
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 1

cuFalcon: An Adaptive Parallel GPU
Implementation for High-Performance Falcon

Acceleration
Wenqian Li, Hanyu Wei, Shiyu Shen, Hao Yang, Wangchen Dai, and Yunlei Zhao

Abstract—The rapid advancement of quantum computing
has ushered in a new era of post-quantum cryptography, ur-
gently demanding quantum-resistant digital signatures to se-
cure modern communications and transactions. Among NIST-
standardized candidates, Falcon—a compact lattice-based signa-
ture scheme—stands out for its suitability in size-sensitive appli-
cations. In this paper, we present cuFalcon, a high-throughput
GPU implementation of Falcon that addresses its computational
bottlenecks through adaptive parallel strategies. At the oper-
ational level, we optimize Falcon key components for GPU
architectures through memory-efficient FFT, adaptive parallel
ffSampling, and a compact computation mode. For signature-
level optimization, we implement three versions of cuFalcon: the
raw key version, the expanded key version, and the balanced
version, which achieves a trade-off between efficiency and mem-
ory usage. Additionally, we design batch processing, streaming
mechanisms, and memory pooling to handle multiple signature
tasks efficiently. Ultimately, performance evaluations show sig-
nificant improvements, with the raw key version achieving 172k
signatures per second and the expanded key version reaching
201k. Compared to the raw key version, the balanced version
achieves a 7% improvement in throughput, while compared to
the expanded key version, it reduces memory usage by 70%.
Furthermore, our raw key version implementation outperforms
the reference implementation by 36.75 × and achieves a 2.94×
speedup over the state-of-the-art GPU implementation.

Index Terms—Post-Quantum Cryptography, Falcon, Fast
Fourier Sampling, GPU acceleration.

I. INTRODUCTION

Digital signatures play a critical role in ensuring data in-
tegrity, authenticity, and non-repudiation for applications such
as e-commerce, financial transactions, and identity verification.
However, the advent of quantum computing [1] poses signif-
icant threats to traditional cryptographic systems (e.g., RSA
and ECC), necessitating an urgent transition to post-quantum
cryptography (PQC). Since 2016, the National Institute of
Standards and Technology (NIST) has actively standardized
PQC algorithms. Among the selected candidates [2], Falcon

Corresponding author: Yunlei Zhao.
Wenqian Li and Hanyu Wei are with School of Computer Science, Fu-

dan University, Shanghai 200438, China (e-mail: liwq24@m.fudan.edu.cn;
hywei24@m.fudan.edu.cn).

Shiyu Shen and Hao Yang are with Department of Electrical En-
gineering, City University of Hong Kong, Hong Kong, China (e-mail:
crypto@sher1e.dev; crypto@d4rk.dev).

Wangchen Dai is with School of Cyber Science and Technology, Sun Yat-
sen University, Shenzhen, China (e-mail: daiwch@mail.sysu.edu.cn).

Yunlei Zhao is with School of Computer Science, Fudan University,
Shanghai 200438, State Key Laboratory of Cryptology, Beijing 100878, China
(e-mail: ylzhao@fudan.edu.cn).

[3], a lattice-based scheme, stands out for its compact design
and suitability for size-sensitive applications such as DNSSEC
[4]. Falcon has also been adopted in real-world applications;
for instance, its integration into the Open Quantum Safe (OQS)
library [5] enables quantum-safe TLS protocols. Despite these
advantages, Falcon’s reliance on complex floating-point arith-
metic and recursive tree traversal poses significant challenges
for GPU acceleration. These limitations motivate cuFalcon’s
design, which rethinks Falcon computational patterns for
massively parallel architectures while preserving its security
guarantees.

A. Related Works

Existing studies have explored optimizing Falcon using
software instruction sets and hardware design. For resource-
constrained devices, Thomas et al. [6] optimized Falcon on
ARM Cortex-M4, while Nguyen et al. [7] leveraged NEON
SIMD instructions on ARM Cortex-A processors for improved
performance. On the hardware, Schmid et al. [8] implemented
Falcon on dedicated hardware for both key and signature
generation, and Lee et al. [9] proposed a Falcon accelerator
using HW/SW co-design with fine-grained optimizations to
enhance performance and minimize silicon area. While these
implementations demonstrate Falcon’s adaptability to special-
ized hardware, expanding it to GPU platforms opens new
opportunities for higher throughput and parallelism.

Leveraging its powerful parallel computing capabilities, the
GPU is increasingly being employed to accelerate PQC. Cur-
rently, extensive research focuses on GPU implementations of
NIST PQC candidate schemes, including the standardized sig-
nature schemes CRYSTALS-Dilithium [10], [11], SPHINCS+
[12], and Falcon [13]. Lee et al. [13] introduced the first
parallel GPU implementation of Falcon, featuring an iterative
Fast Fourier Sampling (ffSampling) but its coarse-grained task
partitioning limits parallelism.

B. Our Contributions

In this paper, we propose cuFalcon, which is designed to
enhance the computational efficiency of the Falcon digital sig-
nature algorithm on GPUs. Our contributions are summarized
as follows:

• Compact and efficient design at operation level. We
optimize the core operations in signature generation,
such as FFT and ffSampling, to better align with GPU
architectures. First, we design a memory-efficient FFT

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 2

implementation that improves memory access patterns
by minimizing memory access conflicts and merging
memory accesses. Next, we propose an adaptive parallel
ffSampling implementation, featuring a highly parallel
design to enhance computational efficiency. Addition-
ally, we apply a compact computation model to other
operations to reduce unnecessary memory accesses and
minimize space usage.

• High-throughput and space-saving optimization at
signature level. Based on the optimized operations, we
implement cuFalcon, which includes three signature im-
plementations: the raw key version, the expanded key
version, and a balanced version proposed to balance
efficiency and memory usage. The raw key version dy-
namically generates the Falcon tree during signing, while
the expanded key version offloads key-related operations,
such as Falcon tree generation, to offline processing. The
balanced version reduces memory usage by parallelizing
Falcon tree generation and offloading other key oper-
ations to offline computation. Additionally, to support
scenarios with multiple signing tasks, we design batching
and streaming mechanisms, along with a secure and
efficient memory pool.

• Performance evaluation. To validate the effectiveness
of cuFalcon, we conduct comprehensive experiments
across three dimensions: operation-level optimizations,
signature-level implementations, and comparisons with
related works. Benchmark results demonstrate the signif-
icant efficiency of our optimized operation and signature
workflow designs. For Falcon-512, the raw key version
achieves a throughput of 172k signings per second,
while the expanded key version reaches 201k signings
per second. The proposed balanced version improves
throughput by 7% compared to the raw key version and
reduces memory usage by 70% compared to the expanded
key version. Furthermore, the raw key version signing
implementation shows a 36.75× speedup compared to
the reference implementation [3] and a 2.94× speedup
compared to the state-of-the-art implementation [13].

II. PRELIMINARIES

A. Notation

Let Q be the field of rational numbers. Let n be a power-
of-two, ϕ = xn + 1 is a cyclotomic polynomial. We denote
the number field Q = Q/(ϕ), f =

∑n−1
i=0 fix

i be arbitrary
elements of it. Matrices will be in bold uppercase (e.g. B),
vectors in bold lowercase (e.g. v), and polynomials in bold
italic (e.g. f). The transpose of a matrix B will be noted BT.
f̂ indicates polynomial f in FFT/NTT domain.

B. Falcon

Falcon is a compact lattice-based signature scheme based on
the hash-and-sign paradigm, leveraging the GPV framework
[14] for security in both classical and quantum random oracle
models [15], [16], along with message-recovery capabilities
[17]. Its compactness makes it ideal for practical deploy-
ment. Falcon includes two parameter sets [3], Falcon-512 and

Falcon-1024, targeting security levels I and V, with modulus
q = 12289.

The signature generation process (Algorithm 1) begins by
decoding the secret key sk to obtain the Falcon tree T
and (f , g,F ,G), transforming them into the FFT domain.
After generating salt r, the hash of (r||m, q, n) maps to
c ∈ Zq[x]/(ϕ). The target vector t is computed, and the
ffSampling algorithm generates z. The resulting vector s is
verified against the norm bound ⌊β2⌋. Finally, the lattice point
(s1, s2) is derived, and s2 is compressed into a bit-string str.
The signature is represented as (r, str).

