each other to label new samples. Unguided

clustering with subsequent cluster labeling shows that: 1) there is enough inherent

difference in sensor features to separate between the two sensors with above 70% ac-

curacy without any preliminary guidance; and 2) gradual labeling building on observed

confidence of previous models is a better strategy. This is what Self-training is aiming

for by incremental expansion of training set through labeling unseen samples based on

own classifier expectations. However a single classifier falls into its own bias as shown

by the results for Self-training. So the Co-training solution overcomes this issue by
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having two independent classifiers operating in parallel to select the estimation with

the highest confidence. This solution outperforms all other approaches with greater

than 90% accuracy.

The other observation is that Naive Bayes classifier performs best as part of these

semi-supervised learning solutions, due to its robustness to uncertain observations, fact

also validated by the online learning ground truth provider presented above.

Next section presents a direct comparison between the best performing semi-supervised

method, Co-training, and the other solutions discussed earlier for indoor-outdoor de-

tection.

4.5 Implementation and Evaluation of Mobile Applica-

tion using Co-Training for IO Detector

A context detection service needs to have fast response time, and needs to be lightweight

– both in terms of sensing energy requirements and computational needs. It also needs

to have fair degree of accuracy. While perfect accuracy may not be possible, we would

like its output to correspond to our expectations most of the time. As previously seen, a

major challenge in accurate context detection is variability in sensor signal characteris-

tics across environments, and thus context detection needs to be adaptive and continue

to learn in newly experienced environments.

The results from previous sections show that such an efficient, accurate and adap-

tive IO detection system can be built based on semi-supervised learning, and co-

training in particular. Co-training produces excellent results without using expensive

sensors like GPS and WiFi. Using only the lightweight sensors makes the system

energy efficient. It is stateless and also does not require derivative based transition

detections such as rate of drop of cell signal strength at the transition from outdoor to

indoor. As discussed before, derivatives tend to be susceptible to noises and the need

to detect transitions force services to run continuously. Instead, by using only current

sensor values to detect purely the states and not transitions, the proposed system can

return results on demand4. The IO detection service based on this proposed approach

can thus turn off the sensors and sleep most of the time. When some other application

requests indoor-outdoor context information, the service can wake up and go back to

4Magnetic variance is the only feature that needs measurements over several seconds. But note that it
is the least influential of features (Table 4.4), and in experiments its removal does not change the results
of Figure 4.6 in any significant measure.
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sleep immediately after returning results.

4.5.1 Efficient Implementation via Incremental Learning

As seen in the evaluatin of Co-training (Table 4.6), the use of Naive Bayes classifiers

with features partitioned according to the SVM ranking is the most effective configura-

tion of Co-training. As it turns out, this is also an ideal option from an implementation

perspective. Bayesian classification is extremely efficient and can be done in constant

time once the classifier has been trained (since there is a constant number of sensors).

In classical bayesian classifiers for discrete parameters [95], it is trivial to design an

incremental version that updates the probabilities of the variables on each input. For

real valued data such as sensor readings, it is possible to discretize the values into

suitably sized bins and apply Naive Bayes as usual. Alternatively, a gaussian distribu-

tions can be maintained for each sensor with each class and obtain probabilities from

these distributions [99]. Since both mean and variance can be maintained efficiently

for streaming data, this method can keep the parameters up to date using no additional

storage and at constant computational cost per update.

Implementation of Co-training based IO detector for Android smartphones was

done using the WEKA libraries and in particular the updateable Naive Bayes, which

uses gaussian distributions. This was successfully used to develop a mobile app which

was evaluated on the Samsung Galaxy S3 phone. This obtained 92.33% accuracy

for the same setup as presented in section 4.4.3.2, but this time in online mode us-

ing the Android implementation. This result is compared with alternative methods in

Figure 4.18. In the figure, IODetector (old thresholds) corresponds to the IODetec-

tor with thresholds provided by authors in [14]; the new thresholds variant is using

updated thresholds by inferring these the same 300 labeled data instances used in sec-

tion 4.4.3.2 for the initial training of classifiers, thresholds obtained using a decision

tree classifier for each of IODetector features, just as we did for obtaining inaccuracy

threshold for GPS based method (see section 4.2). This evaluation is updated from the

version presented in our original paper [76] to make it more favorable to IODetector

by compensating indecisive scenarios scenarios to indoors as this is the more common

context. As seen here, re-tuning the IODetector thresholds helps but not much as any

one set of thresholds do not guarantee good performance across diverse environments.

Overall, we observe that the proposed co-training provides the highest accuracy detec-

tion in comparison with existing methods including supervised classifiers.
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Figure 4.18: Accuracy comparison of co-training implementation on phone with

alternative IO detection approaches.

Observe that co-training learns new environments quite rapidly and automatically

without user involvement – using only a few hundred unlabeled data instances. For

example, in Table 4.6, it learns 2 new environments from 1,000 unlabeled data points.

Section 4.4.4 shows similar results. This implies that in general, we do not need to

retrain the classifiers whenever a new unlabeled data instance becomes available. It

will generally suffice to randomly record a small number of points to boost the clas-

sifier sufficiently for any environment where the user spends more time. The feature

of learning from few inputs further helps the energy efficiency of the algorithm. Since

our method is capable of learning across devices, it is easier to deploy it – the devel-

oper can ship the software with the supervised training done on her device, while the

software once installed on the user’s device can continue to learn new environments

through co-training.

4.5.2 Power Consumption

This subsection compares the power consumption of the proposed Co-training imple-

mentation to the GPS based method and IODetector. Power consumption measure-

ments were obtained using Galaxy S3 phone and with the help of Monsoon Power

Monitor in the setup presented in Figure 4.1. The first evaluation of these three differ-

ent IO detection methods is for a one-time use, followed by the evaluation of running

these over a longer period of time (30 minutes).

IODetector power use. IODetector’s power use sums up to about 121mW counting

light sensor, the cellular interface and the magnetometer. The computation costs are

negligible in comparison. IO detector keeps the sensors active continuously.

GPS Energy use per fix. During experiments it was observed that the phone required

between 5 seconds to 45 seconds to obtain a GPS fix outdoors, whereas indoors and
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close to the windows between 15 seconds and 1 minute if it can obtain one. On a

set of 20 random outdoor measurements, the GPS obtains a fix in a median time of

12 seconds, whereas for the indoor case in 25 seconds. The GPS uses 379.94mW for

continuous scans, therefore obtaining a GPS fix outdoor for the median case would

require 4559.28 mJoules. In the optimist view that the GPS obtains a fix indoors,

the energy required for the median case is 9498.5 mJoules. Computation costs are

negligible – simply comparing the measured location inaccuracy against a threshold.

Co-training energy use per estimation. For our implementation with Co-training

the power consumption of all sensors sampling for one second is one average 136mW

(light, microphone, cell, proximity sensors and battery thermometer), whereas for the

magnetic sensor which samples for 10 seconds is 60mW. Thus, cost of sampling the

sensors is 736mJoules.

