
Efficient Mixed Garbling from Homomorphic
Secret Sharing and GGM-Tree

Jian Guo and Wenjie Nan (B)

Nanyang Technological University, Singapore
guojian@ntu.edu.sg, wenjie006@e.ntu.edu.sg

Abstract. We present new techniques for garbling mixed arithmetic
and boolean circuits, utilizing the homomorphic secret sharing scheme
introduced by Roy & Singh (Crypto 2021), along with the half-tree
protocol developed by Guo et al (Eurocrypt 2023). Compared to some
two-party interactive protocols, our mixed garbling only requires several
times (< 10) more communication cost.
We construct the bit decomposition/composition gadgets with communi-
cation cost O((λ+λDCR/k)b) for integers in the range (−2b−1, 2b−1), re-
quiring O(2k) computations for the GGM-tree. Our approach is compat-
ible with constant-rate multiplication protocols, and the cost decreases
as k increases. Even for a small k = 8, the concrete efficiency ranges from
6λb (b ≥ 1000 bits) to 9λb (b ∼ 100 bits) per decomposition/composition.
In addition, we develop the efficient gadgets for mod q and unsigned trun-
cation based on bit decomposition and composition.
We construct efficient arithmetic gadgets over various domains. For boun-
ded integers, we improve the multiplication rate in the work of Meyer et
al. (TCC 2024) from ζ−2

ζ+1
to ζ−2

ζ
. We propose new garbling schemes over

other domains through bounded integers with our modular and trun-
cation gadgets, which is more efficient than previous constructions. For
Z2b , additions and multiplication can be garbled with a communication
cost comparable to our bit decomposition. For general finite field Fpn ,
particularly for large values of p and n, we garble the addition and mul-
tiplication at the cost of O((λ + λDCR/k)b), where b = n⌈log p⌉. For
applications to real numbers, we introduce an “error-based” truncation
that makes the cost of multiplication dependent solely on the desired
precision.

Keywords: Garbled circuit · Mixed circuits · Secure computation

Table of Contents

1 Introduction 3
1.1 Our Contributions . 5
1.2 Organization . 7

2 Preliminary 7
2.1 Garbling Scheme over Mixed Circuits . 8
2.2 Public Key Schemes and Homomorphic Secret Sharing 9
2.3 GGM-tree Technique . 10
2.4 Circular Security in Mixed Garbling . 10

3 Bit Decomposition/Composition from Homomorphic Secret Shar-
ing and GGM-tree 11
3.1 Fixed Key Expansion Protocol . 12
3.2 Bit Composition over Bounded Integers . 13
3.3 Bit Decomposition over Bounded Integers . 16
3.4 Mod q Gadget . 19

4 More Efficient Arithmetic Garbling 20
4.1 Multiplication based on Split Homomorphic Encryption 21
4.2 “Wire-based” Multiplication in Garbled Circuits 22
4.3 Arithmetic Garbling over Z2b . 25

5 Mixed Garbling 26

6 Concrete Efficiency and Application 29
6.1 Application in Real Numbers . 31

7 Discussion 32

A Binary Representation for Signed Integers 37

B Full Proof for Correctness of Bit Decomposition/ Composition 37

C Sub-Simulators for Hybrid 1 H1 38

1 Introduction

The garbled circuit was introduced in a seminal work by Yao [34] for secure
function evaluation. Since then, it has been an important framework for two-
party secure computation, particularly for constant-round (or non-interactive)
secure computation protocols. Following the first published garbled circuit proto-
col [13], research has focused on optimizing its efficiency [5,28,31]. Improvements
in boolean garbling have been made at both the gate level [22,23] and the circuit
level [18]. Currently, the best result for gate level is zero communication for XOR
gate (⊕), whereas the AND gate (∧) yields a result of 1.5λ + 5 bits, according
to Rosulek & Roy [32].

Despite the significant advances in binary garbled circuits, the arithmetic op-
erations remain to be expensive when expressed as binary circuits. To circumvent
the complex and costly representation in binary form, various frameworks have
been proposed to garble the arithmetic circuits. The first arithmetic garbling
scheme was introduced by Applebaum, Ishai, and Kushilevitz [1]. It includes an
information-theoretically secure protocol with exponentially increasing key size,
and a key shrinking protocol based on LWE. Subsequently, the study by Ball et
al. [3] improved the efficiency of [1] based on the DCR assumption by developing
a novel key shrinkage gadget (also known as a key expansion gadget). Recently,
Meyer et al. [27] further optimized the concrete efficiency of BLLL23’s results [3]
by utilizing free-addition garbling and elegant findings from homomorphic secret
sharing. They demonstrated that each multiplication in arithmetic circuits over
bounded integers can be encoded with a single ciphertext under Damg̊ard-Jurik
encryption. Consequently, they can achieve rate-1 multiplication for sufficiently
large integers.

However, the key question in this domain remains:
How to make arithmetic garbling more practical?

Several challenges exist in terms of the practical arithmetic garbling proto-
cols. 1) The primary issue is the development of a more efficient garbling protocol
for mixed circuits that incorporates both arithmetic and boolean circuits. 2) A
further problem is to garble arithmetic circuits (or mixed circuits) over more
mathematical structures beyond bounded integers and mod q integer rings. This
paper will mainly focus on the two issues.

Mixed garbling. Mixed circuits are common in applications such as machine
learning and data mining, particularly those involving floating-point numbers.
Numerous studies have shown that certain non-linear functions can be computed
efficiently using mixed circuits, while circuits based solely on boolean or arith-
metic operations may be highly inefficient. For example, spline functions are
used in machine learning to approximate sigmoid or other non-linear activation
functions. The efficiency and precision of employing Taylor’s expansion or New-
ton’s technique through arithmetic circuits is usually worse than the methods
using spline functions across mixed boolean and arithmetic circuits.

There are several recent studies focus on the garbling in mixed circuits. Ball,
Malkin and Rosulek [4] employ a CRT-based arithmetic garbling protocol for

3

addition/multiplication over bounded integers. It also applies a PMR system for
logical operations. The communication cost is O(λb2/ log b) for multiplication
and O(λb3/ log b) for comparison, assuming the integers are bounded by 2b.

Furthermore, Ball et al. [3] demonstrated that, under the DCR assumption,
a bit decomposition gadget for bounded integers can be garbled with a commu-
nication cost of O(λ(b + λDCR)

2), while the multiplication and addition gates
are garbled at a cost of O(λDCR + b). They also presented the protocols based
on the LWE assumption, requiring O(b2λLWE) for each bit decomposition gate
and O(bλLWE) for each multiplication gate.

Subsequently, Li and Liu [24] investigated that the bit decomposition and
bit composition gadgets over Zq utilizing a mod-and-reduce technique. In the
random oracle model, with b = log q, their protocols for both gadgets can achieve
O(λb1.5) utilizing CRT and O(λb2/k) for a small integer k without CRT. Under
the DCR assumption in the programmable random oracle model, they achieve
O(λDCRb) for both bit decomposition and composition.

Another work considering mixed garbling is using one-hot garbling by David
Heath [17]. They show that there is a highly efficient transformation between
boolean garbling and arithmetic garbling over Z2k with communication cost
O(λk) for small k. In this case, “small” means that O(2k) remains computable, as
their protocol depends on the GGM-tree structure, necessitatingO(2k) symmetric-
key operations every transformation (or arithmetic operation). For large integers,
they employ the CRT to achieve the same asymptotically efficiency.

More structures. Arithmetic garbling, or mixed garbling, was first studied over
bounded integers, and then followed by modular integer rings Zq. In addition
to these rings, mixed garbling over finite fields F2b has also been studied in
DH21 [19], which proposed one-hot garbling to garble arithmetic operations
for small values of b. Their idea is to construct the efficient outer product of
two boolean vectors since the arithmetic over F2b can be achieved by the outer
product. And they reduce the communication cost of the outer product from
O(b2λ) to O(bλ). Nonetheless, for general Fpn , especially when p and n are
large, the existing methodologies can only allow us to garble n2 multiplications
over Zp to obtain multiplication over Fpn .

Additionally, secure computing over real numbers has long been important
for many applications. Heath et al. [20] proposed a method for efficiently garbling
look-up tables, with possible applications for floating-point values.

Gap and motivation. Our study begins with the observation that, while mul-
tiplication over bounded integers can achieve a constant rate, garbling bit de-
composition and composition remains costly. The challenge lies in the fact that
constant-rate multiplication over bounded integers relies on a short arithmetic
label (or key) with constant values, whereas bit decomposition and composition,
using the mod-and-reduce method, require a long arithmetic label containing λ
values. Therefore, we aim to preserve constant-rate multiplication over bounded
integers while ensuring efficient bit decomposition and composition.

4

In addition, current asymptotically efficient mixed garbling protocols over
long integers either employ CRT representation or utilize the homomorphic prop-
erties of certain public-key schemes. On one hand, CRT-based protocols is very
inefficient in practice since they require many transformations for arithmetic
gadgets, as noted in Heath24 [17]. On the other hand, the garbling protocols
based on public-key schemes suffer from the security parameters, e.g. λDCR, are
usually much larger than λ. Our objective is to employ the public-key schemes in
mixed garbling, particularly the bit decomposition and bit composition gadgets,
while minimizing security parameters to a level comparable to λ without CRT.

Moreover, we consider the efficiency for garbling arithmetic operations over
different domains. The multiplication in MORS24 [27] over bounded integers
achieves rate 1 only for large integers. For numbers shorter than λDCR ≃ 3000
bits, the best rate achievable is 1/4, and we aim to further improve the rate. As
for the garbling of arithmetic circuits over Zq, especially over Z2b , the concrete
efficiency remains expensive despite the advancements in asymptotic efficiency
by LL23 and Heath24 [17,24]. Hence, we aim to develop more efficient arithmetic
garbling over Z2b , as well as for Fpn to circumvent the n2 barrier, and explore
applications in garbling real numbers R.

1.1 Our Contributions

This paper makes two assumptions regarding security. The weaker assumption
includes an extended-output circular correlation robust hash function, along with
key-dependent message (KDM) security of Damg̊ard-Jurik encryption, referred
to as CCR-KDM security. The stronger assumption consider the KDM-secure
DJ encryption in the programmable random oracle model.

Bit decomposition/composition and modular/truncation gadgets. We
first demonstrate that, under both assumptions, there exists a garbling pro-
tocol for bit decomposition and composition with a communication cost of
O((λ + λDCR/k)b) for any bounded integers in the range (−2b−1, 2b−1). The
concrete efficiency achieves 6λb when k = 8 and 4.5λb when k = 16, assuming
KDM-security in random oracle model. Notably, in the CCR-KDM model, bit
decomposition requires only bλ additional bits, while bit composition remains
unchanged. Furthermore, the protocol is compatible with constant-rate multi-
plication from BLLL23 and rate-1 multiplication from MORS24. For general
mod q gadgets, the cost depends on both the size of the bounded integers and
q; specifically, the cost for mod 2b or unsigned truncation of the lowest b bits
depends only on b.

Rate ζ−2
ζ multiplication and “wire-based” multiplication. We show that,

assuming the KDM-security for Damg̊ard-Jurik encryption in the programmable
random oracle model, there exists a protocol for garbling arithmetic circuits
over bounded integers at the rate of ζ−2

ζ . This result improves upon the rate

of ζ−2
ζ+1 achieved in MORS24 [27], allowing us to increase the rate for integers

bounded by ∼ 2λDCR from 1/4 to 1/3. Additionally, we introduce a “wire-based”

5

multiplication technique that garbles any subcircuit with a communication cost
that is linear in the number of unique input wires for multiplication, rather than
the number of multiplications in the subcircuit.

Efficient arithmetic over Fpn ,Z2b ,R. We develop arithmetic garbling for vari-
ous (can be mixed) rings using bounded integers with mod q gadgets and trunca-
tion gadgets. By leveraging the “wire-based” multiplication protocol presented
in this paper, we demonstrate that, for arbitrary finite fields Fpn , the opera-
tions of addition and multiplication can be garbled with communication cost of
O((λ+λDCR/k)n⌈log p⌉), without incurring n2 multiplications over Zp. For Z2b ,
our protocol achieves more than a 10× improvement in efficiency compared to
AIK-based protocols in LL23 [24], and an FHE-like optimization can be applied
at the circuit level in our approach. Finally, our techniques are used to garble
real numbers by representing them as fixed-point numbers. Addition is free, and
we construct an “error-based” signed truncation that allows us to garble multi-
plication, with costs depending solely on the desired precision rather than the
entire magnitude of the fixed-point numbers.

Table 1: Comparison of efficiency for mixed garbling. In CCR-KDM assump-
tion, we will use the multiplication in MORS24. CCR means the circular corre-
lation robust hash function, KDM means that key-depedent message security of
Damg̊ard-Jurik encryption. PROG means programmable random oracle model.
DCR* means strong-DCR assumption. Note that the MORS24 only provide the
addition and multiplication gadgets. More details will be provided in section 6
for concrete efficiency.

Domain Assumption Gadget Communication cost

(−2b−1, 2b−1) CCR-KDM BitCom b
k
λDCR + 3(bλ+ λ2) + b

(−2b−1, 2b−1) CCR-KDM BitDecom b
k
λDCR + (4b− 2)λ+ b

(−2b−1, 2b−1) PROM-KDM BitDecom b
k
λDCR + (3b− 2)λ+ b

(−2b−1, 2b−1) PROM-KDM MULT (⌈ b+2λ
λDCR

⌉+ 2)λDCR + λ

Z2b CCR-KDM MULT/ADD < (b
k
+ 5)λDCR + (4b+ 2)λ+ 4b

Fpn All Two MULT/ADD O((λ+ λDCR/k)n⌈log p⌉)
(±2−f ,±2300) CCR-KDM MULT (4 + f

k
)λDCR + 2fλ+ f

Previous Works

ADD ≥ 6(b+ λDCR)

(−2b−1, 2b−1) DCR*/BLLL23 [3] MULT ≥ 12(b+ λDCR)
BitDecom ≥ λ(b+ λDCR)

2

MULT (6b+ 2)λDCR + 18bλ+ 4λ2

Z2b PROM-DCR/LL23 [24] BitDecom (5λ+ 2λDCR)b
BitCom (2b+ 2)λDCR + 6bλ+ 4λ2

(−2b−1, 2b−1) KDM/MORS24 [27] MULT (⌈ b+λ
λDCR

⌉+ 3)λDCR

6

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we introduce the pre-
liminaries, including the necessary security definitions and cryptographic prim-
itives required for our work. Section 3 presents our main protocols for bit com-
position, bit decomposition, and modular q gates over signed bounded integers.
In particular, we introduce a new technique called fixed key expansion, which
serves as a fundamental component in our scheme of bit composition and de-
composition. In Section 4, we demonstrate how split encryption can be leveraged
to improve the rate of multiplication. We also introduce the “wire-based” gar-
bling, which enables asymptotically efficient garbling over general finite fields
Fpn . Section 5 provides our complete protocol for mixed garbling across various
domains, along with a formal security proof. In Section 6, we present efficiency
comparisons and an application of our techniques in garbling real numbers, simu-
lated by fixed-point number. Finally, in Section 7, we discuss additional security
properties, namely obliviousness and authenticity, and demonstrate that these
properties can be achieved with minor modifications to our main protocol.