Algorithm 1 Falcon.Sign(m, sk, ⌊β2⌋)
Input: A message m, a secret key sk, a bound ⌊β2⌋
Output: A signature sig of m

1: ((f , g,F ,G),T)← Decode(sk)
2: r ← {0, 1}320 uniformly
3: c← HashToPoint(r∥m, q, n)
4: t← (− 1

q
FFT(c)⊙ FFT(F), 1

q
FFT(c)⊙ FFT(f))

5: while str =⊥ do
6: while ∥s∥2 > ⌊β2⌋ do
7: z← ffSamplingn(t,T)
8: s = (t− z)B̂

9: (s1, s2)← invFFT(s)
10: str← Compress(s2, 8 · sbytelen− 328)

11: return sig = (r, str)

C. Fast Fourier Transform

Fast Fourier Transform (FFT) is a rapid algorithm for
computing discrete convolutions with a time complexity of
O(n log n). For the field Q[x]/(xn + 1) used in Falcon,
where xn + 1 = xn − ζn (ζ is a primitive 2n-th root
of unity), the process involves the Chinese remainder map:
f 7→ (f mod xn/2 − ζn/2,f mod xn/2 + ζn/2), Q[x]/(xn−
ζn) 7→ Q[x]/(xn/2 − ζn/2) × Q[x]/(xn/2 + ζn/2). Com-
pute the polynomials in these two fields, decomposing the
original field into lower-degree polynomial fields based on
ϕ(x) =

∏
k∈Z×

m
(x − ζk). This is achieved using the Cooley-

Tukey (CT) butterfly operation [18], with the inverse typically
handled by the Gentleman-Sande (GS) butterfly operation [19].
For f with coefficients ci and cn/2+i, the i-th coefficients
of the reduced polynomials are c′i = ci + ζn/2cn/2+i and
c′′i = ci − ζn/2cn/2+i. After the k-th layer (0 ≤ k < log2 n),
pairs of coefficients are generated as (f mod xn/2k+1 −
ζbrv(2

k+i),f mod xn/2k+1

+ ζbrv(2
k+i)) , where brv() is the

bit-reversal function over k + 1 bits. The GS operation for
inverse FFT is ci = 1

2 (c
′
i+c′′i) and cn/2+i =

1
2ζ

−n/2(c′i−c′′i).
The Number Theoretic Transform (NTT), an integer-domain
variant of FFT, computes the product f , g ∈ Rq as f · g =
INVNTT(NTT(f) ⊙ NTT(g)) where ⊙ denotes point-wise
multiplication.

D. Fast Fourier Sampling

Fast Fourier Sampling (ffSampling) is a key component of
the Falcon signature algorithm, designed to efficiently generate
short vectors (s1, s2) critical for signature generation. It
leverages the trapdoor structure to optimize lattice operations

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 3

and combines FFT with recursion for efficient sampling. The
input vector is decomposed via the Falcon tree’s nodes, with
a rightward depth-first traversal using trapdoor information to
compute the target vector. Discrete Gaussian sampling occurs
at the leaf nodes, and the error is propagated upwards to
refine the result. The recursive implementation of ffSampling
is shown in Algorithm 2. FFT optimizes vector splitting
and merging, reducing high-dimensional operations to lower-
dimensional subproblems, and significantly cutting computa-
tional complexity. splitfft decomposes a high-dimensional FFT
result into two lower-dimensional FFTs using the GS butterfly
transform, while mergefft combines two lower-dimensional
FFT results into a complete FFT using the CT butterfly trans-
form [3]. ffSampling efficiently utilizes trapdoor information
and tree structures, ensuring the security and accuracy of the
generated short vectors while preventing private key leakage.

Algorithm 2 The recursive version of ffSampling [3]

Input: t = (t0, t1) ∈ FFT(Q[x]/(xn + 1))2, a Falcon tree T
Output: z = (z0,z1) ∈ FFT(Z[x]/(xn + 1))2

1: if n = 1 then
2: σ ← T.value
3: z0 ← SamplerZ(t0, σ)
4: z1 ← SamplerZ(t1, σ)
5: return z = (z0,z1)

6: (l,T0,T1)← (T.value,T.leftchild,T.rightchild)
7: t1 ← splitfft(t1)
8: z1 ← ffSamplingn/2(t1,T1) ▷ first recursive call
9: z1 ← mergefft(z1)

10: t′0 ← t0 + (t1 − z1)⊙ l
11: t0 ← splitfft(t′0)
12: z0 ← ffSamplingn/2(t0,T0) ▷ second recursive call
13: z0 ← mergefft(z0)
14: return z = (z0,z1)

E. Target Platform: GPU

GPU is a widely recognized parallel platform for acceler-
ating computations. GPU features a higher number of com-
puting cores, which affords them superior parallel computing
capabilities. Instructions are executed through a thread flow,
where threads are organized into thread blocks, and multiple
independent blocks form a grid. The Streaming Multiprocessor
(SM) serves as the primary unit responsible for executing
the blocks of kernels. Additionally, GPUs encompass various
types of memory, including register file (RF), constant memory
(CMEM), shared memory (SMEM), global memory (GMEM),
and local memory (LMEM). Efficient utilization of the GPU
memory hierarchy facilitates more effective data access. The
access speed is fastest for memory regions closest to the
CUDA cores, including RF, L1 Cache, SMEM, and constant
cache.

III. COMPACT AND EFFICIENT OPERATION-LEVEL DESIGN

In this section, we provide a comprehensive analysis of the
current GPU implementation of Falcon and propose operation-
level optimization strategies based on this analysis. First, we

quantitatively identify issues such as suboptimal resource uti-
lization and insufficient parallel design in existing implemen-
tations. To address these challenges, we propose a memory-
efficient FFT implementation, a fully parallelized ffSampling
strategy, and a compact computational design. Finally, these
optimizations are integrated into the Falcon implementation to
enhance its execution performance on GPU.

A. Analysis of Existing Implementation

To evaluate the performance of GPU-accelerated Falcon
implementations, we conduct benchmark tests on the state-
of-the-art implementation [13] using a desktop equipped with
a 12th Gen Intel(R) Core(TM) i5-12400F CPU (with 2.5 GHz
base frequency) and an NVIDIA GeForce RTX 4090 24GB
GPU. In these tests, we batch process 1,024 tasks to analyze
the time distribution of each module, record execution times
in microseconds (µs), and evaluate the resource usage of each
operation in the signing process. The time distribution results
are shown in Fig. 1, where the computation of each kernel is
labeled. The resource usage details are presented in Table I.
Based on these test results, we present the following analysis.

ComputeSig

Compute_B

Compute_G

Compute_t

ffSampling

Recompute_B

ObtainTargeVec_s

CheckNorm

Falcon.SigGen

Decode_sk

HashToPoint

ComputeSig

Compress

75%

24%

96%

Fig. 1: The time distribution of Falcon-512 signature genera-
tion implemented in [13].

1) Inefficient Memory Access: Based on the annotations
in Fig. 1, modules like Compute B and ffSampling are fre-
quently accelerated by FFT, making it a critical operation
in Falcon signature generation. While FFT’s computational
operations, such as multiplications and additions, exhibit GPU-
friendly parallelism, its hierarchical structure leads to frequent
memory accesses, which create performance bottlenecks.

According to the data in Table I, the FFT SMx4 kernel
consumes 4,096 bytes of shared memory—significantly higher
than other kernels (e.g., poly copy uses 0 bytes). However, its
memory throughput (22.95%) remains suboptimal, indicating
potential for access pattern optimization. Therefore, we per-
formed a micro-architecture level analysis of the FFT SMx4
kernel using NVIDIA Nsight Compute. The analysis reveals
524,288 SMEM bank conflicts and uncoalesced GMEM ac-
cesses, the latter resulting in 12% of GMEM sectors being
overutilized. These issues lead to inefficient memory access,
creating performance bottlenecks during FFT computations.
To address these issues, we propose an efficient memory
access design for FFT, aiming to reduce memory access
latency and thereby improve overall performance.

2) Suboptimal Design for GPU Architecture: As shown
in Fig. 1, the ffSampling module accounts for 96% of the
signature generation time, making it the most time-consuming
component. Despite adopting an iterative approach to replace
the original recursive implementation, which makes it more

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 4

TABLE I: Profiling of kernels in ComputeSig of [13].

