
The Nonlinear Filter Model of Stream Cipher Redivivus

Claude Carlet1,2 and Palash Sarkar∗3

1LAGA Laboratory, University of Paris 8, 93526 Saint-Denis, France
2University of Bergen, Norway

3Indian Statistical Institute, 203, B.T. Road, Kolkata, India 700108
Emails: claude.carlet@gmail.com, palash@isical.ac.in

February 5, 2025

Abstract

The nonlinear filter model is an old and well understood approach to the design of secure stream
ciphers. Extensive research over several decades has shown how to attack stream ciphers based on
this model and has identified the security properties required of the Boolean function used as the
filtering function to resist such attacks. This led to the problem of constructing Boolean functions
which provide adequate security and at the same time are efficient to implement. Unfortunately,
over the last two decades no good solutions to this problem appeared in the literature. The lack
of good solutions has effectively led to nonlinear filter model becoming more or less obsolete. This
is a big loss to the cryptographic design toolkit, since the great advantages of the nonlinear filter
model are its simplicity, well understood security and the potential to provide low cost solutions for
hardware oriented stream ciphers. In this paper we construct balanced functions on an odd number
n ≥ 5 of variables with the following provable properties: linear bias equal to 2−bn/2c−1, algebraic
degree equal to 2blog2bn/2cc, algebraic immunity at least d(n− 1)/4e, fast algebraic immunity at least
1+d(n−1)/4e, and can be implemented using O(n) NAND gates. The functions are obtained from a
simple modification of the well known class of Maiorana-McFarland bent functions. By appropriately
choosing n and the length L of the linear feedback shift register, we show that it is possible to obtain
examples of stream ciphers which are provably κ-bit secure against well known classes of attacks for
various values of κ. We provide concrete proposals for κ = 80, 128, 160, 192, 224 and 256. For the 80-
bit, 128-bit, and the 256-bit security levels, the circuits for the corresponding stream ciphers require
about 1743.5, 2771.5, and 5607.5 NAND gates respectively. For the 80-bit and the 128-bit security
levels, the gate count estimates compare quite well to the famous ciphers Trivium and Grain-128a
respectively, while for the 256-bit security level, we do not know of any other stream cipher design
which has such a low gate count.
Keywords: Boolean function, stream cipher, nonlinearity, algebraic immunity, efficient implemen-
tation.

1 Introduction

The nonlinear filter model of stream ciphers is several decades old; one may note that the model was
extensively discussed in the book by Rueppel [37] which was published in the mid-1980s. The nonlinear
filter model consists of two components, namely a linear feedback shift register (LFSR) and a Boolean

∗Corresponding author.

1

function f which is applied to a subset of the bits of the LFSR. At each clock, f is applied to the present
state of the LFSR to produce a single keystream bit and simultaneously the LFSR also moves to the
next state. LFSRs are very efficient to implement, particularly in hardware. So the implementation
efficiency of the nonlinear filter model is essentially determined by the efficiency of implementation of
f .

Extensive research carried out over the last few decades has shown several approaches to crypt-
analysing the nonlinear filter model of stream ciphers. The initial line of attack was based upon de-
termining the linear complexity of the produced keystream. For an LFSR of length L and a Boolean
function of algebraic degree d, under certain reasonable and easy-to-ensure conditions, the linear com-
plexity of the keystream is known to be at least

(
L
d

)
(see [37]). Using large enough values of L and

d, linear complexity based attacks can be made infeasible. The second phase of attacks consisted of
various kinds of (fast) correlation attacks. Starting with the first such attack in 1985 [41], a long line of
papers [35, 23, 17, 28, 29, 15, 12, 30, 11, 16, 42, 45, 44, 31, 32] explored various avenues for mounting
correlation attacks. Surveys of some of the older attacks appear in [9, 10, 33, 2]. The resistance to
correlation attacks is mainly determined by the linear bias ε of the Boolean function f . The linear bias
is determined by the nonlinearity of the function f ; the higher the nonlinearity, the lower the linear bias.
The third phase of attacks started in 2003 with the publication of the algebraic attack [19] and was
soon followed by the publication of the fast algebraic attack [18]. Resistance to these attacks requires
the function f to possess high (fast) algebraic immunity.

The various attacks mentioned above have posed the following design challenge for a Boolean function
to be used in the nonlinear filter model of stream ciphers. Construct balanced Boolean functions
which achieve a good combination of nonlinearity and algebraic resistance and are also very efficient to
implement. Unfortunately, since the time algebraic attacks were proposed in the early-2000s, no good
solutions to the design challenge for Boolean functions have appeared in the literature. A consequence
of not being able to find good solutions to the design challenge is that the nonlinear filter model of
stream ciphers became obsolete. This is somewhat unfortunate since the model is very old, well studied
with well understood security, and the potential to provide low gate count solutions in hardware.

We note that even though the nonlinear filter model became obsolete, use of LFSRs in the design
of stream cipher has continued for both hardware and software oriented proposals (see for example [26,
4, 22]). Instead of using a Boolean function, such designs typically use a nonlinear finite state machine
to filter the output of the LFSR. Some ciphers such as [8, 3] have gone further and replaced the LFSR
with one or more nonlinear feedback shift registers (NFSRs).

In this paper, we revisit the above mentioned design problem for Boolean functions towards the
goal of reviving the nonlinear filter model. Bent functions [36] are a very well studied class of Boolean
functions. They exist for even number of variables and provide the highest possible nonlinearity. How-
ever, their use in cryptography is not clear. The introduction of Chapter 6 of [13] summarises the
state-of-the-art as follows: “we do not know an efficient construction using bent functions which would
provide Boolean functions having all the necessary features for being used in stream ciphers.” Even
though this is discouraging, nonetheless, we start our construction from bent functions.

The well known Maiorana-McFarland class of bent functions is defined as follows. For m ≥ 1, let X
and Y be two vectors of m variables. Then a 2m-variable Maiorana-McFarland bent function is defined
to be 〈π(X),Y〉 ⊕ h(X), where π is a bijection from m-bit strings to m-bit strings and h is any m-
variable Boolean function. It is well-known that the nonlinearity of Maiorana-McFarland functions does
not depend on the choice of h nor on that of the permutation π. Bad choices of π and h (for example,
π to be the identity permutation and h to be a constant function) provide functions whose algebraic
immunity is low. On the bright side, we observe that it may be possible to improve the algebraic

2

resistance by properly choosing π and h. Assume that π is chosen to be the identity permutation. It
is known [20] that the majority function possesses the best possible algebraic immunity. Motivated by
this fact, we choose h to be the majority function on m variables. We prove that the resulting bent
function on 2m variables has algebraic immunity at least dm/2e, and hence fast algebraic immunity at
least 1 + dm/2e. On the implementation aspect, we show that the majority function can be computed
using O(m) NAND gates. So the obtained bent function has maximum nonlinearity, good algebraic
immunity and at the same time is quite efficient to implement. The algebraic immunity is not the
maximum possible, but due to the implementation efficiency, it is possible to increase the number of
variables to achieve the desired level of algebraic resistance. One small problem is that a bent function is
not balanced. This problem is easily rectified by XORing a new variable to the bent function, obtaining
a function on an odd number of variables. This modification does not affect the linear bias or the
algebraic resistance and requires only one extra XOR gate for implementation. A novelty of our work
is the observation and the proof that choosing h to be the majority function improves the algebraic
immunity. While Maiorana-McFarland bent functions have been extensively studied in the literature,
this simple observation has escaped the notice of earlier researchers.

We perform a detailed concrete security analysis of some of the well known attacks on the nonlinear
filter model. As the outcome of this analysis, for various security levels, we provide concrete proposals
for stream ciphers based on the nonlinear filter model using the Boolean functions described above as the
filtering functions. A strong point in favour of these proposals is that at the appropriate security levels
they provide provable assurance against well known classes of attacks. Further, we provide concrete gate
count estimates for the entire circuit to implement the stream ciphers. For the 80-bit, 128-bit, 160-bit,
192-bit, 224-bit and the 256-bit security levels, we obtain gate count estimates of 1743.5, 2771.5, 3520.5,
4188.5, 4854.5, and 5607.5 NAND gates respectively. The gate count estimates for the 80-bit and the
128-bit security levels compare quite well1 with famous ciphers such as Trivium [8] and Grain-128a [1]
which offer 80-bit and 128-bit security respectively. For the other security levels, we are not aware of
other stream ciphers which have such low gate counts. So our revival of the nonlinear filter model of
stream ciphers leads to concrete proposals which offer a combination of both provable security against
well known classes of attacks at a desired level of security and also low gate count.

