
Efficient 2PC for Constant Round Secure Equality Testing and Comparison

Tianpei Lu1†, Xin Kang2†, Bingsheng Zhang13§, Zhuo Ma2§, Xiaoyuan Zhang1,
Yang Liu2, Kui Ren1 and Chun Chen1

1The State Key Laboratory of Blockchain and Data Security, Zhejiang University,
{lutianpei, bingsheng, zhangxiaoyuan,kuiren,chenc}@zju.edu.cn,

2Xidian University, kangxin@stu.xidian.edu.cn, mazhuo@mail.xidian.edu.cn, bcds2018@foxmail.com,
3Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security

Abstract

Secure equality testing and comparison are two important
primitives widely used in many secure computation scenar-
ios, such as privacy-preserving machine learning, private set
intersection, and secure data mining, etc. This work proposes
new constant-round two-party computation (2PC) protocols
for secure equality testing and comparison. Our protocols are
designed in the online/offline paradigm. For 32-bit inputs, the
online communication cost of our equality testing protocol
and secure comparison protocol are as low as 76 bits (1% of
ABY) and 384 bits (5% of ABY) , respectively. Our bench-
marks show that (i) for 32-bit equality testing, our scheme
performs 9× faster than the Guo et al. (EUROCRYPT 2023)
and 15× of the garbled circuit (GC) with the half-gate opti-
mization (CRYPTO 2015). (ii) for 32-bit secure comparison,
our scheme performs 3× faster than Guo et al. (EUROCRYPT
2023), 6× faster than both Rathee et al. (CCS 2020) and GC
with the half-gate optimization.

1 Introduction

Secure multiparty computation (MPC) [7, 26, 53] enables sev-
eral untrusted parties to perform joint computations without
revealing their private inputs. In the early stages, general-
purpose MPC protocols [26, 31, 53] were widely studied and
significantly improved in terms of performance. Recently, re-
search focus has been moved to designing tailor-made proto-
col for specific tasks to achieve better performance [40,46,56].
The secure comparison and equality testing protocols are two
widely used fundamental primitives in federated learning,
privacy-preserving machine learning, private set intersection,
advertising bidding systems, biometric authentication, and
so on. These are two-party protocols in which one party in-
puts a and the other party inputs b. Together, they jointly
evaluate whether a > b or a = b without disclosing private a

†Tianpei Lu and Xin Kang contributed equally to this work.
§Bingsheng Zhang and Zhuo Ma are co-corresponding authors.

and b. Hereby, we provide thereafter a non-exhaustive list of
applications for secure comparison or equality testing.

• Privacy-preserving machine learning. Secure compari-
son is an important component for privacy-preserving
machine learning [13,17], especially for non-linear func-
tions such as ReLU and MaxPool [56]. Furthermore, a
line of research [31, 34, 39] aim to evaluate non-linear
functions, such as Sigmod, GeLU, and Softmax, through
secure comparison and secure polynomial evaluation.

• Private set intersection. Generally speaking, Private Set
Intersection (PSI) [15, 35, 48] is a widely used protocol
that enables two parties to securely compute a function
over the intersected part of their shared datasets and has
been a significant research focus over the years. Cur-
rently, in most PSI schemes, equality testing accounts
for more than 50% of the total communication cost of the
protocol [45]. Therefore, optimizing the communication
cost of equality testing is of great importance for PSI.

• Secure Data Mining. Secure data mining [29, 43] can
facilitate the identification of the most relevant items or
patterns without exposing raw data. Secure comparison
is often used in data mining tasks such as identifying the
top-k items [24], outlier detection [50], and other analyt-
ics, where comparisons are necessary to draw insights
from distributed datasets without compromising data pri-
vacy. Therefore, optimizing the performance of secure
comparison can benefit numerous secure data mining
application.

Moreover, the performance improvement of the secure
comparison can also benefit a wide range of MPC applica-
tions. The efficiency of secure comparison in the multi-party
setting [40, 56] has been significantly improved in the past
years; whereas, in two-party computation (2PC) setting, se-
cure comparison and equality testing are still major perfor-
mance bottlenecks in practice. Indeed, as reported by the
state-of-the-art (SOTA) [15, 31, 44] 2PC platforms, secure

1

comparison/equality-testing is magnitude slower than other
secure linear operations, e.g., secure multiplication.

A sequence of efforts [20, 44] has been made to optimize
the communication of the comparison or equality test. How-
ever, these proposed protocols are not constant rounds and
suffer from poor performance in network scenarios with a
large delay. The other approaches focus on the constant-round
protocols. The typical solutions are based on the garbled cir-
cuit [49, 54] or the function secret sharing (FSS) [10, 12].
The garbled circuit scheme requires massive communication
and computation in circuit evaluation (in the online phase),
leading to a lower practical performance than protocols with
logarithmic rounds. FSS gains better online communication
efficiency compared to the garbled circuit scheme. Neverthe-
less, its online computation cost is close to that of a garbled
circuit (GC). Only considering the online phase, to the best
of our knowledge, FSS is the most efficient solution for both
equality testing and secure comparison. However, conven-
tional FSS is performed on the three-party scenario, which
requires the third party to generate the correlated keys. Mov-
ing to the 2PC setting, the correlated key generation steps
should be securely evaluated under 2PC (the user needs to
evaluate massive PRGs), which is beyond practical. Recently,
a line of works [21, 27] design correlated keys generation
protocols that can eliminate the secure PRGs evaluation. As a
trade-off, its computation cost is exponential to the input size
n. Considering a large n, it is even impossible to terminate.

So far as we know, there does not exist a practical constant-
round secure comparison or equality testing protocol that
offers an efficient online phase with a practical offline phase.

1.1 Our Result.
In this work, we focus on secure equality testing and compar-
ison in the two-party computation setting, i.e., Alice and Bob
hold the secret input, respectively, and look for the shared re-
sult of the comparison or equality testing on their inputs. We
also explain how to construct comparison and equality testing
protocols for secret-shared values input using the protocols
with private input. We design low (constant) communication-
round protocols with relatively efficient offline phases, im-
proving overall performance. We show that our protocols are
secure against passive adversaries in the universal compos-
ability framework by Canetti [14].