Function Count
Throughput (%)

Execution Time (µs) SMEM (byte) Register Number
Compute Memory

smallints to fpr 8 23.1 49.92 4.16 0 16

FFT SMx4 2 78.01 22.95 75.14 4096 40

poly neg 4 14.38 66.72 6.56 0 16

poly copy 13 5.43 66.45 6.53 0 16

poly mulselfadj fft 4 14.16 65.68 6.66 0 16

poly muladj fft 2 16.5 77 11.17 0 18

poly add 5 8.57 78.93 10.98 0 16

poly mul fft 6 16.88 78.49 10.94 0 18

poly mulconst 2 14.18 65.68 6.62 0 16

ffSampling dyntree 1 67.8 52.33 15750 1000 196

iFFT 2 52.29 65.36 30.24 0 36

check1 1 90.2 14.19 227.55 0 30

check2 1 66.39 44.13 9.82 0 16

is short half 1 12.68 17.33 56.74 0 38

suitable for GPU architectures, there are still certain short-
comings:

• Coarse-grained task partitioning reduces parallel effi-
ciency in ffSampling. It relies on single-threaded iterative
calculations, with a task granularity that doesn’t fully
utilize the GPU parallel capabilities. Operations within
each tree node, such as splitfft and mergefft, show high
parallelism, but the tasks are not designed for parallel
execution. Instead, operations are sequentially performed
on the polynomial coefficients. This leads to large com-
putational tasks within each node, which reduces the
efficiency of tree node sampling and creates a bottleneck
in the process.

• The varying polynomial sizes across tree levels cause
imbalanced thread allocation in ffSampling. At the root
node, the polynomial size is n, while at the leaf nodes,
it reduces to 1. This disparity makes it difficult to set a
uniform thread count for parallel computations. Excess
threads at the leaf nodes result in idle resources, while
insufficient threads at the root node limit parallel effi-
ciency. Consequently, this imbalance hinders performance
and reduces overall computational efficiency.

Therefore, we propose an adaptive parallel ffSampling
scheme that is better suited to the GPU architecture.

3) Fragmented Computing Mode: From Table I, it can
be seen that the signature computation process involves many
small kernels, such as poly neg, poly copy and poly add.
These kernels have runtimes of less than 10 µs, do not
use SMEM, and are primarily responsible for computations
between GMEM or data exchanges between GMEM and reg-
isters. This indicates that their operations are simple, without
involving intermediate results or complex computation pro-
cesses. Among them, the 13 poly copy kernels are used solely
for data movement within GMEM, with simple operations.

However, this design has some drawbacks. First, since each
small kernel needs to be launched and scheduled indepen-
dently, it leads to frequent context switching and kernel invoca-
tions, which increases scheduling overhead on the GPU. Sec-

ondly, these small kernels perform relatively simple tasks and
frequently access GMEM, which may become a performance
bottleneck, especially when dealing with high-latency GMEM
accesses that can reduce computational efficiency. Therefore,
we propose a compact computing model that utilizes kernel
fusion and optimized memory access strategies to mitigate the
disadvantages of small kernels.

B. Fast Fourier Transform

This subsection presents key optimizations applied to the
GPU-based FFT implementation, including loop unrolling,
constant-time modular reduction, and efficient memory access
techniques, aimed at enhancing memory access efficiency and
computational performance.

 Real

 Imaginary

SMEMSMEMSMEMSMEMGMEM

128

0

256

384

320

64

128

0

256

384

0

256

320

64

0

256

1

257

0

256
257

1

128
127

384

Level 1 Level 2 Level 8

reg0

reg3

reg1

reg2

reg0
reg2

reg1
reg3

GMEM

128

0

256

384

127

1

257

12
8

th
re

ad
s

reg3

reg0

reg2

reg1

Fig. 2: The optimized implementation of FFT-512

1) Computational Workflow Design: In our FFT imple-
mentation for Falcon-512, the polynomial’s real and imagi-
nary parts each have a length of n/2, where n is the total
length of the polynomial. The coefficients are first loaded
into registers, where the butterfly transformation is performed.
After completing each level of the butterfly transformation,
data is exchanged between the registers and SMEM. This
process is repeated iteratively until all levels are processed. To
optimize performance, we implement several techniques, such
as loop unrolling, which significantly enhances computational
efficiency.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 5

2) Conflict-Minimal Inter-Layer Data Shuffle: Bank con-
flicts occur when multiple threads within a warp access the
same SMEM bank, leading to serialized memory accesses.
This issue arises during the data shuffle phase of the FFT
computation, especially with thread span access. To resolve
this, we use blank unit padding to ensure threads access
different SMEM banks. For the i-th level of FFT (i ≥ 3),
the thread stride is 28−i, and padding of 27−i blank units
is introduced at intervals of 28−i to prevent conflicts. For
Falcon with n = 1024 and n = 512, this padding requires 256
blank SMEM units. This optimization maximizes parallelism
by avoiding bank conflicts and ensuring efficient memory
access. Fig. 3 illustrates the data exchange in the 5th level
of FFT-512, demonstrating how padding effectively resolves
bank conflicts.

…… …… …… ………… …… …… ………… …… …… ……

……

bank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

16

32

48

……

1

17

33

49

……

2

18

34

50

……

3

19

35

51

……

4

20

36

52

……

5

21

37

53

……

6

22

38

54

……

7

23

55

…… …… …… …… …… …… …… ……

128 bits

39

T0 T1 T2 T3 T4 T5 T6 T7

T8 T9 T10 T11 T12 T13 T14 T15

T16 T17 T18 T19 T20 T21 T22 T23

T24 T25 T26 T27 T28 T29 T30 T31

Conflict

……

0

……

1

……

2

……

3 4 5 6 7

T0 T1 T2 T3 T4 T5 T6 T7

T8 T9 T10 T11 T12 T13 T14 T15

T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31

32 33 34 35 36 37 38 39

padding

16 17 18 19 20 21 22 23

48 49 50 51 52 53 54 55

bank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

128 bits

P P P P P P P P

P P P P P P P P

P P P P P P P P

P P P P P P P P

(a) Load (4th level).

…… …… …… ………… …… …… ………… …… …… ……

……

bank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

16

32

48

……

1

17

33

49

……

2

18

34

50

……

3

19

35

51

…… …… …… …… …… …… …… …… …… …… …… ……

128 bits

T0 T1 T2 T3

T8 T9 T10 T11

T16 T17 T18 T19

T24 T25 T26 T27

Conflict

……

0

……

1

……

2

……

3

T16 T17 T18 T19

padding

bank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

128 bits

4

20

36

52

5

21

37

53

6

22

38

54

7

23

55

39

T28 T29 T30 T31

T20 T21 T22 T23

T12 T13 T14 T15

T4 T5 T6 T7

4 5 6 7

T4 T5 T6 T7

P P P P

P P P P 16 17 18 19

P P P P 20 21 22 23 P P P P

32 33 34 35 P P P P

T12 T13 T14 T15 T8 T9 T10 T11T0 T1 T2 T3

36 37 38 39

T20 T21 T22 T23

P P P P 48 49 50 51

P P P P 52 53 54 55

T28 T29 T30 T31

P P P P

T24 T25 T26 T27

(b) Store (4th level).

Fig. 3: Solving bank conflicts in SMEM. (P represents blank
units.)

3) Burst Data Loading and Storing: In the FFT com-
putation, loading from and storing to GMEM incurs high
latency due to its slower speed. To improve efficiency, we
align the memory of FFT polynomials to 128 bytes during
device memory allocation, with the FFT data type set to double
(64-bit). This enables merged memory accesses, improving
bandwidth utilization by allowing hardware to transmit data
in bursts. During FFT computation, data is read sequentially
according to thread IDs for efficient loading. To prevent out-
of-order storage when writing back to GMEM, we reorder the
data in SMEM to enable merged memory access, as shown
in Figure 2. This approach enables merged memory accesses,
allowing data to be loaded or stored in bursts, which reduces

GMEM access time.

C. Adaptive Parallel ffSampling Algorithm

In this subsection, we propose the adaptive parallel
ffSampling algorithm, which uses a stack-based iterative strat-
egy for tree traversal, overcoming the recursion limitations
of the reference implementation. By leveraging intra-node
parallelism and a layer-specific thread allocation method,
we improve parallelism and adaptability across different tree
layers. The design overview of the algorithm is shown in
Fig. 4, using Falcon-512 as an example.

1) Stack-Based Explicit Iteration Strategy: To overcome
recursion limitations, we use the iterative approach from [13]
with explicit stack management for the stack-based ffSampling
design. We initialize a stack of size log2 n+1, corresponding
to the maximum depth of the Falcon tree. The traversal starts
at the root node and follows a depth-first search, prioritizing
the right child of each node. As nodes are visited, their state,
including associated polynomials and relevant information,
is pushed onto the stack. Each node is processed from the
top of the stack and popped after computation. Gaussian
sampling occurs at leaf nodes, while polynomial operations are
performed in FFT form at internal nodes. This iterative process
continues, propagating data upward, sequentially updating
each node’s state, until reaching the root. By managing stack
operations, the iterative implementation avoids recursion stack
depth limitations and reduces function call overhead, while
maintaining a time complexity of O(n log n).