Co-training method requires additional costs for computation. Inferring the state

consumes 192mW for 0.01 seconds, increasing the cost of estimating a state by 1.92

mJoules. Note that the energy consumed for this operation is dominated by preparing

the measured sensor values (features) in a format required by the WEKA library (as our

implementation of co-training reuses WEKA code for updateable Naive Bayes); this

could be drastically reduced by a clean-slate implementation. Updating the classifiers

incurs marginal energy consumption, in essence changing just a few variables in the

model of the two classifiers, the means and the standard deviations. In total, the energy

consumption for estimating a single state is 738mJoules

Also, the evaluation considered the one time preprocessing cost of the initial train-

ing of the classifier. This takes about 11.4 seconds to train the classifiers at an average

cost of 915.76mW, thus taking 10.35 Joules. This covers the costs of reading the train-

ing file, parsing it, initializing the classifiers and training them, and is dominated by

the first two costs.

Continuous use over 30 minutes. IODetector needs to operate continuously to detect

the state, since its cellular component detects only transitions. The other two meth-

ods (using the GPS inaccuracy and our implementation with Co-training) are stateless,

meaning they can operate just when they are needed. For continuous estimation, state-

less services can be activated periodically. The overall energy use will depend on the

periodicity of this sampling.

Based on the energy requirements measured as described above, Figure 4.19 presents

the energy consumption of these three methods over a 30 minute period for different
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IO detection sampling intervals. IO detector runs continuously at 121mW, thus con-

sumes a fixed 217.8 Joules over 30 minutes. The energy use of GPS and co-training

decreases with the increase in interval between invocations of IO detection service. For

a sampling interval of 10 minutes, the energy consumption of the GPS is 13.6 Joules

outdoors (and 28.5 Joules for the indoors case), while for the co-training it is lower

at 12.56 Joules. From here we observe that the Co-training method is energy-efficient

compared to the other methods for any practical sampling interval.

0 2 4 6 8 10
10

1

10
2

10
3

10
4

Sampling interval (minutes)

E
n
e
rg

y
 (

J
o
u
le

s
)

 

 

GPS outdoor

GPS indoor

IODetector

Co−training

Figure 4.19: Energy consumption comparison between co-training and other methods

for various intervals of IO detection service invocation. GPS based method is

represented separately for outdoor and indoor (near window).

4.6 Case Study - Mobile App to Control WiFi Interface

A natural example of indoor-outdoor context aware power management is to reduce

wasteful WiFi access point scanning automatically performed by the device. Mobile

phones regularly scan the WiFi spectrum for available access points when disconnected

from a network, even when the user is outdoor or traveling with no possibility of con-

necting to a WiFi network; this is possibly the most significant contributor to battery

drain if the user is not making any active use of the phone.

The power consumption of a Samsung Galaxy S3 while trying to associate to a

network is shown in Figure 4.20. The power consumption for each scan is about 250
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mW for approximately 3.3 seconds, repeated every 18 seconds (which is pre-set and

unchangeable). To put this in perspective, in comparison with GPS power consumption

this is as follows. The power consumption of WiFi card to keep scanning for a network

for 5 minutes is approximately the same as what GPS consumes when it tries to get a

location fix continuously for a minute.

Figure 4.20: Power consumption of phone WiFi interface when searching to find a

network to connect to by scanning the spectrum every 18 seconds.

Thus, switching off the WiFi interface while the user is outdoors and switching it

back on when indoors can lead to significant power savings.

Evaluation. The scenario considered here is of a user traveling from her residence

to the university campus during the regular hours of commute (9am and 5pm). The

journey time between the two reference points was on average about 25 minutes and

route spanned three different environments (residential, city and campus areas). Hav-

ing learned about these environments on first exposure to them, the co-training system

was able to reliably detect indoor-outdoor state in both of these environments.

The detection service scanned the sensors once every 2 minutes. The magnetic sen-

sor needs to run for 10 seconds to obtain variance results, while other sensors run for 1

second or less. The sensing power consumption with these scanning characteristics for

an entire travel period, including the CPU energy consumption, is about 25.8 Joules.

On the other hand, when the WiFi is on, it scans once every 18 seconds, consuming a

total of 69.3 joules. Thus, by simply disabling the WiFi interface and scanning lower

power sensors to detect an indoor environment, we make an energy saving of about

63% for this application scenario.
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4.7 Summary

This chapter explored the problem of determining whether a user is indoors or out-

doors using low power sensors readily available on modern smartphones. For this IO

detection problem, existing solutions were shown to be too energy hungry or fail to

provide accurate results across a range of different environments typically encounter

in practice, due to the use of fixed and environment agnostic thresholds in the under-

lying estimation schemes. Observations that further improvements can be achieved by

viewing the IO detection as a machine learning classification problem with 2 classes

(indoor, outdoor) guided this research to adapt classifier models to new environments

and devices in order to achieve robust and accurate detection across diverse settings.

To address the fundamental issue of model adaptation on-the-fly and transparent

to the user, a semi-supervised learning framework was adopted as the ultimate solu-

tion approach. Through the investigation of different commonly used semi-supervised

learning methods, co-training method was found to yield most accurate results across

a range of environments and different devices. An implementation of this co-training

method on Android platforms was presented in this chapter, using an incremental ver-

sion of Naive Bayes classifier. It was shown that this approach outperforms other alter-

native methods in terms of both accuracy and energy efficiency. Also, this implemen-

tation does not incur any communication overhead (as it does not need to communicate

with a backend/cloud) and is privacy preserving. The use case application of switching

off the WiFi interface when the user is outdoors was shown to save considerable power,

thus extending the battery life in usual conditions.



Chapter 5

Multimodal Deep Learning for

Versatile Mobile Context Sensing

This chapter presents the benefits of using deep learning to integrate multiple sen-

sor data streams for increased performance on a variety of context detection tasks.

The hypothesis is that neural networks can identify non-intuitive features much bet-

ter than hand-crafted features, leading to more accurate estimations. In this chapter,

the focus is on a promising Deep Learning representative, Restricted Boltzmann Ma-

chine (RBM) that is able to learn hierarchical representations (i.e., features) of multi-

modal data incorporating difficult to find non-linear cross-sensor correlations and re-

lationships which are the key to maximizing inference accuracy. Experiments show a

general-purpose multimodal RBM model is able to outperform conventional machine

learning classifiers for a wide-range of sensor types and inference tasks. Evaluation

is done on a range of context detection tasks: human activity recognition, sleep stage

detection, indoor-outdoor detection and landmark differentiation.

An earlier exploration of Multimodal RBM for human activity recogniton was first

published in the Proceedings of ACM International Joint Conference on Pervasive and

Ubiquitous Computing, 2016 [100]. The extended version of this work covering ad-

ditional use-cases with the same architecture for mobile context detection is currently

under review at ACM Journal on Interactive, Mobile, Wearable and Ubiquitous Tech-

nologies (IMWUT). The last use-case in this chapter on using deep leaning for WiFi

and magnetic fingerprinting was presented in the Cyberphysical Systems Seminars at

the University of Oxford as an invited talk with the title ”Smartphone-based indoor

localization with multimodal sensing”. This last use-case compares the accuracy of

traditional WiFi fingerprint matching algorithms to that of multimodal RBM integrat-
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ing magnetic field signal and radio signal (WiFi). All these use-cases demonstrate the

generalization aspect of this architecture across many context detection tasks.

This work was developed in collaboration with researchers from Bell-Labs and the

University of Cambridge as part of a HiPEAC research collaboration visit.

5.1 Deep Learning for Multimodal Sensing

The solutions presented in previous chapters as well as the vast majority of currently

available solutions to integrate multiple sensor signals for context detection are shal-

low. This term contrasts them with recent developments in data science, deep learning

algorithms [22, 101], which can also benefit context sensing, following the success

of other research areas (Computer Vision [102], Natural Language Processing [103]

and others). Presented in this section is the variant of deep learning architecture used

for this investigation, showing its ability to learn – purely from data – multiple layers

of feature representation which allows this to overcome challenges in using heteroge-

neous sensor data. To demonstrate this, activity recognition is used as representative

example of context detection with mobile devices.