2 Preliminary

In mixed garbling protocols, the garble table of some gate g is denoted as Gg,
and there are three types of keys/labels:

– Short arithmetic label over bounded integers ∆x +Kx where ∆,x,Kx ∈ Z
and ∆ is the global randomness. It is necessary for Kx ≥ maxx(|∆x|)2λ to
ensure λ bits of statistical security.

– Long arithmetic label over bounded integers ∆Zx+KZ,x where ∆Z ,KZ,x ∈
Zλ and ∆Z is the global randomness. Every value in KZ,x is 2λ larger than
each value in ∆Zx to ensure λ bits statistical security.

– boolean labels for each bit x[i] ∈ Z2, where
∑

i x[i]2
i = x ∈ Z, are repre-

sented as∆binx[i]+Kbin,x[i].Kbin,x[i] ∈ Zλ
2 and∆bin ∈ Zλ−1

2 ||1 is the global
key, same as in free-xor garbling. Additionally, we will set ∆Z = ∆bin.

Signed Bounded integers. This paper studies bit decomposition and compo-
sition over signed bounded integers, while mixed garbling over modular rings or
finite fields typically requires only unsigned bounded integers. The key differ-
ence between signed and unsigned numbers is their binary representation. For
integers in range (−2b−1, 2b−1), we use the binary representation of x mod 2b.
Moreover, in some cases, conversion is required to a form where the first b − 1
bits are for |x|, with one additional bit for sign(x). The conversion between two
representations requires b−1 AND gates in binary circuits. We refer the readers
to Appendix A for more details.

Arithmetic Circuits and Mixed Circuits. An arithmetic circuit C over a
ring R is a directed acyclic graph (DAG) where each wire corresponds to a value
in R and each node, except for the input and output nodes, corresponds to a

7

gate from the set {+,−,×}. This work covers the bounded integer rings Zbound,
the modular rings Zq, and the general finite fields Fpn . We also use boolean
garbling over Z2. Moreover, all information regarding the rings is public in this
context, meaning that q and pn are open to both the garbler and the evaluator.
Consequently, the arithmetic garbling within these rings can be achieved using
bounded integers along with an extra modular gate. The mixed circuit C is
defined across a domain I of rings, as it can include garbling across various
rings. Moreover, there exists a set of gadgets G such that each node is linked to
a gate g ∈ G. We assume that G contains the operations {+,−,×}Ri for each
Ri ∈ I, together with the non-trivial transformation gadgets gRi→Rj .

Definition 1 (Mixed circuit). A domain of a mixed circuit is a set of rings
I = {R1,R2, ...,Rn}. Any gadget g over I is defined to be a function such that
g : ({Rmi

i })→ ({Rni
j }) where Ri,Rj ∈ I and ni,mi ≥ 0 for all i, j.

A circuit C is defined as a mixed circuit with gadget set G over domain I if
C is a DAG where each wire has a value in Ri ∈ I and each node is either an
input/output node or associated with some gi ∈ G.

2.1 Garbling Scheme over Mixed Circuits

We employ the definition in BLLL23 [3] for garbling schemes over mixed circuits.
Additionally, rather than employing the modular definition for each gadget, we
define the global security for mixed garbling because of the global keys ∆,∆bin.

Definition 2 (Mixed Garbling). For a family of mixed circuits {Cλ} over Iλ
with a gadget set Gλ and mixed label space Lλ, a garbling scheme over {Cλ}
contains two algorithms with correctness and privacy defined below:

– Garble(1λ, C) = ({ki,0, ki,1}i∈[1,n],G). The algorithm takes an n inputs
mixed circuit C ∈ {Cλ} as input, and it outputs a garbled circuit G and
n pair of secret keys (ki,0, ki,1) ∈ L2

λ for encoding the real inputs.
– Eval(G,L(xi)i∈[1,n]) = y. L(xi) = ki,0xi +Ri

ki,1, xi ∈ Ri is the label for
input xi where G is the garbled circuit of C.

– Correctness: The scheme is correct over Iλ with gadget set G if there is a
negligible function negl(·) that, for all λ ∈ N+, C ∈ {Cλ} over Iλ with G,
and all inputs (xi)i∈[1,n] are admissible to C,

Pr

[
Eval(G,L(xi)i∈[1,n]) ({ki,0, ki,1},G)← Garble(1λ, C)

̸= C(xi)] L(xi) = ki,0xi +Ri
ki,1, xi ∈ Ri

]
≤ negl(λ)

– Privacy: The scheme is secure under privacy if for all sequence of circuits
{Cλ}λ∈N where Cλ ∈ {Cλ} and all admissible inputs (xi)i∈[1,n] to the se-
quence, there is a PPT simulator S that

S(1λ, Cλ, y) ≃ (L(xi),G)
({ki,0, ki,1},G)← Garble(1λ, C)

L(xi) = ki,0xi +Ri ki,1, xi ∈ Ri, y = Cλ((xi)i∈[1,n])

We use similar definition in MORS24 [27] for the rate of arithmetic garbling.

8

Definition 3 (Rate of Arithmetic Garbling). Given any finite ring R, let
C be a family of arithmetic circuits over R consisting of (+,×) gates. Define
b = ⌈log |R|⌉, and let (G, {ki,0, ki,1}i∈[1,n]) = AG.garble(1λ, C) for some C ∈ C.
If n denotes the number of inputs of C, then the rate of AG is defined as

rate = min
x,C∈C

(|C|+ n)b

size(G) +
∑n

i=1 size(L(xi))

with all admissible inputs x to C and L(xi) = ki,0xi + ki,1.

Remark 1. In the above definition, we consider only privacy for the security
requirement, following the tradition of previous arithmetic garbling works such
as AIK11 [1], BLLL23 [3], and MORS24 [27]. Note that our protocols can also
achieve obliviousness and authenticity. In Section 7, we will demonstrate that
with slight modifications, our protocols can be adapted to satisfy these additional
security guarantees.

2.2 Public Key Schemes and Homomorphic Secret Sharing

In general, homomorphic secret sharing (HSS) enables the local evaluation of
certain circuits from a family C. In this work, we consider the HSS for a spe-
cial class of restricted multiplication circuits (RMS) [33], which allow the local
evaluation of multiplication between any secret shared value [x] and any en-
crypted value cy. There are several protocols, including RS21 [33], OSY21 [29],
and ACK23 [2], supporting such HSS over bounded integers. In this work, we
primarily focus on the local evaluation (multiplication between shared value and
encrypted value) algorithm in HSS.

Assuming the KDM-security of the Damg̊ard-Jurik cryptosystem [10], RS21
introduces two new functionalities expN,ζ and logN,ζ for encryption and local
multiplication, such that logN,ζ(expN,ζ(x)) = x.

expN,ζ(x) =
∑ζ

k=0
Nkxk

k! : Z/N ζZ→ Z/N ζ+1Z

logN,ζ(y = 1 +Nx) =
∑ζ

k=1
(−N)k−1xk

k : Z/N ζ+1Z→ Z/N ζ

Let (N,∆) represent the public and secret key in DJ encryption, where N =
pq and ∆ = ψ(N). The distance function DDLN,ζ is defined for HSS that

DDLN,ζ(c) = logN,ζ(
c

c mod N
), c ∈ ZNζ+1

In rest of the paper, we will assume N, ζ is implicated without writing them.
According to RS21 [33], for any x, y such that max(|xy|, |x|, |y|) < Nζ−12−λ,

let c = rN
ζ

exp(x) denotes the encryption of x under DJ encryption, and select
a random Ky ←$ ZNζ to get ∆y +Ky ∈ Z. There exists

DDL(cKy) = Kz,DDL(c∆y+Ky) = ∆xy +Kz ∈ Z

9

2.3 GGM-tree Technique

The Goldreich-Goldwasser-Micali (GGM) tree [12] was proposed to construct
a pseudorandom function from length-doubling pseudorandom generators. To
construct a GGM tree, a random seed is chosen as the root of a binary tree, and
each parent node generates its two child nodes by applying the pseudorandom
generator. The GGM tree was later utilized in functional secret sharing [8] for
generating correlated randomness between two parties, finding numerous appli-
cations in MPC, including oblivious transfer [7] and garbled circuits [19].

In this work, we consider the Half-Tree protocol presented by Guo et al. [16],
which enables the sender and receiver to generate correlated randomness based
on a secret value x ∈ [0, 2b − 1] chosen by the receiver. Specifically, the sender
generates 2b random values ri for i ∈ [0, 2b− 1], while the receiver obtains 2b− 1
random values, excluding rx, without revealing x.

2.4 Circular Security in Mixed Garbling

Circular security has been studied in boolean garbling [15, 35] to capture the
security requirements for hash functions in free-xor garbling. Moreover, HSS re-
quires the circular security of the underlying Damg̊ard-Jurik encryption. In this
work, we consider both aspects in mixed garbling. Furthermore, the hash func-
tionH can take two forms: the stronger assumption modelsH as a programmable
random oracle, while the alternative defines H as a circular correlation robust
hash function with polynomial-length output for naturally derived keys. 1

Definition 4 (IND-KDM security of Damg̊ard-Jurik Encryption). Given
a set of functions F , DJ encryption is IND-KDM secure within F if for any PPT
adversary A with admissible queries f ∈ F to two oracles,

|Pr[AO∆
KDM (1λ, pk) = 1]−Pr[AO#

KDM (1λ, pk) = 1]| ≤ negl(λ)

(pk, sk = ∆) = DJ.Gen(1λ)

where O∆
KDM (f) = Enc(f(∆)),O#

KDM (f) = Enc(0|f(∆)|).

In this work, F will contain the inverse of ∆, constant multiplication, coin
tossing, and their linear combinations. Coin tossing applies to the scenario in
which we want the encryption of ri∆

−1, where ri ←$ {0, 1} is random and
unknown to the adversary.

In programmable random oracle model, above KDM-security of DJ encryp-
tion is sufficient for our mixed garbling. When using the CCR hash functions,
we need other two different oracles that leverage both global keys ∆ and ∆bin.

1 Naturally derived keys refer to inputs that are either the XOR of previous outputs
from the hash function or random strings. [35]

10

– O∆,∆bin

CCR-KDM = (O∆,∆bin

Enc,KDM ,O
∆,∆bin

H,KDM), whereO∆,∆bin

Enc,KDM (f) = Enc(f(∆,∆bin))

for all admissible f . And for x, id ∈ {0, 1}λ, b, a ∈ {0, 1},

O∆,∆bin

H,KDM (x, id, b, a;λ1) = [h1 ⊕ (b ∧∆bin)]||[(h2 + a∆) mod 2λ1]

h1 = H(x⊕∆bin; id)[0 : λ), h2 = H(x⊕∆bin; id)[λ : λ+ λ1)

– O#,#
CCR-KDM = (O#

KDM ,O
#,#
H,KDM). O#,#

H,KDM (x, id, b, a;λ1) outputs Rand(x,

id, b, a)[0 : λ+ λ1) and O#
KDM is defined above in Definition 4.

Definition 5 (CCR-KDM security). A hash function H : {0, 1}λ → {0, 1}poly(λ)
is CCR-KDM secure with Damg̊ard-Jurik encryption if for every P.P.T adver-
sary A with admissible f and (x, b, a) queries to two oracles,∣∣∣∣∣Pr

 AO∆,∆bin
CCR-KDM(1λ, pk) = 1 :

(sk = ∆, pk) = DJ.Gen(1λ)

∆bin ←$ Zλ−1
2 ||1

−Pr

[
AO#,#

CCR-KDM(1λ, pk) = 1 :
(sk, pk) = DJ.Gen(1λ)

] ∣∣∣∣∣ ≤ negl(λ)

where the adversary never queries the same (x, id) for different (b, a).

Remark 2. We will take λ1 = λDCR in rest of the paper. For improved read-
ability, the id will be omitted throughout, as it is used only as a counter.

3 Bit Decomposition/Composition from Homomorphic
Secret Sharing and GGM-tree

Recalling the mod-and-reduce technique from LL23 and Heath24 [17, 24], to
extract the least significant bit (LSB) x[1] from the long arithmetic label ∆Zx+
KZ,x, the evaluator applies a modulo 2 operation, resulting in a “temporary
key” defined as [(∆Z mod 2)∧x[1]]⊕ (KZ,x mod 2). Each bit is associated with
two keys representing the values 0 or 1. Using two keys, the garbler can encrypt
the boolean labels ∆binx[1]⊕Kbin,x[1] and the arithmetic label ∆Zx[1]+KZ,x[1]

for x[1] ∈ {0, 1}. The evaluator then decrypts one of the ciphertexts to retrieve
the boolean label and arithmetic label of x[1]. Once the arithmetic label of
x[1] is obtained, the evaluator can truncate it from x, allowing it to compute
∆Z(x− x[1]) +KZ,x −KZ,x[1].

The method described above requires long arithmetic labels for two reasons.
First, in the protocols from [17, 24], arithmetic keys and labels are taken over
Z2b , which means each value in the global key ∆ only provides 1 bit of security
so there must be λ values for λ-bits security. We instead, use the arithmetic keys
and labels over Z. As long as Kx > ∆|x|2λ for every x, one value ∆x+Kx ∈ Z
suffices to guarantee λ-bit statistical security, with Kx, ∆x ∈ Z.

