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Abstract. The Number Theoretic Transform (NTT) is a crucial compo-
nent in many post-quantum cryptographic (PQC) algorithms, enabling
efficient polynomial multiplication. However, the reliability of NTT com-
putations is an important concern, especially for safety-critical applica-
tions. This work presents novel techniques to improve the fault tolerance
of NTTs used in prominent PQC schemes such as Kyber, Dilithium,
and Falcon. The work first establishes a theoretical framework for er-
ror detection in NTTs, exploiting the inherent algebraic properties of
these transforms. It derives necessary and sufficient conditions for con-
structing error-detecting vectors that can identify single faults without
the need for costly recomputation. For the Dilithium scheme, the work
further advances the state-of-the-art by developing the first algorithm
capable of detecting up to two maliciously placed faults. The proposed
error detection methods are shown to reduce the number of required
multiplications by half, leading to significant improvements in computa-
tional efficiency compared to existing single error-detecting algorithms.
Concrete implementations for Kyber, Dilithium, and Falcon demonstrate
the practicality and effectiveness of the error-detection scheme.

Keywords: Error Detection · Fault Countermeasures · Lattice-Based
Cryptography · Number Theoretic Transform · Post-Quantum Cryptog-
raphy

1 Introduction

The advent of quantum computing poses a significant challenge to the security
of current cryptographic systems. Traditional public-key cryptography, which
underpins much of today’s digital security infrastructure, relies on the com-
putational difficulty of problems such as integer factorization and the discrete
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logarithm problem. Algorithms such as RSA are fundamental to secure commu-
nications but are vulnerable to quantum attacks by Shor’s algorithm [18], which
can solve these problems in polynomial time on a sufficiently large quantum com-
puter. In particular, long-lived products such as automotive microcontrollers, as
well as sensitive data with long shelf life, need to be secured now against the
future threat of quantum computers.

This threat has catalyzed the development of Post-Quantum Cryptography
(PQC), which aims to establish secure cryptographic protocols in the face of
quantum computing capabilities. In 2016, the National Institute of Standards
and Technology (NIST) announced a competition to standardize PQC alter-
natives, and in July 2022, they selected four algorithms. Three of these four
algorithms are from the class of lattice-based schemes, i.e., they rely on com-
plex problems over lattices for their security. The lattices in these schemes are
represented by elements of a polynomial ring, and arithmetic over this ring,
therefore, plays a crucial role in their execution. The Number Theoretic Trans-
form (NTT) is used to speed up this arithmetic, particularly the multiplication
of polynomials. This approach is a generalization of the Fast Fourier Transform
(FFT), which has long been established in fields such as signal processing. Since
a significant part of the computational complexity of these algorithms lies in the
NTT, it is a prime candidate for hardware acceleration, and many papers in the
literature have proposed such accelerators [4, 7, 14, 13, 15].

While considerable efforts have been made to provide fast and lean NTT
accelerators, the issue of fault tolerance has received little attention. The impor-
tance of this is described in [16], where the authors identify a critical vulnerability
in the NTT, which enables practical key recovery and message recovery attacks
on Kyber KEM, as well as existential forgery and verification bypass attacks on
the Dilithium signature scheme.

In safety-critical applications, such as those in the industrial sectors, error
resilience is an essential feature that the hardware must provide. This can be
achieved by recomputation techniques as presented in [17]. On the other hand,
these techniques are traditionally price-sensitive, so the additional chip area
required for these features should be minimal. However, current approaches that
guarantee error detection, such as those introduced by Sarker et al. [17], impose
a large area (or latency) overhead as they rely on recomputation.

This paper addresses this gap by investigating and developing new methods
for error-resilient NTT computation. By exploiting insights from existing error
detection techniques in FFT computation and adapting them to the NTT con-
text, this work aims to improve the fault tolerance of lattice-based algorithms
without incurring prohibitive overheads.

1.1 Related Work

In [17], the authors introduced the first error detection architecture for the NTT.
Their technique is based on recomputation, which ensures the detection of any
number of computational faults. However, it does not address errors during data
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loading and storage and significantly increases the computational complexity,
requiring N/2 logN additional multiplications, where N is the ring degree.

Since the hardware architecture of the NTT and the FFT are quite similar as
they both rely on a network of so-called butterfly operations, many well-studied
techniques used to detect faults in the FFT can be applied to the NTT as well.

In 1988, Jou and Abraham [11] introduced the first algorithm-based fault
tolerance (ABFT) scheme, which does not rely on recomputation. Instead, they
encode the inputs and decode the outputs of the FFT. Afterwards, they compare
these two results. If there is no error, the encoded inputs and decoded outputs
should be equal; if there is an error, they should not. The authors use the sum of
a normal Discrete Fourier Transform (DFT) and a rotated DFT as the encoder
and derive the decoder accordingly. Based on that, the authors in [1] present
their similar error detection algorithm on the NTT. It requires only N additional
multiplications. Despite this efficiency, it lacks proven error detection, making it
less reliable and not able to prevent faults in malicious attacker models.

In [19] and [20], the authors use weighted checksums for encoding and de-
coding, which means they multiply the outputs by an error-detection vector,
multiply the inputs by the FFT of that vector, and compare the results. This
method guarantees the detection of single errors with low overhead. The tech-
nique presented in [3] for the NTT is similar to that. Here the authors use
polynomial evaluation and interpolation to protect the computation of the NTT
against fault injection attacks. It requires the execution of 2N − 1 additional
multiplications, guarantees the detection of at least one fault, and offers the
potential for probabilistic detection of additional faults if these faults are to oc-
cur randomly. The method described in [3] can be seen as a special case of the
method presented in this work for single error detection. However, it requires
twice the number of multiplications and is only introduced in the case of a single
error, whereas our method can be extended to detect multiple errors efficiently.

In [10], the authors provide methods for the protection of arithmetic oper-
ations in lattice-based cryptography, including the NTT, against side-channel
and fault attacks. They do this by using the redundant number representation
(RNR) described in [21], which introduces redundancy by expanding the mod-
ulus q. Its effectiveness and cost depend heavily on the hardware architecture.
Unlike the probabilistic detection of this method, our approach guarantees the
detection of up to two faults.

Table 1: Comparison of different NTT Error Detection Techniques.

Method Error Detection Mult

[17] Calculation errors guaranteed, load/store errors not N/2 logN
[1] Probabilistic N
[3] One guaranteed 2N
This work One guaranteed N

Two guaranteed 2.5N
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1.2 Contribution

Our error detection technique extends concepts used in [19] and [20] for the FFT
to the NTT. This paper shows that single error-detection vectors exist for NTT
with complete splitting, as used in Dilithium and Falcon, and NTT without
complete splitting, as used in Kyber. We have also provided a concrete choice
for these error-detecting vectors, which are more general than the one presented
in [3]. Our choice of error-detecting vectors also requires fewer multiplications,
namely N instead of 2N . Furthermore, our work introduces the necessary and
sufficient conditions that guarantee the detection of two errors in Theorem 4.
Using this, we introduced the first non-recomputation-based technique that can
detect every error that results from injecting faults on two different wires in the
NTT network for Dilithium while requiring only 2.5N additional multiplications,
even if these faults are maliciously placed. This balance of efficiency and relia-
bility makes our method particularly suitable for applications in fault-sensitive
environments. Similar to [3], our method is also compatible with masking and
shuffling countermeasures. Table 1 provides a comparative analysis of various
NTT error detection techniques.

1.3 Notation

In this paper, we use the ring Rq = Zq[X]/(XN +1), where q is a prime number
satisfying q ≡ 1 mod 2N and N being a power of two. The following notation
is used throughout this document:

– Scalars are denoted by lowercase italic letters, e.g., a, b, c.
– Vectors are denoted by bold lowercase letters, e.g., v, w, x.
– Matrices are denoted by bold uppercase letters, e.g., A, B, C.
– Polynomials are denoted by lowercase roman letters, e.g., f(X), g(X),

h(X).