2) Node-Level Parallel Computation: As described in
Section III-C1, the tree traversal in the ffSampling process
accesses nodes sequentially, making parallelization across
nodes challenging. However, polynomial operations within
each node, such as splitfft, mergefft, and sub, exhibit good
parallelism, enabling parallel computation within individual
nodes. On the GPU, we accelerate operations such as splitfft,
mergefft, LDL fft, mul fft, and poly sub using parallel design
and memory optimization strategies. The splitfft and mergefft
operations use FFT and inverse FFT subroutines to efficiently
manage polynomial splitting and merging. As detailed in Sec-
tion III-B, we implement an efficient memory access design for
them. The LDL fft and mul fft operations convert polynomial
decomposition and multiplication into point-to-point tasks,
with each thread computing different polynomial coefficients.
Polynomial addition and subtraction are also parallelized
element-wise, where each thread handles a single coefficient.
This parallelization enhances the execution of polynomial
computations in ffSampling on the GPU, significantly reducing
computational time. By decomposing tasks into independent
units, this scheme enables efficient thread coordination and
parallel execution, accelerating the tree node sampling process.
By decomposing tasks into independent units, this scheme
enables efficient thread coordination and parallel execution,
accelerating the tree node sampling process.

3) Layer-Specific Thread Allocation: In the ffSampling
implementation, the polynomial size reduces progressively
with tree depth, requiring dynamic thread allocation adjust-
ments at each level. As tree depth increases, the polynomial

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 6

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Adaptive Parallel Strategy

Level 9

SUB

MUL

ADD

DIV

MUL

SUB

5

1

2

3

4

6

7

8

9

11 10

Right Node Operations

Left Node Operations

.

.

.

.

1

2

3

4

Stack

...
Stack.top

poppush

32 threads

32 threads

32 threads

16 threads

8 threads

4 threads

2 threads

1 threads

1 threads

1 threads

Fig. 4: Adaptive parallel strategy for traversing the Falcon tree in ffSampling.

size halves, reducing the parallelizable dimensions. For in-
stance, the FFT subroutines in splitfft and mergefft utilize
multi-threaded cooperation; assuming the polynomial size at
the current level is k, up to k/4 threads can be allocated,
with each thread responsible for computing the value of a
single point. In contrast, the sub operation involves element-
wise parallel subtraction, where up to k threads are allocated,
each handling a single coefficient. Consequently, the maximum
thread allocation for the current level is k/4.

We implement ffSampling as a single GPU kernel, with
each thread required to execute tasks across multiple tree
levels sequentially. Therefore, the thread allocation strategy
must balance computational intensity and hardware resource
utilization. Excessive thread allocation at smaller dimensions,
such as at leaf nodes, would result in many idle threads, while
insufficient allocation at larger dimensions, such as at the root
node, would limit performance due to inadequate parallelism.
Based on experimental results (see Section V-B2), the optimal
configuration for the ffSampling kernel allocates one warp (32
threads, which is the minimum execution unit). As shown in
Fig. 4, the number of active threads adapts with tree depth,
optimizing resource utilization and computational efficiency.

D. Compact Computing Mode

Based on the analysis of the current Falcon GPU implemen-
tation [13], we identified inefficiencies due to a loose com-
puting mode, leading to unnecessary kernel launch overhead
and under-utilization of memory. To address these issues, we
propose a compact computing model that utilizes kernel fusion
and optimized memory management. This model is applied to
three kernels: Compute B, Compute G t, and TargetVec s.

1) Kernel Fusion: In the implementation of signature
generation, there are numerous invocations of small kernels,
which will cause some kernel launch overhead. To mitigate
this, we use kernel fusion, combining multiple kernels into one
to reduce launch overhead. Data-related operations are merged
into a single kernel to minimize redundant data access. For
example, in Compute B, small kernels like smallints to fpr,
FFT SMx4, and poly neg are fused to compute matrix B.
Similar fusion is applied to other operations, as detailed in
Table II. For the fused kernel, resource usage and execution
time are optimized by adjusting the computation order and
utilizing memory more efficiently, rather than simply summing
the individual kernels’ costs.

TABLE II: The proposed kernel fusion design.

Our work Small kernels in [13]

compute B kernel smallints to fpr,FFT SMx4, poly neg

compute G t kernel

Compute Gram G: poly mulselfadj fft,
poly muladj fft,poly add,poly copy

Compute t: poly set,FFT SM,
poly copy, poly mul fft, poly mulconst

TargeVec s kernel poly mul fft, poly add, poly copy, iFFT

2) Optimized Memory Utilization: After completing kernel
fusion, we optimized the memory usage of the fused kernel.
By consolidating data-dependent operations within a single
kernel, intermediate results can be stored in SMEM or regis-
ters, thereby reducing GMEM access and improving memory
access speed, as illustrated in Fig. 5. Additionally, within
the same kernel, allocated SMEM or registers can be reused,
eliminating the need for repeated allocation and deallocation
across different kernels. Taking the poly copy kernel as an

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 7

example, instead of performing data copying in GMEM, we
copy data to temporary SMEM and directly compute within
the device memory. This approach reduces GMEM usage and
access frequency.

Device

SMEMRegs

SMEM Regs

SMEM Register

GMEM

 kernel

 kernel

 kernel

Fig. 5: The target vector s is computed in compact mode.

IV. HIGH-THROUGHPUT AND SPACE-SAVING
SIGNATURE-LEVEL IMPLEMENTATION

In this section, we present three implementation strategies
for Falcon signature generation, as shown in Fig. 6, and
examine the parallel techniques used in handling multiple
signature tasks. Existing methods, as elaborated in [3], [6],
include a dynamic computation strategy (sign dyn), which
reduces storage overhead but increases computation costs, and
a precomputation-based strategy (sign tree), which precom-
putes private key operations for faster signing at the expense
of higher storage. To balance storage requirements and com-
putational efficiency, we propose a balanced implementation
(sign balance) that selectively precomputes key components
while dynamically computing others, thereby reducing storage
demands while maintaining high signing efficiency. Further-
more, for multi-signature task scenarios, we introduce a multi-
task parallel processing strategy to improve throughput.

A. Dynamic computation-based implementation

To save storage space, we follow the reference implementa-
tion by adopting the raw key and dynamically reconstructing
the LDL tree during private key loading. This way, we only
need to store the path from the root to the current leaf, without
keeping the entire tree in RAM. Fig. 6a presents an overview
of the dynamic computation-based Falcon GPU acceleration
implementation. This implementation follows a similar process
to the reference implementation of the Falcon algorithm [20],
but the original modules have been replaced with the optimized
ones proposed in Section III. In this implementation, the key
pair is dynamically generated, and all operations are computed
in real-time, enhancing security. To optimize it for the GPU
architecture, we significantly improve the signing computation
speed and overall performance through parallel computing,
memory access optimization, and efficient data transfer. The
implementation details of the signature generation are as
follows:

Message Hashing: In the message hashing phase, the
message m is concatenated with a random salt r to form
(r∥m) , which is then transformed into the target polynomial
c ∈ Zq[x]/(ϕ) using the HashToPoint function. To accelerate
this process on the GPU, we employ single warp parallelism,
where different threads process different parts of the input
message simultaneously. This design eliminates inter-thread
synchronization overhead and ensures efficient computation.
Intermediate results are stored in SMEM, reducing GMEM
access latency. By combining warp-level parallelism with
optimized memory access patterns, the GPU parallel comput-
ing capabilities are fully utilized, significantly reducing hash
computation latency compared to traditional CPU-based serial
operations.

Short vector computation: Short vector computation is a
key part of signature generation, with the ffSampling algorithm
playing a crucial role. First, we compute the preimage t of
the message hash c, utilizing the FFT acceleration proposed
in Section III-B. Then, using private key information, the
ffSampling algorithm recursively processes t in the Falcon
tree structure to generate two short polynomials s1 and s2,
which satisfy the relationship s1 + s2h = c mod q. Finally,
the adaptive parallel ffSampling approach from Section III-C
generates the short vector. Additionally, by incorporating the
compact computing mode from Section III-D, unnecessary
data transfers and memory accesses are minimized during the
computation.