2-round equality testing. Unlike the approach of bit-by-bit
comparison a and b to obtain the result of the equality testing,
we consider the problem as an oblivious retrieval problem.
Specifically, the parties share a look-up table T⃗ in which
only one random position has a value of 1, and all other
positions are 0. The index of this position is shared between
both parties, denoted as ε0 and ε1. Therefore, the parties can
obtain the result of equality testing by locally selecting the
shared value at the (a−b+ε0+ε1)

th position of T⃗ . However,
this approach requires a lookup table of length 2n, which is

impractical for real-world applications when a and b are n-bit
integers. To address this problem, we propose a dimension
reduction technique that reduces the problem of checking
a = b to the problem of checking a′ = b′, where a′ and b′ are
logn bits. This approach reduces the length of the required
lookup table from 2n and n.

In this work, we focus on optimizing the performance of
the online phase while maintaining a reasonable offline phase
overhead compared to FSS-based schemes. We emphasize the
importance of the online phase, as many real-world applica-
tions prioritize online efficiency to achieve real-time respon-
siveness, specifically in scenarios demanding high responsive-
ness, such as PPML and PSI. In contrast, offline computations
can be carried out during idle periods. By substantially reduc-
ing the online computational load and communication latency,
our protocols provide practical advantages that outweigh the
increased offline costs in such contexts. Furthermore, it is
worth noting that our offline phase significantly outperforms
FSS and remains competitive with OT-based solutions.
Secure comparison. We propose a novel 3-round secure com-
parison protocol Πcmp in the semi-honest setting. Intuitively,
our comparison protocol starts by extracting the first different-
bit of inputs a and b from the big-endian. It is easy to see
that the value of a on the position of different-bit corresponds
to the result of the comparison a > b. We construct a secret
shared list {s}n based on a transformation φ (cf § 4.1) high-
lighting such a position ζ. In particular, sζ = 0 and si > 0 for
other position i. Without security, we can directly reveal {s}n
to P0 for checking aζ of the highlighting position ζ. In § 4, we
introduce a new primitive – Oblivious Selective Zero Check,
to detect aζ without revealing {s}n.
Performance. Table 3 depicts the performance comparison
between our protocols and SOTA 2PC.

Our equality testing protocol requires 2 rounds of O(n)-
bit communication in the online phase, which is close to
FSS [21, 27]; note that our protocol does not invoke heavy
PRFs, so the computational cost is much smaller than FSS,
leading to a faster online phase, i.e. the running time of FSS-
based equality testing is over 7×more than ours, in the LAN/-
MAN/WAN setting. Moreover, compared to FSS, the offline
of our protocol is 1000×more efficient. For the other baseline,
the garbled circuit–based equality testing [53, 54], the online
phase communication of our construction is less than 1%.
Specifically, our benchmark shows that in the MAN setting,
our protocol achieves 15× better performance.

Our secure comparison protocol requires 3 rounds of
2n+2n logn bits of communication in the online phase. Sim-
ilarly to equality testing, our protocol outperforms the SOTA
2PC protocols. Compared to FSS-based comparison [27], our
protocol achieves over 3× online performance improvement,
and over 1000× offline performance improvement. For the
garbled circuit-based comparison, the online phase commu-
nication of our comparison is less than 5%. Compared to the
SOTA comparison CrypTFlow2 [47], our protocol achieves

2

over 6× improvement in both MAN and WAN settings.

Paper Organization. § 2 introduces the preliminary includ-
ing notations and the primitives to construct our protocols.
The rest of the paper is organized as follows. In § 3, we pro-
pose our equality testing protocol involving one-round and
two-round construction. In § 4, we introduce our three-round
secure comparison protocol. § 5 conducts the performance
evaluation of our equality testing and secure comparison pro-
tocols.

1.2 Related work
The concept of secure comparison was first proposed by
Yao [53], a.k.a, millionaire’s problem. Subsequently, equality
testing called socialist millionaires’ problem [33] has been
successively proposed. The research in the areas has experi-
enced rapid and consistent development. Due to the primitive
similarities between secure protocols for equality tests and
comparisons, we provide a unified representation. We catego-
rize the works into five types based on the involved fundamen-
tal building blocks: GC-based-CMP/EQ, HE-based-CMP/EQ,
OT-based-CMP/EQ, FSS-based-CMP/EQ, and Generic Two-
Party Computation. In the following, we let n denote the input
length.

GC-based-CMP/EQ. The secure comparison and equality
testing protocols were initially constructed by Yao cir-
cuits [53]. Kolesnikov et al. [38] proposed a protocol for
constructing universal circuits almost exclusively composed
of XOR gates, which relies on the random oracle (RO) as-
sumption. Then, they [37] optimize the assumption by allow-
ing one party to garble circuits containing comparison gates,
achieving secure comparison through AND gates. Zahur et
al. [55] introduced an approach to garbling AND gates using
two ciphertexts and XOR gates using zero ciphertexts concur-
rently, resulting in half the communication cost to compute
AND gates. Despite the constant round complexity protocol
realized, their communication amount is usually significant.

HE-based-CMP/EQ. The beginning of solving the million-
aire problem from homomorphic encryption (HE) can be
traced back to the protocol proposed by Blake et al. [9]. Sub-
sequently, Garay et al. [25] proposed a secure comparison
scheme based on threshold homomorphic encryption. How-
ever, the comparison can only be performed by a trusted third
party. Cheon et al. [18] proposed a comparison scheme based
on HE by using a composite polynomial approximation to ob-
tain an approximate comparison result. However, this scheme
is unable to achieve equality testing.