The coefficients in Zq of the polynomial f(X) = f0 + f1X + . . .+ fN−1X
N−1 ∈

Rq are f0, f1, . . . , fN−1. Additionally, a polynomial f(X) is assumed to define a
vector f by its coefficients, i.e., f =

(
f0 f1 · · · fN−1

)
.

2 Preliminaries

2.1 Number Theoretic Transform

The NTT is a powerful technique for polynomial multiplication that exploits the
properties of modular arithmetic to achieve efficient computation. The essence of
the NTT is to decompose the multiplication task into operations on lower-degree
polynomials, ideally scalars, and then combine these results to obtain the final
product.

Let Rq = Zq[X]/(XN + 1), as defined in Section 1.3. Then the negative
cyclic NTT (which is commonly used in lattice-based algorithms since it can be
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implemented efficiently) of a polynomial f ∈ Rq is defined by its evaluation at
the odd powers of the 2Nth root of unity ω2N

NTT(f) :=
(
f̂0 f̂1 f̂2 · · · f̂N−1

)
(1)

:=
(
f(ω1

2N ) f(ω3
2N ) f(ω5

2N ) · · · f(ω2N−1
2N )

)
. (2)

This definition allows us to look at the NTT as a linear transform similar to the
DFT, where

f̂j =

N−1∑
i=0

ω
(2j+1)i
2N fi. (3)

Given the matrix

A =


1 ω1

2N ω2
2N . . . ωN−1

2N

1 ω3
2N ω3·2

2N . . . ω
3·(N−1)
2N

1 ω5
2N ω5·2

2N . . . ω
5·(N−1)
2N

...
...

...
. . .

...

1 ω
(2N−1)
2N ω

(2N−1)·2
2N . . . ω

(2N−1)·(N−1)
2N

 (4)

the NTT of a vector f ∈ ZN
q can written as

f̂ = fA.

The inverse Number Theoretic Transform (INTT) is the interpolation poly-

nomial defined by the evaluation points (ω1
2N , f̂1), (ω

3
2N , f̂3), . . . , (ω

2N−1
2N , f̂2N−1).

It can also be written as a linear transform

fi =
1

N

N−1∑
j=0

ω
−(2i+1)j
2N f̂j . (5)

It is well known that the product of two polynomials h = f · g ∈ Rq can be
calculated using the NTT and INTT

h = INTT [NTT(f) ◦ NTT(g)] , (6)

where ◦ is component-wise multiplication. In addition to that, the NTT can be
calculated similarly to the FFT with a Cooley-Tukey algorithm [6], making it
run in quasi-linear time. This means that the product can be calculated in time
O(N logN) instead of O(N2).

This is achieved by using the ring isomorphism

Zq[X]/

(
X

N
2l − ω

N
2l

2N

)
−→ Zq[X]/

(
X

N
2l+1 − ω

N
2l+1

2N

)
× Zq[X]/

(
X

N
2l+1 + ω

N
2l+1

2N

)
,

p(X) 7→
[
p(X) mod

(
X

N
2l+1 − ω

N
2l+1

2N

)
, p(X) mod

(
X

N
2l+1 + ω

N
2l+1

2N

)]
,
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for l = 0, . . . , log2(N)− 1, since

p(X) mod XN/2l+1

− ω
N/2l+1

2N =

N/2l+1−1∑
i=0

(pi + ω
N/2l+1

2N pi+N/2l+1)Xi (7)

and

p(X) mod XN/2l+1

+ ω
N/2l+1

2N =

N/2l+1−1∑
i=0

(pi − ω
N/2l+1

2N pi+N/2l+1)Xi. (8)

hold. Calculations (7) and (8) can be done simultaneously in one single butterfly
unit as displayed in Figure 1. This leads to a butterfly network consisting of
logN layers of butterfly operations where the output of one layer is the input
to the next, starting with the input vector and ending with the output vector,
as shown in Figure 2. Each layer consists of N/2 butterfly units, so to calculate
a complete NTT N/2 log2 N butterfly operations are needed.

Note that this split is possible because ω2N is a 2Nth root of unity. If we
are given only an Nth root of unity ωN , then the last split is impossible. In this
case we end up with N/2 linear polynomials

f(X) mod X2 − ω2j+1
N , j = 0, 1, . . . , N/2− 1. (9)

Equation (6) can still be applied here, but instead of doing N scalar multiplica-
tions, we have to perform N/2 multiplications of linear polynomials followed by
reductions modulo the quadratic polynomials in (9). This leads to the following
well-known result that an incomplete NTT can be calculated with two half-sized
complete NTTs.

Fig. 1: Cooley-Tukey Butterfly.

Lemma 1. Let f(X) be an N -degree polynomial, and f(even)(X) and f(odd)(X)
be N/2-degree polynomials with the even/odd coefficients of f(X)

f(even)(X) =f0 + f2X
2 + · · ·+ fN−2X

N−2,

f(odd)(X) =f1X + f3X
3 + · · ·+ fN−1X

N−1.
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Fig. 2: Cooley-Tukey Butterfly Network for N = 8.

Let f̂ (lin) and f̂ (const) be the linear/constant part of the output of the incomplete
NTT

f̂ = f̂ (lin)X + f̂ (const)

Then using half-sized complete NTTs

f̂ (const) = NTT(f(even)) and f̂ (lin) = NTT(f(odd))

holds.

Proof. We have

f̂ =f(X) mod X2 − ωj
2N

=

N/2−1∑
i=0

f
(even)
i X2i mod X2 − ωj

2N +

N/2−1∑
i=0

f
(odd)
i X2i+1 mod X2 − ωj

2N

=

N/2−1∑
i=0

f
(even)
i X2i mod X2 − ωj

2N +X

N/2−1∑
i=0

f
(odd)
i X2i mod X2 − ωj

2N

=NTT(f(even)) +XNTT(f(odd)).

⊓⊔

2.2 NIST Standards

Dilithium [2] is a general-purpose lattice-based digital signature scheme based
on the Module Learning with Errors (M-LWE) problem. It has been selected
for standardization by NIST under the name ML-DSA [8]. The ring modulus
is q = 8380417, and the ring degree is N = 256. Signatures are generated
through several polynomial multiplications, typically arranged in matrix form.
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The security levels of Dilithium are determined by the size of these matrices,
with larger matrices providing stronger security.

Falcon [9] is another digital signature algorithm NIST will also standardize
for scenarios where Dilithium signature sizes may be too large. Falcon uses a ring
modulus q = 12289 and offers two levels of security: Falcon-I with a ring degree
of N = 512 and Falcon-V with a ring degree of N = 1024. The NTT is used in
the key generation, signature generation, and signature verification routines.

Kyber [5] is a lattice-based key encapsulation mechanism based on the M-
LWE problem. It has been selected for standardization by NIST under the name
ML-KEM [12]. The ring modulus is q = 3329, and the ring degree is N = 256.
In contrast to Dilithium and Falcon, the ring used in Kyber has no 2Nth root of
unity but an Nth root of unity. However, as we showed in the previous chapter,
this allows us to do an incomplete NTT, which can be done with two NTTs of
size N = 128.

3 Error Detection

In this section, we introduce our error detection method, beginning with a de-
scription of the fault and attacker model. Based on this model, we present our sin-
gle fault detection technique for complete NTTs and explain its applicability to
the Kyber cryptographic scheme. Additionally, we highlight how our method re-
lates to the similar approach presented in [3]. Following this, we describe the first
non-recomputation-based technique capable of detecting two errors for Dilithium
and conjecture that they also exist for Kyber and Falcon, even under a strong
attacker model. Since the only difference between the NTT and the inverse NTT
is that ω is replaced by its inverse and an additional scaling factor of 1/N , all the
concepts we will present in the following sections can be adapted to the inverse
NTT as well.

