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Abstract

In this paper, we present a constant-round actively secure two-party computation protocol with small
communication based on the ring learning with errors (RLWE) assumption with key-dependent message
security. Our result builds on the recent BitGC protocol by Liu, Wang, Yang, and Yu (Eurocrypt 2025)
with communication of one bit per gate for semi-honest security. First, we achieve a different manner
of distributed garbling, where the global correlation is secret-shared among the two parties. The garbler
always and only holds the garbled labels corresponding to the wire values when all inputs are zero,
while the evaluator holds the labels corresponding to the real evaluation. In the second phase, we run an
authentication protocol that requires some extra communication, which allows two parties to check the
correct computation of each gate by treating the ciphertext as commitments, now that the global key is
distributed. For layered circuits, the extra communication for authentication is o(1) bits per gate, resulting
in total communication of 1 + o(1) bits per gate. For generic circuits, the extra communication cost can
be 1 bit per gate in the worst case, and thus, the total communication cost would be 2 bits per gate.

1 Introduction

Secure two-party computation (2PC) with active security is an important line of works with both theoreti-
cal importance and, more recently, practical applications [ZMM+20, CDH+23, BBC+24]. The existence
of actively secure 2PC is known since the original garbled-circuit protocol [Yao86] and the GMW com-
piler [GMW87], whose concrete efficiency was recently explored [ASH+20]. The first provably secure
and concretely efficient protocol was proposed by Lindell and Pinkas [LP07] using the “cut-and-choose”
technique. Its concrete efficiency was later improved by a sequence of works such as [sS11, sS13, KsS12,
LP11, HKE13, Lin13, Bra13, AMPR14, WMK17], and the latest protocol requires exactly ρ garbled circuits
to achieve ρ-bit statistical security. This means 1.5ρλ bits per gate with the recent garbling scheme [RR21]
for λ-bit computational security. Another line of work, LEGO [NO09, FJN+13, FJNT15, NST17, KNR+17]
improved the asymptotic communication to about O(ρλ/ logC) bits per gate with comparable concrete
efficiency, where C is the circuit size.

On the other hand, smaller communication can be achieved when the communication rounds are linear to
the depth of the circuit. TinyOT [NNOB12] was among the first to have concretely efficient and actively secure
protocols for GMW [GMW87], which was later optimized by a series of works (e.g., [FKOS15, BLN+21]).
The best-known approach to generate TinyOT-like preprocessing correlations is to use pseudorandom
correlation generators [BCG+19, LXYY25] with communication cost sublinear to the number of correlations.
As a result, TinyOT requires communication of 4 + o(1) bits per gate. Another non-constant-round solution
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is the IPS compiler [IPS08], which requires communication of O(1) bits per gate, although the underlying
constant is conjectured to be fairly large.

The state-of-the-art constant-round actively secure 2PC is the authenticated garbling framework [WRK17a,
WRK17b, HSS17, KRRW18, YWZ20, DILO22a, CWYY23] that transmits only one garbled circuit, using
preprocessing similar to TinyOT, thus cheap preprocessing and constant-round at the same time. The
authenticated-garbling approach needs communication of O(λ) bits per gate. Using heavier mechanisms,
actively secure constant-round 2PC could also be constructed with even smaller communication only linear
to the input size by using a fully homomorphic encryption (FHE) scheme [Gen09, BGV12] or a laconic
function-hiding functional encryption (LFE) scheme [QWW18, HLL23], and a zkSNARK scheme [Gro10]
to prove the FHE/LFE computation in a non-black-box way. The only protocol that avoids using zkSNARK
while obtaining succinct communication is by Morgan et al. [MPP20] that is also impressively non-interactive;
however, it appears to be a feasibility result, not targeting concrete efficiency. In conclusion, there is a huge
middle ground between concretely efficient constant-round 2PC with active security, which can compute
more than one million gates per second with O(λ) bits per gate, and sublinear communication solutions that
deploy zkSNARK on top of FHE/LFE.

1.1 Our Contribution

In this paper, we propose the first concretely efficient constant-round 2PC protocol with active security,
achieving total communication of o(λC) bits. To be more concrete, the total communication is 2C +
O(λ2 log λ) bits for general circuits, or C + o(C) +O(λ2 log λ) bits for layered circuits. Our solution builds
upon the recent BitGC protocol with passive security by Liu, Wang, Yang, and Yu [LWYY25], which requires
communication of only 1 bit per gate. We make the following contributions to enhance the security of BitGC
to active security.

1. First, we distribute the BitGC protocol so that no party has the global correlated key between zero and
one labels. By doing this, the garbler essentially behaves like an evaluator with all-zero input labels
while the evaluator has real input labels.

2. Then, we present a lightweight authentication protocol to check the correctness of the computation,
requiring one extra bit of communication per gate. The check reduces to checking if a list of ciphertexts
all encrypt zero, which can be performed efficiently.

3. Finally, we show actively secure two-party key-generation and encryption protocols for the lattice-based
encryption scheme, namely extended GSW, needed by the above main protocol. These protocols need
to be executed only once in the setup phase for life between a pair of two parties.

Our scheme could also be extended to achieve even smaller communication: if the underlying somewhat
homomorphic encryption scheme can evaluate L extra levels of multiplications beyond what is required in
the original BitGC protocol, then we can achieve communication of 1 + O(1/L) bits per gate for layered
circuits, or communication of 1 +O(logC/L) bits per gate for arbitrary circuits. When L is set as ω(1) for
layered circuits or ω(logC) for generic circuits, the communication cost is compressed to 1 + o(1) bits per
gate, without the need of bootstrapping.

2 Technical Overview

Let Rp
def
= Zp[X]/(Xn + 1) and Rq

def
= Zq[X]/(Xn + 1). For any ring element A, we define LSB(A) as

A[1] mod 2, where A[1] is the first coefficient of A.
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2.1 BitGC: Garbled Circuits with 1 Bit per Gate

First, we recall some important details of the BitGC garbling scheme. In the BitGC scheme [LWYY25],
all garbled labels are no longer bit strings but ring elements in Rp; there is a global offset ∆ ∈ Rp with
LSB(∆) = 1. For a wire with two labels A0 and A1, we always have A1 = A0 + (−1)πa ·∆ mod p, where
πa = LSB(A0) is the wire mask. With these definitions, the following holds for any v ∈ {0, 1}:

Av = A0 + (−1)πa · v ·∆ , LSB(Av) = πa ⊕ v , Av = Aπa + LSB(Av) ·∆ .

Properties of Extended GSW. To enable small communication, they extended the GSW scheme [GSW13]
to allow some special distributed evaluation. For a bit m, we use JmK to denote the ciphertext encrypting m
using ∆ as the key; if not stated otherwise, all ciphertexts are encrypted under ∆. From the original GSW
scheme, we already have that for any bit m, Dec(∆, JmK) = m ·∆. We also assume that JmK can perform
some constant number of homomorphic multiplications and a polynomial number of homomorphic additions.

We briefly talk about the extra properties that they added without going into the construction. For any
ciphertexts τ1, τ2, τ3 and uniform X,Y such that LSB(X) = LSB(Y ) = 0, the following properties hold
with overwhelming probability:

I Dec is an “odd function”, satisfying Dec(X,−τ1) = −1 · Dec(X, τ1).

II Dec supports distributed decryption, where

Dec(X +∆, τ1) = Dec(X, τ1) + Dec(∆, τ1) .

III Eval is also an “odd function”, satisfying

Eval(X,Y,−τ1,−τ2,−τ3) = −1 · Eval(X,Y, τ1, τ2, τ3) .

IV Eval supports “distributed evaluation”, where

Eval(X + i ·∆, Y + j ·∆, τ1, τ2, τ3)− Eval(X,Y, τ1, τ2, τ3)

= i · Dec(∆, τ1) + j · Dec(∆, τ2) + i · j · Dec(∆, τ3) .

The construction of Eval requires ciphertexts encrypting key-dependent information, so BitGC relies on the
assumption of KDM security.

The BitGC garbled table and its evaluation. Assume that a gate with input wire index (a, b), output wire
index c, and g : {0, 1} × {0, 1} → {0, 1} is the gate evaluation function. The garbled table associated with
this gate consists of three ciphertexts.

τ1 = J(−1)πc · (z1,0 − z0,0)K
τ2 = J(−1)πc · (z0,1 − z0,0)K
τ3 = J(−1)πc · (z0,0 + z1,1 − z1,0 − z0,1)K

where zi,j = g(πa ⊕ i, πb ⊕ j) is the actual output wire value when the input masked Boolean values are
(i, j).

For correct evaluation, the evaluator maintains the invariant that it always has the label corresponding to
the actual wire value. This means that it always has Ava and Bvb and wants to obtain Cg(va,vb). Because for
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any bits i, j, we know Ai = Aπa + (πa ⊕ i) ·∆ and that Bj = Bπb + (πb ⊕ j) ·∆. Now using IV, we can
obtain that

Eval(Ai, Bj , τ1, τ2, τ3)− Eval(Aπa , Bπb , τ1, τ2, τ3)

= (−1)πc ·∆ ·
(
(πa ⊕ i) · (z1,0 − z0,0) + (πb ⊕ j) · (z0,1 − z0,0)

+ (πa ⊕ i) · (πb ⊕ j) · (z0,0 + z1,1 − z1,0 − z0,1)
)

= (−1)πc · (zπa⊕i,πb⊕j − z0,0) ·∆ .

(1)

If the garbler sets Cz0,0 = Eval(Aπa , Bπb , τ1, τ2, τ3), then what the evaluator can compute is

Eval(Ava , Bvb , τ1, τ2, τ3) = Cz0,0 + (−1)πc · (zπa⊕va,πb⊕vb − z0,0) ·∆
= Czπa⊕va,πb⊕vb = Cg(va,vb) .

This would allow the evaluator to continue the gate evaluation as long as the garbler sets output labels
appropriately during the garbling phase.

Transmitting BitGC garbled table with 1 bit per gate. To garble a gate with 1-bit communication, the
garbler needs to transmit the ciphertexts τ1, τ2, τ3 with only 1 bit. First of all, transmitting encryptions of
random bits is “free” in communication since the garbler can send an encrypted seed JsK, and the evaluator
can homomorphically expand it using a PRG to obtain many pseudorandom bit encryptions. It only requires
somewhat homomorphism if a low-complexity PRG is used.

The garbler maintains the invariant that for each gate, both parties have the same ciphertext for the
permutation bits, namely JπaK and JπbK, where πa = LSB(A0) and πb = LSB(B0). Additionally, both
parties have a random bit encryption associated with the output wire, namely JrcK.

With this setup, the garbler can garble this gate as follows.

1. Compute unfixed garbled table. Both parties can performs homomorphic evaluations on JπaK, JπbK
and JrcK to obtain:

τ̃1 = J(−1)rc · z1,0K− J(−1)rc · z0,0K
τ̃2 = J(−1)rc · z0,1K− J(−1)rc · z0,0K
τ̃3 = J(−1)rc · z0,0K + J(−1)rc · z1,1K− J(−1)rc · z1,0K− J(−1)rc · z0,1K .

(2)

Here, J(−1)rc · zi,jK = J(1− 2rc) · zi,jK = (1−2 ·JrcK) ·g(JπaK⊕i, JπbK⊕j) for all bits i, j. τ̃1, τ̃2, τ̃3
are similar to the final table but use the (−1)rc term instead of (−1)πc . This step requires homomorphic
evaluation on a circuit of depth 2.

2. Compute the output wire mask πc. Recall that Cz0,0 is defined based on τ1, τ2, τ3; therefore πc is
also dependent on them:

πc = LSB(Cz0,0)⊕ z0,0 = LSB(Eval(Aπa , Bπb , τ1, τ2, τ3))⊕ z0,0 .

However, πc is needed above to compute τi. Therefore, the key of this step is to compute πc
without τi’s. The crucial observation made by the authors [LWYY25] here is that when setting
the plaintext space to be even, the LSB on both sides would be the same due to III, meaning that
πc = LSB(Eval(Aπa , Bπb ,−1 · τ1,−1 · τ2,−1 · τ3))⊕ z0,0. Thus regardless of the truth value of rc,
πc can always be computed by πc = LSB(Eval(Aπa , Bπb , τ̃1, τ̃2, τ̃3))⊕ z0,0, which the garbler can do
based on the output of step 1.
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3. Transmit a single bit. Now that the garbler computes πc, it can send dc = rc ⊕ πc to the evaluator.
Then, both parities compute JπcK = dc ⊕ JrcK and update τi = (−1)dc · τ̃i locally.

4. Obtain output label Cπc . The only invariant to be maintained is letting the garbler obtain Cπc . The
garbler can first recover the garbled tables τi’s just as an evaluator would do; then, as described above,
set Cz0,0 = Eval(Aπa , Bπb , τ1, τ2, τ3). This means Cπc = Cz0,0 − LSB(Cz0,0) ·∆.

Their work also includes an instantiation of the encryption scheme such that it satisfies all properties on Dec
and Eval. Since they are not relevant to our actively secure protocol, we refer readers to their paper [LWYY25]
for details.

2.2 Distributing BitGC

Now, we discuss how we can strengthen their protocol for active security with a small overhead.

BitGC is free of selective-failure attack. Intuitively, making BitGC actively secure should be easier than
classical GCs as there is less information being transmitted from the garbler, hence fewer ways to cheat.
Indeed, our first observation is that BitGC is already free of selective failure attacks. To be more specific, we
can show that if a garbler sends a wrong bit for a gate g, it is equivalent to changing the gate function to be
ĝ(·, ·) = g(·, ·)⊕ 1.

Let’s first recall the dependency of all values. Recall that for a gate with input labels (A0, A1), (B0, B1)
and ciphertexts (JπaK, JπbK, JrcK), the garbler first computes πc and sends the difference dc = πc ⊕ rc
so that both parties have JπcK = dc ⊕ JrcK. Then the garbled table τ1, τ2, τ3 can be computed from
(JπaK, JπbK, JrcK, dc). From here, the evaluator obtains Cvc = Eval(Ava , Bvb , τ1, τ2, τ3), and the garbler
obtain Cz0,0 = Eval(Aπa , Bπb , τ1, τ2, τ3), which means that

C0 = Eval(Aπa , Bπb , τ1, τ2, τ3)− (−1)πc · z0,0 ·∆
C1 = Eval(Aπa , Bπb , τ1, τ2, τ3) + (−1)πc · z0,0 ·∆ .

Let’s see the effect if the garbler sends d̂c = dc, which is the only way that a garbler can cheat. Let’s
take a look at the first gate where the garbler cheats. In this case, both parties would obtain JπcK, and thus
effectively the new wire mask is π̂c = πc and the resulting garbled rows would be τ̂i = −1 · τi.

Now from the evaluator’s view, the label that the evaluator would obtain is

Ĉvc = Eval(Ava , Bvb , τ̂1, τ̂2, τ̂3) = −Eval(Ava , Bvb , τ1, τ2, τ3)

= −Cvc .