Signature compression: The short polynomial s2 is com-
pressed into a bitstring str using the Compress function. The
compression process is designed in parallel, in which each
thread maps individual coefficients of s2 to their respective
positions in the target bitstring str. Ultimately, the signature
consists of the salt r and the signature bitstring str, forming
the signature pair sig = (r, str).

B. Precomputation-based Implementation

To improve the efficiency of the signature generation pro-
cess, we designed a GPU-accelerated implementation based
on a precomputation approach, as outlined in Figure 6b. This
implementation follows the expanded key reference workflow
of the Falcon algorithm but adopts an online-offline computa-
tion model with a fixed key design. To optimize the signature
generation, computations related to the private key (such as the
polynomial G calculation, matrix B construction, and LDL
tree generation) are precomputed and used to generate the
expanded key. The expanded key is stored in double-precision
format and loaded on demand, reducing runtime computation
overhead. In addition, we ensure efficient handling of complex
operations in private key extension, such as FFT and LDL
decomposition, further optimizing the signature process [21].
All other operations are still performed in real time to maintain
the security of the implementation and the flexibility of the
application.

Although the precomputation-based implementation signif-
icantly reduces the real-time computational workload and
improves signing efficiency, it substantially increases memory
usage, requiring (8×log n+40)×n bytes to store the expanded

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 8

Decode_sk
Secret Key

Compute_B

Compute_Gram_G

HashToPoint
Message

Compute_t

ffSampling

ObtainTargetVec_s

CheckNorm

Compress

Accept

Reject

Loop

Signature

salt

C
om

puteSig

Online

(a) sign dyn

Offline

Online

Decode_sk
Secret Key

Compute_B

Compute_Gram_G

HashToPoint
Message

Compute_t

ffSampling

ObtainTargetVec_s

CheckNorm

Compress

Accept

Reject

Loop

Signature

C
om

puteSig

bulid_LDL_tree

LDL_tree

salt

(b) sign tree

Offline

Online

Decode_sk
Secret Key

Compute_B

Compute_Gram_G

HashToPoint
Message

Compute_t

ffSampling

ObtainTargetVec_s

CheckNorm

Compress

Accept

Reject

Loop

Signature

C
om

puteSig

salt

(c) sign balance

Fig. 6: The overview of the three designed Falcon signature generations.

key. For Falcon-512, one expanded key requires approximately
56 KB of storage space. Notably, the precomputed key-related
data is stored in CPU memory and dynamically loaded into the
GPU kernel as RAM input during runtime. This design ensures
that sensitive private key-related data is securely retained in
memory, preventing direct processing or storage by the com-
piler or disk, which aligns with standard security practices for
handling cryptographic information. While this method may
introduce a performance overhead due to additional memory
access compared to embedding the data as constants within the
kernel, it prioritizes security, offering a reliable solution for
managing key-dependent data in cryptographic computations.

C. Balanced Efficiency-Space Implementation

To optimize memory usage and improve throughput, we
propose a more balanced approach: precomputing the FFT rep-
resentation of the B0 matrix and dynamically reconstructing
the LDL tree during private key loading, as shown in Fig. 6c.
The expanded key consists of the FFT representation of the
B0 matrix and the LDL tree, where the B0 matrix occupies
4×8×n bytes, and the LDL tree occupies (log n+1)×8×n
bytes, accounting for approximately 72% of the expanded
key memory. Hence, the LDL tree is the primary source of
memory overhead in the expanded key. During the signature
generation process, the LDL tree is mainly used for ffSampling
computations, while the primary computational overhead of
ffSampling arises from the node-by-node traversal of the
Falcon tree and node sampling calculations. Notably, the LDL
tree contributes only a portion of the node sampling operations
in ffSampling, and its construction is well-suited for GPU
parallel computing. Therefore, dynamically loading the LDL
tree onto the GPU enhances computational efficiency.

By dynamically reconstructing the LDL tree, multiple sig-
nature generation instances can reuse the tree, significantly
reducing memory overhead. Only the path from the root to
the current leaf node needs to be stored, eliminating the need
to keep the entire tree structure in memory. Compared to the
sign tree method, this approach saves approximately 70% of
the space, reducing the storage requirement for precomputed

data to 4×8×n bytes. As shown in Section V-C2, experimental
results indicate that this method improves performance by
8% compared to sign dyn, demonstrating an excellent balance
between efficiency and memory usage. Most importantly, The
expanded key version precomputes sensitive components (e.g.,
LDL tree), which risks exposure if keys are compromised.
In contrast, the balanced version dynamically reconstructs
critical structures during signing, reducing memory usage by
70% while maintaining 95% of the expanded key version’s
throughput.

D. Secure and Efficient Multi-Task Processing
In the scenario of multiple signature tasks, achieving effi-

cient processing and secure access is the key design challenge.
To address this, we adopt batching and streaming strategies to
enhance the efficiency of handling multiple signature tasks.
Additionally, we design an efficient and secure memory pool
mechanism to ensure the correctness and security of multi-task
computations.

1) Batching and Streaming: When batch processing mul-
tiple tasks, each signature is assigned to a GPU block, with
multiple blocks running in parallel. During the computation of
each signature task, we apply the optimization techniques men-
tioned earlier to ensure the full utilization of GPU resources
within the block, achieving efficient computation.

Besides, data transfer between the CPU and GPU is a
significant factor, as it incurs considerable latency. Therefore,
we use multiple CUDA streams to hide the data transfer delay,
as shown in Fig. 7, and asynchronously manage the data
transfer. This approach ensures concurrent operation of the
CPU and GPU, reducing overall data transfer latency.

Memory copy (D2H)Kernel
time

H2D Kernel D2HStream1

Stream2

Stream3

Serial

Concurrent

Performance improvement

H2D

D2H

HostToDevice

DeviceToHost

Memory copy (H2D)

H2D Kernel D2H

H2D Kernel D2H
time

Fig. 7: Multiple streams can mask the time spent on data
transmission.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 9

2) Efficient and Secure Memory Pool: In order to ensure
efficient and secure memory access during parallel multi-task
processing, we employ the memory pool for memory man-
agement. The memory pool has two key features: the rational
storage order of parameters and memory allocation alignment.
Firstly, placing parameters of the same type and hash function
input parameters in contiguous locations reduces the unneces-
sary concatenation overhead of bit streams. Second, we utilize
pitch allocation to ensure block alignment, which helps reduce
memory fragmentation and improve memory access efficiency.
Additionally, we align memory blocks to 128 bytes, which is
the size of L1 cache lines, enabling thread access to be merged
into as few cache lines as possible, thus reducing the impact
of stride access on memory access throughput. The memory
pool designed for signature generation is illustrated in Fig. 8.

…

Chunks 𝒔𝒔𝒔𝒔 𝒎𝒎 𝒔𝒔𝒔𝒔𝒔𝒔

Task 1 Task 2 Task 3 Task N
𝒔𝒔𝒎𝒎 𝑭𝑭 𝑮𝑮 𝒇𝒇 𝒔𝒔

𝒔𝒔𝒉𝒉𝒎𝒎 𝒔𝒔𝒔𝒔𝒔𝒔 𝒔𝒔𝒔𝒔𝒔𝒔

𝒃𝒃𝒃𝒃

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

Hash
Sequence 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔||𝒎𝒎)

Fig. 8: The design of the memory pool for signature genera-
tion.

V. PERFORMANCE EVALUATION

In this section, we evaluate the operation optimization
proposed in Section III to demonstrate the effectiveness of op-
timization techniques. Next, we assess the performance of the
three implementations of cuFalcon introduced in Section IV,
analyzing their throughput and latency, and comparing the
results with related works.

A. Experimental Setup

The C/C++ source code is compiled using g++ 11.4.0, while
the GPU implementation is compiled using CUDA 12.0. All
compilation and execution processes are conducted on the
Ubuntu 22.04 operating system. The CPU benchmark perfor-
mance is based on the 12th generation Intel(R) Core(TM) i5-
12400F CPU. GPU performance benchmarking was conducted
on desktop-grade GPU NVIDIA GeForce RTX 4090 and
server-grade GPU NVIDIA Tesla A100 80G PCIe. The RTX
4090 is based on the Ada Lovelace GPU architecture, while
the A100 is based on the Ampere architecture.

B. Evaluating Operation Optimization Techniques

This subsection mainly focuses on testing the operation-
level implementations in the Falcon signature generation, aim-
ing to evaluate the effectiveness of the proposed optimization
techniques.