3.1 Fault Model

As discussed in Section 2.1, the NTT is computed in multiple layers, each consist-
ing of a fixed number of butterfly operations. These layers are typically computed
sequentially, with intermediate results stored and loaded from memory. We start
with some assumptions on our fault model, which are the same as in [11, 19,
20]. We assume that additive errors in loading, storing, or calculating a value
can occur within a single NTT network butterfly unit, as shown in Figure 3.
The errors can occur either due to random hardware faults or error injection by
malicious attackers. Errors of type {2, 5} can be considered equivalent to errors
of type {8}, and errors of type {3, 6} equivalent to errors of type {9}. Therefore,
we only need to consider errors occurring at each butterfly’s inputs and outputs.
We also distinguish between two attacker models. A weak attacker can only in-
ject faults at random locations, and a strong attacker can control the location
and the error value.
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Fig. 3: Illustration of the Fault Model.

An NTT network of dimension N consists of log2 N layers. The inputs to the

0th layer are f0, . . . , fN−1, while f̂0, . . . , f̂N−1 form the outputs of the (log2 N)th
layer. Each layer contains N wires. For each layer l = 0, . . . , log2 N , we can
express the wth wire uniquely as

w =
N

2l
µ1 + µ2, (10)

where µ1 ∈ {0, . . . , 2l − 1} and µ2 ∈ {0, . . . ,N/2l − 1}. This representation is
advantageous as it illustrates the propagation of an error through the network
until it reaches the output layer, as seen in Figure 4. If an error happens at the
line (l, w), it will affect all outputs with index

m = 2lm1 +m2 (11)

where m2 = µ1 and m1 ∈ {0, . . . ,N/2l − 1}. We now derive the exact value that

Fig. 4: Error Propagation in the NTT Network. Error occurring in (l, N
2l
µ1+µ2) affects

all outputs where m mod 2l = µ1.

a propagated error has on the output layer.
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Definition 1. For a given (l, w) ∈ {0, . . . , logN} × {0, . . . , N − 1} the error

function E(l,w)(e) = [E
(l,w)
0 (e), . . . , E

(l,w)
N−1(e)], is defined for each e ∈ Zq by the

expression

E(l,w)
m (e) = E

(l,N
2l

µ1+µ2)

2lm1+m2
(e) =

{
e
∑N

2l
−1

r=0 ω
(2(2lr+µ1)+1)µ2

2N if m2 = µ1,

0 if m2 ̸= µ1,
(12)

where (l,m1,m2, µ1, µ2) are defined as in (10) and (11).

We proceed to demonstrate that (12) is the error at the output layer after one
fault has been injected. We show this by applying the same techniques used in
[19] on the FFT.

Theorem 1. A fault e ∈ Zq injected on line (l, N
2l
µ1 + µ2) will cause the error

vector E(l,w)(e), i.e.,

NTTfaulty(f) = NTT(f) +E(l,w)(e). (13)

Proof. Consider the mth output of the NTT given by

f̂m =

N−1∑
n=0

fnω
n·(2m+1)
2N , for 0 ≤ m < N.

Decomposing m and n as

m = 2lm1 +m2,

n =
N

2l
n1 + n2,

with 0 ≤ m2, n1 < 2l and 0 ≤ m1, n2 < N/2l, we can express f̂m as

f̂m =f̂2lm1+m2

=

N−1∑
n=0

fnω
n(2(2lm1+m2)+1)
2N

=

N

2l
−1∑

n2=0

2l−1∑
n1=0

fN

2l
n1+n2

ω
(2(2lm1+m2)+1)(N

2l
n1+n2)

2N

=

N

2l
−1∑

n2=0

2l−1∑
n1=0

fN

2l
n1+n2

ω
(2(2lm1+m2)+1)(N

2l
n1)

2N

ω
(2(2lm1+m2)+1)n2

2N

=

N

2l
−1∑

n2=0

2l−1∑
n1=0

fN

2l
n1+n2

ω
(2m2+1)N

2l
n1

2N


︸ ︷︷ ︸

N

2l
m2+n2 output of the lth stage

ω
(2(2lm1+m2)+1)n2

2N .
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Let f̂ ′ be the NTT output with an error e ∈ Zq in line (l, N
2l
µ1 + µ2). Then it

will affect only the outputs whose indices have the form 2lm1 + µ1. This gives

f̂ ′
2lm1+m2

= f̂2lm1+m2
,

when µ1 ̸= m2 and when µ1 = m2 holds:

f̂ ′
2lm1+m2

=

N

2l
−1∑

n2=0

2l−1∑
n1=0

fN

2l
n1+n2

ω
(2m2+1)N

2l
n1

2N +

ω
(2(2lm1+m2)+1)n2

2N

+ e

N

2l
−1∑

r=0

ω
(2(2lr+µ1)+1)µ2

2N

=f̂2lm1+m2
+ e

N

2l
−1∑

r=0

ω
(2(2lr+µ1)+1)µ2

2N

=f̂m + E(l,w)
m (e).

⊓⊔

It should be noted that in the context of our fault model, a single fault is de-
fined as a single faulty butterfly unit. An alternative attack vector could be to
falsify the value of a single twiddle factor, which would be loaded on multiple
butterflies, or a zeroization of all twiddle factors, using a single targeted attack,
as demonstrated in [16]. In our fault model, this would result in multiple faulty
butterflies. We will show in Section 3.3 that, in this case, errors will be detected
with 1− 1/q probability.

3.2 Single Error Detection

Error detection is achieved by encoding the NTT’s input, decoding the output,
and then comparing the two results. We need to show that if no error has oc-
curred, the encoded input and decoded output will match; conversely, if a single
error has occurred, they will not.

Let the output of the NTT be denoted by the vector f̂ =
(
f̂0 f̂1 · · · f̂N−1

)T
,

and let the error detecting vector be a =
(
a0 a1 · · · aN−1

)
. We compute the

error detection value over the output as

Cout := af̂ . (14)
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Fig. 5: Proposed error detection technique in which the inputs and outputs of the NTT
are pointwise multiplied by vectors b and a, respectively. The resulting sums are then
compared.

To determine the error detection value for the input, we substitute the defi-
nition of the NTT for f̂

Cout =
(
a0 a1 · · · aN−1

)

1 ω

(2·0+1)·1
2N · · · ω

(2·0+1)·(N−1)
2N

1 ω
(2·1+1)·1
2N · · · ω

(2·1+1)·(N−1)
2N

...
...

. . .
...

1 ω
(2·(N−1)+1)·1
2N · · · ω(2·(N−1)+1)·(N−1)

2N


︸ ︷︷ ︸

=:
(
b0 b1 · · · bN−1

)


f0
f1
...

fN−1

 .

(15)
We define the input to the comparator as:

Cin := bf. (16)

This way, we guarantee that if no error occurs, Cin = Cout holds. The question
is whether Cin ̸= Cout holds for any a when an error occurs. In the following
theorem, we provide necessary and sufficient conditions on the choice of a so
that no single error can go undetected.

Theorem 2. An error e ∈ Zq\{0} occurring at line (l, N
2l
µ1+µ2) ∈ {0, . . . , log2 N}×

{0, . . . , N − 1} is detectable with a vector a = (a0, . . . , aN−1) ∈ ZN
q if and only

if the sum Sl
N

2l
µ1+µ2

(a) defined by

Sl
N

2l
µ1+µ2

(a) :=

N

2l
−1∑

r=0

ω
(2(2lr+µ1)+1)µ2

2N a2lr+µ1
(17)

is nonzero.
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Proof. From Theorem 1 we know that f̂ ′
2lm1+m2

, the mth output the faulty NTT

with m = 2lm1 +m2 defined as in (11), is given by

f̂ ′
m = f̂m + E(l,w)

m (e).

Applying the definitions of Cout, Cin and taking their difference, we obtain

Cout =

N−1∑
m=0

f̂ ′
mam

=

N−1∑
m=0

f̂mam + E(l,w)
m (e)am

=
N−1∑
m=0

f̂mam + e

N

2l
−1∑

r=0

ω
(2(2lr+µ1)+1)µ2

2N a2lr+µ1

=

N−1∑
m=0

f̂mam + e · Sl
N

2l
µ1+µ2

(a)

and

Cin =

N−1∑
m=0

fmbm

=

N−1∑
m=0

f̂mam.