From the garbler’s perspective, the output labels are:

Ĉ0 = −Eval(Aπa , Bπb , τ1, τ2, τ3)− (−1)πc · z0,0 ·∆ = −C0

Ĉ1 = −Eval(Aπa , Bπb , τ1, τ2, τ3) + (−1)πc · z0,0 ·∆ = −C1 .

This means that the garbler would obtain two new labels that are (−1) times the original labels. With the new
wire mask π̂c = πc, Ĉ1 is new 0-label, because LSB(Ĉ1) = LSB(−C1) = LSB(C1) = 1− LSB(C0) = πc.
Furthermore, recall that Cvc = C1 − (−1)πc · vc ·∆; thus we have

Ĉvc = −C1 + (−1)πc · vc ·∆ = Ĉ1 + (−1)πc · vc ·∆,

which means that under the new definition, the evaluator’s label is now effectively for the bit vc, not vc.
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Effectively, when the garbler sends a flipped bit for a gate, with the evaluator performing the same
computation, the garbler would have computed locally two new labels such that all invariants still hold
but the permutation bit is flipped and that the real wire value is also flipped. Note that the masked bit
is unchanged since LSB(Ĉvc) = LSB(Cvc). The output will not be influenced by or conditioned on the
evaluator’s randomness or input in any way other than adding a NOT gate to the output; thus, there will not
be a selective failure attack.

Therefore, the main task is to check the integrity of the BitGC. It is very challenging for the evaluator to
check the correctness because only the garbler holds both labels and defines their values. In particular, during
a checking phase, the garbler can provide two different labels, effectively flipping the actual meaning of the
evaluator’s label. A correctness check based on this would open the possibility of a selective failure attack.
The evaluator also has encryption of the permutation bit JπaK, but the underlying encryption scheme is not
committing, and the key belongs to the garbler; it is not clear how to utilize it either. For this reason, our first
step is to tweak the protocol so that the garbler no longer has ∆. This would help with checking as the garbler
cannot swap zero and one labels easily in this case. In addition, ∆ is also the secret key for the encryption
scheme; if the garbler does not have the secret key, it cannot open ciphertexts to other values. Note that this
deviates from existing garbling literature as the garbler always has both labels to compute the garbled table.

BitGC with distributed ∆. Our goal is to let the garbler “commit” to the semantic meaning of the evaluator’s
label before both parties check the correctness of the evaluation; this way, a corrupted garbler cannot
adaptively change the value being checked. Our key observation is that when the evaluator holds a bit
encryption, namely JπaK, if the underlying encryption key is instead secretly shared by two parties, then this
encryption would essentially become a commitment as well. We describe how a garbler can compute exactly
the same information while ∆ is secretly shared among the two parties.

Our goal is to maintain the invariant that for each wire, the garbler has (Aua , πa); the evaluator has Ava

and that both parties have JπaK encrypted under global key ∆ that is shared by the two parties as ∆A and ∆B

such that ∆B = ∆A +∆. Here, va refers to the actual truth value of the wire; ua refers to the truth value of
the wire when all inputs are 0. Now, we proceed to replicate the steps in the original BitGC protocol, but the
garbler only has one label.

1. Compute unfixed garbled table. This step is the same as before since both parties still have Jπa, πb, rcK

2. Compute the output wire mask πc. In the original protocol, the garbler uses Aπa , Bπb and z0,0 to
obtain the wire mask, but it can no longer do it. However, notice that

Eval(Aua , Bub) = Eval(Ava , Bvb) + (−1)πc · (zπa⊕ua,πb⊕ub
− zπa⊕va,πb⊕vb) ·∆

= Cvc + (−1)πc · (g(ua, ub)− g(va, vb)) ·∆
= C0 + (−1)πc · uc ·∆
= Cuc ,

for any τ1, τ2 and τ3 as inputs to Eval, omitted for simplicity. Therefore, we can also compute the wire
mask πc = LSB(Eval(Aua , Bub , τ̃1, τ̃2, τ̃3))⊕ uc.

3. Transmit a single bit. This step is identical to the semi-honest version.

4. Obtain output label Cuc . Our goal now is to obtain just Cuc . This can be computed as Eval(Aua , Bub , τ1, τ2, τ3)
due to the equation above.

Intuitively, what is happening is that the garbler is also “evaluating” the garbled circuit it generates but using
all-zero as the input to the whole circuit. This allows the garbler to obtain the wire mask of each wire, which
is sufficient to construct the GC bits for the subsequent gates.
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Input processing with a distributed ∆. Because the garbler no longer has all input labels, we also need
to design a new way to let two parties maintain the invariant for input wires. In particular, the garbler shall
receive all 0-labels (e.g., A0), while the evaluator shall receive labels matching the circuit inputs (e.g., Ava

for input va).
Our first idea is to utilize the distributed decryption property mentioned earlier: for any ciphertext JmK,

Dec(∆B, JmK) = Dec(∆A, JmK) +m ·∆. With this property, the following method can be derived: when
both parties know the ciphertext J(−1)πa · vaK, setting

A0 = Dec(∆A, J(−1)πa · vaK) and Ava = Dec(∆B, J(−1)πa · vaK)

satisfies our requirements based on distributed decryption. However, this leads to a deadlock similar to gar-
bling the gate: generating J(−1)πa · vaK requires πa, while computing πa = LSB(A0) = LSB(Dec(∆A, J(−1)πa · vaK))
also depends on J(−1)πa · vaK.

To resolve this, both parties can compute the input labels (A0, Ava) using the same method as deriving
output labels during gate garbling. This works because Dec is also an “odd function” for ciphertexts (see I),
satisfying Dec(∆A, JvaK) = −Dec(∆A,−JvaK). Specifically, to encode input va using uniform random bit
ciphertexts JraK and Jr̂aK, where the garbler knows ra and the party providing input va knows r̂a, proceed as
follows:

1. Generate the ciphertext JvaK. If va is the evaluator’s input, the evaluator sends σa := va ⊕ r̂a
to the garbler. Otherwise, the garbler sends σa := va ⊕ r̂a to the evaluator. Then, both parties
homomorphically compute JvaK := Jr̂aK⊕ σa.

2. Compute the input wire mask πa. Both parties first compute J(−1)ra · vaK homomorphically as
(1− 2 · JraK) · JvaK. Using the oddness of Dec, the garbler computes

πa = LSB(Dec(∆A, (−1)πa · JvaK)) = LSB(Dec(∆A, (−1)ra · JvaK)) .

Then, the garbler sends da := ra ⊕ πa to the evaluator and both parties compute

J(−1)πa · vaK := (−1)da · J(−1)ra · vaK .

3. Distributed decrypt for input labels (A0, Ava). Both parties generate input labels using their ∆A and
∆B: A0 = Dec(∆A, J(−1)πa · vaK) and Ava = Dec(∆B, J(−1)πa · vaK).

2.3 Authenticating Distributed BitGC

Now that we have a protocol such that at the end of the protocol, both parties have JπaK, PB has Ava and PA

has Aua for each wire. No party can decrypt the ciphertext, but they can jointly perform decryption in a way
such that no party can flip the plaintext.

For each gate (a, b, c, g), PB can compute encrypted vc from the input wire mask as

JvcK = g(JπaK⊕ LSB(Ava), JπbK⊕ LSB(Bvb)),

Since LSB(Ava) = va ⊕ πa and LSB(Bvb) = vb ⊕ πb. Similarly, PB could also compute it via

Jv′cK = JπcK⊕ LSB(Cvc).

If they are the same, then this gate is computed correctly. It’s tempting to let PB compute JvcK− Jv′cK and use
distributed decryption to check if it is zero. However, although it would be secure against PA, a malicious
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PB could replace this ciphertext with any other ciphertext that it wants to perform a zero test, leading to a
selective failure attack by PB.

To avoid PB sending the wrong ciphertext, we ask PB send Jπi ⊕ viK to PA, by first sending a valid
ciphertext of a seed that can be expanded to many encrypted bits ti, then sending a bit ti ⊕ πi ⊕ vi to PA.
This way, the only way to cheat from PB is to flip the bit, which would lead to abort in the check later. Now
PA also obtains JviK and Jv′iK just like the above.

To check that these values are all the same, both parties perform a random linear combination of all
differences and obtain one value that is supposed to be an encryption of zero:

τ =
(∑

i

χi · (JviK− Jv′iK)
)
,

where each χi
$←− Zp. Following the same spirit, we can also check that the input and output decoding are

processed correctly in the same equation by extending the above equation.
Now that both parties have a ciphertext that should be an encryption zero if and only if the computation is

correct. They can perform distributed decryption using ∆A and ∆B , obtaining two equation values, since
Dec(∆B, J0K) = Dec(∆A, J0K) + 0 ·∆.

Overall, this protocol’s computational and communication costs per gate are about twice that of the
original BitGC protocol. The requirement on the underlying extended GSW scheme is the same, meaning
that we don’t require evaluating on a deeper circuit.

Note that if the underlying SWHE scheme can perform L extra levels of homomorphic multiplications,
the evaluator can skip some of the bit and let the garbler evaluate them instead. For layered circuits, a circuit
with C gates can be divided into L-depth subcircuits, with a total output size bounded by O(C/L). For
generic circuits, the bound is O(C logC/L). When L = ω(1) for layered circuits or L = ω(logC) for
generic circuits, communication remains 1 + o(1) bits per gate, eliminating the need for bootstrapping.

2.4 Two-Party Key Generation and Encryption

The remaining issue is that both PA and PB should perform encryption in our authenticated BitGC protocol.
This is straightforward in BitGC [LWYY25], where PA holds the secret key ∆ and encrypts all plaintexts.
However, in our authenticated BitGC setting, both parties share the secret key ∆, with PA holding ∆A and PB

holding ∆B = ∆A+∆, and both parties share the secret key ∆, perform encryption, and generate key-related
ciphertexts to implement the Eval function. We now describe how to implement two-party key generation
and encryption in poly(λ), where the complexity of the key generation and encryption algorithms depends
only on the security parameter λ and is independent of the circuit size.

We take PA encrypting the message m as an example. First, PA sends its ciphertext (a, bA = a ·∆A +
eA −m) to PB, while PB sends its ciphertext (a, bB = a ·∆B + eB) to PA, both using the same public value
a. Next, both parties can locally compute ciphertext JmK = (a, b = bB− bA = a ·∆+(eB− eA)+m) using
key and message homomorphism. Applying commitment and zero-knowledge proofs ensures the bounds
of ∥bA − a ·∆A∥∞ and ∥bB − a ·∆B∥∞. A similar approach can encrypt PB’s message m or the shared
message m with PA holding mA and PB holding mA +m.

Another challenge is generating key-related ciphertexts where the message is a non-linear function of the
key. We address this using malicious 2PC protocols, such as SPDZ [DPSZ12, DKL+13], to generate the
result in shared form and the commitment of the shares. Commitment ensures the consistency of the entire
protocol. Subsequently, both parties can apply the previously described method to obtain the ciphertext.
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3 Preliminaries

Notation. We will use λ and ρ to denote the computational and statistical security parameters, respectively.

For n ∈ N, let [n] def
= {1, . . . , n}. We use x $←− S (resp., x← D) to denote sampling x from a set S uniformly

at random (resp., according to a distribution D). For a vector a, we use a[i] to denote the i-th component of

a, where a[1] is the first component. LetR def
= Z[X]/(Xn+1) be a polynomial ring with integer coefficients

modulo a polynomial Xn+1, andRq
def
= R/qR = Zq[X]/(Xn+1) for a modulus q ∈ N. For a polynomial

a ∈ R, we define LSB(a) = a[1] mod 2. For a vector v of length n, the infinity norm ∥v∥∞ is defined as

∥v∥∞
def
= max

i∈[n]
|v[i]|. For two vectors x and y, we use x ≈ y to denote that ∥x− y∥∞ is relatively small.

We use negl(·) to denote an unspecified negligible function such that negl(λ) = o(λ−c) for every constant
c, and poly(·) to denote a polynomial function with poly(λ) = O(λc) for some constant c. We denote the
rounding function by ⌊·⌉ : R→ Z, which maps x ∈ R to the closest integer y ∈ Z. For integers p and q such
that 2 ≤ p ≤ q, the modular rounding function is defined as ⌊·⌉p : Zq → Zp that maps x→ ⌊(p/q) · x⌉. This
definition extends naturally to vectors and matrices over Zq. For two vectors x and y, ⟨x,y⟩ represents their
inner product.

Boolean circuits. Following the notation in [WRK17a], a Boolean circuit is represented as a list of gates of
the form (α, β, γ, g), where α and β are input wire indices, γ is output wire index, and g ∈ {∧,⊕} specifies
the gate type. We use PA and PB to denote the two parties executing a 2PC protocol, and w.l.o.g. assume
that only PB obtains the output at the end of 2PC execution. Then we use IA (resp., IB) to represent the set
of circuit-input wire indices corresponding to the PA’s input (resp., the PB’s input), O to denote the set of
circuit-output wire indices associated with the PB’s output, and G to denote the set of output wire indices of
all AND and XOR gates. We also use N = |IA| + |IB| + |G| to denote the number of all wires and vi to
denote the actual bit on the i-th wire.

3.1 Security Model and Ideal Functionalities

Security model. We adopt the standard ideal/real model [Can00, Gol04] to prove security of our 2PC protocol
in the presence of a static, malicious adversary. In the ideal-world execution, two parties interact with an
ideal functionality F, and one of them may be corrupted by an ideal-world adversary (a.k.a., simulator) S. In
the real-world execution, the parties interact with each other in an execution of protocol Π, and one of them
may be corrupted by a real-world adversary A (that is often called the adversary for the sake of simplicity).
We say that protocol Π securely computes ideal functionality F, if the joint distribution of the outputs of
honest party and A in the real-world execution is computationally indistinguishable from that of the outputs
of honest party and S in the ideal-world execution. We prove security of our protocol in theH-hybrid model,
where two parties execute the protocol with real messages, and also have access to a sub-functionality H.
Our 2PC protocol can also be proven secure in the universal composition (UC) framework [Can01], if all
sub-functionalities used in our protocol are instantiated with UC-secure protocols.

We focus on security with abort, i.e., the adversary, who corrupts one party, first receives the output,
and then can determine whether the honest party obtains the output. It is standard in the two-party setting.
Therefore, the simulator can send abort to the ideal functionality F at any point, which instructs F to send
abort to the parties and abort. This allows the simulator to prevent the honest party obtain the output, after
the corrupted party gets its output. We implicitly allow the simulator to send abort to F at any point, and
omit the corresponding description for the sake of simplicity.

The coin-tossing functionality. Our protocol would invoke the standard coin-tossing functionality FRand

shown in Figure 1, which can be securely computed in the random oracle model (see, e.g., [HSS17, YWZ20]).
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Functionality FRand

This functionality interacts with PA and PB as follows:

1. Upon receiving (Rand, S) from both parties, where S is an efficiently sampleable set, sample r
$←− S, and

then output r to all parties.

