
A light white-box masking scheme using
Dummy Shuffled Secure Multiplication

Alex Charlès1 and Aleksei Udovenko2

1 DCS, University of Luxembourg, Esch-sur-Alzette, Luxembourg
alex.charles@uni.lu

2 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
aleksei@affine.group

Abstract. In white-box cryptography, early encoding-based counter-
measures have been broken by the DCA attack, leading to the utilization
of masking schemes against a surge of automated attacks. The recent fil-
tering attack from CHES 2024 broke the last viable masking scheme from
CHES 2021 resisting both computational and algebraic attacks, raising
the need for new countermeasures.
In this work, we perform the first formal study of the combinations of
existing countermeasures and demonstrate that applying Dummy Shuf-
fling (EUROCRYPT 2021) then ISW masking (CRYPTO 2003) to a cir-
cuit carries algebraic, correlation, and filtering security - necessary con-
ditions to withstand state-of-the-art automated attacks. We also show
that applying these two countermeasures in the opposite order leads to a
Higher-Order Filtering attack, highlighting the importance of the order
of application of the combined countermeasures.
We also propose a new masking scheme called S5, standing for the Semi-
Shuffled Secret Sharing Scheme, a scheme merging Dummy Shuffling and
ISW in a single countermeasure more efficiently than a direct composi-
tion.

Keywords: White-box Cryptography · S5 · ISW · Dummy Shuffling
· HDDA · FLDA · HODCA

1 Introduction

In 1999, Kocher, Jaffe, and Jun [22] showed that an implementation can be
vulnerable if there is a leak of its side-channel information, such as electrical
power consumption or timing of the execution, which startled the development
of the side-channel field. Later, in 2002, Chow, Eisen, Johnson and van Oorshot
[12,13] broadened the question by supposing that an attacker could fully access
the implementation during the computation, which they called white-box. For
example, a white-box attacker observing the intermediate values can find the
state before and after adding the key and easily recover it. Therefore, the au-
thors proposed to encode the intermediate values of the ciphers and perform
computations through a set of lookup tables. These tables typically represent
three consecutive operations composed in one unit: decode the encoded input,

https://orcid.org/0009-0009-2139-1358
https://orcid.org/0000-0001-8318-6274

perform operations, and re-encode the output. While the attacker knows the
lookup tables in the white-box context, the idea of [12] was that decomposing
the tables would be difficult. Different encoding designs were proposed [31,21],
but all were broken with a variety of attacks [4,14,23].

In 2016, Bos, Hubain, Michiels, and Teuwen [8] showed that a white-box
adaptation of the differential power analysis from [22], which they called differ-
ential computational analysis (DCA), applied to breaking encoding-based white-
box implementations (studied consequently in more details in [1,24]), without
any adaptation on the encoding design. Masking schemes such as ISW [20] were
employed to thwart this attack. Furthermore, [5,17] presented a new automated
attack, linear decoding analysis (LDA), that can efficiently break linear masking
schemes. In particular, it has been used during the WhibOx 2017 contest to
break the winning white-box implementation of the AES [15].

To prevent the LDA attack, Biryukov and Udovenko proposed the first non-
linear masking scheme [5], and another countermeasure called Dummy Shuffling
[6]. Although these countermeasures alone are susceptible to the DCA attack,
it was suggested that they can be combined with a correlation-resistant scheme
like ISW. The combination would resist in theory both DCA and LDA by forcing
the two attacks to use higher-order/degree variants (HODCA [7], HDDA [17])
which have an exponential cost on their order/degree. However, they did not
provide details on how such a combination should be performed or provide a
security analysis of the result.

Seker, Eisenbarth, and Liskiewicz [27] proposed a masking scheme (SEL) of
degree up to three, generalizing the quadratic scheme from [5] and making it
much lighter. Optimizations of higher order/degree attacks were found [18,29],
while remaining slow for high-degree instances of the SEL masking scheme. How-
ever, recently, Charlès and Udovenko showed that all instances of this scheme
are weak to LPN-based attacks [10] and filtered linear decoding analysis (FLDA)
[11], making this scheme unusable by its own.

Our contribution The break of the SEL masking scheme by filtering at-
tacks left no viable countermeasure. Therefore, in this study, we extend the work
of [6] from EUROCRYPT 2021, by proposing a first formal study of the com-
binations of the two main countermeasures - ISW masking scheme and dummy
shuffling - and a new, more efficient scheme called S5, resisting the main auto-
mated white-box attacks in the literature.

1. (ISW and Dummy Shuffling Combination) ISW and Dummy shuffling achieve
correlation and algebraic resistances respectively, and we demonstrate that
applying both countermeasures sequentially to a circuit carries both resis-
tances and withstand state-of-the-art attacks. Furthermore, we point out the
importance of the order of application of countermeasures, as applying ISW
then Dummy Shuffling results in a different circuit structure from the reverse
order, with different implementation sizes.

2. (Higher-Order filtering) We showed that performing ISW then Dummy Shuf-
fling is susceptible to Higher-Order Filtering, while the other order of appli-

2

cation is resistant. This contradicts the earlier belief that the combination’s
order is unimportant.

3. (Semi-Shuffled Secret-Sharing Scheme) To lower the implementation cost
of Dummy shuffling composed with ISW while having equivalent security
properties, we propose S5, a new countermeasure extending the and gadget
of ISW by splitting the information of only one of its shares amongst different
slots, using a structure similar to Dummy Shuffling.

4. (Security proofs) We extend the algebraic proof from [6] to S5 and the two
combinations of countermeasures, and prove Strong Non-Interference (SNI)
[3] of the S5 gadget up to 14 shares using the MaskVerif tool [2].

5. (Benchmarks) Finally, we provide theoretical estimations and experimental
benchmarks for the gate costs of all three combined countermeasures. The
supporting code implementing S5 and benchmarks is available at:

github.com/S5white-box/code

2 Notations and definitions

– The binary field is denoted by F2 and the vector space of dimension n over
F2 is denoted by Fn

2 .
– For a vector v ∈ Fn

2 (resp. a list L of n elements), we denote its ith el-
ement, 1 ≤ i ≤ n, by vi (resp. Li), such that v = {v1, · · · , vn} (resp.
L = {L1, · · · , Ln}).

– We denote the addition in this binary field by ”⊕”, also denoted ”xor”, and
we keep these notations when adding two vectors of Fn

2 .
– Similarly, we denote the multiplication in F2 by ”·”, also denoted by ”and”,

and we keep these notations to multiply two vectors of Fn
2 coordinate-wise.

– m vectors ∈ Fn
2 (resp. lists of n elements) can be expressed as a n×m matrix

(resp. two-dimensional list) M . The element of M of the ith, i ∈ {1, · · ·n}
row and the jth, j ∈ {1, · · ·m} column is denoted by Mi,j .

– We denote the function that returns the number of elements contained in a
given list, vector, or set X by |X|.

– For a Boolean function f we denote its weight (the number of preimages of
1) by |f |.

– We denote the matrix multiplication exponent by ω, which depends on the
algorithm employed: ω ≈ 2.8 for the Strassen algorithm [28].

– A fresh randomness is denoted by $, and is computed by a pseudo-random
number generator in the white-box setting, which is outside of the scope of
this paper. A bit variable v receiving a fresh random value is denoted by
v ← $.

3 The framework

3.1 Preliminaries

Circuit and masking schemes Any stateless implementation can be repre-
sented as a circuit, a Boolean representation using only bit variables that interact

3

https://github.com/S5white-box/code

with each other with bitwise gates (and, xor and not), that a masking scheme
can transform. A masking scheme encodes each bit variable v into n > 1 shares
using an encoding function, such that the corresponding decoding function ap-
plied to these n bit variables retrieves the original bit variable v. Each of these n
shares carries partial information of v, forcing an attacker to reverse the encoding
function to retrieve full information of v.

To perform the bitwise gate without having to decode the n shares and
thus leaking information on v, the gates are replaced by gadgets, functions that
take as input the shares of two variables, perform operations without leaking
information, and output the shares of the resulting variable.

For instance, instead of having xor(x, y) = z = x ⊕ y, we would have the
shares {x1, · · · , xn} and {y1, · · · , yn} as input such that Decode({x1, · · · , xn}) =
x and Decode({y1, · · · , yn}) = y, and we would replace the xor by its gad-
get such that Gadgetxor({x1, · · · , xn}, {y1, · · · , yn}) = {z1, · · · , zn}, such that
Decode({z1, · · · , zn}) = z = x⊕ y.

In the next subsections, we show that the decoding function often xors
shares together to resist correlation attacks, and can perform other methods to
resist algebraic attacks, which leads to the following definition:

Definition 1. Let D : Fn
2 7→ F2 be a decoding function of a masking scheme M

and v a bit variable expressed over n shares. D can be expressed as L(v)⊕N(v) =
D(v), with L : Fa

2 7→ F2, a ≤ n a linear function and N : Fb
2 7→ F2, b ≤ n a

nonlinear function.
We denote L by the linear part of M and N by the nonlinear part of M.

Example 1. The BU masking scheme (c.f. subsection 3.3) has decoding function
D(x1, x2, x3) = x1 ⊕ x2 · x3. So the linear part of BU is x1, and its nonlinear
part is x2 · x3.

Example 2. The ISWℓ masking scheme (c.f. subsection 3.3) has decoding func-
tion D(x1, · · · , xℓ) = x1 ⊕ · · · ⊕ xℓ. So the linear part of ISWℓ is D entirely and
it has no nonlinear part.

Definition 2. Let D : Fn
2 7→ F2 be the decoding function of a masking scheme

with n shares, and let L be the set of linear functions mapping Fn
2 to F2. The

noise rate of the masking scheme is given by:

τ = min
f∈L

(∑
x∈Fn

2
D(x)⊕ f(x)
2n

)

Example 3. The BU masking scheme (c.f. subsection 3.3) has decoding function
D(x1, x2, x3) = x1⊕x2 ·x3. Choosing the linear function f(x1, x2, x3) = x1 shows
that its noise rate is τ = 1

4 .

Traces This paper proposes a study of masking schemes, mainly designed
to resist (extended) grey-box attacks in the white-box model. These attacks are
fully automated and only require input from traces of the implementation. In the

4

side-channel model also called the grey-box model, a trace is the side-channel
information leaked during the ciphering of a plaintext. In the white-box setting,
since we have full access to the implementation, we have direct access to the bit
values used to perform the encryption, without any measurement noise.

We can record every bit value that takes every bitwise gate to generate traces
over different inputs. These bitwise gates are called nodes. Through T plaintexts,
a node will take T different values in {0, 1}, which gives a vector of dimension
T over F2, denoted node vector. We can represent all of the N node vectors
Vi, i ∈ {1, · · · , N} in FT

2 in a T ×N matrix as follows:


node 1 node 2 · · · node N

trace 1 V1,1 V1,2 . . . V1,N

trace 2 V2,1 V2,2 . . . V2,N

...
...