We note that there are some old (prior to the advent of algebraic attacks) works [39, 40, 24] on
efficient implementation of Boolean functions on a large number of variables targeted towards the
nonlinear combiner model of stream ciphers. In the context of the nonlinear filter model, however, we
are not aware of any previous work on the design and implementation of Boolean functions on a large
number of variables. So this aspect is also new to the present work.

Comparison between the nonlinear filter model and some modern stream ciphers. Well
known stream ciphers such as Trivium [8], Mickey [3], Grain-128a [1], SNOW [22] and Sosemanuk [4],
use novel and ingenious ideas. Nonetheless, these are standalone designs. The nonlinear filter model, on
the other hand, is a model for stream cipher design. Due to the simplicity of the nonlinear filter model,
provable properties of the filtering function can be translated into provable resistance of the stream
cipher against well known classes of attacks. In particular, for the proposals that we put forward, the
provable linear bias of the filtering function translates to provable protection against a large class of fast
correlation attacks, and the provable lower bound on the (fast) algebraic immunity translates to provable
resistance against algebraic attacks. Stream ciphers based on either nonlinear finite state machines, or

1Following [1] we estimated 8 NAND gates for a flip-flop, whereas Trivium estimated 12 NAND gates for a flip-flop.
Using 12 NAND gates for a flip-flop, our proposal at the 80-bit security level requires about 2395.5 NAND gates, whereas
Trivium requires about 3488 NAND gates.

3

nonlinear feedback shift registers do not enjoy this advantage, i.e. for such stream ciphers it is very
hard to obtain provable guarantees against various well known types of attacks. As an example, our
proposal at the 128-bit security level generates keystream for which the best linear approximation has
provable correlation of 2−60, while at the same security level, for Sosemanuk [4] the best known [31]
linear approximation has correlation 2−20.84, and it is not known whether there are approximations
with higher correlations. Similarly, the time complexities of fast algebraic attacks against Trivium,
Mickey, Grain-128a, SNOW and Sosemanuk are not known. It is believed that these stream ciphers
can withstand fast algebraic attacks. In contrast, we are able to prove that at the appropriate security
levels, the fast algebraic attack is ineffective against the new nonlinear filter model based stream cipher
proposals that we put forward.

One advantage of using LFSRs is that it is possible to provably ensure that the LFSR has a maximum
period. For stream ciphers based on NFSRs, such as Trivium and Mickey, such provable assurance is
not available. For stream ciphers which use a combination of LFSR and NFSR such as Grain-128a, it
is possible to mount a divide-and-conquer attack. For example the attack in [42] on Grain-128a finds
the state of the LFSR independently of the state of the NFSR. (In some ways this is reminiscent of the
attack by Siegenthaler [41] on the nonlinear combiner model.) So even though Grain-128a uses a 256-bit
state, due to the divide-and-conquer strategy the full protection of the large state is not achieved. On
the other hand, for the nonlinear filter model, there is no known way to mount a divide-and-conquer
attack. Our proposal at the 128-bit security level uses a 257-bit LFSR, and there is no way to estimate
half the state of the LFSR without involving the other half.

Lastly, we note that the nonlinear filter model provides a scalable design, while it is not clear how
to scale the ideas behind standalone designs such as those in [8, 3, 1, 22, 4]. By properly choosing
the LFSR and the filtering function, the nonlinear filter model can be instantiated to various security
levels. This provides a family of stream ciphers rather than a single stream cipher. The scalability of
the design makes it easier to target different security levels and also to ramp up parameters in response
to improvements of known attacks. For example, at the 128-bit security level, the complexity of the fast
algebraic attack on the proposal that we put forward is more than 2130.12, and the correlation of the
best linear approximation of the keystream is 2−60. By increasing the gate count by about 47 gates, it
is possible to ensure that the complexity of the fast algebraic attack is more than 2135.83 and the best
linear approximation of the keystream is 2−64.

The paper is organised as follows. In Section 2 we describe the preliminaries. The Boolean function
construction is described in Section 3. Section 4 performs the concrete security analysis and Section 5
provides the gate count estimates. Finally, Section 6 concludes the paper.

2 Preliminaries

This section provides the notation and the basic definitions. For details on Boolean functions we refer
to [13].

By #S we will denote the cardinality of a finite set S. The finite field of two elements will be
denoted by F2, and for a positive integer n, Fn2 will denote the vector space of dimension n over F2. By
⊕, we will denote the addition operator over both F2 and Fn2 . An element of Fn2 will be considered to
be an n-bit binary string.

For n ≥ 0, let x = (x1, . . . , xn) be an n-bit binary string. The weight of x is wt(x) = #{i : xi = 1}.
By 0n and 1n we will denote the all-zero and all-one strings of length n respectively. Let x = (x1, . . . , xn)
and y = (y1, . . . , yn) be two n-bit strings. The distance between x and y is d(x,y) = #{i : xi 6= yi}; the
inner product of x and y is 〈x,y〉 = x1y1 ⊕ · · · ⊕ xnyn; and we define x ≤ y if xi ≤ yi for i = 1, . . . , n.

4

An n-variable Boolean function f is a map f : Fn2 → F2. The weight of f is wt(f) = #{x ∈ Fn2 :
f(x) = 1}; f is said to be balanced if wt(f) = 2n−1.

Algebraic normal form. Let f be an n-variable function. The algebraic normal form (ANF)
representation of f is the following: f(X1, . . . , Xn) =

⊕
α∈Fn

2
aαXα, where X = (X1, . . . , Xn); for

α = (α1, . . . , αn) ∈ Fn2 , Xα denotes Xα1
1 · · ·Xαn

n ; and aα ∈ F2. The (algebraic) degree of f is
deg(f) = max{wt(α) : aα = 1}. Functions of degree at most 1 are said to be affine functions.
Affine functions with a0n = 0 are said to be linear functions. It is known that if f is balanced,
then deg(f) ≤ n− 1.

We have the following relations between the coefficients aα in the ANF of f and the values of f (see
for example Section 2.2 of [13]). For x,α ∈ Fn2 ,

f(x) =
⊕
β≤x

aβ and aα =
⊕
z≤α

f(z). (1)

Nonlinearity and Walsh transform. For two n-variable functions f and g, the distance between
them is d(f, g) = #{x ∈ Fn2 : f(x) 6= g(x)}. The nonlinearity of an n-variable function f is nl(f) =
min d(f, g), where the minimum is over all n-variable affine functions g.

The Walsh transform of an n-variable function f is the map Wf : Fn2 → Z, where for α ∈ Fn2 ,
Wf (α) =

∑
x∈Fn

2
(−1)f(x)⊕〈α,x〉. The nonlinearity of a function f is given by its Walsh transform as

follows: nl(f) = 2n−1 − 1
2 maxα∈Fn

2
|Wf (α)|.

A function f such that Wf (α) = ±2n/2 for all α ∈ Fn2 is said to be a bent function [36]. Clearly such
functions can exist only if n is even. The nonlinearity of an n-variable bent function is 2n−1 − 2n/2−1

and this is the maximum nonlinearity that can be attained by n-variable functions.
A function is said to be plateaued if its Walsh transform takes only the values 0,±v, for non-zero v.

We define the linear bias of an n-variable Boolean function f to be LB(f) = 1/2− nl(f)/2n.

Algebraic resistance. Let f be an n-variable function. The algebraic immunity of f is defined [19, 34]
as follows: AI(f) = ming 6=0{deg(g) : either gf = 0, or g(f ⊕ 1) = 0}. It is known [19] that AI(f) ≤
dn/2e.