1) Evaluation of FFT: To validate the effectiveness of our
proposed FFT optimization techniques, we conducted step-by-
step optimization tests, progressively applying fine-tuning of
the computational workflow, conflict-minimal inter-layer data
shuffle, and burst data loading and storing. We conducted
benchmarking for FFT computation with a batch size of 1024,
which included both FFT512 and FFT1024. The performance
results are illustrated in Fig. 9. It can be observed that with the
application of each optimization technique, the computation
time of the FFT decreases. The final execution time of FFT-
512 decreased by 11.73%, while FFT-1024 decreased by
4.21%.

0 10 20 30 40 50

FFT-512

FFT-1024

Execution Time (μs)

Orig. Opt1 Opt2 Opt3

Fig. 9: The comparison results of FFT execution time between
t the baseline and the step-by-step optimizations.

2) Evaluation of Adaptive Parallel ffSampling: We test
the adaptive parallel ffSampling algorithm with a batch size
of 1024. First, we explored the optimal thread allocation by
adjusting the number of parallel threads, and the results are
shown in Fig. 10. Since a warp is the smallest unit of schedul-
ing by the GPU hardware, it facilitates unified management
and parallel computation. As the number of threads within a
warp increases, the kernel throughput continues to improve.
However, once the number of threads exceeds one warp, it
typically leads to expensive synchronization overhead.

20 21 22 23 24 25 26 27 28

Number of Threads

4

6

8

10

12

14

16

18

Th
ro

ug
hp

ut
 (o

p/
s)

×104

ffsampling-512
ffsampling-1024

Fig. 10: The throughput results of the adaptive parallel
ffSampling algorithm with different thread configurations.

Next, we test the throughput, execution time, and resource
utilization of the adaptive parallel ffSampling kernel, and the
results are provided in Table III. Since the baseline imple-
mentation of Falcon-1024 is not open-sourced, we only test
ffSampling-512 from [13]. Taking Falcon-512 as an example,
our work improves throughput by 16.89%, indicating that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 10

the parallel design makes ffSampling more efficient while
reducing unnecessary memory accesses, leading to a 17.10%
decrease in memory throughput. Moreover, the execution time
is reduced by 59.88%, demonstrating a significant improve-
ment in overall computational efficiency and better alignment
with the GPU architecture. Regarding resource utilization,
the change is minimal because no additional GPU memory
resources are used and the ffSampling algorithm is simply
adapted structurally to the GPU. Notably, both our ffSampling-
512 and ffSampling-1024 achieve a computation throughput
of approximately 80%, demonstrating high-throughput perfor-
mance. In summary, the adaptive parallel ffSampling algorithm
enhances computational efficiency through parallel design,
reduces unnecessary memory access, and does not increase
memory usage, fully leveraging the GPU computational power.

TABLE III: Evaluation of adaptive parallel ffSampling com-
pared with the work [13].

Throughput (%) Execution
Time(ms)

Occupancy (%)
Compute (SM) Memory Theoretical Achieved

Lee et al. [12] ffSampling-512 68.03 52.52 15.78 17.67 16.52

Our work
ffSampling-512

79.52 43.54 5.59 16.67 16.45
(+16.89%) (-17.10%) (-64.58%) (-5.66%) (-0.42%)

ffSampling-1024 80.48 44.83 11.15 16.67 16.5

3) Evaluation of Compact Computing Mode: We test
the individual operations of the compact computing design
(batch size=1024), with the execution time results for each
kernel listed in Table IV. As shown in Table IV, the compact
design significantly improves performance compared to the
previous implementation. Specifically, the computation matrix
B achieves a 1.81× performance improvement, the efficiency
of compute G t is enhanced by 3.72×, and the computation
performance of vector s improves by 2.61×. These operations
cover key steps in Falcon signing, thereby effectively reducing
the overall signing time.

TABLE IV: Evaluation of compact computing model

Lee et al. [13] Our Work

Small Kernels
Invocation

Count
Execution
Time (µs)

Total
Time (µs)

Kernel
Total

Time (µs)

smallints to fpr 4 8.0
126.3 compute B

69.6
(1.81×)

FFT SMx4 1 71.7
poly neg 2 11.3

poly copy 5 6.56

199.45 compute G t
53.66

(3.72×)

poly mulselfadj fft 4 6.75
poly muladj ft 4 11.01

poly add 3 10.94
poly set 1 4.13
FFT SM 1 23.14

poly mul fft 2 11.07
poly mulconst 2 6.69

poly mul fft 4 11.26
80.04 TargeVec s

30.66
(2.61×)

poly add 2 10.91
poly copy 2 6.59

C. Performance of cuFalcon

In this section, we evaluate the performance of the three
signature implementations proposed in Section IV, testing both
resource usage and throughput to validate the effectiveness of
our proposed approach.

1) Resource Utilization Analysis: We perform kernel pro-
filing of the three signature design implementations proposed
in Section IV to verify the rationality of kernel resource
allocation during the signature generation process. The number
of signature tasks is set to 10,000, and the profiling data
for key kernels are shown in Table V. The results indicate
that the memory or computation throughput of these four
kernels exceeds 80%, indicating high-throughput implemen-
tations. Except for ffSampling, which is constrained by the
complex data structures of the Falcon tree, the other core
kernels achieve balanced resource utilization, with theoretical
utilization reaching 100% and actual occupancy exceeding
80%, suggesting well-planned resource allocation.

TABLE V: Resource utilization of core functions

Function Throughput (%) Occupancy (%) SMEM Register
Compute Memory Theoretical Achieved (byte) Number

FFT polyx4 85.82 45.39 100 96.7 6144 40

Compute G t 59.1 87.26 100 97.71 4096 40

ffsampling 81.95 45.75 16.67 16.53 1000 198

Targevec s 23.4 93.16 100 86.96 0 36

2) Execution Efficiency Analysis: First, we experimentally
evaluate the effect of varying CUDA stream counts on the
signature scheme throughput to determine the optimal number
of streams. Fig. 11 and 12 show the throughput of the multi-
CUDA-stream signature implementation under different batch
sizes. As observed from the results, throughput increases with
the number of CUDA streams across different batch sizes and
eventually stabilizes when the number of streams reaches 16.
Consequently, we set the number of CUDA streams for our
implement to 16. Additionally, we observe that the throughput
of sign tree is slightly lower than that of sign dyn with fewer
CUDA streams. However, as the number of streams increases,
the data transfer between the CPU and GPU in sign tree
becomes better hidden, gradually improving throughput, even-
tually surpassing that of sign dyn.

Next, with the CUDA stream count set to 16, we test
the three signature implementations proposed in Section IV
and verify on the desktop GPU RTX4090 and the server-
level GPU 100. We compared the results with the latest
implementation [13]. The test results, including the time
for CPU-GPU data transfer, are shown in Table VI and
Table VII. Based on Table VI and Table VII, our proposed
implementations demonstrate significant throughput improve-
ments as the batch size increases. On the A100 platform,
the sign dyn implementation achieves a throughput of 172k
signatures per second for Falcon-512 and 90k signatures per
second for Falcon-1024, with speedups of 2.94× and 2.41×
over [13]. For the sign tree implementation, the throughput
reaches 201k and 100k signatures per second for Falcon-512
and Falcon-1024, respectively, reflecting approximately 17%
and 11% improvements over the sign dyn implementation.
In the case of sign balance, the throughput achieves 184k
and 96k signatures per second for Falcon-512 and Falcon-
1024, respectively. Although slightly lower than the sign tree
implementation, the throughput still improves by approxi-
mately 7% for both Falcon-512 and Falcon-1024 compared
to sign dyn. Additionally, the sign balance implementation

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 11

0 5 10 15 20 25 30
Stream Count

11

12

13

14

15

16

17

Th
ro

ug
hp

ut
 (o

p/
s)

×104

Batch Size
512
1024
2048
4096

(a) sign dyn

0 5 10 15 20 25 30
Stream Count

8

10

12

14

16

18

20

Th
ro

ug
hp

ut
 (o

p/
s)

×104

Batch Size
512
1024
2048
4096

(b) sign tree

0 5 10 15 20 25 30
Stream Count

10

12

14

16

18

Th
ro

ug
hp

ut
 (o

p/
s)

×104

Batch Size
512
1024
2048
4096

(c) sign balance

Fig. 11: Research on the impact of varying stream counts on cuFalcon-512 throughput across multiple batch sizes.

