
Privacy-Preserving Dijkstra
Benjamin Ostrovsky

California Institute of Technology
Pasadena CA, USA

July 3, 2024

Abstract

Given a graph G(V,E), represented as a secret-sharing of an adjacency list, we show how to oblivi-
ously convert it into an alternative, MPC-friendly secret-shared representation, so-called d-NORMALIZED
REPLICATED ADJACENCY LIST (which we abbreviate to d-normalized), where the size of our new data-
structure is only 4x larger – compared to the original (secret-shared adjacency list) representation of G.
Yet, this new data structure enables us to execute oblivious graph algorithms that simultaneously improve
underlying graph algorithms’ round, computation, and communication complexity. Our d-normalization
proceeds in two steps:

• First, we show how for any graph G, given a secret-shared adjacency list, where vertices are
arbitrary alphanumeric strings that fit into a single RAM memory word, we can efficiently and
securely rename vertices to integers from 1 to V that will appear in increasing order in the resulting
secret-shared adjacency list. The secure renaming takes O(log V) rounds and O((V + E) log V)
secure operations. Our algorithm also outputs two secret-shared arrays: a mapping from integers
to alphanumeric names and its sorted inverse. Of course, if the adjacency list is already in such a
format, this step could be omitted.

• Second, given a secret-shared adjacency list for any graph G, where vertices are integers from 1
to V and are sorted, we show an oblivious d-normalization algorithm that takes O(1) rounds and
O(V + E) secure operations.

We believe that both conversions are of independent interest. We demonstrate the power of our
data structures by designing a privacy-preserving Dijkstra’s single-source shortest-path algorithm that
simultaneously achieves O ((V + E) · log V) secure operations and O(V · log V · log log log V) rounds.
Our secure Dijkstra algorithm works for any adjacency list representation as long as all vertex labels and
weights can individually fit into a constant number of RAM memory words. Our algorithms work for
two or a constant number of servers in the honest but curious setting. The limitation of our result (to only
a constant number of servers) is due to our reliance on linear work and constant-round secure shuffle.

Keywords: Oblivious Graph Algorithms, MPC, Oblivious RAM, Distributed ORAM, Garbled RAM,
Single-Source Shortest Path, Secure Dijkstra.

*Preliminary version will appear at CRYPTO 2024 conference, to be held in Santa Barbara, CA, August 18-22, 2024.
E-mail: ben.ostrovsky@caltech.edu. Work done while at Santa Monica High School, Santa Monica, CA.

Contents

1 Introduction 3
1.1 Secure Multi-Party Computation . 3
1.2 Secure Graph Processing . 3

1.2.1 Review of Adjacency Matrix Approaches for Graph Processing: 3
1.2.2 Review of ORAM/GRAM Compilers for Graph Processing: 4
1.2.3 Graph Processing Algorithms that leak Partial Information: 5

1.3 Organization of the rest of the paper . 5

2 Overview of Our Results 6
2.1 Changing Graph Representations . 6
2.2 Secure Dijkstra . 8
2.3 Applications of secure SSSP: . 10

3 Preliminaries 11
3.1 Arithmetic Black Box functionalities . 12
3.2 Building Blocks . 12

4 Graph Conversions for MPC 17
4.1 Secure d-normalization algorithm . 19
4.2 Analysis of d-normalization algorithm . 23
4.3 Oblivious Graph Renaming Algorithm . 24
4.4 Analysis of Graph Renaming Algorithm . 26

5 Oblivious Priority Queue with Parallel Decrease Key 28
5.1 Correctness . 31
5.2 Complexity Analysis . 32

6 Secure Dijkstra and its Analysis 32
6.1 Edge Relaxation for a single block . 33
6.2 Secure Dijkstra . 34

7 Conclusions and Further Work 35

8 Acknowledgments 35

2

1 Introduction

1.1 Secure Multi-Party Computation

Secure multi-party computation (MPC) allows two or more servers to jointly compute an arbitrary polynomial-
time computable function on private data while learning only the size of the inputs and the output of the
function and nothing else. These notions were invented in the 1980s both in the computational [49, 83] and
in the information-theoretic [13, 31, 73] settings. In the last decade, implementations of MPC have attracted
considerable attention [80, 84, 61, 76, 74, 36, 14, 34, 67, 53, 20, 85, 65, 57, 78, 41].

While initial work from the 1980s considered secure computation protocols solely for circuits (either
Boolean or Arithmetic), it was recognized in 1997 that Random Access Memory (RAM) in the MPC setting
could be realized to make MPC protocols more efficient [71]. Follow-up works, adopting Oblivious RAM
[50] and GRAM [63] to MPC support of RAM has gained much attention over the last decade. Integrating
ORAM with MPC gave rise to distributed ORAM (DORAM) [71, 62, 36, 24, 41]. Applications of GRAM
to MPC to achieve RAM access for MPC were considered in [63, 45, 64, 54, 82, 55].

1.2 Secure Graph Processing

The ability to perform random access is especially relevant for secure graph processing algorithms. Not
surprisingly, graph processing has received considerable attention in the MPC literature [6, 60, 61, 5, 17, 7,
21, 82]. Privacy-preserving graph processing has followed two common approaches:

(a) Adjacency Matrix Approach. Instead of a (secret-shared) adjacency list representation, convert
graph representation to the adjacency matrix representation, which hides the degree of any node by
scanning the entire row of the adjacency matrix1.

(b) ORAM/GRAM Compilation Approach. Choose an insecure graph algorithm and compile it into a
secure version using Distributed ORAM and/or Garbled RAM inside MPC.

We discuss both approaches separately. Jumping ahead, we will show a third alternative: in near linear
work, obliviously convert any graph into a new representation that we define, the so-called d-NORMALIZED

REPLICATED ADJACENCY LIST and then modify insecure graph algorithms to run on this new representation
in an oblivious fashion. The conversion works for any graph, yet the resulting representation “acts” as if
it is d-regular. As a side remark, showing (by a counting argument) that this data structure exists is easy;
what is hard is to show how to convert any secret-shared adjacency list representation into such a format
securely and efficiently. That is the main contribution of our paper. We demonstrate the use of the new
representation on Dijkstra’s shortest path algorithm. As part of the new privacy-preserving Dijkstra, we
design a privacy-preserving parallel distributed priority queue algorithm (in support of Dijkstra).

1.2.1 Review of Adjacency Matrix Approaches for Graph Processing:

Adjacency matrix approaches were taken in [6, 4, 5, 17]. We give a brief overview of these approaches.
Blanton et al. [17] considered an adjacency matrix representation to solve several graph algorithms, namely
breadth-firth search (BFS), Single Source Shortest Path (SSSP) for an unweighted graph using BFS, mini-
mum spanning tree (MST), and maximum flow. They achieve O(V 2) work complexity for BFS, SSSP, and

1A variant of this approach is to reveal the graph’s maximum degree and truncate rows of the adjacency matrix representation
to the graph’s maximum degree. Since we are unwilling to reveal any information about the graph (other than the total size of all
vertices and all edges combined), we do not consider such a leakage acceptable.

3

MST, as well as O(V 3 ·E log V) work for maximum flow. Anagreh et al. [7] presented a privacy-preserving
implementation of Prim’s algorithm to solve MST, with O(V log V) rounds and O(V 2) work. They also
generalize their MST algorithm to work for the minimum spanning forests. Aly et al. [5, 4, 6] designed a
secure SSSP, where in order not to disclose the degree of any vertex, they upper-bound it to be the max-
imum n − 1 degree. By permuting the adjacency matrix, they achieve O(V 3) secure operations [6]. Aly
et al. revisited the SSSP problem several times in [4, 5]. Specifically, they achieve secure Dijkstra with
O(V 2 log V) secure operation and O(V 2) rounds.

1.2.2 Review of ORAM/GRAM Compilers for Graph Processing:

Approach (b) is using Distributed ORAM to support random access inside MPC. It was introduced in [71].
ORAM compilation for graph processing was explored in [60, 61, 82]. Specifically, Keller et al. [60]
applied ORAM compilers to insecure Dijkstra, building all the necessary data structures to support it. Since
the ORAM Compilers (of various building blocks) were not as developed as they are today, in 2014 [60]
required O(V log4 V +E log5 V) secure operations and rounds. Liu et al. [61] extended the ideas of Keller
at al. using their ObliVM ORAM framework, with two modifications: (1) loop coalescing and (2) avoiding
weight updating. Loop coalescing made Dijkstra run in one loop, with a secret shared value telling it whether
it was processing an edge or a vertex, as opposed to an inner and outer loop for vertex and edges, respectively.
This allowed them to avoid padding the vertices to the maximum degree while keeping the topology. (i.e.,
the degree of each vertex) of the graph secret. Their second change, avoiding decrease-key weight updating,
was replacing the decrease-key step in the priority queue with an insert of a new item into the priority queue
with a smaller weight. This increases the number of vertices in the PRIORITY QUEUE. With these changes,
they achieve O((V + E) log2 V) secure operations. (Note that our bound is O((V + E) log V)).

It is important to examine generic transformations approach from Distributed Oblivious RAM (DO-
RAM) [62, 84, 38, 28, 24, 41, 56, 69] and Garbled RAM (GRAM) [63, 45, 44, 54, 55] for RAM style
algorithms. Note that the latest DORAM does provide an addressable memory with private read/write ca-
pabilities with logarithmic overhead in the running time and logarithmic round complexity [41, 56] and
even sub-logarithmic overhead for large blocks [69]. However, a general compiler from arbitrary code to
addressable memory adds another level of inefficiencies, such as implementing and supporting pointers and
recursion and hiding which operation is performed at any particular step. For example, hiding which op-
eration the CPU executes requires multiplexing the general-purpose CPU for all its instructions and doing
it for each computation step. This alone results in considerable additional overhead [61]. Furthermore,
handling pointers and recursive program stack (if used) has to be explicitly programmed – for general MPC
compilers, this leads to additional difficulties.

Recent progress on GRAM application was achieved in Yang et al. [82]. They present a variable instruc-
tion set architecture (VISA), a method of handling programs inside MPC, where all strait-line fragments of
the code are unrolled into individual “custom” CPU instructions that are executed as garbled circuits, and
the latest Garbled RAM [55] is used for obvious random access. Since [55] incurs O(log3 n · log log n)
overhead, and [82] use O((V + E) log V) insecure Dijkstra’s with the HEAP for Priority Queue, yielding
O((V + E) log4 V log log V) secure operations with constant rounds.

Currently, ORAM overhead is far are more efficient than GRAM overhead; thus, if we want the smallest
overhead possible at the expense of non-constant rounds, we should examine ORAM compilers’ application
to various insecure SSSP solutions. For example, if we consider asymptotically the most efficient insecure
Dijkstra algorithm, which has O(V log V +E) running time [43, 23, 22], and compile it into secure DORAM
we get a logarithmic additional overhead for such a compilation (which is currently the best-case scenario
[41, 56] for small blocks). That is, the naive compilation solution gets O((V log V + E) log V) secure

4

operations and the same number of rounds. Even assuming O(log n/ log logn) ORAM overhead for larger
blocks [1, 69], we get O((V log V + E) log V)/ log log V) secure operations.

In this paper, we achieve O ((V + E) log V) secure operations for Dijkstra, which is an improve-
ment even compared to the ORAM generic compilers in terms of the overhead. We also improve on
the naive approach’s round complexity of O((V log V + E) log V/ log log V), for ORAM compliers, to
O(V log V log log log V) rounds.

As a side remark, to improve round-complexity, in addition to [82] GRAM option, one can also consider
running a secure variant of the parallel version of Bellman-Ford algorithm, similar to [7]. Specifically, recall
that Bellman-Ford relaxes all E edges in parallel V times. There are implementations of Parallel ORAM
read/write compilers of [64, 29, 11] which incur logarithmic overhead. Thus, one can use parallel Bellman-
Ford with O(V log V) round complexity, but at the expense of O(V · E · log V) secure operations. This
paper aims to minimize the overhead and the round complexity jointly.

1.2.3 Graph Processing Algorithms that leak Partial Information:

Brickell et al. [21] present a secure SSSP algorithm. However, they use a modified definition of security,
in which their algorithm immediately reveals the identity of a start node, and, during the execution of the
algorithm, gradually reveals the identity and distance for each “explored” vertex in G. As already noted in
Aly et al. [6], Brickell et al.’s work is unusable as a building block for a larger secure computation, as it
leaks distance vector and additional structural information about the graph during the algorithm execution.
In contrast, in our work, all inputs and all outputs are secret-shared.

Another solution that leaks partial information about the graph is that of [8]. Specifically, [8] considers
the so-called Radius-Stepping algorithm, where there is some graph structure leakage. The authors argue
that such leakage can be further masked by running an algorithm for a longer number of iterations that
could be determined experimentally. However, the bounds on the amount of masking to achieve provable
guarantees that do not leak any information about the graph are not analyzed. In this paper, we aim only
at algorithms that have provable guarantees on the running time and round complexity and no leakage
whatsoever, including not leaking the identity of the start node.

Solutions for graphs with fixed bounded degrees are also irrelevant to our goals. For example, [81]
considers only planar graphs (e.g., Manhattan distances), and as such, their methods are not applicable to
graphs with no restrictions on the individual vertex degrees. Observe that for general graphs, some vertices
could have small degrees or even be isolated vertices, and some could have huge degrees. In our work, we
make no assumption on the vertex degree distribution.

1.3 Organization of the rest of the paper

In section 2, we provide a high-level overview of our results and introduce the notion of d-NORMALIZED

REPLICATED ADJACENCY LIST. Section 3 covers preliminaries and reviews and introduces various building
blocks that we use. Section 4 presents two new oblivious graph conversion algorithms. Specifically, it shows
an oblivious way to rename all vertices to be sorted integer values 4.3. Section 4 also shows how to convert
an adjacency list into a d-normalized form 4.1, which is only four times bigger than the original adjacency
list size. Section 5 presents our secure algorithm for the Parallel Priority Queue. Section 6 presents our
secure Dijkstra algorithm and its analysis. Finally, section 7 presents conclusions and further work and
Acknowledgments in 8.

5

2 Overview of Our Results

Our algorithms apply to two-party, three-party, or constant-party MPC protocols. We consider honest-but-
curious MPC, and utulize the following primitives, all used in a block-box fashion:

• Arithmetic Black Box (ABB) secure operations. Consistent with previous works, our complexity
ignores the difference between different types of ABB operations. ABB operations include addition,
multiplication, exponentiation, comparison, and bit-decomposition on secret shared values, where
both inputs and outputs are secret-shared and assumed to fit into RAM word size.

• We use a secure shuffle protocol with constant rounds and linear work. These are only known for two,
three, or a constant number of servers [28, 30].

• We use linear work secure merge algorithms [39, 19]. Again, these are known only for two, three, and
a constant number of servers.