The fast algebraic attack (FAA) was introduced in [18]. The idea of the attack is based on the
following observation. Let f be an n-variable function and suppose g is another n-variable function of
degree e such that gf has degree d. If both e and d are small, then f is susceptible to an FAA. Given f ,
and for e and d satisfying e+d ≥ n, it is known [18] that there exists functions g and h with deg(g) = e
and deg(h) ≤ d such that gf = h. Based on this result, we provide the following definition. For each
e ∈ {1, . . . ,AI(f)− 1}, let d ≤ n− 1− e be the maximum integer such that there do not exist n-variable
functions g and h with deg(g) = e, deg(h) = d and gf = h. We call the list of all such pairs (e, d) to be
the FAA-profile of f .

The fast algebraic immunity (FAI) of f is a combined measure of resistance to both algebraic and
fast algebraic attacks: FAI(f) = min (2AI(f),ming 6=0{deg(g) + deg(fg) : 1 ≤ deg(g) < AI(f)}).
So FAI(f) = min(2AI(f),min{e+ d+ 1}), where the second minimum is taken over all pairs (e, d) in the
FAA-profile of f . Further, for any function f , 1 + AI(f) ≤ FAI(f) ≤ 2AI(f).

Majority function. For n ≥ 1, let Maj : {0, 1}n → {0, 1} be the majority function defined in the
following manner. For x ∈ {0, 1}n, Maj(x) = 1 if and only if wt(x) ≥ dn/2e. It is known [20] that Majn
has the maximum possible AI of dn/2e.

5

3 Construction from Maiorana-McFarland Bent Functions

The Maiorana-McFarland class of bent functions is defined as follows. For m ≥ 1, let π : {0, 1}m →
{0, 1}m be a bijection and h : {0, 1}m → {0, 1} be a Boolean function. Let π1, . . . , πm be the coordinate
functions of π. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym). For m ≥ 1, MM2m is defined to be the
following.

MM2m(X,Y) = 〈π(X),Y〉 ⊕ h(X)

= π1(X)Y1 ⊕ · · · ⊕ πm(X)Ym ⊕ h(X). (2)

Since MM2m is bent, nl(MM2m) = 22m−1 − 2m−1, and LB(MM2m) = 2−m−1. Note that the nonlinearity
of MMn does not depend on the choices of the bijection π and the function h. The degree of MM2m is
given by the following result.

Proposition 1 For m ≥ 1, deg(MM2m) = max(deg(π1) + 1, . . . , deg(πm) + 1, deg(h)).

To the best of our knowledge the following result on the algebraic immunity of MM2m is new.

Theorem 1 Suppose m ≥ 1. There is an ω? ∈ Fm2 such that

AI(MM2m) ≥ wt(ω?) + AI
(
〈ω?, π(X)〉 ⊕ h(X)

)
.

Suppose that π is a bit permutation, i.e. π(X1, . . . , Xm) = (Xρ(1), . . . , Xρ(m)), for some permutation
ρ of {1, . . . ,m}. Then

AI(MM2m) ≥ AI(h).

Proof: Suppose g(X,Y) is an annihilator for MM2m(X,Y). Recall that for ω = (ω1, . . . , ωm) ∈ Fm2 ,
by Yω we denote the monomial Y ω1

1 · · ·Y ωm
m . Using this notation, we write g(X,Y) =

⊕
ω∈Fm

2
Yωgω(X),

for some functions gω(X)’s. We have

0 = g(X,Y)MM2m(X,Y)

=

⊕
ω∈Fm

2

Yωgω(X)

(π1(X)Y1 ⊕ · · · ⊕ πm(X)Ym ⊕ h(X)
)
. (3)

Since the right hand side of (3) is equal to 0, for ω ∈ Fm2 , the coefficient of Yω in the expansion on the
right hand side of (3) must be equal to 0. Since g(X,Y) 6= 0, let w ≥ 0 be the minimum integer such
that there is an ω? with wt(ω?) = w and gω?(X) 6= 0. In (3), equating the coefficient of Yω?

to 0, we
have

0 = gω?(X)

h(X)⊕

 ⊕
i∈supp(ω?))

πi(X)


= gω?(X)

(
〈ω, π(X)〉 ⊕ h(X)

)
.

So gω?(X) is an annihilator for 〈ω?, π(X)〉 ⊕ h(X). Consequently, deg(g) ≥ wt(ω?) + deg(gω?) ≥
wt(ω?) + AI

(
〈ω?, π(X)〉 ⊕ h(X)

)
.

If, on the other hand, g(X,Y) is an annihilator for 1 ⊕ MM2m(X,Y), then a similar argument
shows that gω?(X) is an annihilator for 〈ω?, π(X)〉 ⊕ 1 ⊕ h(X), and again we have deg(g) ≥ wt(ω?) +
AI
(
〈ω?, π(X)〉 ⊕ h(X)

)
.

6

Suppose now that π is a bit permutation. Then `(X) = 〈ω?, π(X)〉 is a linear function. If w = 0,
then 〈ω?, π(X)〉 ⊕ h(X) = h(X), and so we have the result. So suppose w > 0. From Lemma 1 of [14],
we have AI(`(X)⊕ h(X)) ≥ AI(h(X))− 1. So

AI(MM2m) ≥ wt(ω?) + AI
(
`(X)⊕ h(X)

)
≥ w + AI(h(X))− 1 ≥ AI(h(X)).

�

Extension to MMn, for odd n. We consider a very well known extension of MM2m to odd number
of variables.

MM1(W) = W,

MM2m+1(W,X,Y) = W ⊕MM2m(X,Y), for m ≥ 1. (4)

The following result states the properties of MM2m+1.

Proposition 2 For m ≥ 1, MM2m+1 is balanced, and
1. nl(MM2m+1) = 22m − 2m. In particular, LB(MM2m+1) = LB(MM2m) = 2−(m+1).
2. deg(MM2m+1) = deg(MM2m).
3. AI(MM2m) ≤ AI(MM2m+1) ≤ 1 + AI(MM2m).

Proof: The first point is well known. The second point is immediate from the definition of MM2m+1.
We provide the proof of the third point. For brevity, let us write Z = (X,Y). Clearly if g(Z) is an
annihilator for MM2m (resp. 1 ⊕ MM2m), then (1 ⊕ W)g(Z) is an annihilator for MM2m+1 (resp.
1⊕MM2m+1). This shows the upper bound. Next we consider the lower bound. Suppose g(W,Z) 6= 0
is an annihilator for MM2m+1(W,Z). We write g(W,Z) as g(W,Z) = Wg1(Z) + g0(Z). Noting that
MM2m+1(W,Z) = W ⊕MM2m(X,Y), we obtain

0 = g(W,Z)MM2m+1(W,Z)

= g0(Z)MM2m(Z)⊕W
(
g0(Z)⊕ g1(Z)(1⊕MM2m(Z))

)
.

So g0(Z)MM2m(Z) = 0 and g0(Z)⊕g1(Z)(1⊕MM2m(Z)) = 0. If g0 is non-zero, then g0 is an annihilator
for MM2m and so deg(g) ≥ deg(g0) ≥ AI(MM2m). If g0 = 0, then since g 6= 0, it follows that g1 6= 0. In
this case, g1 is an annihilator for 1⊕MM2m, and so deg(g) ≥ 1+deg(g1) ≥ 1+AI(MM2m). Consequently,
in both cases deg(g) ≥ AI(MM2m).

On the other hand, if g(W,Z) 6= 0 is an annihilator for 1 ⊕ MM2m+1(W,Z), then noting that
W (1 ⊕W) = 0, we obtain g0(Z)(1 ⊕MM2m(Z)) = 0 and g0(Z) ⊕ g1(Z)MM2m(Z) = 0. If g0 6= 0, then
g0 is an annihilator for 1⊕MM2m, and if g0 = 0, then g1 is an annihilator for MM2m. So again we have
deg(g) ≥ AI(MM2m). �

From Theorem 1, choosing π to be the identity function results in the AI of MM2m to be lower
bounded by the AI of h. Motivated by this result, we make the following concrete choices.

Concrete choice of π in MM2m: Choose the m-bit to m-bit permutation π in the construction
of MM2m given by (2) to be the identity permutation.

Concrete choice of h in MM2m: Choose the m-variable function h in the construction of
MM2m given by (2) to be Majm, which is the m-variable majority function.

