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Abstract. Side-channel attacks (SCAs) pose a significant threat to the implementa-
tions of lightweight ciphers, particularly in resource-constrained environments where
masking—the primary countermeasure—is constrained by tight resource limitations.
This makes it crucial to reduce the resource and randomness requirements of masking
schemes. In this work, we investigate an approach to minimize the randomness com-
plexity of masking algorithms. Specifically, we explore the theoretical foundations of
deterministic higher-order masking, which relies solely on offline randomness present
in the initial input shares and eliminates the need for online (fresh) randomness
during internal computations.
We demonstrate the feasibility of deterministic masking for ciphers such as Ascon,
showing that their diffusion layer can act as a refresh subcircuit. This ensures that, up
to a threshold number, probes placed in different rounds remain independent. Based
on this observation, we propose composition theorems for deterministic masking
schemes. On the practical side, we extend the proof of first- and second-order probing
security for Ascon’s protected permutation from a single round to an arbitrary
number of rounds.
Keywords: Side-Channel, Masking, Randomness Complexity, Ascon.

1 Introduction
Side-Channel Attacks and Masking. Side-channel leakages and attacks exploiting these
vulnerabilities represent a significant threat to the secure implementation of ciphers,
including newly standardized designs like Ascon [2]. A common countermeasure against
side-channel attacks is masking, which operates in two phases. First, inputs to the cipher,
such as the nonce and key, are secret-shared into n shares. Then, the cipher’s gates (e.g.,
AND and XOR) are replaced with special mini-circuits called gadgets. These gadgets
process n-shared inputs and generate n-shared outputs.

Masking requires randomness in two distinct contexts: (1) during the initial sharing
process, referred to as offline randomness, and (2) for the secure operation of gadgets
during internal computations, referred to as online randomness. Generating high-quality
randomness, particularly in the presence of side-channel leakages, is a challenging and
resource-intensive task [10,14]. Consequently, considerable research has focused on reducing
the randomness requirements for masking [6, 21,30].

Lightweight ciphers like Ascon are specifically designed to operate efficiently in
resource-constrained environments. This motivates the need for further optimization of
protection mechanisms, particularly in reducing their complexity. In this work, we explore
a novel approach aimed at minimizing randomness usage. Specifically, we investigate the
feasibility of entirely eliminating the dependency on online randomness—a paradigm we
term deterministic masking.
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Deterministic Masking. Proposals for probing-secure deterministic gadgets already exist
in the literature [17, 27, 28, 30]. In this work, we aim to expand this concept further by
exploring the feasibility of achieving probing security at the circuit level. In general, this
goal is challenging: combinations of probing-secure gadgets may become insecure when
composed without refresh gadgets [15,29]. Deploying refresh gadgets is a typical solution to
address composition issues [5]. However, refresh gadgets require online randomness, which
conflicts with the principles of deterministic masking. To overcome this challenge, we
demonstrate that the architecture of certain ciphers, such as Ascon, inherently supports
deterministic masking. Specifically, the diffusion layer at the end of each round acts as
a substitute for refresh gadgets, enabling secure composition without relying on online
randomness.

Bricklayer Design of Ciphers. The computations in a cipher are typically organized
into multiple rounds, where each round consists of two primary components: a set of
non-linear operations, referred to as the confusion layer, and a set of linear bit-mixing
operations, known as the diffusion layer. The non-linear transformations are commonly
implemented using smaller functions (S-boxes) that operate in parallel. Daemen and
Rijmen [18] introduced the term bricklayer to describe this design architecture.

In Figure 1, we illustrate the layout of a deterministic masking scheme for the bricklayer
design. Here, SS-box denotes the protected implementation of the S-box, and SDiffusion
represents the masked implementation of the diffusion layer.

SS-box SS-box · · · SS-box

SDiffusion

Figure 1: Deterministic masking for the bricklayer architecture, notably in the absence of
any refresh gadgets.

Related Works. The widely referenced masking of Ascon, intended for software im-
plementations,1 is a deterministic masking scheme. However, its security has only been
verified for one or two rounds [22], and it remains unclear whether this masking scheme
can maintain its security order when targeting more rounds of the cipher.

At the level of single gadgets, Nikova et al. [27] introduced a first-order probing-secure
deterministic multiplication gadget with n = 4 shares. Building on this foundation, various
deterministic masking schemes for S-boxes have been proposed [17,28,30].

At the circuit level, Beyne et al. [9] investigated the problem of providing deterministic
masking by leveraging the properties of ciphers. Their approach employs linear cryptanal-
ysis, specifically using correlation matrices, to upper-bound the correlation value between
two probes placed in different rounds. A low correlation value implies that the probes are
uniformly distributed and independent of the secrets. However, this approach is limited to
handling two probes and relies on certain independence assumptions regarding the round
transformations triggered by round key additions. In Ascon, the focus of this paper, the
round transformations are public, and there is no round key involved.

1https://github.com/ascon/simpleserial-ascon
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1.1 Our Contribution
This work advances both the mathematical foundations and practical applications of
deterministic masking schemes. Specifically, our contributions are as follows:

• As our key contribution, we demonstrate that, in bricklayer structures, the diffusion
layer functions similarly to a refresh layer by combining the randomness within the
gadgets before the start of the next round. This prevents adversaries from leveraging
probes across different rounds.

• We demonstrate that the inherent reliance of simulation-based approaches and probe-
propagation frameworks [5, 11, 23] on online randomness limits their applicability for
verifying the security of deterministic masking schemes. To address this limitation,
we propose specific tweaks to bridge this gap.

• We establish the requirements for gadgets to achieve first-order probing security
in composition and apply these results to round-based ciphers. Importantly, our
discussion provides a precise definition of the independence of n-shared values,
without imposing restrictions on the corresponding secrets.

• For higher-order probing security, we show that probes at the input and output of
the diffusion layer, up to the linear branch number [18], remain independent. We
extend this observation to the multi-round composition of the diffusion layer.

• We present conditions for achieving higher-order probing security in deterministic
masking compositions and apply these conditions to the NIST standard Ascon [2].
Notably, we differentiate the mapping of shares and secrets in this cipher and show
that while secrets undergo non-linear transformations in the rounds, shares are
subject to linear transformations.

Outline. This paper is organized as follows: Section 2 provides the necessary mathematical
background. Section 3 covers the preliminaries. In Section 4, we discuss the limitations of
simulation-based approaches and introduce our tweaks to address deterministic masking
schemes. Section 5 presents our results for first-order probing security, which are extended
to higher-order probing security in Section 6, both in the context of deterministic masking.
Finally, the conclusion is given in Section 7.

2 Mathematical Background
In this section, we review the mathematical foundations necessary for verifying probing
security. We discuss properties of functions such as bijectivity and explore the linear
independence of random variables.