The multi-layer feature representation of deep-learning architectures allows them

to extract more complex information than readily used shallow methods. Common

shallow methods require a preliminary stage to select a set of hand crafted features

which are used to distill sensor data in pre-processing. The quality of these hand-

crafted features impact system performance (accuracy and speed) directly.

To understand the utility of deep learning for activity recognition under systems

with multiple sensors, this work studies the use of a multimodal version of Restricted

Boltzmann Machines [27] (RBMs) (presented in Figure 5.1). In previous work, this

variety of RBMs have been used to fuse pairs of text, video and audio data for the

purpose of image captioning [25, 30], and speech [27] or emotion recognition [31].

The objective here is to empirically validated if these RBMs are still suited for new

sensing tasks in the space of wearable devices and if their characterizing requirements

are met by these devices.

As shown in Figure 5.1, the architecture used in this work has a separate input for

each sensing modality, allowing initial intra-sensor features extraction through the first

layers of the network. The alternative of uni-modal deep architectures do not have

separate layers per sensor, but concatenating all data streams into one input, which

prevents the network first learning sensor-specific information before these represen-
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Figure 5.1: RBM-specific deep multimodal learning architecture.

tations are unified across all sensors. Previous work has shown this intra-sensor rela-

tionship to be much stronger than inter-sensor counterpart [30].

The Inference Process
Each sensor data stream is provided as time windows or static representations on

each branch of the architecture. Parameters on each feed-forward layer determines how

this information from the initial layer progress from layer to layer until the final/output

layer. Inference ends once the output layer has activated, and an activity or context has

been decided for the input sensor data.

Formalizing the inference process of RBMs: the state (AL+1
i ) of each individual

RBM unit (xL+1
i ) within a layer (L+ 1) is dependent on the unit weights connecting

the jth node in layer L to the ith node in layer L+1. In this fully connected approach

there is a connection between each (xL+1
i ) node to all nodes (xL

j ) on layer L, weighted

as wL+1
i j . Specifically this relationship is computed as:

AL+1
i =

1
1+ exp(−∑ j wL+1

i j xL
j )

(5.1)

As shown in Figure 5.1, separate branches (Mk) exist on the architecture for each

sensing modality (sensor type), allowing relevant information for each sensing modal-

ity to be extracted. There operate independently on each branch until unified later in

the architecture (Ul) to extract global features as composition of the individual branch

distilled observations. As effect, all layers bring their contribution to learning a joint

representation of all sensor modalities. This aspect is expressed as:

P(v, h;Θ) =
1

Z(Θ)
exp(−E(v, h;Θ)) (5.2)
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where v represents the visible units (input modalities), h represents the hidden units

inside the network, Z(Θ) is the normalizing function, E is the cumulative state of the

final layer and Θ = {a,W} represent the set of RBM parameters (a are the biases for

the hidden layers).

In essence, feature learning is performed at the level of network parameters, rep-

resented by the weights between the nodes and network depth. Training is performed

by back-propagation, running several times over the training set, gradually optimiz-

ing the output with gradient descent by adjusting the network parameters to match the

expectation provided as label to each instance of the training set.

Model Training
Conventional RBM training, using unsupervised learning as pre-training followed

by fine-tuning with backpropagation with labeled data [101], had to be adapted to suit

the described multimodal learning architecture. The new training process facilitates

preliminary intra-sensor features learning followed by identifying cross-sensor rela-

tionships.

The approach was to adapt a new form of denoising autoencoder training [27, 29,

31]. This multiple phases training procedure aims to reach a joint probability distribu-

tion over all the sensor modalities, more formally:

P(v1, . . . ,vn;Θ) = ∑
h(2)

1 ,...,h(2)
n ,u

P(h(2)
1 , . . . ,h(2)

n ,u)

n

∏
i=1

(∑
h(1)i

P(vi,h
(1)
i ,h(2)

i )) (5.3)

The initial step is to construct per-modality individual modules that allow the hidden

units of the sensor-specific architecture branches to be set through the conventional un-

supervised RBM pre-training approach. This process is repeated to build up the num-

ber of hidden layers determined for each sensor modality based on a standard hyper-

parameter search. Next, collectively each individual network is joined to initialize the

first shared hidden layer (based on the values of each contributing network). The newly

proposed Dropout mechanism presented in [104] was used alongside autoencoders to

increase robustness to noise by having clean data reconstructed successfully from a

noisy input. Using Dropout has the effect of integrating many virtual neural networks

in the same architecture, thus increasing the robustness to noisy data. Besides Dropout,

interleaved in the architecture are normalizing layers, which guarantee a healthy update

to weights by keeping their distribution in balance.
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5.1.1 Learning representations with Convolutional Neural Networks

Convolutional Neural Networks (CNN) are one of the most successful variant of deep

learning architectures, impacting performance in many research areas [22]. This is

widely seen as the dominant representative of deep learning architectures, so we ex-

plore this as a baseline for the MM-RBM architecture considered here. The approach

for using CNNs with multimodal streams is the same as for the MM-RBM, each net-

work branch (sensing modality) enjoying a dedicated CNN for features extraction be-

fore unifying the information with fully connected layers in the higher levels of the

architecture. The training process and performing inferences are similar to the ones

described for MM-RBM before, so model constructions using CNNs work well with

exploited framework.

Though very similar to standard RBMs, CNNs have a completely different ap-

proach to representing learned information internally. Differences stem from the use

of many convolution filters to slide over input data, each being sensitive to different

patterns in the signal. A good number of convolution filters assures that an architecture

is sensitive to many distinguishable patterns. Figure 5.2(a) illustrate the convolution

process, sliding filter F1 across the signal S. Each filter F1 to Fn is activated to different

patterns in the signal, forming a new representation of the original signal. All of these

representations are flattened to a single dimension with a MaxPooling layer by maxi-

mum signal across filters. Figure 5.2(a) presents just the part of the network dedicated

to extracting features from each modality using a CNN.

(a) The convolution process of filter F1 across the signal S.

Each filter generates a new representation based on their

sensitivity to different patterns, which are flattened with a

MaxPooling layer.

(b) A simplistic view of the

architecture with CNNs on each

sensing modality generating

new representations. These are

merged with fully-connected

layers.

Figure 5.2: Using Convolutional Neural Networks to generate new representations on

each sensing modality.
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CNNs have the advantage of recognizing signal features no matter where these

are in the sensor stream due to their sliding filters by checking for these features in

each position of the time window. Combining these easily identifiable features creates

stronger and more reliable higher level features.

5.2 Implementation

Torch1, a well known open-source platform for deep learning development, was used

to implement this multimodal RBM architecture. Torch has the advantage of being a

mature platform, widely used in industry and academia with a growing community to

maintain and to contribute to its development. Facebook, Google, Twitter and New

York University are just a few of the organizations contributing to supporting this plat-

form – themselves using it for their in-house projects.

Torch uses the BLAS (Basic Linear Algebra Subprograms) library, which is highly

optimized for mathematical computations. Even though development for Torch is done

in Lua programming language, this is interpreted and compiled for C, making Torch

very efficient on any platform, including embedded systems of wearable devices.