...
...

...
trace T VT,1 VT,2 . . . VT,N


Selection function In combination with the traces, a selection function

is needed to perform a grey-box attack. In the case of the AES, an attack often
recovers the key byte by byte. Since the input and the AES Sbox are known, it
is possible to brute-force the 256 key byte possibilities and deduce for each of
them the first bit of the output of the AES Sbox of the first round. For another
input, we can compute 256 new values for each possibility of the key bytes. Over
T traces, we obtain 256 vectors in FT

2 per key byte, denoted by node vectors.
The set of selection vectors of a selection function of a cryptographic primitive
is called the key space and is denoted by K. For the AES, we have |K| = 4096.

Suppose an unprotected circuit of an AES implementation, therefore, one of
its nodes will correspond to the first bit of the output of the first Sbox of the first
round. With enough traces and a selection function, it is possible to observe one
of the node vectors corresponding exactly to one of the selection vectors. With
enough traces, we can be sure the key byte generated was the correct guess. This
simple attack called exact matching explains the base principle of the grey-box
attacks but is not enough to break protected circuits.

3.2 Grey-box attacks in the white-box context

Differential Computational Analysis (DCA) The first white-box imple-
mentations [12,13] used encoding as a countermeasure, making the nodes vec-
tors different from the selection vectors. However, [8] showed in their Differential
Computational Analysis attack (DCA) that some of the node vectors were cor-
relating with some of the selection vectors even through the encodings [26,25,9],
i.e. the ratio of matches (or mismatches) between some of the node vectors and
some of the selection vectors was not one-half like for random values. By comput-
ing the correlation of each of the node vectors with the selection vectors, Bos et
al. showed that the highest absolute correlation score achieved by the selection

5

vector amongst the 256 of a key byte corresponded to the correct guess, with
enough traces.
To prevent a correlation attack, a countermeasure should have a non-null linear
part.

Linear Decoding Analysis (LDA) To thwart correlation attacks, linear
masking schemes have been employed, which forces an attacker to find a subset
of node vectors that xors to one of the selection vectors to retrieve the corre-
sponding key byte. In [16], the authors pointed out that we can perform linear
algebra in the white-box context since we have information on the traces without
any noise. Therefore an attacker can try to observe if one of the selection vectors
is a solution of a linear equation from all the node vectors. However, solving a
linear equation over all the node vectors would be unrealistic in time and space,
so we need to attack subsets of nodes.

The simplest method to attack relevant subsets is the sliding window method,
which consists of taking the W consecutive node vectors (W stands for Window
size), performing the attack, and sliding by S ≤ W nodes, to take the S to
S +W next nodes, and so on. In this work, all the attack complexities will be
given in function of the subset size, denoted by W for this reason. However,
other techniques to choose more efficient subsets also exist [18,29], but are out
of the scope of this paper.
To prevent an algebraic attack, a countermeasure should have a non-null non-
linear part.

Higher Order attacks (HDDA, HODCA) Some nonlinear masking
schemes were employed to prevent such algebraic attacks. Still, it is possible
to perform a Higher Order version of the DCA attack (HODCA) [7] against
correlation-resistant schemes, and a Higher Degree version of the LDA attack
(HDDA) [17] against masking schemes algebraic-resistant schemes. Both these
techniques use the same idea of increasing the window by adding all the combi-
nations of xor (resp. and) of node vectors before performing DCA (resp. LDA).
This increase of the window adds

∑O
i=0
(W

i

)
new vectors, with O the order or the

degree, which is equivalent to an exponential increase. Therefore, these attacks
are exponential in their order or degree.
To prevent higher-order attacks, a countermeasure should have tunable parame-
ters to make these attacks impossible in practice.

White-Box Learning Parity With Noise (WBLPN) This attack pre-
sented in [10] showed that performing a grey-box attack in the white-box setting
could be considered as solving a Learning Parity with Noise (LPN) problem.
The LPN problem consists of solving linear equations in the presence of noise.
In the white-box setting, we can consider that the nonlinear part of a masking
scheme is a noise occurring following the noise rate τ probability. This attack is
exponential in W, but the lower τ is, the more efficient the attack becomes and
can compete with the higher-order ones.
To prevent WBLPN attacks, the noise rate of a countermeasure should not be
low.

6

Filtering attacks (FLDA, HOF) In [11], a new class of attacks called
filtering was proposed, which nullifies one share by choosing the subset of traces
where the node corresponding to the share is equal to zero. This methodology
is very efficient against masking schemes that have a nonlinear part consisting
of monomials of high degrees, as nullifying one of the shares of a monomial
nullifies the whole nonlinear monomial (x1 · x2 · x3 becomes equal to zero if we
force one of the three variables to be equal to zero). The authors also proposed
Higher-Order Filtering (HOF) for future countermeasure designs, which nullifies
multiple shares simultaneously. This will be revealed as a useful attack in the
following sections.
To prevent Filtering attacks, the countermeasure security should not be tempered
with a low order of filtering.

To summarize, Table 1 shows all the available attacks and their best time
and space complexities in the literature.

Table 1. Time and space complexities of grey-box attacks in the white-box context
onto a subset of nodes of size W. ω is the matrix multiplication exponent, |K| is the
number of selection vectors (4096 for the AES), τ is the noise rate of the counter-
measure, kτ (resp. TO,τ) is a constant that depends on τ (resp. O and τ), cτ = 1

1−τ
,

c′
τ = − ln (1−τ)

(1/2−τ
.

Attack Reference Time, O(·) Traces, O(·)

DCAτ [8] Wkτ |K| kτ

LDA [16,11] Wω + |K|W W
HODCAO,τ [7] WO|K|TO,τ TO,τ

HDDAd [17,11] Wdω + |K|Wd Wd

WBLPNτ [10] Wω−1|K|c′
τ cW

τ Wc′
d

FLDA [11] Wω+1 + |K|W2 2W
HOFO-LDA [11] Wω+O + |K|WO+1 2OW

To assess the security level of a countermeasure, we define λ, the security
parameter in Definition 3. Since every countermeasure studied in this work has
a high noise rate, we did consider the WBLPN attack in this definition.

Definition 3. We say that a countermeasure achieves λ security if no auto-
mated attack with time complexity in O(Wλ) or less can break it with non-
negligible probability, under the supposition that the key space K is reduced to
one selection vector: |K| = 1.

3.3 Masking schemes

ISW masking scheme A well-known solution against correlation attacks
has been proposed in [20] for the grey-box context: replacing every bit variable

7

v by ℓ shares {x1 · · ·xℓ}, such that v =
⊕ℓ

i=1 xi. That way, each node vector
corresponding to the shares does not correlate with any selection vectors.

While the xor gadget consists of xoring the shares coordinate-wise (zi =
xi⊕ yi for i ∈ {1, · · · , ℓ}), the and gadget is more complex: an SNI version of it
is given in Algorithm 1, taken from [3].

Algorithm 1 SecMult
Inputs:
• {x1, · · · , xℓ} s.t.

⊕ℓ

i=1 xi = x

• {y1, · · · , yℓ} s.t.
⊕ℓ

i=1 yi = y

• (ℓ−1)ℓ
2 fresh randomness

Output: {z1 · · · zℓ} s.t.
⊕ℓ

i=1 zi = x · y

1: for i ∈ {1, · · · , ℓ} do
2: zi ← xi · yi

3: end for
4: for i ∈ {1, · · · , ℓ} do
5: for j ∈ {(i + 1), · · · , ℓ} do
6: r ← $
7: zi ← zi ⊕ r
8: zj ← zj ⊕ ((r ⊕ (xi · yj))⊕ (xj · yi))
9: end for

10: end for
11: return z

This and gadget, SecMult, can be interpreted as a matrix storing intermedi-
ate computations in its cells, and yielding xor of each of its rows as the result.

Example 4. Let us suppose that we have three shares (ℓ = 3). Therefore, we
receive {x1, x2, x3} and {y1, y2, y3} such that x1⊕x2⊕x3 = x and y1⊕y2⊕y3 = y,
and we want to compute {z1, z2, z3} such that z1 ⊕ z2 ⊕ z3 = x · y. We have:

x · y = (x1 ⊕ x2 ⊕ x3) · (y1 ⊕ y2 ⊕ y3) =
x1 · y1 (1)

⊕ x2 · y1 ⊕ x2 · y2 ⊕ x1 · y2 (2)
⊕ x3 · y1 ⊕ x3 · y2 ⊕ x3 · y3 ⊕ x2 · y3 ⊕ x2 · y3 ⊕ x1 · y3 (3)

Here, the first line of the equation will correspond to the first line of the matrix,
the second to the second, and the third to the third. To ensure have an SNI gadget
(c.f. Section 6, [3]), (ℓ−1)ℓ

2 = 3 fresh randomness (r1,2, r1,3, r2,3) are involved, as
explained in Algorithm 1, which gives the following matrix:

z1 ← x1 · y1 r1,2 r1,3
z2 ← x2 · y1 ⊕ x1 · y2 ⊕ r1,2 x2 · y2 r2,3
z3 ← x1 · y3 ⊕ x3 · y1 ⊕ r1,3 x2 · y3 ⊕ x3 · y2 ⊕ r2,3 x3 · y3


8

Now, zi, i ∈ {1, 2, 3} gets the xor of the elements of the ith line of the matrix. We
can observe that z1⊕z2⊕z3 contains every element of the previous equation, and
two occurrences of each fresh randomness which cancels out and is, therefore,
equal to x · y.

BU masking scheme To thwart the Linear Decoding Analysis (LDA)
attack that breaks ISW, a nonlinear masking scheme was proposed in [5], achiev-
ing algebraic security. This masking scheme shares every bit variable v by three
shares x1, x2, x3 such that v = x1 ⊕ x2 · x3. However, contrarily to ISW, this
scheme would not resist correlation attacks as x1 correlates with v, however,
authors theorized that once combined with an algebraic-resistant scheme such
as the ISW masking scheme, the resulting circuit would resist both correlation
and algebraic attacks.

SEL masking scheme A first masking scheme resisting both algebraic
and correlation attacks was proposed in [27], which has decoding function: v =⊕ℓ

i=1 xi⊕
∏d

i=0 x̃i. The xi are the linear shares and bring correlation resistance
as for the ISW masking scheme, forcing HODCA to order ℓ, while the x̃i bring
algebraic resistance as for BU masking scheme, forcing HDDA to be degree
d. Since these two attacks are exponential in their order/degree, this masking
scheme was enough to thwart them if ℓ and d were chosen big enough. However,
it was later shown that filtering attacks [11] could break it in polynomial time.