OT-based-CMP/EQ. When multiple instances of secure com-
parison or equality testing are needed, the approach based on
oblivious transfer extension is commonly used. The method
requires a constant number of public key operations and
only inexpensive symmetric operations for each invocation.
Couteau [19] proposed a scheme that relied on oblivious

transfer (OT) to securely perform a bitwise comparison with n
AND gates. Rathee et al. proposed a framework named CrypT-
Flow2 [47], which recursively equated the comparison of two
integers to the comparison of sub-integers of length (m≤ n).
The sub-integer comparison was facilitated by 1-out-of-2m

OT.Therefore, the comparison could be implemented through
n/m−1 AND gates. Subsequently, Chandran et al. [15] ex-
tends the idea to equality testing. Huang et al. [31] further
optimized communication cost in CrypTFlow2 [47] by replac-
ing the OT with VOLE-type OT.

FSS-based-CMP/EQ. Function secret sharing (FSS) [10, 12]
allows two parties to evaluate a secure function with corre-
lated keys locally, and output a shared result, whereas the
typical solution requires a third party to generate the corre-
sponding keys. The distributed point function (DPF) [12] can
be used to realize the equality test directly and the distributed
comparison function (DCF) [10] can be used to realize secure
comparison. The correlated keys generation scheme [21, 27]
employs FSS on the two parties’ computation.

Generic Two-Party Computation. Generic two-party compu-
tation techniques enable secure computation of functions ex-
pressed as boolean circuits. Demmler et al. [20] presented a
framework named ABY that efficiently combines arithmetic
sharing, Boolean sharing, and Yao’s garbled circuits to per-
form secure two-party computation. Secure comparison and
equality testing could be efficiently instantiated by ABY. The
process involved initially converting the secret input from
arithmetic to Boolean form (A2B), followed by conducting
bitwise comparisons, and finally reversing the transformation
(B2A). Patra et al. [44] optimized multiplication computa-
tions in ABY2.0 by depending on function precomputation,
reducing the communication cost during the online phase to
half of that in ABY.

2 Preliminaries

Notation. Let P := {P0,P1} be the two MPC parties. We
denote a vector {a0, . . . ,an−1} as A⃗, and ai be the ith element
of A⃗. We denote [n] as the index set {0, . . . ,n−1}, and [1,n]
as the index set {1, . . . ,n−1}. Let 1{b} denote the indicator
function that is 1 when b is true and 0 when b is false. Let
(1,n)-OT denote the 1-out-of-n OT. We define shift(X⃗ , i) as
the operation that circularly shifts the vector X⃗ to the right by
an offset of i. In addition, we define [·]p over finite field Zp as
[x]p := ([x]1 ∈ Zp, [x]2 ∈ Zp) where x = [x]1 +[x]2 (mod p).
Pi for i ∈ {0,1} hold share [x]i. We use bold letters to denote
matrices, e.g. M, and the element in the ith row and jth column
of M is denoted as m(i, j).
Threat model and security. Our equality testing and compar-
ison protocols ensure security within the standard semi-honest
setting. In this scenario, the adversary may attempt to extract
private information from legitimate messages but must ad-
here strictly to the protocol’s procedure. The security proof is

3

Table 1: Comparison with the state-of-the-art secure comparison and equality testing protocols. λ is the computational security
parameter; µ is ECC group representation length and µ = 256; n is the length of the element to be compared.

Approach Protocol Offline Online
Communication Communication #Round

Equality Testing
GC-based-EQ Yao [52, 53] 2nλ 2nλ 2

Generic Two-Party Computation ABY [20] 6λn+n 2λn+6n logn+5
ABY2.0 [44] 5λn+2n λn+6n logn+4

FSS-based-EQ Half-Tree [27] (n+2)λ+ 2n 1
DPF [12] 4n(λ+1)+λ+n† 2n 1

OT-based-EQ

CO [19] 3λn 2n+2logn+10 log∗n+1
CGS [15] 3

4 λn+8n 5n−4 logn+4
Πeq2 (§ 3) λ logn+n logn+3n+λ 2n+2logn+2 2

Secure Comparison
GC-based-CMP Yao [52, 53] 2nλ 2nλ 2
HE-based-CMP GSV [25] - 18µn+8µ 9

Generic Two-Party Computation ABY [20] 6λn+17λ+n 2λn+20n logn+5
ABY2.0 [44] 5λn+17λ+2n λn+9n logn+4

FSS-based-CMP Half-Tree [27] (n+2)λ+ 2n 1
DCF [10] 4n(λ+1)+λ+n† 2n 1

OT-based-CMP

CO [19] 6λn 8n+2logn 4log*λ+5
Cryptflow2 [47] λn+16n 10n−8 logn+4

Πcmp(§ 4) ≈ 2nλ log2n+n log2 n (2n+3)(logn+2) 3
* log∗ represents the iterated logarithm.
+ Under correlated keys generation scheme which performs O(2n) times Hash locally.
† Under a trusted third-party dealer.

based on the Universal Composability (UC) framework [14],
which follows the simulation-based security paradigm. In the
UC framework, protocols are executed across multiple inter-
connected machines. The network adversary A is allowed to
partially control the communication tapes of all uncorrupted
machines, observing messages sent to/from uncorrupted par-
ties and influencing message sequences. Then, a protocol Π

is considered UC-secure in realizing a functionality F if, for
every probabilistic polynomial-time (PPT) adversary A tar-
geting an execution of Π, there exists another PPT adversary
known as a simulator S attacking the ideal execution of F
such that the executions of Π with A and that of F with S
are indistinguishable to any PPT environment Z.

The idea world execution IdealF ,S ,Z(1λ). In the ideal
world, the parties P := {P0,P1} only communicate with the
ideal functionality F f

2pc with the excuted function f . Both par-

ties send their share to F f
2pc, and F f

2pc calculates and output
the result to P0 and P1.

The real world execution RealΠ,A ,Z(1λ). In the real world,
the parties P := {P0,P1} communicate with each other, it exe-
cutes the protocol Π. Our protocols work in the pre-processing
model, but we analyze the offline and online protocols to-
gether as a whole.

Definition 1. We say protocol Π UC-secure realizes func-
tionality F if for all PPT adversaries A there exists a PPT

F f
2pc interacts with P0, P1 and the adversary S . Let f

denote the functionality to be computed.