Development in Torch is made easy by the numerous layers available through the

standard packages (e.g., Linear layer, Convolution layer, Batch Normalization layer,

etc.). These can be used as constructing blocks to assemble different architectures.

Similarly to these layers, for this work I implemented a multimodal layer accepting as

input a set of inputs for each modality, and performing the usual operations (forward

pass, backward and update).

To speed up the training process, GPUs were used by taking advantage of CUDA

libraries, also part of the standard Torch packages. This speedup brought by GPUs

was beneficial to trying many combinations of hyperparameters in order to find the

best architecture.

The assembling process of the multimodal RBM architecture starts with the newly

developed layer forming a container for other basic layers and facilitating parallel com-

putations for each modality. Following the parallel branches are a sequences of linear

layers at the top of the architecture, for sensor fusion, ending the network with a Soft-

Max layer to boost the class with the highest likelihood. Throughout the network

Linear layers were separated by Dropout layers, non-linearity (transformation) layers

and Batch Normalization layers. These added extra hyperparameters to evaluate with:

1http://torch.ch/
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values for Dropout were tested in the range [0.2, 0.8] and determined best performing

to be 0.4, while between non-linearities (ReLU, Sigmoind and Tanh) the best perfor-

mance was achieved consistently with ReLU. Other hyperparameters controlled during

experiments were learning rate (in [0.001, 0.5]), momentum, batch size, number of lay-

ers and size of layers. A stochastic approach was taken to evaluate as many of these

combinations, going over more than 100 iterations, each spanning 500 epochs.

5.3 Evaluation

This section presents the performance of bespoke multimodal deep learning architec-

tures across a range of typical inference tasks specific to wearable devices. First of

these detection tasks is Human Activity Recognition, now growing in popularity for

detection with smartphones. The following section compares the performance of deep

learning models to that of shallow classifiers and explores the case of specializing the

neural network to each individual user. This is followed by a validation section em-

ploying the same algorithms for indoor-outdoor detection, sleep stage detection and

landmark matching, demonstrating a good generalization characteristic of the neural

network architecture.

5.3.1 Human Activity Recognition

This evaluation is performed on a publicly available dataset [21], capturing accelerom-

eter and gyroscope data collected from a group of 9 participants, each performing a

set of 6 typical activities (sitting, standing, walking, climbing stairs, descending stairs,

biking). Data was collected with a variety of devices (6 commercially available smart-

phones, each with different hardware specifications), showing the increased complex-

ity of training and detection on this dataset.

As mentioned in previous sections, one advantage of using deep learning architec-

tures is that no predefined features are required as the network is capable of extracting

discriminating features from raw signals on its own. This characteristic is exploited

in this evaluation by reducing data pre-processing to minimum. The only intervention

is imposed by the nature of generating sensor data with Android devices. As in many

other aspects, Android offers a best-effort policy for sensing, meaning that samples

are generated as an event – such as when the sensor perceives changes in signal value,

for instance when the value of acceleration changes. To guarantee a rigid frame (time
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window) as input to the neural network, sampling normalization is performed on the

sensor signals as a pre-processing stage. This is done with a simple low-pass filter

to assure that all data points are equally distant in time and anchored in timestamps

generated by the Android API.

Three deep neural network classifiers were explored: a simple RBM with con-

catenated multimodal input, the multimodal RBM discussed above and a multimodal

CNN. For this human activity recognition dataset there are two sensing modalities,

accelerometer and gyroscope, each with three data streams representing movement

perceived on the three orthogonal axes (Ox, Oy and Oz). Input to the first classifier

(concatenated modalities) is obtained by concatenating all these sensor streams de-

scribed above. For the second classifier, the model is constructed from independent

network units on each sensing modality and combined further through a joining unit

to generate the final class estimation. We call this network a multimodal RBM (MM-

RBM). Input time windows are the same size as the ones used in previous works, 2

seconds [21], to capture the general periodicity in human activities. The same descrip-

tion applies for the multimodal CNN as well.

5.3.1.1 Baseline with shallow classifiers

Accuracy of user activity detection with the most commonly used two classifiers in

ubiquitous sensing (Decision Tree and Random Forest) is presented in Table 5.1. These

are generic shallow classifiers because of their lower dimension, feature extraction re-

quirement and training process, representing a good baseline of comparison for the

deep neural network architectures. These results are obtained by averaging the per-

formance in a leave-one-user-out evaluation method, which exploits the diversity in

performing activities across users. For this evaluation, the entire dataset was split into

training data capturing all users but one, who is left aside to validate the accuracy of

training solution. This process is repeated with permutation of each user as validation

subject.

Complexity of this dataset is reflected in the low accuracy (F1 score2) of shallow

classifiers as seen in Table 5.1. Though using a substantial and complex set of fea-

tures, these classifiers are limited in their capability to capture strong and discrimina-

tive observations essential for detection on this large and diverse dataset (same training

features were used as in [21]).
2F1 score: https://en.wikipedia.org/wiki/F1 score
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Dataset C4.5(%) RandomForest(%)

Human Activity Recognition [21] 67 74.5

Indoor-Outdoor Detection [76] 54.87 58.92

Sleep Stages [105] 45.76 58.44

Table 5.1: Average performance (expressed using F1 score) of shallow classifiers on

three datasets: IO-dataset - training on two environments, evaluating on the third,

AR-dataset evaluation with leave one user out method, trained on all but one user;

SS-dataset - cross validation across the entire set of 20 volunteers.

5.3.1.2 Baseline with Classifier Merger (CM)

A simple strategy to combine information from multiple sensors is by Classifiers Merger.

This section presents the evaluation of classifiers performing inferences for activity

recognition independently on each sensing modality (acceleration and angular veloc-

ity) and merging their outputs for a single final estimation. The chosen classifiers were

two basic RBM architectures, which are more capable than the shallow ones presented

in the previous baseline. There two classifiers were trained on each of the two sensor

signals, independently. Based on the statistical performance of these two classifiers,

the final output of CM is weighted toward the classifier with the best performance

following a voting method.

Table 5.2 shows the performance of RBMs trained on each of the two modalities.

The F1 score of RBM on acceleration signal is greater on average than that of RBM on

gyroscope signal. Since there are just two modalities, the performance of CM can be

imposed by the best performing classifier across all users, or individually for each user

if CM is considered specialized for individual user, selecting the best classifier of the

two in the second case. In a general scenario without specialization, the performance

of a CM will replicate the performance of the RBM on acceleration signal as this has

empirically better accuracy overall compared to that of the gyroscope. However, if CM

is user sensitive, the performance of CM is influenced by the best performing of the

two classifiers per user, as presented in Table 5.2, bottom row.

5.3.1.3 Multimodal Deep Neural Networks – RBM

Training the Multimodal RBM (MM-RBM) is done directly from raw data (with no

hand-crafted features) and achieves better performance compared to shallow classifiers
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User a b c d e f g h i Average

F1 score RBM on accel. (%) 69.95 79.1 66.72 76.75 75.54 63.48 65.06 68.27 68.64 70.39

F1 score RBM on gyro. (%) 70.3 74.52 60.84 72.02 73.57 71.34 62.33 78.03 54.2 68.57

F1 score Ensemble (CM) (%) 70.3 79.1 66.72 76.75 75.54 71.34 65.06 78.03 68.64 72.39

Table 5.2: Per user performance of RBM on each of the two modalities. If user specific,

the performance of CM will be the performance of the best performing of the two

classifiers.