3.4 The dummy shuffling countermeasure

In [6], the authors showed that the shuffling methodology used to increase mea-
surement noise in the grey-box model (c.f. [19,30]) could be adapted in the
white-box model to prevent algebraic attacks, by creating s exact copies of the
implementation to protect, called slots. At each plaintext, one of which, the main
slot, is chosen randomly to perform the real computation and is given the real
input, while the s − 1 others, the dummy slots, are given random inputs. The
flags are derived pseudorandomly from the input to choose which slot will be the
main. For s slots, every bit input is passed through the input-shuffling function
with s − 1 random bits of the dummy slots, which permutes them given the
flags. Each slot then computes the function on its input, resulting in s outputs.
Finally, the s output bits are passed through the output-selection function to
recover the main slot output, which unshuffles them given the flags.

Definition 4. Let f be the flags of a Dummy Shuffling implementation, and L
a list of n > 1 elements:

– We define a function that shuffles a list L of n > 1 elements by Shufflef (L).
– Similarly, we define a function that unshuffles a list L of n > 1 elements by

Unshufflef (L).
– We have Shufflef ◦Unshufflef (L) = Unshufflef ◦ Shufflef (L) = L.
– We denote the function that returns the element of the main slot of a shuffled

list L by DecodeDSf (L).

9

Applying the Shuffle function with the flags f onto a list containing zero
followed by random values creates pre-shuffled randomness. For each and gate, a
pre-shuffled randomness is created and xored to refresh them to ensure algebraic
security. The Dummy Shuffling Refresh function is depicted in Algorithm 2, given
the flags f .

Algorithm 2 Dummy Shuffling Refresh gadget
Inputs:
• {x1, · · · , xℓ} s.t. Decodef ({x1, · · · , xℓ}) = x
• s− 1 fresh randomness
• the flags f

Output: {x̃1, · · · , x̃ℓ} s.t. Decodef ({x1, · · · , xℓ}) = x

1: S ← {0, $, · · · , $}, s.t. |S| = s
2: S ← Shufflef (S)
3: {x1 · · ·xℓ} ← {x1 ⊕ S1, · · · , xℓ ⊕ Sℓ}
4: return {x1, · · · , xℓ}

Definition 5. A dummy shuffling implementation is performed over three main
phases:

1. Input-encoding: This first phase of the implementation chooses the flags f
randomly from the input, uses it to generate every pre-shuffled randomness
that will be needed during the second phase and encodes every input of the
algorithm, which creates s inputs over the s slots, with one of them being the
main one and is unmodified, while the others are randomly generated.

2. Evaluation: The second phase evaluates every copy of the algorithm for
their input. Only the algorithm located in the main slot performs the real
computations. The refresh gadget after every and gate takes its pre-shuffled
randomness from the first phase and adds it to the gate’s output.

3. Output-selection: This last phase concludes the implementation by getting
every output of the s slots and applying the Unshuffle function with the flags
to recover the output of the main slot. The other random outputs of the
dummy slots are dismissed.

The authors prove that Dummy Shuffling with refreshes achieves algebraic se-
curity for the evaluation phase. Currently, Dummy Shuffling is the only solution
proven algebraically resistant to any degree, simply by increasing the number of
slots (s slots implies performing HDDA of degree d = s to break it), as the SEL
masking scheme only has an algebraic proof up to the third degree.

Unlike the ISW masking scheme, instead of having ℓ node vectors xoring to
one of the selection vectors, in that case, s vectors equal to one of the selection
vectors for an unknown subset of traces. However, this scheme alone is weak to
correlation attacks, so the authors theorized that it should be combined with the
ISW masking scheme, yet did not provide any details on how exactly it should
be done and what security it would achieve.

10

Conclusion To summarize, Table 2 shows all the available countermeasures
and best known attacks against them.

Table 2. Different available white-box countermeasures with their gate overhead for
xor and and operations, given with the lowest time complexity white-box attack
known to thwart it. ω is the matrix multiplication exponent, |K| is the number of
selection vectors (4096 for the AES), and kτ is a small constant determined in function
of the noise rate τ .

Scheme Reference Xor cost And cost Best attack Time O(·)

ISWℓ [20] ℓ 3ℓ2 − 2ℓ LDA Wω +W|K|
BU [5] 29 39 DCA1/4 Wk1/4|K|
DSs [6] s + 1 6s + 2 DCA(s−1)/2s Wk(s−1)/2s|K|
SELℓ,2 [27] ℓ + 4 2ℓ2 + 5ℓ− 1 FLDA Wω+1 + |K|W2

SELℓ,3 [27] ℓ + 9 2ℓ2 + 15ℓ− 2 FLDA Wω+1 + |K|W2

Since [11], at best, a countermeasure such as SEL3,2 can achieve λ = ω+1 ≈ 4
security (c.f. Definition 3), which, in practice, results in very efficient attacks
taking little time to recover the full key.

The remaining solution that has only been theorized is to apply two coun-
termeasures one after the other, one with algebraic resistance, and another one
with correlation resistance, hoping for a resulting circuit to have both resistance
properties.

4 Combining countermeasures

The idea suggested in [5,6,11] was to combine two countermeasures to prevent
algebraic and correlation attacks. While it is clear that ISW is a good candidate
for avoiding correlation attacks, there are two solutions to prevent algebraic
attacks. The first is to use a nonlinear masking scheme based on high-degree
monomials like BU or SEL1,d, the second is Dummy Shuffling.

Combining ISW with BU or SEL We decided to not focus on the high-
degree monomial-based masking schemes as none of them can achieve algebraic
security of arbitrary order, as in [27], the authors brought algebraic security up
to degree three which is weak to HDDA of degree three (O(W3ω−1 + |K|W3)),
achieving at best 3ω-security. Furthermore, the noise rate of such schemes is
lowering as the degree increases, which is a vulnerability that [10] highlighted.

4.1 ISW then Dummy Shuffling

A first method to combine these two countermeasures would be to apply one
on a circuit C ′ ← ISW(C), then the second one C ′′ ← DS(C ′). We will denote
the function that applies ISW and then Dummy Shuffling to a circuit by DS ◦
ISW. Interestingly, the order of application of the two countermeasures matters.

11

Therefore, by opposition, we denote the function that applies Dummy Shuffling
and then ISW to a circuit by ISW ◦DS.

Applying the ISW masking scheme with ℓ linear shares replaces in the orig-
inal circuit C every bitwise gate by gadgets and every bit variable by ℓ shares.
Applying Dummy Shuffling with s slots to this modified circuit ISW(C) dupli-
cates it s times, then generates the input-shuffling phase, the output-selection
phase, and xors pre-shuffled randomness to every and gates constituting the
ISW and gadgets. The construction is illustrated in Figure 1.

Fig. 1. Applying ISW and then Dummy Shuffling.

For such a scheme and given the flags f , a bit variable v will be shared of sℓ
shares xi,j , i ∈ {1, · · · , ℓ}, j ∈ {1, · · · , s}, such that:

v = Unshufflef ((x1,1 ⊕ · · · ⊕ xℓ,1), · · · , (x1,s ⊕ · · · ⊕ xℓ,s))
= Unshufflef (x1,1, · · · , x1,s)⊕ · · · ⊕Unshufflef (xℓ,1, · · · , xℓ,s)

Correlation analysis In this case, determining the noise rate of the imple-
mentation would not give us information on how to perform the most efficient
HODCA attack, as the noise rate would be computed using an algebraic function
involving the sℓ shares, making the corresponding HODCA of order sℓ.

Instead, we propose an order ℓ HODCA attack that consists of xoring the
shares {x1,1⊕· · ·⊕xℓ,1}, which would result on an order ℓ HODCA. This xoring
function matches the decoding function when the main slot corresponds to the
xored shares which happens with probability 1

s , but also when the main slot
does not correspond but the random value that the xoring function takes is
correct, which happens with probability s−1

s · 1
2 . Therefore, the two function

mismatches with probability p = s−1
2s , resulting to an HODCA attack of order ℓ

and noise p.

Algebraic analysis In [6], the authors showed that Dummy Shuffling
resists HDDA of degree matching the number of dummy slots, here s− 1. Since

12

ISW does not bring any algebraic resistance, HDDA of degree d = s can break
DS ◦ ISW, which has a time complexity of Wdω + |K|Wd.

Filtering analysis It is possible to find a better complexity that solely
depends on s, by performing a Higher-Order Filtering attack. Indeed, [11] pro-
posed such an algorithm to filter multiple nodes simultaneously, allowing fixing
any node vector to a desired value.

With DS ◦ ISW, every xor gates are refreshed using Algorithm 2, which will
xor random values to the dummy slots, and a zero to the main slot. Even if
the main slot is unknown, we know it is not located where these random values
from refresh are equal to one. So, using Higher-Order filtering of order s− 1, we
can choose the subset of traces where the node vectors corresponding to these
shuffled random values equal one.

For this filtered subset of traces where this condition holds we can ensure
that the last random value left free of constraints will always be equal to zero,
hence fixing the main slot to a single slot. Now that the main slot is always the
same, we removed the Dummy Shuffling algebraic security, making DS ◦ ISW
weak to an LDA attack. Performing HOFs−1-LDA attack has a time complexity
in Ws−1+ω + |K|Ws−1, which is better than HDDA of degree d = s.

In the end, to achieve λ security, DSs ◦ ISWℓ need to have for parameters
ℓ = λ and 1 < s = λ− ω + 1 ≈ λ− 2.

4.2 Dummy Shuffling then ISW

By applying Dummy Shuffling first, we duplicate the whole circuit C onto s slots,
add the input-shuffling and the output-selection phases, and add pre-shuffled
randomness to all the and gates. Now, we apply ISW to this modified circuit
DS(C) and replace every xor and and gates by xor and and gadgets, and
every variable by ℓ shares. Contrarily to DS ◦ ISW, we can observe that the
input-shuffling and output-selection phases are here protected by ISW, adding
a new layer of obfuscation. The construction is illustrated in Figure 2.

Fig. 2. Applying Dummy Shuffling and then ISW.

13

Security analysis Since ISW ◦ DS has the same decoding function as
DS ◦ ISW, we can also perform the same HODCAℓ,p and HDDAs attacks. How-
ever, here the pre-shuffled randomness of Dummy Shuffling is shared, forcing the
previous Higher Order Filtering LDA attack presented against DS ◦ ISW to be
of order ℓs− 1, and therefore to be impracticable.

In the end, to achieve λ security, ISWℓ ◦ DSs need to have for parameters
ℓ = λ and 1 < s = ⌈ λ

ω ⌉ ≈ ⌈
λ
3 ⌉, which is better than DSs ◦ ISWℓ. For instance,

to achieve 10-security, DS ◦ ISW would need ℓ = 10 and s = 8 while ISW ◦ DS
would need ℓ = 10 and s = 4, resulting in a lighter implementation.

Implementation size Surprisingly, for the same parameters ℓ and s, ISW◦
DS has a different implementation size than ISW ◦ DS, as shown in Table 3.
Indeed, ISW and Dummy Shuffling have different costs of transforming an and
and a xor gate. Since transforming an and gate creates new xor and and gates,
applying them in different order changes the overall size of the implementation.