Input:

• Upon receiving (Input,sid,a) from P0, record a and
send (Input,sid,P0) to S , where a ∈ {0,1}n.

• Upon receiving (Input,sid,b) from P1, record b and
send (Input,sid,P1) to S , where b ∈ {0,1}n.

Execution:

• If both a,b are recorded, compute (y0,y1) = f (a,b).

• Send (Output,y0) to P0 and (Output,y1) to P1.

Functionality F f
2pc

Figure 1: The Ideal Functionality F f
2pc.

simulator S such that for all PPT environment Z, it holds:

RealΠ,A ,Z(1λ) ≈ IdealF ,S ,Z(1λ)

Oblivious Transfer. For an instance of (1,2)-OT [22, 23],
the sender sends the strings m0 and m1 ∈ {0,1}ℓ to F(1,2)-OT,
and the receiver sends a select bit i ∈ {0,1} to F(1,2)-OT. As
a result, the receiver obtains mi from the F(1,2)-OT. Random
OT (ROT) [8] is a special case of OT in which the mes-

4

sage and the select bit are picked by F(1,2)-ROT rather than
input by parties. The sender receives two random strings r0
and r1 ∈ {0,1}l , while the receiver obtains a bit i ∈ {0,1}
and mi. A n−1-out-of-n ROT, its functionality F(n−1,n)-ROT

[16], sends list {m0, . . . ,mn} to the sender, meanwhile, sends
b ∈ [n] and {mi} for i ∈ [n]\{b} to the receiver. We also uti-
lize (1,n)-OT [42, 51]. Its functionality F(1,n)-OT receives
n strings {m0, · · · ,mn−1} from sender, and the select index
i ∈ [n] from receiver. Subsequently, F(1,n)-OT sends mi to the
receiver.

Oblivious Linear Evaluation. Oblivious Linear Evaluation
(OLE) [6, 36] is a foundational component in various secure
computation protocols [30, 46, 48]. In our protocol, we utilize
its randomized variant – Random Oblivious Linear Evalua-
tion (ROLE). In the standard ROLE protocol [6], P0 receives
random values a and b from the functionality Fole, while P1
receives a random value u and w = au+b from the functional-
ity Fole. As the vectorize version – vector OLE (VOLE) [48],
its functionality Fvole sends a random value u and a random
vector B⃗ to P0, at the same time, Fvole sends a random vector A⃗
and the vector V⃗ to P1. It holds that = A⃗u+ B⃗, i.e. vi = aiu+bi
for each vector element vi ∈ V⃗ ,ai ∈ A⃗,bi ∈ B⃗.

Secure permutation.The secure permutation [16] is a proto-
col that allows two parties, one of the parties holds the permu-
tation and the other party holds the list, to jointly permute the
list and obtain additive secret shares of the permutated list. Al-
though this problem could be addressed using generic MPC,
the most efficient implementation [16] currently is constructed
by OT. We define the functionality F n,p

Permute for n-dimension
vector with element range Zp as follow: the P0 inputs a per-
mutation π, and P1 inputs a list X⃗ := {x0, · · · ,xn−1} where
xi ∈ Zp. After the protocol, they obtain the secret shares of
the permuted list {xπ(0), · · · ,xπ(n−1)}.

3 Equality Testing

In the equality testing, P0 inputs an integer a ∈ {0,1}n and
P1 inputs an integer b ∈ {0,1}n. Both parties then receive a
boolean share of 1{a = b}, which is equal to 1 if and only if
a = b, and 0 otherwise.

In this section, we first design a one-round equality testing
protocol with a communication complexity of O(n) during
the online phase. However, this design leads to an O(2n) com-
munication complexity in the offline phase. To overcome the
drawbacks, we propose a dimension reduction scheme to op-
timize the protocol. This optimization allows for two rounds
of communication in the online phase while reducing the
communication complexity in the offline phase from O(2n)
to O(n logn).

Note that the equality testing over shared value [a] and [b]
can be reduced to the equality testing over the private input.
For the shared version, P0 holds [a]0 and [b]0, and P1 holds [a]1
and [b]1, where a = [a]0 +[a]1 and b = [b]0 +[b]1. We let P0

ii. Dimension reduction

ii. Open

iii. Output

i. Vector sharing

Figure 2: The Overview of Equality Testing

computes a′ = [a]0− [b]0 and P1 computes b′ = [b]1− [a]1 as
inputs for private-input equality testing. It works since a = b
implys [a]0 + [a]1 = [b]0 + [b]1, and thus a′ = [a]0− [b]0 =
[b]1− [a]1 = b′.

3.1 One-round equality testing

Starting point. Different from the idea of bit-by-bit com-
parison in related works, we consider equality testing as an
oblivious retrieval problem. Specifically, P0 generates a binary
vector T⃗ as the look-up table, such that only the ath value of
T⃗ is 1, while the value of other positions are 0. P1 then uses
b to privately retrieves the bth value from T⃗ , denoted as tb.
Clearly, tb = 1 if and only if a = b. To enumerate all strings
of length n, the size of T⃗ is 2n. For convenience, we define
N = 2n. However, the basic idea reveals the result of the equal-
ity testing to P1 instead of sharing the result between P0 and
P1. To keep tb private to P1, a simple approach is as follows:
P0 first samples a bit s and then computes t ′i = s⊕ ti for i∈ [N]

to generate T⃗ ′, and then P1 privately fetch t ′b instead of tb. It is
easy to see that s⊕ t ′b = 1 if and only if a = b. However, there
is a drawback to the above approach that typically requires an
instance of F(1,N)-OT to fetch t ′b. The (1,N)-OT protocol has
the huge communication complexity of O(2n) and requires
two rounds of online communication. In the following, we
will show how to overcome this drawback.
One-round equality testing. Our goal is to design an equality
testing protocol that achieves one-round communication and
O(n) communication complexity in the online phase. At a
high level, our protocol works as follows. In the offline phase,
P0 and P1 respectively pick offsets ε0 ∈ [N] and ε1 ∈ [N], and
then they generate a shared binary vector T⃗ := (t0, . . . , tN−1),
where only tε0+ε1 = 1. In the online phase, P0 and P1 open
the value w = ε0 + ε1 +a−b, and then output [tw]0 and [tw]1
locally as the result of equality testing. Specifically, P0 com-
putes w0 = ε0 +a and sends it to P1. At the same round, P1

5

computes w1 = ε1−b and sends it to P0. Subsequently, P0 and
P1 can recover w locally. Therefore, in the online phase, the
communication cost is 2n bits, and only one round is required.