Second, to ensure the security of the “temporary key”, both ∆Z and KZ,x

must contain at least λ values. To solve this issue, we can observe that if a key
expansion protocol exists from short arithmetic labels to long arithmetic labels
∆shortx+Kshort,x → ∆Z,x +KZ,x, the arithmetic garbling can be performed

11

on ∆shortx +Kshort,x, while bit decomposition is garbled using ∆Zx +KZ,x,
obtained from key expansion. The efficiency of the bit decomposition process will
contain two parts: the key expansion protocol and the mod-and-reduce approach.
Notably, this method already provides some advantages for bit composition, even
without delving into the specifics of key expansion. For bit composition, it only
needs to generate short labels for arithmetic gadgets.

Key Expans
ion

∆x+Kx

Arithmetic

Bit Decomposition
∆Zx+KZ,x

Bit Composition ∆binx[i] +Kbin,x[i]

Boolean

In this section, we will first present the construction of a fixed key expansion
protocol. Next, we will demonstrate how to garble bit composition and decom-
position using the mod-and-reduce method, in combination with the fixed key
expansion protocol and the GGM-tree technique. Finally, we will show how to
construct the mod q gadgets over bounded integers. From now on, we consider
signed integers falling within the range (−2b−1, 2b−1).

3.1 Fixed Key Expansion Protocol

The key expansion protocol was studied in BLLL23 [3], where linear homo-
morphic encryption was used to expand short arithmetic labels into long ones.
However, their technique uses the random keys instead of fixed global keys
∆,∆Z . In particular, their key expansion protocol incurs a communication cost
of O(λ(λDCR+ b)), owing to λ values in ∆Z . Furthermore, the protocol requires
the short labels to consist of at least two values, L(x) = (∆x+Kx, x+kx), which
makes it challenging to be compatible with asymptotic rate-1 multiplication.

Bit decomposition requires only the expansion from a fixed key ∆ to another
fixed key ∆Z , rather than expanding random keys to other random keys. The
homomorphic secret sharing protocols in RS21 [33] and OSY21 [29] allow to
perform such expansion almost for free. The HSS protocol is constructed on
Damg̊ard-Jurik encryption, based on the key-dependent message security in [6].

The garbler, instead of selecting ∆ randomly, first generates p, q,N for DJ
encryption and sets ∆ = ψ(N) = (p − 1)(q − 1), which serves as the secret key
for DJ encryption. The arithmetic label is then defined as L(x) = ∆x +Kx =
ψ(N)x +Kx, where Kx ∈ Z2b+λDCR+λ . Since ∆Z is only used in the mod-and-
reduce technique for bit decomposition, the garbler can safely choose them from
∆Z ←$ {0, 1}λ without compromising security, which means that each value
in ∆Z is actually an one bit value. Additionally, the garbler computes ζ, the
smallest number in which Nζ > 2b+λDCR+λ. It then encrypts ∆−1∆Z,i mod Nζ

12

for every value ∆Z,i ∈∆Z as

cZ,i = (ri)
Nζ

exp(∆−1∆Z,i), ri ←$ Z∗
N , i ∈ [1, λ]

and sends them to evaluator. Now the garbler and evaluator will get (Kx, cZ)
and (∆x+Kx, cZ) separately, where cZ = {cZ,i, i ∈ [1, λ]}. From the correctness
of homomorphic secret sharing,

KZ = DDL((cZ)
Kx),KZ ∈ Zλ

Nζ

KZ +∆Zx = DDL((cZ)
∆x+Kx),KZ +∆Zx ∈ Zλ

Nζ

here the vector notation means that the operation is applied to each element
in the vector. Since each value in ∆Zx is constrained within (−2b−1, 2b−1), and
KZ remains indistinguishable from a random vector in Zλ

Nζ , we have KZ+∆Zx
mod Nζ = KZ +∆Zx ∈ Zλ except for negligible probability.

In terms of communication costs, only λ ciphertexts are needed for all fixed
key expansion gates, making this cost negligible when numerous fixed key ex-
pansion gates are present in the circuit. As a result, we omit the communication
cost of fixed key expansion in the bit decomposition and other related gadgets.

3.2 Bit Composition over Bounded Integers

Any bounded integer x within the range (−2b−1, 2b−1) can also be represented
in Z2b . Thus, we use the binary representation of x modulo 2b. To obtain the
arithmetic label ∆x+Kx, the garbler encrypts the arithmetic label ∆x[i]+Kx[i]

utilizing the boolean label ∆binx[i]⊕Kbin,x[i] of x[i]. Since x is a signed integer,
the arithmetic label of each bit x[i] needs to be encrypted by two keys: one
for x[i] and another for sign(x). Therefore, it leads to the communication cost
∼ 4(λDCR + λ)b bits for bit composition.

However, since λDCR is significantly larger than λ, substituting some cipher-
texts of length λDCR + λ with shorter ciphertexts of length λ can greatly im-
prove efficiency. To achieve this, we propose utilizing the one-hot/GGM-tree
technique to garble bit composition gadgets through a chunking method. The
chunking method involves partitioning b bits into ⌈b/k⌉ chunks, allowing each
k-bit chunk to be garbled into a GGM-tree structure. The evaluator can then
evaluate the arithmetic label ∆xt +Kxt of each chunk t using GGM-tree. With
all labels of ⌈b/k⌉ chunks, the evaluator can compute ∆x+Kx =

∑⌈b/k⌉
t=1 (∆xt

+Kxt
)2k(t−1) mod Nζ , while the garbler computes Kx =

∑⌈b/k⌉
t=1 Kxt

2k(t−1) mod
Nζ . The GGM-tree structure requires O(2k) symmetric-key operations, so the
parameter k should be small enough to ensure O(2k) is computationally feasible.

The garbling protocol for the GGM-tree is illustrated in Fig. 1, based on
the Half-Tree protocol developed by Guo et al. [16]. To enable the evaluator
to obtain the arithmetic label of a k-bit number x, the garbler constructs the
GGM-tree such that the evaluator has access to all but one leaf in the tree. The
single unavailable leaf among the 2k leaves corresponds to the position x. The
garbler can utilize each leaf Kbin,h[j] at position j, where j ∈ [0, 2k), as a random

13

seed to produce Kh[j] ∈ Z2λDCR+λ . Then garbler computes Kx =
∑

j∈[0,2k)Kh[j]j

mod 2λDCR+λ+k and sends ∆+
∑

j∈[0,2k)Kh[j] mod 2λDCR+λ to the evaluator.

GarbleGGM(P, {Kbin,x[i]}):
∆bin, k ← P
K1

bin,h[0] = Kbin,x[1]

K1
bin,h[1] = ∆bin ⊕Kbin,x[1]

for i = 2 to k

for j = 0 to 2i−1 − 1

Ki
bin,h[j] = H(Ki−1

bin,h[j])[0 : λ)

Ki
bin,h[j+2i−1] = Ki

bin,h[j] ⊕Ki−1
bin,h[j]

Gi =
⊕2i−1−1

j=0 Ki
bin,h[j] ⊕Kbin,x[i]

KGGM
bin,x[i] = Gi ⊕Kbin,x[i]

return {Kk
bin,h[j]},G = {Gi}, {KGGM

bin,x[i]}

EvalGGM(PE , {Lbin(x[i])}, x,G):
k ← PE , x[1], ..., x[k]← Bin(x)

Lbin(x[i]) = ∆bin(1⊕ x[i])⊕Kbin,x[i]

K1
bin,h[x[1]]

= Lbin(x[1]), x
1 = x[1]

for i = 2 to k

loci = x[i]2i−1

for j = 0 to 2i−1 − 1, j ̸= xi−1

Ki
bin,h[j] = H(Ki−1

bin,h[j])[0 : λ)

Ki
bin,h[j+2i−1] = Ki

bin,h[j] ⊕Ki−1
bin,h[j]

Kbin,h[xi−1+loci] = Gi ⊕ Lbin(x[i])⊕⊕2i−1−1
j=0,j ̸=xi−1 Kbin,h[j+loci]

xi = xi−1 + x[i]2i−1

return {Kk
bin,h[j]}j ̸=x

Fig. 1: Protocol of garbling GGM-tree [16]

The evaluator can evaluate the GGM-tree and use the leaves as seeds to
obtain all Kh[j], j ̸= x. It also has ∆+

∑
j∈[0,2k)Kh[j] mod 2λDCR+λ to compute

∆ + Kh[x] mod 2λDCR+λ = ∆ + Kh[x] ∈ Z since ∆ < 2λDCR . This allows the

evaluator to get ∆x+Kx =
∑

j ̸=xKh[j]j + (∆+Kh[x])x mod 2λDCR+λ+k.

Nonetheless, the protocol still has several problems to address.

– The evaluator needs to know x to evaluate the GGM-tree.

– We need to handle signed bounded integers.

It turns out these two problems can be addressed simultaneously. Given the
binary representation of x mod 2b, denoted as (x[1], ..., x[b− 1], x[b]) from least
significant bit to most significant bit, the binary representation of x mod 2b+λ

will be (x[1], x[b− 1], x[b], x[b], ..., x[b]). By randomly selecting r ←$ Z2λ+b , there
is r + x ≥ 0 and r + x mod 2b+λ = r + x ∈ Z except for negligible probability.
And the garbler can garble a boolean circuit to reveal y = x+r to the evaluator.

The GGM-tree approach can now be employed to obtain the arithmetic label
of y, given that y ≥ 0 and the evaluator knows of y. Upon obtaining Ky, the
garbler computes Kx = Ky +∆r mod Nζ , leading to the equation ∆y +Ky =
∆x + Kx with overwhelming probability if Nζ > 2b+2λ+λDCR . The complete
protocol for bit composition is shown in Fig. 2.

14

Theorem 1. Assuming the CCR-KDM model, given Nζ ≥ 2λDCR+2λ+b, ∆ <
2λDCR , the bit composition protocol in Fig. 2 is a secure protocol in mixed circuits
with communication cost 3bλ+ λ2 + b+ λDCRb

k for any bounded integers in range
(−2b−1, 2b−1).

Proof. We will prove the security for complete mixed garbling protocol at Sec-
tion 5. The correctness is implied above, see details in Appendix B. Regarding
communication costs, Gbool contains b+λ−1 AND gates, resulting in 2(b+λ−1)λ
bits using the half-gates protocol. The seed,Gy involves λ+b+λ bits. Each trunk
contains (k−1)λ for GGM-tree, with an additional ciphertext of length λDCR+λ.
In total, there are 2bλ+2λ2+b+(kλ+λDCR)⌈ b+λ

k ⌉ = 3bλ+3λ2+b+ b
kλDCR.

GarbleBC(P, {Kbin,x[i]}):
∆,∆bin, ζ,N, k ← P, λ∗ = λDCR + λ

b← Size({Kbin,x[i]})

seed←$ {0, 1}λ,Ky = 0

for i = 1 to b+ λ

Lbin(r[i]) = H(seed)[0 : λ)

r[i]← {0, 1}, seed = Lbin(r[i])

Kbin,r[i] = ∆binr[i]⊕ Lbin(r[i])

{K
′

bin,y[i]},Gbool = GarbleAdd(P,
{Kbin,x[i]}, {Kbin,r[i]})

Gy = ||b+λ
i=1 LSB(K

′

bin,y[i])

{Kbin,y[i]} = {K
′

bin,y[i] ⊕∆bin}
⌈(b+ λ)/k⌉ chunks {Kbin,yt[i]}
for t = 1 to ⌈(b+ λ)/k⌉
{Kbin,h[j]},GGGM,t, ∗ =

GarbleGGM(P, {Kbin,yt[i]})
{Kh[j] = H(Kbin,h[j])[λ : λDCR + λ)}

Gari,t = (∆+
∑2k−1

j=0 Kh[j] mod 2λ
∗
)

Kyt =
∑2k−1

j=0 Kh[j]j mod 2λ
∗+k

Ky = Kyt2
(i−1)k +Ky mod Nζ

Gt = (Gari,t,GGGM,t)

r =
∑b+λ

i=1 r[i]2i−1

Kx = Ky +∆r mod Nζ

return G = {{Gt},Gbool, seed,Gy},Kx

EvalBC(PE , {Lbin(x[i])},G):
N, ζ, k ← PE , λ∗ = λDCR + λ

b← Size({Lbin(x[i])})
L(x) = 0

seed,Gbool ← G
for i = 1 to b+ λ

Lbin(r[i]) = H(seed)[0 : λ)

seed = Lbin(r[i])

{Lbin(y[i])} = EvalAdd(PE , {Lbin(x[i])},
{Lbin(r[i])},Gbool)

y =
∑λ+b

i=1 2i−1[(LSB(Lbin(y[i])))⊕ Gy[i]]

⌈(b+ λ)/k⌉ chunks {Lbin(yt[i])}
for t = 1 to ⌈(b+ λ)/k⌉

yt = (y//2(t−1)k) mod 2k

{Kbin,h[j]} = EvalGGM(PE ,GGGM,t,

{Lbin(yt[i])}, yt)
{Lh[j] = H(Kbin,h[j])[λ : λDCR + λ)}

L
′
h[yt] = Gari,t −

∑2k−1
j=0,j ̸=x Lh[j]

Lh[yt] = L
′

h[yt] mod 2λ
∗

Lyt =
∑2k−1

j=0 Lh[j]j mod 2λ
∗+k

L(x) = Lyt2
(i−1)k + L(x) mod Nζ

return L(x)

Fig. 2: Bit Composition Protocol

15

3.3 Bit Decomposition over Bounded Integers

In bit decomposition, we observe that utilizing short arithmetic labels allows the
reduction of garbling bit decomposition gadgets to fixed key expansion protocols
through the mod-and-reduce technique. This process operates as follows:

– Given short arithmetic label L(x) = ∆x+Kx and short keyKx, the evaluator
and garbler firstly expand them to ∆Zx+KZ,x and KZ,x.

– The garbler computes sk10 = KZ,x mod 2, sk11 = ∆Z +KZ,x mod 2, and use
sk10, sk

1
1 to encrypt Kbin,x[1]||Kx[1],∆bin ⊕Kbin,x[1]||∆ + Kx[1] separately.

The evaluator will get one of keys which allow it to decrypt only one cipher-
text.

– The garbler and evaluator compute new key and label as Kx = (Kx −
Kx[1])//2, ∆(x− x[1])//2 + (Kx −Kx[1])//2. Then repeat.

The sign of x can be ignored for x ∈ (−2b−1, 2b−1) since mod-and-reduce
method leads to the boolean values of x mod 2b. We also select Kx[i] ∈ Z2λDCR+λ

to statistically hide ∆x[i] since ∆ < 2λDCR . By setting ∆Z = ∆bin and use the
row reduction technique, the communication cost is ∼ b(λDCR + λ).