7

Our choice of Majm for h is motivated by the fact that the majority function has the maximum possible
algebraic immunity. There are other functions which achieve maximum algebraic immunity [14] and
these could also be chosen to instantiate h. Our choice of Majm is the simplest choice of a function
achieving maximum algebraic immunity.

Remark 1 Theorem 1 assures us of the lower bound on MM2m when π is any bit permutation. Our
choice of π as the identity permutation is the simplest choice. In fact, all the m! bit permutations π
result in functions with the same level of security and similar implementation efficiency.

By (Maj, id)-MM2m we denote the function obtained by instantiating the definition of MM2m given
by (2) with h = Majm and π = id. Similarly, by (Maj, id)-MM2m+1, we denote the function obtained
from (Maj, id)-MM2m using (4).

Proposition 3 For n ≥ 4, the degree of (Maj, id)-MMn is 2blog2bn/2cc.

Proof: The degree of Majm is 2blog2mc (see [20]). Applying Proposition 1, we obtain the required
result for even n. For odd n, the result follows from the second point of Proposition 2. �

Proposition 4 For n ≥ 4, if n is even, then AI((Maj, id)-MMn) ≥ dn/4e, and if n is odd then
AI((Maj, id)-MMn) ≥ d(n− 1)/4e.

Proof: Suppose n = 2m is even. From Theorem 1 we have AI((Maj, id)-MM2m) ≥ AI(Majm).
Since AI(Majm) = dm/2e, we have the result. For odd n = 2m + 1, from Proposition 2, we have
AI((Maj, id)-MM2m+1 ≥ AI((Maj, id)-MM2m, which shows the result. �

We computed the algebraic immunity of (Maj, id)-MMn for small values of n and observed that for
n ≥ 4, AI((Maj, id)-MMn) = 1 + bn/4c. This suggests that the lower bound in Proposition 4 is exact if
n 6≡ 0 mod 4 and if n ≡ 0 mod 4, the actual algebraic immunity is one more than the lower bound. As
mentioned in Section 2, for any Boolean function f , FAI(f) ≥ 1 + AI(f). Our experiments suggest that
for (Maj, id)-MMn, the fast algebraic immunity is actually one more than the algebraic immunity.

So (Maj, id)-MMn does not have the best possible algebraic immunity. On the other hand, it can be
implemented using O(m) gates (as we show in Section 5). So it is possible to increase the number of
variables to achieve the desired level of algebraic resistance without increasing the circuit size too much.

4 Concrete Proposals

From Proposition 2 we have MM2m+1 is balanced, and the cryptographic resistance provided by MM2m+1

is very similar to that provided by MM2m. In terms of implementation efficiency, MM2m+1 requires one
extra XOR gate in addition to the circuit to implement MM2m. An LFSR is a linear map, so the all
zero-state will lead to all-zero output of the LFSR. If MM2m+1 maps the all-zero string to 0, then the
keystream generated from the all zero-state of the LFSR will be the all-zero keystream. To avoid this
scenario, we define the function f2m+1 : {0, 1}2m+1 → {0, 1} as follows.

f2m+1(W,X,Y) =

{
MM2m+1(W,X,Y) if MM2m+1(02m+1) = 1,
1⊕MM2m+1(W,X,Y) if MM2m+1(02m+1) = 0.

(5)

The cryptographic properties of f2m+1 are exactly the same as those of MM2m+1, with the only exception
being that f2m+1 maps 02m+1 to 1, while MM2m+1 may or may not do so. We construct f2m+1 from
(Maj, id)-MM2m+1, i.e. where h is chosen to be Majm and π is chosen to be id.

8

We revisit the filter generator model where the state of an LFSR of length L is filtered using a
Boolean function. By S(L,m), we denote the class of stream ciphers obtained from an LFSR of length
L with a primitive connection polynomial, and with f2m+1 as the filtering function. For the κ-bit
security level, we assume that the stream cipher supports a κ-bit secret key and a κ-bit initialisation
vector (IV), and so L ≥ 2κ. Suppose that the state (sL−1, . . . , s0) of the LFSR leads to the next state
(sL, . . . , s1), i.e. the state is right shifted once and the next bit sL becomes the leftmost bit. The initial
state of the LFSR is constructed as (kκ−1, . . . , k0, vκ−1, . . . , v0, b1, . . . , bL−2κ), where (kκ−1, . . . , k0) is the
key, (vκ−1, . . . , v0) is the IV, and (b1, . . . , bL−2κ) 6= 0L−2κ is an arbitrary constant bit string. We next
specify which state bits of the LFSR are fed into the filtering function. From the state (sL−1, . . . , s0)
of the LFSR, the value of W in f2m+1(W,X,Y) is the state bit sL−κ+m, the values of the variables
in X are the state bits sL−κ+m−1, . . . , sL−κ, and the values of the variables in Y are the state bits
sL−2κ+m−1, . . . , sL−2κ. We assume that the stream cipher goes through an initialisation phase of 2κ
steps, where no keystream bit is produced, and instead the keystream bit is fed back by XORing it with
the next bit of the LFSR. So after the initialisation phase the leftmost 2κ bits of the LFSR are complex
nonlinear functions of the key and the IV. Keystream generation starts after the initialisation phase.

The parameters L and m are the design parameters of the stream cipher. We consider two basic
attack parameters, namely the number N of keystream bits that is required for a successful attack, and
the time complexity T of the attack. To ensure security at level κ any attack should require T > 2κ.
The condition L ≥ 2κ ensures that the size of the state is at least twice the size of the key. This prevents
certain (theoretical) time/memory trade-off attacks [27]. We assume that at most 2B keystream bits
are generated from a single key and IV pair. So N is at most 2B, as otherwise the attack cannot be
mounted. Further, a basic condition is that N ≤ T , i.e. some operation is performed on each keystream
bit that is required. So for κ-bit security using 2B keystream bits, we have B ≤ κ. In the analysis below,
our goal is to determine values of L and m such that the stream cipher is not vulnerable to the known
types of attacks. For this concrete analysis, we ignore small constants appearing in the expressions for
N and T (i.e. we consider these constants to be 1) and focus only on the exponential components of
these quantities.

Linear complexity attack. The degree of (Maj, id)-MM2m+1 is d = 2blog2mc. If L is a prime, then
the linear complexity of the generated keystream sequence is

(
L
d

)
(see [37]) and so at least these many

keystream bits are required to determine the linear complexity. So if

α =

(
L

2blog2mc

)
> 2B, (6)

then the linear complexity attack is not applicable.

Fast correlation attacks. The basic correlation attack [41] is applicable to the combiner generator
model. Applying this attack to the filter generator model results in going through all the possible 2L

states of the LFSR. Since by our choice L ≥ 2κ, the basic correlation attack does not defeat the κ-bit
security level.

Fast correlation attacks do not require exhaustive search on the states of the LFSR. There is a large
literature on fast correlation attacks including older papers such as [35, 28, 29, 15, 12, 30, 11, 16] as
well as more recent papers such as [42, 45, 44, 31, 32]. See [9, 10, 33, 2] for surveys of the area. In
the following, we evaluate security against some representative fast correlation attacks and show how
to choose the values of the design parameters so as to resist these attack. Recall from Proposition 2
that for MM2m+1, and hence for f2m+1, the linear bias ε = 2−m−1.

9

Type of attack. For attacks based on low-weight parity-check equations [35, 12], the number of keystream
bits required is aboutN = (2ε)−2(d−2)/(d−1)·2L/(d−1), the pre-computation step requires aboutNd−2/(d−
2)! operations, and the (online) time for decoding is about (2ε)−2d(d−2)/(d−1) · 2L/(d−1), where d ≥ 3
is the number of non-zero terms in (some multiple of the) LFSR connection polynomial, and ε is the
linear bias.
Evaluation against S(L,m). We have ε = 2−m−1 and so N = 2(2(m+2)(d−2)+L)/(d−1). We set N = 2B

and so (d − 1)(B − 2(m + 2)) = L − 2(m + 2). If B = 2(m + 2), then L = 2(m + 2). We choose
L and m to ensure that L > 2(m + 2), and so B 6= 2(m + 2). In this case, we solve for d to obtain
d = 1 + (L − 2(m + 2))/(B − 2(m + 2)). If B < 2(m + 2), then d < 1 which violates the condition
d ≥ 3 and the attack does not work. So let us consider B > 2(m + 2). In this case, substituting
the obtained expression for d in the expression for the decoding time, we find the decoding time to be
2(2(m+2)L+B2)/(B−2(m+2)). So the following condition ensures κ-bit security.