Recall that in the offline phase, P0 picks an offset ε0 and
generate a binary vector T⃗ ′ with only t ′ε0

= 1. Then, P0 and P1

perform a right circular shift on T⃗ ′ by an offset of ε1. Finally,
P0 obtains T⃗0 and P1 obtains ε1 and T⃗1, where T⃗0 and T⃗1 are
the shares of T⃗ := shift(T⃗ ′,ε1), such that [ti]0⊕ [ti]1 = ti. We
construct the offline phase based on a new primitive – Vector
Oblivious Shift Evaluation (VOSE).

Input : P0 inputs a binary vector T⃗ ′ ∈ ZN
2 .

Output : P0 receives a share vector T⃗0; P1 receives a
offset ε1 ∈ [N] and T⃗1, where T⃗0⊕ T⃗1 = shift(T⃗ ′,ε1).

Protocol:

1. P0 and P1 invoke F(N−1,N)-ROT:

• P0 receives {mi|i ∈ [N],mi ∈ ZN
2 }.

• P1 receives ε1 and {mi|i ∈ [N]\{ε1},mi ∈ ZN
2 }.

2. P0 and P1 generate the binary matrix M ∈ {0,1}N×N

by using mi as the binary column vectors for i ∈ [N],
locally. (Note that P1 does not have the ε1

th column
of M.)

3. For i ∈ [N], P0 and P1 perform a right circular shift
on the ith row of their matrices by an offset of i
locally.

4. P0 computes vi =
⊕N−1

j=0 m(i, j) and ui =
⊕N−1

j=0 m(j,i)

for i ∈ [N], and denotes V⃗ := {v0, . . . ,vN−1} and
U⃗ := {u0, . . . ,uN−1}.

5. P1 computes wi =
⊕ε1+i−1

j=0 m(i, j)⊕⊕n−1
j=ε1+i+1 m(i, j)⊕

⊕i−1
j=0 m(j,ε1+i)⊕

⊕n−1
j=i+1 m(j,ε1+i),

which equals to wi = vi⊕uε1+i, and denotes
W⃗ := {w0, . . . ,wN−1}.

6. P0 sends S⃗′ = T⃗ ′⊕U⃗ to P1 and sets T⃗0 := V⃗ .

7. P1 computes T⃗1 := shift(S′,ε1)⊕W⃗ .

Protocol ΠN
vose(T⃗ ′)

Figure 3: The Vector Oblivious Shift Evaluation Protocol.

Random Vector Oblivious Shift Evaluation (RVOSE). Before
introducing the standard VOSE, we first describe its random-
ized version (ΠRVOSE). In this protocol, P0 receives two ran-
dom binary vectors U⃗ and V⃗ , and P1 receives the offset ε1
and a vector W⃗ , such that W⃗ = shift(U⃗ ,ε1)⊕V⃗ . The RVOSE
can be built from F(N−1,N)-ROT. As illustrated Figure 5, our
protocol works as follows.

• P0 and P1 invoke F(N−1,N)-ROT. After this, P0 receives
N messages {m0, . . . ,mN−1} and mi ∈ {0,1}N . P1 re-

The parameter N is defined as N = 2n.
Input : P0 inputs a ∈ {0,1}n and P1 inputs b ∈ {0,1}n.
Output : P0 receives [e]20 and P1 receives [e]21, where
[e]20⊕ [e]21 = 1{a = b}.

Offline:

1. For i ∈ {0,1}, Pi picks εi← [N].

2. P0 generates a binary vector T⃗ ′ ∈ ZN
2 , where t ′ε0

= 1
and t ′i = 0 for i ∈ [N]\{ε0}.

3. P0 and P1 invoke {T⃗0, T⃗1}←ΠN
vose(T⃗ ′).

Online:

1. P0 computes w0 = a+ ε0 and sends it to P1, while
P1 computes w1 = ε1−b and sends it to P0.

2. P0 and P1 computes w = w0 +w1, locally.

3. For i ∈ {0,1}, Pi sets [e]2i = [tw]i.

Protocol ΠN
eq1

(a,b)

Figure 4: One-Round Equality Testing.

i. Secure
Evaluation

Select

ii. Output

ii. Output

For right circular
shift the row times.

Figure 5: The Overview of the Random VOSE.

ceives ε1 and all messages except for mε1 . We view each
message as a N-dimension binary vector and denote
the binary matrix consisting of N-column vectors as M.
Therefore, P0 obtains M. P1 obtains (N−1) columns of
M except for the ε1

th column.

• For i ∈ [N], P0 and P1 perform a right circular shift on
the ith row of their matrices by an offset of i. The new
matrix of P0 is denoted as M′.

• For i ∈ [N], P0 computes vi =
⊕n−1

j=0 m(i, j) and ui =

6

⊕n−1
j=0 m(j,i) to generate V⃗ and U⃗ . Obviously, vi is the

XOR value of the N bits in the ith row of M′ and ui is
the value of the ith column.

• For i ∈ [N], P1 computes wi as wi =
⊕ε1+i−1

j=0 m(i, j)⊕⊕n−1
j=ε1+i+1 m(i, j) ⊕

⊕i−1
j=0 m(j,ε1+i) ⊕

⊕n−1
j=i+1 m(j,ε1+i),

which equals to wi = vi⊕ uε1+i. The resulting vector
W⃗ satisfies W⃗ = shift(U⃗ ,ε1)⊕V⃗ .