• We use Shared-Input Shared-Output Pseudo-Random Function (SISO-PRF) [48, 41].

• We use DORAM and Parellel DORAM. One option is to deploy DORAM inside MPC for any number
of servers by using client-server ORAM [70, 72, 10, 37] and Parallel DORAM of [64, 11], and run
ORAM client within MPC. However, the constants involved in [10, 11] and even [37] are enormous.
For two-party and three-party servers, custom solutions for DORAM that do not incur these enormous
constants [62, 64, 69] have been developed.

• In our priority queue and in vertex renaming, we use an oblivious secure sort algorithm. For instantia-
tion, for three-party cases, one can use the honest-but-curious secret-shared SECURE SORT algorithm
of [9], which is based on radix sort. It takes O(n log n) work and the number of rounds proportional
to the length of the key. Since we will be dealing with keys that are vertex names from 1 to V and
are O(log V) in length, that gives us logarithmic round complexity2. For two or more servers, one
can also use the shuffle-then-sort paradigm of [52, 51], which gets O(log n) overhead oblivious sort
protocol with a small constant, unlike AKS.

As far as the collusion threshold goes, as long as the underlying building blocks listed above are resilient
to such collusions, our overall protocols can support the same type of collusion as well – by relying on
the stand-alone composition framework of Canetti [25] (we remark that we don’t need more general UC
composition [26] since we only consider honest-but-curious setting.).

2.1 Changing Graph Representations

We start our exposition with a simple counting argument. Specifically, given any graph G(V,E), represented
as an adjacency list, we show that by replicating vertices and padding adjacency lists with ⊥, G can be
converted into a graph on 2V (potentially repeating) vertices, such that each potentially copied vertex has
(partial) adjacency list that is exactly twice the average degree of the original graph, padded with ⊥’s as
needed. We call such representation of the graph d-NORMALIZED REPLICATED ADJACENCY LIST. The
main contribution of this paper is a secure algorithm that converts any secret-shared adjacency list into

2Of course, the same asymptotic result can be achieved using AKS [3] sorting network, with evaluating each comparison gate
bit by bit under MPC, but at the cost of an enormous constant in the big-O notation. For additional discussion on secure sort
implementations, see [40].

6

a secret-shared d-normalized adjacency list, which is only four times larger than the initial secret-shared
adjacency list representation. To achieve this, we set d to be twice the average degree, rounding up. Observe
that we know the average degree since we know the overall number of vertices and the total number of
edges, and this information is not private. For vertices with fewer than d edges, we will obliviously pad the
adjacency list of each such vertex with ⊥ symbols so that the linked list will be of length exactly d. For
vertices with more than d outgoing edges, we will allow the same vertex name to appear (consecutively)
multiple times on our new adjacency list representation. Each copy of the vertex will have exactly d edges
on its adjacency list, again padding with ⊥’s as needed.

Definition 1. d-Normalized Replicated Adjacency List. For any graph G, we define a d-NORMALIZED

REPLICATED ADJACENCY LIST to be an adjacency list representation of G where any vertex u may appear
multiple times in the adjacency list with the following properties:

1. For any edge (u, v) ∈ G, v appears in at least one replicated adjacency list of u.

2. Each adjacency list of u is of length exactly d, containing either vertices of G or ⊥.

3. If there is more than one copy of u’s edges in the replicated adjacency list, all copies of u’s adjacency
lists appear consecutively to each other.

4. Multiple ⊥ entries are allowed.

For example, and ignoring edge weights for now, if a vertex u has outgoing edges to vertices (b, c, d, e, g),
then a standard adjacency list representation will include a linked list: [u, (b, c, d, e, g)]. The 2 -REPLICATED

ADJACENCY LIST for u could be: [u, (b, c)], [u, (d, e)], [u, (g,⊥)], [u, (⊥,⊥)], where all copies of u must
appear consecutively. As another example, the 3-NORMALIZED REPLICATED ADJACENCY LIST for u could
be: [u, (b, c, e)], [u, (d, g,⊥)]. Alternatively, it could even be: [u, (b, c, e)], [u, (d,⊥,⊥)], [u, (g,⊥,⊥)].
[u, (⊥,⊥,⊥)]. We remark that condition 4 allows ⊥ entries in the replicated adjacency lists. For example,
in the 2-normalized adjacency list, entries of the form (⊥, (⊥,⊥)) are allowed.

We consider two cases for the adjacency list representation of any graph G(V,E):

• Sorted Integer Representation: vertices are integers from 1 to V and appear in sorted order in the
adjacency list.

• Alphanumeric Vertex Representation: vertices are arbitrary alphanumeric strings, with the restric-
tion that each vertex label fits into a single RAM memory word.

We first show how to convert alphanumeric vertex representation to sorted integer representation:

Theorem 1. (Oblivious Graph Renaming) For c servers, assume the existence of honest-but-curious SE-
CURE SHUFFLE protocol with linear work and O(1) rounds, resilient against any collusion of at most u < c
servers. Further, assume that a c-server MPC protocol exists for ABB operations, tolerating at most u < c
colluding servers. Given an adjacency list A for any graph G(V,E), where vertices are arbitrary alpha-
numeric labels that fit into a single memory word, there exists a secure algorithm for c servers tolerating
u < c collusions to convert JAK into JÂK, where Â is an adjencecy list of G with vertices that are or-
dered integers from 1 to V . The conversion algorithm takes O(log V) rounds and O((V +E) log V) secure
operations. The algorithm also outputs a secret-sharing of the mapping of ordered integers to original
alphanumeric labels and from sorted alphanumeric labels back to integers, consistent with A, Â mapping.

7

Our Oblivious Graph Renaming algorithm may be of independent interest. For example, knowledge
graphs and Privacy-Enhancing Technologies (PETs) often work on graphs where alphanumeric labels repre-
sent data. In information science, ontology graphs are used with alphanumeric vertex labels. Our algorithm
allows us to efficiently and privately convert such graphs to integers from 1 to V . Since we also provide a
secret-sharing of a mapping from integers back to alphanumeric labels, after whatever secure computation
is computed on integer-labeled graph representation, one can convert it back to its original format.

d-normalization: Our main result (that relies on a counting argument in lemma 6) shows how to obliviously
convert the adjacency list of G, which is represented as integers from 1 to V into d-normalized secret-shared
representation, which is only four times bigger than its original adjacency list. We again assume as our
building block a secure shuffle protocol. As of this writing, secure shuffles exist only for two, three, or
a constant number of honest-but-curious non-colluding servers. Our protocols rely on secure shuffle in a
black-box manner. If, in the future, secure shuffles with linear work and constant round complexity are
developed for a larger number of servers, our theorems will apply automatically in these settings as well
(see formal definition in section 3.2). We also assume Arithmetic Black Box operations (ABB for short –
see section 3.1) with the same collusion threshold. We state of main result on d-normalization :

Theorem 2. (Secure d-Normalization) For c servers, assume the existence of honest-but-curious SECURE

SHUFFLE protocol with linear work and O(1) rounds, resilient against any collusion of at most u < c
servers. Further, assume that there exists a c-server MPC protocol for ABB operations, tolerating at most
u < c colluding servers. Assume that c servers are given a secret-shared adjacency list JAK for any graph
G(V,E), where vertex labels are integers from 1 to V and appear inA in sorted order. Then, there exists an
honest-but-curious secure algorithm, tolerating at most u collusions, to obliviously convert JAK into ⌈2EV ⌉-
normalized replicated adjacency list of size 4JAK. The conversion takes O(1) rounds and O(V +E) secure
operations.

We remark that in the theorems 1 and 2, we do not rely on SISO-PRF as one of the ABB (see 3.1).
Therefore, the above results for three or a constant number of parties are unconditional if ABB operations
are unconditional.

2.2 Secure Dijkstra

Given a secret-sharing of the start vertex s, a secret-sharing of a directed weighted graph G with non-negative
weights, our next objective is to compute Dijkstra’s shortest path algorithm securely. More specifically, the
goal is to compute the Single Source Shortest Path (SSSP). That is, we wish to compute a secret-sharing of
a vector containing the numerical value for the shortest path from the source to each vertex in G, called the
SSSP distance vector, without learning anything about G other than the total number of vertices and edges
of G. Just like regular Dijkstra, our algorithm can also securely compute a secret-sharing of a predecessor
for each vertex. We stress an important requirement in our problem statement: in order for our SSSP
protocol to be useful as a subroutine for other secure protocols, the distance and predecessor vectors, which
is the output of Dijkstra, must be computed in a secret-shared form and should remain hidden3.

Our secure Dijkstra algorithm does requires evaluation of SISO-PRF with a constant number of rounds.
Naturally, using constant-round MPC, one can achieve it assuming only the existence of one-way functions

3This is in contrast to the work of [21], where the entire vector of distances is revealed in the clear (in fact, in the specific order
in which Dijkstra computes distances) for their algorithm to work.

8

and running PRF [48] under MPC4. But are one-way functions strictly necessary? It turns out that we do not
even need the full power of SISO-PRF for our application. Instead, what we actually need is very limited
SISO-PRF, where inputs are restricted to be integers from 1 to V ; such limited SISO-PRF does exist without
any additional cryptographic assumptions in the three (or more) server settings. The catch, however, is that
these functions are based on recursive position-map ideas from [77] and require a logarithmic number of
rounds instead of a constant. For that reason, these SISO-PRFs are not applicable if we care about round
complexity (and we do). We remark, however, that it could still be the case that for c ≥ 3 there exists another
constant-round small-domain SISO-PRF without any cryptographic assumptions, but this is wide open. We
are now ready to state our theorem on the Privacy-Preserving Single-Source Shortest Path (SSSP):

Theorem 3. (Secure Dijkstra) Let k be a security parameter and G(V,E) be a directed weighted graph
with non-negative edges, where all weights and vertex names fit into a constant number of RAM memory
words. Assume the existence of honest-but-curious SECURE SHUFFLE protocol with linear work and O(1)
rounds for c servers, resilient against any collusion of at most u < c servers. Further, assume that a c-
server MPC protocol exists for ABB operations, including SISO-PRF, tolerating at most u < c colluding
servers. Then, given as input a secret-sharing among c servers of a start vertex and secret-sharing of G
among c servers, there exists c-server honest-but-curious SSSP protocol tolerating at most u collisions with
O((V +E) · log V) secure operations and O(V · log V · log log log V) rounds, where all secure operations
are bounded by a fixed polynomial in k number of steps.

We compare theorem 3 on privacy-preserving Dijkstra to the previous work in table 1 below:

Secure Single Source Shortest Path Schemes

Secure SSSP Secure Operations Round Complexity
Aly et al. (2013) [6] O(V 3) O(V 2 log V)

Keller et al. (2014) [60] O(V log3 V + E log4 V) O(V log3 V + E log4 V)

Liu et al. (2015) [61] O((V + E) log2 V) O((V + E) log2 V)

Aly et al. (2022) [5] O(V 2 log V) O(V 2)

Yang et al. (2023) [82] O((V + E) log4V log log V) O(1)

Naive Solution using DORAM O
(
(V log V+E) log V

log log V

)
O((V log V + E) log V)

This paper O((V + E) log V) O(V · log V · log log log V)

Table 1: Comparison of our work to the previous works, counting the number of Arithmetic Black Box
(ABB) operations. By ABB, we mean secure addition, multiplication, and comparison, and for two-server
case, secure public-key operations, such as encryption, decryption, and homomorphic addition.

To develop a secure Dijkstra algorithm, we must address the MPC variant of the priority queue algorithm,
which is an integral part of Dijkstra. There are several works addressing secure priority queues in the
literature in the client-server ORAM model, where the client is trusted. There is no trusted client in the MPC
setting, and MPC support to simulate the client presents new challenges. Our starting point is Jafargholi et
al. [58, 59] client-server priority queue, which we modify for MPC purposes. We choose Jafargholi et
al. [58, 59] paper which achieves O(log n) overhead in the client-server setting over a follow-up paper of
[75], since [75] requires O(log n + log(1/δ)) client’s memory, where δ denotes the failure probability per
request, and therefore log(1/δ) has to be asymptotically greater than O(log n) for the probability of failure

4For 3-server case, an efficient implementation of this was shown in [41].

9

to be negligible. For MPC, we needed to keep the client’s memory as small as possible since we support it
inside MPC. We prove the following theorem for Oblivious Priority Queues (OPQ)5:

Theorem 4. (Secure OPQ) Assume the existence of honest-but-curious SECURE SHUFFLE protocol with lin-
ear work and O(1) rounds for c servers, resilient against any collusion of at most u < c servers. Further, as-
sume that there exists a c-server MPC protocol for ABB operations, including SISO-PRF, tolerating at most
u < c colluding servers. Further, assume that all elements and priorities fit into a single RAM memory word
of OPQ. Then, there exists c-server honest-but-curious OPQ protocol tolerating at most u < c collisions,
supporting n elements with the amortized cost of O(log n) secure operations and O(log n · log log log n)
rounds for each of EXTRACT-MIN, INSERT, and PARALLEL-DECREASE-KEY OPQ-procedures, where all
secure operations are bounded by a fixed polynomial in k number of steps.

As a side remark, an alternative for Secure Priority Queue is to use pointer-based worst-case Fibonacci
Heap of Brodal et al. [23] together with MPC ORAM compilers. However, this is still worth more than our
solution: it gets us O((V log V +E) log V), which is clearly inferior to our version of secure Dijkstra, which
takes O((V + E) log V)) secure operations. In addition, general compilation loses round efficiency. On a
related note, it is important to point out that standard Fibonacci Heap [43] is not secure even if decrease-key
operations are implemented within ORAM and, therefore, hides memory access if the time when the call
to Fibonacci Heap and when it terminates is revealed to the adversary. The main reason [43] is not secure,
even if run as a subroutine inside ORAM, is that it has only expected O(1) run-time for each decrease-
key operation. Therefore, the run-time of each decrease key varies depending on the graph structure and
may leak information about the graph. In contrast, in our solution, we do not need to hide when different
subroutines begin and end since each subroutine has a fixed amount of work independent of the graph
topology.

2.3 Applications of secure SSSP:

Data-oblivious SSSP has multiple applications that we list below. In addition, we believe that our graph
representation will be applicable to other graph algorithms since it hides the degree of the vertices yet
maintains the efficiency of adjacency-graph representation.

• Privacy-Preserving Navigation Systems: [81, 79, 35]: In a navigation system, the shortest path in-
formation between locations might be sensitive for some users. Data-oblivious algorithms can ensure
that the shortest path computation does not reveal any private information about the user’s starting
point, destination, or frequently visited locations.

• Secure Graph Processing: [6]: In distributed graph processing, where multiple servers collabora-
tively analyze graphs without revealing sensitive information, data-oblivious SSSP algorithms can
ensure that no party can infer the private attributes or structure of the graph.