L > (2m+ 2) and either B < 2(m+ 2) or κ <
2(m+ 2)L+B2

B − 2(m+ 2)
. (7)

Note that (7) ensures κ-bit security for all values of d ≥ 3. In particular, it does not matter whether
the feedback polynomial of the LFSR is sparse, or whether it has a sparse multiple.

Type of attack. For attacks based on general decoding, [9] identifies the key idea to be from [15]. The
attack in [15] requires N to be about ε−2 · 2(L−k)/w under the condition N � (2ε)−2w, and the time
complexity of the decoding step is about 2k · (2ε)−2w, where ε is the linear bias of the filtering function,
and k ∈ {1, . . . , L} and w ≥ 2 are algorithm parameters.
Evaluation against S(L,m). Again we have ε = 2−m−1. Setting N = 2B, we obtain k = L+2w(m+1)−
wB. Setting T to be the time complexity of the decoding step, we obtain log2 T = L+2w(2m+3)−wB.
Since L ≥ 2κ, ensuring 2(2m+ 3) ≥ B is (more than) sufficient to ensure κ-bit security, irrespective of
the values of w and k. We record this condition as follows.

B ≤ 2(2m+ 3). (8)

Type of attack. The attacks in [30, 11] apply specifically to the filter generator model. These two attacks
are essentially the same when the filtering function is plateaued (which is the case for f2m+1). For the
attack, N is about 2(L−k)/w, and T is about 2k · Fw, where w and k are as in the attack in [15] (see
above) and F is the size of the support of the Walsh transform of the filtering function.
Evaluation against S(L,m). The size of the support of the Walsh transform of MM2m+1 is equal to
the size of the support of the Walsh transform of MM2m. Since MM2m is bent, it follows that the size
of the support of MM2m is 22m. So F = 22m. Setting N = 2B, we obtain k = L − wB. Substituting
k in the expression for T , we obtain log2 T = L + w(2m − B). Since L ≥ 2κ and w ≥ 2, we have
log2 T = L+ w(2m−B) ≥ 2κ+ 2(2m−B). So if 2κ+ 2(2m−B) > κ, or equivalently, κ+ 4m > 2B,
then κ-bit security is achieved against the attack. We record this condition as follows.

B < (κ+ 4m)/2. (9)

Other fast correlation attacks. We next consider some of the more recent attacks. The attack in [42]
is based on using M > 1 linear approximations. For this attack, both N and T are about 2L−β,
where β is an algorithm parameter. A necessary condition for the attack to succeed is that M > 2β.

10

For the attack to succeed at the κ-bit security level, i.e. T ≤ 2κ, it is required to have β ≥ L − κ.
From the bound on M , it follows that more than 2L−κ linear approximations with sufficiently high
correlations are required. For Grain-128a [1], L equals 128 and about 226.58 (i.e. M is about 226.58)
linear approximations with absolute correlations at least 2−54.2381 were identified in [42]. For κ = 128,
Table 1 recommends L = 257 and m = 58. To apply the attack in [42] to S(257, 59), more than 2129

linear approximations with sufficiently high correlations are required. The linear bias of the filtering
function itself is 2−60. Finding multiple linear approximations requires combining keystream bits which
further lowers the linear bias. So there is no approximation with linear bias greater than 2−60. Further,
going through the details of the attack in [1], we could not identify any method to obtain more than 2129

linear approximations. So there does not seem to be any way to apply the attack in [42] to S(257, 59).
Subsequent works (such as [45, 44, 31, 32]) on fast correlation attacks use vectorial decoding tech-

nique along with multiple linear approximations, use of the BKW algorithm [5], and multivariate cor-
relation attack. The attacks are quite complex and there are no simple closed form expressions for the
values of N and T . The stream ciphers to which these attacks are applied are Grain-128a and Sose-
manuk [4], which is another cipher providing 128-bit security. From the above discussion, we already
know that the linear bias of S(257, 59) is substantially lower than that of Grain-128a. For Sosemanuk,
the best known [31] linear approximation has correlation 2−20.84, which is far greater than the linear
bias 2−60 for S(257, 59). The very low linear bias of S(257, 59) and in general of the other stream cipher
proposals in Table 1 make the attacks in [45, 44, 31, 32] inapplicable at the stated security levels.

(Fast) Algebraic attacks. For a filtering function f having AI(f) = a, an algebraic attack requires
about N =

∑a
i=0

(
L
i

)
keystream bits and has time complexity T to be about Nω, where ω is the

exponent of matrix multiplication (see Section 3.1.5 of [13]). We assume ω = 2.8. From Proposition 4,
we conservatively assume that AI((Maj, id)-MM2m+1) = dm/2e, i.e. the algebraic immunity is equal to
its lower bound. Let

β =

dm/2e∑
i=0

(
L

i

)2.8

. (10)

So choosing L and m such that T = β > 2κ prevents algebraic attacks at the κ-bit security level.
For any (e, d) in the FAA-profile of (Maj, id)-MM2m, the Berlekamp-Massey step in a fast algebraic

attack on the filter generator model has time complexity O(ED logD), where E =
∑e

i=0

(
L
i

)
and

D =
∑d

i=0

(
L
i

)
(see [25] and Section 3.1.5 of [13]). This complexity dominates the overall time complexity

of a fast algebraic attack and ignoring the logarithm term, and we take T to be equal to ED. The
maximum value of e is one less than the algebraic immunity. The number N of keystream bits required is
about 2E. From Proposition 4, we again assume that AI((Maj, id)-MM2m+1) = d(2m+1)/4e. Recall that
for any Boolean function, its fast algebraic immunity is at least one more than its algebraic immunity,
and so FAI((Maj, id)-MM2m+1)) ≥ 1 + AI((Maj, id)-MM2m+1) = 1 + d(2m + 1)/4e. For the concrete
analysis, we use the lower bound 1 + dm/2e as the actual value of FAI((Maj, id)-MM2m+1)) Define

γ = min
1≤e≤dm/2ec,
d=a−e

(
e∑
i=0

(
L

i

))(d∑
i=0

(
L

i

))
. (11)

So choosing L and m such that T = γ > 2κ prevents fast algebraic attacks at the κ-bit security level.
Given κ, we obtained representative values of L and m. The procedure we followed is to choose the

value of L to be the first prime number greater than 2κ, and then for the chosen value of L, choose m

11

κ L m 2m+ 1 deg LB AI FAI

80 163 37 75 32 2−38 19 20

128 257 59 119 32 2−60 30 31

160 331 71 143 64 2−72 36 37

192 389 87 175 64 2−88 44 45

224 449 101 203 64 2−102 51 52

256 521 115 231 64 2−116 58 59

Table 1: Values of L and m which provide κ-bit security against the attacks analysed in this section
when the attacker has access to at most 2B keystream bits.

to be the least integer such that β, γ > 2κ. This ensures security against algebraic attacks considered
above. Next, using κ and the corresponding values of L and m, we computed the maximum value of B
such that B ≤ κ, α > 2B, and (7), (8) and (9) hold. In each of the cases that we considered, it turns
out that this maximum value of B is in fact κ. So for the chosen values of L and m, the corresponding
S(L,m) ensures κ-bit security against the above analysed correlation attacks even when the adversary
has access to 2κ keystream bits. We note, however, that generating 2κ keystream bits from a single key
and IV pair is meaningless from a practical point of view. Instead, we set B = 64, i.e. from a single key
and IV pair at most 264 keystream bits are to be generated. Table 1 shows the values of κ, L, m and
other parameters of the filtering function. We note the following points regarding the entries in Table 1.

1. The number of variables of the filtering function f2m+1 is 2m+ 1 (and not m).
2. For each κ, the value of L is the first prime number greater than 2κ. Our choice of a prime number

for the value of L is to ensure that the linear complexity of the generated keystream is indeed
equal to α.