In conclusion, P1 obtains wi = vi⊕uε1+i for i ∈ [N], while P0

obtains ui and vi. Therefore, the vectors W⃗ ,U⃗ and V⃗ satisfy
W⃗ = shift(U⃗ ,ε1)⊕V⃗ .
Vector Oblivious Shift Evaluation (VOSE). Based on the
RVOSE, we construct the VOSE in the following three steps.
The protocol is shown in Figure 3.

• P0 and P1 invoke the ΠRVOSE. After this, P0 receives U⃗
and V⃗ , and P1 receives the offset ε1 and a vector W⃗ , such
that W⃗ = shift(U⃗ ,ε1)⊕V⃗ .

• P0 sends S⃗′ = T⃗ ′⊕U⃗ to P1 and sets T⃗0 = V⃗ .

• P1 computes T⃗1 = shift(S′,ε1)⊕W⃗ .

Correctness. T⃗1 = shift(T⃗ ′,ε1) ⊕ shift(U⃗ ,ε1) ⊕
shift(U⃗ ,ε1)⊕ V⃗ = shift(T⃗ ′,ε1)⊕ V⃗ = T⃗ ⊕ V⃗ and T⃗0 = V⃗ .
Fianlly, we have T⃗0⊕ T⃗1 = T⃗ .
Efficiency. In the offline phase, P0 and P1 invoke one time of
(N−1,N)-ROT and P0 send S⃗′ ∈ ZN

2 . The (N−1,N)-ROT
[16] can be implemented with nλ bits. Therefore, the com-
munication cost in the offline phase is nλ+N. In the online
phase, P0 and P1 send w0 and w1 to each other simultaneously,
resulting in a communication cost of 2n bits.

3.2 Two-round equality testing
In the one-round equality testing protocol, the communication
complexity in the offline phase is O(2n), which is impractical
in real-world applications. We introduce a dimension reduc-
tion protocol that can reduce the communication complexity,
i.e. from O(2n) to O(n logn). The overview of the protocol is
shown in Figure 2.
Dimension reduction. The dimension reduction protocol
is designed to reduce the integers (a ∈ {0,1}n,b ∈ {0,1}n)
to (a′ ∈ {0,1}logn,b′ ∈ {0,1}logn) such that a′ = b′ if and
only if a = b. The intuition of generating a′ and b′ is that,
d = ∑

n−1
i=0 (ai ⊕ bi) = 0 if and only if a = b. Note that the

maximum value of d is n. Thus, the arithmetic sharing of d,
denoted as [d]0 and [d]1 where d = [d]0 +[d]1, can be used to
represent a′ and b′ as a′= [d]0 and b′=−[d]1. For correctness,
we have a′−b′ = [d]0 +[d]1 = d.

To generate [d], our approach is to convert the boolean
sharing of ai and bi into arithmetic sharing si and ti, such that
si + ti = ai⊕bi. Consequently, P0 and P1 obtain the sharing
of d by computing [d]0 = ∑

n
i=1 si and [d]1 = ∑

n
i=1 ti, respec-

tively. We refer to the above conversion process as sharing

conversion. Formally, in an instance of sharing conversion, P0
and P1 input the boolean sharing [u]20 and [u]21. At the end of
the protocol, they receive the arithmetic sharing [v]p0 and [v]p1 ,
satisfying [v]p0 +[v]p1 = [u]20⊕ [u]21. Here, p is a prime larger
than n. By the Bertrand’s postulate [41], there always exists
at least one prime number p with n < p < 2n−2. Thus, the
next prime larger than n has at most logn+1 bits.

Input : P0 inputs [u]20 ; P1 inputs [u]21.
Output : P0 receives [v]p0 and P1 receives [v]p1 , where
[v]p0 +[v]p1 = [u]20⊕ [u]21.

Offline:

1. P0 samples [r]20, and P1 samples [r]21.

2. P0 and P1 invoke F(1,2)-OT:

• P0 samples [s]p0 .

• P0 as the sender inputs m0 = [s]p0 − [r]20 and
m1 = [s]p0 − (1− [r]20) to F(1,2)-OT;

• P1 as the receiver inputs [r]21 to F(1,2)-OT, and
then receives [s]p1 := m[r]21

.

3. P0 sets [t]p0 = [s]p0 and P1 set [t]p1 =−[s]p1 .

Online:

1. For i ∈ {0,1}, Pi computes [w]2i = [u]2i ⊕ [r]2i and
sends [w]2i to P1−i.

2. P0 and P1 computes w = [w]20⊕ [w]21, locally.

3. P0 computes [v]p0 = w+[t]p0 −2w[t]p0 , and P1
computes [v]p1 = [t]p1 −2w[t]p1 .

Protocol Π
2→p
convert([u]20, [u]

2
1)

Figure 6: The Sharing Conversion Protocol.

Note that the sharing conversion can be easily constructed
based on the F(1,2)-OT. In particular, P0 samples [s]p0 , and in-
puts m0 = [s]p0 − [u]20 and m1 = [s]p0 − (1− [u]20). P1 inputs the
selection bit [u]21 and receives z, where z = [s]p0− ([u]20⊕ [u]21).
Then, P0 sets [v]p0 = [s]p0 and P1 sets [v]p0 =−z. For correctness,
we have [v]p0 + [v]p1 = [s]p0 − z = [s]p0 − [s]p0 − ([u]20⊕ [u]21) =
[u]20⊕ [u]21 as required. However, all the workload is currently
performed in the online phase, resulting in the communica-
tion complexity is O(n2) and requiring two communication
rounds.
Optimization of sharing conversion. We attempt to shift
a significant portion of expensive operations to the offline
phase, resulting in only a small amount of communication in
the online phase. The protocol is described in Figure 6. In the
offline phase, P0 and P1 generate a random sharing conversion
pairs, i.e. P0 receives ([r]20, [t]

p
0) and P1 receives ([r]21, [t]

p
1),

such that [t]p0 +[t]p1 = [r]20⊕ [r]21. In the online phase, P0 com-

7

Input : P0 inputs a ∈ {0,1}n and P1 inputs b ∈ {0,1}n.
Output : P0 receives [e]20 and P1 receives [e]21, where
[e]20⊕ [e]21 = 1{a = b}.