Figure 5.3: Per user comparison of performance between RBM, MM-RBM, CNN on

the activity recognition task. With these classifiers training is performed directly on raw

data – no preliminary features extraction.

(Figure 5.4(b)). Figure 5.3 shows the performance of RBM classifiers in a per-user

evaluation mode (i.e. leave one user out evaluation method). In this evaluation, the size

of hidden layers in RBM are slightly smaller than those of MM-RBM to maintain the

same computation ratio, though both architectures were trained with identical hyper-

parameters. This explains the lower performance of RBM compared to MM-RBM.

Figure 5.4(a) shows the performance of the MM-RBM, along with that of RBM

using concatenated multi-modal inputs (referred to as RBM in the figure), multimodal

CNN architecture (similar to MM-RBM) and the best performing shallow classifiers

evaluated on a leave one user out approach [21]. This clearly shows that deep neural

network approaches outperforming shallow classifiers, as well as the CM ensemble

presented in Table 5.2. What is remarkable about these deep neural network construc-

tions is that their performance is achieved without any hand selected features, skipping

a required process in traditional inference systems.

To put the time domain performance of RBM classifiers into perspective, the eval-

uation was extended to using transformed signals as input (1) in frequency domain by

using the Fast Fourier Transform and (2) by extracting equally spaced components of

the ECDF (Empirical Cumulative Distribution Function). These new features are not
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specific just to human activity recognition, thus being generally useful for any type of

inference on any other dataset. Figure 5.4(b) demonstrates the impact of pre-designed

features, showing that if instead of raw data (as used in previous experiments), ex-

tracting signal transformed features actually decreases the accuracy of RBMs. This

shows that raw signals carry substantially greater information, which is usually lost

through features extraction. Though their performance is just below that of signals in

time domain, RBMs still outperform shallow classifiers even with this features extrac-

tion process, showing that traditional classifiers cannot capture the full complexity of

signals from pre-selected features.

(a) Comparative performance of the pro-

posed deep-learning architecture (MM-
RBM), a simple RBM architecture with

concatenated sensor streams as input, a

multimodal CNN and three shallow clas-

sifiers (C4.5, SVM and Random For-

est). Deep learning solutions outperform

these other traditional solutions for activ-

ity recognition with signals from multiple

sensors.

(b) Classifier performance using general features:

FFT (Fast Fourier Transform) and ECDF (Empirical

Cumulative Distribution Function) – not particularly

specific to human activity recognition. Evaluation

performed the same as before, using the leave one

user out method.

Figure 5.4: Accuracy of deep neural network architectures on human activity

recognition dataset (a) Sensor streams in time domain; (b) Transforming sensor

streams in frequency domain (FFT) and extracting equidistant ECDF features.

5.3.1.4 Using CNNs for feature extraction

An exploration of deep learning solutions for sensor fusion is not complete without

considering the best performing architecture proven with so many other tasks, Con-

volutional Neural Networks (CNNs) [22]. Similar to how convolutions over images
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extract non-localized discriminative features in small granularity from first layers com-

bining these to more complex features in the upper layers, patterns in sensor signals

(inertial sensor streams) can also be captured by CNNs. Intuitively, these non-localized

features would improve performance since they can be easily identified with CNNs ir-

respective to their temporary position in the sensor signal.

Evaluation of multimodal CNNs is performed in the same setup as for MM-RBM

described in Section 5.3.1.3. CNNs are constructed using Temporal Convolution layers

and Temporal Max Pooling layers for each sensing modality branch and combined with

fully connected linear layers at the top of the network.

Training in the same conditions as indicated in Section 5.3.1.3, the F1 score of

CNNs is greater by 1.5% than that of fully-connected based MM-RBM (Figure 5.4(a)).

However, severe downsides to CNNs are training time (15 times slower training than

MM-RBM) and more importantly for running on mobile devices, inference time (CNNs

are almost 3 times slower). Results indicate that a fully-connected layer is preferred

if training continues on user devices, as motivated in the following section. A shorter

training time and inference time saves important energy resources on mobile devices.

For this reason, the preferred solutions was chosen to be the MM-RBM architecture

constructed with fully-connected layers.

Why fully-connected layers work well? In this situation, fully-connected layers

work well because of the highly repetitive nature of signal patterns (inertial sensors

- accelerometer and gyroscope), which means that a fix size input window of sensor

data is more likely to match other randomly selected windows. For instance, assuming

the signal has a sinusoidal shape, this separation between windows is done in starting

phase, which is a limited range for highly-repetitive discretized signals. The second

aspect is the high number of training samples, which almost guarantees that some

windows overlap in patterns, this having very similar encounters in the training set

(per our abstraction, matching in phase of a sinusoidal signal). Random selection

of starting phase for training time windows and high density of training samples on

signals resemble the convolution process of CNNs. This is how RBMs can learn as

easily as the CNNs, having similar results, though with much less computation costs.

5.3.1.5 Incremental training

This experiment shows the power of proposed multimodal architecture to specialize

on a single device by continuing the training with a small set of labeled data from one

specific user.
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Figure 5.5: Specializing the network architecture to one individual patterns, by

continuing the training of a general model on a small number of labeled instances from

that user.

In this experiment, the MM-RBM architecture was trained with data from all par-

ticipants except a single user, as presented in the previous section (see Figure 5.3).

This time though, training of the MM-RBM architecture was extended to train on an

additional small set of labeled data collected from the participant left out from the first

training and used to evaluate the network performance (about 5 minutes of user activity

recording data). Thus, performance of the network increases substantially with just a

small amount of volunteer data (Table 5.5).

This demonstrates that a model can be trained with a general purpose, followed by

fast and efficient specialization on each user and their device to achieve even greater

performance. This can be seen as a general trained model shipped to each device and

with a small amount of volunteered ground truth labels, the performance of inferences

can be substantially improved (to above 95% on average for activity recognition).

5.3.2 Energy Efficiency and Mobile Hardware Feasibility

Using the same deep learning architecture evaluated before (MM-RBM, with two hid-

den layers on each of the two sensing modalities and joined through another hidden

layer before the output), this section presents the energy consumption of this network

on a typical hardware specific to wearable devices. Our Torch implementation is inter-

preted to C and compiled for the platform.

This experiment was conducted on the Qualcomm Snapdragon 410c development

board (Figure 5.6). The same processor is found in many smartwatches currently on

the market (e.g. LG GWatch R [106]) and includes a quad-core 1.4 GHz CPU and 1

GB of RAM. The key finding is that the MM-RBM is practical for this platform, and

consumes a low enough amount of resources (see Table 5.3), making it feasible for

wearable and mobile use.
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Figure 5.6: Qualcomm Snapdragon 410c. This development board runs a processor

common to many smartwatches. We measure the performance of our algorithm on

this processor to assess the performance on typical wearable device.

Power consumption was measured with the Monsoon Power Monitor following the

same experiment set-up as presented in previous chapters for smartphones.

Metric (unit) Value

Latency (ms) 50

Memory (MB) 2.75

Energy (mJ) 97

Table 5.3: Resource requirements of the MM-RBM. The low resource demands of

MM-RBM makes the model feasible for constrained devices.

Time and energy consumption are indicated per one inference.