Notation. In this paper, we represent random variables, secrets, and intermediate values
with capital letters (e.g., X), while their specific realizations or values are denoted using
lowercase letters (e.g., x). Lists of shares and matrices are highlighted with bold letters
(e.g., X). The cardinality of a set X is represented as |X |. The probability distribution of
a random variable X is denoted by Pr(X), and Pr(X = x) specifies the probability that X
takes the value x. Shares of a secret X are indexed as Xi, where the index i starts from
one. To indicate that a gate G or circuit C is protected, we append the symbol S to its
name (e.g., SG and SC).
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Probability Computation from LUT. Security evaluation of protected circuits often
requires the computation of (conditional) probabilities. Here, we describe how such
probabilities can be precisely obtained using a lookup table (LUT) representation.

Let random variables X and Y be connected through a deterministic function Y =
F (X, R), where R is an r-bit random variable. A LUT with 2r|X| rows represents all
possible values taken by X and Y . Additional columns can be appended to this LUT to
compute values of a function G(X, Y ). Using the LUT, the probability Pr(G1(X, Y ) = g1)
is computed as:

Pr(G1(X, Y ) = g1) = #{rows | G1(X, Y ) = g1}
2r|X|

, (1)

and the conditional probability Pr(G1(X, Y ) | G2(X, Y )) is determined by:

Pr(G1(X, Y ) = g1 | G2(X, Y ) = g2) = #{rows | G1(X, Y ) = g1 and G2(X, Y ) = g2}
#{rows | G2(X, Y ) = g2}

.

(2)

Definition 1 (Joint Independence). A set of random variables {X1, . . . , Xl} is said to
be m-jointly independent (m ≤ l) if, for any subset of size m, {Xi1 , . . . , Xim}, the joint
probability satisfies:

Pr(Xi1 , . . . , Xim) = Pr(Xi1) · · ·Pr(Xim). (3)

For example, given random binary variables R1 and R2, the set {R1, R2, R1 ⊕R2} is
2-jointly independent.

Bijective Mapping and Collisions. A function (also referred to as a mapping) F : {0, 1}m →
{0, 1}m is bijective if it establishes a one-to-one correspondence between elements of its
domain and codomain. A bijective F is also known as a permutation and is invertible.
Conversely, if F is not bijective, there exist distinct inputs x1 and x2 in its domain such
that F (x1) = F (x2). In this case, we say that F has a collision.

Polynomials and Parity Relations. Given a set of binary and independent random
variables {X1, . . . , Xl}, we define binary polynomials as:

Fj =
l⊕

i=1
cj

i Xi,

where the constants cj
i belong to {0, 1}. The Hamming weight (HW) of a polynomial Fj is

defined as wt(Fj) =
∑

i cj
i ∈ N.

In a set of polynomials F = {F1, . . . , Fm}, we are interested in identifying parity
relations, and, in particular, the one with the smallest HW. A parity relation is a subset of
F that sums to zero:

m⊕
j=1

djFj = 0,

where its HW is given by
∑

j dj . If no such parity relation exists, the m polynomials are
said to be linearly independent. Since all relations among the polynomials are linear, we
conclude that these polynomials (random variables) are m-jointly independent.

For example, let l = 3 and F = {X1 ⊕X2, X1 ⊕X3, X2 ⊕X3, X1 ⊕X2 ⊕X3, X1}. In
F , there is no parity relation with Hamming weight less than 3; hence, the polynomials
are 2-jointly independent.
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3 Preliminaries
Circuit View. The computations of a cipher are typically represented by a circuit C,
which is uniquely defined as an acyclic and directed graph consisting of vertices V and
edges E . The elements of V correspond to atomic operations (e.g., XOR and AND) that
work collaboratively by passing operands. These operands serve as the connecting members
of V and are listed in E . In hardware terminology, atomic operations are referred to as
gates, and the corresponding operands are called wires. Throughout this text, the terms
operation and gate, as well as operand and wire, will be used interchangeably.

Following the standard approach in the field, we assume that a side-channel adversary
has knowledge of C and leverages side-channel leakage to infer the values carried by the
wires.

Boolean Masking. To protect C from side-channel leakage, the variables in E are secret-
shared using a technique called Masking. For a standalone u-bit variable X ∈ F2u , masking
encodes X with a set of n shares X = {X1, . . . , Xn}, randomly chosen from F2u , such that
their sum (⊕n

i=1Xi) equals X. We denote X as an n-sharing and refer to X as the native
or secret variable.

For a circuit C, masking is achieved by separately encoding its inputs and replacing its
gates (elements of V) with mini-circuits called gadgets. A gadget is designed to perform the
functionality of a gate (or multiple gates) while accepting n-shared inputs and producing
n-shared outputs.

For operations that are additive-affine2 in the underlying field, designing an equivalent
gadget is straightforward. For instance, in the case of a single-input single-output function
G : F2u → F2u , the corresponding gadget SG : (F2u)n → (F2u)n accepts X and produces
Y such that Y1 = G(X1) and Yi = G(Xi) ⊕ G(0) for 2 ≤ i ≤ n. However, for non-
linear functions, such as S-box, the architecture of a gadget is more complex and often
case-specific.

Furthermore, while trivially composing gadgets may result in functionally correct
circuits, it can introduce security vulnerabilities. Composition problems are generally
mitigated by inserting refresh gadgets. A refresh gadget accepts an n-sharing X and
uses online randomness to compute an n-sharing Y for the same secret X such that the
probability distributions of X and Y, conditioned on X, are independent. In this case, we
say that X and Y are two independent n-sharings.

Deterministic Masking. We use this term to describe a gadget or a protected circuit (SC)
that does not consume online (fresh) randomness in its internal computations. Early works
by Nikova et al. [27] identified a (first-order) probing secure deterministic multiplication
gadget with n = 4 shares. Various deterministic masking schemes for S-boxes have been
presented in [17,28,30].

The primary challenge in designing a secure deterministic SC lies in the absence of a
refresh gadget. Specifically, the probe propagation framework (see Section 4), which is a key
approach for proving the security of compositions, relies on the use of online randomness,
particularly through refresh gadgets. The main contribution of this paper is to establish
the groundwork for an alternative approach to probing-secure composition that does not
depend on online randomness.

Probing Adversary. The probing model, introduced by Ishai et al. [23], assumes that a
side-channel adversary can learn the values carried in up to d wires of a running circuit.

2An operation G is additive-affine if, for any x and y in its domain, G(x + y) = G(x) + G(y) − G(0)
holds.
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In this model, a gadget (or a protected circuit) is considered secure if a probing adversary
with a threshold of d probes cannot deduce any information about the native variables.

To account for physical defaults, the standard probing model has been extended to
capture glitches and transition leakages [12, 20]. However, our focus will remain on the
standard probing model, as mitigating glitches and transitions typically does not rely on
the availability of fresh randomness.

3.1 Ciphers Blueprint
ciphers are common targets for side-channel attacks, necessitating their protected imple-
mentation. These cryptographic primitives typically operate over several rounds, with
each round applying similar operations on a b-bit state s while preserving its bit length.
The round function generally consists of two layers: A linear layer, often referred to as the
diffusion layer, and a non-linear layer, commonly known as the confusion layer.

For most ciphers, including the NIST standard Ascon [2, 19], the structure exhibits
additional characteristics:

• As illustrated in Figure 1, the non-linear layer is not implemented as a single b-bit
function but rather as a concatenation of similar S-boxes, each processing chunks of
s independently.