To further improve efficiency, we observe that the one-hot/GGM-tree tech-
nique can also be applied in the aforementioned bit decomposition protocol.
According to Heath24 [17], there exists a protocol called word-to-bin that con-
verts the arithmetic labels of ∆2kyt +K2k,yt

, yt ∈ Z2k ,∆2k ,K2k,yt
∈ Zλ

2k into
boolean labels, incurring a communication cost of 2λk and a computational cost
of O(2k). Our bit composition can transform boolean labels of yt ∈ Z2k to a short
arithmetic label ∆yt +Kyt

in Z, incurring a communication cost of λk + λDCR.
Moreover, we offer a free fixed key expansion. The three components facilitate
the construction of the bit decomposition protocol, which operates as follows for
each chunk t:

Ex
pan

sio
n

∆y +Ky

mod 2k
∆Zy +KZ,y

word-to-bin [17]

∆2kyt +K2k,yt

BitCom
∆binyt[i] +Kbin,yt[i]

∆y +Ky =
∆(y−yt)+Ky−Kyt

2k

t = t+ 1
∆yt +Kyt

The construction yeilds a communication cost of ∼ 5λb + λDCRb
k , which in-

cludes 2λb for boolean circuit that converts y = x+ r to x.
However, the above protocol is not the most efficient construction, as it re-

quires garbling the GGM-tree twice: one during word-to-bin conversion and
another during bit composition. Additionally, the garbler transmits two cipher-
texts each chunk corresponding to the arithmetic label over Z2k and Z2λ+λDCR .

The main idea to improve the efficiency is to apply free fixed key expansion
per bit rather than per chunk. Once the garbler and evaluator obtain the arith-

16

metic key and label for each bit yt[i] in chunk t, they can truncate yt[i] and use
key expansion to extract the next bit.

Ex
pan

sio
n

∆y +Ky

mod 2
∆Zy +KZ,y

GGM-tree

∆binyt[i] +Kbin,yt[i]

Use ∆+
∑2k−1

j=0 Kh[j]

Kh[j], j[i] ̸= yt[i]
Truncate y = y−yt[i]

2

i = i+ 1
∆yt[i] +Kyt[i]

There is an additional property of the GGM-tree that can be leveraged to
obtain the arithmetic key and label for each bit. With the boolean label ∆bin(1⊕
yt[i]) ⊕KGGM

bin,yt[i]
for all i ∈ [1, k1], k1 ≤ k, the evaluator can evaluate all leaves

Kbin,h[j], j[k1] ̸= yt[k1] in the GGM-tree. If the evaluator also receives ∆ +∑
j∈[0,2k)Kh[j], it can compute the arithmetic label of yt[k1] as

∆yt[k1] +Kyt[k1] = ∆yt[k1] +
∑

j∈[0,2k),j[k1]=1Kh[j], j[k1] is k1-th bit of j

If yt[k1] = 0, the evaluator can solve all Kh[j] with j[k1] = 1, then sum them
up to get the label. Conversely, if yt[k1] = 1, the evaluator first solves all
Kh[j], j[k1] = 0, then the correct label is obtained by ∆ +

∑
j∈[0,2k)Kh[j] −∑

j∈[0,2k),j[k1]=0Kh[j]. Hence, the garbler can set arithmetic key of yt[k1] to be

Kyt[k1] =
∑

j∈[0,2k),j[k1]=1Kh[j] mod 2λDCR+λ

Furthermore, ∆+
∑

j∈[0,2k)Kh[j] can be used for all k bits in each GGM-tree.

There is no need to select a larger r to mask x, as we only require the boolean
labels of x mod 2b. The garbler can select r ←$ Z2b and set Ky = Kx − ∆r.
The evaluator will obtain ∆x + Kx = ∆(x + r) + Ky = ∆y

′
+ Ky, where

y
′ ≡ x+ r mod 2b. The garbler also reveals y = x+ r mod 2b to the evaluator.

After obtaining the boolean labels and keys of y through GGM-tree, the gabler
garbles a subtraction circuit with b − 1 AND gates to compute x mod 2b. The
complete protocol is illustrated in Fig. 3.

Theorem 2. Assuming the KDM-security of Damg̊ard-Jurik encryption in ran-
dom oracle model and the message space of encryption is ZNζ such that Nζ ≥
2λDCR+λ+b, the bit decomposition protocol in Fig. 3 is a secure protocol in garbled
circuits in with communication cost (3b − 2)λ + λDCRb

k + b bits for any bounded
integers in range (−2b−1, 2b−1). Using the additional red parts in Fig. 3, the bit
decomposition can be achieved in CCR-KDM model with cost (4b−2)λ+ λDCRb

k +b.

17

GarbleBD(P,Kx):

∆,∆bin, ζ,N, k, cZ , c∆ ← P

kx = DDL(cKx
∆), r ←$ Zb

Gy = r − kx mod 2b

Ky = Kx −∆r,Ky1 = Ky

λ∗ = λDCR + λ, seed←$ {0, 1}λ

for i = 1 to b

Lbin(−r[i]) = H(seed)

seed = Lbin(−r[i])

− r[i] = (−r mod 2b)[i]

Kbin,−r[i] = Lbin(r[i])⊕ (−r[i])∆bin

for t = 1 to ⌈b/k⌉

KZ,yt = DDL((cZ)
Kyt//2

k(t−1)

)

Kbin,yt[1] = KZ,yt mod 2

G
′
t,1 ←$ {0, 1}λ,Kbin,yt[1]⊕ = G

′
t,1

It = {Kbin,yt[1] ⊕∆bin,02, ...0k}

{Kbin,h[j]}, ∗, {KGGM
bin,yt[i]} =

GarbleGGM(P, It)
{Kh[j] = H(Kbin,h[j])[λ : λDCR + λ)}

Gari,t = (∆+
∑2k−1

j=0 Kh[j]) mod 2λ
∗

for i = 2 to k + 1

M = 2k(t−1)+i−2

Kyt[i−1] =
∑

j[i−1]=1 Kh[j] mod 2λ
∗

Kyt = Kyt −Kyt[i−1]M

KZ,yt = DDL((cZ)
Kyt//M)

Kbin,yt[i] = KZ,yt mod 2

G
′
t,i ←$ {0, 1}λ,Kbin,yt[i]⊕ = G

′
t,i

Gt,i = Kbin,yt[i] ⊕KGGM
bin,yt[i] ⊕∆bin

Kyt+1 = Kyt

{Kbin,x[i]},Gbool = GarbleAdd(P,
{Kbin,−r[i]}, {Kbin,y[i]})

return {Kbin,x[i]},G = {seed,Gbool,Gy

{Gari,t}, {Gt,i||G
′
t,i}}t∈[1,⌈b/k⌉],i∈[1,k]

EvalBD(PE ,L(x),G):
N, ζ, k, cZ , c∆ ← PE

x+ kx = DDL(c
L(x)
∆)

y = (x+ kx + Gy) mod 2b

Ly1 = L(x), λ∗ = λ+ λDCR

for t = 1 to ⌈b/k⌉

yt = (y//2(t−1)k) mod 2k

LZ,yt = DDL((cZ)
Lyt//2

k(t−1)

)

Lbin,yt[1] = LZ,yt mod 2

Lbin,yt[1] = Lbin,yt[1] ⊕ G
′
t,1

It = {Lbin,yt ,02, ...0k}

{Kbin,h[j]} = EvalGGM(PE , It, yt,Gt)
{Kh[j] = H(Kbin,h[j])[λ : λDCR + λ)}
for i = 2 to k + 1

M = 2k(t−1)+i−2

Lyt[i−1] =
∑

j[i−1] ̸=yt[i−1]

Kh[j]

if yt[i− 1] = 1

Lyt[i−1] = Gari,t − Lyt[i−1]

Lyt[i−1] = Lyt[i−1] mod 2λ
∗

Lyt = Lyt − Lyt[i−1]M

LZ,yt = DDL((cZ)
Lyt//M)

Lbin,yt[i] = LZ,yt[i] mod 2

Lbin,yt[i] = Lbin,yt[i] ⊕ G
′
t,i

It = {Lbin,yt[1]...Lbin,yt[i],0i+1...}

{Kbin,h[j]} = EvalGGM(PE , It, yt,Gt)
{Kh[j] = H(Kbin,h[j])[λ : λDCR + λ)}

Lyt+1 = Lyt

for i = 1 to b

Lbin(−r[i]) = H(seed)

seed = Lbin(−r[i])

{Lbin(x[i])} = EvalAdd(PE ,

{Lbin(−r[i])}, {Lbin,y[i]},Gbool)
return {Lbin(x[i])}

Fig. 3: Bit Decomposition Protocol

18

Proof. We will prove the privacy in Section 5 where the correctness is implied
above (See details in Appendix B). The efficiency comprises λ bits for seed,
2(b− 1)λ for Gbool, b for Gy, and ⌈b/k⌉ chunks. Each chunk includes (k− 1)λ for
the GGM-tree and λDCR + λ for the arithmetic label. Consequently, the whole
communication cost amounts to (3b− 2)λ+ b+ λDCRb

k in random oracle model.
In the CCR-KDM model, the CCR hash function requires the input be either
random strings or produced by the CCR hash function; hence, the garbler sends
an additional kλ bits each chunk to ensure that the input is random.

Arithmetic labels/keys after bit decomposition. During bit decomposi-
tion, the arithmetic key and label, referred to as green parts in in Fig. 3, changes

after extracting each bit. For some x ∈ (−2b
′

, 2b
′

) where b
′
> b, we can still per-

form the bit decomposition for b bits. The arithmetic key and label will be
Kx+r, ∆(x+ r − (x+ r) mod 2b) +Kx+r after the bit decomposition. This also

holds if x ∈ [0, 2b
′

).

3.4 Mod q Gadget

In this work, we combine arithmetic garbling over bounded integers with an
additional modular q gate for arithmetic garbling across any modular rings Zq.
We will show how to construct mod q over for general q and q = 2b.

For general q, the modular operation can be expressed as x− ⌊x/q⌋q. Given

that x ∈ [0, qc), first select b
′
as the smallest integer satisfying qc ≤ 2b

′

, with
b = ⌈log2(q)⌉. As demonstrated in [14], there exists m = ⌈2b′+b/q⌉ such that
⌊x/q⌋ = ⌊mx/2b′+b⌋. Consequently, if we can garble the truncation protocol, we

can garble ⌊mx/2b
′
+b⌋, which yields the modular q operation.

Unsigned truncation of b lowest bits. We first perform the b-bit decomposi-
tion to obtain the lowest b bits y[1], ..., y[b], where y mod 2b =

∑b
i=1(x+r)[i]2

i−1.
If we can get arithmetic label of x−(x mod 2b), using local truncation leads to
correct results. The bit decomposition protocol in Fig. 3 generates the arithmetic
label of (x+ r)− [(x+ r) mod 2b] as follow, with r ←$ Z2b , and x ≥ 0

∆[(x− x mod 2b) + (1⊕ c)2b] +Kx+r

where c = [(x + r) mod 2b ≥? r]. It can be verified if x + r mod 2b ≥ r, then
x+ r mod 2b = (x mod 2b + r mod 2b), and if x+ r mod 2b < r, then x+ r
mod 2b = (x mod 2b + r mod 2b − 2b).

The garbler can garble a comparison circuit to let evaluator learn ∆binc ⊕
Kbin,c. Then, it encrypts K

′

x+r using ∆bin ⊕Kbin,c and encrypt K
′

x+r − 2b∆

using Kbin,c, and it sets Kx = Kx+r + K
′

x+r. The evaluator can decrypt one
ciphertext and add the resulting message to original label to get the correct
result. The security is guaranteed if K

′

x+r ←$ Z2b+λDCR+λ . The overall cost cor-
responds to the cost of bit decomposition with additional b + λDCR + λ bits
using row reduction, where subtraction circuit in bit decomposition is replaced
by comparison circuit.

19

Lemma 1. Assuming the KDM-security of DJ encryption in random oracle

model or CCR-KDM model, where the message space Nζ ≥ 2λDCR+2λ+2b
′
+b,

for any bounded integers in range [0, 2b
′

), b
′ ≥ b, there is a secure protocol

of garbling modular q ≤ 2b gadget in mixed circuits with communication cost
O(b

′
(λ+ λDCR/k)).

Proof. Using truncation method above to truncate lowest b
′
+ b bits of mx.

For general q, including large primes, our work remains focused on asymptotic
efficiency. Especially, we use the above lemma with other techniques to develop
arithmetic garbling with same asymptotic efficiency for finite field Fpn .

Another type of ring is Z2b , which is extensively used in practice. The afore-
mentioned procedure remains applicable to q = 2b. In above truncation method,
the garbler and evaluator get the arithmetic key and label of x − (x mod 2b).
Since they already have the key and label of x, they can take subtraction to get
the x mod 2b.

Lemma 2. Assuming the KDM-security of DJ encryption in random oracle

model, where the message space Nζ ≥ 2λDCR+2λ+2b
′
+b, for any bounded integers

in range [0, 2b
′

), there is a secure protocol of garbling modular 2b gadget in mixed
circuits with communication cost (3b−1)λ+(bk +1)λDCR+2b. It can be achieved

in CCR-KDM model with communication cost (4b− 1)λ+ (bk + 1)λDCR + 2b.

Proof. The cost is exactly the same to truncation of lowest b bits.

4 More Efficient Arithmetic Garbling

This section revisits arithmetic garbling for bounded integers and other rings,
starting with the multiplication of signed bounded integers. MORS24 [27] pro-
vides a protocol with rate ζ−2

ζ+1 , based on the KDM-security of Damg̊ard-Jurik
encryption. We show that by assuming the programmable random oracle model,
the rate can be increased to ζ−2

ζ . Therefore, for integers bounded by 2λDCR , the

rate can be improved from 1/4 to 1/3.
Additionally, we can modify the multiplication process such that the size of

the garbled table depends on the number of unique input wires for the multipli-
cation gates, referred to as the “wire-based” protocol. Unlike the “gate-based”
protocol, where the size of the garbled table is proportional to the number of
multiplication gates, the “wire-based” protocol exhibits greater efficiency across
many functions. A notable application of the “wire-based” protocol is in garbling
multiplication for finite fields Fpn when p is large. Furthermore, we demonstrate
that the “wire-based” protocol is compatible with the “gate-based” protocol.
Consequently, combining both approaches leads to better concrete efficiency.