3. The table provides representative values of L and m. It is possible to have other pairs of values
for (L,m) which provide κ-bit security. Different values of L and m lead to different sizes of the
circuits implementing the corresponding stream ciphers. For a fixed value of κ, a practical designer
may need to consider various values of (L,m) to determine which pair provides the smallest circuit.
In Section 5, we provide gate count estimates for the stream ciphers corresponding to the values
of L and m in the table.

4. For each entry in the table, our calculation shows that β � γ. For example, for S(257, 59), we
obtained β = 2364.38 while γ = 2130.12. This is not surprising, since the fast algebraic attack is
expected to be much more faster than the basic algebraic attack.

5. The feedback polynomial for the LFSR has to be a primitive polynomial of degree L. The above
analysis of correlation attacks shows that for the obtained values of L and m, it does not matter
whether the polynomial is sparse, or whether it has a sparse multiple. So from an efficiency point
of view, one may choose a low weight primitive polynomial. Examples of primitive polynomials
for the values of L in Table 1 are shown in Table 2.

5 Efficiency of Computing MMn

In Section 4, we proposed using f2m+1 (which is either MM2m+1 or 1 ⊕ MM2m+1) as the filtering
function in the nonlinear filter model. Further, Table 1 provides specific suggestions of values of m for
achieving different security levels. In this section, we consider the complexity of implementing MM2m+1.
Since MM2m+1 is constructed from MM2m using one XOR gate, we need to consider the complexity of
implementing MM2m.

12

L prim poly

163 x163 ⊕ x7 ⊕ x6 ⊕ x3 ⊕ 1

257 x257 ⊕ x7 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ 1

331 x331 ⊕ x7 ⊕ x6 ⊕ x5 ⊕ x4 ⊕ x2 ⊕ 1

389 x389 ⊕ x7 ⊕ x6 ⊕ x3 ⊕ x2 ⊕ x⊕ 1

449 x449 ⊕ x9 ⊕ x6 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x⊕ 1

521 x521 ⊕ x9 ⊕ x6 ⊕ x5 ⊕ x3 ⊕ x⊕ 1

Table 2: Examples of primitive polynomials for the values of L shown in Table 1.

The computation of MM2m requires computing h and an inner product of two m-bit strings. The
computation of h requires the computation of the weight of an m-bit string and the computation of
a threshold function. We discuss basic strategies for implementing these operations which provide
estimates of the number of gates required.

Inner product of two m-bit strings. This operation requires m AND gates and m− 1 XOR gates.

Weight of an m-bit string. A half-adder takes two input bits and outputs two bits which represent
sum of the two input bits. A full adder takes three input bits and outputs two bits which represent
the sum of the three input bits. We estimate the numbers of half and full adders that are required for
computing the weight of an m-bit string x. The algorithm for computing weight that we use is from [6].
If m = 1, then no adders are required, if m = 2, a half adder computes the weight, and if m = 3, a full
adder computes the weight. For m > 3, write m = m1 +m2 + 1, where m1 + 1 is the highest power of
two that is at most m. The algorithm computes the weight of the first m1 bits of x, the weight of the
next m2 bits of x, and then adds these two weights together together with the last bit of x.

Using the above algorithm, it is easy to show that the computation of the weight of an m-bit string,
when m = 2r−1 with r ≥ 1, requires 2r−r−1 full adders. From this it easily follows that the number of
full adders required to compute the weight of an m-bit string for arbitrary m is O(m). Since a full adder
can be implemented using a constant number of NAND gates, the number of NAND gates required to
compute the weight of an m-bit string is also O(m).

We are interested in the exact counts of full and half adders required for the values of m in Table 1.
Let us denote a full adder by [F] and a half adder by [H]. In Table 1, one of the choices is m = 37.
Writing 37 = 31 + 5 + 1, it is required to find the weight of one 31-bit string, one 5-bit string and
then perform the final addition. Computation of the weight of the 31-bit string requires 26[F]. Writing
5 = 3 + 1 + 1, the computation of the weight of a 5-bit string requires 3[F] (a full adder to compute
the weight of a 3-bit string, and 1[F]+1[H] to add the remaining two bits to this weight). The weight
of a 5-bit string is a 3-bit quantity, while the weight of a 31-bit string is a 5-bit quantity. So the final
addition of the weights along with the remaining bit requires 3[F]+2[H]. So a total of 31[F]+3[H] is
required to compute the weight of a 37-bit string. In a similar manner, it is possible to obtain the
numbers of full and half adders required to compute the weights of m-bit strings for the values of m
given in Table 1 and these counts are given below.

37: 31[F]+3[H]; 59: 53[F]+1[H]; 71: 64[F]+3[H];
87: 80[F]+2[H]; 101: 94[F]+3[H]; 115: 108[F]+2[H].

Threshold function on the weight of an m-bit string. The weight of a 37-bit string is a 6-bit
quantity, say w5w4w3w2w1w0. It is required to determine whether the value represented by this string

13

S(163, 36) S(257, 59) S(331, 70) S(389, 87) S(449, 100) S(521, 114)

LFSR 1304 2056 2648 3112 3592 4168

f2m+1 439.5 715.5 872.5 1075.5 1262.5 1439.5

total 1743.5 2771.5 3520.5 4187.5 4854.5 5607.5

Table 3: Estimates of the number of NAND gates required to implement S(L,m) for values of L and
m in Table 1.

is at least 19. This is computed by the Boolean formula w5 ∨ (w4 ∧ (w3 ∨ w2 ∨ (w1 ∧ w0))), requiring
3[OR]+2[AND] gates. In general, the weight of an m-bit string is an ω-bit value, where ω = dlog2me.
To compute the threshold function, ω1 OR and ω2 AND gates are required for some values of ω1 and
ω2 satisfying ω1 + ω2 ≤ ω. So the number of gates for computing the threshold function on the weight
of an m-bit string requires a logarithmic (in m) number of gates.

Circuit size for computing MMn. The inner product requires O(m) OR and AND gates and the
weight computation requires O(m) full adders. So the circuit size for computing MMn is O(n).

Next we consider concrete estimates. For such estimates, we ignore the at most dlog2me AND and
OR gates required for computing the threshold function from the weight, and also the gates required
to compute the next bit of the LFSR. Similar assumptions were made in [1] to obtain the gate count
estimate for Grain-128a. To obtain concrete estimates, it is convenient to convert the various gate
counts into a single unit. Previous works [1, 8] have taken a single NAND gate as the basic unit and
translated other gates in terms of this unit. A half-adder can be implemented using 5 NAND gates,
while a full adder can be implemented using 9 NAND gates. In [1, 8], a XOR gate was taken to be 2.5
units and an AND gate was taken to be 1.5 units. Between the papers [1] and [8] there is a difference in
the number of units required for a flip-flop: [1] takes a flip-flop to be 8 units, while [8] takes a flip-flop
to be 12 units. In Table 3, we provide estimates of the circuit sizes of S(L,m) for the values of (L,m)
in Table 1. These estimates consider a flip-flop to be 8 units.

If we consider a flip-flop to be 12 units as done for Trivium [8], then the gate count estimate for
S(163, 36) is 2395.5. The gate estimate for Trivium obtained in [8] is 3488. Both Trivium and S(163, 36)
are targeted at the 80-bit security level, and S(163, 36) is substantially smaller than Trivium. The lower
size of S(163, 36) is due to the smaller state size; S(163, 36) uses a 163-bit state, while Trivium uses a
288-bit state.

The gate count estimate for Grain-128a obtained in [1] is 2145.5. Grain-128a is targeted at the 128-
bit security level. Comparing to S(257, 59), which is also targeted at the 128-bit security level, we find
the gate count estimate of S(257, 59) to be 2771.5. The state sizes of both Grain-128a and S(257, 59)
are almost the same. The greater size of S(257, 59) is due to the greater gate size requirement of the
filtering function f2m+1 in comparison to the gate size requirement of the nonlinear components of
Grain-128a. Even though S(257, 59) is larger than Grain-128a, its size of about 2771.5 gates is small
enough for S(257, 59) to be considered as a small cipher. Finally we note that S(521, 114) which is
targeted at the 256-bit security level requires about 5607.5 gates. We know of no other 256-bit secure
stream cipher which has such a small gate count.