• The round function acts as a key-less (also referred to as public) permutation. A
permutation is a bijective mapping from b-bit to b-bit. Consequently, if randomness is
injected into the state initially, applying the round function does not create collisions,
thus preserving the randomness throughout the process.

3.1.1 Ascon’s Structure

Ascon [19] has a bricklayer structure operating on a state of b = 320 bits. It employs a
sponge-based [8] mode of operation for authenticated encryption. The key, tag, and nonce
are each 128 bits. As outlined in Figure 2, the encryption process is divided into four
phases: (I) Initialization: The state is initialized with the (private) key K, the (public)
nonce N , and a fixed initialization vector (IV). (II) Associated Data Processing: The
state is updated with associated data blocks Ai. Associated data is not confidential and
is therefore not encrypted. However, it is absorbed by the sponge to verify its integrity
during transit. (III) Plaintext Processing: Plaintext blocks Pi are injected into the state,
and ciphertext blocks Ci are extracted. (IV) Finalization: The key K is injected again,
and the tag T is extracted for authentication.

IV∥K∥N

πα

Initialization

0∗∥K

A1

πβ

As

πβ

Associated Data

0∗∥1

P1C1

πβ

Pt−1 Ct−1

πβ

Plaintext

Pt Ct

K∥0∗

πα

Finalization

K

T

Figure 2: Ascon. πα and πβ are application of the permutation π in α and β rounds.

Ascon’s Permutation. The permutation π is an iterative application of a round trans-
formation on the 320-bit state s. The state is represented as a 5 × 64 table, s =
[s1, s2, s3, s4, s5]⊤, where each si is 64 bits long. The round transformation comprises three
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steps: (I) Addition of Round Constants: XORs a round-specific 1-byte constant to the
state. (II) Non-linear Layer : Applies a 5-bit S-box 64 times in parallel. For 1 ≤ i ≤ 64,
the S-box is applied to (s1[i], s2[i], s3[i], s4[i], s5[i]), where [i] denotes the i-th bit. (III)
Diffusion Layer : XOR rotated parts of the state. Specifically, for 1 ≤ j ≤ 5, sj is updated
as:

sj ← sj ⊕ (sj ≪ θj)⊕ (sj ≪ θ′
j), (4)

where the rotation amounts θj and θ′
j are specified in [19].

Ascon’s S-box. The S-box is χ5 (defined below) between two thin 5-bit linear and affine
layers, as depicted in Figure 3. The round function contains 64 S-boxes, one for each i.

s1[i]

s2[i]

s3[i]

s4[i]

s5[i]

χ5

1

s1[i]

s2[i]

s3[i]

s4[i]

s5[i]

Figure 3: Ascon’s S-box.

The Map χm. The non-linear map χm : {0, 1}m → {0, 1}m is defined as follows: For
binary input vector (X1, . . . , Xm), the output Y i, for 1 ≤ i ≤ m, is computed as:

Y i = Xi ⊕ (1⊕Xi+1)Xi+2, (5)

where the boundary values Xm and Xm+1 are substituted by X1 and X2, respectively.
The map χm was investigated by Daemen in [16]. For odd m, it is bijective. This map

is deployed in several important cryptographic algorithms. For instance, χ5 is used in
SHA-3 [1] and Ascon [19]. Notably, in both algorithms, χm provides the only source of
non-linearity in the round function.

Protecting the Permutation. The addition of the key K at the end of the initialization
phase and the start of the finalization phase, as shown in Figure 2, prevents side-channel
state recovery attacks (carried out during Associated Data and Plaintext Processing) from
escalating into key recovery or tag forgery attacks [7, 19].

To specifically mitigate key recovery attacks, only the initialization and finalization
phases require protection. Considering that both phases consist of a single invocation of
the permutation π, our focus will be on securing the computations of π.

3.2 Composition Problem
Protecting the permutation requires more than simply designing probing-secure SS-box and
SDiffusion gadgets and combining them. It is a well-known issue that trivially composing
d-probing secure gadgets can still leave them vulnerable to fewer than d probes. This
concern has been addressed in several works [5, 15, 29]. However, since the composition
challenge is central to our discussion, we pause to clarify it further with an example.
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Example 1. Suppose a 3-bit S-box is formed by combining χ3 and a linear layer. Given
input bits {A, B, C}, χ3 computes the output bits, based on (5), as:

A′ = A⊕ (1⊕B)C,

B′ = B ⊕ (1⊕ C)A,

C ′ = C ⊕ (1⊕A)B.

The subsequent linear layer computes A′′ = A′ ⊕B′, B′′ = B′, and C ′′ = 1⊕ C ′. For this
S-box, we propose the following SS-box at n = 2, where Sχ3 operates as:

A′
1 = [A1 ⊕ (1⊕B1)C1]⊕B2C1, A′

2 = [A2 ⊕ (1⊕B1)C2]⊕B2C2,

B′
1 = [B1 ⊕ (1⊕ C1)A1]⊕ C2A1, B′

2 = [B2 ⊕ (1⊕ C1)A2]⊕ C2A2,

C ′
1 = [C1 ⊕ (1⊕A1)B1]⊕A2B1, C ′

2 = [C2 ⊕ (1⊕A1)B2]⊕A2B2.

(6)

The masked linear layer works as:

A′′
1 = A′

1 ⊕B′
1, A′′

2 = A′
2 ⊕B′

2, B′′
1 = B′

1, B′′
2 = B′

2, C ′′
1 = 1⊕ C ′

1, C ′′
2 = C ′

2.

This SS-box is first-order probing secure. The security claim can be directly proved
by showing that each intermediate V is independent of the secrets (A, B, C). That is,
Pr(V | A, B, C) = Pr(V ). Verifying this involves enumerating all possible inputs, yielding
23n = 64 inputs in this example.

Now, consider a 3-bit permutation f(r), constructed by applying S-box r times, i.e.,

f(r)(A, B, C) = S-box(. . . (S-box(A, B, C)) . . .).

We show that trivially composing the given SS-box does not result in a secure computation
of Sf(r)(A1, A2, B1, B2, C1, C2) for r > 1. For example, by enumerating all input shares,
for A′′

1 at the output of Sf(16), we find:

Pr(A′′
1 = 0 | A = 0, B = 0, C = 1) = 0, whereas Pr(A′′

1 = 0) = 1
2 .

This shows that A′′
1 is dependent on native variables, violating first-order probing security.

Although this S-box is bijective, the given SS-box is not a bijective gadget and has
collisions. For instance, the inputs:{

(A1 = 1, A2 = 1, B1 = 1, B2 = 1, C1 = 0, C2 = 0) ,

(A1 = 0, A2 = 0, B1 = 0, B2 = 0, C1 = 1, C2 = 1) ,

map to the same output. Collisions reduce the output space, consume initial randomness,
and make the intermediates of subsequent rounds secret-dependent. For f(r), collisions
increase with r, as shown in Figure 4.

2 4 6 8 10 12 14 16 18 200

20

40

60

# Rounds r

#
C

ol
lis

io
ns

Figure 4: More collisions occur with increasing number of rounds.
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Role of Online Randomness. A generic solution to composition issues involves incorpo-
rating online randomness, particularly through the insertion of refresh gadgets. Online
randomness compensates for entropy loss caused by collisions and blocks the propagation
of adversary probes (detailed in the following section).