ISWℓ◦DSs

l
s 2 3 4 5 6 7

2 0.2 1.0 1.2 1.6 2.1 2.5
3 0.7 1.7 2.1 2.8 3.5 4.2
4 1.1 2.7 3.2 4.2 5.3 6.3
5 1.6 3.7 4.5 6.0 7.5 8.9
6 2.1 5.0 6.0 8.0 10.0 12.0
7 2.7 6.5 7.8 10.4 12.9 15.5

DSs◦ISWℓ

l
s 2 3 4 5 6 7

2 0.4 1.0 1.3 1.8 2.2 2.7
3 0.9 1.7 2.1 2.9 3.7 4.5
4 1.3 2.4 3.1 4.3 5.6 6.8
5 1.9 3.3 4.2 6.0 7.7 9.5
6 2.5 4.3 5.5 7.9 10.3 12.7
7 3.2 5.4 7.0 10.1 13.2 16.3

Table 3. Comparison of the implementation size (in million of gates) between
ISWℓ◦DSs and DSs◦ISWℓ applied to a 10-round AES (31k gates), using the imple-
mentation given in the wboxkit tool4.

Theorem 1. Let C be a circuit constituted of n⊕ xor gates and n∧ and gates.

– DSs ◦ ISWℓ(C) has an overhead of (6s− 4)(ℓ2 − ℓ)n∧ and gates,
and s(2ℓ2 − 2ℓ)n∧ + ℓsn⊕ xor gates.

– ISWℓ ◦DSs(C) has an overhead of (6s− 4)(ℓ2 − ℓ)n∧ and gates,
and (6s− 4)(2ℓ2 − 2ℓ)n∧ + ℓsn⊕ xor gates.

Proof. ISWℓ transforms one and gate into ℓ2 − ℓ and gates and 2ℓ2 − 2ℓ xor
gates, and transforms one xor gate into ℓ xor gates. For the whole implementa-
tion (input-encoding, evaluation, and output-selection phases) Dummy Shuffling
transforms one and gate into 6s − 4 and gates, and transforms one xor gates
into s xor gates [6].

Let us begin by DSs ◦ ISWℓ(C): given a circuit C made of n∧ and gates and
n⊕ xor gates, ISWℓ(C) will have (ℓ2 − ℓ)n∧ and gates and (2ℓ2 − 2ℓ)n∧ + ℓn⊕

4 See https://github.com/hellman/wboxkit.

14

https://github.com/hellman/wboxkit

xor gates. Finally, DSs ◦ ISWℓ(C) will have a total of (6s − 4)(ℓ2 − ℓ)n∧ and
gates, and s

(
(2ℓ2 − 2ℓ)n∧ + ℓn⊕

)
xor gates.

Likewise, for ISWℓ ◦ DSs(C) and for the same circuit C with n∧ and gates
and n⊕ xor gates, DSs(C) will have (6s− 4)n∧ and gates and sn⊕ xor gates.
Finally, ISWℓ ◦DSs(C) will have (6s− 4)(ℓ2− ℓ)n∧ and gates and lsn⊕ + (6s−
4)(2ℓ2 − 2ℓ)n∧ xor gates.

In theory, both DSs ◦ ISWℓ(C) and ISWℓ ◦DSs(C) have the same number of
and gates, but have different amount of xor gates. More precisely, ISW ◦ DS
has (6− 4

s) time more xor gates. However, in practice, ISW ◦DS has less than
DS◦ ISW. This can be explained as the pseudo-random generator used in white-
box is not considered in the theory.

Conclusion On the whole, ISW ◦ DS has an equivalent implementation
size as DS ◦ ISW given the same parameter ℓ and s, has the advantage of having
obfuscated input-shuffling and output-selection phases, resists the same correla-
tion and algebraic attacks, and has a better resistance against filtering attacks.
Therefore, ISW ◦DS should be preferred in any circumstances over DS ◦ ISW.

5 Semi-Shuffled Secret Sharing Scheme: S5

Even if ISW◦DS is a countermeasure able to achieve any given λ security, its im-
plementation size is heavy due to the successive application of countermeasures
that have not been studied to be combined.

We propose S5, which, similarly to the SEL masking scheme [27], proposes
to replace a share of ISW with a nonlinear component, but here with Dummy
Shuffling instead of a high-degree monomial. The design is unique as it merges
a masking scheme that focuses on the gates with a countermeasure that acts on
the whole implementation.

5.1 Definition of S5

Decoding function Instead of having copies of a whole implementation dis-
tributed over different slots like ISW ◦ DS, we would like to have ℓ shares as
ISWℓ, with the real value of the last share taken by one of the s slotted shares
chosen randomly for each different input. We denote the S5 masking schemes
for ℓ linear shares with one of them shuffled amongst s slots by S5ℓ,s.

Given the ℓ + s − 1 shares {x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s} of a bit variable x, the
decoding function DecodeDSf of Dummy Shuffling, and the flags f , S5ℓ,s has
the following decoding function:

Decodef ({x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s}) = x1⊕· · ·⊕xℓ−1⊕DecodeDSf (xℓ,1, · · · , xℓ,s)

Encoding function As for ISWℓ, ℓ−1 random values are required to encode
a bit variable and fix the last share xℓ being equal to the sum of these random

15

values plus the original value. Then, s − 1 supplementary random values are
required for the dummy slots as in Dummy shuffling. The procedure is depicted
in Algorithm 3.

Algorithm 3 S5’s Encoding function
Input:
• A bit variable z to share
• ℓ + s− 2 fresh random values
• The flags f

Output: The shares {z1, · · · , zℓ, zℓ,1, · · · , zℓ,s}, such that
Decodef ({z1, · · · , zℓ, zℓ,1, · · · , zℓ,s}) = z

1: for i ∈ {1 · · · ℓ− 1} do
2: zi ← $
3: end for
4: zℓ,1 ←

⊕ℓ−1
i=1 zi

5: for i ∈ {2 · · · s} do
6: zℓ,i ← $
7: end for
8: {zℓ,1 · · · zℓ,s} ← Shufflef ({zℓ,1 · · · zℓ,s})
9: return {z1 · · · zℓ−1, zℓ,1 · · · zℓ,s}

Xor gadget Now that we can encode and decode our bit variables, we need
to replace the bit gates with gadgets, such that they do not leak information
while computing the correct output. The xor gadget is simple to perform, as for
both the ISW masking scheme and Dummy Shuffling, this gadget only consists
of xoring the shares individually.

Let {x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s} and {y1 · · · yℓ−1, yℓ,1 · · · yℓ,s} be the shares of two
bit variables x and y of an S5ℓ,s such that Decodef ({x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s}) = x
and Decodef ({y1 · · · yℓ−1, yℓ,1 · · · yℓ,s}) = y. We have:

Gadgetxor({x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s}, {y1 · · · yℓ−1, yℓ,1 · · · yℓ,s}) =
{(x1 ⊕ y1) · · · (xℓ−1 ⊕ yℓ−1), (xℓ,1 ⊕ yℓ,1) · · · (xℓ,s ⊕ yℓ,s)}

And gadget We presented SecMult, the ISWℓ and gadget in Algorithm 1,
and explained its matrix representation. S5ℓ,s and gadget for one slot (s = 1)
is exactly this same algorithm. For s > 1, to compute the values of all the slots,
we will duplicate s time in the last row of the representation matrix.

Let {x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s} and {y1 · · · yℓ−1, yℓ,1 · · · yℓ,s} be the shares of two
bit variables x and y of an S5ℓ,s such that Decodef ({x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s}) = x
and Decodef ({y1 · · · yℓ−1, yℓ,1 · · · yℓ,s}) = y. S5ℓ,s and gadget has four steps:

▷ Step 1: Process the ℓ − 1 first shares with the ISW and gadget by apply-
ing SecMult({x1 · · ·xℓ−1}, {y1 · · · yℓ−1}) as a regular ISWℓ−1 masking
scheme.

16

▷ Step 2: For each shuffled share i ∈ {1, · · · , s}, perform the last part of
SecMult({x1 · · ·xℓ−1, xℓ,i}, {y1 · · · yℓ−1, yℓ,i}) that corresponds to the
last row of the matrix to compute only the necessary values to de-
termine the last ℓth share of an ISWℓ masking scheme.

▷ Step 3: Recover the first (ℓ− 1) shares by xoring every elements of the first
(ℓ− 1) line of the matrix.

▷ Step 4: Recover the last s shares by xoring every elements of the last s line
of the matrix.

The and gadget is depicted in Algorithm 4, and also includes refresh func-
tions to achieve security properties discussed in Section 6.

Example 5. Let us take the S5ℓ=3,s=3 and gadget, without the refresh func-
tions: we receive {x1, x2, x3,1, x3,2, x3,3} and {y1, y2, y3,1, y3,2, y3,3}, the shares of
two bit variables x and y such that Decodef ({x1, x2, x3,1, x3,2, x3,3}) = x and
Decodef ({y1, y2, y3,1, y3,2, y3,3}) = y. We want to compute {z1, z2, z3,1, z3,2, z3,3}
such that Decodef ({z1, z2, z3,1, z3,2, z3,3}) = z = x · y.

Then, we can create a (ℓ+s−1)×ℓ matrix, here a 5×3 matrix M filled with
zeroes to represent the computations. Step 1 begins by computing the elements
of the first ℓ − 1 = 2 columns and rows, that only depend on the linear part
of the shares, namely x1, x2, y1, and y2. Then, Step 2 computes the rest of the
operations that depend on the non-linear part: x3,1, x3,2, x3,3, y3,1, y3,3, and y3,3.
Step 3 consists of xoring every element of the first ℓ − 1 = 2 lines to compute
the linear part of z: z1 and z2. Finally, the last Step 4 does the same for the last
s = 3 lines and computes z3,1, z3,2, and z3,3.


z1 ← x1 · y1 r1,2 r1,3
z2 ← x2 · y1 ⊕ x1 · y2 ⊕ r1,2 x2 · y2 r2,3

z3,1 ← x1 · y3,1 ⊕ x3,1 · y1 ⊕ r1,3 x2 · y3,1 ⊕ x3,1 · y2 ⊕ r2,3 x3,1 · y3,1
z3,2 ← x1 · y3,2 ⊕ x3,2 · y1 ⊕ r1,3 x2 · y3,2 ⊕ x3,2 · y2 ⊕ r2,3 x3,2 · y3,2
z3,3 ← x1 · y3,3 ⊕ x3,3 · y1 ⊕ r1,3 x2 · y3,3 ⊕ x3,3 · y2 ⊕ r2,3 x3,3 · y3,3