Protocol:

1. For i ∈ [n], P0 and P1 invoke
{si, ti ∈ Zp}←Π

2→p
convert(ai,bi), where si + ti = ai⊕bi.

2. P0 computes [d]0 = ∑
n−1
i=0 si, and P1 computes

[d]1 = ∑
n−1
i=0 ti locally.

3. P0 and P1 invoke ([e]20, [e]
2
0)←Π

p
eq1([d]0,−[d]1).

Protocol Πn
eq2

(a,b)

Figure 7: Two-Round Equality Testing.

putes [w]20 = [a]20 ⊕ [r]20 and sends it to P1; Meanwhile, P1
computes [w]21 = [a]21⊕ [r]21 and sends it to P0. Subsequently,
P0 and P1 open the value w = [w]20⊕ [w]21. Finally, P0 sets
[v]p0 = w+ [t]p0 − 2w[t]p0 and P1 sets [v]p1 = [t]p1 − 2w[t]p1 lo-
cally. Therefore, we have [v]p0 +[v]p1 = [a]20⊕ [a]21.
Protocol description. As shown in Figure 7, our complete
protocol works as follows.

• At step 1, P0 and P1 invoke n times of Π
2→p
convert for ai and

bi simultaneously. Then, they receive si and ti for i ∈ [n],
such that si + ti = ai⊕bi.

• At step 2, P0 computes [d]0 = ∑
n−1
i=0 si and P1 computes

[d]1 = ∑
n−1
i=0 ti, where it holds that d = ∑

n−1
i=0 ai⊕bi.

• At step 3, P0 and P1 invoke Π
p
eq1([d]0,−[d]1) and receive

[e]0 and [e]1. Then, they output [e]0 and [e]1 as the shared
result of 1{a = b}.

Efficiency. In the offline phase, P0 and P1 invoke n times
of (1,2)-OT and one time of (2n−1,2n)-ROT. In addi-
tion, P0 send S⃗′ ∈ Z2n

2 . Note that 2log p = 2logn+1 = 2n.
The (1,2)-OT [11, 32] can be implemented with an amor-
tized communication cost of n log(2n) bits. Therefore, the
corresponding communication cost in the offline phase is
n log(2n)+λ log(2n)+2n = n(logn+1)+λ(logn+1)+2n
bits. In the online phase, P0 and P1 send n bits to each other
in the sharing conversion Π

2→p
convert, and send p with logn+1

bits to each other in the Π
p
eq1 . Therefore, the rounds are 2 and

the communication cost is 2n+2logn+2 bits.
Security. We define the functionality Feq for the equality
testing as an instance of F2PC. In this setup, Feq receives a
from P0 and b from P1, computes [e]20⊕ [e]21 = 1{a = b}, and
sends [e]20 to P0 and [e]21 to P1. Note that to ensure security,
the offline computations are designed to be single-use only.
Next, we prove our protocol Πeq2 UC-realizes functionality
Feq.

Theorem 1. The protocol Πeq2 as shown in Fig. 7 UC realizes
Feq in the (F(1,2)-OT,F(n−1,n)-OT)-hybrid model against semi-
honest probabilistic polynomial time (PPT) adversaries with
statical corruption.

Proof. cf. Appendix. C.1 for detail.

4 Secure Comparison

In this section, we propose a novel secure comparison protocol
where P0 inputs a ∈ {0,1}n and P1 inputs b ∈ {0,1}n, receiv-
ing the shared result 1{a > b}. We first give an overview of
our protocol using a new primitive – oblivious selective zero
check (OZC) as a building block, which will be explained af-
terward. Our protocol can also build the comparison protocol
over shared value.
Comparison over share. The comparison between shared
value [a] and [b] can be reduced to the comparison between
the private input a and b, by sacrificing 1-bit storage. In par-
ticular, let [a] and [b] denote the secret share over 2n, and
we take a ∈ Z2n−1 and b ∈ Z2n−1 which sacrifice the high-
est 1-bit storage. It holds that 1{a < b}= sign(a−b), where
sign denote the sign-bit function. P0 and P1 first locally cal-
culate [c] = [a]− [b]. To extract the sign-bit of shared value
[c], we observe that sign(c) = sign([c]0)⊕sign([c]1)⊕1{([c]0
mod 2n−1)≤ 2n−1− ([c]1 mod 2n−1)}. It works as follows:
expending sign(c) = sign([c]0 + [c]1) as a circuit, the sign-
bit of c equals the XOR result of sign([c]0), sign([c]1) and
the carry-bit from adding the lower bits (besides of sign-
bit) of [c]0 and [c]1. The carry-bit can be represented as
1{([c]0 mod 2n−1) ≤ 2n−1 − ([c]1 mod 2n−1)}. sign([c]0),
sign([c]1) can be locally evaluate, and 1{([c]0 mod 2n−1)<
2n−1−([c]1 mod 2n−1)} corresponds to comparison over the
private input, in which P0 holds [c]0 mod 2n−1 and P1 holds
2n−1− [c]1 mod 2n−1.

4.1 Protocol Overview
For the integers a held by P0 and b held by P1, the result of
comparison 1{a > b} can be obtained by bitwise compar-
ing a and b from the big-endian. Formally, it is denoted by
1{a > b} = aρ, where the position ρ correspond to the first
different bit between a and b. Observe that in the case a = b
of which there are no different bits between a and b. To ensure
a ̸= b, we append 1 to the end of b and 0 to the end of a (anal-
ogously, we append 1 to a and 0 to b for 1{a≥ b}). Fig. 10
illustrates the overview of our secure comparison protocol.
In the first step, we locate the position ρ. In the second step,
we design a protocol to make two parties securely obtain the
corresponding bit aρ which implies the comparison result.