4 Simulation and Probe Propagation
Direct verification of d-probing security, which involves checking the independence of any
d-tuple of intermediates from native variables, becomes impractical as the sharing order n
increases. The simulation approach by Ishai et al. [23] addresses this challenge. To prove
d-probing security, one shows that the distribution of up to d probes (on intermediates)
can be simulated using fewer than n shares of each input.

The simulation approach follows basic rules. Let V1 and V2 be intermediates (not
necessarily shares of a secret), and let R represent an online randomness variable:

• If a probe P is of the form P = R⊕ V1, and R is not involved in the computation of
any other probe, then R hides V1. In this case, the distribution of P can be simulated
using an independent random variable R′ as P = R′, without requiring V1 for the
simulation.

• If a probe P is of the form P = V1 ⊕ V2 or P = V1V2, both V1 and V2 are required
for the simulation.

Definition 2 (Probe Propagation). If simulating a probe P requires knowledge of some
intermediate V , we say that P propagates to V , and V is called a propagated probe.

Probes always propagate toward inputs. The propagation rules are depicted in Figure 5.
Notably, the addition of online randomness, as stated above, halts further propagation.
Coron [13] introduced the following generalization to the randomness addition rule.

Probe Elimination [13]. In a set of probes P, let a probe Pi be of the form Pi = R⊕ P ′,
where P ′ is a function of intermediates other than R. If the randomness R is not involved
in any other probe, then Pi can be eliminated from P, and its distribution can be simulated
using an independent randomness R′. In this case, R hides the intermediates in P ′. The
probe elimination process can iteratively continue by updating P← P−Pi. The remaining
intermediates required to compute the final P are needed for the simulation. We clarify
this approach with an example.

Example 2. Let the sharing order be n = 2, and let A = {A1, A2} be the shares of the
native A. Assume the adversary has the following probes:

P1 = R1 ⊕A1A2 ⊕R2, P2 = R2 ⊕A1 ⊕A2, P3 = A1,

where R1 and R2 are randomness variables. Applying the probe elimination approach:

• P1 is of the form P1 = R1 ⊕ P ′, and since R1 is not involved in P2 and P3, we
eliminate P1, updating P = {P2, P3}.

• In the second iteration, P2 = R2 ⊕ P ′, and R2 is not involved in the computation of
the current probes. We eliminate P2, updating P = {P3}.

The remaining probe P3 = A1 requires only one input share (A1) for simulation. Thus,
the adversary’s probes can be simulated with knowledge of only one input share.
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Composition Rules. The simulation rules are useful for proving the probing security of
standalone gadgets. However, they are insufficient for verifying the security of compositions.
Barthe et al. [5] introduced the concept of strong non-interference (SNI) to address this
issue. A gadget is SNI if simulating up to a threshold number of output shares does
not require any input shares. Thus, an SNI gadget acts as a barrier, stopping further
propagation of probes. Cassiers and Standaert [11] later refined this concept by introducing
probe isolating non-interference (PINI) gadgets. PINI gadgets are trivially composable
and do not require additional refresh gadgets at interfaces for secure composition.

+
R

V1

△

×
R

V1

△

△

+
V1

V2

△

△

×
V1

V2

△

△

SNI Gadget

Figure 5: Probe propagation rules. Blue circles represent probes, and red triangles represent
propagated probes. V1 and V2 are intermediates, and R is a randomness variable.

Simulation Needs Online Randomness. The probe elimination technique, as well as
the design of SNI and PINI gadgets, inherently requires randomness.3 This reliance on
randomness limits their deployment for proving the probing security of deterministic
masking schemes, where the use of online randomness is avoided. This paper explores
tweaks to handle the absence of online randomness. As a first step, we demonstrate that
simulation-based security is more restrictive than the core definition of probing security.

4.1 Limitations of Simulation-Based Security
Given a set of probes P and a set of natives V, probing security requires that P conveys
no information about V, i.e.,

Pr(P | V) = Pr(P).

Probing security addresses the equivocation about natives and, in some cases, is a broader
concept than simulation of the probes (see also Appendix E of the full version of [5]). The
following examples clarify this point.

A 2-input Case. At n = 2, let {A1, A2} and {B1, B2} be shares of secrets A and B. For
simulating a probe P of the form P = A1 ⊕ B1B2, the simulation rules require A1, B1,
and B2. Specifically, since both shares of B are required, the approach suggests that P
depends on B. However, if the shares of A and B are independent, direct enumeration
over all 22n = 16 possible inputs reveals that P is independent of A and B. In this case,
A1 hides the secret-dependent term B1B2.

A 3-input Case. Another example involves probing intermediates of Sχ3 as defined in
(6). For instance, a probe on A′

1 results in:

P = [A1 ⊕ (1⊕B1)C1]⊕B2C1.

Simulating P requires the shares B1, B2, C1, and A1. Specifically, both shares of B are
required, indicating that the simulation approach cannot prove probing security. However,

3If no online randomness is involved, input shares uniquely determine each output share. Consequently,
simulating (reproducing) output shares without using any of the input shares becomes impossible.
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the randomness brought in by A1 hides the secret-dependent term:

(1⊕B1)C1 ⊕B2C1 = (1⊕B)C1.

These examples illustrate that probing security is a broader notion than simulation-
based security. They also demonstrate how randomness introduced by the shares can be
used to achieve probing security. However, this approach has an important prerequisite:
the shares of inputs must be independent.

5 First-Order Deterministic Masking
Blinding with input shares is an effective approach to achieving probing security at the level
of a single gadget. However, this technique alone is insufficient to establish the security of
deterministic masking schemes in the broader context of circuit-level computations. In
this section, we address this challenge by developing composition rules for deterministic
masking in circuits. Specifically, we focus on circuits that follow a bricklayer architecture
(see Figure 1).

To begin, we address the case of mitigating a single probe by presenting the following
lemma:

Lemma 1. At a sharing order n, a deterministic masked circuit composed of first-order
probing-secure gadgets is itself first-order probing secure if each gadget with m inputs
receives m-jointly independent n-sharings as its input.

Proof. The adversary is assumed to place only one probe, which will necessarily target one
of the gadgets in the circuit. Each gadget, under the given conditions, operates with the
same input structure as it would in isolation. Consequently, any single probe—regardless
of its placement—remains independent of the native secrets. This independence guarantees
the circuit’s first-order probing security.

Recall that X = {X1, . . . , Xn} is an n-sharing for secret X if X is distributed uniformly
over all assignments satisfying X =

⊕n
i=1 Xi. Moreover, two n-sharings X and Y are

independent if the collection of any n − 1 shares from X and n − 1 shares from Y are
(2n − 2)-jointly independent. This notion can be extended to an arbitrary number of
n-sharings.

We intentionally place no restrictions on the corresponding secrets. The secrets can be
dependent, identical, or even known (such as initialization vectors (IV) or nonces). For
future reference, let us make the notion of independence of n-sharings more concrete.