Figure 1: The ideal functionality for coin tossing.

Functionality FCPC

This functionality is parameterized by a polynomial ringRq . It interacts with two parties PA and PB as well as the
adversary as follows.

• Commit: Upon receiving (Commit,P, id, w) from a party P ∈ {PA,PB}, where id is a fresh identifier,
store (com,P, id, w) and output (P, id) to both parties.

• Prove: Upon receiving (Prove,P, id1, . . . , idℓ, f) from PA and PB, where P ∈ {PA,PB}, (com,P, idi)
for all i ∈ [ℓ] are present in memory and f is a verification circuit, retrieve (com,P, idi, wi) for each i ∈ [ℓ];
if f(w1, . . . , wℓ) = 1, output true to both parties, else output false to both parties.

• Compute: Upon receiving (Compute, id1, . . . , idt, id, îd, g) from PA and PB, where idi for all i ∈ [t] are
present in memory, both of id, îd are fresh identifiers, and g is an arithmetic circuit, retrieve (com, ⋆, idi, wi)
for each i ∈ [t] and compute y := g(w1, . . . , wt) ∈ Rn

q . Then,

– If PA is honest, sample mA
$←− Rn

q . Otherwise, receive mA ∈ Rn
q from the adversary. Compute

mB := mA + y ∈ Rn
q .

– If PB is corrupted, receive mB ∈ Rn
q from the adversary and recompute mA := mB − y ∈ Rn

q .

– Store (com,PA, id,mA) and (com,PB, îd,mB). Then output mA to PA and mB to PB.

Figure 2: The ideal functionality for the “commit-prove-compute” that allows proving and computing on
committed values.

The ideal functionality to capture the “commit-and-prove” paradigm and secure computation of
committed values. We define an ideal functionality FCPC shown in Figure 2 to model security of the
“commit-and-prove” paradigm, where a witness is first committed via the Commit command, and then the
statement is proven with the witness via the Prove command. To further capture secure computation of
committed values, FCPC allows two parties to call the Compute command to securely compute the values
committed by PA and PB, respectively. As a result, both parties can obtain an additive secret sharing on the
computational result, and the shares are committed and can be further used in the Prove command. As in
prior works [NNOB12, HSS17, WRK17a, WRK17b, KRRW18, YWZ20, CWYY23], we allow the corrupted
party to choose its output share.

We can use any constant-round zero-knowledge (ZK) proofs in the “commit-and-prove” framework, e.g.,
the recent ZK proofs [WYKW21, DIO21, BMRS21, YSWW21, WYY+22, DILO22b, BCC+24, LXY25]
based on vector oblivious linear evaluation (VOLE) [ADI+17, BCGI18], to securely realize the Commit
and Prove commands. Such VOLE-ZK proofs are practically efficient, and can prove fastly that a secret is
located in a small range, which would be used in our protocol. We can use any actively secure 2PC based on
secret sharing (SS) such as SPDZ [DPSZ12, DKL+13, KOS16, KPR18] to securely realize the Compute
command. Since our protocol needs to securely compute only one-level multiplications on committed values,
the round complexity of SS-based 2PC is O(1) in this case. Overall, we obtain a constant-round protocol
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with active security to securely compute FCPC for our application.
When combining VOLE-ZK with SPDZ, we are able to obtain a highly efficient protocol to compute

FCPC securely, where one can seamlessly and efficiently convert between the commitments in VOLE-ZK and
information-theoretic message authentication codes (IT-MACs) in SPDZ. Specifically, VOLE correlations
are used as commitments in VOLE-ZK, and can also be viewed as BDOZ-style IT-MACs [BDOZ11]. It
is well-known that BDOZ-style IT-MACs can be locally converted into SPDZ-style IT-MACs. Therefore,
the commitments (applied in VOLE-ZK) can be straightforwardly used as the inputs equipped with SPDZ-
style IT-MACs in SPDZ-like 2PC protocols. For the IT-MACs output by an SPDZ-like 2PC, they can be
transformed to BDOZ-style IT-MACs requiring one element per IT-MAC of communication [HOSS18].
Then, these BDOZ-style IT-MACs can be used as the commitments in VOLE-ZK.

3.2 Basic Definitions and Lemmas for Lattice-based Cryptography

We summarize the basic definitions and lemmas for SWHE with distributed decryption.

Definition 1 (Discrete Gaussian Distribution). The discrete Gaussian distribution Dm
σ over Zm is centered

at 0 with each coordinate sampled independently and having a standard deviation of σ. For any x ∈ Zm, the
discrete Gaussian distribution is defined as Dm

σ (x) = ρmσ (x)/ρmσ (Zm), where

ρmσ (x) =
m∏
i=1

(
1√
2πσ2

· e−
x[i]2

2σ2

)
is the continuous Gaussian function over Rm and ρmσ (Zm) =

∑
z∈Zm

ρmσ (z) is the normalization factor

ensuring the probabilities sum to 1.

Since a ring element in R can be viewed as a vector in Zn, we use Dη to denote a discrete Gaussian
distribution overR, such that Pre←Dη [∥e∥∞ > η] is negligible in λ, where η is a parameter. Besides, we use
DN

η to denote a distribution of vectors with each component sampling from Dη.

Lemma 1 (Lifting Lemma [BKS19]). Let p ∈ N be a modulus with p ≥ nω(1) and let z0 ∈ R be a uniformly
random ring element with coefficients in Zp. For any m ∈ R, let z1 = z0 +m mod p. Then, we have

Pr [z1 = z0 +m] ≥ 1− n · (∥m∥∞ + 1) /p .

Lemma 2 (Rounding Lemma [BKS19]). Let p, q ∈ N be two moduli with q/p ≥ nω(1) and p | q. Let
t0 ∈ Rq be a uniformly random ring element, and define t1 = t0 + (q/p) ·m+ e overRq for some m ∈ Rp

and e ∈ R. Then, we have

Pr
[
⌊t1⌉p = ⌊t0⌉p +m

]
≥ 1− n · (∥e∥∞ + 1) · p/q .

The ring learning with errors (RLWE) problem, introduced by Lyubaskevsky, Peikert, and Regev [LPR10],
is defined as follows.

Definition 2 (RLWE [LPR10]). For dimension n ∈ N, number of samples m ∈ N, and modulus q ∈ N, the
RLWE(n,m, η, q) problem is to distinguish the following two distributions:{(

ai
$←− Rq, bi = ai · s+ ei

)}
i∈[m]

and
{(

ai
$←− Rq,ui

$←− Rq

)}
i∈[m]

,

where s← Dη and ei ← Dη, for each i ∈ [m]. The RLWE(n,m, η, q) assumption is that the RLWE(n,m, η, q)
problem is infeasible.

Dη is defined as above, and RLWE also supports other error distributions. For the sake of simplicity, we
write the RLWE assumption or RLWE problem, when the parameters are clear from the context.
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3.3 SWHE with Distributed Decryption

We recall the recent notion of somewhat homomorphic encryption (SWHE) with distributed decryption.
The syntax is described in the following definition. We also describe the RLWE-based instantiation of such
SWHE scheme in Section 5.1, following prior work [LWYY25].

Definition 3 (SWHE with Distributed Decryption [LWYY25]). A somewhat homomorphic encryption scheme
with distributed decryption in the private-key setting consists of the following polynomial-time algorithms
and satisfies the message homomorphism and distributed decryption properties. Let K be the space of secret
keys,Rp be the space of key shares,M⊆ Rp be the message space, and C be the ciphertext space.

• Setup: params ← Setup(1λ, 1L). The setup algorithm takes as input a security parameter λ and a
maximum multiplication depth L, and then outputs a set of parameters params that is independent of
secret keys. Here, params is an implicit input to the following encryption and decryption algorithms,
and would be omitted for simplicity.

• Key Generation: (keypar, sk) ← KeyGen(params). The key generation algorithm takes as input
params, and then outputs a set of key-related parameters keypar, along with a secret key sk ∈ K such
that LSB(sk) = 1. Similarly, keypar is an implicit input to the following algorithms and is omitted for
simplicity.

• Encryption: JmK← Enc(sk,m). The encryption algorithm takes as input a secret key sk ∈ K and a
message m ∈M, and outputs a ciphertext JmK ∈ C.

• Decryption: m · sk ← Dec(sk, JmK). The decryption algorithm takes as input a secret key sk and a
ciphertext JmK, and outputs m · sk overRp. It is w.l.o.g. assumed that m can be recovered from m · sk
overRp with secret key sk.

The SWHE scheme needs to satisfy the following properties.

1. Message homomorphism. For any params ← Setup(1λ, 1L), (keypar, sk) ← KeyGen(params),
message mi ∈ M and ciphertext JmiK = Enc(sk,mi), for each i ∈ [ℓ], where integer ℓ ≥ 1, the
following equality holds with probability 1− negl(λ), for any polynomial-sized circuit f with a low
depth L:

Dec
(
sk, f̃(Jm1K, . . . , JmℓK)

)
= f(m1, . . . ,mℓ) · sk ,

where f̃ denotes the homomorphic evaluation of circuit f on the ciphertexts, which can be performed
in time poly(λ).

2. Distributed decryption. For each params ← Setup(1λ, 1L), (keypar, sk) ← KeyGen(params) and
ciphertext JmK = Enc(sk,m) on any message m ∈M, the following properties hold:

• Linear distributed decryption. Let sk0 be an element sampled uniformly from Rp such that
LSB(sk0) = 0. Let sk1 = sk0 + sk overRp. Then, the following equations hold with probability
1− negl(λ),

Dec(ski, JmK) = −Dec(ski,−JmK) for i ∈ {0, 1}
Dec(sk1, JmK) = Dec(sk0, JmK) + Dec(sk, JmK) .

The two equations described as above imply Dec(sk, JmK) = −Dec(sk,−JmK).
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• Correlated-key distributed decryption. Let sk0, sk′0 be two elements sampled uniformly from
Rp such that LSB(sk0) = 0 and LSB(sk′0) = 0. Let sk1 = sk0 + sk and sk′1 = sk′0 + sk over
Rp. There exists a polynomial-time algorithm D̂ec such that the following equations hold with
probability 1− negl(λ),

D̂ec(sk0, sk
′
0, JmK) = −D̂ec(sk0, sk′0,−JmK) ,

D̂ec(ski, sk
′
j , JmK)− D̂ec(sk0, sk

′
0, JmK) = i · j · Dec(sk, JmK) for i, j ∈ {0, 1} .

For the sake of simplifying the description, we define a polynomial-time algorithm Eval using the above
algorithms Dec and D̂ec. Specifically, given the ciphertexts τ1, τ2, τ3 encrypted under sk, for any X,Y ∈ Rp,
Eval is defined as:

Eval(X,Y, τ1, τ2, τ3)
def
= Dec(X, τ1) + Dec(Y, τ2) + D̂ec(X,Y, τ3) .

For any ciphertexts τ1, τ2, τ3 and uniform elements X,Y ∈ Rp with LSB(X) = LSB(Y ) = 0, with
probability 1− negl(λ), we have

Eval(X,Y,−τ1,−τ2,−τ3) =Dec(X,−τ1) + Dec(Y,−τ2) + D̂ec(X,Y,−τ3)

=−
(
Dec(X, τ1) + Dec(Y, τ2) + D̂ec(X,Y, τ3)

)
=− Eval(X,Y, τ1, τ2, τ3) .

Furthermore, for any ciphertexts τ1, τ2, τ3 and uniform elements X,Y ∈ Rp with LSB(X) = LSB(Y ) = 0,
for i, j ∈ {0, 1}, with probability 1− negl(λ), we have

Eval(X + i · sk, Y + j · sk, τ1, τ2, τ3)− Eval(X,Y, τ1, τ2, τ3)

= Dec(X + i · sk, τ1) + Dec(Y + j · sk, τ2) + D̂ec(X + i · sk, Y + j · sk, τ3)

−
(
Dec(X, τ1) + Dec(Y, τ2) + D̂ec(X,Y, τ3)

)
= i · Dec(sk, τ1) + j · Dec(sk, τ2) + i · j · Dec(sk, τ3) .

As in [LWYY25], we need that the SWHE scheme satisfies the standard IND-CPA security (i.e., indistin-
guishability under chosen-plaintext attacks).

4 Authenticated BitGC: Constant-Round 2PC with Active Security

We first define an ideal functionality F2PSWHE (Figure 3) to model the security of key generation and
encryption in the two-party setting for SWHE with distributed decryption. In this functionality, an honest
party always samples either ∆A ← Dη or ∆B ← Dη, and inputs it to F2PSWHE. While other distributions are
allowed for secret keys, we choose Dη for simplicity. The GenKey command needs to be called only once,
and can be reused for multiple EncBit commands. If P wants to encrypt a vector z and it is corrupted, we
allow the adversary to choose the randomness r for encryption. It has no impact on security, as P owning the
plaintext z has been corrupted.

We present an actively secure two-party protocol to instantiate F2PSWHE in Section 5. To make the
protocol concretely efficient, e.g., avoiding to running a generic 2PC protocol to sample elements from Dη

which is prohibitively expensive, we define an alternative key-generation algorithm KeyGen′ for SWHE. In
particular, KeyGen′ takes as input params, ∆A ∈ R and ∆B ∈ R, and then outputs a set of key-dependent
parameters keypar′ as well as a secret key ∆, such that ∆ = ∆B −∆A. Here, we require that ∥∆A∥∞ ≤ η,
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Functionality F2PSWHE

Let KeyGen′ (resp., Enc) be the alternative key-generation algorithm (resp., the encryption algorithm) of an SWHE
scheme. This functionality is parameterized by a set of parameters params = Setup(1λ, 1L), which defines a
polynomial ringRp and a parameter η ≪ p. It interacts with two parties PA, PB as follows.

• Upon receiving (GenKey,∆A) from PA and (GenKey,∆B) from PB, where ∆A,∆B ∈ Rp, do the follow-
ing:

1. Check ∥∆A∥∞ ≤ η, ∥∆B∥∞ ≤ η, ∆A[1] = 0 and ∆B[1] = 1. If the check fails, send abort to both
parties and abort.

2. Run (keypar′,∆) ← KeyGen′(params,∆A,∆B), where ∆B − ∆A = ∆ ∈ Rp, ∥∆∥∞ ≤ 2η and
LSB(∆) = 1.

3. Output keypar′ to both parties.

Ignore any subsequent GenKey commands.

• Upon receiving (EncBit, t,z) from a party P ∈ {PA,PB} and (EncBit, t) from the other party, where t ∈ N
and z ∈ {0, 1}t, do the following:

1. If P is corrupted, receive r from the adversary, and then run JziK ← Enc(∆, zi; r) where r is the
randomness used in the encryption.