• Computational Biology: Computing edit distance between two DNA sequences (without revealing
DNA individual inputs) can be implemented using the privacy-preserving SSSPalgorithm as a build-
ing block [12, 15]. As another example, sequence alignment problems in computational biology can
be solved securely using secure shortest path algorithms [42].

5We call EXTRACT-MIN, INSERT, and PARALLEL-DECREASE-KEY procedures instead of operators in order not to confuse
these with ABB secure operations that we use to implement these primitives.

10

• Social network analysis: Social network graphs, such as Facebook friends or Twitter graphs [66],
often require secure shortest-path calculations.

Beyond applications listed above, the SSSP secure computation is explored in outsourcing mobile compu-
tations to the cloud [27]. In addition, Privacy-Preserving Knowledge Graphs [32] must hide information
about these graphs, including keeping various sensitive ontologies private, yet being able to compute on
these siloed datasets.

3 Preliminaries

Recall that two samplable families of distributions {Xn} and {Yn} are computationally indistinguishable
{Xn}

c
≈ {Yn} [83] if for all constants c, and for all probabilistic poly-time adversaries A, and for all

sufficiently large n, |Pr[x ← Xn : A(x) = 1] − Pr[y ← Yn : A(y) = 1]| < 1
nc . We call Random

Access Memory (RAM) algorithm ALG oblivious if for any two inputs of the same length, ALG takes
the same number of steps, and the distribution of Random Access Memory (RAM) locations accessed is
computationally indistinguishable.

We denote by k the computational security parameter (e.g., the size of the key for block-cipher, such as
AES.) As standard for RAM architectures [2], each server is modeled as a RAM Machine that can read/write
a single word of RAM in one step and perform CPU operations in one step. Each word of RAM is of size
O(k), and thus, cryptographic keys can fit into one (or a constant number of) word(s) of RAM memory. We
assume that for graphs that servers are working with, vertex labels and edge weights also fit into a single (or
a constant number of) words of RAM.

We use lower-case letters to represent variables and parameters, except in the case of V and E, by which
denote the vertices and edges of a graph G, respectively. We abuse the notation and refer to the number of
vertices and the number of edges of a graph as V and E as well, instead of |V | and |E|. Arrays are denoted
with capital letters. The i’th element of array Y is denoted Yi. We use the following definition [68]:

Definition 2 (Secret-Sharing). Let there be s servers, and let U represent the maximal corruptible subsets
of {0, . . . , s − 1}. Let Share be a randomized function that maps X → Xs and let Reconstruct be a
deterministic function that maps Xs → X . Share and Reconstruct define a U -secure secret-sharing scheme
if ∀x ∈ X , Reconstruct(Share(x)) = x with probability 1 and ∀u ∈ U , ∀xa, xb ∈ X , Share(xa)u and
Share(xb)u have the same distribution, where Share(·)u is the view of any U servers.

We use JxK to denote a secret-sharing of x. JxK is a fresh secret-sharing of x if its random distribution
which is independent of all previous distributions. When we write JAK for an array A, it denotes secret-
sharing every of every entry of A. Note that what this does not hide is the dimension of A, which is public.

We investigate a scenario in which several (two or three or a constant number of) servers have a secret
sharing of an adjacency list of a graph and a secret sharing of a start vertex and wish to compute Dijkstra’s
Single Source Shortest Path (SSSP). Only the total number of edges E and vertices V is publicly revealed.
Servers do not know the graph’s topology (meaning the degree of any vertex or maximum degree of the
graph). At the end of the protocol, the distance function and shortest path should be secret-shared.

We use MPC ideal functionality as an arithmetic black box FABB , which was first introduced by
Damgård and Nielsen [33], and generalized in [56] to define primitive secure operations.

11

3.1 Arithmetic Black Box functionalities

Concretely, we invoke FABB with the following functionalities where all values are in the publicly known
finite field F:

• JzK← FABB.add(JxK, JyK), which adds secret shared values x, y to obtain a fresh secret shared value
z s.t. z = x+ y. Note that we can trivially add more than two values by adding a third to the sum of
the first two. We assume that addition can be done non-interactively, sometimes referred to as “silent”
addition.

• JzK← FABB.multiply(JxK, JyK), which takes secret shared values x, y to obtain a fresh secret shared
value z s.t. z = x ∗ y.

• JzK← FABB.exp(JxK, JyK), which takes secret shared values x, y to obtain a fresh secret shared value
z s.t. z = xy.

• JzK ← FABB.min(JxK, JyK), which takes the minimum between values x, y to obtains a fresh secret
shared value of z ← min(x, y).

• JzK ← FABB.max(JxK, JyK), which takes the minimum between values x, y to obtains a fresh secret
shared value of z ← max(x, y).

• JzK ← FABB.compare(JxK, JyK), which takes either numeric or alphabetic secret shared values x, y
to obtain fresh secret shared boolean z s.t. z ← True iff x < y, while z ← False when x ≥ y. Note
that when comparing two alphabetic values (e.g., names), z ← True iff x is lexicographically smaller
than y.

• JzK ← FABB.equality(JxK, JyK), which takes either numeric or alphabetic secret shared values x, y
to obtain fresh secret shared boolean z s.t. z ← True iff x = y.

• JzK← FABB.bit-decomposition(JxK), which takes a secret sharing of a field element JxK and converts
it into secret-sharing of individual bits of the bit decomposition of x.

• JzK ← SISO-PRF(JsK, JxK). Shared-Input, Shared-Output Pseudo-Random Function6 (SISO-PRF)
takes secret shared key JsK, a secret shared input JxK, and computes a fresh secret shared output JzK,
where z ← PRFs(x).

Since we use ABB and show that our algorithms are oblivious based on ABB algorithms, the stand-along
composition theorem of [47] applies.

3.2 Building Blocks

Silent PrefixSum We will repeatedly use (as a building block) the SILENT PREFIXSUM algorithm. Given a
secret-sharing of an array of n field elements in GF (q), [x1, . . . , xn] we compute

[Jy1K, . . . Jy1K]← SILENT PREFIXSUM([Jx1K, . . . , JxnK])

where each JyiK is a fresh sharing of
∑i

1 xi. Specifically, if x1, . . . , xq are secret-shared, and the underlying
secret-sharing scheme supports non-interactive addition of the secret-shared values, the servers can compute

6We remark that SISO-PRF is the most expensive ABB function, and should be used sparingly. We are not using it inside secure
graph conversion at all. For Dijkstra, we use it once for every d edges, where d is twice the average degree.

12

the secret-sharing of an array y1, . . . , yq silently – without any interaction with each other. We note that we
do not need the full power of [18] for SILENT PREFIXSUM, since every server can locally compute a fresh
share of each yi.

Compositional Secret-sharing of Permutations We define a permutation π ∈ Sn on n elements to be
secret-shared among c ≥ 2 servers P1, P2, . . . , Pc if every server holds permutation πi on n elements, such
that π = π1 ◦ π2 ◦ · · · ◦ πc, where ◦ is composition operator. By JπK we denote such a secret-sharing. A
uniform random permutation can be easily sampled silently:

JπK← SAMPLE-FRESH-PERMUTATION

by all c servers, with each server Pi just picking a fresh uniform random permutation πi. Looking ahead,
[28, 30, 41, 40, 39, 19] show how to not only store such compositional permutations and apply them with
linear work and a constant number of rounds on any n-size secret-shared array but also be able to evaluate
π−1 on secret-shared arrays of size n by applying π−1

c ◦ π−1
(c−1)◦, . . . , ◦π

−1
1 .

Secure Shuffle Given a secret-shared array JAK = ([Jx1K, . . . , JxnK]) where each item has d bits, and a
secret-sharing of a permutation JπK securely compute a secret-shared array JÂK of n elements:

JÂK← SECURE-SHUFFLE(JAK, JπK)

where ∀i, 1 ≤ i ≤ n, JÂπ(i)K is a fresh copy of JAiK. Given JπK, these protocols also support securely
computing Jπ−1K silently (i.e. without any communication). Two-party secure shuffle with linear work and
constant rounds is known based on additively homomorphic encryption [30, 40, 39, 19], while three-party
(or a constant-party) secure shuffle can be constructed unconditionally [28].

Oblivious k-Compaction: Given a public parameter k < n, and two secret-shared arrays, a boolean ar-
ray of n bits JBK = [Jb0K, . . . , Jb(n−1)K] where exactly k bits are 1, and an array of length n: JAK =
[Ja0K, . . . , Ja(n−1)K] where each ai is d bits, we want to compute a fresh secret-sharing of array JCK =
[Jc0K, . . . , Jc(k−1)K] which extracts k elements from JAK for which bi = 1, not necessarily in the same order:

JCK← OBLIVIOUS k-COMPACT(k, JBK, JAK)

That is, ∀i for which bi = 1, ∃!j such that C[j] is a fresh copy of A[i]. Let array JBAK denote pairing of
entries of JAK with entries of JBK, where i’th entry of JBAK is J(bi, ai)K. Oblivious k-compaction is done
as follows:

1. JπK← SAMPLE-FRESH-PERMUTATION

2. JDK = [(Jb′0K, Ja
′
0K), . . . , (Jb

′
(n−1)K, Ja

′
(n−1))K]← SECURE-SHUFFLE(JBAK, JπK)

3. Open all b′i in JDK and compute JCK as subset of all a′i s.t. b′i = 1.

Oblivious Use-Once-KVS In our secure implementation of Dijkstra, we rely on a new primitive, called
USE-ONCE KEY-VALUE STORE (ONCE-KVS for short), an oblivious data structure to retrieve (once for
each key) a large payload indexed by short distinct keys. Specifically, we define a special-purpose Key-Value
store that is more efficient than [46, 16] at the expense of a restriction on how it can be used.

13

Specifically, we are given a list of distinct keys, each associated with a large payload. We build a new
data structure where the build time takes only a constant number of rounds and is linear time and linear
communication. However, retrieval time is faster than prior works: it is just a single call to SISO-PRF,
independent of the size of the payload, where we return a pointer to a fresh secret-sharing of a payload
that does not reveal which key that payload is associated with. To reiterate, the restriction is that every key
lookup can be used only once. We proceed to describe this primitive and its implementation:

We are given two arrays of the same length: a secret-shared array of keys JKK = [Jk0K, . . . , Jk(n−1)K]
where each ki is a secret-sharing of unique (typically short) key ki, and an array of secret-shared payloads
JP K = [Jp⃗0K, . . . , J ⃗pn−1K] of length q bits each7.

USE-ONCE KEY-VALUE STORE supports two operations:

• KVS.INITIALIZE(Jk1KJp⃗1K), (Jk2KJp⃗2K), . . . (JknKJp⃗nK)).

• (Jp⃗iK)← KVS.READ(JkiK) This operation outputs the secret shared payload of q bits. As mentioned,
an important restriction is that each xi can only be retrieved once.

KVS.INITIALIZE:

1. Generate a secret-shared seed JsK for SISO-PRF

2. For 1 ≤ i ≤ n, compute JtagiK← SISO-PRF(JsK, JkiK)

3. JπK← SAMPLE-FRESH-PERMUTATION

4. JAK← SECURE-SHUFFLE[(Jtag1KJp⃗1K), . . . , (JtagnKJp⃗nK)], JπK)

5. JBK← reconstruct all tags in JAK and build a lookup table indexed by tags.

6. Note that JBK are n pairs of the form (tagi, Jp⃗iK) where tagi is in the clear and can be used to look up
and retrieve secret-shared Jp⃗iK.

KVS.READ(JkiK)

1. JtagiK← SISO-PRF(JsK, JkiK)

2. tagi ← openJtagiK

3. Jp⃗iK← Lookup tagi in JBK and retrieve payload that matches JtagiK

Theorem 5. (Oblivious Use-Once KVS) Assume the existence of honest-but-curious SECURE SHUFFLE

protocol with linear work and O(1) rounds for c servers, resilient against any collusion of at most u < c
servers. Further, assume that there exists a c-server MPC protocol for ABB operations, including SISO-PRF,
tolerating at most u < c colluding servers. We are given two arrays of the same length: a secret-shared
array of keys JKK = [Jk0K, . . . , Jk(n−1)K] where each ki is a secret-sharing of unique (typically short) key
ki, and an array of secret-shared payloads JP K = [Jp⃗0K, . . . , J ⃗pn−1K] of length q bits each. There exists an
USE-ONCE OBLIVIOUS KEY-VALUE STORE (Use-Once OKVS) with the following properties:

7We use this primitive for secure Dijkstra, where each payload will, in fact, be an array of d edges. Therefore, the payload will
not be individual bits but rather an array of d tuples, where each tuple is a secret sharing of an edge (or a ⊥ of the same bit-length as
edge representation) together with its weight as well as other information. However, this does not change the semantics of a large
payload p⃗i in USE-ONCE KEY-VALUE STORE .

14

1. Initializations takes O(n) secure operations. Specifically, it takes n calls to SISO-PRF, and one secure
shuffle of an array of size n elements each of size q + k, where k is the security parameter, which is
also the length of the SISO-PRF output.

2. Each read takes O(1) operations. Specifically, one execution of SISO-PRF.

Oblivious Sort We are given two arrays of the same length: a secret-shared array of keys
JKK = [Jk0K, . . . , Jk(n−1)K] where each ki is a secret-sharing of a key ki, (not necessarily unique) and
an array of secret-shared values JW K = [Jw0K, . . . , Jw(n−1)K]. We restrict individual keys ki and individual
values wi to be bounded by a fixed O(1) words of RAM memory in length. OBLIVIOUS SORT should also
be provided with secure comparison function IS-LESS-THEN that outputs a boolean value β:

JβK← IS-LESS-THEN((JkiK, JwiK)(JkjK, JwjK))

which returns a secret-sharing of a boolean β = 1 only if (ki, wi) < (kj , wj) according to predefined
implicit ordering, which we will define every time we invoke OBLIVIOUS SORT. The running time is
O(n log n) secure comparison operations and O(log n) rounds. The communication complexity is the com-
munication complexity of a single secure comparison times O(n log n). We stress here that since we already
assume SECURE SHUFFLE, the sorting can be done efficiently and does not need AKS sorting network.
Jumping ahead, we will be sorting lists of size O(V +E) where each item is a constant number of words of
memory and, therefore, will take O((V + E) log V) secure operations and O(log V) rounds.

Running Dijkstra: privacy-preserving data-structures
In order to support Dijkstra, we have to have several data structures, one that we already discussed:

USE-ONCE KEY-VALUE STORE table, where for each (replicated) vertex, we can retrieve its normalized
adjacency list of size exactly d edges. We stress that the main efficiency of our protocol comes from the fact
that edges (broken up into chunks of size d) are not inside DORAM but rather are stored inside USE-ONCE

KEY-VALUE STORE as payloads p⃗i and hence do not incur multiplicative overhead. That is, USE-ONCE

KEY-VALUE STORE stores, for each vertex, its adjacency list, broken up into chunks of size d. We can
perform Dijkstra’s “relax” operation for the adjacency list of d edges in parallel since all d elements in the
adjacency list are either distinct or ⊥.