Definition 3 (Independence of n-sharings). A set of n-sharings {X1, . . . , Xm} are in-
dependent if the collection of any n − 1 shares of each Xi are [m × (n − 1)]-jointly
independent.

Bijectivity and Being n-Sharing are Different. The bijectivity of a gadget in our
deterministic masking setup is essential for preserving the input randomness. However,
bijectivity alone does not guarantee that the gadget will produce n-shared outputs when
provided with n-shared inputs. We clarify this distinction with the following illustrative
example.

Example 3. Assume gadget SGi, operating on an input n-sharing X, computes its output
as Y = {X1 ⊕Xi, X2, . . . , Xn}. That is, it adds share Xi to share X1. While this gadget
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is bijective, its output is not n-sharing, which compromises its compositional security. For
instance, we observe:

Y = SG2 (SG3 (. . . (SGn(X)))) ,

Y1 =
n⊕

i=1
Xi = X.

Lemma 1 in Bricklayer Designs. Here, we examine the applicability of Lemma 1 in the
practical context of bricklayer designs. As previously discussed in Section 3.1, certain
ciphers, including Ascon, employ the bricklayer design. In this design, a b-bit state
S = S1 ∥ · · · ∥ St is processed in t chunks of m-bit length (b = t×m) as follows:

S ← S-box(S1) ∥ · · · ∥ S-box(St),
S ← Diffusion(S). (7)

In the protected version, the initial b-bit state S is replaced with an (nb)-bit n-shared
state S, where each bit of S is separately encoded. For masking, S-box is replaced with the
SS-box gadget. This gadget is bijective and operates on m-jointly independent n-shared
inputs to produce m-jointly independent n-shared outputs, for which explicit realizations
exist. The diffusion layer, being additive-affine, is straightforward to mask. The protected
circuit functions as follows:

S← SS-box(S1) ∥ · · · ∥ SS-box(St),
S← SDiffusion(S). (8)

These operations iterate over multiple rounds. Our goal is to demonstrate that, in each
round, the inputs to the gadgets satisfy the requirements of Lemma 1. Consequently, if
these gadgets are first-order probing secure, the composition remains d = 1 secure for any
number of rounds.

Lemma 2. For the given bricklayer design, at any round, the inputs of each SS-box are
m-independent n-sharings, and the inputs of SDiffusion are b-independent n-sharings.

Proof. After round r, let the state be Sr, and the n-shared state be Sr = {Sr
1 , . . . , Sr

n},
where Sr

i are the shares of the secret Sr, and we have Sr =
⊕n

i=1 Sr
i . Our aim is to show

that any n− 1 collection of shares Sr
i are distributed uniformly, which implies that Sr is

an n-sharing for the secret Sr, as depicted in Figure 6.
We emphasize that we do not claim any specific distribution of Sr, as it is deterministi-

cally computed from the (non-random) initial state S. For example, in Ascon (as shown
in Figure 2), S is derived by concatenating a fixed initialization vector (IV), a private key
K, and a public nonce N .

S1[1] S1[2] . . . S1[b]

S2[1] S2[2] . . . S2[b]

...

Sn[1] Sn[2] . . . Sn[b]⊕
S[1] S[2] . . . S[b]

Sf

Sf−1

f
f−1

S1
1 [1] S1

1 [2] . . . S1
1 [b]

S1
2 [1] S1

2 [2] . . . S1
2 [b]

...

S1
n[1] S1

n[2] . . . S1
n[b]⊕

S1[1] S1[2] . . . S1[b]

Sf

Sf−1

f
f−1

. . .

. . .

Sf

Sf−1

f
f−1

Sr
1 [1] Sr

1 [2] . . . Sr
1 [b]

Sr
2 [1] Sr

2 [2] . . . Sr
2 [b]

...

Sr
n[1] Sr

n[2] . . . Sr
n[b]⊕

Sr[1] Sr[2] . . . Sr[b]

Figure 6: State and its shared variant evolving over r rounds.
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Without loss of generality, we show that the first n− 1 shares of the state, i.e., Sr
1 to

Sr
n−1, are uniformly distributed over b-bits. Specifically, they can take arbitrary values s1

to sn−1, while the initial (unshared) state S is fixed to S = s, and consequently, Sr will
be a corresponding value sr. Under these settings, we write:

Pr
(
Sr

1 = s1, . . . , Sr
n−1 = sn−1 | Sr = sr

)
=

Pr
(

Sr
1 = s1, . . . , Sr

n−1 = sn−1, Sr
n =

n−1⊕
i=1

si ⊕ sr

)
=

Pr
(

S = Sf−r(s1, . . . , sn−1,

n−1⊕
i=1

si ⊕ sr), S = f−r(Sr)
)

= 1
2b(n−1) ,

where S is the sharing of the initial state S, for which each n − 1 collection of shares
is uniformly distributed (due to masking) over b-bit values. The function Sf−1 is the
inverse of the masked round operations in Equation (8), and f−1 is the inverse of the round
operations in Equation (7). Both inverses exist since the (masked) round operations are
bijective.

Taking similar steps, we can demonstrate that the inputs to SDiffusion are also n-
sharings. Furthermore, if Sr is the concatenation of b-jointly independent n-sharings, then
any subset of Sr with m columns (see Figure 6) is m-jointly independent n-sharings.

5.1 Ascon’s First-Order Deterministic SS-box Gadgets
Dae-Sχ5 Gadget. Daemen et al. [17] proposed a two-share, first-order secure Sχ5 function,
which we label as Dae-Sχ5. Its security for Ascon’s S-box was formally verified using the
maskVerif tool [3,4].4 The scheme was implemented by members of the Ascon development
team for software protection of Ascon.5 The implementation, as explained in [22], is
bit-sliced and includes useful features such as share rotation to enhance side-channel
robustness.

The Dae-Sχ5 gadget requires one bit of randomness. However, we still classify it as
deterministic because no online randomness is required for internal computations, and
subsequent rounds reuse the initial randomness. Let {A, B, C, D, E} denote the input
natives, and recall our notation: the shares of a native A are denoted as A1 and A2. Let
{R1, R2} be variables initialized to R1 = rj and R2 = rj . For 1 ≤ j ≤ 64, rj is a random
bit, with one such bit allocated for each of the 64 gadgets. The computations of Dae-Sχ5
are arranged as follows:

R1 ⊕←D1E1 ⊕D2E1, R2 ⊕←D1E2 ⊕D2E2,

E1 ⊕←A1B1 ⊕A2B1, E2 ⊕←A1B2 ⊕A2B2,

B1 ⊕← C1D1 ⊕ C2D1, B2 ⊕← C1D2 ⊕ C2D2, (9)
D1 ⊕← E1A1 ⊕ E2A1, D2 ⊕← E1A2 ⊕ E2A2,

A1 ⊕←B1C1 ⊕B2C1, A2 ⊕←B1C2 ⊕B2C2,

C1 ⊕←R1, C2 ⊕←R2, R1 ← R2.

Here, the operation X ⊕← Y ⊕Z means Y is first added to X, followed by the addition of
Z to the updated X. The notation X represents 1⊕X. The final value of R1 will be used
as rj in the following round.