To understand the full extend of the energy budget, a comparison was made with the

battery capacity of a smartphone. The energy consumption of sensing and performing

inferences is negligible, on a device with a typical smartphone battery of 5.55 Wh, at

just over 1% with a high sampling rate (1 sample every 2 seconds). By introducing

further constrains of batching inferences or reducing sampling frequency, the impact

on battery life drops considerably as presented in Figure 5.7.
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Figure 5.7: Percentage of a 5.55Wh battery consumed by sensing and detecting with

the human activity recognition MM-RBM.

5.4 Detection of Other Contexts with Multimodal Deep

Learning

To validate the generalization aspect of the deep neural network architecture, this sec-

tion presents the performance of similar MM-RBM architectures on two other datasets

for context sensing.

Sleep Stage (SS) dataset. This contains physiological sensor data [105] (EOG, two

EEG and submental-EMG) collected from 20 patients with sleeping disorder. Data was

annotated with exact sleep stage by specialists at every 10 seconds. The complexity

of this dataset is increased due to patients suffering from sleep disorder, sometimes

encountering different sleep stages in a short interval of time, which makes patterns

difficult to observe.

Indoor-Outdoor (IO) dataset. This is the larger dataset introduced in the Indoor-

Outdoor Detection section [76], which we are already familiar with. To reiterate, this

contains smartphone sensor data collected in three different environments: university

campus, city and residential area, with labels indicating indoors or outdoors context.

A baseline evaluation with shallow classifiers in presented in Table 5.1. This cap-

tures the more difficult cases of training across a large population with different behav-

iors or having diverse environments like in the case of IO detection – thus the lower

performance of shallow classifiers.
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5.4.1 Sleep Stage Detection

The two networks (RBM and MM-RBM) are evaluated on the SS-dataset using a 10-

fold cross validation method. In the baseline with shallow classifiers, F1 score is

45.76% and 58.44% respectively for the two simple classifiers. On the other hand,

MM-RBM achieves a higher performance as shown in Table 5.4.

Precision(%) Recall(%) F1Score(%)

Wake 69.76 62.56 65.96

Stage1 19.48 59.34 29.36

Stage2 86.28 79.21 82.59

Stage3 74.5 67.71 70.94

REM 63.47 58.55 60.91

Average 76.14 71.36 73.21

Table 5.4: Performance of using MM-RBM with the Sleep Stage detection dataset

using a cross validation method.

Figure 5.8(b) shows the performance different between the two deep learning so-

lutions. This is reflected in percentage gain for MM-RBM over the conventional RBM

on the three key metrics.
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Figure 5.8: Some observations
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5.4.2 Indoor-Outdoor Detection

Being able to generalized across environments was observed as a harder problem than

cross folds validation, as presented in previous chapter, so the aim here is to validate

features extracted in some environment generalize across the other unseen environ-

ment.

Table 5.5 presents the performance of this evaluation on a set of classifiers – shal-

low and deep using leave one environment out evaluation method. It is clear that deep

neural network solutions outperform the shallow classifiers on context detection with

this dataset too.

Training set Test set J48(%) RF(%) RBM(%) MM-RBM(%)

env2 + env3 env1 77.05 68.45 84.5 87.75

env1 + env3 env2 26.6 38.7 57.62 65.44

env1 + env2 env3 60.95 69.63 90.19 92.64

Table 5.5: F1 score for cross environment evaluation on the IO-dataset. Two of the

environments were used for training while the third was kept for test.

Precision(%) Recall(%) F1Score(%)

Indoor 65.14 85.2 73.83

Outdoor 95.92 88.4 92.01

Average 89.68 87.75 88.32

Table 5.6: Statistic measures on Multi-Modal RBM running on IO-dataset.

Table 5.6 presents the performance of MM-RBM on the IO-dataset, and the gain

over the RBM is presented in Figure 5.8(a). The same observations are applicable

here, multimodal RBM outperforming shallow classifiers and RBM throughout the

evaluation. This shows the strong generalization aspect of MM-RBM outperforming

evaluated solutions across three very distinct datasets.

5.5 Landmarks Discrimination

Taking the positive results for these experiments and the good generalization aspect

of MM-RBM across different datasets, it is useful to determine what impact this so-
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lution can have on components used for indoor localization. An relevant direction

for indoor localization systems is to become more adaptive, instead of continuously

using energy-hungry sensors (WiFi or GPS) in places where they may not bring any

value, it is important to signal their demand in situations like landmark differentiation,

where cheaper sensors are not as efficient. This section demonstrates how MM-RBM

architectures can be used to discriminate between landmarks. The importance of this

task is justify by systematic recalibration to reduce error accumulation in PDR (as pre-

sented in Chapter 3), as well as for on demand positioning. This section demonstrates

that WiFi scans and magnetic field signatures are enough to discriminate between very

close reference points, using the MM-RBM architecture.

5.5.1 Landmarks and Dataset

Some places inside a building impact the regular mobility pattern in very obvious ways

(e.g., stairs, elevators, corners, doors, etc.). Because these elements are static and

practically permanent, determining their encouter is essential for indoor localization

systems. In literature, landmarks are already essential to many indoor localization

systems [6].

For instance, changing the locomotion pattern is observable when the user is transi-

tioning from walking to climbing stairs, or opening and closing a door. These activities

show clear patterns on acceleration signal and on gyroscope signal. Identifying these

landmarks is trivial, using human activity recognition (using the MM-RBM as pre-

sented before for human activity recognition). However, more challenging is match-

ing the position of these landmarks (reference points) to specific points on the map –

determined through crowdsourcing as presented in Chapter 3 and other previous re-

search [6, 7].

Continuous tracking will have to rely more on PDR due to the cheaper cost of

continuous sensing with inertial sensors and less so on WiFi scans. Ideally, WiFi

scans should be triggered when observing landmarks to increase confidence in the

system (e.g., to differentiate between the exact door entered in a cluster of near-by

doors). In this situation, accurately matching locations and environment observations

become critical. While engineering approaches to match fingerprints are suboptimal

(e.g., Euclidean distance in signal space [52]), the proposed MM-RBM can facilitate

this task by extracting essential observations from training sets. This uses WiFi scans

and magnetic field samples as input modalities to the network to facilitate inference.
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To assess this opportunity, a dataset of sensor signals at different Landmarks was

collected with a custom mobile app. Landmarks were considered to be encountered at

different locations in a building where the continuous monotonic movement (walking)

is replaced with another dynamic patterns of movement. thus being easy to identify

with inertial sensors. Such changes of mobility pattern can be caused by stairs, eleva-

tors, doors and corners on corridor or caused by others obstacles in the environment.

For visualization of where these landmarks were collected Figure 5.9 presents red dots

the landmark position in a subset of the explored buildings.

(a) Shopping center

(b) Office building

(c) University library

Figure 5.9: Distribution of Landmarks in three of the explored buildings, reflecting

inflection points on the continuous mobility pattern (stairs, elevator, doors and corners).

5.5.2 Differentiability Between Landmarks

As mentioned before, classic approaches for location matching are far from optimal.

The traditional approach of measuring Euclidean Distance in signal space [52] to

match the closest reference point in training sets is evaluated here.

dist(rt ,r) =

√
∑

N
i=1(rt,i− ri)2

N
(5.4)

where rt is the RSS of the tested WiFi fingerprint, composed of N number of APs and

their signal strength rt,i. Each of these are compared to the signal value ri of the same
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APs contained in a previous WiFi fingerprint. If the AP is not present in the other

fingerprint, its signal strength values is considered to be -100dBm, equivalent to being

too far to have a stable signal.