2. If P is honest, for each i ∈ [t], run JziK← Enc(∆, zi), and then set JzK := (Jz1K, . . . , JztK).

3. Output JzK to both parties.

Figure 3: The ideal functionality for two-party key generation and encryption on an SWHE scheme with
distributed decryption.

∥∆B∥∞ ≤ η, ∆A[1] = 0 and ∆B[1] = 1 for some parameter η. Thus, we have ∆ ∈ R, ∥∆∥∞ ≤ 2η and
LSB(∆) = 1. We implicitly assume that both message-homomorphic and distributed-decryption properties
still hold under any pair (keypar′,∆) ← KeyGen′(params,∆A,∆B) with ∆A,∆B satisfying the above
conditions. This assumption naturally holds for our protocol shown in Section 5.2. Furthermore, we require
that the IND-CPA security is still satisfied under any (keypar′,∆)← KeyGen′(params,∆A,∆B), if at least
one of ∆A and ∆B is sampled from Dη. The instantiation of KeyGen′ is given in Section 5.2, and we prove
that the SWHE scheme with (keypar′,∆) = KeyGen′(params,∆A,∆B) is IND-CPA secure.

Below, we present the details of our authenticated BitGC protocol in Section 4.1. Then, we analyze its
correctness based on the passively secure BitGC protocol [LWYY25] in Section 4.2. Finally, we formally
prove its security against malicious adversaries in Section 4.3.

4.1 Details of Our Authenticated BitGC Protocol

The details of our authenticated BitGC protocol in the (F2PSWHE,FRand)-hybrid model are shown in Figures 4
and 5. In this protocol, PRG : {0, 1}λ → {0, 1}|IA|+N denotes a pseudorandom generator, and PRF :
{0, 1}λ × {0, 1}λ → Rp represents a pseudorandom function, whereRp is defined by a set of parameters
params. As in prior work [LWYY25], we consider that p is an even. We divide the protocol into two phases:
the preprocessing phase (where the circuit and inputs are unknown) and online phase (where the circuit along
with two parties’ inputs are known).

Following prior works [BKS19, LWYY25], we use PRF and a random key to generate common elements
in Rp and then mask the labels, which make the distributed-decryption property (defined in Section 3)
hold. We also randomize the key ∆A with a random element U ∈ Rp output by FRand, which is useful
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Protocol Π2PC (Part 1)

Inputs: PA and PB agree on a Boolean circuit f : {0, 1}|IA| × {0, 1}|IB| → {0, 1}|O| with |IA| = |IB| and a
set of parameters params = Setup(1λ, 1L). PA holds an input x = (xi)i∈IA

∈ {0, 1}|IA|; PB holds an input

y = (yi)i∈IB
∈ {0, 1}|IB|. Let Dec and Eval be the algorithms defined in SWHE with distributed decryption. Let

H : Rp → {0, 1}λ be a cryptographic hash function modeled as a random oracle.

Preprocessing: In the preprocessing phase, the circuit and input are unknown, and only N = |IA|+ |IB|+ |G| is
known. PA and PB execute as follows:

1. PA samples ∆A ← Dη; PB samples ∆B ← Dη. Then, PA and PB call the GenKey command of F2PSWHE

on respective inputs ∆A and ∆B to let both parties obtain a set of key-dependent parameters keypar′.

2. PA and PB call FRand to obtain a random PRF key k ∈ {0, 1}λ and a random element U ∈ Rp such that
LSB(U) = 0. Then, PA updates ∆A := ∆A + U ∈ Rp, and PB updates ∆B := ∆B + U ∈ Rp.

3. PA samples sA
$←− {0, 1}λ and computes {r̂i}i∈IA

∪ {ri}i∈[N ] := PRG(sA). PA and PB call F2PSWHE on
the PA’s input (EncBit, λ, sA) and PB’s input (EncBit, λ) to let both parties obtain a vector of ciphertexts
JsAK. Then, PA and PB homomorphically evaluate P̃RG (JsAK) to obtain {Jr̂iK}i∈IA

and {JriK}i∈[N ].

4. PB samples sB
$←− {0, 1}λ and computes {t̂i}i∈IB

∪ {ti}i∈[N ] := PRG(sB). PA and PB call F2PSWHE on
the PA’s input (EncBit, λ) and PB’s input (EncBit, λ, sB) to let both parties obtain JsBK. Then, PA and PB

homomorphically evaluate P̃RG (JsBK) to obtain {Jt̂iK}i∈IB
and {JtiK}i∈[N ].

Input processing: In the online phase, the circuit f along with the inputs x and y are known. PA and PB do the
following:

5. For each i ∈ IA, PA sends σi,A := xi ⊕ r̂i ∈ {0, 1} to PB; both parties homomorphically compute
JxiK := Jr̂iK⊕ σi,A.

6. For each i ∈ IB, PB sends σi,B := yi ⊕ t̂i ∈ {0, 1} to PA; both parties homomorphically compute
JyiK := Jt̂iK⊕ σi,B.

7. For each i ∈ IA ∪ IB and each ciphertext Jv∗i K ∈ {JxiK}i∈IA
∪ {JyiK}i∈IB

,

(a) PA and PB homomorphically compute J(−1)ri · v∗i K := (1− 2 · JriK) · Jv∗i K.

(b) PA computes the following:

W̃i,A := Dec(∆A, J(−1)ri · v∗i K) + PRF(k, i) ∈ Rp and πi := LSB
(
W̃i,A

)
.

(c) PA sends a bit di := ri ⊕ πi to PB. Then, PA and PB compute

J(−1)πi · v∗i K := (−1)di · J(−1)ri · v∗i K .

(d) PA homomorphically computes JπiK := JriK⊕ di.

(e) PA and PB compute the following labels respectively:

Wi,A := Dec(∆A, J(−1)πi · v∗i K) + PRF(k, i) ∈ Rp ,

Wi,B := Dec(∆B, J(−1)πi · v∗i K) + PRF(k, i) ∈ Rp .

Figure 4: Our constant-round 2PC with active security in the (F2PSWHE,FRand)-hybrid model (Part 1).
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Protocol Π2PC (Part 2)

Circuit garbling: PA garbles the circuit as follows.

8. For each gate (a, b, c, g) in topological order, given a pair of input labels (Wa,A,Wb,A) ∈ R2
p, a pair of wire

masks (πa, πb), and ciphertexts (JπaK, JπbK, JrcK), PA performs the following steps:

(a) Homomorphically compute

J(−1)rc · zi,jK := (1− 2 · JrcK) · g(JπaK⊕ i, JπbK⊕ j) for each i, j ∈ {0, 1} ,
τ̃1 := J(−1)rc · z1,0K− J(−1)rc · z0,0K ,
τ̃2 := J(−1)rc · z0,1K− J(−1)rc · z0,0K ,
τ̃3 := J(−1)rc · z0,0K + J(−1)rc · z1,1K− J(−1)rc · z1,0K− J(−1)rc · z0,1K ,

where zi,j = g(πa ⊕ i, πb ⊕ j) ∈ {0, 1} for i, j ∈ {0, 1}.

(b) Compute W̃c,A := Eval(Wa,A,Wb,A, τ̃1, τ̃2, τ̃3) + PRF(k, c). Then compute α := LSB(Wa,A), β :=

LSB(Wb,A), and πc := LSB
(
W̃c,A

)
⊕g(πa⊕α, πb⊕β). Set a bit dc := rc⊕πc, and homomorphically

compute JπcK := JrcK⊕ dc.

(c) Compute τi := (−1)dc · τ̃i for each i ∈ {1, 2, 3}.
(d) Compute Wc,A := Eval(Wa,A,Wb,A, τ1, τ2, τ3) + PRF(k, c).

9. PA sends a set of bits {di}i∈G to PB.

Circuit evaluating: PB evaluates the circuit as follows.

10. For each i ∈ IA ∪ IB ∪ G, PB homomorphically computes JπiK := JriK⊕ di.

11. For each gate (a, b, c, g) in topological order, given a pair of input labels (Wa,B,Wb,B) ∈ R2
p and ciphertexts

(JπaK, JπbK, JrcK), PB executes as follows:

(a) Perform Step 8a and Step 8c to obtain ciphertexts τ1, τ2, τ3.

(b) Compute Wc,B := Eval(Wa,B,Wb,B, τ1, τ2, τ3) + PRF(k, c).

12. For each i ∈ IA ∪ IB ∪ G, PB sends a bit d̃i := ti ⊕ LSB(Wi,B) to PA.

Output processing and consistency check: PA and PB execute as follows.

13. For each i ∈ O, PA sends a bit πi to PB, who computes vi := LSB(Wi,B)⊕ πi.

14. For each i ∈ IA ∪ IB ∪ G, PA and PB homomorphically compute JviK := JπiK⊕ JtiK⊕ d̃i.

15. For each i ∈ IA (resp., i ∈ IB), PA and PB set Jv∗i K := JxiK (resp., Jv∗i K := JyiK). For each gate (a, b, c, g),
PA and PB homomorphically compute Jv∗c K := g

(
JvaK, JvbK

)
.

16. PA and PB call FRand to generate random coefficients χi ∈ Zp for i ∈ IA ∪ IB ∪ G and χ′
i ∈ Zp for i ∈ O.

Then, PA and PB homomorphically compute

τ :=
∑

i∈IA∪IB∪G

χi · (Jv∗i K− JviK) +
∑
i∈O

χ′
i · (JπiK− πi) .

17. PA sends VA := H
(
Dec(∆A, τ), τ

)
to PB, who computes VB := H

(
Dec(∆B, τ), τ

)
and checks VA = VB.

If the check passes, then PB outputs {vi}i∈O. Otherwise, PB aborts.

Figure 5: Our constant-round 2PC with active security in the (F2PSWHE,FRand)-hybrid model (Part 2).
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to adopt the distributed-decryption property for ∆B = ∆A + ∆ ∈ Rp. Since LSB(U) = 0, we have
LSB(∆A + U) = LSB(∆A) = 0 and LSB(∆B + U) = LSB(∆B) = 1. After the randomization, we still
have ∆B = ∆A +∆ overRp.

Analysis for communication, computation and round complexities. In the following, we analyze
the communication and computation costs as well as rounds for protocol Π2PC (Figures 4 and 5) in the
(F2PSWHE,FRand)-hybrid model.

There is no communication for the preprocessing phase in the hybrid model. When F2PSWHE and FRand

are instantiated, the communication cost in the preprocessing phase is independent of the circuit size, and can
be negligibly small for sufficiently large circuits. In the online phase, the communication is to transmit the
bits {σi,A}i∈IA , {σi,B}i∈IB , {di}i∈IA∪IB∪G, {d̃i}i∈IA∪IB∪G, {πi}i∈O along with the λ-bit string VA. Thus,
the total communication cost is 3(|IA|+ |IB|) + 2C + |O|+ λ bits where C = |G| is the number of all gates.
In other words, the total communication is dominated by 2 bits per gate.

The computational cost is dominated by the depth of homomorphic multiplications and the number of
homomorphic operations for SWHE. Using a low-depth PRG, e.g., LWR-based PRG [BPR12], Goldreich-like
PRG [App12], and LPN-based weak PRF [BIP+18, DGH+21, APRR24] (which can be converted into a PRG
using a random oracle), the homomorphic-multiplication depth for SWHE can be bounded by O(log(λ)) or
O(1). Apart from the homomorphic PRG evaluation, the online phase increases the multiplication depth by
2. Overall, the depth of homomorphic multiplications is d + 2, where either d = O(log(λ)) or d = O(1).
When a low-complexity PRG (e.g., [App12, AIK04, AIK08, AK19, CM01]) is used, the homomorphic
PRG evaluation results in an amortized cost of O(1) homomorphic addition/multiplication operations per
gate. For each gate, the processes of circuit garbling, circuit evaluation and consistency check also use O(1)
homomorphic addition/multiplication operations. In all, the amortized computation cost per gate is dominated
by the constant number of homomorphic additions and multiplications.

In the (F2PSWHE,FRand)-hybrid model, the rounds of communication are to transmit the bits {σi,A}i∈IA ,
{σi,B}i∈IB , {di}i∈IA∪IB∪G, {d̃i}i∈IA∪IB∪G, {πi}i∈O and string VA. Under full-duplex networks (e.g., most
wired communication) where communication in both directions can happen simultaneously, our protocol
Π2PC takes only four rounds, where {σi,A}i∈IA and {σi,B}i∈IB can be sent in parallel; {πi}i∈O and VA can
be sent simultaneously. For half-duplex networks (e.g., most wireless communication), the protocol needs
five rounds. It is well-known that FRand can be instantiated by a two-round protocol (resp., a three-round
protocol) in the random-oracle model for full-duplex networks (resp., half-duplex networks). We can also use
the Fiat-Shamir heuristic to generate the random challenges χi for i ∈ IA ∪ IB ∪G and χ′i for i ∈ O. That is,
both parties compute the challenges by hashing the transcript to this point. In this case, there are no rounds
for producing the challenges. When F2PSWHE is instantiated by our protocol shown in Section 5.2, the rounds
to securely realize F2PSWHE is O(1). Overall, our 2PC protocol with active security has constant rounds.

Optimizations. We propose two optimizations to further improve the efficiency of protocol Π2PC (Figures 4
and 5). One is to reuse the ciphertexts JsAK and JsBK between two parties; the other is to reduce the total
communication cost to 1 + o(1) bits per gate.

When using a low-depth weak pseudorandom function (wPRF) such as [BIP+18, DGH+21, APRR24]
instead of PRG, both parties can reuse JsAK and JsBK for life. Specifically, for each 2PC execution, PA and
PB call FRand to generate a common randomness nonce ∈ {0, 1}λ. Let wPRF : {0, 1}λ × {0, 1}λ →
{0, 1} be a low-depth wPRF and H : {0, 1}2λ → {0, 1}λ be a random oracle. Then PA can com-
pute r̂i := wPRF

(
sA,H(nonce, 0, i)

)
and ri := wPRF

(
sA,H(nonce, 1, i)

)
, while PB computes t̂i :=

wPRF
(
sB,H(nonce, 2, i)

)
and ti := wPRF

(
sB,H(nonce, 3, i)

)
. The corresponding ciphertexts can be

computed homomorphically by both parties. In this case, except for the first setup execution and instantiating
FRand, the preprocessing phase has no communication, and only involves local computation.