We note that it is possible to ramp up security at the cost of a reasonable increase in gate count. For
example, from Table 1, at the 128-bit security level, our proposal has L = 257 and m = 59, resulting
in linear bias equal to 2−60 and the fast algebraic attack requiring more than 2130.12 operations. If we
increase m from 59 to 63, then the linear bias drops to 2−64, and the fast algebraic attack now requires
more than 2135.83 operations. The gate estimate for S(257, 63), i.e. the stream cipher with L = 257 and

14

m = 63, is 2818.5 gates (the LFSR requires 2056 gates, and f127 requires 762.5 gates). So the security
increases by about 5 bits at the cost of an increase of only 47 gates in the circuit size.

6 Conclusion

We described a construction of balanced Boolean functions which has several provable properties, namely
very high nonlinearity, acceptable algebraic resistance, and is efficient to implement in hardware. Using
such Boolean functions, we proposed concrete constructions of the nonlinear filter model for stream
ciphers targeted at different security levels. Gate count estimates for the stream cipher proposals shows
that the circuit sizes compare well with well known ciphers at the 80-bit and the 128-bit security levels,
while for higher security levels, we do not know of any stream cipher with lower gate count estimates.

Acknowledgement

We thank Pierrick Méaux for his comments on an earlier version of the paper. Deng Tang provided us
with a program written by Simon Fischer which we have used for computing fast algebraic immunity.
We thank both of them.

References

[1] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: a new version of
Grain-128 with optional authentication. Int. J. Wirel. Mob. Comput., 5(1):48–59, 2011. 3, 4, 11,
14

[2] Martin Ågren, Carl Löndahl, Martin Hell, and Thomas Johansson. A survey on fast correlation
attacks. Cryptogr. Commun., 4(3-4):173–202, 2012. 2, 9

[3] Steve Babbage and Matthew Dodd. The MICKEY stream ciphers. In Matthew J. B. Robshaw
and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM Finalists, volume 4986 of
Lecture Notes in Computer Science, pages 191–209. Springer, 2008. 2, 3, 4

[4] Côme Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Henri Gilbert, Louis Goubin,
Aline Gouget, Louis Granboulan, Cédric Lauradoux, Marine Minier, Thomas Pornin, and Hervé
Sibert. Sosemanuk, a fast software-oriented stream cipher. In M. Robshaw and O. Billet, editors,
New Stream Cipher Designs, volume 4986 of Lecture Notes in Computer Science, pages 98–118.
Springer, 2008. 2, 3, 4, 11

[5] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and
the statistical query model. J. ACM, 50(4):506–519, 2003. 11

[6] Joan Boyar and René Peralta. The exact multiplicative complexity of the Hamming weight function.
Electron. Colloquium Comput. Complex., TR05-049, 2005. https://dblp.org/rec/journals/

eccc/ECCC-TR05-049.bib. 13

[7] Randal E. Bryant. On the complexity of VLSI implementations and graph representations of
Boolean functions with application to integer multiplication. IEEE Trans. Computers, 40(2):205–
213, 1991. 19

15

https://dblp.org/rec/journals/eccc/ECCC-TR05-049.bib
https://dblp.org/rec/journals/eccc/ECCC-TR05-049.bib

[8] Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B. Robshaw and Olivier Billet,
editors, New Stream Cipher Designs - The eSTREAM Finalists, volume 4986 of Lecture Notes in
Computer Science, pages 244–266. Springer, 2008. 2, 3, 4, 14

[9] Anne Canteaut. Fast correlation attacks against stream ciphers and related open problems. In
Proceedings of the IEEE Information Theory Workshop on Theory and Practice in Information-
Theoretic Security, pages 49–54. IEEE, 2005. 2, 9, 10

[10] Anne Canteaut. Fast correlation attack. In Henk C. A. van Tilborg and Sushil Jajodia, editors,
Encyclopedia of Cryptography and Security, 2nd Ed, pages 450–452. Springer, 2011. 2, 9

[11] Anne Canteaut and Eric Filiol. On the influence of the filtering function on the performance of
fast correlation attacks on filter generators. In Proceedings of the 23rd Symposium on Information
Theory in Benelux, Lecture Notes in Computer Science, May 2000. 2, 9, 10

[12] Anne Canteaut and Michaël Trabbia. Improved fast correlation attacks using parity-check equations
of weight 4 and 5. In Bart Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium,
May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer Science, pages 573–588.
Springer, 2000. 2, 9, 10

[13] Claude Carlet. Boolean Functions for Cryptography and Coding Theory. Cambridge University
Press, 2021. 2, 4, 5, 11

[14] Claude Carlet, Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra. Algebraic
immunity for cryptographically significant Boolean functions: Analysis and construction. IEEE
Trans. Inf. Theory, 52(7):3105–3121, 2006. 7, 8

[15] Vladimir V. Chepyzhov, Thomas Johansson, and Ben J. M. Smeets. A simple algorithm for fast
correlation attacks on stream ciphers. In Bruce Schneier, editor, Fast Software Encryption, 7th
International Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume
1978 of Lecture Notes in Computer Science, pages 181–195. Springer, 2000. 2, 9, 10

[16] Philippe Chose, Antoine Joux, and Michel Mitton. Fast correlation attacks: An algorithmic point
of view. In Lars R. Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002, International
Conference on the Theory and Applications of Cryptographic Techniques, Amsterdam, The Nether-
lands, April 28 - May 2, 2002, Proceedings, volume 2332 of Lecture Notes in Computer Science,
pages 209–221. Springer, 2002. 2, 9

[17] Andrew J. Clark, Jovan Dj. Golic, and Ed Dawson. A comparison of fast correlation attacks. In
Dieter Gollmann, editor, Fast Software Encryption, Third International Workshop, Cambridge,
UK, February 21-23, 1996, Proceedings, volume 1039 of Lecture Notes in Computer Science, pages
145–157. Springer, 1996. 2

[18] Nicolas T. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes
in Computer Science, pages 176–194. Springer, 2003. 2, 5

16

[19] Nicolas T. Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear feedback.
In Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003, International Conference
on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003,
Proceedings, volume 2656 of Lecture Notes in Computer Science, pages 345–359. Springer, 2003. 2,
5

[20] Deepak Kumar Dalai, Subhamoy Maitra, and Sumanta Sarkar. Basic theory in construction of
Boolean functions with maximum possible annihilator immunity. Des. Codes Cryptogr., 40(1):41–
58, 2006. 3, 5, 8

[21] Hans Dobbertin. Construction of bent functions and balanced Boolean functions with high nonlin-
earity. In Bart Preneel, editor, Fast Software Encryption: Second International Workshop. Leuven,
Belgium, 14-16 December 1994, Proceedings, volume 1008 of Lecture Notes in Computer Science,
pages 61–74. Springer, 1994. 19

[22] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. A new SNOW stream
cipher called SNOW-V. IACR Trans. Symmetric Cryptol., 2019(3):1–42, 2019. 2, 3, 4

[23] Jovan Dj. Golic and Slobodan V. Petrovic. A generalized correlation attack with a probabilistic
constrained edit distance. In Rainer A. Rueppel, editor, Advances in Cryptology - EUROCRYPT
’92, Workshop on the Theory and Application of of Cryptographic Techniques, Balatonfüred, Hun-
gary, May 24-28, 1992, Proceedings, volume 658 of Lecture Notes in Computer Science, pages
472–476. Springer, 1992. 2

[24] Kishan Chand Gupta and Palash Sarkar. Efficient representation and software implementation of
resilient Maiorana-McFarland s-boxes. In Chae Hoon Lim and Moti Yung, editors, Information
Security Applications, 5th International Workshop, WISA 2004, Jeju Island, Korea, August 23-25,
2004, Revised Selected Papers, volume 3325 of Lecture Notes in Computer Science, pages 317–331.
Springer, 2004. 3

[25] Philip Hawkes and Gregory G. Rose. Rewriting variables: The complexity of fast algebraic attacks
on stream ciphers. In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th
Annual International CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004,
Proceedings, volume 3152 of Lecture Notes in Computer Science, pages 390–406. Springer, 2004. 11

[26] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A stream cipher proposal:
Grain-128. In Proceedings 2006 IEEE International Symposium on Information Theory, ISIT 2006,
The Westin Seattle, Seattle, Washington, USA, July 9-14, 2006, pages 1614–1618. IEEE, 2006. 2