Figure 5.10(a) shows the euclidean distance in signal space for matching landmarks

is just surpassing 50% of accuracy for exact matches, while errors are observed to reach

even 20 meters. This is because WiFi signals can be very similar over larger distances

for instance with open floor plans. This method is clearly not enough to identify exact

matches for landmarks.
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magnitude collected at just one

landmark location.

Figure 5.10: Observation in the two sensing modalities – WiFi fingerprinting displaying

a low matching accuracy on its own and the diversity in magnetometer samples across

the training set.

Figures 5.10(b) and 5.10(c) show the magnetic field value over one building and

over many buildings respectively. These indicate the difficulty of relying on magnetic

field alone for landmarks matching, due to its non-discriminative characteristic at a

location and overlapping with many other locations. This while across many buildings

values are observed to stay within a small space distribution, again, not very useful to

distinguish landmarks purely on this feature.
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5.5.3 Multimodal RBM for Landmark Differentiation

The two sensing modalities (WiFi and magnetometer) can be used a input signals to

the neural network. As such, providing as one WiFi fingerprint in a WiFi signal vector

as presented before, and the magnetic field observations in a 2-second time window

and training over the entire dataset of landmarks and location on 16 floor plans, it is

observed that the MM-RBM has a better performance (accuracy of exact landmark

matches). The MM-RBM outperforms in this task both RBM solutions and Euclidean

Distance approach for landmark matching. This shows that using both WiFi and mag-

netic field observations have more differentiation characteristics than using them indi-

vidually and the MM-RBM is the best solution to integrate their observations.

Figure 5.11: The accuracy of predicting exact landmark using the DNN approach over

different buildings.

This shows the opportunity to use landmarks to facilitate continuous long-term

tracking of mobile devices and benefiting from precise landmark recalibration options,

while consuming less energy. By continuously observing the environment with energy-

cheaper sensing modalities (accelerometer), more expensive sensing modalities (WiFi

and GPS) can be triggered only at relevant moments to discriminate between land-

marks. This creates the opportunity for sensor adaptive localization systems that can

manage an energy budge and location accuracy trade-off much better, while being still

accurate enough to provide quality location estimations.

These results are promising and indicate the potential for more deep neural network

integration into indoor localization systems. The generalization property of neural
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networks can be using for many other components inside localization systems, or even

provide localization using neural networks form end-to-end.

5.6 Summary

This chapter showed a variant of Deep Learning, Restricted Boltzman Machine (RBM)

with multi-modal input, able to extract more decisive features compared to traditional,

shallow classifiers, resulting in higher accuracy of detection for a range of tasks like

activity recognition, sleep stages detection and indoor-outdoor detection. While com-

parable in performance with Convolutional Neural Networks, RBM architectures are

computationally lightweight, making them suitable for inferences on mobile devices.

Generalization of this solution was demonstrated with a range of context detection

tasks: activity recognition, sleep stage detection, indoor-outdoor detection and land-

marks discrimination. Using MM-RBM with WiFi scans and magnetic field variation

as sensing modalities for landmarks discrimination is proven to be an efficient recali-

bration method for indoor localization systems. Their use can potentially be triggered

by lower-energy sensors (accelerometer) only when relevant, thus creating adaptive

localization systems to reduce energy consumption even further.



Chapter 6

Conclusions and Future work

6.1 Conclusions

Ubiquitous computing is advancing with the expansion of mobile wearable devices

carried by humans. Their many sensors can be re-purposed to make interesting obser-

vations about users and their surroundings (e.g., location, activity, sleep stage, trans-

portation mode, emotional state, etc.). These forms of context enable more adaptive

and intelligent mobile applications to understand their users’ needs and over time even

to take action for them to control surrounding appliances and adapt environments – the

vision of ubiquitous computing.

Though smartphone come with a variate range of sensors, very different in their

purpose and operation, this thesis has shown that cross-sensor observations can be

made to facilitate better integration, specific to each context detection task. In this

work three different approaches have been taken to integrate multimodal sensor data:

composition – by combining simpler forms of detection (e.g., step counting, direc-

tion estimation, activity recognition, radio map matching), machine learning based

solutions to facilitate continuous learning in new environments, and multimodal deep

learning to perform inferences directly from raw data.

These three approaches to sensor data integration were developed to satisfy the

complexity of three forms of context detection tasks: indoor localization, indoor-

outdoor detection and human activity recognition. Important attention was given to

accuracy of estimations and energy-efficiency since these are designed for operation

on mobile devices. Design, assessment and experimental evaluation for these three

forms of context detection tasks are the main contributions of this thesis. High level

conclusions for each of these works are presented in the following subsections. Though

100
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insightful for how such systems can be created, this work has an exploratory character,

with some limitations, which are highlighted in the final section together with proposed

solutions to address these in future work.

6.1.1 Indoor Localization

This thesis presented HiMLoc, a hybrid indoor location tracking solution that integrates

Pedestrian Dead Reckoning with indoor landmarks detection by activity recognition

and WiFi fingerprinting. The main advantage of this solution is that it offers easy de-

ployment due to its simple requirements of only a small set of building parameters

(e.g., location of elevators, stairs, main doors, corners and distance between floors)

and can provide good estimation for most smartphones by using just three of the most

common sensors present on smartphones: accelerometer, compass and WiFi card. This

integration of PDR with WiFi fingerprinting based estimations is performed by a par-

ticle filter and the introduced concept of similarity area for WiFi fingerprints. Very

distinct fingerprints over a small area tend to provide very good location estimation ac-

curacy as do fingerprints obtained from the same floor. Evaluations show that HiMLoc

achieves median location error below 3 meters in most cases, recognizing two states of

carrying the phone, with the phone in hand and with the phone in pocket.

6.1.2 Indoor-Outdoor Detection

Another problems explored in this thesis is determining whether a user is indoors or

outdoors using low power sensors readily available on modern smartphones. For this

IO detection problem, existing solutions were shown to be too energy hungry or fail to

provide accurate results across a range of different environments typically encounter

in practice, due to the use of fixed and environment agnostic thresholds in the under-

lying estimation schemes. Observations that further improvements can be achieved by

viewing the IO detection as a machine learning classification problem with 2 classes

(indoor, outdoor) guided this research to adapt classifier models to new environments

and devices in order to achieve robust and accurate detection across diverse settings.

To address this fundamental condition of model adaptation on-the-fly, a semi-

supervised learning framework was adopted as the ultimate solution approach. Through

the investigation of different commonly used semi-supervised learning methods, co-

training method was found to yield most accurate results across a range of environ-

ments and different devices. An implementation of this co-training method on An-
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droid platforms was presented in this thesis, using an incremental version of Naive

Bayes classifier. It was shown that this approach outperforms other alternative meth-

ods in terms of both accuracy and energy efficiency. Also, this implementation does

not incur any communication overhead (as it does not need to communicate with a

backend/cloud) and is privacy preserving. The use case application of switching off

the WiFi interface when the user is outdoors was shown to save considerable power,

thus extending the battery life in usual conditions.

6.1.3 Context Detection with Deep Learning

The final solutions presented in this work, using deep neural networks, combines the

elegance of performing analysis directly on the raw data, without preliminary feature

extraction and the agility to run efficiently on mobile devices with contained resources.