Finally, we illustrate the advantages of garbling arithmetic circuits over Z2b

using bounded integers with mod 2b gadget. The cost of mod 2b gadgets depends
solely on b, eliminating the need to garble mod 2b gadgets after each addition

20

or multiplication. The efficiency can be improved since mod 2b operations are
significantly more expensive than multiplications over bounded integers. Specif-
ically, FHE-like techniques can be employed to further optimize costs at the
circuit level.

4.1 Multiplication based on Split Homomorphic Encryption

The protocol illustrated in Fig. 4 shows the multiplication protocol, with the
red part representing MORS24 [27] and the blue portion corresponding to our
method based on split encryption [9]. The arithmetic labels of x and y are
∆x+Kx and ∆y+Ky, where ∆ represents the secret key used in Damg̊ard-Jurik

encryption. All values in the circuit are restricted by Nζ−2

2λ
, where N = pq. Fur-

thermore, a global ciphertext exists where c∆ = Enc(∆,∆−1) = rN
ζ

∆ exp(∆−1).
The correctness of protocol in MORS24(red part) follows from DDL that

DDL(c
L(y)
Kx

) = ∆yKx +K1 mod Nζ ,DDL(c
L(x)
Ky

) = ∆xKy +K2 mod Nζ

L
′
= L(x)L(y)−DDL(c

L(y)
Kx

)−DDL(c
L(x)
Ky

) = ∆2xy +K
′

z mod Nζ

L(z) = DDL(cL
′

∆) = ∆xy +Kz mod Nζ

Since ∆2xy +K
′

z is bounded by Nζ where ∆ ∼ N , the values in circuits must
be bounded by ∼ Nζ−2. The ciphertext is in ZNζ+1 , so the rate is ζ−2

ζ+1 .

Garblemul(P,Kx,Ky, cKx , cKy):

c∆, N, ζ,∆← P

cKx = rN
ζ

Kx
exp(Kx), cKy = rN

ζ

Ky
exp(Ky)

K
′
z = KxKy −DDL(c

Ky

Kx
)−DDL(cKx

Ky
)

K
′
z = K

′
z mod Nζ ,Kz = DDL(c

K
′
z

∆)

rKz ← ZNζ+1 , cKz = rN
ζ

Kz
exp(Kz)

seedz ← {0, 1}λ,K∗
z = Kz

cKz = H(seed) mod Nζ+1

rKz ,Kz = Split(∆, cKz)

return Kz, cKz ,G = {cKz},

G = {seedz,Kz −K∗
z } mod Nζ

Evalmul(PE , cKx , cKy ,L(x),L(y),G):
c∆, N, ζ ← PE

L(x) = ∆x+Kx,L(y) = ∆y +Ky

L
′
= L(x) · L(y)

L
′
= L

′
−DDL(c

L(y)
Kx

)−DDL(c
L(x)
Ky

)

L
′
= L

′
mod Nζ ,L(z) = DDL(cL

′

∆)

cKz ← G

L(z) = L(z) +Kz −K∗
z mod Nζ

cKz = H(seed) mod Nζ+1

return L(z), cKz

Fig. 4: “Gate-based” multiplication protocol over bounded integers

We observe that the arithmetic keys for each wire are random, there is no
need to send the entire ciphertext. The garbler can send a random seed to the

21

evaluator, enabling the evaluator to generate the random ciphertext. According
to [9], the ciphertext space over ZNζ+1 is dense, indicating that a random value
in ZNζ+1 is an valid ciphertext except for negligible probability. Additionally,
there exists a method Split(∆, c) that takes the secret key ∆ from Damg̊ard-
Jurik encryption and a random ciphertext c, producing valid outputs r and K

such that c = rN
ζ

exp(K) mod Nζ+1. This K is different from K∗ derived from
two input wires; however, the garbler can shift K∗ to K by sending a message
over ZNζ . Hence, the protocol will have a rate of ζ−2

ζ .

The split algorithm is defined in [9] to extract r,K from ciphertext rN
ζ

(1 +
N)K , we show that (1 +N)k can be replaced by exp(K):

Split(∆, c) :s = c mod N, ρ = sN
−ζ

mod N, where NζN−ζ = 1 mod ∆

Output (ρ,K = log(c/ρN
ζ

mod Nζ+1))

Lemma 3. Given c is a valid ciphertext of Damg̊ard-Jurik encryption with pub-
lic key N , secret key ∆, the Split algorithm correctly outputs (r ∈ ZN ,K ∈
ZNζ).

Proof. Given exp(K) =
∑ζ

i=0(NK)i/i! mod Nζ+1, we have exp(K) mod N = 1.

ρ = (rN
ζ

exp(K) mod N)N
−ζ

mod N = (rN
ζ

mod N)N
−ζ

mod N

As a result, ρN
ζ

mod Nζ+1 = rN
ζ

mod Nζ+1 from [26].

Theorem 3. Assuming KDM-security of Damg̊ard-Jurik encryption in programmable
random oracle model, the protocol (blue parts) in Fig. 4 is a secure multiplication
protocol in mixed garbling over bounded integers with rate ζ−2

ζ .

Proof. The security will be proven in mixed garbling. For correctness, we only
need to make sure H(seed) mod Nζ+1 is a valid ciphertext. H is a programmable
random oracle, henceH(seed) modNζ+1 outputs a random value in ZNζ+1 . Since
the ciphertext space of Damg̊ard-Jurik encryption is dense, the probability of a
random element c ∈ ZNζ+1 is a valid ciphertext is ψ(N)/N = ∆/N = 1−negl(λ)
[9].

4.2 “Wire-based” Multiplication in Garbled Circuits

The “wire-based” protocol can offer significant advantages over “gate-based”
protocols in various scenarios. For instance, the one-hot garbling technique pro-
posed in [19] is an example of a “wire-based” protocol that garbles a function
f over Z2. Instead of encoding f with boolean gates, it garbles the input wires
to produce the one-hot vector that can be used to garble f . However, unlike
their protocol, the wires considered in this work are input wires specifically for
multiplication gates.

To achieve “wire-based” multiplication, it is necessary to globally garble the
circuits. The garbler must identify the unique input wires of all multiplication

22

gates and generate garbled tables specifically for these wires. The garbled table
will enable the evaluator to have the ciphertext cw for these wires, which is
then used in multiplication. In general, the “wire-based” protocol may not be
as efficient as the “gate-based” protocol, as the number of unique input wires
nw can be at most 2ng, where ng is the number of multiplications. Therefore,
rather than garbling the entire circuit C using the “wire-based” method, we
can partition C into C = (Cg, Cw), where Cg is garbled using the “gate-based”
protocol and Cw is garbled using the “wire-based” protocol.

Garblewire(N, ζ,Kw):

rKw ←$ ZN , cw = rN
ζ

Kw
exp(Kw)

seedw ←$ {0, 1}λ,K∗
w = Kw

cKw = H(seedw) mod Nζ+1

rKw ,Kw = Split(∆, cKz)

return Kw, cw,G = (cw, seedw,Kw −K∗
w)

Evalwire(N, ζ,L(w),G):
cw = G
seedw, Lw ← G

cKw = H(seedw) mod Nζ+1

L(w) = L(w) + Lw mod Nζ

return L(w), cw

Garbleari(P,Kx,Ky, {c}):
c∆, N, ζ, type← P,G = {}
if type = (+) :

if cKx , cKy ← {c} :

cKz = cKxcKy mod Nζ+1

{c} ← cKz

Kz = Kx +Ky

if type = (×, Cg/Cw) :

if cKt ̸← {c}, t ∈ {x, y}
Kt,Gt, cKt = Garblewire(N, ζ,Kt)

G ← Gt, {c} ← cKt

K
′
z = KxKy −DDL(c

Ky

Kx
)−DDL(cKx

Ky
)

K
′
z = K

′
z mod Nζ ,Kz = DDL(c

K
′
z

∆)

if type = (×, Cg) :

Kz,Gz, cKz = Garblewire(N, ζ,Kz)

G ← Gz, {c} ← cKz

if type = (In, Cg) :

Kz,Gz, cKz = Garblewire(N, ζ,Kx)

G ← Gz, {c} ← cKz

if type = (Out) :

G = DDL(cKx
∆)

return Kz, {c},G

Evalari(PE ,L(x),L(y), {c},G):
c∆, N, ζ, type← P,G = {}
if type = (+) :

if cKx , cKy ← {c} :

cKz = cKxcKy mod Nζ+1

{c} ← cKz

L(z) = L(x) + L(y)

if type = (×, Cg/Cw) :

if cKt ̸← {c}, t ∈ {x, y}
L(t), cKt = Evalwire(N, ζ,L(t),Gt)
{c} ← cKt

L = L(x) · L(y)

L = L−DDL(c
L(y)
Kx

)−DDL(c
L(x)
Ky

)

L = L mod Nζ ,L(z) = DDL(cL∆)

if type = (×, Cg) :

L(z), cKz = Evalwire(N, ζ,L(z),Gz)
{c} ← cKz

if type = (In,Cg) :

L(z), cKz = Evalwire(N, ζ,L(x),Gx)
{c} ← cKz

if type = (Out) :

L(z) = DDL(c
L(x)
∆)− G mod Nζ

return L(z), {c}

Fig. 5: Arithmetic Garbling over bounded integers

23

To analyze the efficiency, we categorize every wire in C into several classes.
Cin/out, Cg,in/out, Cw,in/out denote the input and output wires of C,Cg, Cw, re-
spectively. For any w ∈ Cg,in and w /∈ Cin, it follows that w ∈ Cw,out.

Theorem 4. Assuming KDM-security of DJ encryption in programmable ran-
dom oracle model (blue parts), for any arithmetic circuit C over bounded integers
in range (−(Nζ−22−λ), Nζ−22−λ), the protocol in Fig. 5 can garble C with total
number of bits for communication is at most

(n+ 1 + ng + nw,mul + nw,out)(ζ logN + λ)

where n is the number of inputs and outputs of C, ng is the number of multipli-
cation gate in Cg, nw,mul is the number of unique input wires of multiplication
in Cw and nw,out is the number of output wires of Cw.

Proof. Given that C = (Cg, Cw), if all unique input wires of multiplication
gates in Cw are garbled using Garblewire, then Cw can be correctly garbled.
Therefore, we need nw,mul tables for Cw. If all input wires of Cg and all output
wires of multiplication gates in Cg are garbled using Garblewire, then Cg can
be correctly garbled. The input wire of Cg is either an input wire of C or an
output wire of Cw, therefore necessitating at most n + ng + nw,out tables for
Cg. Additionally, one extra table is needed for c∆. In the programmable random
oracle concept, each table comprises ζ logN + λ bits.

The result shows that when garbling a subcircuit Csub ⊂ C using the “wire-
based” approach, while C \ Csub is garbled using a “gate-based” approach, the
cost of garbling Csub is determined solely by the number of unique input wires
for all multiplication gates and the number of output wires in Csub.

Arithmetic Garbling over Fpn . We apply the polynomial representation for
elements in Fpn . The addition can be garbled by n additions across Zp with n
mod p gates. Multiplication in Fpn involves multiplying two polynomials and
reducing the result modulo an irreducible polynomial f of degree n over Fp.

To compute z = xy in Fpn , polynomial multiplication mod f can be substi-
tuted by the outer product of two vectors in Fn

p , followed by additions in Fp. The
main challenge in garbling this outer product is the need to perform n2 multipli-
cations over Fp. Treating the outer product as a subcircuit Cmul, with n input
and n output wires over Fp, we can apply the “wire-based” garbling, requiring
only 2n garbled tables. Since the outer product is garbled over bounded integers,
we need to mod p. In the subcircuit Cmul, we only garble mod p gates for the n
output wires, rather than garbling mod p throughout the entire circuit.

If we are able to control all wires of Cmul in range [0, ⌈log pc⌉) where c is a
constant, we can garble mod p gate with a communication cost of O((λDCR/k+
λ)⌈log p⌉), as shown in Lemma 1. Including the 2n garbled tables for the outer
product, the overall expense of garbling the multiplication over Fpn will be
O((λDCR/k + λ)n⌈log p⌉) + O(2n⌈log pc⌉) = O((λDCR/k + λ)n⌈log p⌉). Addi-
tionally, bit decomposition and composition are also supported.

24

Theorem 5. For any arithmetic circuit C over Fpn , n = pO(1), there is a secure
protocol of garbling C with communication cost O((λDCR/k + λ)n⌈log p⌉|C|).

Proof. It suffices to show that the values in Cmul are bounded by pc, where c is
a constant. For the input values x and y, the computation of xy = z in Cmul

consists of two components: the outer product and the linear circuit for modulo
f . Given that the input wires of Cmul are bounded by p, the n2 output wires
of the outer product are consequently limited to p2. The n2 terms constitute a
polynomial of degree 2n− 2, denoted as z

′
, given that x and y are polynomials

of degree n− 1. Consequently, each wire in z
′
is bounded by n2p2. To calculate

z = z
′
mod f , we define zi = z

′

i +
∑2k−2

j=k ci,jz
′

i, where ci,j is bounded by p.

Consequently, each wire in z, the output, will be bounded by n3p3 = pO(1),
where n = pO(1).

4.3 Arithmetic Garbling over Z2b

To garble the arithmetic circuits over Z2b , we simulate the circuit using bounded
integers with mod 2b gates. As long as we select a range of bounded numbers
that is wider than (−22b, 22b), addition and multiplication can be safely garbled.
The efficiency of addition is entirely controlled by the mod 2b gate, which is
(bk +1)λDCR+(3b−1)λ+2b by Lemma 2. For multiplication, there are additional

(⌈ 2b+2λ
λDCR

⌉+ 2)λDCR + λ bits required for multiplication over bounded integers.