The second optimization relies on the fact that both parties do not individually check the correctness of
each gate. Instead, the circuit f is divided into smaller sequential subcircuits f = f1 ◦ f2 ◦ · · · ◦ fℓ, where
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each subcircuit fi has a multiplication depth of at most L. We only need to check if each fi is computed
correctly and whether the output of fi−1 match with the input of fi, using the method implied in protocol
Π2PC. Specifically, for the output bits of each subcircuit fi, we obtain the corresponding ciphertexts by
running the protocol Π2PC, which is necessary to control the multiplication depth of the SWHE scheme. Note
that the cipertexts on the output bits of fi−1 are directly used as the input ciphertexts for fi, and thus it is
natural that the output of fi−1 match with the input of fi. Then, if the SWHE scheme additionally supports L
multiplication depth, we are able to compute the ciphertexts on the output bits of each fi via homomorphic
evaluation, which is used to check the correctness of circuit evaluation. Finally, both parties can run the
procedure of consistency check in protocol Π2PC to verify whether the plaintexts encrypted in two kinds of
ciphertexs (i.e., one kind of ciphertexts is generated by Π2PC and the other is produced by homomorphic
evaluation) are consistent.

Through this optimization, we have the following results:

1. For layered circuits where the gates on the i-th layer take only the output bits from that on the (i−1)-th
layer as input, the communication per gate is optimized to 1 +O(1/L) bits, where the total number of
output wires for all fi is O(C/L). When L is set as ω(1), the communication is 1 + o(1) bits per gate.

2. For arbitrary circuits, using the low-diameter decomposition [Bar96], a circuit with C gates can
be divided into a series of subcircuits (i.e., f1, f2, . . . , fℓ) with each having the depth of at most
L, where the total number of output wires for all fi is bounded by O(C logC/L). Consequently,
the communication per gate is 1 + O(logC/L) bits. By setting L = ω(logC) = ω(log λ), the
communication for checking becomes o(1) bits per gate. As a result, the communication is reduced to
1 + o(1) bits per gate.

4.2 Correctness Analysis

We prove the correctness of protocol Π2PC (Figures 4 and 5) as below. Following the correctness analysis of

BitGC [LWYY25], we replace PRF(k, i) with Ri
$←− Rp, for each wire i ∈ IA ∪ IB ∪ G. If the probability

that the correctness does not hold for PRF(k, i) but it holds for Ri is not negligible, then we can break the
pseudorandomness of PRF with noticeable probability. Below, we show the correctness of our protocol for

the case that PRF(k, i) is replaced with Ri
$←− Rp, where Wi,A ∈ Rp is uniform. In this case, the properties

of both linear distributed decryption and correlated-key distributed decryption hold.

The correctness of input processing. We show that for each i ∈ IA ∪IB, PA obtains a 0-label Wi,A, and PB

gets a label Wi,B = Wi,A + (−1)πi · vi ·∆, where πi = LSB(Wi,A) and vi denotes the actual bit. Through
steps 5 and 6, PA and PB obtain the ciphertext JviK for i ∈ IA ∪ IB. For each i ∈ IA ∪ IB, using the
definitions of W̃i,A and Wi,A, we have

W̃i,A := Dec(∆A, J(−1)ri · viK) +Ri ,

Wi,A := Dec(∆A, J(−1)πi · viK) +Ri ,

where Ri
$←− Rp and vi = v∗i . From J(−1)ri · viK = (−1)di · J(−1)πi · viK, we have W̃i,A = (−1)di ·Wi,A

from the property of linear distributed decryption. Using the properties LSB(−X) = LSB(X) for any
X ∈ Rp and an even p, it follows that LSB(W̃i,A) = LSB(Wi,A). Hence, πi = LSB(Wi,A) based on the fact
that πi = LSB(W̃i,A). From the property of linear distributed decryption, we have

Wi,B = Wi,A + Dec(∆, J(−1)πi · viK) = Wi,A + (−1)πi · vi ·∆ .

The correctness of circuit garbling and evaluation. For each wire i, we denote vi as the actual bit using the
real inputs, and use ui to denote the actual bits when all inputs are 0. Then, we prove the following invariant
by induction:
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• For each wire i, given that PA holds (Wi,A, πi), and PB holds Wi,B, we have πi = LSB(W 0
i ), and the

0-label W 0
i and the labels Wi,A,Wi,B satisfy

W 0
i

def
= Wi,A − (−1)πi · ui ·∆ and Wi,B = W 0

i + (−1)πi · vi ·∆ .

According to the invariant, we straightforwardly have that LSB(Wi,A) = πi⊕ui and Wi,B = Wi,A+(−1)πi ·
(vi − ui) ·∆.

First, for each circuit-input wire i ∈ IA ∪ IB, the above invariant trivially holds where ui = 0. For each
gate (a, b, c, g) in topological order, assuming that the invariant holds for input wires a and b, we prove that it
also holds for output wire c. According to the definitions of W̃c,A and Wc,A, we have

W̃c,A := Eval(Wa,A,Wb,A, τ̃1, τ̃2, τ̃3) +Rc ,

Wc,A := Eval(Wa,A,Wb,A, τ1, τ2, τ3) +Rc ,

where τ1 = (−1)dc · τ̃1, τ2 = (−1)dc · τ̃2 and τ3 = (−1)dc · τ̃3. Therefore, we have W̃c,A = (−1)dc ·Wc,A

using the property of linear distributed decryption, and thus LSB(W̃c,A) = LSB(Wc,A) based on the fact that
LSB(−X) = LSB(X) for any X ∈ Rp and an even p. According to the induction assumption, we have
α = LSB(Wa,A) = πa ⊕ ua and β = LSB(Wb,A) = πb ⊕ ub. Then we obtain πc = LSB

(
W̃c,A

)
⊕ g(πa ⊕

α, πb⊕β) = LSB
(
W̃c,A

)
⊕ g(ua, ub) = LSB

(
W̃c,A

)
⊕uc. Therefore, we let W 0

c
def
= Wc,A− (−1)πc ·uc ·∆;

we have πc = LSB(W̃c,A)⊕ uc = LSB(Wc,A)⊕ uc = LSB(W 0
c ).

Then, both parties compute τ̃1, τ̃2, and τ̃3 as follows:

τ̃1 := J(−1)rc · z1,0K− J(−1)rc · z0,0K ,
τ̃2 := J(−1)rc · z0,1K− J(−1)rc · z0,0K ,
τ̃3 := J(−1)rc · z0,0K + J(−1)rc · z1,1K− J(−1)rc · z1,0K− J(−1)rc · z0,1K ,

and set τi = (−1)dc · τ̃i for i ∈ [3], where zi,j = g(πa ⊕ i, πb ⊕ j) ∈ {0, 1} for i, j ∈ {0, 1}. Thus, we have

Dec(∆, τ1) = (−1)dc · Dec(∆, τ̃1) = (−1)πc · (z1,0 − z0,0) ·∆ ,

Dec(∆, τ2) = (−1)dc · Dec(∆, τ̃2) = (−1)πc · (z0,1 − z0,0) ·∆ ,

Dec(∆, τ3) = (−1)dc · Dec(∆, τ̃3) = (−1)πc · (z0,0 + z1,1 − z0,1 − z1,0) ·∆ .

Let W πa
a

def
= W 0

a − πa · ∆ and W πb
b

def
= W 0

b − πb · ∆, where LSB(W πa
a ) = 0 and LSB(W πb

b ) = 0.
For each i ∈ {a, b}, according to the definition of Wi,A, we have Wi,A = W 0

i + (−1)πi · ui · ∆ =
W πi

i +
(
πi + (−1)πi · ui

)
·∆ = W πi

i + (ui ⊕ πi) ·∆. According to the induction assumption, we have that
Wi,B = W 0

i + (−1)πi · vi ·∆ for each i ∈ {a, b}. Thus, for each i ∈ {a, b}, Wi,B = W πi
i + (vi ⊕ πi) ·∆

via a similar analysis. Based on the property of Eval shown in Section 3.3, we have

Eval(Wa,A,Wb,A, τ1, τ2, τ3)− Eval(W πa
a ,W πb

b , τ1, τ2, τ3)

= (ua ⊕ πa) · Dec(∆, τ1) + (ub ⊕ πb) · Dec(∆, τ2) + (ua ⊕ πa) · (ub ⊕ πb) · Dec(∆, τ3)

= (−1)πc ·
(
(ua ⊕ πa) · (z1,0 − z0,0) + (ub ⊕ πb) · (z0,1 − z0,0)

+ (ua ⊕ πa)(ub ⊕ πb) · (z0,0 + z1,1 − z0,1 − z1,0)
)
·∆

= (−1)πc · (zua⊕πa,ub⊕πb
− z0,0) ·∆

= (−1)πc · (g(ua, ub)− z0,0) ·∆ = (−1)πc · (uc − z0,0) ·∆ .
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Similarly, we have

Eval(Wa,B,Wb,B, τ1, τ2, τ3) = Eval(W πa
a ,W πb

b , τ1, τ2, τ3) + (−1)πc · (vc − z0,0) ·∆ .

Thus, we have

Wc,B = Eval(Wa,B,Wb,B, τ1, τ2, τ3) +Rc

= Eval(W πa
a ,W πb

b , τ1, τ2, τ3) + (−1)πc · (vc − z0,0) ·∆+Rc

= Eval(Wa,A,Wb,A, τ1, τ2, τ3) + (−1)πc · (vc − uc) ·∆+Rc

= Wc,A + (−1)πc · (vc − uc) ·∆ .

Let W 0
c

def
= Wc,A − (−1)πc · uc ·∆. We obtain Wc,B = W 0

c + (−1)πc · vc ·∆. From the above analysis, for
each i ∈ O, we have the following:

πi = LSB(Wi,A)⊕ ui and Wi,B = Wi,A + (−1)πi · (vi − ui) ·∆ .

After receiving πi from PA, PB computes an output bit LSB(Wi,B)⊕ πi. Therefore, the output bit is equal to
LSB(Wi,A)⊕ ui ⊕ vi ⊕ πi = vi, based on the fact LSB(Wi,B) = LSB(Wi,A)⊕ ui ⊕ vi.

The correctness of consistency check. According to the above correctness analysis, we have LSB(Wi,A) =
πi⊕ ui and LSB(Wi,B) = LSB(Wi,A)⊕ ui⊕ vi for each wire i. Therefore, we obtain LSB(Wi,B) = πi⊕ vi,
where vi is the actual bit for the real inputs. From the definition of d̃i, we have d̃i = ti ⊕ πi ⊕ vi for each
i ∈ IA ∪ IB ∪ G. Based on the correctness of SWHE, we obtain that JviK = JπiK⊕ JtiK⊕ d̃i encrypts the
actual bit vi for each i ∈ IA ∪ IB ∪ G. For each gate (a, b, c, g), it is easy to see that Jv∗c K = g

(
JvaK, JvbK

)
encrypts the actual bit v∗c = vc. In the remaining part, by working through the protocol, it is natural to verify
that the consistency check is correct, which concludes the analysis.

4.3 Proof of Security

Before diving into the details of security proof for protocol Π2PC (Figures 4 and 5), we give an overview of
the proof. There is no interaction in the hybrid model for the preprocessing phase, and thus the simulation is
trivial by emulating F2PSWHE. Below, we first consider the case of malicious PA, and then focus on the case
of malicious PB.

Malicious PA. We first show the construction of a probabilistic polynomial time (PPT) simulator S. Specifi-
cally, S can extract the PA’s input by computing xi := σi,A ⊕ r̂i for each i ∈ IA, as it knows all PA’s secrets
by emulating F2PSWHE. Then, S sends a random bit σi,B to the PPT adversary A for each i ∈ IB. For each
i ∈ IA ∪ IB ∪ G, after receiving di ∈ {0, 1} from A, S is able to compute a correct bit d∗i by simulating
the PA’s computation honestly with the PA’s secrets. On behalf of honest PB, S can send a uniform bit
d̃i to A for each i ∈ IA ∪ IB ∪ G. For each i ∈ O, after receiving πi ∈ {0, 1} from A, S can compute a
correct permutation bit π∗i ∈ {0, 1} by itself. Finally, S receives VA from A, and aborts if there exists some
i ∈ IA ∪ IB ∪ G such that di ̸= d∗i or some i ∈ O such that πi ̸= π∗i . To handle the case that A sends a
“garbage” string VA, S also checks if VA = H

(
Dec(∆A, τ), τ

)
.

Obviously, xi is extracted perfectly. The difference between {σi,B}i∈IB ∪ {d̃i}i∈IA∪IB∪G sent in the
real protocol execution and that simulated by S can be bounded by the CPA security of the SWHE scheme
and pseudorandomness of PRG output. In particular, through the CPA security of SWHE, we can replace
JsBK with J0K. Then, based on the pseudorandomness of PRG, we can replace all t̂i, ti with uniform bits. In
the following, we analyze the difference of checking VA between the real-world execution and ideal-world
execution. Let ei

def
= v∗i − vi for i ∈ IA ∪IB ∪G and e′i

def
= π̂i− πi for i ∈ O, where π̂i

def
= ri⊕ di. If di ̸= d∗i
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for some i ∈ IA ∪IB ∪G, then at least one ei ̸= 0. Otherwise, if πi ̸= π∗i for some i ∈ O, at least one e′i ̸= 0,
and πi ̸= π̂i as π̂i = π∗i in this case. In the real protocol execution, if VA = VB, we have∑

i∈IA∪IB∪G
χi · ei +

∑
i∈O

χ′i · e′i = 0 ,

except with probability negl(λ). Since the challenges χi, χ
′
i ∈ Zp are sampled uniformly after ei, e′i have been

determined, both ei = 0 and e′i = 0, except with probability 1/p. Note that ei, e′i ∈ {−1, 0, 1}. Therefore,
with overwhelming probability, we have that all di and πi sent by A are correct, if the protocol execution
does not abort. According to the correctness analysis, honest PB obtains the correct output in the real world,
under the pseudorandomness of PRF outputs.

Malicious PB. As such, we first show the simulation of S. Specifically, S sends a uniform bit σi,A to A for
each i ∈ IA. For each i ∈ IB, after receiving σi,B from A, S can extract the input bit yi := σi,B ⊕ t̂i for
each i ∈ IB. Then, S sends the PB’s input to F2PC, and obtains the output bits z∗i for all i ∈ O. Then, for
each i ∈ IA ∪ IB ∪ G, S sends a random bit di to A. For each i ∈ IA ∪ IB ∪ G, after receiving d̃i ∈ {0, 1}
from A, S computes a correct bit d̃∗i following PB’s computation honestly, where S knows all PB’s secrets
(e.g., ∆B, sB) by emulating F2PSWHE. For each i ∈ O, S computes πi := z∗i ⊕ LSB(Wi,B) and sends it to
A, where Wi,B is computed following the protocol specification. If there exists some i ∈ IA ∪ IB ∪ G such
that d̃i ̸= d̃∗i , S samples a random VA and sends it A. Otherwise, S computes VB following the protocol
description and sends it to A.