0 5 10 15 20 25 30
Stream Count

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Th
ro

ug
hp

ut
 (o

p/
s)

×104

Batch Size
512
1024
2048
4096

(a) sign dyn

0 5 10 15 20 25 30
Stream Count

5

6

7

8

9

10

11
Th

ro
ug

hp
ut

 (o
p/

s)
×104

Batch Size
512
1024
2048
4096

(b) sign tree

0 5 10 15 20 25 30
Stream Count

6

7

8

9

Th
ro

ug
hp

ut
 (o

p/
s)

×104

Batch Size
512
1024
2048
4096

(c) sign balance

Fig. 12: Research on the impact of varying stream counts on cuFalcon-1024 throughput across multiple batch sizes.

TABLE VI: Throughput of cuFalcon compared with the work [13] on RTX 4090.

Algorithm
Batch
Size

Our Work (op/s) Lee et al. [13]1(op/s)
Sign dyn2 Sign tree3 Sign balance3 Verify2 Sign Verify

Falcon-512

256 130695 (8.46×) 120826(-7.55%) 137099 (+4.90%) 1133245 (1.46×) 15454 773648
512 153580 (5.28×) 155416(+1.20%) 156421 (+1.85%) 1843053 (1.56×) 29042 1184637

1024 161434 (3.25×) 182795 (+13.23%) 174581 (+8.14%) 2666667 (1.66×) 49667 1606527
2048 163447 (3.02×) 192267 (+17.63%) 174360 (+6.68%) 3311772 (1.52×) 54080 2172944
4096 169690 (2.64×) 189745(+11.82%) 181263 (+6.82%) 3535912 (1.47×) 64294 2400375
8192 172223 (2.71×) 195732 (+13.65%) 186043 (+8.02%) 3846551 (1.45×) 63654 2650104
16384 172111 (2.54×) — 185228 (+7.62%) 3879247 (1.39×) 67686 2784216

Falcon-1024

256 73471 71309 (-2.94%) 81025 (+10.28%) 131430 (2.49×) — —
512 79969 89432 (+11.83%) 84670 (+5.88%) 254777 (4.83×) — —

1024 86899 99195 (+14.15%) 91273 (+5.03%) 4780356(9.05×) — —
2048 86738 103828 (+19.70%) 92493 (+6.63%) 876074 (16.59×) — —
4096 89115 104822 (+17.63%) 95229 (+6.86%) 1556881 (29.49×) — —
8192 89002 — 95597 (+7.41%) 1925128 (36.46×) — —

1 The Falcon-512 implementation from [13] is open source, and the data in this table are obtained by running it on our test platform.
The code is available at https://github.com/benlwk/Falcon-Mitaka.

2 The values in parentheses indicate the performance improvement relative to the implementation in [13].
3 The values in parentheses represent the performance improvement relative to our sign dyn implementation.

significantly reduces memory usage for larger batch sizes,
showcasing higher resource efficiency. Furthermore, the verify
achieves throughput of 3259k and 2372k signatures per second
for Falcon-512 and Falcon-1024, respectively, with speedups
of 1.21× and 1.19× over [13]. The improved verification
throughput is mainly due to the multi-stream design, which
effectively hides CPU-GPU memory transfer latency.

3) Comparison of Related Work: Table VIII lists the
throughput results derived from several related studies [3],
[6]–[9], targeting different platforms. The specification for
Falcon provides a C implementation and an AVX2-optimized

implementation. Compared to the reference implementation,
our work achieves speedups of 36×, 26×, and 73× for
sign dyn, sign tree, and verify, respectively in Falcon-512.
For Falcon-1024, the speedups are 38×, 28×, and 74× for
sign dyn, sign tree, and verify, respectively. The study [7]
presents a speed record on ARMv8 architecture, using the
SIMD extension NEON. The work [6] proposes optimized
implementations on a small microcontroller. The study [8] fo-
cuses on FPGA-centric hardware design, dedicated to achiev-
ing enhanced performance with fewer hardware resources. The
study [9] proposes an efficient FALCON accelerator, EFX,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 12

TABLE VII: Throughput of cuFalcon compared with the work [13] on A100.

Algorithm
Batch
Size

Our Work (op/s) Lee et al. [13]1 (op/s)
Sign dyn2 Sign tree3 Sign balance3 Verify2 Sign Verify

Falcon-512

256 99708 (3.83×) 106694 (+7.01%) 107547 (+7.86%) 657084 (1.04×) 26037 629287
512 130094 (2.94×) 133681 (+2.76%) 132557 (+1.89%) 1163108 (1.08×) 44229 1078854

1024 149190 (3.17×) 171740 (+15.12%) 159496 (+6.91%) 1907956 (1.13×) 47029 1688585
2048 162017 190844 (+17.79%) 172532 (+6.49%) 2704702 — —
4096 168964 (3.04×) 198498 (+17.48%) 180739 (+6.97%) 2908471 (1.21×) 55505 2399110
8192 172022 201062 (+16.88%) 184050 (+6.99%) 3259460 — —
16384 172263 (2.94×) 201545 (+17.00%) 184371 (+7.03%) 2787295 (1.02×) 58595 2721562

Falcon-1024

256 62544 (4.98×) 63396 (+1.36%) 61493 (-1.68%) 347420 (1.02×) 12556 341587
512 76070 (2.98×) 80298 (+5.56%) 79052 (+3.92%) 684372 (1.18×) 25513 578306

1024 82373 (3.26×) 92586 (+12.40%) 87286 (+5.96%) 1282579 (1.34×) 25272 956023
2048 87789 96325 (+9.72%) 93620 (+6.64%) 1573448 — —
4096 89480 (2.00×) 99647 (+11.36%) 96529 (+7.88%) 2023367 (1.19×) 44680 1916189
8192 90511 100292 (+10.81%) 96997 (+7.17%) 2282225 — —
16384 90636 (2.41×) — 96731 (+6.73%) 2372579 (1.13×) 37550 2092758

1 The data in this table are sourced from the results in [13].
2 The values in parentheses indicate the performance improvement relative to the implementation in [13].
3 The values in parentheses represent the performance improvement relative to our sign dyn implementation.

TABLE VIII: Throughput of Falcon implementation on different platforms.

Related Work Platform
Falcon-512 (op/s) Falcon-1024 (op/s)

sign dyn sign tree verify sign dyn sign tree verify

Reference Implementation [3]
Intel i5-12400F CPU (C) 4687 7335 52798 2343 3698 25860

Intel i5-12400F CPU (AVX2) 5350 8167 55772 2668 4113 27412

Nguyen et al. [7]
Jetson AGX Xavier 5645 — 99476 2831 — 51771

Apple M1 7240 — 140969 3628 — 74592
Raspberry Pi 4 with Cortex-A72 1797 — 30612 879 — 13804

Pornin et al. [6] ARM Cortex-M4 4 8 333 2 4 163

Schmid et al. [8] Zynq UltraScale+ FPGA — 238 1618 — 114 795

Lee et al. [9] Cortex-M4 + ASIC 26 — — 12 — —

based on an HW/SW co-design, optimizing operations with
granular hardware and software improvements to enhance
performance and reduce silicon area usage.

VI. CONCLUSION

This paper introduces cuFalcon, a high-throughput GPU
implementation of the NIST post-quantum signature algo-
rithm Falcon. Through quantitative and qualitative analyses
of existing implementations, we identify key optimization
opportunities and design compact and efficient solutions for
critical operations in signature generation. Besides, building
on a detailed analysis of the signature generation process, we
propose the balanced efficiency-space implementation method,
which significantly reduces memory usage while maintaining
high throughput. Then, we develop three GPU-based signature
generation schemes to cater to different requirements. Finally,
experimental results demonstrate that the proposed techniques
effectively improve throughput, validating the effectiveness
of our approach. cuFalcon achieves 201k signatures per
second for Falcon-512 on A100 GPUs—a 3.44× speedup
over the state-of-the-art [13]. The balanced version further
reduces memory usage by 70%, making it viable for memory-
constrained edge devices.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, New Mexico, USA, 20-22 November 1994. IEEE
Computer Society, 1994, pp. 124–134.

[2] G. Alagic, D. Cooper, Q. Dang, T. Dang, J. M. Kelsey, J. Lichtinger,
Y.-K. Liu, C. A. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson,
D. Smith-Tone, and D. Apon, “Status report on the third round of the
nist post-quantum cryptography standardization process,” 2022-07-05
04:07:00 2022.

[3] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, Z. Zhang et al., “Falcon:
Fast-fourier lattice-based compact signatures over ntru,” Submission to
the NIST’s post-quantum cryptography standardization process, 2022.
[Online]. Available: https://falcon-sign.info/falcon.pdf

[4] N. W. Matthieu Grillere, Peter Thomassen, “Falcon-512 in powerdns,”
Online, April 07 2022. [Online]. Available: https://blog.powerdns.com/
2022/04/07/falcon-512-in-powerdns

[5] O. Q. S. O. project, “liboqs (release 0.7.2),” Online, 2022. [Online].
Available: https://github.com/open-quantum-safe/liboqs

[6] T. Pornin, “New efficient, constant-time implementations of falcon,”
Cryptology ePrint Archive, Paper 2019/893, 2019, https://eprint.iacr.org/
2019/893.