We also create a DORAM that maintains a distance vector with n entries, and we separately create a
secure priority queue that supports parallel decrease-key operations. The issue of the priority queue requires
a separate discussion:

Oblivious Priority Queue with Parallel Decrease Key Dijkstra requires a min-heap Priority Queue. Specif-
ically, it requires three operations from Priority Queue: Build Min-Heap with V items; execute Decrease-
Key E times, and Extract-Min V times. All of these operations must be done securely. We use (a modifi-
cation of) privacy-preserving Oblivious Heap of Jafargholi at. al., [58, 59]. We have to overcome several
challenges:

• [59] proves their result in the ORAM client-server model instead of the MPC model with two or more
servers and no client. Further, the client in [58, 59] has O(log n)-words local memory and, therefore,
can download and sort “for free” lists of size O(log n). We need to adopt this for the MPC model
without a client, where we cannot sort “for free” any non-constant size lists.

15

• [59] data structure supports oblivious extract-min and decrease-key with O(log n) overhead. How-
ever, to minimize rounds, we will need to perform d decrease-key operations in parallel. We show
that for our d-NORMALIZED REPLICATED ADEJENCY LIST, we only need Exclusive Read Exclusive
Write (EWER) parallel operations since we are going to be processing (e.g., relaxing) a single (d-
normalized) adjacency list in parallel. As shown in Section 6, we achieve amortized O(log n) work
per operation and amortized O(log n log log log n) rounds per all d such operations jointly.

In the MPC setting, our amortized work will remain O(log n) for all operations, where n is the to-
tal number of items. In Section 6, we show how to execute w decrease-key operations in parallel with
O(w log n) work and O(log log log n) round complexity with the following functionalities:

• PQ.INITIALIZE((Jk1K, Jp1K), . . . , (JkwK, JpwK)).
Initialization takes a secret shared list of items (k1, p1) . . . (kw, pw), of keys and their priorities and
executes

• PQ.INSERT(JkiK, JpiK)
for all items in the list, one at a time. For a list of size w, this takes O(w log n) work and O(w ·
log log log n) rounds.

• PQ.INSERT(JkK, JpK).
Inserts item (k, p) into the Priority queue, at the root. Since we must maintain the order at the root,
this takes O(log n) work and O(1) rounds.

• PQ.PARALLEL-DECREASE-KEY((Jk1K, Jp1K), . . . , (JkwK, JpwK)).
This operation inserts a copy of items (k1, p1) . . . (kw, pw), with updated priorities. This takes O(w log n)
work and O(logw log log log n) rounds.

• (JkK, JpK)←PQ.EXTRACT-MIN.
This outputs secret-shared item (k, p) which has the lightest priority p within the PQ. This takes
O(log n) work and O(1) rounds.

We refer the reader to Section 6 for further details.

Shared Distance Vector Finally, as with Dijkstra, we have to maintain an array of all vertices and their
distance from the source, where the source vertex is initialized with 0, and the rest are distance inf . This
array is kept in a DORAM structure of size V and updated it for each decrease-key/extract min sequence.

DORAM DORAM-SETUP(k, d, n, JBK): Given public parameters k, d, and n, and a secret-shared ar-
ray JBK = [J(a0, α0)K, . . . , J(a(n−1), α(n−1))K] where each ai is k bits long and each αi is d bits long,
define a (virtual, exponential-size) array A containing 2k (virtual) secret-shared elements of size d each.
All locations ai are initialized to contain JαiK whereas all other locations are ⊥, supporting the following
Access(JopK, JiK, JyK):

1. If (op = read) return a fresh JAiK;

2. If (op = write) set Ai = y.

16

We will also use in several places a DORAM distributed data structure [41]. It maintains a virtual mem-
ory that can hold up to n words stored in arbitrary locations, addressable by word-size arbitrary “address”
value. DORAM allows read/write access into this virtual memory with O(log n) secure operations for each
individual read/write.

Parallel DORAM
DORAM has been extensively analyzed in a parallel setting, where multiple reads/writes can be exe-

cuted with O(log n) computational overhead per each read/write and can be done in parallel using O(log n)
rounds [64, 11]. The work of [11] considered the original ORAM setting of [50] in the client-server model,
where oblivious shuffles require tight compaction [72, 10] and low depth circuit for the building of a cuckoo
hash-table. However, the best results of tight compaction [37] still require an enormous hidden constant
in the big-O notation. Of course, this gives O(log n) overhead asymptotic ORAM, but we can also avoid
enormous constants in the MPC setting [41]. Specifically, building the cuckoo hash table is not known
with logarithmic depth and requires substantial additional work [11]. In contrast, cuckoo hash tables can
be constructed by one of the servers in the clear (using tags) in the MPC setting [62, 41, 56, 69], and tight
compaction is not needed if we have access to secure shuffle. We will use:

• PARALLEL-DORAM.INITIALIZE((Jaddr1K, Jx1K), . . . , (JaddrnK, JxnK)). Initialize takes as input a
list of secret shared address-value pairs (addr1, x1)...(addrn, xn), and constructs a virtual address that
holds this n values at specified addresses This takes O(n log n) secure operations and O(n log n)
words of memory per server and O(n log n) rounds. We stress that addresses a need not be consecu-
tive and can be any arbitrary virtual address that fits into a single word.

• Jz1K . . . JzwK ← PARALLEL-DORAM.DISJOINT.READ(Ja1K, . . . , JawK) reads value zi at virtual
address ai for 1 ≤ i ≤ w, where w ≤ n, and if all ai are distinct, it returns in a secret-shared form
values Jz1K, · · · , JzwK. If ai are not all disjoint, obliviousness is not guaranteed. If some ai was not
previously written to, JziK is defined and returned as ⊥. Reading takes O(w log n) secure operations
and O(log n) rounds and can be executed repeatedly without leaking any partial information.

• PARALLEL-DORAM.DISJOINT.WRITE((Ja1K, Jy1K), . . . (JawK, JywK)) writes secret shared value
yi to secret shared virtual address ai, under the assumption that all ai are distinct for all 1 ≤ i ≤ w.
Again, we stress that ai can be an arbitrary address (that fits into a word of memory) within the PAR-
ALLEL DORAM virtual memory. If address ai already holds some value, it is overwritten by yi.
Again, this takes O(w log n) secure operations and O(log n) rounds.

4 Graph Conversions for MPC

We start with the following lemma that does not require any assumptions:

Lemma 6. Let G be any graph with n vertices and m edges, and let d ← 2⌈mn ⌉. Then, there exists d-
normalized replicated adjacency list representation of G with exactly 2n replicated vertices.

Proof. We start with the (standard) secret-shared adjacency list of G(V,E), and modify it as follows:

1. For all vertices v with degree δ(v) ≤ d pad the adjacency list to be of length d by adding dummy
elements (⊥). Note that there could be at most n vertices. If there are fewer vertices, add ⊥ vertices
until there are exactly n adjacency lists all of length d. There are now n vertices (real and ⊥), each
with an adjacency list of length d.

17

2. There could be at most n/2 vertices with degree δ(x) > d since E
[
(δ(n)

]
= m

n and by Markov
inequality, since d = 2⌈mn ⌉:

P
[
δ(n) ≥ d

]
≤ E[δ(n)]

d
≤ 1

2

For each vertex of size δ(v) > d, partition its adjacency list into multiple parts: full blocks that
are divisible by d and a “remainder”. We will handle chunks of length exactly d and the reminder
separately:

• There could be at most n/2 copies of vertices with “remainder’ edges < d. Treat this set of
reminder edges as in Step (1) above, and make it into exactly n/2 vertices with d edges each –
by padding with ⊥’s.

• For α ∈ Z+ “chunks” of adjacency lists of length exactly d, observe that there are at most m
edges, and therefore, α ≤ m/d ≤ n/2. If α < n/2, pad the total number of such chunks to be
exactly n/2 using condition 4 of the definition 1.

To summarize, we have exactly n (replicated) vertices from step 1 and two n/2 sets of vertices from step 2,
proving the Lemma.

We are given as input a secret-shared Adjacency List, abbreviated as JALK of length q = V + E. We
further assume that all vertices are named 1, . . . , V and their adjacency list appear in order from 1 to V .

Further, we can ignore edge weights for our d-normalization algorithm, as these do not play a role in our
algorithm. Looking ahead, if the edges have weights, we have to keep these weights together with edges and
pad vertex representation so that the representation of edges with weights and vertices is of the same length
and is indistinguishable. Thus, ignoring weights, JALK, consists of vertices and their adjacency lists. All of
them are concatenated together so that there is no length difference between the representation of vertices
and edges and no information about where one adjacency list (of some vertex ends) and another vertex’s
adjacency list begins. The only information available to the servers is the total number of vertices V and the
total number of edges E edges in the graph G(V,E) represented by JALK.

For example, consider a 3-node graph G(V,E) where node 1 points to vertices 2 and 3; node 2 points to
node 3; and node 3 has no edges. The standard adjacency list of G is

[(1, (2, 3)), (2, (3)), (3, ())]

In JALK the adjacency list will be represented as secret-sharing of the following ordered list

JALK = ((J1K, J1K), (J0K, J2K), (J0K, J3K), (J1K, J2K), (J0K, J3K), (J1K, J3K))

where the first coordinate of each pair is a boolean variable JbiK = 1 if it is a vertex, and JbiK = 0 if it is
an edge. Formally, JALK representation of G is a list of q ordered pairs (JbiK, JaiK) where bi is a boolean
variable and ai is a vertex name ∈ {1, 2, . . . , V }. Further, we assume that all vertex names are padded to
have the same length. Thus, all secret-shared pairs of the form (1, ⋆) ∈ AL are vertices, while all pairs of
the form (0, ⋆) ∈ AL are edges.

Since servers know the total number of vertices V and the total number of edges E, servers can calculate
twice the average degree d = ⌈2E/V ⌉. The goal of our first algorithm is to compute in a private way
a d−normalized replicated adjacency list JAK, a two-dimensional array of size 2V × d, where each row
consists of d edges (JciK, JaiK) where ci, ai ∈ {{1, . . . , 2V } ∪ {⊥}} and if both are not ⊥, we require that
(ci, ai) is an edge in the graph G(V,E), in other words, (ci, ai) ∈ E. We reqruie that on the same row of
JAK, all ci’s are equal to each other, and if there are multiple rows with the same ci’s all must be located in
adjacent rows of A. We aim to obliviously compute JAK given JALK.

18

4.1 Secure d-normalization algorithm

In this section, we already assume that the graph G(V,E) vertex names are integers from 1 to V , and the
adjacency list has these vertices appearing in the sorted, increasing order. To see how to convert a graph
where vertex names are arbitrary alphanumeric strings into this form, see section 4.3. We describe our d-
normalization algorithm in a series of steps, each of which can be computed either silently or in a constant
number of rounds. We start with an ordered list JALK consisting of q = V + E ordered tuples (bi, ai). We
aim to output a two-dimensional array JA[i, j]K where 1 ≤ i ≤ 2V and 1 ≤ j ≤ d. Each row of JAK will
consist of d entries (JciK, JaiK) where ai ∈ {{1, . . . , 2V }∪{⊥}} is the name of the vertex to which the edge
points, and JciK is the name of the vertex from the which the edge points from. In the same row of JAK, all
ci’s are equal to each other. We begin by describing all entries that will be added to each tuple, The tuple
will eventually consist of seven entries:

J(bi, ai, ci, ri, addri, fei, lei)K

with the following semantics, where ai and bi is the initial tuple in JALK:

• Position 1: bi ∈ {0, 1} where bi is a boolean variable indicating if this tuple is a representation of a
vertex, in which case bi = 1, or an edge, in which case bi = 0

• Position 2: ai ∈ {1, . . . , V } where ai’s is a vertex name which is an integer from 1 to V . To re-
iterate, in this algorithm, it is assumed that in JALK, for all tuples where bi = 1, ai appears in strict
increasing order from 1 to V .

• Position 4: ri ∈ {1, . . . , 2V } where ri is a row in JAK where tuple i will be written to. Jumping
ahead, we will divide JALK into ⌈q/d⌉ equal-length blocks, padding the last block with⊥’s if needed.
Each distinct adjacency list of JALK within each block gets its own row, which is then padded as
necessary with ⊥’s to be of length exactly d.

• Position 5: addri ∈ {1, . . . , d}. In each block, tuples are numbered 1 to d. Tuple i gets addri.

• Position 6: fei ∈ {0, 1} where fei is a boolean variable indicating whether this tuple is the first edge
of a distinct adjacency list in that block.

• Position 7: lei ∈ {0, 1} where lei is a boolean variable indicating whether this tuple is the last edge
of a distinct adjacency list of that block.

In the algorithm description below, we “add” additional entries from the above list to each tuple at a
point in our exposition where additional entries are logically needed. Naturally, this is only to make our
explanation easier. To code our algorithm, all entries must be allocated ahead of time. We also allocate
additional arrays, such as Continuation and PRELIM-1 and PRELIM-2 (that are used in the Row-setup step.

Our presentation does not consider additional variables that each tuple should have, such as weights of
the edges. For Dijkstra, the tuple will also have weights as an additional entry for each tuple. Naturally, all
tuple should be indistinguishable from each other, so all tuples should have entries for weights, even if for
vertices, there are always just padded ⊥’s.

We now present our d-normalization algorithm:

19

Input: JALK = [(Ja1K, Jb1K), . . . , (JaqK, JbqK)] where all vertices are named from 1 to V and vertex names
appear in sorted order from smallest to largest.

Output: JAK, a two dimensional array of size 2V × d, where each row consists of d edges (JciK, JaiK).
ci, ai ∈ {{1, . . . , 2V } ∪ {⊥}}, where for pairs that do not contaom ⊥, (ci, ai) ∈ E In the same row of JAK,
all ci’s are equal to each other, and if the same ci appear in more than one row, they all such rows are adjacent
to each other. In additionally, we output a secret-shared bit-vector of size 2V called JContinuationK. Each
position i ∈ {1, . . . , 2V } of JContinuationK corresponds to row ri in JAK, such that if ci in row ri and c(i+1)

in row ri+1 are equal, then JContinuation[i]K = J1K. Otherwise, JContinuation[i]K = J0K.

d-Normalization Algorithm

1. Block partition: Partition JALK into consecutive blocks of d tuples each. Let γ = ⌈q/d⌉ blocks, so
γ is the number of blocks. Pad the last block with (J0K, J⊥K)’s as needed so that each block is of the
same length and consists of tuples of the same length. In order not to complicate the notation, we
re-define q ← ⌈q/d⌉ · d.