Then we obtain:

Cout − Cin = e · Sl
N

2l
µ1+µ2

(a).

Therefore, an error is detectable if and only if this difference is nonzero, which
is equivalent to the condition

Sl
N

2l
µ1+µ2

(a) ̸= 0.

⊓⊔

The subsequent theorem provides conditions under which an error-detecting vec-
tor exists and describes a recursive method for constructing such a vector.

Theorem 3. If the inequality q > 2N − 1 holds, then there exists at least one
single error-detecting vector.

Proof. We describe a constructive method for building such a vector that al-
ways works as long as q > 2N − 1. The idea is to choose the first term in every



14 M. Abdelmonem et al.

Sl
N

2l
µ1+µ2

(a) such that the sum is nonzero. This will give us a number of restric-

tions on each element ai. These restrictions are kept track of with sets Bi that
will contain values that ai can not take. In the end, we can simply pick values
for ai that avoid Bi for 0 ≤ i ≤ N − 1. We explain the process in more detail.

Starting with l = log2 N and hence µ2 = 0, we have N sums (one for each
µ1 ∈ {0, . . . , N − 1}), consisting of only one term

Slog2 N
µ1

(a) = ω0
2Naµ1

.

By choosing all the elements of a to be nonzero, S
log2 N
µ1 (a) will be nonzero, hence

we initialize all the sets Bµ1
= {0} for 0 ≤ µ1 ≤ N − 1.

In the next step, l = log2 N − 1, we also have N − 1 sums, but each sum has
two terms, where the first term is always aµ1

, with µ1 ∈ {0, . . . ,N/2 − 1}

S
log2 N−1
2µ1+µ2

(a) = ω
(2µ1+1)µ2

2N aµ1
+ ω

(2(N
2 +µ1)+1)µ2

2N aN
2 +µ1

.

We now fix ai for
N
2 ≤ i ≤ N − 1, to any value not in Bi, i.e., anything nonzero.

For the remaining indices, we now get two additional constraints

aµ1
̸= −

ω
(2(2l+µ1)+1)µ2

2N aN
2 +µ2

ω
(2µ1+1)µ2

2N

,

for µ2 = 0, 1. These two values are added to Bµ1
for 0 ≤ µ1 ≤ N/2 − 1. This

process can be continued with l = log2 N − 2, which will fix ai for N/4 ≤ i ≤
N/2− 1 and add four values to Bµ1

for 0 ≤ µ1 ≤ N/4− 1.
Finally, for l = 0 (and hence µ1 = 0), we get N forbidden values added to

B0, in addition to the
∑log2 N

l=1
N
2l

values that were added in previous stages, and
all other ai’s have been fixed. All the values a0 must avoid might be different,
so the maximum size of B0 is

log2(N)∑
l=0

N

2l
= 2N − 1, (18)

and all other Bi will have smaller maximum sizes. So when q > 2N − 1, we
are guaranteed that it will always be possible to choose ai ∈ Zq \ EXi for all
i = 0, 1, . . . , N − 1. ⊓⊔

Theorem 2 proves that if the conditions are fulfilled, suitable error detection
vectors exist, thereby showing that it is possible to guarantee error detection for
a wide selection of parameters. In practice, other vectors might be more suitable
for implementation. In particular, for Kyber, Dilithium, and Falcon, it suffices
to set b =

(
1 1 . . . 1

)
and a = bA−1, because in this case Sl

N

2l
µ1+µ2

(a) ̸= 0 holds

for all l,mu1, µ2, as we will demonstrate in Section 4.1.

Application to Kyber Using Lemma 1, we can apply our error detection
method on Kyber as well by simply checking the two half-sized NTTs. That
means our error-detecting vector has length N/2 but has to be used twice.
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Error Detection through Evaluation and Interpolation In [3], the authors
have derived an error detection technique based on polynomial evaluation and
interpolation. This work has been done independently and during the same time
as ours. The advantage of our scheme, aside from the reduction in the number of
multiplications required, is that the general description of the method allows for
an efficient extension to more than single errors, as shown in the next section.
This technique can be seen as a special case of ours because the evaluation of
the polynomial f ∈ Rq at u ∈ Zq is simply a checksum over the input coefficients
of the NTT

w := f(u) =

N−1∑
i=0

fiu
i. (19)

Using Lagrangian interpolation, they do another checksum over the outputs of
the NTT

w′ := f(u) =

N−1∑
i=0

f̂iLi(u), (20)

where Li(x) is the ith Lagrange polynomial.
By setting

b =
(
b0 b1 · · · bN−1

)
=

(
u0 u1 · · · uN−1

)
, (21)

and
a =

(
a0 a1 · · · aN−1

)
=

(
L0(u) L1(u) · · · LN−1(u)

)
, (22)

for i = 0, 1, . . . , N − 1, we can see that their method is a special case of ours.

3.3 Double Error Detection

Since the NTT is linear, it is easy to see that the output error of two faults in
the butterfly network is the same as the sum of the output errors of two single
faults. That means if we apply the same error-detecting technique as in Chapter
3, we get

Cout − Cin = Sl
w(a)e1 + Sλ

γ (a)e2,

for two errors e1, e2 ∈ Zq\{0} that occur on the lines (l, w) and (λ, γ). The error
will not be detected if

e2 = −Sl
w(a)e1
Sλ
γ (a)

.

If e2 is random and independent from e1, the probability for that is 1/q. This
probability also holds for the case of more than two errors. Depending on the
application, this might be sufficient. However, for settings requiring higher as-
surance of error detection or considering strong attackers with the ability to
select the positions and values of the errors, stronger guarantees are required.
If we want to detect any two errors with 100% probability, we must use two
checksums, as shown in Figure 6.

In the following theorem, we derive conditions on the two error-detecting
vectors a and α so that two errors are always detected.
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Fig. 6: Proposed error detection method for identifying two errors. The inputs are first
pointwise multiplied by vectors b and β, and their sums are computed. These sums
are then compared to the sum of the pointwise multiplication of the NTT output with
vectors a and α.

Theorem 4. Two errors e1 and e2 occurring at lines (l, w) and (λ, γ) are de-
tectable with two vectors a = (a0, . . . , aN−1),α = (α0, . . . , αN−1) ∈ ZN

q if and

only if Sl
w(a) ̸= 0 and Sλ

γ (α) ̸= 0 and

Sl
w(α)Sλ

γ (a)− Sl
w(a)S

λ
γ (α) ̸= 0. (23)

Proof. If (l, w) = (λ, γ), then the two errors can be regarded as one single error
and will then be detected using only one vector. So, for the rest of the proof, we
assume that the lines are distinct.

The errors will be detected if and only if(
0
0

)
̸=

(
C1

out − C1
in

C2
out − C2

in

)
.

We know (
C1

out − C1
in

C2
out − C2

in

)
=

(
Sl
w(a)e1 + Sλ

γ (a)e2
Sl
w(α)e1 + Sλ

γ (α)e2

)
=

(
Sl
w(a) Sλ

γ (a)
Sl
w(α) Sλ

γ (α)

)(
e1
e2

)
.
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Since (e1, e2) ̸= (0, 0) we know that(
C1

out − C1
in

C2
out − C2

in

)
̸=

(
0
0

)
if and only if ∣∣∣∣Sl

w(a) Sλ
γ (a)

Sl
w(α) Sλ

γ (α)

∣∣∣∣
=Sl

w(α)Sλ
γ (a)− Sl

w(a)S
λ
γ (α) ̸= 0.

⊓⊔

Let

S :=
(
S0
0(a) S

0
1(a) · · ·S0

N−1(a) S
1
0(a) · · · S1

N−1(a) · · · S
log2 N
0 (a) · · · S

log2 N
N−1 (a)

)
,

σ :=
(
S0
0(α) S0

1(α) · · ·S0
N−1(α) S1

0(α) · · · S1
N−1(α) · · · S

log2 N
0 (α) · · · S

log2 N
N−1 (α)

)
,

and

D := (D(S,σ)ij) := (Siσj − Sjσi) ∈ ZN(log2 N+1)×N(log2 N+1)
q .