4The maskVerif architecture used at the time of the security verification was based on [4]. The newer
version described in [3] employs simulation-based rules for security checks and is thus unable to confirm
the probing security of Dae-Sχ5 or the corresponding SS-box.

5https://github.com/ascon/simpleserial-ascon
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The Dae-Sχ5 gadget is designed to ensure transition security in addition to probing
security. Thanks to the use of auxiliary random variables, the gadget is bijective: the 211

possible inputs map to 211 distinct outputs.
The GitHub implementation also linearly mixes the auxiliary randomness bits of the

gadgets at the output of each round. However, this mixing does not appear to provide
any additional benefit. The presented description already satisfies the requirements of
Lemma 1 and consequently leads to a d = 1-secure masking of Ascon’s permutation.

SM-Sχ5 Gadgets. Shahmirzadi and Moradi [30], using a computerized search approach,
identified instances of (n = 2, d = 1) and (n = 3, d = 2) Sχ5 gadgets. These gadgets
notably require no auxiliary randomness and provide resistance to glitches alongside
probing security. We label these gadgets as SM1-Sχ5 and SM2-Sχ5, respectively.

The SM1-Sχ5 and SM2-Sχ5 gadgets are bijective and produce n-shared independent
outputs when given n-shared independent inputs. Consequently, according to Lemma 1,
combining SM1-Sχ5 with preceding and succeeding affine layers—as is the case for Ascon’s
S-box—preserves first-order security. Furthermore, the resulting S-box also satisfies the
requirements of Lemma 1, thereby enabling deterministic masking for Ascon’s permutation.

6 Higher-Order Probing Security
Ensuring higher-order probing security for deterministic masking in the presence of multiple
probes is a complex task. It requires more than the bijectivity of the individual composing
gadgets, as the interactions between them can introduce vulnerabilities. To illustrate,
consider the serial combination of d = 2 secure gadgets shown in Figure 7. When this
combination is instantiated with SM2-Sχ5 gadgets, it can be demonstrated that two
probes—one placed at the input of the first SS-box and the other at the output of the rth
(r ≫ 1) SS-box—are statistically dependent on the underlying secrets. Consequently, this
serial combination does not maintain d = 2 probing security.

SS-box SS-box SS-box· · ·...
...

...
...

...

Figure 7: Serial combination of r gadgets. Blue circles indicate probe locations.

However, in bricklayer architectures, we can address the composition challenge by
showing that the diffusion layer, up to a certain number of probes, acts as a refresh layer
and blocks the adversary’s attempt to gain benefit from spanning probes across different
cipher rounds. This motivates taking a closer look at the structure of the diffusion layer.

6.1 Properties of the Diffusion Layer
A diffusion layer is an invertible linear transformation that operates on a b-bit state S.
This transformation can be represented using matrix multiplication as S1×b ← S1×bMb×b.
The primary design goal of the diffusion layer is to combine state bits through the XOR
operation. The cryptographic effectiveness of the diffusion layer is typically evaluated
using two metrics: the linear and differential branch numbers, denoted respectively by Bl

and Bd.
Definition 4 (Branch Numbers [18]). The branch numbers Bl and Bd are defined as:

Bl = min
S ̸=0b

[
wt(S) + wt(SM⊤)

]
, Bd = min

S ̸=0b
[wt(S) + wt(SM)] , (10)
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where M⊤ is the transpose of M, and wt computes the number of non-zero (active)
elements in its input vector.

The metric Bd identifies the minimum Hamming weight of input/output pairs and
specifies the least number of active output bits resulting from a single active input bit.
Conversely, Bl determines the minimum Hamming weight of parity relations between
inputs and outputs. For this work, the Bl metric is of greater relevance.

Cryptographic View. The metrics Bl and Bd are directly related to the strength of a
cipher against linear and differential cryptanalysis, respectively. Higher values for these
branch numbers indicate increased resistance to such attacks. However, achieving higher
branch numbers typically comes at the cost of increased computational complexity.

Definition 5 (Complexity of Diffusion Layer [24]). The average number of XOR operations
required to compute each output bit is defined as the complexity of the diffusion layer.

For Ascon, the linear and differential branch numbers of the diffusion layer are both
4 [19]. Specifically, each input bit affects three output bits, and no parity relation with
fewer than four bits exists. This property can be verified by inspecting Equation (4). It is
noteworthy that, for Ascon, the branch number is relatively low.6 With the relatively
low branch number, the diffusion layer’s computational complexity is also very low: each
output bit is computed using just 2 XOR operations.

Polynomial View. By representing the b binary random variables of the input state as
{X1, . . . , Xb}, we can express the output bits of the diffusion layer as polynomials:

fj =
b⊕

i=1
mj

i Xi, (11)

for 1 ≤ j ≤ b, where the (binary) coefficients are elements of M, defined as mj
i = M[i, j].

Identifying Bl then translates into finding a parity relation in the set

F = {X1, . . . , Xb, f1, . . . , fb}

with the smallest Hamming weight. A parity relation is a subset of F that sums to zero
(see Section 2). More precisely, we show that:

Bl = min
|C|

⊕
j∈C
F [j] = 0

 , (12)

where F [j] denotes the jth entry of the set F , and C is a non-empty set of indices. To
prove this claim, we write:

Bl = min
S ̸=0b

[
wt(S) + wt(SM⊤)

]
= min

S ̸=0b

[
wt(S∥SM⊤)

]
= min

S ̸=0b
wt
(
S ×

[
I |M⊤]) .

6Since a single active input can create at most b active outputs, branch numbers are upper-bounded by
b + 1. In practice, this upper bound (or values close to it) is achievable for a special class of M matrices
described by maximum distance separable (MDS) codes [18].
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In coding theory, the outputs of S ×
[
I |M⊤] are codewords, where G =

[
Ib×b |M⊤]

is the generator matrix of the code. Corresponding to G, there is a parity check matrix
H = [M | Ib×b] [25], such that any codeword C ∈ {0, 1}2b satisfies:

H⊤C = 0b×1.

Additionally, any 2b-bit vector C satisfying H⊤C = 0 is a codeword. This allows us to
write:

min
S ̸=0b

wt(SG) = min
{C ̸=02b,H⊤C=0}

wt(C).

By simplifying further, we obtain:

min
{C ̸=02b,H⊤C=0}

wt(C) = min
|C|

[⊕
col∈C

H[ : , col] = 0
]

.

The notation H[ : , col] means a vector containing all the rows at the given column. We
can also show that:

F [2b− j] = [X1, . . . , Xb]×H[ : , j],

which means the sum of columns H[ : , col] in some set col ∈ C equals:⊕
j∈C
F [2b− j] =

⊕
j∈C′

F [j],

and this completes the proof.

6.1.1 Self-Composition of the Diffusion Layer

The evaluation of the diffusion mapping is just one part of the computations in a single
cipher round. A cipher typically operates over multiple rounds, with non-linear operations
interleaved between successive diffusion layers. To gain insight into how parity relations
evolve with an increasing number of rounds, we temporarily disregard the presence of
non-linear layers and study the composition of the diffusion transformation itself, as
illustrated in Figure 8. The composition is computed as (SM)M = SM2. In general, the
composition over r rounds is directly represented by the matrix Mr.