The extraction of yi is also perfect. The simulation of all σi,A and di is indistinguishable from the bits sent
in the real protocol execution, using a similar reduction based on that SWHE is CPA secure and the output of
PRG is pseudorandom. In the remaining part, we analyze the difference between VA sent in the real-world
execution and that simulated by S. If there exists some i ∈ IA∪IB∪G such that d̃i ̸= d̃∗i , then there is at least
one vi = πi⊕ ti⊕ d̃i that is not equal to v∗i . In this case, τ encrypts one non-zero element E and VA ̸= VB in

the real-world execution. Otherwise, using a similar analysis, we have that ei
def
= v∗i − vi = 0 with probability

1− negl(λ). Therefore, VA is computationally indistinguishable from a uniform string in the random-oracle
model, as Dec(∆A, τ) is kept unknown againstA under the assumption that SWHE is CPA secure for any pair
(keypar′,∆) ← KeyGen(params,∆A,∆B). In particular, if A makes a query

(
Dec(∆A, τ), τ

)
to random

oracle H , then the reduction can extract the query and compute Dec(∆, τ) = Dec(∆B, τ) − Dec(∆A, τ),
where ∆B −∆A = ∆. Thus, the reduction obtains Dec(∆, τ) = E ·∆, and recovers secret key ∆ as E ̸= 0.
If d̃i = d̃i∗ for all i ∈ IA ∪ IB ∪G, we can prove that vi = v∗i for each i ∈ IA ∪ IB ∪G is correct, according
to the correctness analysis under the pseudorandomness of PRF outputs. Therefore, we have VA = VB, which
completes the overview of the proof.

Theorem 1. Let f be a two-party functionality {0, 1}|IA| × {0, 1}|IB| → {0, 1}|O| with |IA| = |IB|. Let
PRG be a pseudorandom generator, PRF be a pseudorandom function, and H be a random oracle. Assume
that the SWHE scheme is CPA secure under any pair (keypar′,∆)← KeyGen(params,∆A,∆B), if at least
one party is honest. Then protocol Π2PC (Figures 4 and 5) securely computes f with statistical error 1/p in
the presence of a static, malicious adversary in the (F2PSWHE,FRand)-hybrid model.

The detailed proof of Theorem 1 is given in Appendix B.1. Note that p ≥ 2ρ for a statistical security
parameter ρ. In the formal proof shown in Appendix B.1, we use a sequence of hybrids to prove the
indistinguishability between the real-world execution and ideal-world execution. We first change the manner
of consistency check for the case of malicious PA, or the computation manner of VA for the case of malicious
PB. In both cases, the checking procedure does not involve the honest party’s secret key. In the subsequent
hybrid, we can construct a reduction against the CPA security of the SWHE scheme to bound the difference
between either JsAK or JsBK and J0K, since the checking procedure does not include the secret key.
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5 Instantiation for Realizing Ideal Functionality F2PSWHE

Our main protocol shown in Section 4 calls an ideal functionality F2PSWHE to encrypt short seeds. Moreover,
F2PSWHE can be called only once in the setup phase. Thus, even if we use a generic 2PC with active security
to instantiate F2PSWHE, the cost may be fairly small compared to the overall cost, and the rounds only
depend on key generation and encryption of SWHE, and are independent of the circuit depth (i.e., the round
complexity keeps O(1)). In this section, we present a practical instantiation to achieve better efficiency.
First of all, we recall the RLWE-based instantiation [LWYY25] for SWHE with distributed decryption in
Section 5.1. Then, we describe a two-party actively secure protocol to realize F2PSWHE securely.

5.1 RLWE-Based SWHE Scheme with Distributed Decryption

Below, we recall the RLWE-based SWHE scheme with distributed decryption, which is referred to as
an extended GSW (eGSW) scheme in [LWYY25]. It builds upon the GSW HE scheme [GSW13], and
additionally supports the distributed decryption property. We first summarize some key functions used in the
SWHE scheme with distributed decryption [LWYY25]: BitDecomp, BitDecomp−1, Flatten, and Powersof2.

• BitDecomp: For any a ∈ Rq, BitDecomp(a) produces a vector (a0, . . . , aℓ−1) of length ℓ =

⌊log(q)⌋+1, where each ai ∈ R2 represents the i-th bit component of a, withR2
def
= Z2[X]/(Xn+1).

• BitDecomp−1: For a = (a0, . . . , aℓ−1) ∈ Rℓ
q, BitDecomp−1(a)

def
=

ℓ−1∑
i=0

(
2i · ai

)
.

• Flatten: For each a = (a0, . . . , aℓ−1) ∈ Rℓ
q, to obtain a bit vector, Flatten(a) def

= BitDecomp(BitDecomp−1(a)).

• Powersof2: For b ∈ Rq, Powersof2(b) def
=

(
20 · b , 21 · b , . . . , 2ℓ−1 · b

)
∈ Rℓ

q.

For a ∈ Rℓ
q and b ∈ Rq, the following property holds:

⟨a , Powersof2(b) ⟩ = BitDecomp−1(a) · b = ⟨Flatten(a) , Powersof2(b) ⟩ .

The operations mentioned as above can be extended to matrices by applying them to each entry in a matrix.
In the following, the eGSW SWHE scheme with distributed decryption [LWYY25] is described as follows.

Setup. Setup(1λ, 1L) outputs a set of parameters params = (n, p, q, η, ℓ,N), where p = λω(1) is an even,
p | q, q/p2 = λω(1) · (N + 1)L · nL, η = poly(λ), ℓ = ⌊log(q)⌋+ 1, and N = 2ℓ.

Key generation. KeyGen(params) samples sk, ŝk ← Dη with sk[1] = ŝk[1] = 1, and then sets sk =

skB − skA and ŝk = ŝkB − ŝkA. Then, KeyGen(params) outputs a set of key-related parameters keypar,
including ciphertexts τ

sk→ŝk
, τ

ŝk→sk
, and τgsw→egsw, constructed as follows:

• The construction of τ
sk→ŝk

and τ
ŝk→sk

. Sample a, â
$←− Rq and e, ê ← Dη, and then compute two

key-switching ciphertexts τ
sk→ŝk

and τ
ŝk→sk

as follows:

τ
sk→ŝk

= ( a , b = a · sk+ e+ (q/p) · ŝk ) ,

τ
ŝk→sk

= ( â , b̂ = â · ŝk+ ê+ (q/p) · sk ) .

• The construction of τgsw→egsw. Sample a
$←− RN

q and e1, e2, e3 ← DN
η , and then compute a

GSW-to-eGSW ciphertext τgsw→egsw as follows:

τgsw→egsw =
(
a, b1 = a · sk+ e1, b2 = a · ŝk+ e2, b3 = b1 · ŝk+ e3 + v · ŝk

)
,

where v
def
= Powersof2

([
−sk 1

])T.
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Macro EncMsg(a, ℓ, skA, skB,mA,mB)

Inputs: PA and PB have the public inputs a ∈ Rℓ
q and ℓ ∈ N. PA holds secret inputs skA ∈ Dη,mA ∈ Rℓ, and

PB holds secret inputs skB ∈ Dη,mB ∈ Rℓ, where skA, skB have been committed by functionality FCPC. Here,
either mA,mB are also committed by FCPC, or both mA,mB are equal to zero.

Encryption: PA and PB jointly generate a ciphertext as follows.

1. PA samples eA ← Dℓ
η , computes bA := a · skA + eA + (q/p) ·mA ∈ Rℓ

q , and sends bA to PB. Both parties
call the Prove command of FCPC to convince PB that the following relationship holds:

{(skA, eA,mA) | bA = a · skA + eA + (q/p) ·mA and ∥eA∥∞ ≤ η } .

2. PB samples eB ← Dℓ
η , computes bB := a · skB + eB + (q/p) ·mB ∈ Rℓ

q , and sends bB to PA. Both parties
call the Prove command of FCPC to convince PA

{(skB, eB,mB) | bB = a · skB + eB + (q/p) ·mB and ∥eB∥∞ ≤ η } .

3. Both parties locally compute b := bB−bA ∈ Rℓ
q with b = a·sk+e+(q/p)·m, where sk def

= skB−skA ∈ D2η ,

e
def
= eB − eA ∈ Dℓ

2η and m
def
= mB −mA ∈ Rℓ

q .

Figure 6: Encryption macro in the FCPC-hybrid model, where the macro would be invoked by protocol
Π2PSWHE (Figures 7 and 8).

Encryption. For any message m ∈ Zp, Enc(sk,m) works as follows: it samples a $←− RN
q and e ← DN

η ,
computes b := a · sk+ e ∈ RN

q and outputs the ciphertext

JmK := Flatten
(
m · IN + BitDecomp

([
a b

]))
,

where IN is the N ×N identity matrix.

Decryption. On input a key x ∈ R (it is either the secret key sk or an additive share of sk) and a ciphertext
τ ∈ RN×N

2 , Dec(x, τ) computes overRq

(α, β) := BitDecomp−1
(
−BitDecomp

([
(q/p) 0

])
· τ

)
,

and then output
⌊
LSB(x) · β − α · x

⌉
p
. Note that if x = sk with LSB(sk) = 1, then we have β − α · sk ≈

(q/p) ·m · sk and thus
⌊
β − α · sk

⌉
p
= m · sk.

We postpone other algorithms of the above SWHE scheme to Appendix A, as these algorithms are
unrelated for designing a protocol to instantiate F2PSWHE. Previous work [LWYY25] has proven that the
above SWHE scheme is CPA secure under the RLWE assumption with key-dependent message (KDM)
security. It also shows the distributed decryption property holds. As shown in [GSW13, LWYY25], the above
scheme supports homomorphic addition and multiplication operations with multiplication depth being limited
to at most L.

5.2 Our Two-Party SWHE Protocol with Active Security

We present an actively secure two-party protocol Π2PSWHE in the (FCPC,FRand)-hybrid model, described in
Figures 7 and 8. This protocol realizes distributed key generation and encryption of the above SWHE scheme,
where the secret key sk is shared as sk = skB− skA, and another secret key ŝk is shared as ŝk = ŝkB− ŝkA. In
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Protocol Π2PSWHE (Part 1)

This protocol invokes a macro EncMsg defined in Figure 6. Suppose that PA and PB agree on a set of parameters
params = (n, p, q, η, ℓ,N,M)← Setup(1λ, 1L) for RLWE-based SWHE with distributed decryption.

Two-party key-generation protocol: PA and PB jointly generate the secret keys and a set of key-related parameters
keypar′ as follows:

1. PA samples skA, ŝkA ← Dη such that skA[1] = 0 and ŝkA[1] = 0, and calls the Commit command of FCPC

to commit (skA, ŝkA). Then, both parties call the Prove command of FCPC to convince PB that ∥skA∥∞ ≤ η,
∥ŝkA∥∞ ≤ η, skA[1] = 0 and ŝkA[1] = 0 hold.

2. PB samples skB, ŝkB ← Dη such that skB[1] = 1 and ŝkB[1] = 1, and calls the Commit command of FCPC

to commit (skB, ŝkB). Then, the parties call the Prove command of FCPC to convince PA that ∥skB∥∞ ≤ η,
∥ŝkB∥∞ ≤ η, skB[1] = 0 and ŝkB[1] = 0 hold.

3. PA and PB call FRand to sample random ring elements a, â ∈ Rq along with uniform vectors a ∈ RN
q and

ã ∈ RM
q .

4. Both parties execute EncMsg(a, 1, skA, skB, ŝkA, ŝkB) to obtain

τsk→ŝk

def
=

(
a, b = a · sk+ e+ (q/p) · ŝk

)
for some e with ∥e∥∞ ≤ 2η, where sk def

= skB− skA ∈ D2η with sk[1] = 1 and ŝk
def
= ŝkB− ŝkA ∈ D2η with

ŝk[1] = 1.

5. PA and PB execute EncMsg(â, 1, ŝkA, ŝkB, skA, skB) to get

τŝk→sk

def
=

(
â, b̂ = â · ŝk+ ê+ (q/p) · sk

)
for some ê ∈ D2η .

6. PA and PB execute EncMsg(a, N, skA, skB, 0, 0) to generate b1 = a · sk + e1 for some e1 ∈ DN
2η. In

parallel, the parties run EncMsg(a, N, ŝkA, ŝkB, 0, 0) to get b2 = a · ŝk+ e2 for some e2 ∈ DN
2η .

7. Both parties call FCPC to let PA obtain xA ∈ Rq and PB get xB ∈ Rq, such that xB − xA = sk · ŝk ∈ Rq.
Then, using (xA, ŝkA) and (xB, ŝkB) respectively, PA locally computes mA ∈ RN

q , and PB locally computes

mB ∈ RN
q , such that mB −mA = v · ŝk ∈ RN

q , where v
def
= Powersof2

([
−sk 1

])T
.

8. PA and PB execute EncMsg(b1, N, skA, skB,mA,mB) to obtain b3 = b1 · ŝk + e3 + v · ŝk for some
e3 ∈ DN

2η , where (q/p) is ignored in the EncMsg execution.

9. Both parties define

τgsw→egsw
def
=

(
a, b1 = a · sk+ e1, b2 = a · ŝk+ e2, b3 = b1 · ŝk+ e3 + v · ŝk

)
.

10. PA and PB execute EncMsg(ã,M, skA, skB, 0, 0) to obtain b̃ = ã · sk+ ẽ ∈ RM
q for some ẽ ∈ DM

2η .

11. Both parties output keypar′ = (τsk→ŝk, τŝk→sk, τgsw→egsw, ã, b̃).

Figure 7: Our two-party key-generation and encryption protocols with active security for RLWE-based
SWHE in the (FCPC,FRand)-hybrid model (Part 1).
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Protocol Π2PSWHE (Part 2)

Two-party encryption protocol: A party P ∈ {PA,PB} holds a message z = (z1, . . . , zt) ∈ {0, 1}t. Both
parties perform the following steps to generate the ciphertexts on z. For each i ∈ [t], PA and PB do the following:

1. P samples a uniform matrix Ri
$←− RN×M

2 , and calls the Commit command of FCPC to commit (zi,Ri).

2. Then, P computes

JziK := Flatten
(
zi · IN + BitDecomp

([
Ri · ã Ri · b̃

]))
,

and sends JziK ∈ RN×N
2 to the other party.

3. PA and PB call the Prove command of FCPC to verify that the following holds:{
(zi,Ri)

∣∣∣ JziK = Flatten
(
zi · IN + BitDecomp

([
Ri · ã Ri · b̃

]))
,

zi ∈ {0, 1} and Ri ∈ RN×M
2

}
.

4. Both parties output JziK.

Figure 8: Our two-party key-generation and encryption protocols with active security for RLWE-based
SWHE in the (FCPC,FRand)-hybrid model (Part 2).

our authenticated BitGC, sk, skA, and skB correspond to ∆, ∆A, and ∆B, respectively. This protocol invokes
a macro EncMsg shown in Figure 6, realizing the two-party encryption without knowing sk for any party.
This macro EncMsg is used to generate three ciphertexts τ

sk→ŝk
, τ

ŝk→sk
, τgsw→egsw in the key-generation

phase, and is also invoked to perform encryption in the encryption phase.
This protocol does not realize the standard key-generation algorithm KeyGen shown in Section 5.1.