One can observe that the different slots do not interact with each other,

meaning that, given i, j ∈ {1, 2, 3}, i ̸= j, x3,i, y3,i and z3,i does not interact
with x3,j , y3,j and z3,j . Therefore, given flags f and a corresponding main slot
m ∈ {1, 2, 3}, DecodeDSf (z3,1, z3,2, z3,3) = z3,m only depends on x3,m and y3,m.
Therefore:

z = z1 ⊕ z2 ⊕DecodeDSf (z3,1, z3,2, z3,3)
= z1 ⊕ z2 ⊕ z3,m

= SecMult({x1, x2, x3,m}), ({y1, y2, y3,m})
= (x1 ⊕ x2 ⊕ x3,m) · (y1 ⊕ y2 ⊕ y3,m)
= (x1 ⊕ x2 ⊕DecodeDSf (x3,1, x3,2, x3,3)) · (y1 ⊕ y2 ⊕DecodeDSf (y3,1, y3,2, y3,3))
= x · y

17

Algorithm 4 S5’s and gadget
Inputs:
• {x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s} s.t. Decodef ({x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s}) = x
• {y1 · · · yℓ−1, yℓ,1 · · · yℓ,s} s.t. Decodef ({y1 · · · yℓ−1, yℓ,1 · · · yℓ,s}) = y
• One shared pre-shuffled randomness (for SPSRf)
• Two pre-shuffled randomness (for Refreshf)
• ℓ(ℓ−1)

2 fresh randomness
Output:
• {z1 · · · zℓ−1, zℓ,1 · · · zℓ,s} s.t. Decodef ({z1 · · · zℓ−1, zℓ,1 · · · zℓ,s}) = x · y

1: {x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s} ← Refresh({x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s})
2: {y1 · · · yℓ−1, yℓ,1 · · · yℓ,s} ← Refresh({y1 · · · yℓ−1, yℓ,1 · · · yℓ,s})
3: M ← (ℓ + s− 1)× ℓ zero matrix

4: for i ∈ {1 · · · ℓ− 1} do ▷ Step 1: Handling linear shares
5: for j ∈ {i + 1 · · · ℓ− 1} do
6: Mi,j ← $
7: Mj,i ← (Mi,j ⊕ xi · yj)⊕ xj · yi

8: end for
9: end for

10: for i ∈ {1 · · · ℓ− 1} do
11: zi ← xi · yi

12: end for

13: for i ∈ {1 · · · ℓ− 1} do ▷ Step 2: Handling shuffled shares
14: Mi,ℓ ← $
15: end for
16: for k ∈ {1 · · · s} do
17: for i ∈ {1 · · · ℓ− 1} do
18: Mk+ℓ−1,i ← (Mi,ℓ ⊕ xi · yℓ,k)⊕ xℓ,k · yi

19: end for
20: end for
21: for k ∈ {1 · · · s} do
22: zℓ,k ← xℓ,k · yℓ,k

23: end for

24: for i ∈ {1 · · · ℓ− 1} do ▷ Step 3: Computing the linear part of the result
25: for j ∈ {1 · · · ℓ} do
26: if i ̸= j then
27: zi ← zi ⊕Mi,j

28: end if
29: end for
30: end for

31: R← SPSRf ▷ Step 4: Computing the shuffled part of the result
32: for i ∈ {1 · · · s} do
33: for j ∈ {1 · · · ℓ− 1} do
34: zℓ,i ← (zℓ,i ⊕Ri,j)⊕Mi+ℓ−1,j

35: end for
36: end for

37: return {z1 · · · zℓ−1, zℓ,1 · · · zℓ,s}

18

Randomness As explained in the following Section 6, to achieve SNI and
algebraic security, S5 need to be refreshed. A refresh function takes for input the
shares of a variable and adds randomness to every share without modifying its
decoding value. S5 uses three type of randomness:

– Fresh randomness: The usual randomness produced by a pseudo-random
number generator in the white-box setting. Used to generate the two other
types of randomness, to encode the input values of a circuit, and in the and
gadget. A bit variable v receiving fresh randomness is denoted by v ← $.

– Pre-shuffled randomness: This randomness is constituted of s bit values,
that, once xored to a bit variable over s slots, ensures that the main slot
remains unmodified.

– Shared pre-shuffled randomness: Lastly, it is possible to share pre-shuffled
randomness over ℓ− 1 shares. We end up with a s× (ℓ− 1) matrix R, such
that the xor of each of its lines is equal to one of the s bits of the pre-shuffled
randomness.

Pre-shuffled randomness In Section 6, we show that the shuffled part of
the two inputs of S5 and gadget should be refreshed to achieve algebraic security,
which can be done using the dummy shuffling refresh function. Generating a pre-
shuffled randomness over s slots requires s−1 fresh randomness, without counting
the number of randomness involved in the Decode and Shuffle function of Dummy
Shuffling. Applying the shuffle function with the flags f onto a zero followed by
the random values creates pre-shuffled randomness, which, once xored with
a bit variable over multiple slots, ensures that the main slot is not modified.
Refreshing the shuffled part of S5 is depicted in Algorithm 5:

Algorithm 5 S5’s shuffled refresh gadget
Inputs:
• {x1, · · · , xℓ−1, xℓ,1, · · · , xℓ,s} s.t. Decodef ({x1, · · · , xℓ−1, xℓ,1, · · · , xℓ,s}) = x
• s− 1 fresh randomness
• the flags f

Output: {x1, · · · , xℓ−1, x̃ℓ,1, · · · , x̃ℓ,s} s.t. Decodef ({x1, · · · , xℓ−1, x̃ℓ,1, · · · , x̃ℓ,s}) = x

1: S ← {0, $, · · · , $}, s.t. |S| = s
2: S ← Shufflef (S)
3: {x1 · · ·xℓ−1, x̃ℓ,1 · · · x̃ℓ,s} ← {x1 · · ·xℓ−1, xℓ,1 ⊕ S1, · · · , xℓ,s ⊕ Ss}
4: return {x1, · · · , xℓ−1, x̃ℓ,1, · · · , x̃ℓ,s}

Shared pre-shuffled randomness In the S5ℓ,s and gadget, we create
a (ℓ + s − 1) × ℓ matrix M , which has its last s rows filled with computations
necessary to create the s shuffled shares of the output. Let us denote the s×(ℓ−1)
matrix containing these last rows by S. In Section 6, we show that to achieve
SNI security of the xor gadget, we need to refresh every value of the S matrix.
Let us denote the refreshed matrix by S̃.

19

The first constraint to such refresh function is that given the main slot m ∈
{1, · · · , s}, we need to ensure that

⊕ℓ−1
i=0 Sm,i =

⊕ℓ−1
i=0 S̃m,i, but we don’t know

the main slot without the shuffle or unshuffle functions, which we cannot use
in the gadget as it would leak information on the flag. The second constraint is
that the shuffled shares should not interact with each other.

A first idea would be to apply the refresh function of Algorithm 2 to each
column of S. This would ensure SNI property and the previously exposed con-
straints, but performing ℓ−1 Shuffle call would be too heavy. Instead, shuffle one
randomness gives a s-length vector r such that rm = 0, which we can transform
in a (ℓ + s − 1) × ℓ matrix R by sharing each of its s values over ℓ − 1 shares.
Xoring S and R gives a refreshed matrix that respects the two constraints,
and, as detailed in Section 6, ensures SNI security. The creation of this matrix
denoted by Shared pre-shuffled randomness is given in Algorithm 6

Algorithm 6 S5’s Shared pre-shuffled randomness (SPSR)
Inputs:
• s− 1 + ℓ(ℓ−1)

2 fresh randomness
• the flags f

Output: A two dimensional array R containing s vectors of x elements such that
Decodef ((R1,1 ⊕ · · · ⊕R1,x), · · · , (Rs,1 ⊕ · · · ⊕Rs,x)) = 0

1: S ← {0, $, · · · , $}, s.t. |S| = s
2: S ← Shufflef (S)
3: for k ∈ {1, · · · , ℓ− 1} do
4: Ri ← {Si, 0, · · · , 0}, s.t. |Ri| = ℓ− 1
5: for i ∈ {1, · · · , s} do ▷ SNI refresh gadget 4b of [3]
6: for j ∈ {i + 1, · · · , s} do
7: r ← $
8: Rk,i ← Si ⊕ r
9: Rk,j ← Sj ⊕ r

10: end for
11: end for
12: end for
13: return R

Phases On the whole, S5 uses shuffle functions from Dummy Shuffling and
therefore needs the three-phased structure depicted in Definition 5. The only
difference is the addition of the shared pre-shuffled randomness, which needs to
be pre-computed and shared in the first input-encoding phase.

5.2 S5 analysis

Higher-order attack analysis Firstly, we show in Section 6 that S5ℓ,s has the
same algebraic resistance against algebraic attacks as dummy shuffling with s
slots, and therefore is only broken by HDDA of degree d ≥ s. By design, S5ℓ,s, ℓ >

20

1 resists the DCA attack, as the linear shares do not carry full information on
the variable being shared. However, given τ , the noise rate of S5ℓ, s, HODCAO,τ

of order O = ℓ can break it.

Proposition 1. The noise rate of S5ℓ,s is τ = s−1
2s .

Proof. Let a variable x being encoded to the shares {x1, · · · , xℓ−1, xℓ,1, · · · , xℓ,s}
by S5ℓ,s with the flags f . By definition, we have:

x = Decodef ({x1 · · ·xℓ−1, xℓ,1 · · ·xℓ,s})
= x1 ⊕ · · · ⊕ xℓ−1 ⊕DecodeDSf{xℓ,1, · · · , xℓ,s})

Choosing the linear function f(x1, · · · , xℓ−1, xℓ,1) = x1 ⊕ · · · ⊕ xℓ−1 ⊕ xℓ,1 will
match the decoding function’s output depending on xℓ,1: when xℓ,1 represents the
main slot, the linear function is perfectly matching the decoding function, when
xℓ,1 is a dummy slot, the linear function will match the decoding function with
one-half probability. Therefore, since xℓ,1 is a dummy slot with probability s−1

s ,
the linear and decoding functions will have different outputs with probability
s−1
2s = τ . □

Filtering analysis Let a variable x being encoded by S5ℓ,s with the flags f
to the shares {x1, · · · , xℓ−1, xℓ,1, · · · , xℓ,s}. Using a higher-order filtering attack,
one can fix the s shuffled shares {xℓ,1, · · · , xℓ,s} to zero (or one) to ensure that,
no matter where the main slot is located, its corresponding shuffled share would
remain constant for all the subset of traces for whose this condition holds, making
the scheme vulnerable to an LDA attack. So, HOFs-LDA breaks S5ℓ,s and has
a time complexity in O(Wω+s + |K|Ws+1), which is better than HDDAd.

Security parameter Given a security parameter λ of Definition 3, we
need to choose ℓ and s such that no attack in time complexity lesser than Wλ

can break S5ℓ,s. Since, for the parameter ℓ, the best attack is HODCAO,τ and
has time complexity WO|K|TO,τ , we need to choose 1 < ℓ = λ. Similarily, since
the best attack for the parameter s is HOFs-LDA and has time complexity
O(Wω+s + |K|Ws+1), we need to choose 1 < s = λ− ω.