[7] D. T. Nguyen and K. Gaj, “Fast falcon signature generation and
verification using armv8 NEON instructions,” in Progress in Cryptology
- AFRICACRYPT 2023 - 14th International Conference on Cryptology
in Africa, Sousse, Tunisia, July 19-21, 2023, Proceedings, ser. Lecture
Notes in Computer Science, N. E. Mrabet, L. D. Feo, and S. Duquesne,
Eds., vol. 14064. Springer, 2023, pp. 417–441.

[8] M. Schmid, D. Amiet, J. Wendler, P. Zbinden, and T. Wei, “Falcon
takes off - A hardware implementation of the falcon signature scheme,”

https://falcon-sign.info/falcon.pdf
https://blog.powerdns.com/2022/04/07/falcon-512-in-powerdns
https://blog.powerdns.com/2022/04/07/falcon-512-in-powerdns
https://github.com/open-quantum-safe/liboqs
https://eprint.iacr.org/2019/893
https://eprint.iacr.org/2019/893

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 13

IACR Cryptol. ePrint Arch., p. 1885, 2023. [Online]. Available:
https://eprint.iacr.org/2023/1885

[9] Y. Lee, J. Youn, K. Nam, H. H. Jung, M. Cho, J. Na, J.-Y. Park, S. Jeon,
B. G. Kang, H. Oh, and Y. Paek, “An efficient hardware/software co-
design for falcon on low-end embedded systems,” IEEE Access, vol. 12,
pp. 57 947–57 958, 2024.

[10] S. Shen, H. Yang, W. Dai, H. Zhang, Z. Liu, and Y. Zhao,
“High-throughput gpu implementation of dilithium post-quantum
digital signature,” IEEE Trans. Parallel Distrib. Syst., vol. 35,
no. 11, p. 1964–1976, Sep. 2024. [Online]. Available: https:
//doi.org/10.1109/TPDS.2024.3453289

[11] S. Shen, H. Yang, W. Li, and Y. Zhao, “ cuML-DSA: Optimized
Signing Procedure and Server-Oriented GPU Design for ML-DSA ,”
IEEE Transactions on Dependable and Secure Computing, no. 01, pp.
1–12, Nov. 5555. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/TDSC.2024.3494835

[12] S. Sun, R. Zhang, and H. Ma, “Efficient parallelism of post-quantum sig-
nature scheme sphincs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 31, no. 11, pp. 2542–2555, 2020.

[13] W. Lee, R. K. Zhao, R. Steinfeld, A. Sakzad, and S. O. Hwang,
“High throughput lattice-based signatures on gpus: Comparing falcon
and mitaka,” IEEE Trans. Parallel Distributed Syst., vol. 35, no. 4, pp.
675–692, 2024.

[14] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, C. Dwork, Ed. ACM, 2008, pp.
197–206.

[15] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and
M. Zhandry, “Random oracles in a quantum world,” in Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the
Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings, ser. Lecture Notes in
Computer Science, D. H. Lee and X. Wang, Eds., vol. 7073. Springer,
2011, pp. 41–69.

[16] A. Chailloux and T. Debris-Alazard, “Tight and optimal reductions for
signatures based on average trapdoor preimage sampleable functions
and applications to code-based signatures,” in IACR International Con-
ference on Public-Key Cryptography. Springer, 2020, pp. 453–479.

[17] R. del Pino, V. Lyubashevsky, and D. Pointcheval, “The whole is less
than the sum of its parts: Constructing more efficient lattice-based
akes,” in Security and Cryptography for Networks - 10th International
Conference, SCN 2016, Amalfi, Italy, August 31 - September 2, 2016,
Proceedings, ser. Lecture Notes in Computer Science, V. Zikas and R. D.
Prisco, Eds., vol. 9841. Springer, 2016, pp. 273–291.

[18] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[19] W. M. Gentleman and G. Sande, “Fast fourier transforms: For fun and
profit,” in Proceedings of the November 7-10, 1966, Fall Joint Computer
Conference, ser. AFIPS ’66 (Fall). New York, NY, USA: Association
for Computing Machinery, 1966, p. 563–578.

[20] F. Signature, “Falcon signature algorithm,” 2024, accessed: 2024-11-26.
[Online]. Available: https://falcon-sign.info/

[21] D. Micciancio and O. Regev, “Lattice-based cryptography,” in Post-
quantum cryptography. Springer, 2009, pp. 147–191.

Wenqian Li is currently a PhD candidate at the
School of Computer Science, Fudan University. Her
research focuses on post-quantum cryptography and
cryptographic engineering.

Hanyu Wei is currently a PhD candidate at the
School of Computer Science, Fudan University. Her
research focuses on post-quantum cryptography and
cryptographic engineering.

Shiyu Shen received the PhD degree from School of
Computer Science, Fudan university in 2024. She is
currently a postdoctoral fellow at City University of
Hong Kong. Her research interests include lattice-
based cryptography, homomorphic encryption, and
cryptographic engineering. Her email address is
crypto@sher1e.dev.

Hao Yang received the PhD degree from College
of Computer Science and Technology, Nanjing Uni-
versity of Aeronautics and Astronautics in 2024. He
is currently a postdoctoral fellow at City University
of Hong Kong. His research interests include ho-
momorphic encryption, lattice-based cryptography,
and cryptographic engineering. His email address is
crypto@d4rk.dev.

Wangchen Dai received the B.Eng. degree in elec-
trical engineering and automation from Beijing In-
stitute of Technology, China, in 2010, the M.A.Sc.
degree in electrical and computer engineering from
the University of Windsor, Canada, in 2013, and
the Ph.D. degree in electronic engineering from
the City University of Hong Kong in 2018. After
completing the Ph.D. study, he had appointments
at Hardware Security Lab, Huawei Technologies
Company Ltd., in 2018, and the Department of
CSSE, Shenzhen University in 2020, respectively.

His research interests include cryptographic hardware and embedded systems,
fully homomorphic encryption, and reconfigurable computing.

Yunlei Zhao received his PhD at Fudan Univer-
sity in 2004. He is now a distinguished professor
at Fudan university. His main research interests
include post-quantum cryptography, cryptographic
protocols, theory of computing. His email address
is ylzhao@fudan.edu.cn.

https://eprint.iacr.org/2023/1885
https://doi.org/10.1109/TPDS.2024.3453289
https://doi.org/10.1109/TPDS.2024.3453289
https://doi.ieeecomputersociety.org/10.1109/TDSC.2024.3494835
https://doi.ieeecomputersociety.org/10.1109/TDSC.2024.3494835
https://falcon-sign.info/

	Introduction
	Related Works
	Our Contributions

	Preliminaries
	Notation
	Falcon
	Fast Fourier Transform
	Fast Fourier Sampling
	Target Platform: GPU

	Compact and Efficient Operation-Level Design
	Analysis of Existing Implementation
	Inefficient Memory Access
	Suboptimal Design for GPU Architecture
	Fragmented Computing Mode

	Fast Fourier Transform
	Computational Workflow Design
	Conflict-Minimal Inter-Layer Data Shuffle
	Burst Data Loading and Storing

	Adaptive Parallel ffSampling Algorithm
	Stack-Based Explicit Iteration Strategy
	Node-Level Parallel Computation
	Layer-Specific Thread Allocation

	Compact Computing Mode
	Kernel Fusion
	Optimized Memory Utilization

	High-Throughput and Space-Saving Signature-Level Implementation
	Dynamic computation-based implementation
	Precomputation-based Implementation
	Balanced Efficiency-Space Implementation
	Secure and Efficient Multi-Task Processing
	Batching and Streaming
	Efficient and Secure Memory Pool

	Performance Evaluation
	Experimental Setup
	Evaluating Operation Optimization Techniques
	Evaluation of FFT
	Evaluation of Adaptive Parallel ffSampling
	Evaluation of Compact Computing Mode

	Performance of cuFalcon
	Resource Utilization Analysis
	Execution Efficiency Analysis
	Comparison of Related Work

	Conclusion
	References
	Biographies
	Wenqian Li
	Hanyu Wei
	Shiyu Shen
	Hao Yang
	Wangchen Dai
	Yunlei Zhao