Now, (23) translates to D(S,σ)ij ̸= 0 for i ̸= j. Note that D is antisymmetric,
meaning D(S,σ)ij = −D(S,σ)ji. That means(

N(log2 N + 1)

2

)
=

(N(log2 N + 1)− 1)N(log2 N + 1)

2

inequalities have to be satisfied. Each of these conditions that are satisfied cor-
responds to a pair of wires in the NTT network and assures that any possible
fault injection in these two wires will always be detected.

Similar to Theorem 3, we present here a sufficient condition that guaran-
tees the existence of an error-detecting vector pair a and α that satisfies the
conditions in Theorem 4.

Theorem 5. When q > (2N − 1)N(log2 N + 1) there exists at least one pair
(a,α) such that a and α will detect any two errors in the NTT computation.

Proof. Let s = |S| = |σ| be the number of values in S and σ, that is

s = N(log2 N + 1).

The total number of distinct determinants given by pairs of these values is given
by: (

s

2

)
=

s(s− 1)

2
.

These represent the number of distinct wire pairs to be tested for the determinant
condition.
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Now, fix α as done in the proof of Theorem 3. Fixing α will also determine
all values in σ. We proceed to select the values in a, making sure to avoid the
banned values in Bi for each i. When fixing the ai’s as explained in the proof
of Theorem 3, the values in S also become fixed. To satisfy the determinant
condition we must fix the ai such that all determinants Siσj − Sjσi are also
non-zero. Therefore, values for ai that would make any determinant zero must
also be added to Bi.

As in the proof of Theorem 3, the last value to fix is a0, and this is the value
that must meet the largest number of constraints. So, in the following, we focus
on selecting a0. Among the s sums in S, there are 2N − 1 sums that start with
a0, as established in Theorem 3. The values for each of these 2N − 1 sums form
determinants with the s − 1 values in σ, so the number of determinants that
include a0 is (2N − 1)(s− 1). In the worst case, this leads to the same number
of unique values to be added to B0. From the proof of Theorem 3, we know that
there are up to 2N − 1 additional values in B0 to avoid that, make sure each Si

is non-zero. So in total we have

|B0| ≤ (2N − 1)(s− 1) + (2N − 1) = (2N − 1)N(log2 N + 1).

As long as q is larger than this bound, we can always select a value for a0 that
avoids making any Si or any determinant 0. ⊓⊔

In Section 4.2, we will demonstrate that the bound in this theorem is not sharp
enough to construct error-detecting vectors for Kyber and Falcon, because the
ring modulus q is too small for these schemes. For Dilithium, we will use this
construction to give a pair of error-detecting vectors that can detect up to two
errors.

4 Implementation

This section introduces effective implementations for our error detection tech-
niques. An NTT without error detection requires N log2 N

2 multiplications. In
order to apply our error detection method with one checksum, we have to multi-
ply the inputs of the NTT with b and the outputs with a, which both require N
multiplication. So we would need 2N extra multiplications. If we want to use two
checksums, we would need 4N extra multiplications. However, by choosing as
many multipliers equal to one as possible, we can demonstrate that we only need
N extra multiplication for detecting a single error and 2.5N extra multiplication
for detecting two errors.

4.1 One Checksum

Let b =
(
1 1 · · · 1

)
, we can show that the corresponding a can always detect

one fault by calculating all Sl
w(a) and confirming they are all nonzero for Kyber,

Dilithium, and Falcon parameters. The exact vectors for guaranteed single error
detection are given in the appendix.
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4.2 Two Checksums

For our two error detection methods, we use the same a and choose

αN−1 = αN−2 = · · · = αN
2 −1 = 1.

We choose the remaining αi recursively as described in the proof of Theorem
5, so that D(S,σ)ij is nonzero for all i ̸= j. After that, we compute β := αA.
Since half of the elements of α are one, we only need 1.5N multiplications more
compared to the one checksum case, meaning in total, we need 2.5N extra mul-
tiplications. The condition in Theorem 5 is satisfied for Dilithium. We provided
α and β for Dilithium in the appendix as well.

For Kyber and Falcon, it is not feasible to find values for low indices of α
using this method because this condition is not met. That means we can only
guarantee two fault detection on a certain percentage of all wire pairs. As long as
this percentage is not a 100%, meaning there is at least one wire pair where errors
can go undetected, a strong attacker can compute S and σ and thereby also D
and thus find the wire pair where errors can go undetected and exploit this by
injecting the two faults there. The fact that the Kyber and Falcon parameters
do not meet the condition in Theorem Theorem 5 does not exclude that a two
error-detecting vector pair exists. In Section 3.3 we have shown that(

N(log2 N + 1)

2

)
elements must be nonzero. Choosing a and α randomly and assuming each
D(S,σ)ij is random in Zq, the probability, that they are all nonzero is(

1− 1

q

)(N(log2 N+1)
2 )

.

Since a,α ∈ ZN
q , there are qN possible values for each, so the expected number

of vectors satisfying all the non-zero conditions is

qN
(
1− 1

q

)(N(log2 N+1)
2 )

≫ 1.

Hence, we conjecture that two error-detecting pairs of vectors exist. We leave
proving/disproving the existence of such a pair and finding it for the Falcon
and Kyber parameters as an open problem. We have shown that N additional
multiplications are required for one checksum, while 2.5N are needed for two
checksums. A complete NTT (used in Dilithium and Falcon) requires N log2 N

2

multiplications, and an incomplete NTT (used in Kyber) requires N(log2 N−1)
2

since the last layer is omitted. The cost of applying our error detection methods,
using one and two checksums (CS), relative to the cost of the NTT in terms of
multiplications is given in Table 2. The numbers are computed as the additional
number of multiplications required for the checksums and dividing it by the
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Table 2: Relative cost of our error detection techniques in terms of multiplications.

Scheme 1 CS 2 CS

complete NTT
2

log2 N
5

log2 N

Incomplete NTT
2

log2 N−1
5

log2 N−1

Table 3: Relative cost of our error detection techniques in terms of multiplications for
Kyber, Dilithium and Falcon.

Scheme 1 CS 2 CS

Dilithium 0.25 0.625
Falcon I 0.222 0.556
Falcon V 0.2 0.5
Kyber 0.286 0.714

number of multiplications needed for a complete or incomplete NTT. Now, set-
ting N to the numbers presented in Section 2.2 results in the numbers presented
in Table 3.

Our proposed technique using one checksum reduces the number of required
multiplications compared to both [17] and [3] methods while still guaranteeing
the detection of one error. This highlights the efficiency of the approach, es-
pecially for larger values of N . Note that unlike in the recomputation method,
additional storage is needed for the coefficients in our method and in [3]. We need
to store N coefficients for Dilithium and Falcon, whereas we only need N

2 coef-
ficients for Kyber because the same coefficients can be used for each half-sized
NTT performed for Kyber.

5 Conclusion

We have introduced a generalized error detection technique that improves the
security of implementations using the NTT. Our approach is capable of detecting
a single fault injected into a wire in the NTT network, requiring only N addi-
tional multiplications, significantly reducing the overhead compared to previous
methods. We have further extended our technique to detect up to two faults
with 100% reliability for Dilithium. This extended capability is achieved with an
overhead of only 2.5N multiplications.

We leave finding an efficient algorithm that gives us a and α that guarantee
the finding of two faults as an open problem. Note that this technique can be
extended to detect more than two errors by adding more checksums. However,
this is not practical as the additional cost is close to the cost of recomputation.
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A Input and Output Multipliers for Techniques

This appendix presents the input and output multipliers for the four schemes:
Dilithium, Kyber, Falcon I, and Falcon V. The multipliers a and α represent the
output multipliers, while b and β represent the input multipliers.