Implementation cost Let C be a circuit to protect with S5ℓ,s, and let
n⊕ and n∧ be its number of xor and and gates, respectively. As for Dummy
Shuffling, the implementation is constituted of three phases. To estimate the
implementation cost, we need to estimate the cost of each phase. For the first
phase, we need to estimate the cost of the two pre-shuffled randomness and the
shared pre-shuffled randomness used at each and gate of C. However, since the
number of inputs is negligible compared to n∧, we do not need to estimate the
cost of encoding the input.

We need to generate three pre-shuffled randomness with one used to generate
a shared pre-shuffled randomness per and gate in the original circuit C. In [6],
the authors estimated the cost of performing an input shuffling to 4s · n∧. Since
we need three per and gate, we end up with a cost of 12s · n∧ to generate the
pre-shuffled randomness.

21

One of these three pre-shuffled randomness needs to be shared, which is
equivalent to estimate the cost of Algorithm 6, which performs ℓ− 1 times two
xor over

∑s−1
i=1 i = ℓ(ℓ−1)

2 combinations, for a total of (ℓ− 1)s(s− 1) operations.
In total, the number of gates GIE of the first input-encoding phase is GIE =
(ℓ− 1)s(s + 11).

For the second phase, we need to estimate the cost of the gadgets. The
xor gadget performs a xor per couple of input shares, so costs (ℓ + s − 1)n⊕
operations. The four steps of S5ℓ,s and gadget has different costs: 2ℓ(ℓ − 1) +
ℓ− 1 = step1, 4s(ℓ− 1) + s = step2, ℓ(ℓ− 1) = step3, and 2s(ℓ− 1) = step4. In
total, the second phase costs:

GE = (step1 + step2 + step3 + step4)n∧ + (ℓ + s− 1)n⊕

= ((ℓ− 1)(3ℓ + 6s) + ℓ + s− 1) n∧ + (ℓ + s− 1)n⊕

Lastly, the output decoding phase applies the decoding function to every
output, but since the number of outputs is negligible compared to the number
of gates n⊕ and n∧, we conclude that the total cost of the implementation to
transform a circuit C to S5ℓ,s(C) is:

GIS + GE = ((ℓ− 1)(s(s + 11) + 3ℓ + 6s) + ℓ + s− 1) n∧ + (ℓ + s− 1)n⊕

5.3 S5 and ISW◦DS comparison

Theoretic implementation cost Let C be a circuit with n⊕ and n∧ number
of xor and and gates, respectively. We showed in Theorem 1 that the total
implementation size for ISWℓ◦DSs(C) (the more secure order of application of
the two countermeasures) has a total implementation size in (6s−4)(3ℓ2−3ℓ)n∧+
ℓsn⊕ gates, compared to ((ℓ− 1)(s(s + 11) + 3ℓ + 6s) + ℓ + s− 1) n∧ + (ℓ + s−
1)n⊕ for S5ℓ,s(C).

We can observe that to transform a and gate, S5ℓ,s(C) scales quadratically
with both ℓ and s, while ISWℓ◦DSs(C) scales quadratically with ℓ but only lin-
early with s. Moreover, the and gate transformation of ISWℓ◦DSs(C) is less
expensive when ℓ = s than S5ℓ,s(C). However, even if the xor gate transforma-
tion scale linearly for both s and ℓ for both S5ℓ,s(C) and ISWℓ◦DSs(C), when
ℓ = s, it scales linearly with S5ℓ,s(C) and quadratically with ISWℓ◦DSs(C).

In-practice implementation cost Table 4 shows the implementation size
differences for a 10-round AES. S5 has a lower Implementation size for similar
parameters, with a proportional difference increasing with ℓ and s. This huge
difference can be explained for two main reasons: the first is that there are more
xor gates than and gates in the AES base implementation (62% xor, 20% and,
18% not).

The second is that for ISW and for Dummy Shuffling, the wboxkit tool cre-
ates a pseudo-random number generator (PRNG) to generate fresh randomness.
In a circuit transformed by Dummy Shuffling, a first PNRG is created, and then,

22

by applying ISW, it is encoded and a second one is created, which is much more
heavy, while not accounted for in the theory. Whereas for S5, only one PRNG
is created.

ISWℓ◦DSs

l
s 2 3 4 5 6 7

2 0.2 1.0 1.2 1.6 2.1 2.5
3 0.7 1.7 2.1 2.8 3.5 4.2
4 1.1 2.7 3.2 4.2 5.3 6.3
5 1.6 3.7 4.5 6.0 7.5 8.9
6 2.1 5.0 6.0 8.0 10.0 12.0
7 2.7 6.5 7.8 10.4 12.9 15.5

S5ℓ,s

l
s 2 3 4 5 6 7

2 0.0 0.4 0.5 0.6 0.8 0.9
3 0.3 0.6 0.7 0.9 1.1 1.3
4 0.6 0.9 1.0 1.3 1.5 1.7
5 0.8 1.2 1.4 1.7 2.0 2.3
6 1.2 1.6 1.9 2.3 2.6 3.0
7 1.6 2.1 2.5 2.9 3.4 3.9

Table 4. Comparison of the implementation size (in million of gates) between
ISWℓ◦DSs and S5ℓ,s applied to a 10-round AES (31k gates), using the implemen-
tation given in the wboxkit tool (https://github.com/hellman/wboxkit), and our S5
implementation (https://github.com/S5white-box/code).

Security parameter Comparing both countermeasures for the same pa-
rameters is not relevant if we want to which one of the two is the more efficient
given a known security parameter. Following Definition 3, for a security parame-
ter λ, we have S5λ,λ−ω while having ISWλ◦DS⌈λ/3⌉, with both countermeasures
parameters greater of equal than 2. While the s parameter of ISWℓ◦DSs scales
better with λ than S5ℓ,s, it becomes greater only for every λ ≥ 6.

Conclusion Both ISWℓ◦DSs and S5ℓ,s are efficient countermeasures against
state-of-the-art attacks, and have different characteristics so should both be
considered as valuable options against gray-box attacks in the white-box con-
text. While S5ℓ,s is more efficient for smaller (and more realistic) parameters,
ISWℓ◦DSs show better scalability for security parameter λ ≥ 6, while having
the first input-encoding phase encoded by ISW.

We also recall that [6] described a bit-sliced implementation of dummy shuf-
fling by filling a 64-bit CPU register with one variable from 64 slots. Contrarily
to ISWℓ◦DSs, S5ℓ,s can not benefit from this technique due to interactions of
unslotted and slotted variables.

Lastly, even if S5 is more efficient in practice, we recommend both counter-
measures as they might not have the same weaknesses for future attacks, as we
showed that slight differences in the structure are enough to create a vulnera-
bility (see Section 4).

23

https://github.com/hellman/wboxkit
https://github.com/S5white-box/code

6 Security analysis

In this section, we discuss and prove the security of the three combined schemes
against the relevant trace-based gray-box attacks, mainly correlation (HODCA)
and algebraic (HDDA).

Algebraic security First, we reproduce the relevant definitions and results
about the dummy shuffling from [6]. The error of a Boolean function f : Fn

2 → F2
is given by err (f) = min(|f | , |f ⊕ 1|)/2n.

Definition 6. For an implementation C : Fn
2 → Fm

2 , the set F (d)(C) denotes
all functions obtained by combining intermediate functions computed in C with
a function of degree at most d. Elements of this set are Boolean functions f
mapping Fn

2 to F2.

Definition 7 (Scheme [6]). Let F : Fn
2 → Fm

2 be a function. A scheme S
computing F consists of

1. an encoding function S.enc(x, re) : Fn
2 × F|re|

2 → Fn′

2 ;
2. an implementation S.comp(x′, rc) : Fn′

2 × F|rc|
2 → Fm′

2 ;
3. a decoding function S.dec(y′) : Fm′

2 → Fm
2 .

Definition 8 (τ-error-d-AS scheme [6]). Let S be a scheme and let d ≥ 1
be an integer. Let τ be the minimum error among all non-trivial functions from
F (d)(S.comp) composed with S.enc = S.enc(x, re) for any fixed x = x̃ ∈ Fn

2 :

τ = min
{

err
(

f(S.enc(x̃, ·), ·)
) ∣∣∣ f(x, rc) ∈ F (d)(S.comp) \ {0, 1} , x̃ ∈ Fn

2

}
,

where the error is computed over re, rc. If τ > 0, the scheme S is said to be
degree-d algebraically secure with error τ (τ -error-d-AS).

Definitions of schemes First, we recall the basic dummy shuffling scheme
(called “the evaluation-phase model”, EPM) from [6].

Definition 9 (Scheme SDS
s). Let C : Fn

2 → Fm
2 be an implementation and let

s ≥ 2. Define the scheme SDS
s (C) with the following phases:

– S5ℓ,s.enc(x, re) : Fn
2 × F|re|

2 → Fñ
2 creates extra s − 1 fully random inputs,

derives random shuffling flags f from the input randomness re, and shuffles
all the inputs using these flags (c.f. subsection 3.4). Note ñ = n× s.

– S5ℓ,s.comp(x) : Fñ
2 → Fm̃

2 evaluates C at each of the s shuffled inputs (inde-
pendently) and outputs all the s outputs. Here m̃ = m× s.

– S5ℓ,s.dec(x, f) : Fm̃
2 × F|f |

2 → Fm
2 unshuffles the s outputs from the previous

phase using the flags f (which need to be securely passed from the encod-
ing phase) and outputs the right output. This phase is only defined for the
correctness and is not covered by security analysis in [6].

Before applying dummy shuffling, the circuit needs to be “refreshed”.

24

Definition 10 (Refreshed Circuit). Let C(x) : Fn
2 → Fm

2 be a Boolean cir-
cuit implementation with at most na AND gates. Define the refreshed circuit
C̃(x, r) : Fn

2 × Fna
2 → Fm

2 as follows. Replace each AND gate ak = zi ∧ zj in C,
1 ≤ k ≤ na by the circuit a′

k = rk ⊕ ak = rk ⊕ (zi ∧ zj), where rk is the k-th
extra bit; each wire using ak is rewired to use a′

k.

In our security proofs, we reduce the new combined schemes to the original
dummy shuffling scheme SDS

s , and then apply the main theorem from [6].

Theorem 2 ([6]). Let C be an implementation and s ≥ 2 an integer. The
dummy shuffling scheme S = SDS

s (C̃) is τ -error-d-AS for any 1 ≤ d ≤ s − 1,
with τ ≥ 2−2d · (s− d)/s.