[27] Jin Hong and Palash Sarkar. New applications of time memory data tradeoffs. In Bimal K. Roy,
editor, Advances in Cryptology - ASIACRYPT 2005, 11th International Conference on the Theory
and Application of Cryptology and Information Security, Chennai, India, December 4-8, 2005,
Proceedings, volume 3788 of Lecture Notes in Computer Science, pages 353–372. Springer, 2005. 9

[28] Thomas Johansson and Fredrik Jönsson. Fast correlation attacks based on turbo code techniques.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume
1666 of Lecture Notes in Computer Science, pages 181–197. Springer, 1999. 2, 9

17

[29] Thomas Johansson and Fredrik Jönsson. Improved fast correlation attacks on stream ciphers
via convolutional codes. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99,
International Conference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Science,
pages 347–362. Springer, 1999. 2, 9

[30] Fredrik Jönsson and Thomas Johansson. A fast correlation attack on LILI-128. Inf. Process. Lett.,
81(3):127–132, 2002. 2, 9, 10

[31] Sudong Ma, Chenhui Jin, Jie Guan, Ting Cui, and Zhen Shi. Improved fast correlation attack
using multiple linear approximations and its application on Sosemanuk. IEEE Trans. Inf. Theory,
70(10):7484–7497, 2024. 2, 4, 9, 11

[32] Isaac Andrés Canales Martinez and Igor Semaev. Multivariate correlation attacks and the crypt-
analysis of lfsr-based stream ciphers. Des. Codes Cryptogr., 92(11):3391–3427, 2024. 2, 9, 11

[33] Willi Meier. Fast correlation attacks: Methods and countermeasures. In Antoine Joux, editor,
Fast Software Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark, February
13-16, 2011, Revised Selected Papers, volume 6733 of Lecture Notes in Computer Science, pages
55–67. Springer, 2011. 2, 9

[34] Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic attacks and decomposition of Boolean func-
tions. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of Cryptographic Techniques, In-
terlaken, Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer
Science, pages 474–491. Springer, 2004. 5

[35] Willi Meier and Othmar Staffelbach. Fast correlation attacks on certain stream ciphers. J. Cryptol.,
1(3):159–176, 1989. 2, 9, 10

[36] Oscar S. Rothaus. On “bent” functions. J. Comb. Theory, Ser. A, 20(3):300–305, 1976. 2, 5

[37] Rainer A. Rueppel. Analysis and Design of Stream Ciphers. Springer, 1986. 1, 2, 9

[38] Palash Sarkar and Subhamoy Maitra. Construction of nonlinear Boolean functions with important
cryptographic properties. In Bart Preneel, editor, Advances in Cryptology - EUROCRYPT 2000,
International Conference on the Theory and Application of Cryptographic Techniques, Bruges,
Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer Science, pages
485–506. Springer, 2000. 19

[39] Palash Sarkar and Subhamoy Maitra. Efficient implementation of ”large” stream cipher systems.
In Çetin Kaya Koç, David Naccache, and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2001, Third International Workshop, Paris, France, May 14-16, 2001,
Proceedings, volume 2162 of Lecture Notes in Computer Science, pages 319–332. Springer, 2001. 3

[40] Palash Sarkar and Subhamoy Maitra. Efficient implementation of cryptographically useful ’large’
boolean functions. IEEE Trans. Computers, 52(4):410–417, 2003. 3

[41] Thomas Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Trans.
Computers, 34(1):81–85, 1985. 2, 4, 9

18

[42] Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang. Fast correlation attack
revisited - cryptanalysis on full Grain-128a, Grain-128, and Grain-v1. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II, volume
10992 of Lecture Notes in Computer Science, pages 129–159. Springer, 2018. 2, 4, 9, 10, 11

[43] Qichun Wang, Claude Carlet, Pantelimon Stanica, and Chik How Tan. Cryptographic properties
of the hidden weighted bit function. Discret. Appl. Math., 174:1–10, 2014. 19

[44] Bin Zhang, Ruitao Liu, Xinxin Gong, and Lin Jiao. Improved fast correlation attacks on the
Sosemanuk stream cipher. IACR Trans. Symmetric Cryptol., 2023(4):83–111, 2023. 2, 9, 11

[45] Zhaocun Zhou, Dengguo Feng, and Bin Zhang. Vectorial decoding algorithm for fast correla-
tion attack and its applications to stream cipher Grain-128a. IACR Trans. Symmetric Cryptol.,
2022(2):322–350, 2022. 2, 9, 11

A Improved Degree and Algebraic Resistance

With the choice of π to be the identity permutation and h to be Majm in (2), the degree of MMn is
2blog2bn/2cc and the algebraic immunity is about dn/4e. We discuss ways to improve these parameters.

For n ≥ 1, let HWBn : {0, 1}n → {0, 1} be the hidden weight bit function [7] defined as follows. For
x = (x1, . . . , xn) ∈ Fn2 , HWBn(x) = 0 if wt(x) = 0, and HWBn(x) = xwt(x), if wt(x) > 0. In [43], it was
shown that the AI of HWBn is at least bn/3c+ 1. We extend HWBn to n-HWBP : Fn2 → Fn2 as follows.
For (x1, . . . , xn) ∈ Fn2 , let w = wt(x1, . . . , xn). Then n-HWBP(x1, . . . , xn) is defined to be the following.
n-HWBP(x1, . . . , xn) = (0, . . . , 0) if w = 0, and n-HWBP(x1, . . . , xn) = (xw, xw+1, . . . , xn, x1, . . . , xw−1),
if wt(x) > 0. It is easy to verify that n-HWBP is a bijection.

Suppose we set π in the definition of MM2m to be m-HWBP (along with choosing h to be Majm),
and define MM2m+1 from MM2m as in (4). This leads to an improvement of algebraic resistance. We
conducted experiments to compute the AI and FAI of MMn for n up to 20. Our experiments suggest
that bn/3c ≤ AI(MMn) ≤ 1 + bn/3c, and bn/2c ≤ FAI(MMn) ≤ 1 + bn/2c. (This is only a conjecture,
and we do not have a proof.)

MM2m+1 is a balanced function having nonlinearity 22m−2m and degree at most m. A construction
of balanced functions on 2m+ 1 variables which has nonlinearity 22m − 2m and the maximum possible
degree 2m is given by Theorem 10(a) of [38]. Dobbertin [21] gave a general construction of balanced
Boolean functions on an even number of variables. The proposal was to modify a normal bent function
on 2m variables by inserting a balanced function on m variables on the flat where the bent function
is constant. This is a recursive procedure, where the recursion terminates with a balanced function on
an odd number of variables and possessing the maximum possible nonlinearity. A simple modification
of this recursive procedure is to require the recursion to terminate with a balanced function on an odd
number of variables possessing the maximum possible degree and as high nonlinearity as possible. Then
the resulting function on 2m variables is balanced and has maximum degree. The terminating function
can be chosen to be the maximum degree balanced function on odd number of variables obtained from
the construction given by Theorem 10(a) of [38]. The net result is that for any n (either odd or even), it is
possible to obtain balanced functions with maximum degree and very high nonlinearity. The procedure
requires bent functions at several stages. One may instantiate these bent functions using MM2m with π
chosen to be m-HWBP and h chosen to be Majm. We have implemented this construction and computed
the algebraic immunities of the resulting functions. From our experiments for n up to 20, we observed

19

that (as above) the algebraic immunity is either bn/3c, or 1 + bn/3c, and the fast algebraic immunity
is either bn/2c or 1 + bn/2c.

Even though the above modifications result in function with higher degrees and higher algebraic
immunities, we did not opt for these functions. The reason is the implementation efficiency. The
modifications make the functions more complex, which results in more gate requirements. In particular,
the implementation of m-HWBP requires O(m2) gates, whereas the implementation of Majm requires
O(m) gates. Since implementation efficiency is a primary concern, we choose the simpler option and
compensate by increasing the number of variables.

20

	Introduction
	Preliminaries
	Construction from Maiorana-McFarland Bent Functions
	Concrete Proposals
	Efficiency of Computing MMn
	Conclusion
	Improved Degree and Algebraic Resistance