2. Adding variable ci: Let [Jc1K, . . . , JcqK] ← SILENT PREFIXSUM([Jb1K, . . . , JbqK]). Consider any
edge entry (bi = 0, ai, ci). Observe that ci is the name of the vertex to whose adjacency list this edge
belongs. We add to each tuple in JALK a third element ci, so each tuple in JALK consists of:

(JbiK, JaiK, JciK)

3. Block variable: For each block j, 1 ≤ j ≤ γ define a boolean variable JcontjK to be equal to 1 if the
first entry of block j is an edge and 0 if the first entry of the block j is a vertex. That is, we look at bi
in the first tuple of each block. Note that cont1 = 0 always.

4. Row-setup: Define secret-shared array JPRELIM-1K of length q + γ, where you insert conti in front
of each block i:

4.1 JPRELIM-1K = J0, b1, b2, . . . , bd, cont2, b(d+1), . . . , b2d, cont3, b2d+1 . . .K

4.2 JPRELIM-2K← SILENT PREFIXSUM(JPRELIM-1K)

4.3 Now we compute a secret-shared vector

JROWK = Jr1, . . . , rqK

of length q by deleting γ positions in the PRELIM-2 vector that corresponded to the positions of
conti variables that were inserted into JPRELIM-1K. We now extend each tuple in JALK to be of
the form:

J(bi, ai, ci, ri)K

where tuple number i gets the i’th element of JROWK.

5. Numbering within block: Recall that within each block there are exactly d consecutive tuples, we
number them (silently) from 1 to d and add this count to each tuple. JALK now becomes:

J(bi, ai, ci, ri, addri)K

20

6. “First edge” (fe): We define a boolean variable JfeiK for each tuple.
Consider any two consecutive tuples within any block:

J(b(i−1), a(i−1), c(i−1), r(i−1)addr(i−1))K and J(bi, ai, ci, ri, addri)K

6.1 JfeiK← ((JaddriK = 1) ∧ (JbiK = 0)) ∨ ((Jb(i−1)K = 1) ∧ (JbiK = 0))
In other words, if the element is either the first in the block and entry i− 1 does not exist in that
block, or the previous element is a vertex, and this element is an edge, then this element is the
first edge. The tuple now becomes:

J(bi, ai, ci, ri, addri, fei)K

7. “Last edge” (le): We define a boolean variable JleiK for each tuple.
Consider any two consecutive tuples within any block:

J(bi, ai, ci, ri, addri)K and J(b(i+1), a(i+1), c(i+1), r(i+1), addr(i+1))K

7.1 JleiK← ((JaddriK = d) ∧ JbiK = 0)) ∨ ((Jb(i+1)K = 1) ∧ (JbiK = 0))
In other words, if the element is either the last in the block or the subsequent element is a vertex,
AND this element is an edge, then this element is the last edge. The tuple now becomes:

J(bi, ai, ci, ri, addri, fei, lei)K

8. Create fake fe and le:

8.1 JFakeK← (2V − JrqK) ▷ counting number of empty rows we need to fill with “fakes”.

8.2 Create arrays JF1K and JF2K, each of size 2V tuples ▷ each tuple has 7 entries

8.3 For all t ∈ {1, . . . , 2V } in parallel do:
If t < JFakeK: put J(⊥,⊥,⊥,⊥,⊥, 0, 0)K into JF1K at position t. ▷ to be ignored in 9.4
Else: (t ≥ JFakeK) put J(⊥,⊥,⊥, t, 1, 1, 0)K into JF1K at position t ▷ |fei = 1| = 2V

8.4 For all t ∈ {1, . . . 2V } in parallel do:
If t < JFakeK: write J(⊥,⊥,⊥,⊥,⊥, 0, 0)K into JF2K at position t. ▷ to be ignored in 10.4
Else: (t ≥ JFakeK) Write J(⊥,⊥,⊥, t, 2, 0, 1)K into JF2K at position t. ▷ Creating fake rows

9. Total-First:

9.1 JπK← SAMPLE-FRESH-PERMUTATION ▷ π ∈ Sq+2V

9.2 JF3K← SECURE-SHUFFLE(JALK ∪ JF1K), JπK)

9.3 JL6K← the 6th component of each tuple in JF3K ▷ extracting fei boolean array

9.4 JF4K← OBLIVIOUS 2V -COMPACT(2V, JL6K, JF3K) ▷ F4 is of size 2V

9.5 F-first[x, y] is a 2V × d array. Initialize it as follows:

9.5.1 For 1 ≤ x ≤ 2V :
9.5.2 Let J(bi, ai, ci, ri, addri, fei, lei)K← F4[x]

21

9.5.3 For 1 ≤ y ≤ d: ▷ Fill row with ⊥’s prior to first edge appearance

F-first[x, y]←

{
If y < addri then create tuple J(⊥,⊥, ci, ri, y,⊥,⊥)K
Else y ≥ addri then create tuple J(⊥,⊥,⊥,⊥,⊥,⊥,⊥)K

10. Total-Last:

10.1 JπK← SAMPLE-FRESH-PERMUTATION ▷ π ∈ Sq+2V

10.2 JF5K← SECURE-SHUFFLE(JALK ∪ JF2K), JπK)

10.3 JL7K← the 7th component of each tuple in JF5K ▷ extracting lei boolean array

10.4 JF6K← OBLIVIOUS 2V -COMPACT(2V, JL7K, JF5K) ▷ F6 is of size 2V

10.5 F-last[x, y] is a 2V × d array. Initialize it as follows:

10.5.1 For 1 ≤ x ≤ 2V in parallel do:
10.5.2 Let J(bi, ai, ci, ri, addri, fei, lei)K← F6[x]

10.5.3 For 1 ≤ y ≤ d in parallel do: ▷ Fill row with ⊥’s after the last edge appearance

F-last[x, y]←

{
If y > addri then create tuple J(⊥,⊥, ci, ri, y,⊥,⊥)K
Else y ≤ addri then create tuple J(⊥,⊥,⊥,⊥,⊥,⊥,⊥)K

11. Preparing JAK:

11.1 JπK← SAMPLE-FRESH-PERMUTATION ▷ π ∈ Sq+4V ·d

11.2 JA1K← SECURE-SHUFFLE(JALK ∪ JF-firstK ∪ JF-lastK), JπK) ▷ Treat arrays as 1-dimensional

11.3 JA2K is a boolean vector of length q + 4V · d where,
For each tuple 1 ≤ i ≤ (q + 4V d) in parallel do:

J(bi, ai, ci, ri, addri, fei, lei)K← A1[i]

A2[i]←

{
J0K If ri = ⊥
J1K Else ri ̸= ⊥

Note that the number of 1’s in JA2K is exactly 2V · d.

11.4 JA3K← OBLIVIOUS (2V · d)-COMPACT(2V · d, JA2K, JA1K).

11.5 For 1 ≤ i ≤ 2V d in parallel do:

(JbiK, JaiK, JciK, JriK, JaddriK, JfeiK, JleiK)K← A3[i]

Open the fourth and the fifth value of each tuple (i.e. (ri, addri)), and put into (ri, addri) address
of A the following secret-shared values:

A(ri, addri)← (JciK, JaiK)

12 Binary Continuation Marker: Initialize a secret-shared bit vector of size 2V called JContinuationK.
Each position i ∈ {1, . . . , 2V } of JContinuationK will correspond to row ri in JAK.

12.1 For 1 ≤ i ≤ 2V − 1 in parallel do:

22

12.2 (JciK, JaiK)← A[i, 1]

12.3 (Jci+1K, Jai+1K)← A[i+ 1, 1]

12.4

Continuation[i]←

{
J1K, if (JciK = Jci+1K)
J0K, if (JciK ̸= Jci+1K)

12.5 Continuation[2V]← J0K

Looking ahead, these binary continuation markers will be used in our implementation of Dijkstra’s
algorithm to see if the adjacency list in row ri continues in row ri+1.

4.2 Analysis of d-normalization algorithm

At a high level, the goal of d-normalization is to obliviously place all items from our initial secret-shared
adjacency list JALK into a new secret-shared array JAK with 2n rows and d columns. The first entry of each
row will contain vertex name vi ∈ {1 . . . V }, and the remaining d rows will contain entries of edges of vi or
⊥s.8 The goal of our algorithm is to obliviously compute for each item in JALK its exact eventual address
in JAK. But notice that |A| > |AL|. Therefore, computing where each item of AL will eventually be placed
into A is insufficient. We also need to generate a single ⊥ with a unique address for each empty location of
A once all items of AL have been placed into A. Once we (somehow) obliviously generate unique ⊥s for
each empty location, where for each location the algorithm guarantees to have exactly one item, we can mix
together all items that are designed to A using secure shuffle. Once everything is shuffled, we can open all
earmarked locations and place them into these locations in the clear. This is exactly what we do. We now
proceed to analyze each step of the algorithm:

In step 1, we partition the adjacency list into blocks of length d, filling the last block with ⊥’s in case
q is not divisible by d. Again, this is done silently. We redefine q = ⌈q/d⌉ · d. In step 2, we tell each
edge which vertex it “belongs to”. This takes O(q) work and is done silently, i.e., it does not require any
communication.

In steps 3 and 4, we mark the blocks where edges continue from the previous block. This takes O(1)
rounds, and the work is proportional to the number of blocks. Now, observe that in each tuple, we have
indicator random variable ri for all entries of JALK, which indicates which row of A each item should go
into.

In step 5, we independently assign consecutive numbers to all tuples in the block from 1 to d for each
block. This can be done silently. The idea here is that within each row of A, edges for some vertex will go
into the same positions as they are in their block. This can be accomplished since JALK has blocks of size
d, and this is exactly the number of columns in JAK. So if there is a vertex in the middle of the block with
edges a, b, c in positions 12, 13, 14 of that block, they will go into the same row of A in columns 12, 13, 14
with columns 1 through 11 of that row filled with ⊥ and columns 15 to d of that column also filled with ⊥.
Jumping ahead, obliviously filling with ⊥s is done in steps 9 and 10. More technical, we just create entries
with proper addressing before we mix everything and then reveal addresses. Observe that since we do this
in parallel for all tuples, this can be done in O(1) rounds and O(q) work.

Steps 6 and 7 mark in JALK all the first and the last edges of each adjacency list, broken up into blocks,
so for each adjacency list in each block, there is the first and last edge. As stated before, when we divide
JALK into blocks, some adjacency list may start in the middle of a block. The edges of this adjacency list

8We remark that it is not necessarily the case that the first edges will appear in each row, followed by ⊥s. Instead, in a typical
situation, we will see several ⊥s, followed by real edges and additional ⊥s.

23

will go into some rows in exactly the same positions as they appear in this block. Therefore, we must pad
this row before and after this adjacency list with ⊥s. To accomplish this, we need to mark the first and the
last entry of this adjacency list. This is exactly 6 and 7 do. Because we look at all triples of adjacent tuples
in parallel, each triple can be decided in O(1) rounds and constant work. This means that the total rounds
are constant and the work is linear in q.

Recall that our array A has d columns and 2V rows. But out of these rows, how many are occupied
at all, and how many are completely empty? Recall that in step 4.3, we computed a vector of length q
called JROWK. The value in the last entry of JROWK called JrqK indicates how many rows of A we will
use for contents of JALK. Since A has a total of 2V rows, the number of totally empty rows will be
JFakeK = 2V − JrqK. Step 8 looks at JFakeK and obliviously creates additional JFakeK first edges and
JFakeK last edges to pad the number of both fe and le to 2V . These are added to arrays F1 and F2,
from which we will later (steps 9.4 and 10.4) extract exactly 2V of the non-ignore first edges. Step 8.4
assigns each fake first and last edge to an empty row into positions 1 and 2, respectively. This is so that the
subroutine that computes bots following the last edge will add bots to fill these empty rows. Observe that
this can be done in parallel for all created tuples, meaning this takes O(1) rounds and O(E) work.

Finally, in steps 9 and 10 we create arrays secret shared arrays F-first and F-last, each of size 2V d,
which are filled with ⊥s, some with valid addresses and some with ⊥ as their address. Later, these ‘ignore’
elements with no valid address will be ignored in step 11.3 All of these steps together take O(1) rounds and
O(q) work. In step 11, we first shuffle and then open all the addresses. We can then bring all the entries for
each location of A to its proper position in a clear. This takes O(q) work and O(1) rounds, as sorting by
revealed addresses can be done without interaction.

In step 12 creates the Binary Continuation Marker, a boolean variable for each row that tells whether the
same vertex adjacency list continues to the next row. This is done in parallel for all rows and takes O(V)
work and O(1) rounds.

Observe that in total, our algorithm takes O(1) rounds and O(V + E) work.

4.3 Oblivious Graph Renaming Algorithm

Given a secret-shared adjacency list JALK with arbitrary alphanumeric names of vertices of equal length,
we show how to obliviously convert all vertex labels to integers from 1 to V that appear in sorted order.

For any graph G(V,E), servers are given secret-shared adjacency list JALK of length q = V +E. JALK
consists of q tuples (JbiK, JaiK). Here, bi is a boolean variable that indicates if a tuple is a vertex or an edge,
where Jbi = 1K denotes the vertex and Jbi = 0K is an edge; and ai is the alphanumeric vertex label.

For example, consider a graph where vertex Bob points to vertices Alice and Eve, Eve points to Alice,
and Bob points to nobody. The standard adjacency list representation would be:

[(Bob, (Alice, Eve), (Eve, (Alice)), (Bob, ())].

The JALK would be 6 tuples:

[(J1K, JBobK), (J0K, JAliceK), (J0K, JEveK), (J1K, JEveK), (J0K, JAliceK), (J1K, JBobK)].

where each tuple is exactly of the same length, and alphanumeric names are padded to be exactly word-size.
We now describe our

We begin by describing all entries that will be added to each tuple during our algorithm execution. The
tuple will eventually consist of five entries:

JAK = (JbiK, JaiK, JciK, addri, JziK)

24

• Position 1: bi ∈ {0, 1} where bi is a boolean variable indicating if this tuple is a representation of a
vertex, in which case bi = 1, or an edge, in which case bi = 0.

• Position 2: ai, an alphanumeric name that fits into the word size. All names should ahve the same
length, padded as needed.

• Position 3: ci ∈ {1, . . . , V } where, if bi = 1 then ci is the integer renaming of this vertex, and if
bi = 0 then ci is the integer vertex name to which this edge belongs to.

• Position 4: addri ∈ {1, . . . , q} where addri is the index of the ith tuple in JALK in its original order.
After oblivious shuffling, this address will later be revealed to sort the adjacency list into its original
order.

• Position 5: zi ∈ {1, . . . , V } where for bi = 1, zi = ci and for bi = 0, zi represents the vertex
to which the edge points to. In other words, for all tuples zi is the new integer vertex name which
faithfully keeps the graph topology.