We now formally define the three schemes of countermeasure combinations
considered in the paper. The main purpose of this is specifying the part of
the implementation covered by the proof: the operations’ gadgets excluding any
shuffling/sharing or decoding operations (in line with existing state-of-the-art
of dummy shuffling / ISW). For brevity, we will only describe the main phase
(comp) of each scheme.

Definition 11 (Scheme S5ℓ,s). Let C : Fn
2 → Fm

2 be an implementation and let
l ≥ 2, s ≥ 2. Define the scheme S5ℓ,s(C) with S5ℓ,s.comp(x, rc) : Fñ

2×F
|rc|
2 → Fm̃

2
as follows. The input x is consists of n lists of s+ℓ−1 share each, as well ass 3na

groups of preshuffled shared randomness (ℓ bits each). The computation proceeds
by applying the S5ℓ,s gadgets according to the circuit C, using fresh randomness
from rc and the preshared randomness from x.

Remark 1. The S5’s AND gadget already includes an equivalent of the refresh-
ing, therefore S5ℓ,s is intended to be applied directly to the original circuit C,
without the refreshing circuit transformation.

Definition 12 (Scheme SDS◦ISW
ℓ,s). Let C : Fn

2 → Fm
2 be an implementation

and let l ≥ 2, s ≥ 2. Let CISW (x, r′
c) denote the circuit where the gates of C are

replaced by the ISW gadgets and r′
c denotes the extra randomness used by these

gadgets. Observe that CISW has naℓ2 AND gates, where C has na AND gates.
Define the scheme SDS◦ISW

ℓ,s (C) with SDS◦ISW
ℓ,s .comp(x, rc) : Fsℓn+snaℓ2

2 ×F|rc|
2 →

Fsℓm
2 in the same way as SDS

s (C̃ISW)).comp, where an extra randomness r′
c

used by CISW is included (in s copies) in rc. Observe that C̃ISW has input size
extended from ℓn to ℓn + naℓ2 due to the refresh bits.

Definition 13 (Scheme SISW ◦DS
ℓ,s). Let C : Fn

2 → Fm
2 be an implementation

and let l ≥ 2, s ≥ 2. Let CDS(x) denote SDS
s (C̃).comp, i.e., s independent

copies of the refreshed circuit C̃ in parallel. Define the scheme SISW ◦DS
ℓ,s (C) with

SISW ◦DS
ℓ,s .comp(x, rc) : Fℓsn

2 × F2|rc| → Fℓsm
2 being the ISW-protected version of

CDS(x), i.e., where each input bit is replaced by ℓ shares and each gate is replaced
by the corresponding gadget; the randomness rc is used in the ISW gadgets.

25

Security proofs Intuitively, algebraic security of all of the combined schemes
is ensured by the fact that all of them contain dummy shuffling structure inside
them, and ISW-like sharing does not compute any new intermediate function of
original inputs. For examples, the ISW multiplication only algebraically “leaks”
the product of the original (unshared) intermediates, but this product was al-
ready present in the original circuit.

In the following, we present these ideas more formally. The high-level idea is
to partition the set of possible inputs of comp (for each possible fixed input of
enc) and randomness into instances of basic dummy shuffling circuits. Then, the
algebraic error τ is lower bounded by the minimum error across these instances,
which is given by Theorem 2.

Proposition 2. Let l ≥ 2, s ≥ 2. Then, for any underlying implementation C,
the scheme S5ℓ,s is τ -error-d-AS for all d, 1 ≤ d ≤ s−1, with τ ≥ 2−2d(s−d)/s.

Proof. For each input group of shares x1, . . . , xℓ−1, xℓ,1, . . . , xℓs
, let us consider

x1, . . . , xℓ−1 fixed. This makes the corresponding global input bit (which is also
considered fixed by the model) encoded in the dummy shuffling manner, in the
slotted variables xℓ,1, . . . , xℓ,s. Furthermore, for each application of the AND
gadget (Algorithm 4), let us consider all the used randomness fixed, except
the shared pre-shuffled randomness R = SPSRf , where we fix Ri,j for all i ∈
{1, . . . , s}, j ∈ {2, . . . , ℓ−1} (i.e., we don’t fix Ri,1). Assuming by induction that
both inputs’ linear parts are fixed (i.e., x1, . . . , xℓ−1, y1, . . . , yℓ−1), it is easy to
verify that the output linear part (z1, . . . , zℓ−1) is also fixed. Furthermore, the
output slotted variables zℓ,i would be equal to a quadratic function of xℓ,i and
yℓ,j , which is equal to (xℓ,i +cx)(yℓ,i +cy)+cz for some cx, cy, cz, plus the unfixed
SPSRf variable Ri,1. This exactly matches the dummy shuffling structure with
refreshes, up to adding some negations around the gadget (note that the XOR
gadget also preserves the invariant). We thus obtain the required bound for each
assignment of the fixed values and conclude that the bound holds for the full
construction. □

Proposition 3. Let l ≥ 2, s ≥ 2. Then, for any underlying implementation
C, the scheme SDS◦ISW

ℓ,s is τ -error-d-AS for all d, 1 ≤ d ≤ s − 1, with τ ≥
2−2d(s− d)/s.

Proof. This follows directly from Theorem 2, since dummy shuffling is applied
on top of (the ISW-protected) implementation. □

Proposition 4. Let l ≥ 2, s ≥ 2. Then, for any underlying implementation
C, the scheme SISW ◦DS

ℓ,s is τ -error-d-AS for all d, 1 ≤ d ≤ s − 1, with τ ≥
2−2d(s− d)/s.

Proof. The difference between the two compositions (ISW◦DS and DS◦ISW) lies
only where the AND-refreshes are placed. Letting Ref denote the refresh proce-
dure, which needs to be done before dummy shuffling (slotting), we have either
ISW◦DS◦Ref or DS◦Ref◦ISW. However, the pure ISW transformation and the

26

pure slotting procedure (making s copies with s − 1 random inputs and shuf-
fling) commute. Indeed, the considered SISW ◦DS

ℓ,s .comp consists of s copies of the
ISW-shared implementation. We can reinterpret it as dummy shuffling applied
to one of the copies (without adding refreshes). In other words, ISW◦DS◦Ref is
the same as DS◦ISW◦Ref. It is thus left to show that ISW◦Ref maintains the
property of the refreshed circuit required to show Theorem 2.

We recall briefly that the proof of Theorem 2 in [6] requires that the copied
circuit can be precomposed with a bijection (on the input and randomness)
so that the resulting circuit only computes (at most) quadratic functions. This
is easy to show due to the refresh procedure applied before ISW. The ISW
sharing is applied to the refresh bit of each AND gate, effectively transforming
it into ℓ random shares (in the case of a dummy slot), passed to the input
of the slot, and added to the shared output of the corresponding AND gate
(i.e., SecMult in the shared version). Therefore, the desired bijection can replace
the ℓ refreshing shares with the result of the refreshing. This would make the
result of the refreshing equal to the input of the composition of the circuit and
the bijection. Consequently, any further SecMult gadget would only use such
composition inputs as arguments and thus only quadratic functions would be
computed, concluding the proof. □

Probing security We recall an informal definition of SNI from [3], for the
full technical definition we refer the reader to the original paper.

Definition 14 (SNI [3]). A gadget is t-SNI whenever any t of its wires can be
simulated using only its shared inputs, and if its output encoding is uniform and
(t− d)-wise independent even if d shares of each of its inputs are known (for all
d such that 0 ≤ d < t).

In [3], the authors stated that in the ISW scheme with ℓ-shares the SecMult
(Algorithm 1) is (ℓ− 1)-SNI. In the case of ISWℓ◦DSs(C), since ISWℓ is applied
after Dummy Shuffling, it ensures that ISWℓ◦DSs(C) is (ℓ− 1)-probing secure.
However, it is not clear if DSs◦ISWℓ is (ℓ− 1)-probing secure as ISWℓ is applied
before, although we showed in Section 4 that we should not consider it as weaker
to higher-order filtering attacks.

To prove (ℓ−1)-probing the security of S5ℓ,s gadgets, we fix the main slot to
the first one, which can only lower the scheme security. By symmetry, evaluating
the SNI security by fixing the first slot implies evaluating the security of the
other s slots. If each of these cases do not leak, then any distribution of these
cases (in particular, uniform or almost uniform) does not leak as well.

To this end, we consider the S5ℓ,s gadget where the main slot is the first one
(xℓ,1) and the dummy slot variables xℓ,2, . . . , xℓ,s are refreshed using the pre-
shuffled randomness (see Algorithm 4). We then implemented5 this variation in
the MaskVerif tool [2] and verified the (ℓ − 1)-SNI security of this gadget for
2 ≤ s, ℓ ≤ 7. By the composability of SNI gadgets, any circuit composed of such
gadgets is SNI and thus is (ℓ−1)-probing secure (when the main slot’s position is

27

fixed). Together with the distribution argument from above, this proves (ℓ− 1)-
probing security for 2 ≤ s, ℓ ≤ 7 of S5ℓ,s-protected circuits.

7 Conclusion

After the recent introduction of filtering attacks, no countermeasure can resist
automated attacks in the white-box context. In this work, we proposed the first
formal analysis of a composition of two countermeasures and showed that ap-
plying Dummy Shuffling then ISW resists state-of-the-art attacks.

We also proposed a new scheme called Semi-Shuffled Secret-Sharing Scheme,
S5, a unique design merging a gate-wise masking scheme with an implementation-
wise countermeasure. We showed it shares the same resistance against these
automated attacks with a lighter implementation.

This study showed that combining countermeasures can be an efficient method-
ology to accumulate security properties, and raises the need of studying combina-
tions of fault-resistant schemes or circuit-analysis-preventing countermeasures.