A.1 Dilithium

Table 4: Dilithium Multipliers

Multiplier Values

b {1}256

a 7511306, 7268830, 5474525, 5631597, 117126, 2894273, 5415375, 6137690, 5412937, 879351, 7630876,
7950048, 2707004, 2223415, 7757689, 6794386, 4413478, 1434037, 6593365, 2371240, 3775900, 2069059,
3050174, 2348902, 885454, 950158, 391593, 800539, 7946762, 7724623, 5651610, 7657810, 2346552, 5905197,
5542002, 7885504, 2266250, 295216, 2670256, 3902893, 3120930, 2207058, 4168676, 7836275, 6401582,
3423687, 8256204, 7633393, 1059210, 2645505, 2868862, 5530426, 2218396, 6414667, 5248249, 5834839,
2638709, 8231049, 856716, 4909726, 317499, 2591320, 566630, 7259347, 6220539, 3522895, 5398834,
120765, 626895, 3309814, 6419699, 6297723, 1949702, 3647406, 993985, 5264941, 5720329, 317292, 6501330,
8088966, 2307577, 2816303, 5278157, 3404063, 5743422, 7610229, 6838252, 6520254, 7614068, 3264328,
94014, 3796289, 372831, 1903233, 7842375, 2906811, 5023664, 1466781, 3010429, 3141092, 8212262,
1157548, 2840242, 5561907, 907175, 1740496, 7577840, 3098394, 4536213, 3727033, 7910907, 910323,
6456321, 7599170, 1993767, 3785916, 5655461, 141639, 2230157, 3832335, 1244577, 8243668, 5047276,
8140557, 7668172, 6349172, 1865577, 458640, 7856305, 6449368, 1965773, 646773, 174388, 3267669, 71277,
7070368, 4482610, 6084788, 8173306, 2659484, 4529029, 6321178, 715775, 1858624, 7404622, 404038,
4587912, 3778732, 5216551, 737105, 6574449, 7407770, 2753038, 5474703, 7157397, 102683, 5173853,
5304516, 6848164, 3291281, 5408134, 472570, 6411712, 7942114, 4518656, 8220931, 5050617, 700877,
1794691, 1476693, 704716, 2571523, 4910882, 3036788, 5498642, 6007368, 225979, 1813615, 7997653,
2594616, 3050004, 7320960, 4667539, 6365243, 2017222, 1895246, 5005131, 7688050, 8194180, 2916111,
4792050, 2094406, 1055598, 7748315, 5723625, 7997446, 3405219, 7458229, 83896, 5676236, 2480106,
3066696, 1900278, 6096549, 2784519, 5446083, 5669440, 7255735, 681552, 58741, 4891258, 1913363, 478670,
4146269, 6107887, 5194015, 4412052, 5644689, 8019729, 6048695, 429441, 2772943, 2409748, 5968393,
657135, 2663335, 590322, 368183, 7514406, 7923352, 7364787, 7429491, 5966043, 5264771, 6245886,
4539045, 5943705, 1721580, 6880908, 3901467, 1520559, 557256, 6091530, 5607941, 364897, 684069,
7435594, 2902008, 2177255, 2899570, 5420672, 8197819, 2683348, 2840420, 1046115, 803639

β 5791121, 3876506, 1812116, 6910599, 858961, 6913584, 1646428, 6089601, 1687322, 1692175, 8209040,
6038377, 3135400, 2658623, 5231154, 2825832, 7459415, 1536327, 673249, 8185212, 4466516, 4563857,
1324194, 1484330, 3250522, 6133580, 7011383, 3192114, 4672318, 852807, 734578, 1733239, 1530988,
2107944, 3476597, 4659735, 6931191, 3307246, 931936, 4318748, 3365542, 6899902, 5065856, 4622758,
1397997, 2951382, 754023, 1798099, 3195823, 3497845, 2416746, 6363325, 2797313, 7003747, 950818,
4537049, 3176956, 3716664, 3285715, 266803, 6849160, 863625, 725468, 2606776, 730552, 3686374, 878625,
4948166, 6650739, 7231932, 6848492, 820998, 2281956, 7314383, 58338, 283191, 587775, 5464612, 7304239,
2482172, 6313754, 5290807, 8091398, 2174999, 2840257, 7268978, 8085971, 3356631, 7419232, 1759623,
806177, 7326295, 5529423, 6049846, 6216333, 2683516, 4465040, 7884559, 3614972, 4621250, 3674006,
8096164, 4710879, 8243928, 959352, 2153760, 4194460, 2974857, 3417856, 7195563, 2452187, 6961339,
1097918, 4887793, 1147063, 6037604, 2152775, 6064359, 5454959, 7637950, 1036440, 3903066, 1624500,
2136616, 2488859, 3153127, 3709896, 5919480, 6466532, 4260647, 7762914, 8168859, 236105, 3298174,
447552, 3583058, 738963, 4792049, 6900868, 758349, 3272429, 3782168, 6597079, 2273128, 4607808,
1627153, 5103035, 7052454, 1405956, 3874393, 6113179, 4036651, 8149804, 4536498, 5262283, 456865,
7206170, 6825363, 8262546, 6872768, 6539836, 2760140, 7695741, 5619060, 3179045, 977927, 26228,
1912650, 4046403, 5715759, 5274874, 1804365, 695873, 4825361, 3914766, 1509198, 153827, 4966095,
1260046, 5380686, 4291999, 5707936, 7547877, 6232755, 1886681, 8174088, 7939977, 7936308, 2490571,
1780044, 5225834, 1798941, 6229697, 5730199, 2872745, 6764240, 1587611, 3918125, 2630225, 2908370,
739846, 1155391, 460911, 5297629, 2123787, 7670502, 1321504, 6147571, 6271373, 1671981, 2956561,
6354100, 185111, 151819, 4115853, 4922346, 1514357, 5212543, 3076389, 2485910, 1094922, 1153739,
7128445, 5878944, 8305779, 1056013, 3403448, 2243480, 402191, 1486893, 139458, 3216086, 7897803,
6272279, 138104, 4482737, 4426582, 8353746, 6751744, 3709583, 4836134, 6647156, 2451104, 1386815,
8279168, 6690625, 3490424, 7603346, 5219632, 2792155, 7179649, 6558019, 3076511, 6226001, 6144737,
1144017

Continued on next page
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(Continued)

Multiplier Values

α {1}128, 5240616, 6625160, 3870293, 451475, 4098101, 3509475, 4720287, 3204487, 2633339, 8261277,
5371451, 4802163, 1052454, 7985202, 7011421, 1789078, 2482935, 2162795, 2130324, 6911940, 8224373,
7975065, 7362675, 5318767, 256384, 2940530, 1953642, 2284237, 7680329, 4798738, 182096, 6420995,
6262728, 6853579, 1467056, 6679038, 3384943, 1364494, 1815539, 7173684, 381074, 5963412, 378030,
4343637, 1345703, 7882546, 7249321, 3605300, 2415392, 591713, 2396687, 7518040, 2221840, 8100078,
4900106, 5263091, 4483921, 6097599, 5483953, 5444106, 117789, 1529228, 6899376, 3873271, 4699322,
4450988, 1726840, 679011, 2219822, 4140793, 466656, 2203965, 6509925, 7787412, 603082, 2094235,
7492608, 5969231, 1342993, 5182765, 6680762, 3437557, 2969525, 2295436, 4479817, 4814112, 2440657,
2484460, 7892496, 237306, 530634, 816529, 6541158, 7820662, 5399117, 6330948, 3594342, 5863786,
3924672, 251287, 5757005, 7867614, 309896, 217175, 5619146, 2193097, 2578525, 7908807, 4382588,
6137892, 97233, 5691157, 6645351, 4427738, 6988557, 8131464, 431981, 1572591, 4052322, 508107, 748762,
3306458, 289281, 6956158, 7513153, 4539509, 3758126, 4320940