Instead, it realize the equivalent key-generation algorithm (keypar′, sk)← KeyGen′(params, skA, skB). Here,
KeyGen′ is the same as KeyGen, except that it takes (skA, skB) as input, where skA, skB are sampled from
Dη. To achieve better efficiency, we adopt the well-known technique [Rot11] of transforming private-key
HE to public-key HE in the encryption phase. In particular, PA and PB need to generate M = O(n log2(q))
ciphertexts on zero (i.e., (ã, b̃)) by invoking EncMsg in the key-generation phase, where (ã, b̃) serves as the
role of public key. In this case, the encryption algorithm is changed as: on input a public key (ã, b̃) and a

message m ∈ Zp, Enc((ã, b̃),m) samples a uniform matrix R
$←− RN×M

2 , and then computes a ciphertext
JmK as

Flatten
(
m · IN + BitDecomp

([
R · ã R · b̃

]))
.

Note that the above encryption algorithm can be still applied the main protocol. In addition, if we use an
actively secure 2PC to encrypt messages, then we are still able to adopt the original encryption algorithm
described in Section 5.1. This is much more expensive, but needs to be run only once. It is straightforward to
verify the correctness of protocol Π2PSWHE (Figures 7 and 8) by working through the whole protocol.

When instantiating FCPC, a prime q would allow us to use a more efficient protocol. In this case, we need
to remove the condition p | q from the rounding lemma (defined in Lemma 2). When revisiting the proof of
this lemma (see [BKS19, Appendix B.1]), we find that the condition is not necessary and can be removed. An
alternative approach for supporting a prime q is to use the modulus switching technique [BV11]. Particularly,
both parties first execute protocol Π2PSWHE for a prime q, and then switch all ciphertexts from a prime q to a
composite number q′, where p | q′ satisfies the condition.
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Analysis of communication and round complexities. For protocol Π2PSWHE (Figures 7 and 8), we analyze
the communication and rounds in the (FCPC,FRand)-hybrid model. We first analyze the macro EncMsg. The
communication cost is 2ℓn log q bits for encrypting m ∈ Rℓ

q, and there are two rounds. In the key-generation
phase, macro EncMsg is invoked 6 times, which brings about (6N + 2M + 4)n log q bits of communication.
Among the 6 times invocations of EncMsg, there are 5 times invocations that can be run in parallel. Thus, we
have 4 rounds for two-party key generation. In the encryption phase, we obtain tnN2 bits of communication
for encrypting t bits of message and only one round.

We only need to compute one level of multiplications (i.e., sk · ŝk ∈ Rq) using a 2PC protocol like
SPDZ [DPSZ12, DKL+13]. Therefore, when instantiating FCPC shown in Section 3.1, the rounds are
O(1). Together with that FRand can be instantiated in three rounds, we have constant rounds in total, when
considering both key-generation and encryption phases. We can also replace FRand with the Fiat-Shamir
heuristic to further reduce the rounds. As shown in Section 3.1,FCPC can be efficiently realized by a two-party
protocol combining VOLE-ZK with SPDZ. The total communication is still small when instantiating FCPC.

Theorem 2. Protocol Π2PSWHE (Figures 7 and 8) securely computes F2PSWHE in the presence of a static,
malicious adversary in the (FCPC,FRand)-hybrid model under the RLWE assumption with KDM security.

The proof of Theorem 2 can be found in Appendix B.2.
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A Other Algorithms for SWHE with Distributed Decryption

The other algorithms of the SWHE scheme with distributed decryption (shown in Section 5.1) are described
as follows.

Extended encryption. On input two secret keys sk, ŝk as well as a message m ∈ Zp, Ênc(sk, ŝk,m)

samples a $←− Rq and e1, e2, e3 ← Dη, and then outputs an eGSW ciphertext

τ̂ =
(
a , b1 = a · sk + e1 , b2 = a · ŝk + e2 , b3 = b1 · ŝk + e3 + (q/p) ·m · ŝk

)
.

GSW-to-eGSW conversion [·]gsw→egsw. Given a GSW ciphertext τ = Enc(sk,m) on a message m ∈ Zp

and the GSW-to-eGSW ciphertext τgsw→egsw = (a, b1, b2, b3), the GSW-to-eGSW conversion function[
τ
]
gsw→egsw

generates an eGSW ciphertext on m as(
a = ⟨u,a⟩ , b1 = ⟨u, b1⟩ , b2 = ⟨u, b2⟩ , b3 = ⟨u, b3⟩ ≈ b1 · ŝk + (q/p) ·m · ŝk

)
,

where u = BitDecomp
([
0 (q/p)

])
· τ .

Key-switching. Given two key-switching ciphertexts τ
sk→ŝk

and τ
ŝk→sk

, we define two key-switching
functions [·]

sk→ŝk
and [·]

ŝk→sk
. In particular, for any y ∈ Rp, we have

[y]
sk→ŝk

outputs
⌊
y[1] · b− a · y

⌉
p
, and [y]

ŝk→sk
outputs

⌊
y[1] · b̂− â · y

⌉
p
.

Let sk0, ŝk0 ∈ Rp be two uniform elements such that LSB(sk0) = 0 and LSB(ŝk0) = 0. Let sk1 = sk0+sk

and ŝk1 = ŝk0+ ŝk overRp. We have
[
sk1

]
sk→ŝk

=
[
sk0

]
sk→ŝk

+ ŝk and
[
ŝk1

]
ŝk→sk

=
[
ŝk0

]
ŝk→sk

+ sk
overRp.

Algorithm D̂ec for correlated-key distributed decryption. Given a ciphertext τ = Enc(sk,m) as well as
two additive secret sharings (sk0, sk1) and (sk′0, sk

′
1) such that LSB(sk0) = LSB(sk′0) = 0, sk1 = sk0+ sk

and sk′1 = sk′0 + sk overRp, for any i, j ∈ {0, 1}, D̂ec(ski, sk′j , τ) performs the following steps:

1. Perform a key-switching operation ŝkj :=
[
sk′j

]
sk→ŝk

.

2. Convert τ into an eGSW ciphertext by computing (a, b1, b2, b3) :=
[
τ
]
gsw→egsw

.

3. Compute x := ski · ŝkj · a − i · ŝkj · b1 − j · ski · b2 + i · j · b3 over Rq, where i = LSB(ski) and
j = LSB(sk′j).

4. Set y := ⌊x⌉p and perform another key-switching operation z := [y]
ŝk→sk

. Output z ∈ Rp.

B Security Proof

B.1 Security Proof for the Main Protocol

Theorem 3 (Theorem 1, restated). Let f be a two-party functionality {0, 1}|IA| ×{0, 1}|IB| → {0, 1}|O|
with |IA| = |IB|. Let PRG be a pseudorandom generator, PRF be a pseudorandom function, and H
be a random oracle. Assume that the SWHE scheme is CPA secure under any pair (keypar′,∆) ←
KeyGen(params,∆A,∆B), if at least one party is honest. Then protocol Π2PC (Figures 4 and 5) securely
computes f with statistical error 1/p in the presence of a static, malicious adversary in the (F2PSWHE,FRand)-
hybrid model.
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Proof. We first consider the case of a malicious PA, and then handle the case of a malicious PB. In each case,
we construct a PPT simulator S (given access to functionality F2PC), which runs the PPT adversary A as a
subroutine and emulates functionalities F2PSWHE and FRand.

Malicious PA. S simulates random oracle H by responding random strings while keeping the consistency of
responses. Then, S simulates the view of A as follows.

PREPROCESSING: S simulates the preprocessing phase as follows:

1. S emulates the GenKey command of F2PSWHE by receiving ∆A from A, running (keypar′,∆) ←
KeyGen′(params,∆A,∆B) with ∆B ← Dη and sending keypar′ to A. Note that S never uses ∆.

2. S emulates FRand by sending a random key k ∈ {0, 1}λ as well as a uniform element U ∈ Rp with
LSB(U) = 0 to A. S updates ∆A as ∆A + U ∈ Rp.

3. S emulates F2PSWHE by receiving sA ∈ {0, 1}λ from A and then sending JsAK to A. Then, S
homomorphically computes P̃RG (JsAK) to obtain {Jr̂iK}i∈IA∪{JriK}i∈[N ]. S also computes {r̂i}i∈IA∪
{ri}i∈[N ] := PRG(sA).

4. S emulates F2PSWHE by sending J0K to A, and computes {Jt̂iK}i∈IB ∪ {JtiK}i∈[N ] following the
protocol specification.

INPUT PROCESSING, CIRCUIT GARBLING AND CIRCUIT EVALUATING: S simulates the phases of input
processing and circuit garbling as follows:

5. For each i ∈ IA, S receives σi,A ∈ {0, 1} from A, and computes xi := r̂i ⊕ σi,A. Then, S sets
x := {xi}i∈IA and sends it to F2PC.

6. For each i ∈ IB, S samples σi,B
$←− {0, 1} and sends it to A.

7. For each i ∈ IA ∪ IB ∪ G, S receives di ∈ {0, 1} from A, and computes a correct bit d∗i with the PA’s
secrets following the protocol specification.

8. For each i ∈ IA ∪ IB ∪ G, S samples d̃i
$←− {0, 1} and sends it to A.

OUTPUT PROCESSING AND CONSISTENCY CHECK: S simulates this phase as follows:

9. For each i ∈ O, S receives πi ∈ {0, 1} from A, and also computes a correct bit π∗i with the PA’s
secrets following the protocol specification.

10. S emulates FRand by sending random challenges {χi}i∈IA∪IB∪G and {χ′i}i∈O from Zp to A. Then, S
computes the ciphertext τ following the protocol specification.

11. S receives VA ∈ {0, 1}λ from A. If there exists some i ∈ IA ∪ IB ∪ G such that di ̸= d∗i , or some
i ∈ O satisfying πi ̸= π∗i , or VA ̸= H(Dec(∆A, τ), τ), S sends abort to F2PC and aborts. Otherwise,
S accepts the execution.

We use a sequence of hybrids to show that the real-world execution and ideal-world execution are computa-
tionally indistinguishable.

Hybrid 0. This hybrid (denoted by G0) is the real-world execution.

Hybrid 1. This hybrid (denoted by G1) is the same as G0, except that emulating F2PSWHE and FRand, and
simulating random oracle H honestly.
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It is obvious that G1 is perfectly indistinguishable from G0. Hybrid G1 can obtain all secrets of PA by
emulating F2PSWHE.

Hybrid 2. This hybrid (denoted by G2) is the same as G1, except for the following differences:

1. Computing correct bits d∗i for all i ∈ IA ∪ IB ∪ G and π∗i for all i ∈ O following the simulation of S.

2. Performing the final check by verifying whether di = d∗i for all i ∈ IA ∪IB ∪G, πi = π∗i for all i ∈ O
and VA = H

(
Dec(∆A, τ), τ

)
.

The only difference between G1 and G2 is the manner of consistency check. In G1, the check is done by
verifying if VA = H

(
Dec(∆B, τ), τ

)
. In G2, the check in step 2 is used. Below, we prove that the difference

is bounded by 1/p+ negl(λ).
In G1, if VA = H

(
Dec(∆B, τ), τ

)
, we prove that τ encrypts zero under the assumption that the SWHE

scheme is CPA secure. Suppose that τ encrypts a non-zero element E but the check still passes in G1. In
this case, A must make a query

(
Dec(∆B, τ), τ

)
to random oracle H . We construct a PPT algorithm B to

break the CPA security of SWHE. In particular, B behaves just like in G1 and simulates random oracle H .
Then B retrieves Dec(∆B, τ) from the queries of H with non-negligible probability. Finally, B computes
Dec(∆B, τ)− Dec(∆A, τ) = Dec(∆, τ) = E ·∆, and then recovers ∆ where B knows E. In conclusion,

we have that τ encrypts zero if VA = H
(
Dec(∆B, τ), τ

)
, except with probability negl(λ). Let ei

def
= v∗i − vi

for i ∈ IA ∪ IB ∪ G and e′i
def
= π̂i − πi for i ∈ O, where π̂i

def
= ri ⊕ di. If VA = H

(
Dec(∆B, τ), τ

)
, we have∑

i∈IA∪IB∪G
χi · ei +

∑
i∈O

χ′i · e′i = 0 .

Note that ei, e′i ∈ {−1, 0, 1}. Since the challenges χi, χ
′
i ∈ Zp are sampled uniformly after ei, e′i have

been defined, we obtain ei = 0 and e′i = 0, except with probability 1/p. This means that vi = v∗i for
i ∈ IA ∪ IB ∪ G and πi = π̂i for i ∈ O. Since vi = ri ⊕ di ⊕ ti ⊕ d̃i, we obtain vi = v∗i if and only if
di = d∗i , where both v∗i and d∗i are correct. Thus, we have π∗i = π̂i = πi for each i ∈ O. According to the
correctness analysis shown in Section 4.2, we know if di = d∗i for each i ∈ IA ∪ IB ∪ G and πi = π∗i for
each i ∈ O, then VA = H

(
Dec(∆B, τ), τ

)
. In other words, except with probability 1/p+ negl(λ), the check

of VA = H
(
Dec(∆B, τ), τ

)
is equivalent to checking di = d∗i for all i ∈ IA ∪ IB ∪ G, πi = π∗i for all i ∈ O

and VA = H
(
Dec(∆A, τ), τ

)
.

Hybrid 3. This hybrid (denoted by G3) is the same as G2, except that replacing JsBK with J0K.

We prove that G3 is indistinguishable from G2 using a reduction to the CPA security of the SWHE scheme.
Specifically, if the difference between G2 and G3 is noticeable, we construct a PPT algorithm B to break the
CPA security of SWHE. B chooses sB and 0 as two messages, and obtains the challenge ciphertext τ∗. Then
B behaves just like in G2, except that using τ∗ as JsBK. If τ∗ encrypts sB, B behaves exactly in G2. If τ∗ is
the encryption of 0, B behaves exactly in G3.

Hybrid 4. This hybrid (denoted by G4) is the same as G3, except for sampling σi,B ∈ {0, 1} for each i ∈ IB
and d̃i ∈ {0, 1} for each i ∈ IA ∪ IB ∪ G uniformly at random.

We use the pseudorandomness of PRG outputs to bound the difference between G3 and G4. Based on
that PRG is a pseudorandom generator, t̂i for all i ∈ IB and ti for all i ∈ IA ∪ IB ∪ G are computationally
indistinguishable from uniform bits. Therefore, in G3, both σi,B for each i ∈ IB and d̃i ∈ {0, 1} for each
i ∈ IA ∪ IB ∪ G are computationally indistinguishable from random bits. Thus, G4 is computationally
indistinguishable from G3.