5 https://github.com/S5white-box/code

28

https://github.com/S5white-box/code

References

1. Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of
internal encodings - revisiting the DCA attack on white-box cryptography. In: Pre-
neel, B., Vercauteren, F. (eds.) ACNS 18. LNCS, vol. 10892, pp. 103–120. Springer,
Heidelberg (Jul 2018). https://doi.org/10.1007/978-3-319-93387-0_6 2

2. Barthe, G., Beläıd, S., Cassiers, G., Fouque, P.A., Grégoire, B., Standaert, F.X.:
maskVerif: Automated verification of higher-order masking in presence of physical
defaults. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019, Part I.
LNCS, vol. 11735, pp. 300–318. Springer, Heidelberg (Sep 2019). https://doi.
org/10.1007/978-3-030-29959-0_15 3, 27

3. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking.
In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 2016. pp. 116–129. ACM Press (Oct 2016). https://doi.org/10.1145/
2976749.2978427 3, 8, 20, 27

4. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES im-
plementation. In: Handschuh, H., Hasan, A. (eds.) SAC 2004. LNCS, vol. 3357,
pp. 227–240. Springer, Heidelberg (Aug 2004). https://doi.org/10.1007/
978-3-540-30564-4_16 2

5. Biryukov, A., Udovenko, A.: Attacks and countermeasures for white-box de-
signs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol.
11273, pp. 373–402. Springer, Heidelberg (Dec 2018). https://doi.org/10.1007/
978-3-030-03329-3_13 2, 9, 11

6. Biryukov, A., Udovenko, A.: Dummy shuffling against algebraic attacks in white-
box implementations. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part II. LNCS, vol. 12697, pp. 219–248. Springer, Heidelberg (Oct 2021). https:
//doi.org/10.1007/978-3-030-77886-6_8 2, 3, 9, 11, 12, 14, 21, 23, 24, 25, 27

7. Bogdanov, A., Rivain, M., Vejre, P.S., Wang, J.: Higher-order DCA against stan-
dard side-channel countermeasures. In: Polian, I., Stöttinger, M. (eds.) COSADE
2019. LNCS, vol. 11421, pp. 118–141. Springer, Heidelberg (Apr 2019). https:
//doi.org/10.1007/978-3-030-16350-1_8 2, 6, 7

8. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
Hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (Aug 2016).
https://doi.org/10.1007/978-3-662-53140-2_11 2, 5, 7

9. Castelnovi, L., Houzelot, A.: On the (im)possibility of preventing differential com-
putation analysis with internal encodings. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2024(3), 452–471 (Jul 2024). https://doi.
org/10.46586/tches.v2024.i3.452-471, https://tches.iacr.org/index.php/
TCHES/article/view/11684 5

10. Charlès, A., Udovenko, A.: LPN-based attacks in the white-box setting. IACR
TCHES 2023(4), 318–343 (2023). https://doi.org/10.46586/tches.v2023.
i4.318-343, https://doi.org/10.46586/tches.v2023.i4.318-343, https://
tches.iacr.org/index.php/TCHES/article/view/11168 2, 6, 7, 11

11. Charlès, A., Udovenko, A.: White-box filtering attacks breaking SEL mask-
ing: from exponential to polynomial time. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2024(3), 1–24 (Jul 2024).
https://doi.org/10.46586/tches.v2024.i3.1-24, https://tches.iacr.
org/index.php/TCHES/article/view/11668 2, 7, 9, 11, 13

29

https://doi.org/10.1007/978-3-319-93387-0_6
https://doi.org/10.1007/978-3-319-93387-0_6
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-030-03329-3_13
https://doi.org/10.1007/978-3-030-03329-3_13
https://doi.org/10.1007/978-3-030-03329-3_13
https://doi.org/10.1007/978-3-030-03329-3_13
https://doi.org/10.1007/978-3-030-77886-6_8
https://doi.org/10.1007/978-3-030-77886-6_8
https://doi.org/10.1007/978-3-030-77886-6_8
https://doi.org/10.1007/978-3-030-77886-6_8
https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.46586/tches.v2024.i3.452-471
https://doi.org/10.46586/tches.v2024.i3.452-471
https://doi.org/10.46586/tches.v2024.i3.452-471
https://doi.org/10.46586/tches.v2024.i3.452-471
https://tches.iacr.org/index.php/TCHES/article/view/11684
https://tches.iacr.org/index.php/TCHES/article/view/11684
https://doi.org/10.46586/tches.v2023.i4.318-343
https://doi.org/10.46586/tches.v2023.i4.318-343
https://doi.org/10.46586/tches.v2023.i4.318-343
https://doi.org/10.46586/tches.v2023.i4.318-343
https://doi.org/10.46586/tches.v2023.i4.318-343
https://tches.iacr.org/index.php/TCHES/article/view/11168
https://tches.iacr.org/index.php/TCHES/article/view/11168
https://doi.org/10.46586/tches.v2024.i3.1-24
https://doi.org/10.46586/tches.v2024.i3.1-24
https://tches.iacr.org/index.php/TCHES/article/view/11668
https://tches.iacr.org/index.php/TCHES/article/view/11668

12. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: A white-box DES im-
plementation for DRM applications. In: Digital Rights Management Workshop.
Lecture Notes in Computer Science, vol. 2696, pp. 1–15. Springer (2002). https:
//doi.org/10.1007/978-3-540-44993-5_1 1, 2, 5

13. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (Aug 2003). https://doi.org/10.
1007/3-540-36492-7_17 1, 5

14. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao-Lai white-
box AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 34–49. Springer, Heidelberg (Aug 2013). https://doi.org/10.1007/
978-3-642-35999-6_3 2

15. Goubin, L., Paillier, P., Rivain, M., Wang, J.: Reveal secrets in adoring
poitras. a victory of reverse engineering and cryptanalysis over challenge 777.
CHES 2017 Rump Session, slides (2017), https://ches.2017.rump.cr.yp.to/
a905c99d1845f2cf373aad564ac7b5e4.pdf 2

16. Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to reveal the secrets of an
obscure white-box implementation. Cryptology ePrint Archive, Paper 2018/098
(2018), https://eprint.iacr.org/2018/098, https://eprint.iacr.org/2018/
098 6, 7

17. Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to reveal the secrets of an
obscure white-box implementation. Journal of Cryptographic Engineering 10(1),
49–66 (Apr 2020). https://doi.org/10.1007/s13389-019-00207-5 2, 6, 7

18. Goubin, L., Rivain, M., Wang, J.: Defeating state-of-the-art white-box
countermeasures. IACR TCHES 2020(3), 454–482 (2020). https://doi.
org/10.13154/tches.v2020.i3.454-482, https://tches.iacr.org/index.php/
TCHES/article/view/8597 2, 6

19. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 06. LNCS,
vol. 3989, pp. 239–252. Springer, Heidelberg (Jun 2006). https://doi.org/10.
1007/11767480_16 9

20. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 463–481. Springer, Heidelberg (Aug 2003). https://doi.org/10.1007/
978-3-540-45146-4_27 2, 7, 11

21. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.H.,
Nyang, D. (eds.) Information Security and Cryptology - ICISC 2010. pp. 278–
291. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24209-0_19 2

22. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (Aug 1999).
https://doi.org/10.1007/3-540-48405-1_25 1, 2

23. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisonek, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (Aug 2014). https:
//doi.org/10.1007/978-3-662-43414-7_14 2

24. Rivain, M., Wang, J.: Analysis and improvement of differential computation attacks
against internally-encoded white-box implementations. IACR TCHES 2019(2),
225–255 (2019). https://doi.org/10.13154/tches.v2019.i2.225-255, https://
tches.iacr.org/index.php/TCHES/article/view/7391 2

30

https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://ches.2017.rump.cr.yp.to/a905c99d1845f2cf373aad564ac7b5e4.pdf
https://ches.2017.rump.cr.yp.to/a905c99d1845f2cf373aad564ac7b5e4.pdf
https://eprint.iacr.org/2018/098
https://eprint.iacr.org/2018/098
https://eprint.iacr.org/2018/098
https://doi.org/10.1007/s13389-019-00207-5
https://doi.org/10.1007/s13389-019-00207-5
https://doi.org/10.13154/tches.v2020.i3.454-482
https://doi.org/10.13154/tches.v2020.i3.454-482
https://doi.org/10.13154/tches.v2020.i3.454-482
https://doi.org/10.13154/tches.v2020.i3.454-482
https://tches.iacr.org/index.php/TCHES/article/view/8597
https://tches.iacr.org/index.php/TCHES/article/view/8597
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.13154/tches.v2019.i2.225-255
https://doi.org/10.13154/tches.v2019.i2.225-255
https://tches.iacr.org/index.php/TCHES/article/view/7391
https://tches.iacr.org/index.php/TCHES/article/view/7391

25. Rivain, M., Wang, J.: Analysis and improvement of differential computation at-
tacks against internally-encoded white-box implementations. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2019(2), 225–255 (2019). https://doi.org/10.
13154/TCHES.V2019.I2.225-255, https://doi.org/10.13154/tches.v2019.i2.
225-255 5

26. Sasdrich, P., Moradi, A., Güneysu, T.: White-box cryptography in the gray box
- - A hardware implementation and its side channels -. In: Peyrin, T. (ed.)
Fast Software Encryption - 23rd International Conference, FSE 2016, Bochum,
Germany, March 20-23, 2016, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 9783, pp. 185–203. Springer (2016). https://doi.org/10.1007/
978-3-662-52993-5_10, https://doi.org/10.1007/978-3-662-52993-5_10 5

27. Seker, O., Eisenbarth, T., Liskiewicz, M.: A white-box masking scheme re-
sisting computational and algebraic attacks. IACR TCHES 2021(2), 61–105
(2021). https://doi.org/10.46586/tches.v2021.i2.61-105, https://tches.
iacr.org/index.php/TCHES/article/view/8788 2, 9, 11, 15

28. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4),
354–356 (Aug 1969). https://doi.org/10.1007/BF02165411, https://doi.org/
10.1007/BF02165411 3

29. Tang, Y., Gong, Z., Chen, J., Xie, N.: Higher-order DCA attacks on white-
box implementations with masking and shuffling countermeasures. IACR TCHES
2023(1), 369–400 (2023). https://doi.org/10.46586/tches.v2023.i1.369-400
2, 6

30. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.X.: Shuf-
fling against side-channel attacks: A comprehensive study with cautionary
note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 740–757. Springer, Heidelberg (Dec 2012). https://doi.org/10.1007/
978-3-642-34961-4_44 9

31. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2009 2nd In-
ternational Conference on Computer Science and its Applications. pp. 1–6 (2009).
https://doi.org/10.1109/CSA.2009.5404239 2

31

https://doi.org/10.13154/TCHES.V2019.I2.225-255
https://doi.org/10.13154/TCHES.V2019.I2.225-255
https://doi.org/10.13154/TCHES.V2019.I2.225-255
https://doi.org/10.13154/TCHES.V2019.I2.225-255
https://doi.org/10.13154/tches.v2019.i2.225-255
https://doi.org/10.13154/tches.v2019.i2.225-255
https://doi.org/10.1007/978-3-662-52993-5_10
https://doi.org/10.1007/978-3-662-52993-5_10
https://doi.org/10.1007/978-3-662-52993-5_10
https://doi.org/10.1007/978-3-662-52993-5_10
https://doi.org/10.1007/978-3-662-52993-5_10
https://doi.org/10.46586/tches.v2021.i2.61-105
https://doi.org/10.46586/tches.v2021.i2.61-105
https://tches.iacr.org/index.php/TCHES/article/view/8788
https://tches.iacr.org/index.php/TCHES/article/view/8788
https://doi.org/10.1007/BF02165411
https://doi.org/10.1007/BF02165411
https://doi.org/10.1007/BF02165411
https://doi.org/10.1007/BF02165411
https://doi.org/10.46586/tches.v2023.i1.369-400
https://doi.org/10.46586/tches.v2023.i1.369-400
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1109/CSA.2009.5404239
https://doi.org/10.1109/CSA.2009.5404239

	A light white-box masking scheme using Dummy Shuffled Secure Multiplication