Definition 6 (Order of the Diffusion Layer). The order of the diffusion layer is defined as
the number of rounds r for which the layer composes with itself to produce the identity
mapping. Formally, it is the smallest integer r such that Mr = I.

Composing the diffusion layer introduces new parity relations between the input S and
the outputs SMr (for varying r). Even before reaching the order, these new relations may
have weights smaller than Bl. More specifically, these relations arise in the (r + 1)b-element
set of polynomials:

Fr = {X1, . . . , Xb, f1, . . . , fb, fb+1, . . . , f2b, . . . , f(r−1)b+1, . . . , frb},

where, for 0 ≤ α < r and 1 ≤ β ≤ b, fαb+β is defined as:

fαb+β =
b⊕

i=1
Mα+1[β, i]Xi.

We denote the minimum weight of parity relations in the set Fr as Br
l . Note that Br

l is a
decreasing function of the number of rounds r, and at the order of the layer, it reaches the
minimum value Br

l = 2.
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S-box

S-box

D
...

S-box

S-box

S-box

. . .

Xb−m+1 to Xb

Xm+1 to X2m

X1 to Xm

fb−m+1 to fb

fm+1 to f2m

f1 to fm

f(r−1)b−m+1 to frb

f(r−1)b+m+1 to f(r−1)b+2m

f(r−1)b+1 to f(r−1)b+m

Figure 8: Outputs of the diffusion layer in r rounds expressed as polynomials of the input,
where S-boxes are replaced with identity functions.

Example 4. Let b = 15 and the diffusion be defined by the following relation:

X← X⊕ (X ≪ 1)⊕ (X ≪ 3), (13)

where X is a vector of 15 bits. Using a computer program, we verified that this map is
invertible, has an order of 15, and its Bl is 4.7

For this map, we constructed the set Fr and computed the corresponding Br
l by

exhaustively testing all subsets of Fr with fewer than Bl entries. We observed that, up to
the order, the minimum weight of parity relations does not fall below the initial branch
number.

We note that for diffusion layers used in ciphers, the order is expected to be practically
high. Moreover, Br

l = Bl is typically maintained for sufficiently high values of r in practical
applications.

6.2 Joint Independence Across the Diffusion Layer

Consider a toy 3-bit linear transformation with the following input-output relation:

(X, Y, Z)→ (X ⊕ Y, Y ⊕ Z, X ⊕ Y ⊕ Z).

For this map, we have Bl = 3. In this example, we can directly verify that the knowledge
of a single input bit does not determine any of the output bits. More precisely, any two
variables chosen from the inputs and outputs are jointly independent. The following lemma
generalizes this observation.

Lemma 3. Let Bl denote the branch number of a diffusion layer. Then, Bl − 1 probes
placed on the inputs and outputs of Diffusion are jointly independent. Alternatively, the
collection of all probes on the inputs and outputs is (Bl − 1)-jointly independent.

Proof. Assume these probes (variables) are dependent. Then, there must exist a parity
relation between the inputs and outputs with fewer than Bl terms. This contradicts the
definition of Bl.

Lemma 3 can be extended to the composition of diffusion layers: any Br
l − 1 probes

placed on the inputs and outputs of the diffusion layer in r rounds are jointly independent.

7This map can be expressed with circulant matrices, for which there is a straightforward approach to
compute the order and inverse [26].
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6.3 Our Higher-Order Composition Rule
Thus far, we have proved that the diffusion layer allows for some joint independence of
output natives, provided that the inputs are unknown, uniform, and independent. However,
this result, in its current form, is not particularly useful, as we cannot guarantee that the
inputs always satisfy these requirements. For instance, some natives, such as IV and nonce
(or their combinations in the initial rounds), are fixed or public. By transitioning to the
masked environment and working with n-shared inputs (instead of natives), we can make
a more practical and meaningful statement:

Lemma 4. Any Bl − 1 collection of n-sharings at the input and output of SDiffusion are
jointly independent. Alternatively, the collection of all input and output n-sharings are
(Bl − 1)-jointly independent n-sharings.

Proof. Let L = {X1, . . . , XBl−1} be a collection of n-sharings. Their dependency would
imply that for a subset C ⊂ L, we have:

⊕
X∈C X = 0, which, by summing over all share

indices, further implies:
⊕

X∈C X = 0, where the relation holds over the native random
variables. However, by the definition of Bl, no parity relation among the native random
variables can have fewer than Bl terms. Hence, no dependency can exist within L.

It is important to note that the independence of n-sharings (Definition 3) does not
impose any restrictions on their corresponding natives. For instance, this lemma holds
even if all the input natives are zero.

6.4 Our Higher-Order Composition Rule
We are now ready to introduce our main composition result for deterministic masking
schemes in bricklayer architectures.

Theorem 1 (Composition Theorem). In a bricklayer architecture operating in multiple
rounds with d-probing secure SS-boxes, as illustrated in Figure 9. If any set of l SS-boxes

SS-box SS-box · · · SS-box

SDiffusion

Figure 9: Bricklayer architecture with SS-boxes and SDiffusion.

receive a jointly independent n-shared set of inputs, the probing security order D of the
combination satisfies:

min{d, l} ≤ D ≤ d.

Proof. First, assume all probes are placed only on SS-boxes, and no intermediates of
SDiffusion are probed. Let the probes spread over SS-boxes in a set T . If |T | ≤ l, the
inputs to these SS-boxes will remain statistically identical to their standalone situation.
Thus, if each SS-box has fewer than d probes, these probes will be independent of the
secrets. For l ≥ d, the value of l does not limit the probing security order of the composition,
so D = d. For l < d, we have l ≤ D ≤ d.

Next, consider the case where intermediates of SDiffusion are probed. Using an argument
similar to probe propagation (see Section 4), we transfer these probes to the SS-boxes.
For example, consider a probe in SDiffusion represented as P = X ⊕ Y , where X and Y
are outputs of two different SS-boxes. If at least one of these SS-boxes is in T , we add
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one probe to X and one to Y and remove P . In this case, if |T |+ 1 ≤ l, then probes on
SS-boxes remain independent of secrets.

However, if neither SS-box is probed, we add a probe to X, include the corresponding
SS-box in T , and claim that X, being uniformly distributed, hides Y in P = X ⊕ Y ,
provided |T | ≤ l. In general, each probe on SDiffusion adds at most one SS-box to T , and
every SS-box in T corresponds to at least one probe. Hence, the probing security order
satisfies:

min{d, l} ≤ D ≤ d.

Using Lemma 4, for two consecutive rounds (containing one diffusion layer in between)
with m-bit input/output S-boxes, we derive the following upper bound:

l ≤ Bl − 1
m

.

For the special case of the Ascon cipher, where the m inputs of the S-box come from m
distinct sets of bits (one from each of the 64-bit rows), we have a better bound:

l ≤ Bl − 1.

We expect that for the value of l, two consecutive rounds act as a bottleneck, and
adding a limited number of rounds does not decrease the value of l further.