We are now ready to describe our graph renaming algorithm. We first start with I/O specification:

Input: JALK = (Jb1K, Ja1K), . . . , (JbqK, JaqK)

Output: JAK = (JbiK, JaiK, JziK). Here, each zi is the new integer vertex name ∈ {1, . . . , V }, and ai is the
alphanumeric name that is kept. We additionally guarantee that all vertices appear in the strict increasing
order from 1 to V .

Oblivious Graph Renaming Algorithm:

1. Numbering Vertices and Edge Attribution:

[Jc1K, . . . , JcqK]← SILENT PREFIXSUM([Jb1K, . . . , JbqK])

We modify JALK to add ci to each corresponding tuple. JALK now consists of q tuples of the form
(bi, ai, ci). If bi = 1, the tuple (bi, ai, ci) is a vertex. Observe that SILENT PREFIXSUM computes ci
in the tuple (1, ai, ci) to be vertex numbering of corresponding vertices in JALK in increasing order
from 1 to V . If bi = 0, this is a tuple corresponding to an edge, where ci ∈ {1, . . . , V }. Observe that
ci of this edge indicates which vertex ci in the vertex numbering this edge belongs to.

2. Adding address i to each tuple: Since JALK is an ordered list of q tuples, we can assign to each
tuple its position in the list, from 1 to q, in increasing order. We call this position addri of the tuple
number 1 ≤ i ≤ q, so tuple number i becomes (JbiK, JaiK, JciK, JaddriK)

3. Oblivious Sort We now invoke Oblivious Sort (see section 3.2):
JAK← OBLIVIOUS SORTJALK with the following comparison predicate:

IS-LESS-THEN((bi, ai, ci, addri)(bj , aj , cj , addrj)) =

=

{
J1K, if (ai ≺ aj) ∨ ((ai = aj) ∧ (bi > bj))

J0K, otherwise.

where ai ≺ aj is TRUE if string ai is alphabetically smaller then string aj .

25

4. Renaming Edges.
We now wish to add a new variable zi to each tuple (bi, ai, ci, addri) ∈ A. Before we show how this
can be efficiently accomplished, we define zi:

JziK =

{
JciK, if (bi = 1)

JcjK if (bi = 0) ∧ ∃j s.t. (ai = aj) ∧ (bj = 1)

Observe that A is sorted by ai, where the vertices are ai where b = 1. Further, observe that A has
q tuples, out of each E are edges (i.e. bi = 0) and V are vertices (i.e. bi = 1). We first define a
procedure:

EXTEND(i, j) where 1 ≤ i < j ≤ q :

∀k ∈ {i, . . . j} if (ai = aj) ∧ (zi ̸= ⊥) then zk ← zi else zk ← zk

We stress that all (i, j) pairs are public and are fixed in advance. In corner cases, we further specify
that if EXTEND(i, j) is called with i < q but j > q, the call automatically becomes EXTEND(i, q).
We are now ready to define:

PARALLEL NAME EXTENSION Subroutine:
4.1 For all 1 ≤ i ≤ q in parallel do: if bi = 1 then zi ← ci, else zi ← ⊥
4.2 For s from 1 to ⌈log q⌉ do:

4.2.1 For all 1 ≤ h ≤ ⌈ q
2s ⌉ in parallel do:

4.2.2 EXTEND(i, j) for i = 2s(h− 1) + 1, j = 2sh
4.2.3 EXTEND(i, j) for i = 2s(h− 1) + 2s−1 + 1, j = 2sh+ 2s−1

4.3 For s from ⌈log q⌉ down to 1 do:
4.3.1. For all 1 ≤ h ≤ ⌈ q

2s ⌉ in parallel do:
4.3.2 EXTEND(i, j) for i = 2s(h− 1) + 1, j = 2sh
4.3.3 EXTEND(i, j) for i = 2s(h− 1) + 2s−1 + 1, j = 2sh+ 2s−1

4.4 For all 1 ≤ h ≤ ⌈ q2⌉ in parallel do:
4.4.1 EXTEND(2(h− 1) + 1, 2h)
4.4.2 EXTEND(2(h− 1) + 2, 2h+ 1)

5. Secure Shuffle We now have JAK consisting of q tuples of the form
(JbiK, JaiK, JciK, JaddriK, JziK) where ∀i, zi ̸= ⊥. We can now shuffle JAK:

1. JπK← SAMPLE-FRESH-PERMUTATION ▷ π ∈ Sq

2. JBK← SECURE-SHUFFLE(JAK), JπK)

6. Final Cleanup

1. ∀i, 1 ≤ i ≤ q, open addri ∈ (JbiK, JaiK, JciK, JaddriK, JziK)

2. JCK← sort in the clear all q tuples of JBK by (opened) addri.

4.4 Analysis of Graph Renaming Algorithm

Steps 1 and 2 can be done silently or in parallel for each tuple, taking O(1) rounds and O(q) work. Step 3
sorts all tuples in JALK by alphanumeric names with priority to vertices. The result of this step is all tuples

26

with the same alphanumeric name will be adjacent to each other, and the vertex with this name will precede
the edges with this name. This takes O(log V) rounds to sort and O(q log V) work.

After Step 4 is complete, we need to show that all tuples in JAK have zi ̸= ⊥. To prove this, we abstract
the problem as follows: consider an oriented line graph with q nodes, going left to right, so there is a distinct
leftmost and distinct rightmost node on the line. We number the nodes from 1 to q, where 1 is the leftmost
node. Exactly n of the nodes are colored with distinct colors, n < q, where the leftmost node is always
colored and q − n are initially uncolored. There is no other restriction where colored nodes appear on the
line. In addition, every node on the line has an alphanumeric name, not necessarily distinct, but where all
colored nodes do have distinct names. The uncolored nodes have the same name as their closest node on
the left which is colored. A local coloring rule is: if the node has some color c and its immediate right-hand
neighbor is uncolored, color it with the same c. The question that we are trying to address is how to color
the entire line obliviously and as efficiently as possible.

A naive algorithm would be to do a linear scan on the line going left to right and coloring all the nodes
as you go. We make the following observation: consider any interval on the line from i to j. If a node in the
position i is already colored, and node j has the same alphanumeric name as node i, it is safe to immediately
color the entire interval from i to j with the color of node i. We call this process extend(i, j). Observe
that we can apply multiple non-overlapping intervals at the same time. This is what we do: apply intervals
of geometrically increasing length, where for each interval length, we apply it twice: for all consecutive
intervals of that length, and all consecutive intervals shifted to the right by half its length (we call it the
“brick” pattern), and doing a smaller interval at the end if the full interval does not fit.

We define a “gap” as the largest interval that can be colored at once, before any extend calls – the interval
from i to j, where position i is a colored node and position j + 1 is the next colored node to the right of it.
The gap does not change after its nodes begin getting colored. Our objective is to prove that every gap is
colored in step 4. For any one gap, we define step s as having “failed” for this gap if the number of nodes
colored in this gap after step s− 1 and after step s is the same number.

Lemma 7. Consider any gap of length h in the interval from i to j. Initially, only node i is colored. After
step 4.2, nodes from i to i+ ⌈h2 ⌉ are colored.

Proof. We will show that when step 4.2 fails for any gap, the left half of the gap is colored. Observe that
after s = 1 is executed in step 4.2, i+ 1 is colored. After s = 2 is executed for step 4.2, observe that either
interval (i, i + 4) or (i, i + 5) is colored, depending on whether i was odd or even. Assume s non-failing
steps. Note that intervals of step s + 1 start at every index 1 mod 2s. If step s + 1 fails, both the interval
starting at i and i+ 2s have failed. That means that the distance between i+ 2s+1 and j is strictly less than
2s. This means that after step s, more than half of the nodes in the gap are colored.

Lemma 8. Consider any gap of length h in the interval from i to j. After step 4.4, all nodes of the gap are
colored.

Proof. We already showed in lemma 7 that after step 4.2, nodes i to i+ ⌈h2 ⌉ are colored. If in step 4.2 s = k
failed, then the number of uncolored nodes in this gap is less than 2k. We know that any number can be
summed with powers of 2 by writing this number in a binary representation. Additionally, observe that as
we geometrically decrease from s = ⌈log q⌉ to s = 1, any interval that does not fail will cut the remaining
uncolored nodes down by half. After completing s = 1, there are either 0 or 1 remaining uncolored nodes.
Repeating s = 1 again at the end, all nodes are colored.

Since we are doing powers of 2, step 4 takes a total of O(q log V) work and O(log V) rounds. Step 5
shuffles JAK, and in step 6, we reveal the addresses and move all elements to the addresses (row, column) that

27

they previously secret-shared, completing the oblivious conversion to an adjacency list with vertex names.
This conversion took, in total, O((V + E) log V) work and O(log V) rounds.

5 Oblivious Priority Queue with Parallel Decrease Key

We will now briefly describe the original [58, 59] Oblivious Priority Queue. The paper constructs a full
binary tree with n items, where each node of the tree is a buffer that can fit B = O(log n) items, and where
each item is a (key, priority)-pair, both assumed to fit into a single word of RAM.

Their construction combines hierarchical ORAM [50] and Path-ORAM [77]. Specifically, items are
assigned to a random root-to-leaf path in the tree (and never re-assigned) and traverse this path during
operations. The path is determined by the output of a O(log n)-wise independent hash function. Note that
this means the prefix of the hash output on key v from index 0 to j gives the address of v at level j. Therefore,
each item “knows” which node it belongs to at any given level.

To avoid overflow or underflow of any buffer, Jafargholi et al. define two procedures:

1. PUSHDOWN(i): Consider contents of all vertices at level i. Each node sends all of its items to its two
children at level i+ 1. Each item moves according to its PRF evaluated on the item’s key.

2. PULLUP(i): Consider contents of all vertices at level i. Each node of level i gets the lightest B/2
elements from both of its children at level i+ 1.

The [59] updates the tree during Priority Queue operations as follows. It keeps a counter of the number of
operations performed (e.g., decrease-key, extract-min). Just like hierarchical ORAM, every 2i operations,
the tree executes PUSHDOWN(0),...,PUSHDOWN(i), PULLUP(i),...PULLUP(0) in that order. We call this
operation maintenance procedure and in our algorithm, we will have the same maintenance procedure for
the frequencies of PUSHDOWN and PULLUP depending on the counter, thought the specification of both
PUSHDOWN and PULLUP will be different for our purposes. Note that if i surpasses the number of levels
in the tree, the tree will simply push down to the maximum level. This is done by pushing down and pulling
up from i∗, where i∗ = min{i, largest level} as defined in [59].

Recall that [59] works in the client-server model, so the client can download any non-leaf vertex and its
two children and sort contents of these lists locally “for free” to choose the lightest elements to take to the
parent. However, as our algorithm operates in a three-server model and not a client-server model, we do
not have “for free” sorting operations and have to “pay” for all operations. We observe that in the original
work [59], sorting occurs by the client only during PULLUP operation. Specifically, the contents of the two
children are sorted by the ORAM client in the clear (once downloaded into the client’s memory), and the
lightest items are sent to the parent of these two children. This is done for the entire level of the tree.

We now describe how to modify [58, 59] Oblivious Priority Queue to match our model and allow for
parallel decrease-keys. Inductively, we assume that each node is already sorted from heaviest to lightest
priority. When examining any node and its children, we can use linear-time secure merge algorithm [19]
to merge the two sorted lists. Then, we can select the lightest B/2 elements in the sorted list to move to
the parent. During PULLUP(i), we move selected B/2 lightest items from level i + 1 to level i in parallel.
To keep the remaining “heavier” items that did not move up in the correct sorted order, observe that the
items were sorted from heaviest to lightest. Only proper suffix of each list for both children could move up
(without omissions). Furthermore, we can mark which items are moving up. Therefore, each item knows if
it moved up or not, and can be (in parallel) replaced by ⊥.

Let us examine the round and work-complexity of the modified PULLUP(i). By [19], for w items,
merging the lists will take O(w) work and O(log logw) rounds. Moving the items will also take O(w)

28

work and O(1) rounds since we are moving them all in parallel. This means the total is O(w) work and
O(log logw) rounds. Given that the buffer size at any node is O(log n), PULLUP(i) for every node at level i
takes linear (therefore O(log n)) work and O(log log log n) rounds. Since we will do PULLUP(i) in parallel
for all vertices of level i, PULLUP(i) will take O(log log log n) rounds and would take O(2i · log n) work.
Observe that this is the same work complexity as in [59], and therefore we refer the reader to [59] for the
proof of correctness for amortization analysis.

Now, let us consider how we can modify PUSHDOWN and keep the inductive hypothesis. To keep each
node holding its items in sorted order from heaviest to lightest, we must PUSHDOWN in a similar way:
when examining node v and its two children, we will use [19] to merge the three lists. Now we have the
large sorted list and two empty children between which the list will be distributed, each item according to
its O(log n)-wise independent hash function. For each item, we compute the output of the hash function
once during the initial build and once for every decrease-key operation and store the output together with the
value. O(log n)-wise independent hash function is represented as a random polynomial of degree O(log n)
where all coefficients are secret-shared. Therefore, evaluating such a polynomial takes O(log n) secure
operations, namely exponentiations, multiplications, and additions.

Specifically, once the function is evaluated, we store it in a secret-shared form, and it moves together
with the item. For each item we extract the i’th bit of the stored hash function, which indicates if this value
has to go left or right. This can be done in parallel for all items inside the bit-decomposition black-box
operator. Now, mark all items that go to the left as secret-sharing of J0K and all items that go to the right
as secret-sharing of J1K. Now, we can take a Silent Prefix-Sum of this vector, and this will reveal to which
address each right-bound item must be written to. The same process can be repeated for the left-bound
items.

Then, obliviously shuffle all items and put all items in place in the correct place and order. All items will
move in parallel, and we will therefore execute PUSHDOWN of the entire level in parallel, meaning that in
total, a PUSHDOWN will take O(log log log n) rounds, and O(2i log n) work for level i. Observe that this is
the same work complexity as in [59], and therefore, we refer the reader to [59] for proof of the correctness
of the amortization analysis.

So far, we have assumed inductively that each node is already sorted, and described how the tree remains
sorted when items are moved between levels. Now, we will describe how all vertices will remain sorted even
when we insert or remove items. Recall that [59] has four procedures that will either add or remove an item
from the data structure: Insert, Decrease-Key, Extract-Min, and Delete. Note that the Insert procedure
simply calls Decrease-Key.

• Initialization of Priority Queue with n items: As in [59], to initialize the Priority Queue we insert
all elements at the root, one at a time. If we insert n items, we will also run n maintenance steps. We
follow the maintenance schedule as in [59] (i.e., the scheduled PUSHDOWN and PULLUP procedures).

• Insert n elements: We insert one element at a time. Observe that the root node has space for at most
O(log n) items; by induction, these items are already sorted. Therefore, we just have to insert the new
item in the sorted order. While it is easy to do such a step, observe that this can be thought of as a
secure merge of a single item and a sorted list, which we already know how to do by [19] with linear
work in the node size. That establishes the base case of the induction. Of course, we run maintenance
steps as well.