Hybrid 5. This hybrid (denoted by G5) is the same as G4, except that extracting xi := r̂i ⊕ σi,A for each
i ∈ IA, and sending x := {xi}i∈IA to F2PC. This is the ideal-world execution.
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It is straightforward to see that the extraction of PA’s input is perfect. In G5, PB receives the output
f(x,y), if the execution does not abort. In hybrid G4, we have that di = d∗i for all i ∈ IA ∪ IB ∪ G and
πi = π∗i for all i ∈ O, if the protocol execution does not abort. Thus, honest party PB would obtain the output
f(x,y) in G4, according to the correctness analysis shown in Section 4.2, under the assumption that PRF is a
pseudorandom function. Overall, G5 and G4 are computationally indistinguishable.

In conclusion, the joint distribution of S and honest PB’s outputs in the ideal-world execution is computa-
tionally indistinguishable from that of the outputs of A and honest PB in the real-world execution.

Malicious PB. S simulates random oracle H by responding random strings while keeping the consistency of
responses. Then, S simulates the view of A as follows.

PREPROCESSING: S simulates the preprocessing phase as follows:

1. S emulates the GenKey command of F2PSWHE by receiving ∆B from A, running (keypar′,∆) ←
KeyGen′(params,∆A,∆B) with ∆A ← Dη and sending keypar′ to A. As such, S never uses ∆.

2. S emulates FRand by sending a random key k ∈ {0, 1}λ as well as a uniform element U ∈ Rp with
LSB(U) = 0 to A. S updates ∆B as ∆B + U ∈ Rp.

3. S emulates F2PSWHE by sending J0K to A. Then, S computes the ciphertexts {Jr̂iK}i∈IA ∪ {JriK}i∈[N ]

following the protocol specification.

4. S emulates F2PSWHE by receiving sB ∈ {0, 1}λ from A and then sending JsBK to A. Then, S
homomorphically computes P̃RG (JsBK) to obtain {Jt̂iK}i∈IB∪{JtiK}i∈[N ]. S also computes {t̂i}i∈IB∪
{ti}i∈[N ] := PRG(sB).

INPUT PROCESSING, CIRCUIT GARBLING AND CIRCUIT EVALUATING: S simulates the phases of input
processing and circuit garbling as follows:

5. For each i ∈ IA, S samples σi,A
$←− {0, 1} and sends it to A.

6. For each i ∈ IB, S receives σi,B ∈ {0, 1} from A, and computes yi := t̂i ⊕ σi,B. Then, S sets
y := {yi}i∈IB , sends it to F2PC and obtains z∗ = f(x,y), i.e., z∗i ∈ {0, 1} for all i ∈ O.

7. For each i ∈ IA ∪ IB ∪ G, S samples di
$←− {0, 1}, and sends it to A.

8. For each i ∈ IA ∪ IB ∪ G, S receives d̃i ∈ {0, 1} from A, and also computes a correct bit d̃∗i with the
PB’s secrets following the protocol specification.

OUTPUT PROCESSING AND CONSISTENCY CHECK: S simulates this phase as follows:

9. For each i ∈ O, S computes πi := z∗i ⊕ LSB(Wi,B) and sends it to A, where Wi,B is computed
following the protocol specification.

10. S emulates FRand by sending random challenges {χi}i∈IA∪IB∪G and {χ′i}i∈O from Zp to A. Then, S
computes τ following the protocol specification.

11. If d̃i ̸= d̃∗i for some i ∈ IA ∪ IB ∪ G, S samples VA
$←− {0, 1}λ and sends it to A. Otherwise, S sends

VA := H
(
Dec(∆B, τ), τ

)
to A.

We use a sequence of hybrids to show that the real-world execution and ideal-world execution are
computationally indistinguishable.

Hybrid 0. This hybrid (denoted by G0) is the real-world execution.
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Hybrid 1. This hybrid (denoted by G1) is the same as G0, except that emulating F2PSWHE and FRand, and
simulating random oracle H honestly.

It is easy to see that G1 is perfectly indistinguishable from G0. Hybrid G1 can obtain all PB’s secrets by
emulating F2PSWHE.

Hybrid 2. This hybrid (denoted by G2) is the same as G1, except for the following differences:

1. For each i ∈ IA ∪ IB ∪ G, computing a correct bit d̃∗i following the simulation by S.

2. If d̃i ̸= d̃∗i for some i ∈ IA ∪ IB ∪ G, S samples VA
$←− {0, 1}λ and sends it to A. Otherwise, S sends

VA := H
(
Dec(∆B, τ), τ

)
to A.

The only difference between G1 and G2 is how to generate VA. In G1, VA is always computed as
H
(
Dec(∆B, τ), τ

)
. In G2, either VA is sampled at random if d̃i ̸= d̃∗i for some i ∈ IA ∪ IB ∪ G, or VA is

computed with ∆B otherwise. Following a similar analysis used in the case of malicious PA, we can prove if
d̃i ̸= d̃∗i for some i ∈ IA ∪ IB ∪ G, then τ encrypts a non-zero element E, except with probability 1/p. In
this case, we obtain that VA = H

(
Dec(∆B, τ), τ

)
is computationally indistinguishable from a uniform string

under the assumption that the SWHE scheme is CPA secure, following the same analysis used in the case of
malicious PA. If d̃i = d̃∗i for all i ∈ IA ∪ IB ∪ G, we have VA = VB = H

(
Dec(∆B, τ), τ

)
according to the

correctness analysis shown in Section 4.2 under the assumption that PRF is a pseudorandom function.

Hybrid 3. This hybrid (denoted by G3) is the same as G2, except that replacing JsAK with J0K.

We bound the difference between G2 and G3 using a reduction to the CPA security of the SWHE scheme.
Specifically, if the difference between G2 and G3 is non-negligible, we construct a PPT algorithm B to break
the CPA security of SWHE. B chooses sA and 0 as two messages, and obtains the challenge ciphertext τ∗.
Then B behaves just like in G2, except that using τ∗ as JsAK. If τ∗ encrypts sA, B behaves exactly in G2. If
τ∗ is the encryption of 0, B behaves exactly in G3.

Hybrid 4. This hybrid (denoted by G4) is the same as G3, except for sampling σi,A ∈ {0, 1} for each i ∈ IA
and di ∈ {0, 1} for each i ∈ IA ∪ IB ∪ G uniformly at random.

We use the pseudorandomness of PRG outputs to bound the difference between G3 and G4. Based on
that PRG is a pseudorandom generator, r̂i for all i ∈ IA and ri for all i ∈ IA ∪ IB ∪ G are computationally
indistinguishable from uniform bits. Therefore, in G2, σi,A for all i ∈ IA and di ∈ {0, 1} for all i ∈
IA ∪ IB ∪ G are computationally indistinguishable from uniformly random bits. Thus, G4 is computationally
indistinguishable from G3.

Hybrid 5. This hybrid (denoted by G5) is the same as G4, except for the following differences:

1. Computing yi := t̂i ⊕ σi,B for each i ∈ IB, sending y = {yi}i∈IB to F2PC, and receiving {z∗i }i∈O =
f(x,y).

2. For each i ∈ O, computing πi := z∗i ⊕ LSB(Wi,B) and sending it to A.

This is the ideal-world execution.

It is easy to see that the extraction of PB’s input is perfect. If the protocol execution does not abort, A
would obtain the circuit output {z∗i }i∈O in G5. In hybrid G4, if the protocol execution does not abort, we
have that d̃i for all i ∈ IA ∪ IB ∪ G are correct. Thus, A would obtain the output f(x,y), according to
the correctness analysis shown in Section 4.2, under the assumption that PRF is a pseudorandom function.
Therefore, G5 is computationally indistinguishable from G4.

In conclusion, the joint distribution of the outputs of S and honest party PA in the ideal-world execution
is computationally indistinguishable from that of the outputs of A and honest party PA in the real-world
execution, which completes the proof.
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B.2 Security Proof of Protocol Π2PSWHE

Theorem 4 (Theorem 2, restated). Protocol Π2PSWHE (Figures 7 and 8) securely computes F2PSWHE in the
presence of a static, malicious adversary in the (FCPC,FRand)-hybrid model under the RLWE assumption
with KDM security.

Proof. The roles of PA and PB are symmetric in the protocol Π2PSWHE. Thus, we do not distinguish the case
of malicious PA from that of malicious PB. Instead, we prove both cases in a unified way. Let PC denote
the malicious party controlled by the adversary and PH be the honest party, where C,H ∈ {A,B}. For any
PPT adversary A, we construct a PPT simulator S with access to functionality F2PSWHE. S runs A as a
subroutine, emulates FCPC and FRand, and simulates the view ofA as follows. We first show how to simulate
the macro EncMsg.

MACRO EncMsg(a, ℓ, skA, skB,mA,mB). The inputs a ∈ Rℓ
q and ℓ ∈ N are public. S simulates Macro

EncMsg as follows:

1. For a malicious party PC, S receives bC ∈ Rℓ
q from A. S then emulates the Prove command of FCPC

to perform the check following the protocol specification.

2. For an honest party PH, S samples bH
$←− Rℓ

q and then sends it to A. S then emulates the Prove
command of FCPC to convince A that the relationship specified in the protocol description holds.

3. S locally computes b := bB − bA ∈ Rℓ
q.

TWO-PARTY KEY-GENERATION PROTOCOL. S simulates the two-party key generation protocol as follows:

1. S emulates the Commit command of FCPC by receiving skC ∈ Rp and ŝkC ∈ Rp from A. S emulates
the Prove command of FCPC to perform the check following the protocol specification. Then, S sends
(skC, ŝkC) to F2PSWHE.

2. For the secret keys held by honest party PH, S emulates functionality FCPC in a trivial way.

3. S emulates FRand by sending random elements a, â ∈ Rq and uniform vectors a ∈ RN
q and ã ∈ RM

q

to A.

4. S simulates EncMsg(a, 1, skA, skB, ŝkA, ŝkB) to obtain τ
sk→ŝk

.

5. S simulates EncMsg(â, 1, ŝkA, ŝkB, skA, skB) to obtain τ
ŝk→sk

.

6. S simulates EncMsg(a, N, skA, skB, 0, 0) and EncMsg(a, N, ŝkA, ŝkB, 0, 0) to generate b1, b2 ∈ RN
q .

7. S emulates the Compute command of FCPC by receiving xC ∈ Rq from A, and locally computes
mC ∈ RN

q following the protocol specification.

8. S simulates EncMsg(b1, N, skA, skB,mA,mB) to obtain b3.

9. S defines τgsw→egsw
def
=

(
a, b1, b2, b3

)
.

10. S simulates EncMsg(ã,M, skA, skB, 0, 0) to obtain b̃ ∈ RM
q .

TWO-PARTY ENCRYPTION PROTOCOL. S simulates the two-party encryption protocol in two cases:

Case 1: If honest party PH encrypts z = (z1, . . . , zt) ∈ {0, 1}t, then S simulates as follows:
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1. S emulates the Commit command of FCPC in a tivial way.

2. For each i ∈ [t], S samples ai, bi
$←− RN

q and computes

J0K := Flatten
(
0 · IN + BitDecomp

([
ai bi

]))
.

Then, S sends these ciphertexts on zero to A.

3. S emulates the Prove command of FCPC to convince A that the relationship specified in the protocol
description holds.

Case 2: If malicious party PC encrypts z = (z1, . . . , zt) ∈ {0, 1}t, then S proceeds as follows:

1. S emulates the Commit command of FCPC by receiving (zi,Ri) ∈ {0, 1} ×RN×M
2 from A. Then, S

sends {(zi,Ri)}i∈[t] to F2PSWHE.

2. For each i ∈ [t], S receives JziK ∈ RN×N
2 from A.

3. S emulates the Prove command of FCPC to perform the check following the protocol specification.

We use a sequence of hybrids to prove the computational indistinguishability between the real-world
execution and ideal-world execution.

Hybrid 0. This hybrid (denoted by G0) is the real-world execution.

Hybrid 1. This hybrid (denoted by G1) is the same as G0, except that emulating FCPC and FRand.

It is obvious that G0 and G1 have the identical distribution. In this hybrid, all secrets held by malicious
party PC are extracted by S.

Hybrid 2. This hybrid (denoted by G2) is the same as G1, except that replacing τ
sk→ŝk

, τ
ŝk→sk

, b1, b2, and b̃
with uniform vectors overRq in the key-generation protocol.

It is straightforward to bound the difference between G1 and G2 using a reduction to the RLWE assumption
with KDM security. For macro EncMsg, even if A chooses bC with C ∈ {A,B}, the resulting vector
b = bB − bA is still computationally indistinguishable from a uniform vector, as bH with H ∈ {A,B} is
computationally indistinguishable from a uniform vector under the RLWE assumption with KDM security.
Thus, G2 is computationally indistinguishable from G1.

Hybrid 3. This hybrid (denoted by G3) is the same as G2, except that replacing b3 with a uniform vector in
RN

q in the key-generation protocol.

It is easy to bound the difference between G2 and G3 using a reduction to the RLWE assumption with
KDM security. Thus, G3 is computationally indistinguishable from G2.

Hybrid 4. This hybrid (denoted by G4) is the same as G3, except that if an honest party PH encrypts a
message z = (z1, . . . , zt) ∈ {0, 1}t, then for each i ∈ [t], replacing

(
Ri · ã,Ri · b̃

)
with uniform vectors

(ai, bi) from
(
RN

q

)2 and computing JziK as a ciphertext on zero

J0K = Flatten
(
0 · IN + BitDecomp

([
ai bi

]))
.
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By applying the leftover hash lemma [IZ89], for each i ∈ [t],
(
Ri · ã,Ri · b̃

)
is indistinguishable from

a uniform vector (ai, bi) in
(
RN

q

)2. Using the properties of Flatten and BitDecomp, we have:

JziK = Flatten
(
zi · IN + BitDecomp

([
Ri · ã Ri · b̃

]))
= BitDecomp

(
BitDecomp−1

(
zi · IN + BitDecomp

([
Ri · ã Ri · b̃

])))
= BitDecomp

(
BitDecomp−1 (zi · IN ) +

[
Ri · ã Ri · b̃

])
≈ BitDecomp

(
BitDecomp−1 (zi · IN ) +

[
ai bi

])
.

Therefore, JziK is indistinguishable from BitDecomp
([
ai bi

])
= J0K, as (ai, bi) is uniform.

Hybrid 5. This hybrid (denoted by G5) is the same as G4, except that sending (skC, ŝkC) along with
{(zi,Ri)}i∈[t] (if malicious party PC encrypts z) to F2PSWHE.

It is obvious that G4 and G5 have the identical distribution. In hybrid G5, honest party PH obtains a set
of key-dependent parameters keypar′, which is sampled uniformly at random. In the ideal-world execution,
keypar′ is output by F2PSWHE through running KeyGen′. This is computationally indistinguishable under
the RLWE assumption with KDM security. According to the analysis in G4, the ciphertexts on z obtained
by honest party PH are indistinguishable from that output by F2PSWHE via running the modified encryption
algorithm. In conclusion, G5 is computationally indistinguishable from the ideal-world execution, which
completes the proof.
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