6.5 Application to Ascon
The Diffusion layer in Ascon is additive-affine, which simplifies the design of its masked
counterpart at any order. For a d = 2 probing-secure SS-box, we adopt the construction
proposed in [22].8 Since χ5 is the only non-linear component of the S-box (illustrated in
Figure 3), we focus on Sχ5 gadgets, which we designate as Gig-Sχ5.

Gig-Sχ5 Gadget. Let {A, B, C, D, E} represent the input native variables. In our nota-
tion, the shares of a native variable such as A are denoted as {A1, A2, A3}. Similar to the
Dae-Sχ5 gadget, there is one auxiliary n-shared input native R = 0, with shares defined as
follows:

R2 = rj , R3 = rj ⊕ r′
j , R1 = R2 ⊕R3,

where rj and r′
j are randomly chosen bits for 1 ≤ j ≤ 64. No online randomness is

consumed during internal computations, and randomness is recycled across subsequent
rounds. The computations for this gadget can be structured as follows:

R1 ⊕←D1E2 ⊕D1E1 ⊕D1E3, R2 ⊕←D2E3 ⊕D2E2 ⊕D2E1, R3 ⊕←D3E1 ⊕D3|E3 ⊕D3E2,

E1 ⊕←A1B2 ⊕A1B1 ⊕A1B3, E2 ⊕←A2B3 ⊕A2B2 ⊕A2B1, E3 ⊕←A3B1 ⊕A3|B3 ⊕A3B2,

B1 ⊕← C1D2 ⊕ C1D1 ⊕ C1D3, B2 ⊕← C2D3 ⊕ C2D2 ⊕ C2D1, B3 ⊕← C3D1 ⊕ C3|D3 ⊕ C3D2,

D1 ⊕← E1A2 ⊕ E1A1 ⊕ E1A3, D2 ⊕← E2A3 ⊕ E2A2 ⊕ E2A1, D3 ⊕← E3A1 ⊕ E3|A3 ⊕ E3A2,

A1 ⊕←B1C2 ⊕B1C1 ⊕B1C3, A2 ⊕←B2C3 ⊕B2C2 ⊕B2C1, A3 ⊕←B3C1 ⊕B3|C3 ⊕B3C2,

C1 ⊕←R1, C2 ⊕←R2, C3 ⊕←R3.

In this notation, X|Y represents the OR operation between bits X and Y , and the
sequence of operations (from left to right) is critical for maintaining probing security. This
structure has been formally verified to provide d = 2 probing security for the Sχ5 gadget
and its corresponding Ascon SS-box.

The gadget has been verified to be bijective, mapping 25×3+2 = 217 distinct inputs
to 217 distinct outputs. Additionally, the gadget and the associated SS-box produce
independent 3-shared outputs when provided with independent 3-shared inputs.

8We use the variant implemented at https://github.com/ascon/simpleserial-ascon.
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Randomness Reuse. For the next round, the randomness variables at the output of 64
gadgets are recycled. Let R2 represent the collection of R2 variables at the output of the
gadgets, and R3 denote the corresponding R3 random variables. We propose a recycling
process as follows:

R2 ← R2⊕(R2 ≪ 7)⊕(R2 ≪ 48), R3 ← R3⊕(R3 ≪ 19)⊕(R3 ≪ 34), R1 ← R2⊕R3.

This transformation is bijective and preserves the 64× 2 bits of input randomness. The
mappings are similar to the diffusion layer and maintain their branch number Bl = 4 up
to their order. For the selected rotation amounts, the order (Definition 6) is 64, which
represents the maximum possible value (see [26] for the properties of these maps).9

Linear Representation of Output Shares. Upon closer inspection of Gig-Sχ5, we observe
that at a fixed secret state, each of the output shares can be expressed as a linear function
of the input shares. For instance, for the shares of E at the output of the gadget, we have:

E1 ← E1 ⊕A1B ⊕B1, E2 ← E2 ⊕A2B ⊕B2, E3 ← E3 ⊕A3B ⊕B3.

This linear representation similarly applies to the shares of R at the output. We leverage
this linearity to track the independence of inputs in subsequent rounds, as required by
Theorem 1.

Let us denote all the nb = 3 × (5 + 1) × 64 shares at the cipher’s input as the set
of variables {X1, X2, . . . , Xnb}. By following the linearity of mappings, we can create
polynomial descriptions for input shares at different rounds. Let Y r

t , for 1 ≤ t ≤ nb, be an
input share at round r. For this share, we can write:

Y r
t =

⊕
i∈Ir

t

Xi ⊕
⊕

j∈J r
t

Xjfr
j,t(S), (14)

where Ir
t ∩ J r

t = ∅, and S represents the initial (unshared) state of the cipher. The
functions fr

j,t are nonlinear, and we track the maximum number of times native variables
are multiplied within them. We have constructed such linear descriptions for all shares
across different numbers of rounds.

Considering the symmetry of the cipher, to investigate the second-order probing security
of the masking, we demonstrate that the set of n-shared inputs to the first SS-box and the
set of n-shared inputs to all other SS-boxes in subsequent rounds are independent (as per
Definition 3). To this end, we reorder the polynomials derived in (14) and isolate variables
X1 to X18, which correspond to the inputs of the first SS-box.

We verify that for each SS-box, the set of input shares are blinded by distinct initial
shares Xi. More concretely, to show that a share Y r

t is independent of X1 to X18, we
identify an Xi in its polynomial description such that i ∈ Ir

t and i /∈ {1, 2, . . . , 18}. To
prove independence for multiple Y r

t shares, we demonstrate that each is blinded with a
distinct Xi term, following a method similar to the probe elimination approach in Section 4.

It is important to note that up to n− 1 shares of each initial native are random. For
effective blinding, care must be taken not to use all n shares of a single native input.

We have applied the described method for r ≤ 5 rounds and verified the independence
of inputs to the SS-boxes from X1 to X18. For rounds r > 5, the sets Ir are empty, and
we have:

Y r
t =

⊕
j∈J r

t

Xjfr
j,t(S), (15)

9The transformation implemented in the GitHub code for recycling randomness is similar but simpler.
It computes R1 ← (R2 ≪ 7)⊕ (R3 ≪ 13) for the first and second 32 gadgets separately. This alternative
transformation is bijective with a branch number of 2 and an order of 16.
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where fr
j,t is expected to be of degree r. To continue the blinding approach, we require

at least one non-zero fr
j,t(S). In such cases, the corresponding Xj with j /∈ {1, 2, . . . , 18}

blinds Y r
t . At any fixed state S, there is a very high probability that at least one of the

fr
j,t(S) bits, for 19 ≤ j ≤ nb, is non-zero.

7 Conclusion
This work underscores the potential of ciphers to achieve higher-order probing security
through deterministic masking, solely leveraging offline randomness encapsulated in the
initial input shares. Our analysis demonstrates how a diffusion layer, attributed by linear
branch number Bl, effectively mixes inputs to generate seemingly fresh n-sharings for the
subsequent round. Crucially, we establish that despite the absence of fresh randomness in
subsequent rounds, the limited probing capability of an adversary ensures that this lack
of freshness remains indistinguishable. These results pave the way for resource-efficient
masking schemes that balance theoretical rigor with practical feasibility, advancing the
state of side-channel attack countermeasures.
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