• Parallel Decrease-Key of w items: Before we perform parallel decrease-key of w items, we execute
PUSHDOWN(0),... PUSHDOWN(γ), for γ = log(w). This means level γ and all levels above it are
completely empty. We refer to this step as “PushDown-manual” maintenance.

29

After this is done, to Decrease-key w items, we insert w items at level γ, which has w vertices.
Here, it is important that we make our buffer size B in each node twice as large as in [59]. Observe
that the total number of vertices in a binary tree of depth γ has 2w − 1 vertices. Furthermore, [59]
Lemma 6 proves that none of the vertices will overflow after w sequential insertions. Therefore, in
our construction, with w vertices but with each node’s buffer twice as big, we have 2w buffer space in
total with uniform distribution, and therefore Lemma 6 holds.

One unresolved matter is that when we insert items at level γ, the items that fall into the same node
must be sorted. Now, for each item i, we can compute in parallel which node id id(i) at level γ item
i must go into by considering γ-prefix the item’s key O(log n)-wish hash function9.

This gives us the address of that item at level γ. Now, for any item i, consider a pair of the address
id(i) and item’s priority pi, and obliviously reverse-sort all w items by concatenation of address and
priority id(i)|p(i), where “|” is the concatenation operator. This way, when we sort the items, all items
belonging to the same node will be adjacent, and appear in order from heaviest to lightest priority.

However, writing all of these items to the correct vertices in parallel in O(1) rounds takes additional
work since we must prevent collisions of items that are going to the same node. This is accomplished
as follows:

– After w items are sorted by id(i)|p(i), we have (a secret shared) list of (that sorted order) w
items. For all items i we assign consecutive numbers βw, . . . , β1 to this sorted list from w down
to 1. We also mark some items with a secret-shared predicate, which we call “lead.” Lead
items are defined as the heaviest items for each node. This is done by comparing each item
(under MPC) to its predecessor in the sorted order and checking if the predecessor belongs to a
different node. The first item in the sorted order is always the lead item.

– Recall that all vertices have buffer size B = O(log n) and are empty. Now, we obliviously put
item i into buffer id(i) at buffer location (βi mod B). Observe that since items that belong
to the same id(i) are already sorted from heavy to light, they will have consecutive numbering
βj , βj+1, Since we are placing items into the buffer at the location βj mod B, all of them
will be placed into the buffer in consecutive order but with some (circular) shift. This placement
can be done by obliviously shuffling all locations of all vertices together, and then putting items
in the clear into shuffled locations, and then “un-shuffling.” Observe that all w items are placed
into correct buffers without collisions, but they may be shifted inside each buffer. The final step
is to adjust the shift in each buffer so that the heaviest item is placed in location 1 of each buffer.

– For each buffer, we compute the following value: for the “lead” item, we compute its current
location in the buffer and secret-share this value. This defines the amount δ that the contents of
the buffer must be shifted by. For all non-lead items, we secret-share J0K. We now silently add
(using Silent Prefix-Sum) all values for each node. This gives us a single secret-shared “shift-
by” value. Now, in parallel for all vertices, we can compute their current location and shift-by
location. We finally obviously shuffle all the items and put them in the correct locations.

9Computing a hash function takes O(logn) secure operations to compute it only once and attach the output of the hash function
it to the item, so that we don’t have to compute it again. That hash function value will travel together with the item and will need
not be recomputed.

30

Next, we execute PULLUP(γ),...PULLUP(0), which we call as PullUp-manual maintenance. We re-
fer to the PushDown-manual maintenance and PullUp-manual maintenance jointly as manual main-
tenance. Finally, we perform w steps of “traditional” maintenance, by increasing the counter of
operations by w and performing all the maintenance operations. Observe that PUSHDOWN(0), . . .
PUSHDOWN(γ) PULLUP(γ),..., PULLUP(0) is executed during w steps of maintenance, so the man-
ual maintenance is 1

2 of the maintenance routine. This means, in total, we did 1.5 times the work of
maintenance. That is just a constant that goes out in big-O notation. Therefore, we refer the reader to
[59] for the amortization analysis.

• Extract-Min: We Extract-Min in an identical way to the original [59]. Assuming the root is sorted
in order from heaviest to lightest priority, taking the lightest priority element up takes O(log n) work
and O(1) rounds. Specifically, for every item, check if the item next to it to the right is ⊥. If so, this
is the last item. The order does not need to be changed, since we took off only the last element. We
handle the delete item in exactly the same way [59] does 10 Again, we match the work of [59], and
refer the reader to [59] for the amortization analysis.

5.1 Correctness

We will now prove that the modified Priority Queue has the same behavior as [59] and, therefore, we can
rely on the [59] correctness proof. Note that we replicate the procedures for Insert, Extract-Min, and Initial-
ization. Therefore, if we prove that the Parallel Decrease-Key, PULLUP(i), and PUSHDOWN(i) procedures
all work as exactly as in [59], all of the proofs of [59] still hold.

We will begin with PULLUP(i) and PUSHDOWN(i). By construction, we are moving the same amount
of items between levels. For each PUSHDOWN(i), we move all items at level i to level i + 1. For each
PULLUP(i), we move 2i−1 of the lightest items from level i+1 to level i. Therefore, both operations mimic
the original operations, and the data structure works as originally intended. Let T be a complete binary tree
with B buffer space at each node, as in [59].

For the Parallel Decrease-Key procedure, we use a lemma similar to Lemma 3 of [59] that does not
require any assumptions:

Lemma 9. Let S := op1, . . . opN be a sequence of operations on the tree T . A modified procedure maintains
the structure of the Priority Queue if and only if after opt, it holds that: (1) Extract-Min returns the item
with the lightest priority. (2) No node u ∈ T is overflowed. That is, the number of items in u does not exceed
B.

We must prove the above holds for the combination of PushDown-manual maintenance, insertion of w
elements in parallel, and PullUp-manual maintenance (all in succession).

We assume that before PushDown-manual maintenance, T has all items in each node ordered, and that
the lightest items are in the root. This is given by [59]. Recall that for w elements, PushDown-manual
maintenance will execute PUSHDOWN(0),... PUSHDOWN(γ), where γ = logw. That means the current
lightest item is at level γ+1. Now, we insert all w elements to level γ. As shown in our analyses of Parallel
Decrease-Key, assuming doubling the size of the buffer at each node, no node at level γ is overflowed.

At this point, the lightest item in the tree is either at level γ or γ+1. This depends on whether one of the
w items had priority lighter than the previous minimum. Either way, we execute PULLUP(γ),... PULLUP(0);
the PullUp-manual maintenance. Because the first step examines all vertices at level γ and their children

10As in [59] we delete an item by inserting an item with +∞ priority, and having it “kill” all its siblings as it travels down the
tree during the regular maintenance cycles.

31

at level γ + 1, the minimum will be pulled up no matter where it is. This means once we have completed
the manual maintenance, the Extract-Min operation will return the minimum. After manual maintenance is
done, w steps of maintenance occur, meaning the counter that dictates maintenance will be the same as if we
followed the traditional decrease key and inserted all elements at the root. This will not take the minimum
out of the root node, as this maintenance work is in the original in [59]. Therefore, clause 1 of Lemma 9
holds. After w maintenance steps, the distribution of items is exactly the same as if we inserted all w “new”
items at the root sequentially. Observe that the trajectory of the items is the same and the ordering of the
items is preserved.

If these items are heavier than all those we pushed down, they will stay at level γ. After w operations,
they will only come up if they are lighter than those beneath them. Lemma 6 of [59] proved that with
scheduled maintenance, no node u ∈ T is overflowed after N operations.

We have shown that inserting w items in parallel distributes them along the Priority Queue in the same
way that w traditional decrease-key operations would. Additionally, the counter of operations increases by
w. This means that Lemma 6 [59] holds, and therefore, clause 2 of Lemma 9 holds.

5.2 Complexity Analysis

Each O(log n)-wise independent hash function evaluation takes O(log n) secure operations. We do it once
for each insert and each decrease key operation. In addition, recall that we showed that the parallel decrease
key has the same running time as the one decrease key in [59]. Therefore, since we have shown that work is
the same as in [59], the O(log n) amortized per operation work cost holds.

However, the round complexity is different. We pay O(log log log n) rounds for any PushDown(i) or
PullUp(i) for any level i. Each Extract-Min and Insert takes O(1) rounds. Every w Parallel Decrease-Key
operation takes the following two steps: (a) O(log n) rounds to insert and sort the w keys into level logw
in parallel. (b) perform manual maintenance, which takes O(logw · log log log n) rounds. For scheduled
maintenance, we can amortize the rounds in the same way we do the work. We refer the reader to [59] for
this amortization. This means the amortized cost of maintenance is O(log n log log log n). Let r denote
the number of times we call w-parallel decrease-key operations. (Recall that for our version of Dijkstra,
r = 2n.) Because w ≤ n, we will combine the cost of manual and non-manual maintenance. Putting it all
together, the cost in all rounds becomes O(r · log n · log log log n).

6 Secure Dijkstra and its Analysis

Given all the build-up, the general outline of our algorithm is straightforward: given any graph G in a secret-
shared adjacency list representation, we first change the representation to the one that is MPC-friendly.
Specifically, if the adjacency list of G has arbitrary alphanumeric vertex names, we can first convert it to
ordered integer vertex names using our name conversion algorithm 4.3. This gives us a representation of
secret-shared reset-panted of the adjacency list where all vertices and numbers from 1 to V appear in sorted
order. We can now run our d-normalization algorithm 4.1 and put each d-length adjacency list into USE-
ONCE KEY-VALUE STORE data structure. This is exactly where our savings come from: since in Dijkstra,
we explore each vertex only once, we need to retrieve each block only once, and USE-ONCE KEY-VALUE

STORE incurs only additive overhead for the retrieval of each block. The efficiency of our algorithm comes
from the fact that we can process d edges in parallel without any overhead and then hide, for each node, if
there are more edges or we are just processing another d edges for another vertex. We keep the following
secret-shared data-structures:

32

• secret-shared USE-ONCE KEY-VALUE STORE with 2V entries for d-normalized adjacency list;

• secret-shared DORAM array of length 2V that maintains distances to all vertices. As in regular
Dijkstra, initially, all distances are set to +∞. Since we are also given a secret-sharing of a start
vertex, we initialize the start vertex to have distance 0 inside DORAM, hence not revealing what the
start vertex is;

• we also initialize the OPQ 5 with 2V entries, where distance is the priority.

Algorithm 1 Parallel Edge Relaxation
Input:

• JeiK = (Jk1K, Jx1K), . . . , (JkdK, JxdK)

• current distance JhK of the node being explored

PARALLEL RELAX(JeiK):

1. Ja1K . . . JadK← PARALLEL-DORAM.DISJOINT.READ(Jk1K, . . . , JkdK)

2. Jb1K . . . JbdK← RELAX(Jx1K, JhK, Ja1K), . . . , RELAX(JxdK, JhK, JadK)

3. PARALLEL-DORAM.DISJOINT.WRITE((Jk1K, Jb1K), . . . (JkdK, JbdK))

4. PQ.PARALLEL-DECREASE-KEY((Jk1K, Jb1K), . . . , (JkdK, JbdK))

5. return JContinue?K

RELAX(JxK, JhK, JaK):

1. return FABB.min{Jx+ hK, JaK}

6.1 Edge Relaxation for a single block

A single block consists of d weighted edges. The PARALLEL EDGE RELAXATION subroutine for vertex vi
begins by reading in DORAM the current estimate of distance h of vi. For all edges in a block of edges from
node vi, we read in parallel distances to all vertices that vi points to in the current block. Of course, for ⊥’s
we pretend to read as if these are real entires. We do this with a parallel DORAM read, which takes at most
O(log V) rounds and O(d log V) work. We call these distances (a1, . . . ad). Next, we relax all edges by take
the minimum of each ai and h+x, the distance from vi to that neighbor. We call this (b1, . . . bd). This takes
constant rounds and O(d) secure operations. Next, we do a parallel DORAM write, which takes O(d log V)
work and O(log V) rounds by updating all the distances in DORAM and executing d decrease key priority
queue operations. This takes O(d log n) work and O(log V · log log log V) rounds. Finally, we return the
Cotninue? secret-shared marker, which lets the algorithm know if there are additional d-blocks for the same
vertex. This takes constant rounds. In total, a single d block Edge Relaxation subroutine takes O(d log V)
work and O(log d log log log V) rounds. Since d < n, we get O(V log V) work and O(log V log log log V)
rounds.

33

Algorithm 2 Secure Oblivious Dijkstra
Input: JGK = secret-shared adjacency list with n vertices (k1...kn), m edges, and JsK as start node.

SECURE-DIJKSTRA(JGK):

1. CHANGE-GRAPH-REPRESENTATION(JGK) ▷ Includes initializing KVS

2. PARALLEL-DORAM.INITIALIZE((Jk1K, J∞K), . . . , (JknK, J∞K))

3. PQ.INITIALIZE((Jk1K, J∞K), . . . , (JkwK, J∞K))

4. DORAM.WRITE(JsK, J0K)

5. PQ.DECREASE-KEY(JsK, J0K)

6. JxqK← JsK

7. for num from 1 to 2n do
8. (Je⃗iK)← KVS.READ(JxqK)

9. RELAX((Je⃗iK))

10. if JContinue?K then
11. Pretend to EXTRACT-MIN

12. xq ← xq+1

13. else
14. xq ← EXTRACT-MIN

15. end if

Final output distance vector is now stored in DORAM.

6.2 Secure Dijkstra

In the Secure Oblivious Dijkstra algorithm, we start by changing the graph representation to the d-normalized
replicated adjacency list, and initializing the KVS. This takes O(E + V log V) work and O(log V) rounds.
We then initialize the Parallel DORAM structure, which takes O(V log V) work and O(V log V) rounds.
Then, we initialize the Parallel Oblivious Priority Queue, which takes O(V log V) work and O(V log log log V)
rounds. Then, we begin our main loop, which we will execute 2V times, to go through all 2V entries of
our d-normalized replicated adjacency list. JxqK represents the name of the current node we are exploring.
We start by setting x1 equal to the source node s. Then, we execute KVS.read on xq, getting the associated
entry with that node. This takes O(d) work and O(1) rounds. We then do the Edge Relaxation algorithm.
Finally, we do extract min, or pretend to, depending of the Continue? marker which the Edge Relaxation
returned. Both paths of the if/else statement take the same amount of work, and are indistinguishable. They
both take O(log V) work and O(1) rounds. The total work for inside the loop comes from the Relaxation
subroutine, which is O(d log V). The total rounds is O(log V log log log V)

Since we execute this loop 2V times, we multiply all work and rounds within the loop by 2V . That
means we do O(V · d log V) work and O(V log V log log log V) rounds. Because d = 2E

V , the total
work from the loop is O(E log V). Putting it all together, the total cost is O((E + V) log V) work and
O(V log V log log log V) rounds.