A.2 Kyber

Table 5: Kyber Multipliers

Multiplier Values

b {1}128

a 777, 1317, 3320, 2467, 2492, 857, 2702, 6, 2870, 1105, 2433, 2589, 2739, 424, 2713, 1618, 2499, 1982, 225,
3045, 17, 3301, 1812, 2207, 472, 2128, 3204, 260, 2400, 3200, 459, 2102, 30, 1819, 3051, 3042, 2998, 1225,
1479, 1831, 2198, 1035, 312, 2126, 725, 2730, 1983, 1482, 2930, 9, 298, 2832, 2875, 36, 2231, 1321, 369,
2224, 1289, 373, 1042, 1305, 1550, 367, 2910, 1727, 1972, 2235, 2904, 1988, 1053, 2908, 1956, 1046, 3241,
402, 445, 2979, 3268, 347, 1795, 1294, 547, 2552, 1151, 2965, 2242, 1079, 1446, 1798, 2052, 279, 235, 226,
1458, 3247, 1175, 2818, 77, 877, 3017, 73, 1149, 2805, 1070, 1465, 3305, 3260, 232, 3052, 1295, 778, 1659,
564, 2853, 538, 688, 844, 2172, 407, 3271, 575, 2420, 785, 810, 3286, 1960, 2500

A.3 Falcon I

Table 6: Kyber Multipliers

Multiplier Values

b {1}512

Continued on next page
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(Continued)

Multiplier Values
a 9731, 10896, 3629, 5768, 3702, 10752, 248, 5700, 894, 9075, 10343, 4800, 3736, 871, 1204, 3480, 6457, 5172,

1052, 7314, 10097, 7279, 836, 4745, 9877, 6410, 398, 7342, 7766, 6782, 6180, 11927, 2683, 3917, 8355, 292,
4446, 9568, 2659, 9230, 9949, 9749, 7319, 2216, 10032, 2960, 4485, 8998, 3331, 1247, 3997, 10227, 3656,
1473, 1039, 2347, 11136, 6413, 4135, 11082, 12276, 4709, 11349, 5174, 1338, 6381, 9557, 1752, 9842, 9356,
5253, 8858, 4562, 4643, 3078, 6293, 10951, 1048, 3042, 2500, 5139, 6229, 11523, 89, 3604, 520, 7321, 7150,
11840, 2406, 6780, 4399, 8453, 12240, 8969, 3360, 9846, 3866, 11229, 334, 266, 6548, 436, 4370, 11150, 7583,
5479, 25, 3109, 2808, 362, 8252, 1297, 4898, 6620, 7979, 1259, 10963, 5598, 11425, 4118, 9719, 6575, 10156,
11834, 1814, 10318, 7408, 9487, 3574, 9042, 1460, 9783, 11047, 8008, 1578, 10159, 1353, 4960, 7734, 303,
11821, 12175, 4413, 4983, 1439, 5183, 4518, 2723, 9038, 8559, 12001, 11286, 11302, 10582, 11585, 2034,
4579, 1031, 6169, 6774, 11430, 7864, 6385, 7147, 236, 704, 440, 7054, 7612, 5758, 572, 4756, 838, 1613,
10544, 11291, 6950, 5478, 4185, 9697, 7392, 2272, 3915, 8770, 12209, 10436, 2502, 10604, 9615, 3677, 3711,
10766, 11568, 3398, 2158, 8879, 10687, 6024, 10045, 1002, 9224, 8275, 4464, 8985, 5095, 2064, 3690, 1872,
5593, 2315, 6927, 3838, 9050, 4040, 9973, 8868, 1043, 11281, 1279, 4952, 8041, 3197, 10803, 414, 3684, 7917,
7302, 5368, 9701, 6023, 8313, 7977, 8892, 11156, 203, 1242, 10163, 4006, 7187, 3006, 616, 3257, 8552, 5295,
2163, 1155, 8409, 2140, 11540, 10048, 2588, 10907, 1160, 138, 3080, 9161, 12103, 11081, 1334, 9653, 2193,
701, 10101, 3832, 11086, 10078, 6946, 3689, 8984, 11625, 9235, 5054, 8235, 2078, 10999, 12038, 1085, 3349,
4264, 3928, 6218, 2540, 6873, 4939, 4324, 8557, 11827, 1438, 9044, 4200, 7289, 10962, 960, 11198, 3373,
2268, 8201, 3191, 8403, 5314, 9926, 6648, 10369, 8551, 10177, 7146, 3256, 7777, 3966, 3017, 11239, 2196,
6217, 1554, 3362, 10083, 8843, 673, 1475, 8530, 8564, 2626, 1637, 9739, 1805, 32, 3471, 8326, 9969, 4849,
2544, 8056, 6763, 5291, 950, 1697, 10628, 11403, 7485, 11669, 6483, 4629, 5187, 11801, 11537, 12005, 5094,
5856, 4377, 811, 5467, 6072, 11210, 7662, 10207, 656, 1659, 939, 955, 240, 3682, 3203, 9518, 7723, 7058,
10802, 7258, 7828, 66, 420, 11938, 4507, 7281, 10888, 2082, 10663, 4233, 1194, 2458, 10781, 3199, 8667,
2754, 4833, 1923, 10427, 407, 2085, 5666, 2522, 8123, 816, 6643, 1278, 10982, 4262, 5621, 7343, 10944, 3989,
11879, 9433, 9132, 12216, 6762, 4658, 1091, 7871, 11805, 5693, 11975, 11907, 1012, 8375, 2395, 8881, 3272,
1, 3788, 7842, 5461, 9835, 401, 5091, 4920, 11721, 8637, 12152, 718, 6012, 7102, 9741, 9199, 11193, 1290,
5948, 9163, 7598, 7679, 3383, 6988, 2885, 2399, 10489, 2684, 5860, 10903, 7067, 892, 7532, 12254, 1159,
8106, 5828, 1105, 9894, 11202, 10768, 8585, 2014, 8244, 10994, 8910, 3243, 7756, 9281, 2209, 10025, 4922,
2492, 2292, 3011, 9582, 2673, 7795, 11949, 3886, 8324, 9558, 314, 6061, 5459, 4475, 4899, 11843, 5831, 2364,
7496, 11405, 4962, 2144, 4927, 11189, 7069, 5784, 8761, 11037, 11370, 8505, 7441, 1898, 3166, 11347, 6541,
11993, 1489, 8539, 6473, 8612, 1345, 2510

A.4 Falcon V

Table 7: Dilithium Multipliers

Multiplier Values

b {1}1024

Continued on next page
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(Continued)

Multiplier Values
a 5134, 848, 11089, 10938, 1011, 817, 2526, 9283, 782, 4219, 4751, 4902, 2193, 10753, 7706, 7898, 1171, 3639,