The interval (−22b, 22b) may not be the most efficient range for garbling Z2b ,
as there is no necessity to garble the mod 2b gadget following each multiplication
or addition. We have shown that by deferring the modular gate, we can garble
the arithmetic circuit over Fpn efficiently. This idea can be further used over
Z2b to improve the efficiency of many useful functions. As shown in the section
of bit decomposition, the mod 2b gate can be garbled with O((λDCR/k + λ)b)
communication cost despite the size of bounded integers. On the other hand,
the addition/multiplication can be garbled with using only O(λDCR + b). Then
it means the arithmetic operations over Z2b can be decomposed into two com-
ponents with different asymptotic efficiency, this gives us possibility of making
some trade-off between two kinds of efficiency. The idea is similar to the “noise”
controlling method used in FHE. Basically, many FHE protocols are based on
noised encryption, after each multiplication, the noise will get larger. When the
noise is getting to some levels, they need a protocol called bootstrapping to
reduce the noise. Since the bootstrapping is much more expensive than multipli-
cation, some FHE protocols prepare a larger slot to allow many multiplications
before bootstrapping.

Moreover, the range allowed for bounded integers is controlled by the message
space Nζ of Damg̊ard-Jurik encryption, which can indeed be dynamic. Accord-
ing to Jurik’s paper [21], the security of encryption remains unaffected by the
size of the message space, provided that ζ is constrained by a polynomial of
λ. Consequently, We can choose a large bounded integer (larger than 2O(b)) for
a subcircuit Csub over Z2b . It allows many multiplications and additions such
that every wire in Csub is still bounded. After that, we can garble the mod 2b

25

with cost O((λDCR/k+λ)b) for each output wire of Csub. The method works for
subcircuits that the bounded integers do not grow too fast.

Constant growth circuit. We consider a special class of subcircuits that grow
very slowly such that given all inputs (x1, ..., xn) of circuit Ccons are bounded
by B, we have all outputs of Ccons (y1, ..., ym) bounded by BO(1) = Bc for some
constant c. It is not hard to verify that the inner product is a constant growth
circuit since the output of inner product is bounded by nB2 ≤ B3 when n ≤ B.
As a result, the matrix multiplication is indeed a constant growth circuit. If a
circuit over Z2b has constant growth, by taking B = 2b, we can garble the whole
circuit with cost O(|C|(λDCR + b) + λDCRb|Cout|).

There are many functions that can take advantages of the optimization in-
cluding inner product, matrix multiplication, polynomial evaluation and so on.

5 Mixed Garbling

In this section, we present the protocol for mixed garbling across different rings
and provide the corresponding security proof under the CCR-KDM model and
the programmable random oracle model. Since we utilize bounded integers for
arithmetic garbling over all modular rings and finite fields, it is sufficient to
demonstrate the mixed garbling for bounded integers. Furthermore, the mod q
gadget is realized using bit decomposition and bit composition. Therefore, it is
sufficient to demonstrate that, given secure mixed garbling over {Zbound,Z2}
with the gadget set G = {BitDecom, BitCom,×,+,∧,⊕,OutZ ,Out2}, we can
achieve mixed garbling for all bounded integers, Zq and Fpn .

All integers in the mixed circuit C are bounded by (−2b−1, 2b−1). For arith-
metic gadgets such as addition, multiplication, output, and input, we will uti-
lize Garbleari and Evalari as depicted in Fig. 5. We apply the half-gates in
ZRE15 [35] for simplicity regarding boolean gadgets (∧,⊕,Out2, In2). We uti-
lize the protocols provided in Fig. 2 for bit composition and in Fig. 3 for bit
decomposition. The boolean garbling can be substituted with any other secure
methods based on circular correlation robust hash function.

Theorem 6. Assuming the CCR-KDM security in Definition 5 or KDM se-
curity in the programmable random oracle model, the mixed garbling in Fig.
6 is secure under Definition 2 for domain I = {Z2,Zbound} and gadget set
G = {BitDecom, BitCom,×,+,∧,⊕,OutZ ,Out2}.

Proof. The correctness follows from the correctness of each protocol. For privacy,
we present two variants: the CCR-KDM model and the programmable random
oracle model. The red components in bit decomposition (Fig. 3) and arithmetic
garbling (Fig. 5) are utilized in CCR-KDM model, whereas the blue components
in arithmetic garbling (Fig. 5) are employed in programmable random oracle
model. To prove privacy, we apply a hybrid technique for creating several hybrid
worlds. The ideal world S takes input as (1λ, C, y) for every y ∈ Cout and
produces the output (G,L(x)/Lbin(x)) where x ∈ Cin. The first hybrid world

26

H1 additionally receives the real input x to compute the value of each wire
in circuit C. The second hybrid world H2 comprises two variants: HCCR-KDM

2 ,

which has access to the oracle O∆,∆bin

CCR-KDM; and HPROM
2 , which has access to

the programmable random oracle H and O∆
KDM . Both variants in the second

hybrid world have the actual input x. We aim to build hybrid worlds such that,
provided H2 receives a real input x and oracle access, it will produce an identical
distribution to that of the real world.

Garblemix(1
λ, C):

p, q ← RSA.GenPrime(1λ)

∆ = (p− 1)(q − 1), N = pq

∆bin ←R Zλ−1
2 ||1,∆Z ← Zλ

N

smallest ζ : Nζ ≥ 22λ+λDCR+b

c∆ = DJ.Enc(N,Nζ ,∆−1)

cZ [i] = DJ.Enc(N,Nζ ,∆−1∆Z [i])

P = {∆,∆bin,∆Z , ζ,N, c∆, cZ}
G = {N, ζ, c∆, cZ}, {c} = {}
for x ∈ Cin

Kbin,x ←$ Zλ
2 , x ∈ Z2

Kx ←$ ZNζ , x ∈ Zbound

for g ∈ G with topological order :

(In: {x}, Out: {y}, typeg)← g

Pg ← typeg

if typeg is BitCom :

Ky,Gg = GarbleBC(Pg, {Kbin,x})
else if typeg is BitDecom :

{Kbin,y},Gg = GarbleBD(Pg,Kx)

else if typeg is Ari :

Ky, {c},Gg = Garbleari(Pg, {Kx}, {c})
else if typeg is Bin :

Kbin,y,Gg = Garblebin(Pg, {Kbin,x})
G ← Gg

return G, {Kx or Kbin,x, x ∈ Cin}

Eval({L(xin),Lbin(xin)},G):
PE = {N, ζ, c∆, cZ} ← G
{c} = {}
for g ∈ G with topological order :

(In: {x}, Out: {y}, typeg)← g

Gg ← G

PE
g ← typeg

if typeg is BitCom :

L(y) = EvalBC(PE
g , {Lbin(x)},

Gg)
else if typeg is BitDecom :

{Lbin(y)} = EvalBD(PE
g ,L(x),

Gg)
else if typeg is Ari :

L(y), {c} = Evalari(PE
g ,

{L(x)}, {c},Gg)
else if typeg is Bin :

Lbin(y) = Evalbin(PE
g ,

{Lbin(x)})
return {Lbin/ari(y), y ∈ Cout}

Fig. 6: The Mixed Garbling Protocol over Bounded Integers

Ideal world, S. Given input (C, 1λ, y) where C is the mixed circuit, we let
S samples p, q ←RSA.GenPrime(1λ) to get N, ζ. For each input x ∈ Cin, if
x ∈ Zbound, it samples L(x)←$ ZNζ , if x ∈ Z2, it samples Lbin(x)←$ Zλ

2 . It also

27

generate c∆ = DJ.Enc(N, 0), cZ [i] = DJ.Enc(N, 0), i ∈ [1, λ] and let {c} = {}.
Then it simulates the garbled circuits using a gate-by-gate fashion by using sub-
simulators of each gadget. Each sub-simulator inputs the labels of input wires
and output the garbled table and labels of output wires.

– SBC(P, {Lbin(x[i])}) = (L(y),G). It samples random G as same form as the
real world, and it also samples L((x+ r)[i])←$ Z2λDCR+λ , i ∈ [1, b+λ]. Then

it let L(y) =
∑b+λ

i=1 L((x+ r)[i])2i−1.
– SBD(P,L(x)) = ({Lbin(y[i])}i∈[1,b],G). It samples random G as same form

as the real world and it samples Lbin(y[i])←$ Zλ
2 .

– Swire(P,L∗(x)) = (L(x),G, cKx
). It can be observed that in arithmetic gar-

bling, we only need to simulate Garblewire. There are two variants, the
SPROM
wire samples random seed seed ←$ {0, 1}λ and Kx − K∗

x ←$ ZNζ as
garbled table and let L(x) = L∗(x) +Kx −K∗

x, cKx = H(seed) mod Nζ+1.
SCCR-KDM
wire encrypt 0 as garbled table and cKx , then it let L(x) = L∗(x).

– Sbin(P, {Lbin(x)}) = (Lbin(y),G). We use the SimAnd in [35] for AND
gates.

– SOut2(P,Lbin(x), y) = G. It outputs G = LSB(Lbin(x))⊕ y.
– SOutZ (P,L(x), y) = G. Compute G = (DDL(c

L(x)
∆)− y) mod Nζ .

Finally, it outputs ({L(x), x ∈ Cin},G = {{Gg, g ∈ C}, c∆, cZ , N, ζ}).
Hybrid world 1, H1. In H1, we allow H1 to have access to real input values x.
It firstly evaluates the value of each wire in the circuit. The difference between
H1 and S mainly comes from different sub-simulators, while the generation of
initial ciphertexts and parameters remains the same. Every sub-simulator in H1

requires the real values of the input wires as additional input. The sub-simulators
H1,wire,H1,OutZ ,H1,Out2 are identical to those in S. In H1,bin, SimAnd is sub-

stituted with SimAndRand
1 [35].

The sub-simulators H1,BC and H1,BD are shown in Appendix C Fig. 7, with
the red parts in H1,BD used in the CCR-KDM model. The idea is to apply real
input of each wire to generate garbled tables and output labels that match those
of the real world, except that H1 uses the Rand and encryptions of 0. Given
that bit decomposition and composition utilize the GGM-tree, we also present
the simulator H1,GGM in Appendix C Fig. 8.

Hybrid world 2, H2. In addition to the real input x, H2 has additional access
to oracles: O∆,∆bin

CCR−KDM or (O∆
KDM ,H) where H denotes a programmed ran-

dom oracle. Consequently, H2 is able to query the oracles to obtain the actual
ciphertexts.

In the programmable random oracle model of HPROM
2 , it initially queries

O∆
KDM to obtain c∆ as encryption of ∆, with cZ as encryptions of ∆−1ri, where

ri ←$ {0, 1}. Then it simulates the garbled circuits in a gate-by-gate fashion by
creating sub-simulators for each gadget. InHPROM

2,BC/BD/GGM/bin, the Rand() func-
tion in corresponding sub-simulators inH1 is substituted with the programmable
random oracle H. Additionally, for the sub-simulator for arithmetic operations
denoted as HPROM

2,wire , the simulator first generates Kx −K∗
x ←$ ZNζ , allowing it

28

to compute L(x) = L∗(x)+Kx−K∗
x = ∆x+Kx. It also holds x and oracle access

O∆
KDM to query the encryption cKx

of Kx. Then it can use the programmable
random oracle to program on seed←$ {0, 1}λ such that H(seed) = cKx .

In the CCR-KDM model for HCCR−KDM
2 , the simulator will have access

to the oracle O∆,∆bin

CCR−KDM . Initially, it will query the oracle to obtain the ac-
tual encryption c∆, cZ . Then, for each sub-simulator, the Rand() function in
H1 is replaced by the correlation robust hash function H through the oracle
O∆,∆bin

CCR−KDM . For HCCR−KDM
2,wire , it queries to get cx of Kx.

The output gadgets Out2 and OutZ is simulated as same as in S.
Proof. S ≡ H1 since all garbled tables are generated by Rand(). H1 ≈ H2

by KDM security in programming random oracle model or CCR-KDM security.
HCCR-KDM

2 ≡ RealCCR-KDM since the construction of sub-simulators indicates
that the output G in H2 is identical to the output in the real world. To prove
that HPROM

2 ≃ RealPROM, we observe that the two worlds have identical views
except for arithmetic garbling. In HPROM

2 , H(seed) always acts as a valid en-
cryption since we program it to a valid encryption, while H(seed) is random in
the real world. If that H(seed) remains a valid encryption of some messages in
the real world, the views between the two worlds are same. From [9], we know
that the probability of H(seed) being not a valid encryption is negligible. Hence,
HPROM

2 ≃ RealPROM.

6 Concrete Efficiency and Application

We will demonstrate the concrete efficiency of our protocol for bounded integers
and arithmetic over Z2b under two assumptions. Following this, we will extend
the application of these results to garbling real numbers using fixed-point rep-
resentation. We assume λ = 128 and λDCR = 3072.

Our protocol applies the half-gates from [35] for garbling boolean circuits,
which can be further optimized using the three-halves approach introduced in
[32], under the assumption of a randomized tweakable circular correlation robust
(RTCCR) hash function. This substitution reduces the cost of garbling boolean
circuits during bit decomposition/composition by approximately 0.5bλ.

Additionally, there is an optimization based on the partial discrete logarithm
assumption, as described in Paillier’s original work [30]. Instead of selecting
∆ = ψ(N) = (p−1)(q−1), we can choose ∆ = p′, where p = 2p′+1, q = 2q′+1
and p

′
, q

′
are primes. As shown in [25], p′ can be as small as λDPDL ∼ 512 bits

while maintaining a 128-bit security level. This optimization further improves
the multiplication rate over bounded integers from ζ−2

ζ to ζ−ϵ
ζ , where ϵ < 1.

29

Signed bounded Integers. In Table 2, we compare our results to BLLL23,
boolean garbling via Karatsuba’s method, and the two-party interactive protocol
using Beaver’s triples. While garbled circuits still incur higher communication
costs compared to interactive protocols, the gap is getting smaller. Specifically,
for bit decomposition/composition, by selecting k = 16 in the GGM-tree, the
communication cost is only 3 to 4 times greater than that of the interactive
protocol, even when considering the CCR-KDM security.

Table 2: The efficiency (bits) of different garbling schemes over (−2b−1, 2b−1).
DPDL-3 Halves means DPDL assumption with three-halves garbling.