For security proofs, we observe that we invoke secure algorithms as building blocks, and all our opera-

34

tions are data-independent and hence oblivious. By the composability framework, the overall protocol does,
therefore, remain secure.

The most efficient instantiation of our Dijsktara algorithm would be a three-party honest-but-curious
setting without collusion. For this model one can use a secure shuffle of [28], a secure merge of [19], and
ABB implementations and DORAM from [41]. For two-party case, use secure shuffle of [30], DORAM
[62] and secure merge of [19].

7 Conclusions and Further Work

To conclude, our d-NORMALIZED REPLICATED ADJACENCY LIST conversion takes O(1) rounds and
O(V + E) secure operations. We also show O(log V) rounds and O((V + E) log V) oblivious graph
renaming algorithm from an adjacency list where vertices are arbitrary alphanumeric labels to an equivalent
adjacency list representation, where vertices are integers and appear ordered in the resulting secret-shared
adjacency list, from 1 to V . We believe both algorithms are of independent interest and will have additional
applications.

Our Secure Dijkstra algorithm takes O((V +E) log V) secure operations and O(V ·log V ·log log log V)
rounds. We remark that our version of Dijkstra’s algorithm is inherently oblivious. Therefore, for the
constant-round MPC protocols, implementing our Dijkstra’s algorithm using Yao’s Garbled Circuits and
resorting to Garbled RAM only in places where we invoke DORAM may result in better asymptotic com-
putation and communication complexity. Our general techniques are likely to also be applicable to making
other secure graph algorithms more efficient, such as computing BFS and MST.

8 Acknowledgments

I would like to thank the anonymous reviewers of CRYPTO 2024 PC for their helpful suggestions. I am
grateful to the instructors at UCLA’s Olga Radko Math Circle for hooking me on mathematics in second
grade and continuing over the years to introduce me to high-level ideas well beyond the school curriculum.
I am grateful to Sanjam Garg, Vassilis Zikas, and Yuval Ishai for multiple inspiring conversations and for
providing feedback on early drafts of this manuscript. Finally, I want to thank my dad, Rafail Ostrovsky, for
inspiring me to study theoretical computer science from an early age, pointing me to multiple resources on
cryptography, and patiently answering numerous questions, even in the middle of the night.

35

References
[1] Abraham, I., Fletcher, C.W., Nayak, K., Pinkas, B., Ren, L.: Asymptotically tight bounds for compos-

ing oram with pir. In: PKC. pp. 91–120. Springer (2017)

[2] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms (1974)

[3] Ajtai, M., Komlós, J., Szemerédi, E.: An o(nlog n) sorting network. In: STOC. pp. 1–9 (1983)

[4] Aly, A., Cleemput, S.: An improved protocol for securely solving the shortest path problem and its
application to combinatorial auctions. ePrint p. 971 (2017)

[5] Aly, A., Cleemput, S.: A fast, practical and simple shortest path protocol for multiparty computation.
In: ESORICS. pp. 749–755. Lecture Notes in Computer Science (2022)

[6] Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Vyve, M.V.: Securely solving simple combinatorial graph
problems. In: Financial Crypto. pp. 239–257. Lecture Notes in Computer Science (2013)

[7] Anagreh, M., Laud, P., Vainikko, E.: Privacy-preserving parallel computation of minimum spanning
forest. SN Comput. Sci. p. 448 (2022)

[8] Anagreh, M., Vainikko, E., Laud, P.: Parallel privacy-preserving shortest paths by radius-stepping. In:
PDP. pp. 276–280 (2021)

[9] Asharov, G., Hamada, K., Ikarashi, D., Kikuchi, R., Nof, A., Pinkas, B., Takahashi, K., Tomida, J.:
Efficient secure three-party sorting with applications to data analysis and heavy hitters. In: CCS (2022)

[10] Asharov, G., Komargodski, I., Lin, W., Nayak, K., Peserico, E., Shi, E.: Optorama: Optimal oblivious
RAM. J. ACM pp. 4:1–4:70 (2023)

[11] Asharov, G., Komargodski, I., Lin, W., Peserico, E., Shi, E.: Optimal oblivious parallel RAM. In:
SODA. pp. 2459–2521 (2022)

[12] Aziz, M., Alhadidi, D., Mohammed, N.: Secure approximation of edit distance on genomic data. BMC
Med Genomics p. 41 (2017)

[13] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract). In: STOC. pp. 1–10 (1988)

[14] Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty
computation. In: EUROCRYPT. pp. 169–188 (2011)

[15] Berger, B., Waterman, M.S., Yu, Y.W.: Levenshtein distance, sequence comparison and biological
database search. IEEE transactions on information theory pp. 3287–3294 (2020)

[16] Bienstock, A., Patel, S., Seo, J.Y., Yeo, K.: Near-optimal oblivious key-value stores for efficient psi,
PSU and volume-hiding multi-maps. In: USENIX. pp. 301–318 (2023)

[17] Blanton, M., Steele, A., Aliasgari, M.: Data-oblivious graph algorithms for secure computation and
outsourcing. In: CCS. pp. 207–218 (2013)

[18] Blelloch, G.: Scans as primitive parallel operations. IEEE Transactions on Computers pp. 1526–1538
(1989)

[19] Blunk, M., Bunn, P., Dittmer, S., Lu, S., Ostrovsky, R.: Secure merge in linear time and o(log log N)
rounds. ePrint p. 590 (2022)

[20] Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-preserving computa-
tions. In: CESORICS. pp. 192–206 (2008)

[21] Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-honest model. In: ASI-
ACRYPT. pp. 236–252. Lecture Notes in Computer Science (2005)

36

[22] Brodal, G.S.: Worst-case efficient priority queues. In: SODA. pp. 52–58 (1996)

[23] Brodal, G.S., Lagogiannis, G., Tarjan, R.E.: Strict fibonacci heaps. In: STOC. pp. 1177–1184 (2012)

[24] Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party distributed ORAM. In: SCN. pp.
215–232 (2020)

[25] Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–
202 (2000)

[26] Canetti, R.: Universally composable security. J. ACM pp. 28:1–28:94 (2020)

[27] Carter, H., Lever, C., Traynor, P.: Whitewash: outsourcing garbled circuit generation for mobile de-
vices. In: ACSAC. pp. 266–275 (2014)

[28] Chan, T.H., Katz, J., Nayak, K., Polychroniadou, A., Shi, E.: More is less: Perfectly secure oblivious
algorithms in the multi-server setting. In: ASIACRYPT. pp. 158–188 (2018)

[29] Chan, T.H., Shi, E., Lin, W., Nayak, K.: Perfectly oblivious (parallel) RAM revisited, and improved
constructions. In: ITC 2021. pp. 8:1–8:23

[30] Chase, M., Ghosh, E., Poburinnaya, O.: Secret-shared shuffle. In: ASIACRYPT. pp. 342–372 (2020)

[31] Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract).
In: STOC. pp. 11–19 (1988)

[32] Chen, C., Cui, J., Liu, G., Wu, J., Wang, L.: Survey and open problems in privacy preserving knowl-
edge graph: Merging, query, representation, completion and applications (2020)

[33] Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold
homomorphic encryption. In: CRYPTO. pp. 247–264 (2003)

[34] Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomor-
phic encryption. In: CRYPTO. pp. 643–662 (2012)

[35] Decoster, K., Billard, D.: HACIT: A privacy preserving and low cost solution for dynamic navigation
and forensics in VANET. In: VEHITS. pp. 454–461 (2018)

[36] Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-protocol secure
two-party computation. In: NDSS (2015)

[37] Dittmer, S., Ostrovsky, R.: Oblivious tight compaction in o(n) time with smaller constant. In: SCN.
pp. 253–274 (2020)

[38] Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS. pp. 523–535 (2017)

[39] Falk, B.H., Nema, R., Ostrovsky, R.: Linear-time 2-party secure merge from additively homomorphic
encryption. J. Comput. Syst. Sci. pp. 37–49 (2023)

[40] Falk, B.H., Ostrovsky, R.: Secure merge with o(n log log n) secure operations. In: ITC. pp. 7:1–7:29.
LIPIcs (2021)

[41] Falk, B.H., Ostrovsky, R., Shtepel, M., Zhang, J.: Gigadoram: Breaking the billion address barrier. In:
USENIX (2023)

[42] Feng, Y., Ma, H., Chen, X., Zhu, H.: Secure and verifiable outsourcing of sequence comparisons. In:
ICT-EurAsia. pp. 243–252 (2013)

[43] Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algo-
rithms. In: FOCS. pp. 338–346 (1984)

[44] Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: FOCS. pp. 210–229 (2015)

[45] Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions. In: STOC. pp.
449–458 (2015)

37

[46] Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value stores and amplifi-
cation for private set intersection. In: CRYPTO. pp. 395–425 (2021)

[47] Goldreich, O.: Secure multi-party computation. Online book draft (1998)

[48] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (1986)

[49] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem
for protocols with honest majority. In: STOC. pp. 218–229 (1987)

[50] Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM pp. 431–
473 (1996)

[51] Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: An efficient sorting algorithm
for practical secure multi-party computation. Cryptology ePrint (2014)

[52] Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically efficient multi-party
sorting protocols from comparison sort algorithms. In: ICISC. pp. 202–216 (2012)

[53] Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining BMR and oblivious
transfer. In: ASIACRYPT. pp. 598–628 (2017)

[54] Heath, D., Kolesnikov, V., Ostrovsky, R.: Epigram: Practical garbled RAM. In: EUROCRYPT. pp.
3–33 (2022)

[55] Heath, D., Kolesnikov, V., Ostrovsky, R.: Tri-state circuits - A circuit model that captures RAM. In:
CRYPTO. pp. 128–160 (2023)

[56] Hemenway, B., Noble, D., Ostrovsky, R., Shtepel, M., Zhang, J.: DORAM revisited: Maliciously
secure RAM-MPC with logarithmic overhead. In: TCC. pp. 441–470 (2023)

[57] Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations in ANSI C. In:
CCS. pp. 772–783 (2012)

[58] Jafargholi, Z., Larsen, K.G., Simkin, M.: Optimal oblivious priority queues and offline oblivious RAM.
ePrint p. 237 (2019)

[59] Jafargholi, Z., Larsen, K.G., Simkin, M.: Optimal oblivious priority queues. In: SODA. pp. 2366–2383
(2021)

[60] Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: ASIACRYPT. pp. 506–525.
Lecture Notes in Computer Science (2014)

[61] Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: Oblivm: A programming framework for secure
computation. In: SOSP. pp. 359–376 (2015)

[62] Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party computation. In: TCC. pp.
377–396 (2013)

[63] Lu, S., Ostrovsky, R.: How to garble RAM programs. In: EUROCRYPT. pp. 719–734 (2013)

[64] Lu, S., Ostrovsky, R.: Black-box parallel garbled RAM. In: CRYPTO. pp. 66–92 (2017)

[65] Mood, B., Gupta, D., Carter, H., Butler, K.R.B., Traynor, P.: Frigate: A validated, extensible, and
efficient compiler and interpreter for secure computation. In: EuroS&P (2016)

[66] Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social network?: the structure of
the twitter follow graph. In: WWW. pp. 493–498 (2014)

[67] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-
party computation. In: CRYPTO. pp. 681–700 (2012)

[68] Noble, D.: Distributed Oblivious RAM: Progress and Pitfalls. Ph.d. thesis, University of Pennsylvania,
Philadelphia, PA (May 2024)

38

[69] Noble, D., Falk, B.H., Ostrovsky, R.: Metadoram: Breaking the log-overhead information theoretic
barrier. ePrint p. 11 (2024)

[70] Ostrovsky, R.: Efficient computation on oblivious rams. In: STOC. pp. 514–523 (1990)

[71] Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: STOC. pp. 294–303
(1997)

[72] Patel, S., Persiano, G., Raykova, M., Yeo, K.: Panorama: Oblivious RAM with logarithmic overhead.
In: FOCS. pp. 871–882 (2018)

[73] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In:
STOC. pp. 73–85 (1989)

[74] Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: A programming language for generic, mixed-mode
multiparty computations. In: SOSP. pp. 655–670 (2014)

[75] Shi, E.: Path oblivious heap: Optimal and practical oblivious priority queue. In: SOSP. pp. 842–858
(2020)

[76] Songhori, E.M., Hussain, S.U., Sadeghi, A., Schneider, T., Koushanfar, F.: Tinygarble: Highly com-
pressed and scalable sequential garbled circuits. In: SOSP. pp. 411–428 (2015)

[77] Stefanov, E., van Dijk, M., Shi, E., Chan, T.H., Fletcher, C.W., Ren, L., Yu, X., Devadas, S.: Path
ORAM: an extremely simple oblivious ram protocol. J. ACM pp. 18:1–18:26 (2018)

[78] Vadapalli, A., Henry, R., Goldberg, I.: Duoram: A bandwidth-efficient distributed ORAM for 2- and
3-party computation. In: USENIX (2023)

[79] Wang, L., Liu, G., Sun, L.: A secure and privacy-preserving navigation scheme using spatial crowd-
sourcing in fog-based vanets. Sensors p. 668 (2017)

[80] Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In: CCS. pp. 39–56
(2017)

[81] Wu, D.J., Zimmerman, J., Planul, J., Mitchell, J.C.: Privacy-preserving shortest path computation. In:
NDSS (2016)

[82] Yang, Y., Peceny, S., Heath, D., Kolesnikov, V.: Towards generic MPC compilers via variable instruc-
tion set architectures (visas). In: CCS. pp. 2516–2530 (2023)

[83] Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS. pp. 160–164 (1982)

[84] Zahur, S., Evans, D.: Obliv-c: A language for extensible data-oblivious computation. ePrint p. 1153
(2015)

[85] Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private distributed compu-
tation. In: CCS. pp. 813–826 (2013)

39

	Introduction
	Secure Multi-Party Computation
	Secure Graph Processing
	Review of Adjacency Matrix Approaches for Graph Processing:
	Review of ORAM/GRAM Compilers for Graph Processing:
	Graph Processing Algorithms that leak Partial Information:

	Organization of the rest of the paper

	Overview of Our Results
	Changing Graph Representations
	Secure Dijkstra
	Applications of secure SSSP:

	Preliminaries
	Arithmetic Black Box functionalities
	Building Blocks

	Graph Conversions for MPC
	Secure d-normalization algorithm
	Analysis of d-normalization algorithm
	Oblivious Graph Renaming Algorithm
	Analysis of Graph Renaming Algorithm

	Oblivious Priority Queue with Parallel Decrease Key
	Correctness
	Complexity Analysis

	Secure Dijkstra and its Analysis
	Edge Relaxation for a single block
	Secure Dijkstra

	Conclusions and Further Work
	Acknowledgments