10713, 5439, 784, 11574, 7926, 12186, 3206, 4153, 4812, 7629, 696, 9045, 2514, 1858, 3783, 7541, 7222,
9668, 11459, 7212, 3677, 3807, 8190, 3655, 638, 5306, 6388, 235, 2885, 3353, 11680, 6854, 6079, 2426, 3500,
7777, 410, 257, 3888, 7642, 10472, 5288, 11453, 4349, 11933, 1838, 1912, 4377, 11043, 2822, 18, 8304, 6192,
3765, 4226, 2437, 3861, 8720, 7305, 4458, 3292, 8020, 9047, 8749, 11742, 4556, 7955, 8762, 5931, 11216,
10554, 758, 5264, 4577, 868, 12268, 4361, 12151, 6181, 9100, 11291, 10817, 5551, 8305, 158, 11465, 9595,
5815, 8785, 556, 8120, 9183, 9073, 2054, 7786, 10275, 321, 4321, 12222, 8887, 6048, 6501, 2053, 5318, 8165,
7372, 2348, 2222, 11053, 3465, 2471, 11883, 6716, 1438, 4119, 808, 305, 9401, 200, 3504, 417, 3936, 9027,
5682, 6292, 6939, 2220, 6545, 3447, 192, 10231, 11654, 3309, 11467, 1612, 2624, 2351, 1663, 600, 9333, 6039,
11273, 7588, 4972, 10760, 1306, 1464, 8269, 7051, 7911, 10815, 11337, 10774, 10680, 8923, 11610, 4844, 2006,
11589, 10511, 4242, 12180, 9547, 3882, 9440, 6655, 11862, 9356, 1038, 1814, 686, 6747, 5654, 9212, 7531,
8289, 1821, 10063, 3362, 7017, 9825, 3445, 10249, 5996, 4930, 7246, 9218, 6691, 7543, 2736, 12067, 3893,
1816, 9025, 9894, 6551, 12250, 9031, 3409, 6197, 8768, 2945, 10242, 372, 11116, 11828, 9532, 5820, 10618,
10328, 11597, 3667, 6131, 4312, 7679, 2651, 4059, 5621, 5483, 8308, 9906, 5631, 7658, 7748, 1820, 6429,
4275, 9685, 5127, 6917, 7651, 12006, 2761, 7896, 3755, 2036, 11315, 9806, 6702, 11153, 852, 5113, 5284,
4978, 442, 5487, 10773, 3948, 7498, 11245, 10142, 10828, 7108, 4628, 10709, 5876, 10410, 4217, 5394, 5168,
6024, 11967, 8264, 84, 6231, 6205, 3002, 2677, 2112, 9094, 1001, 7895, 4596, 5266, 1642, 9752, 5130, 6806,
11323, 8186, 9766, 6032, 2074, 11766, 10565, 10171, 11311, 5455, 1572, 209, 2758, 8920, 9037, 9223, 5665,
3777, 8595, 6748, 7881, 10688, 8986, 9030, 5477, 1953, 9397, 2347, 11577, 2867, 9412, 3068, 2716, 7144,
8755, 12115, 7971, 11029, 3537, 274, 3727, 3207, 10748, 4143, 10084, 4992, 3701, 3737, 7447, 6323, 8009,
6582, 7186, 2872, 5807, 790, 5080, 4984, 4730, 10831, 2343, 4034, 3587, 2591, 11731, 7015, 2592, 7484, 7939,
10529, 5082, 9502, 2502, 6382, 6126, 8700, 8467, 7722, 2127, 2306, 7799, 4562, 2026, 6601, 12243, 9939,
8285, 5249, 8322, 711, 384, 2779, 9481, 1566, 7864, 10200, 7341, 426, 10189, 10939, 8607, 5966, 5353, 6465,
6067, 8687, 6351, 4987, 507, 3282, 10497, 10710, 7071, 11987, 1733, 5261, 10459, 38, 5210, 8600, 8767, 7657,
4, 4680, 154, 10749, 10617, 10979, 4042, 10875, 8218, 4327, 4443, 195, 2496, 3884, 5496, 226, 3386, 8619,
2403, 759, 10059, 11929, 7172, 915, 11213, 2441, 1046, 1462, 10261, 550, 8929, 560, 11905, 11442, 6471,
6313, 1205, 5017, 10175, 11636, 6280, 12109, 4464, 2058, 5583, 8325, 6620, 10665, 9540, 8621, 3066, 5584,
6171, 10506, 6842, 994, 9909, 6989, 9352, 11132, 3600, 1076, 2196, 8599, 2239, 5195, 263, 4390, 10008, 5594,
7417, 7066, 4271, 2952, 10390, 9637, 10732, 6979, 4394, 6478, 9858, 10722, 78, 6673, 7409, 12153, 3559,
2254, 2330, 9574, 5146, 7436, 2217, 7668, 4597, 10048, 4829, 7119, 2691, 9935, 10011, 8706, 112, 4856, 5592,
12187, 1543, 2407, 5787, 7871, 5286, 1533, 2628, 1875, 9313, 7994, 5199, 4848, 6671, 2257, 7875, 12002,
7070, 10026, 3666, 10069, 11189, 8665, 1133, 2913, 5276, 2356, 11271, 5423, 1759, 6094, 6681, 9199, 3644,
2725, 1600, 5645, 3940, 6682, 10207, 7801, 156, 5985, 629, 2090, 7248, 11060, 5952, 5794, 823, 360, 11705,
3336, 11715, 2004, 10803, 11219, 9824, 1052, 11350, 5093, 336, 2206, 11506, 9862, 3646, 8879, 12039, 6769,
8381, 9769, 12070, 7822, 7938, 4047, 1390, 8223, 1286, 1648, 1516, 12111, 7585, 12261, 4608, 3498, 3665,
7055, 12227, 1806, 7004, 10532, 278, 5194, 1555, 1768, 8983, 11758, 7278, 5914, 3578, 6198, 5800, 6912,
6299, 3658, 1326, 2076, 11839, 4924, 2065, 4401, 10699, 2784, 9486, 11881, 11554, 3943, 7016, 3980, 2326,
22, 5664, 10239, 7703, 4466, 9959, 10138, 4543, 3798, 3565, 6139, 5883, 9763, 2763, 7183, 1736, 4326, 4781,
9673, 5250, 534, 9674, 8678, 8231, 9922, 1434, 7535, 7281, 7185, 11475, 6458, 9393, 5079, 5683, 4256, 5942,
4818, 8528, 8564, 7273, 2181, 8122, 1517, 9058, 8538, 11991, 8728, 1236, 4294, 150, 3510, 5121, 9549, 9197,
2853, 9398, 688, 9918, 2868, 10312, 6788, 3235, 3279, 1577, 4384, 5517, 3670, 8488, 6600, 3042, 3228, 3345,
9507, 12056, 10693, 6810, 954, 2094, 1700, 499, 10191, 6233, 2499, 4079, 942, 5459, 7135, 2513, 10623, 6999,
7669, 4370, 11264, 3171, 10153, 9588, 9263, 6060, 6034, 12181, 4001, 298, 6241, 7097, 6871, 8048, 1855,
6389, 1556, 7637, 5157, 1437, 2123, 1020, 4767, 8317, 1492, 6778, 11823, 7287, 6981, 7152, 11413, 1112,
5563, 2459, 950, 10229, 8510, 4369, 9504, 259, 4614, 5348, 7138, 2580, 7990, 5836, 10445, 4517, 4607, 6634,
2359, 3957, 6782, 6644, 8206, 9614, 4586, 7953, 6134, 8598, 668, 1937, 1647, 6445, 2733, 437, 1149, 11893,
2023, 9320, 3497, 6068, 8856, 3234, 15, 5714, 2371, 3240, 10449, 8372, 198, 9529, 4722, 5574, 3047, 5019,
7335, 6269, 2016, 8820, 2440, 5248, 8903, 2202, 10444, 3976, 4734, 3053, 6611, 5518, 11579, 10451, 11227,
2909, 403, 5610, 2825, 8383, 2718, 85, 8023, 1754, 676, 10259, 7421, 655, 3342, 1585, 1491, 928, 1450, 4354,
5214, 3996, 10801, 10959, 1505, 7293, 4677, 992, 6226, 2932, 11665, 10602, 9914, 9641, 10653, 798, 8956,
611, 2034, 12073, 8818, 5720, 10045, 5326, 5973, 6583, 3238, 8329, 11848, 8761, 12065, 2864, 11960, 11457,
8146, 10827, 5549, 382, 9794, 8800, 1212, 10043, 9917, 4893, 4100, 6947, 10212, 5764, 6217, 3378, 43, 7944,
11944, 1990, 4479, 10211, 3192, 3082, 4145, 11709, 3480, 6450, 2670, 800, 12107, 3960, 6714, 1448, 974,
3165, 6084, 114, 7904, 12286, 11397, 7688, 7001, 11507, 1711, 1049, 6334, 3503, 4310, 7709, 523, 3516, 3218,
4245, 8973, 7807, 4960, 3545, 8404, 9828, 8039, 8500, 6073, 3961, 12247, 9443, 1222, 7888, 10353, 10427,
332, 7916, 812, 6977, 1793, 4623, 8377, 12008, 11855, 4488, 8765, 9839, 6186, 5411, 585, 8912, 9380, 12030,
5877, 6959, 11627, 8610, 4075, 8458, 8588, 5053, 806, 2597, 5043, 4724, 8482, 10407, 9751, 3220, 11569,
4636, 7453, 8112, 9059, 79, 4339, 691, 11481, 6826, 1552, 8626, 11094, 4367, 4559, 1512, 10072, 7363, 7514,
8046, 11483, 2982, 9739, 11448, 11254, 1327, 1176, 11417, 7131