This approach is designed to increase the information captured in the numerous simple

low-energy sensors found in mobile devices (e.g., light, magnetometer, accelerometer,

barometer, heart-rate, proximity). Using human activity recognition as a use case with

accelerometer and gyroscope signals, experiments show a significant gain in accuracy

for the deep learning approach over traditional classifiers. Continuing to specialize a

pre-trained neural network for activity recognition with just a small amount of labeled

data from final user, increases the accuracy of estimations to above 95%. Experiments

that span a wide range of: sensor types; competing multimodal learning algorithms;

and, activities and context targets – collectively show the proposed general-purpose

deep approach to multimodal mobile sensor modeling is broadly applicable and it ex-

ceeds the performance of even task-specific features based models.

This exploration is facilitate by a proof-of-concept implementations that is used to

measure the overhead of such modeling techniques. Results for user activity recogni-

tion clearly indicates that battery life impact, memory requirements and inference time

are minimal, allowing this to run continuously on the phone, despite the complexity of

deep learning methods.

6.2 Discussion and Opportunities for Future Work

As highlighted in the previous section, this work advances our understanding of what is

possible to achieve in mobile computing by sensing with mobile and wearable devices

in a number of directions. However it is important to be mindful of assumptions, biases
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and limitations related to these findings. This section provides a reflective discussion

on the presented work, lessons learned and the opportunity to improve this in future

work.

The work presented in this thesis has an emphasis on experimentation throughout,

with proposed systems undergoing design, development and experimental validation

a very appreciated scientific method but comes with certain limitations. The cost of

developing experiments is a major issue with this approach, requiring participants, de-

vices and access to different environments for evaluation, while system iterations may

not experience the same setup characteristics, due to changes in the experimentation

environment over longer periods of time (e.g., WiFi APs variation, crowds, weather

and other factors) and sensing characteristics (e.g., noisy sensor samples, device tem-

perature and other processes running irregularly in parallel on the phone). That is also

the reason why competitions bringing together researchers to experimentally evaluate

their systems in the same place at the same time have emerged, such as the Microsoft

Indoor Localization Competition [107].

The work presented in this thesis is also affected by these common problems im-

pacting experimentation, these being reflected in the reduced number of participants

(below 10 in most experiments), with a reduced number of devices and across a small

number of experimental conditions which is not always representative of the many pos-

sible experimental conditions. For the indoor localization work, samples from only two

young and healthy participants with similar body features were used to train the activ-

ity recognition component, the distance error model and the heading deviation model,

while only one participant collected WiFi samples in indoor spaces to characterize the

similarity area, everything using just one mobile device. For the indoor-outdoor work

only two participants collected the training sets, using just 4 different devices, with

experiments spanning less than a month, reflecting the weather conditions in spring, in

just one city, Edinburgh. For the activity recognition, there were only 9 participants,

far from being representative for the entire population, using just 6 different devices.

Though results are decisive using these limited resources, future work should scale up

these experiments to assess if these observations still hold across a larger population

and in other environments.

To facilitate evaluation at a larger scale, new frameworks to easily collect larger

amounts of experimental data will need to be developed in future work. Relevant

here is the potential bias in my work stemming from how ground truth coordinates

were collected while experimenting with HiMLoc. This was done by a researcher
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walking behind participants and signaling when a reference point was encountered

by participant on the path to associate the reference point location with participant

ground truth location. Ideally, there should be an automated process to collect these

ground truth information, extremely relevant for training any context detection models.

One option would be to deploy fixed infrastructure to collect ground truth information

automatically such as cameras mounted in buildings to collect exact coordinates of

pedestrians through computer vision. Besides location, cameras can also assist with

activity recognition training and direction detection. For the indoor-outdoor detection

system limitations were observed when using the system out of the box at different

latitudes, requiring a few extra ground truth labels to stabilize, which also indicates the

need for more training data.

Another interesting question to answer in future work is if we can find strong cor-

relations between different forms of context, such as for example activity recognition

and localization inside a building. With some contexts being easier to infer on raw

sensor data than others, strong associations between contexts will allow these to be

trained in coordination (or subordination), using inferred labels between them. This

provides additional weakly-labeled data to expand training sets of context detection

tasks for which obtaining training data is expensive. The bias in labeling quality will

need to be investigated as well in future work.

Running over long periods of time with potentially erroneous inferences, the pro-

posed indoor-outdoor detection system can accumulate signals that can eventually af-

fect its performance as there are currently no safeguards against this happening. For

analogy with HiMLoc, the Co-training mechanism functions similar to the PDR com-

ponent, estimating states following previous observations in sequential order. To avoid

accumulation of erroneous observations over time, a calibration mechanism can be

useful, just like WiFi fingerprinting or landmarks detection used in HiMLoc. These

solutions may built on correlations with other context detection schemes (e.g., elevator

movements will always indicate the user is inside a building), or by opportunistically

integration with the GPS or Bluetooth when confidence is low from both classifiers

and, thus bring a external form of correction when needed and available from other

sensors with higher confidence. Modeling the confidence region for the other anchor

sensors can also be explored in the future.

Simulation is also a valid approach to confirm hypothesis. During this work, sim-

ulation was used to evaluate different versions of the algorithms on prerecorded data.

This was the case for indoor localization, sensor data collected from users walks be-
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ing analyzed offline for better understanding and used to guide different variations of

the implementation. For instance, the similarity area threshold was determined offline

by assessing its impact on location estimation accuracy. For indoor-outdoor detection

readily collected datasets were used to simulate the prediction accuracy of different

machine learning techniques, while for the activity recognition exploration the same

dataset was used to experiment with different neural network architectures. Never-

theless, there is further room for simulation based assessment that can be explored in

future work, such a building a simulator that can account for many variations across

users not available through experimental data collection, to train models for each com-

ponent in the particle filter, simulate a variety of other environments and devices. This

will have the effect of alleviating some of the issues related to experimentation in the

large data collection required for validation and generalization.

And finally, in order to increase the amount of data available for training these

systems, the ultimate aim is to have them adopted by many users and running them

over long periods of time. Providing a good case for these systems is not easy when it

comes to privacy and security. A few key points that all systems should comply with

when collecting user data is to perform more of the computations locally to the devices,

with little data leaving the device and taking great consideration for the battery life of

the device. Performing more of the computations locally and consuming the inference

locally will assure users their data is disposed of after the context is determined. Even

so, occasional data will need to be uploaded to the cloud when the system identifies

useful data to update generic common models in the cloud, for instance when classifier

confidence is low or when identifying unexplored environments. In these situations,

data needs to be anonymized and used only for the purpose of training the context

detection classifier in the cloud. Many solutions can be explored of how privacy can

be guarantied in training global models across many devices, such as splitting training

between devices and the cloud [108, 109].

The availability of these larger datasets will facilitate training of deep neural net-

works for many context detection tasks. One such solution is to construct indoor lo-

calization with neural networks from end-to-end, thus avoiding individual training of

sub-components (distance estimation, direction estimation, activity recognition, WiFi

fingerprinting).

The wider purpose of context detection systems is to understand users in their en-

vironment and provide them useful services. A larger vision for context detection is

to contribute to context-aware personal assistants, which will emerge from this under-
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standing. These personal assistants can be used to control network connected devices

such as lights, radio, thermostats and other appliances. Sharing intelligence between

these devices and wearable devices (smartphones, smart watches) allows for a deeper

understanding of user context. By learning user behavior over time in relation to ob-

servable contexts, these systems will be able to control devices in the environment to

suit different needs without explicit intervention from their users. This will lead to

truly smart environments, adapting to user actions, mood and intentions.
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