Assumption Gadget general (b, k) (b, k) = (128, 8) (1280, 16)

CCR-KDM BitDecom (4b− 2)λ+ b+ b
k
λDCR 114560 902144

BitCom 3(bλ+ λ2) + b+ b
k
λDCR 147584 786560

MULT (⌈ b+2λ
λDCR

⌉+ 2)λDCR + λ 9344 9344

PROM-KDM BitDecom (3b− 2)λ+ b+ b
k
λDCR 98176 738304

BitCom 3(bλ+ λ2) + b+ b
k
λDCR 147584 786560

MULT (⌈ b+2λ+2λDPDL
λDCR

⌉)λDCR + λ 3200 3200

DPDL-3 Halves BitDecom (2.5b− 2)λ+ b+ b
k
λDPDL 49024 491520

BitCom 2.5(bλ+ λ2) + b+ b
k
λDPDL 90240 532608

Previous Works

MORS24 [27] MULT (⌈ b+2λ
λDCR

⌉+ 3)λDCR 12288 12288

ADD ≥ 6(b+ λDCR) ≥ 19200 26112
BLLL23 [3] MULT ≥ 12(b+ λDCR) ≥ 38400 52224

BitDecom ≥ λ(b+ λDCR)
2 ≥ 1.3× 109 2.4× 109

boolean garbling [32] ADD 1.5(b− 1)λ 24384 245568
MULT 1.5b1.58λ 409914 15584503

MULT 2b 256 2580
two-party interactive A2Y [11] 1.5(b− 1)λ 24384 245568

Y2A [11] 1.5(b− 1)λ 24384 245568

30

Modular rings Z2b . In Table 3, we compare our results to BLLL23 and LL23.
The results of boolean garbling and the two-party interactive protocol in Table
2 still apply.

Table 3: The efficiency (bits) of different garbling schemes over Z2b . In the multi-
plication of LL23, they firstly decompose two inputs into boolean labels, followed
by bit composition to generate labels of length 2λ for the AIK protocol.

Assumption Gadget general (b, k) (b, k) = (128, 8) (1280, 16)

ADD/Mod 2b (b
k
+ 1)λDCR + 4bλ+ 2b 118016 906752

CCR-KDM MULT(bound) (⌈ 2b+2λ
λDCR

⌉+ 3)λDCR 12288 12288

MULT MULT(bound) + Mod 2b 130304 919040

ADD/Mod 2b (b
k
+ 1)λDCR + 3bλ+ 2b 101632 742912

PROM-KDM MULT(bound) (⌈ 2b+2λ
λDCR

⌉+ 2)λDCR + λ 9344 9344

MULT MULT(bound) + Mod 2b 110976 752256

ADD/Mod 2b (b
k
+ 1)λDPDL + 2.5bλ+ 2b 49920 453632

DPDL-3 Halves MULT(bound) (⌈ 2b+2λ+2λDPDL
λDPDL

⌉)λDCR + λ 3200 6272

MULT MULT(bound) + Mod 2b 53120 459904

Previous Works

ADD free free free
LL23 BitDecom 2bλDCR + 5bλ 868352 8683520

MULT ≥ 4bλDCR + 10bλ 1736704 17367040

BLLL23 ADD ≥ 32λ(λDCR + b) 13107200 17825792
MULT ≥ 48λ(λDCR + b) 19660800 26738688

6.1 Application in Real Numbers

In secure computation, real numbers are often represented as fixed-point num-
bers, which are typically modeled as elements of Z2b . In our approach, we rep-
resent fixed-point numbers using signed bounded integers.

For each fixed-point number xf ∈ (−2d,−2−f) ∪ (2−f , 2d), we define x =
xf · 2f ∈ (−2d+f , 2d+f) within the bounded integer model. Addition is straight-
forward since x + y = (xf + yf) · 2f . Multiplication, however, equals to xy =
(xfyf) ·22f , where we require ⌊(xfyf) ·2f⌋. Therefore, we need a truncation pro-
tocol over signed bounded integers. As demonstrated in Section 3, truncating the
lowest b bits of unsigned bounded integers can be garbled at a cost comparable to
b-bit decomposition. However, this method cannot be directly applied to signed
bounded integers, as extracting the sign bit requires the bit decomposition of
the entire x, not just the lowest b bits.

This issue can be partially addressed by introducing a small error during
truncation for fixed-point integers. After truncation, the evaluator will obtain
the arithmetic label for ⌊(xfyf) · 2f⌋+ ϵ, where ϵ ∈ [−1, 0, 1].

31

The garbler and evaluator perform an f -bit decomposition of z = xfyf · 22f
without the subtraction circuit at the end of the bit decomposition protocol.
The garbler holds the key Kz+r, with r ←$ Z2f , while the evaluator receives the
arithmetic label ∆(z + r − (z + r) mod 2f) +Kz+r. And there is

z + r − (z + r) mod 2f

= sign(z)|z|+ r − (sign(z)(|z| mod 2f) + r − ϵ2f)
= sign(z)(|z| − (|z| mod 2f)) + ϵ2f , ϵ ∈ {−1, 0, 1}, sign(z) ∈ {−1, 1}

Afterwards, the garbler and evaluator can securely divide by 2f for the arith-
metic label and key to obtain Kz and ∆

(
z/2f + ϵ

)
+Kz. Consequently, we can

garble the “error-based” multiplication over fixed-point numbers, where the com-
munication cost depends only on the precision rather than the entire magnitude
of the fixed-point numbers. This is technically inaccurate, since multiplication
over bounded integers depends on the magnitude of the fixed-point number,
however, even when using fixed-point representation to approximate Float64,
the magnitude of xfyf2

2f remains smaller than λDCR (maximum of values in
Float64 is ∼ 21000). Therefore, the overall cost of multiplication is dominated by
the truncation process, which primarily relies on the precision of the fixed-point
integers.

In addition, the concrete cost for multiplication will be the cost of f -bits
decomposition without the subtraction circuit, shown in Table 4.

Table 4: The efficiency (bits) for fix-point numbers in (−2300,−2−f)∪(2−f , 2300).

Assumption Gadget general (f, k) (f, k) = (64, 8) (128, 16)

All Two ADD free free free

CCR-KDM MULT 2fλ+ f + (4 + f
k
)λDCR 53312 69760

PROM-KDM MULT fλ+ f + (3 + f
k
)λDCR 42048 50304

7 Discussion

Achieving obliviousness and authenticity. According to the definition of
obliviousness in garbled circuits, obliviousness means that there exists a PPT
simulator Sobv such that Sobv(1λ, Cλ) ≃ (L(xi),Gnd) where Gnd denotes the gar-
bled circuit without the decoding information. By using our proof of privacy in
Section 5, we can achieve obliviousness without modifying our protocol. Specifi-
cally, we construct the simulator Sobv from the simulator for privacy by omitting
the parts responsible for generating the ”decoding information”.

32

The authenticity ensures that no adversary can obtain ŷ ̸= Eval(G,L(xi)).
To achieve this, we need to slightly modify the output gadgets as there are
two kinds of output gadgets: boolean and arithmetic values. For boolean values,
we can follow the similar method in Half-gates [35] to achieve authenticity. For
arithmetic values, we can employ another bit decomposition for Y = ∆y+Ky to
obtain boolean labels of y, which can then be authenticated as boolean values.
Actually we observe that instead of performing whole bit decomposition, we only
need to extract the lowest bit y[1] for authenticity. If Y is not from evaluation,
the probability of getting ∆bin ⊕Kbin,y[1] or Kbin,y[1] is negligible. Then two
values can be used to encrypt the decoding information for Y , and a hash of the
decoding information can be appended for verification.

Acknowledgements. The second author thanks Tianren Liu for insightful dis-
cussions on these topics. He also thanks Shanghai Qizhi Institute and Yu Yu for
hosting the engaging and inspiring summer school. We would like to thank all
anonymous reviewers for their detailed and valuable comments. This research
is partially supported by the Ministry of Education in Singapore under Grants
RG93/23 and RG102/24.

References

1. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic
circuits. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations of
Computer Science, pages 120–129, Palm Springs, CA, USA, October 22–25, 2011.
IEEE Computer Society Press.

2. Thomas Attema, Pedro Capitão, and Lisa Kohl. On homomorphic secret sharing
from polynomial-modulus LWE. In Alexandra Boldyreva and Vladimir Kolesnikov,
editors, PKC 2023: 26th International Conference on Theory and Practice of Public
Key Cryptography, Part II, volume 13941 of Lecture Notes in Computer Science,
pages 3–32, Atlanta, GA, USA, May 7–10, 2023. Springer, Cham, Switzerland.

3. Marshall Ball, Hanjun Li, Huijia Lin, and Tianren Liu. New ways to garble arith-
metic circuits. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology
– EUROCRYPT 2023, Part II, volume 14005 of Lecture Notes in Computer Sci-
ence, pages 3–34, Lyon, France, April 23–27, 2023. Springer, Cham, Switzerland.

4. Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for Boolean
and arithmetic circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Confer-
ence on Computer and Communications Security, pages 565–577, Vienna, Austria,
October 24–28, 2016. ACM Press.

5. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In 22nd Annual ACM Symposium on Theory of
Computing, pages 503–513, Baltimore, MD, USA, May 14–16, 1990. ACM Press.

6. John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security
in the presence of key-dependent messages. In Kaisa Nyberg and Howard M.
Heys, editors, SAC 2002: 9th Annual International Workshop on Selected Areas in
Cryptography, volume 2595 of Lecture Notes in Computer Science, pages 62–75, St.
John’s, Newfoundland, Canada, August 15–16, 2003. Springer, Berlin, Heidelberg,
Germany.

33

7. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018: 25th Conference on Computer and Communications Se-
curity, pages 896–912, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

8. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,
Part II, volume 9057 of Lecture Notes in Computer Science, pages 337–367, Sofia,
Bulgaria, April 26–30, 2015. Springer, Berlin, Heidelberg, Germany.

9. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate
iO from homomorphic encryption schemes. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology – EUROCRYPT 2020, Part I, volume 12105 of
Lecture Notes in Computer Science, pages 79–109, Zagreb, Croatia, May 10–14,
2020. Springer, Cham, Switzerland.

10. Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some ap-
plications of Paillier’s probabilistic public-key system. In Kwangjo Kim, editor,
PKC 2001: 4th International Workshop on Theory and Practice in Public Key
Cryptography, volume 1992 of Lecture Notes in Computer Science, pages 119–136,
Cheju Island, South Korea, February 13–15, 2001. Springer, Berlin, Heidelberg,
Germany.

11. Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework
for efficient mixed-protocol secure two-party computation. In ISOC Network and
Distributed System Security Symposium – NDSS 2015, San Diego, CA, USA, Febru-
ary 8–11, 2015. The Internet Society.

12. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, August 1986.

13. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th Annual ACM Symposium on Theory of Computing, pages 218–229,
New York City, NY, USA, May 25–27, 1987. ACM Press.

14. Torbjörn Granlund and Peter L Montgomery. Division by invariant integers using
multiplication. In Proceedings of the ACM SIGPLAN 1994 conference on Program-
ming language design and implementation, pages 61–72, 1994.

15. Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty
computation from fixed-key block ciphers. In 2020 IEEE Symposium on Security
and Privacy, pages 825–841, San Francisco, CA, USA, May 18–21, 2020. IEEE
Computer Society Press.

16. Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie, Jiang Zhang, and
Zheli Liu. Half-tree: Halving the cost of tree expansion in COT and DPF. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023,
Part I, volume 14004 of Lecture Notes in Computer Science, pages 330–362, Lyon,
France, April 23–27, 2023. Springer, Cham, Switzerland.

17. David Heath. Efficient arithmetic in garbled circuits. In Marc Joye and Gregor
Leander, editors, Advances in Cryptology – EUROCRYPT 2024, Part V, volume
14655 of Lecture Notes in Computer Science, pages 3–31, Zurich, Switzerland,
May 26–30, 2024. Springer, Cham, Switzerland.

18. David Heath and Vladimir Kolesnikov. Stacked garbling - garbled circuit propor-
tional to longest execution path. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology – CRYPTO 2020, Part II, volume 12171 of Lecture
Notes in Computer Science, pages 763–792, Santa Barbara, CA, USA, August 17–
21, 2020. Springer, Cham, Switzerland.

34

19. David Heath and Vladimir Kolesnikov. One hot garbling. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021: 28th Conference on Computer and Communi-
cations Security, pages 574–593, Virtual Event, Republic of Korea, November 15–
19, 2021. ACM Press.

20. David Heath, Vladimir Kolesnikov, and Lucien K. L. Ng. Garbled circuit lookup
tables with logarithmic number of ciphertexts. In Marc Joye and Gregor Leander,
editors, Advances in Cryptology – EUROCRYPT 2024, Part V, volume 14655 of
Lecture Notes in Computer Science, pages 185–215, Zurich, Switzerland, May 26–
30, 2024. Springer, Cham, Switzerland.

21. Mads Jurik. Extensions to the paillier cryptosystem with applications to crypto-
logical protocols. 2003.

22. Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flexible
garbling for XOR gates that beats free-XOR. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part II, volume 8617
of Lecture Notes in Computer Science, pages 440–457, Santa Barbara, CA, USA,
August 17–21, 2014. Springer, Berlin, Heidelberg, Germany.

23. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP
2008: 35th International Colloquium on Automata, Languages and Programming,
Part II, volume 5126 of Lecture Notes in Computer Science, pages 486–498, Reyk-
javik, Iceland, July 7–11, 2008. Springer, Berlin, Heidelberg, Germany.

24. Hanjun Li and Tianren Liu. How to garble mixed circuits that combine boolean
and arithmetic computations. In Marc Joye and Gregor Leander, editors, Advances
in Cryptology – EUROCRYPT 2024, Part VI, volume 14656 of Lecture Notes in
Computer Science, pages 331–360, Zurich, Switzerland, May 26–30, 2024. Springer,
Cham, Switzerland.

25. Huanyu Ma, Shuai Han, and Hao Lei. Optimized paillier’s cryptosystem with fast
encryption and decryption. In Proceedings of the 37th Annual Computer Security
Applications Conference, pages 106–118, 2021.

26. Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic time-
lock puzzles and applications. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, Part I, volume 11692 of Lecture
Notes in Computer Science, pages 620–649, Santa Barbara, CA, USA, August 18–
22, 2019. Springer, Cham, Switzerland.

27. Pierre Meyer, Claudio Orlandi, Lawrence Roy, and Peter Scholl. Rate-1 arithmetic
garbling from homomorphic secret-sharing. Cryptology ePrint Archive, Report
2024/820, 2024.

28. Naor Moni, Pinkas Benny, and Sumner Reuban. Privacy preserving auctions and
mechanism design. In Proceedings of the 1st ACM Conference on Electronic Com-
merce, pages 129–139, 1999.

29. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homo-
morphic secret sharing and public-key silent OT. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, Part I,
volume 12696 of Lecture Notes in Computer Science, pages 678–708, Zagreb, Croa-
tia, October 17–21, 2021. Springer, Cham, Switzerland.

30. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99,
volume 1592 of Lecture Notes in Computer Science, pages 223–238, Prague, Czech
Republic, May 2–6, 1999. Springer, Berlin, Heidelberg, Germany.

35

31. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure
two-party computation is practical. In Mitsuru Matsui, editor, Advances in Cryp-
tology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science,
pages 250–267, Tokyo, Japan, December 6–10, 2009. Springer, Berlin, Heidelberg,
Germany.

32. Mike Rosulek and Lawrence Roy. Three halves make a whole? Beating the half-
gates lower bound for garbled circuits. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes
in Computer Science, pages 94–124, Virtual Event, August 16–20, 2021. Springer,
Cham, Switzerland.

33. Lawrence Roy and Jaspal Singh. Large message homomorphic secret sharing from
DCR and applications. In Tal Malkin and Chris Peikert, editors, Advances in
Cryptology – CRYPTO 2021, Part III, volume 12827 of Lecture Notes in Com-
puter Science, pages 687–717, Virtual Event, August 16–20, 2021. Springer, Cham,
Switzerland.

34. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In 23rd Annual Symposium on Foundations of Computer Science, pages 160–164,
Chicago, Illinois, November 3–5, 1982. IEEE Computer Society Press.

35. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - re-
ducing data transfer in garbled circuits using half gates. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II, vol-
ume 9057 of Lecture Notes in Computer Science, pages 220–250, Sofia, Bulgaria,
April 26–30, 2015. Springer, Berlin, Heidelberg, Germany.

36

Appendix A Binary Representation for Signed Integers

For x ∈ (−2b−1, xb−1), the binary representation of xmod 2b consists of x[1], ..., x[b]
where x[b] is the most significant bit, when x[b] = 0, x ≥ 0, otherwise x < 0.
Another representation is |x|[1], ..., |x|[b − 1], sign(x) where |x|[i] is the i-th bit
of |x|.
({|x|[i]}i∈[1,b−1], sign(x))→ {x[i]}i∈[1,b]. The binary circuit is {sign(x)⊕|x|[i]}+
sign(x) over 2b. Hence, there are b− 1 AND gates.
{x[i]}i∈[1,b] → ({|x|[i]}i∈[1,b−1], sign(x)). The binary circuit is ({x[i]}i∈[1,b] −
x[b])⊕ x[b] over 2b. Hence, there are b− 1 AND gates.

Appendix B Full Proof for Correctness of Bit
Decomposition/ Composition

Theorem 1. Assuming the CCR-KDM model, given Nζ ≥ 2λDCR+2λ+b, ∆ <
2λDCR , the bit composition protocol in Fig. 2 is a secure protocol in mixed circuits
with communication cost 3bλ+ λ2 + b+ λDCRb

k for any bounded integers in range
(−2b−1, 2b−1).

Proof. We will prove the accuracy. Given that the garbler and evaluator gener-
ate identical Lbin(r[i]), it follows that Kbin,r[i] ⊕ r[i]∆bin = Lbin(r[i]). In terms
of the correctness of boolean garbling, the evaluator should obtain Lbin(y[i]) =
∆biny[i]⊕K

′

bin,y[i] = ∆bin(1⊕y[i])⊕Kbin,y[i]. Furthermore, y[i] = LSB(Lbin(y[i]))⊕
LSB(K

′

bin,y[i]) since LSB(∆bin) = 1. Consequently, the evaluator can success-

fully compute y and obtains the boolean labels of 1⊕ y[i], i ∈ [1, b+ λ].
For each chunk t consisting k bits, according the correctness of the GGM-tree

protocol, as demonstrated in [16, 19], the garbler will obtain Kh[j], j ∈ [0, 2k),
while the evaluator will get identical keys except for Kh[yt]. As the garbler

transmits
∑2k−1

j=0 Kh[j] + ∆ mod 2λDCR+λ to the evaluator, the evaluator can

derive Lh[yt] = ∆+Kh[yt] mod 2λDCR+λ. Since Kh[yt] is random, it follows that
Lh[yt] = ∆ + Kh[yt] ∈ Z except for negligible probability. The evaluator can

obtain Lyt
= ∆yt +Kyt

mod 2λDCR+λ+k = ∆yt +Kyt
∈ Z. Additionally, given

that ∆y < 2λDCR+λ+b, and all Lyt
= ∆yt +Kyt

∈ Z, the evaluator will compute

Ly =
∑⌈(b+λ)/k⌉

t=1 Lyt
2(t−1)k = ∆y +Ky mod Nζ = ∆x +∆r +Ky ∈ Z, except

with negligible probability. Therefore, Ly = ∆x+Kx ∈ Z.

Theorem 2. Assuming the KDM-security of Damg̊ard-Jurik encryption in ran-
dom oracle model and the message space of encryption is ZNζ such that Nζ ≥
2λDCR+λ+b, the bit decomposition protocol in Fig. 3 is a secure protocol in
garbled circuits in with communication cost (3b − 2)λ + λDCRb

k + b bits for
any bounded integers in range (−2b−1, 2b−1). Using the additional red parts
in Fig. 3, the bit decomposition can be achieved in CCR-KDM model with cost
(4b− 2)λ+ λDCRb

k + b.

37

Proof. We demonstrate the correctness. In Fig. 3, cZ = Enc(N,∆−1∆Z) and
c∆ = Enc(N,∆−1). Based on the correctness of HSS over bounded integers,
the evaluator can get x + kx mod Nζ = x + kx ∈ Z except for the negligible
probability. It can then calculate y = x+ r mod 2b. When the garbler computes
Ky = Kx−∆r, it follows that∆x+Kx = ∆y

′
+Ky, where y

′
= x+r ∈ Z, and y =

y
′
mod 2b. Furthermore, the mod-and-reduce technique for bit decomposition

will yield the binary representation of y
′
over Z2b , which corresponds precisely

to the bit decomposition of y.

Therefore, we have to show that the evaluator receive the boolean labels of
y. If for the initial chunk, provided the garbler and evaluator obtain the boolean
keys and labels of y1 along with Ly2

= ∆(y − y1) + Ky2
∈ Z, the subsequent

chunks will be correct as they follow to the same procedure. The initial chunk
can be demonstrated by the induction method.

– If the evaluator obtains the accurate arithmetic label of y[i− 1], denoted as
Ly1[i−1] = ∆y1[i− 1] +Ky1[i−1] ∈ Z, where the garbler holds Ky1[i−1], then
the mod-and-reduce technique enables an accurate extraction of the boolean
label for the next bit x[i].

– To ensure the evaluator obtains the accurate arithmetic label, we assume it
possesses the correct boolean labels of y1[i−1], y1[i−2], ..., y1[1]. By utilizing
the (G1,i−1, ...,G2) ||(G

′

1,i−2, ...,G
′

2,G
′

1), the evaluator can obtain the boolean
labels of 1 ⊕ y1[i − 1]... for the GGM-tree. Therefore, the evaluator can
determine all Kh[j] where j: j[i − 1] ̸= y1[i − 1]. Furthermore, the garbler

has set the arithmetic key of y[j − 1] as Ky1[j−1] =
∑2k−1

j=0,j[i−1] ̸=1Kh[j]. If

y1[j−1] = 0, the evaluator can obtain Ky1[j−1]. If y[j−1] = 1, the evaluator

can calculate
∑

j[i−1]=0Kh[j] =
∑

j Kh[j]−
∑

j[i−1]=1Kh[j] modulo 2λDCR+λ.

Furthermore, it possesses G1 = ∆ +
∑

j Kh[j], enabling the computation of

Ky1[i−1]+∆ ∈ Z = ∆+
∑

j Kh[j]−
∑

j[i−1]=0Kh[j] mod 2λDCR+λ, except for
negligible probability.

– Moreover, it is demonstrated that the evaluator can calculate the correct
boolean label of y1[1] according to the correctness of key expansion protocol.

Therefore, the garbler and evaluator will yield the boolean keys and labels
of y, which can be utilized in boolean garbling to obtain the boolean keys and
labels of x.

Appendix C Sub-Simulators for Hybrid 1 H1

The sub-simulators are shown below.

38

H1,BC(P, {Lbin(x[i]), x[i]}):
ζ,N, k ← P, λ∗ = λDCR + λ, b← Size({x[i]}), seed←$ {0, 1}λ

for i = 1 to b+ λ

Lbin(r[i]) = H(seed)[0 : λ), r[i]← {0, 1}, seed = Lbin(r[i])

{Lbin(y[i])},Gbool = H1,bin,Add(P, {Lbin(x[i])}, {Lbin(r[i])}, {x[i]}, {r[i]})

y = x+ r mod 2λ
∗
,Gy = ||b+λ

i=1Lsb(Lbin(y[i]))⊕ y[i]

⌈(b+ λ)/k⌉ chunks {Lbin(yt[i])}i∈[1,k],t∈[1,⌈(b+λ)/k⌉],L(x) = 0

for t = 1 to ⌈(b+ λ)/k⌉

yt = (y//2(t−1)k) mod 2k

{Kk
bin,h[j]}j ̸=yt ,GGGM,t,L

GGM
bin,x[i],K

k
bin,unk = H1,GGM(P, {Lbin(yt[i])}, {yt[i]})

for j ∈ [0, 2k − 1], j ̸= yt : Lh[j] = H(Kbin,h[j])[λ : λDCR + λ)}

Kyt[i] = Rand(Kk
bin,unk, 0, 1)

Gari,t =
∑2k−1

j=0 Kh[j] mod 2λ
∗
,Gt = (Gari,t,GGGM,t)

Lyt =
∑2k−1

j=0 Kyt[i]j mod 2λ
∗+λ,L(x) = L(x) + Lyt2

k(t−1) mod Nζ

return G = {{Gt},Gbool, seed,Gy},L(x)

H1,BD(P,L(x), x):

ζ,N, k, cZ , c∆ ← P, x+ kx = DDL(c
L(x)
∆), r ←$ Zb,Gy = r − kx mod 2b

seed←$ {0, 1}λ, λ∗ = λDCR + λ,Ly1 = L(x), y = x+ r mod 2b

for i = 1 to b : Lbin(−r[i]) = H(seed),−r[i] = (−r mod 2b)[i], seed = Lbin(−r[i])
for t = 1 to ⌈b/k⌉

yt = (y//2(t−1)k) mod 2k,LZ,yt = DDL((cZ)
Lyt//2

k(t−1)

)

Lbin,yt[1] = LZ,yt mod 2,G
′
t,1 ←$ {0, 1}λ,Lbin,yt[1]⊕ = G

′
t,1

It = {Lbin,yt[1],02, ...0k}{Kk
bin,h[j]}, ∗,KGGM

bin,x[i],K
k
bin,unk = H1,GGM(P, It, {yt[i]})

for j ∈ [0, 2k − 1], j ̸= yt : Kh[j] = H(Kbin,h[j])[λ : λDCR + λ)

Kh[yt] = Rand(Kk
bin,unk, 0, 1),Gari,t = (

∑2k−1
j=0 Kh[j]) mod 2λ

∗

for i = 2 to k + 1

Ly[i−1] =
∑

j[i−1]=1 Kh[j] mod 2λ
∗

M = 2k(t−1)+i−2, Lyt = Lyt − Ly[i−1]M,LZ,yt = DDL((cZ)
Lyt//M)

Lbin,yt[i] = LZ,yt mod 2,G
′
t,i ←$ {0, 1}λ,Lbin,yt[i]⊕ = G

′
t,i

Gt,i = Lbin,yt[i] ⊕LGGM
bin,y[i]

Lyt+1 = Lyt

{Lbin(x)},Gbool = H1,bin,Add(P, {Lbin(−r[i])}, {Lbin,y[i]}, {−r[i]}, {y[i]})

return {Lbin(x)},G = {seed,Gbool,Gy, {Gari,t}{Gt,i||G
′
t,i}}t∈[1,⌈b/k⌉],i∈[1,k]

Fig. 7: Sub-simulators for bit composition and bit decomposition

39

H1,GGM (P, {Lbin(x[i]), x[i]}):
k ← PE ,K1

bin,h[x[1]]
= Lbin(x[1]), x

1 = x[1],K1
bin,unk = K1

bin,h[x[1]]

for i = 2 to k

loci = x[i]2i−1

for j = 0 to 2i−1 − 1, j ̸= xi−1

Ki
bin,h[j] = H(Ki−1

bin,h[j])[0 : λ),Ki
bin,h[j+2i−1] = Ki

bin,h[j] ⊕Ki−1
bin,h[j]

Gi =
⊕2i−1−1

j=0,j ̸=xi−1 K
i
bin,h[j] ⊕Rand(Ki−1

bin,unk, 1⊕ x[i], 0)[0 : λ)⊕ Lbin(x[i])

Kbin,h[xi−1+loci] =
⊕2i−1−1

j=0,j ̸=xi−1 K
i
bin,h[j+loci] ⊕ Gi ⊕ Lbin(x[i])

xi = xi−1 + x[i]2i−1,Ki
bin,unk =

⊕2i−1
j=0,j ̸=xi K

i
bin,h[j+loci]

return {Kk
bin,h[j]}j ̸=x,G = {Gi},KGGM

bin,x[i] = Gi ⊕ Lbin(x[i]),K
k
bin,unk

Fig. 8: Sub-simulator for GGM-tree

40

	Efficient Mixed Garbling from Homomorphic Secret Sharing and GGM-Tree
	Introduction
	Our Contributions
	Organization

	Preliminary
	Garbling Scheme over Mixed Circuits
	Public Key Schemes and Homomorphic Secret Sharing
	GGM-tree Technique
	Circular Security in Mixed Garbling

	Bit Decomposition/Composition from Homomorphic Secret Sharing and GGM-tree
	Fixed Key Expansion Protocol
	Bit Composition over Bounded Integers
	Bit Decomposition over Bounded Integers
	Mod q Gadget

	More Efficient Arithmetic Garbling
	Multiplication based on Split Homomorphic Encryption
	``Wire-based'' Multiplication in Garbled Circuits
	Arithmetic Garbling over Z2b

	Mixed Garbling
	Concrete Efficiency and Application
	Application in Real Numbers

	Discussion
	Binary Representation for Signed Integers
	Full Proof for Correctness of Bit Decomposition/ Composition
	Sub-Simulators for Hybrid 1 H1