First different bit detection. Lu et.al [40] introduce a trans-
formation φ : (Z2)

n 7→ (Zp)
n which can transfer any non-all-

zero binary list {mi}i∈[n] to an arithmetic list {si}i∈[n] ∈ (Zp)
n

while {si}i∈[n] ∈ (Zp)
n holds that:

8

Fozc interacts with the parties P and the adversary S .

Input:

• Upon receiving (Input,sid,I ,X) from P0 ∈ P , record
(I ,X) and send (Input,sid,P0) to S , where

– X := {x0, · · · ,xn−1} ∈ (Zp)
n;

– I ∈ (Zn)
k;

• Upon receiving (Input,sid,Y) from P1 ∈ P , record Y
and send (Input,sid,P1) to S , where .

– Y = {y0, · · · ,yn−1} ∈ (Zp)
n;

Execution:

• If I ,X and Y are recorded, Fozc does:

– set z = 1 if ∃i ∈ I ,xi + yi = 0.

– set z = 0 otherwise.

• Send (Output,sid,z) to P1.

Functionality F k,n,p
ozc

Figure 8: The Ideal Functionality Fozc.

• contains a unique zero-value in the position ρ, and ρ cor-
responds to the first non-zero bit of binary list {mi}i∈[n],
namely, mi = 0 for i < ρ, meanwhile, mρ = 1;

• contains positive values in any other positions.

Utilizing φ, we view mi as the ith bitwise-XOR of a and b,
namely, mi = ai⊕ bi, setting list {mi} as the input of φ. As
mentioned, the position of zero value sρ corresponds to the
first different bit between a and b.
Transformation φ. Let {s′i}i∈[n] be the prefix sum of mi.

Specifically, s′i :=∑
j=i
j=0 m j for i∈ [n]. We define si = φ(mi) :=

s′i−2mi +1. Obviously, when i < ρ, it holds that mi = s′i = 0,
therefore, we have si = 1; when i= ρ, it holds that s′i =mi = 1,
therefore, si = 0; when i > ρ, it holds that s′i ≥ mi +1, there-
fore, si ≥ 2−mi ≥ 1. In general, si = 0 if and only if i = ρ.
Given a toy example, a = 10010 and b = 10101, we have
m = a⊕b = 00111, and then s′ = 00123 and s = 11012.

In addition, we observe that si ≤ n (The maximum si takes
n when s′n−1 = n−1 and mi = 0). Above φ only contains linear
operations that can be easily performed on the MPC setting.
However, considering that wrapping around the modular will
cause an extra 0, φ should be performed on Zp where p > n
(such that si≤ n will never wrap around), w.r.t. [mi]

p instead of
[mi]

2. As Bertrand’s postulate [41], at least one prime number
p lays on [n,2n−2] and its size can be taken as ⌈logn⌉+1 >
⌈log(2n−2)⌉. For the share conversion part of [mi]

2 ∈ Z2 to
[mi]

p ∈ Zp, we employ protocol Π
2→p
convert in § 3.

Now we have shared list {[si]
p}i∈[n], where the position ρ

of its zero element corresponds to the comparison result of a
and b, that is, aρ = 1{a > b}. The second challenge is how
P0 and P1 can obliviously obtain [aρ] from {[si]

p}i∈[n] and
a. To address this challenge, we introduce a new primitive –
Oblivious Selective Zero Check. (OZC).

Oblivious Selective Zero Check. The OZC scheme checks
if a shared list contains zero on a subsequence. We formalize
its functionality in Fig. 8. In particular, an OZC function-
ality F k,n,p

ozc allows P0 input k-dimension selective index set
I := {ζ0, . . . ,ζk−1}, P0 and P1 input n-dimension shared list
{[xi]}i∈[n]. For xi = [xi]0+[xi]1, it checks if {xζi}i∈[k] contains
zero and sends the check result to P1 (cf. Sec. 4.2).

Before going into the construction of OZC, we present a
high-level overview of how we realize the secure comparison
protocol on top of OZC and φ. Without considering security,
We let P0 toss a coin ∆ ∈ {0,1} and input all the position
{ζi}i∈[k], where aζi = ∆, as the indices of Fozc (where a is
input of P0 and k is the number of bits in a equal to ∆). P0
and P1 input aforemationed {[si]

p}i∈[n], the result of φ, as the
shared list of Fozc. The result z ∈ {0,1} which is given to P1
means that:

• For the case z = 0, it indicates that all the bits of aζi = ∆

do not lay on the position ρ for sρ = 0, which implies
aρ = ∆⊕1.

• For the case z = 1, the positions {ζi}i∈[k], in which aζi =
∆, contain ρ. Such case indicates aρ = ∆.

Obviously, it holds that aρ = ∆⊕ z⊕1. We let P0 output the
result [c]0 = ∆ and P1 output [c]1 = z⊕1.
Appending dummy queries. The number of queries k will
leak the hamming weight of a to P1. To avoid this leakage, we
introduce dummy queries which pad the overall queries to the
maximum possible number of queries. Firstly, we let P0 and
P1 generate non-zero share [sn]

p. We let P0 perform extra n−k
queries using index n. Namely, for i ∈ {k, . . . ,n−1}, P0 sets
ζi = n and all parties invoke Fozc with n dimention indices
and (n+1) dimension shared list {[si]

p}i∈[n+1]. Consequently,
the overall queries are n.

Protocol description. As depicted in Figure 9, our full proto-
col works as follows.

• At step 1, P0 and P1 invoke Π
p
convert(ai,bi) for each bit ai

and bi, receiving [mi]0 and [mi]1 respectively, such that
[mi]0 +[mi]1 = ai⊕bi.

• At step 2, P0 and P1 append 0 to a and 1 to b for dealing
with a = b.

• At step 3, P0 and P1 compute [si]0 = ∑
i
j=0 x j− 2xi + 1

and [si]1 = ∑
i
j=0 y j−2yi +1, respectively. It holds that

sρ = 0, where ρ denotes the position of the first differing
bit between a and b.

9

Input : P0 inputs a ∈ Z2n ; P1 inputs b ∈ Z2n .
Output : P0 receives [c]20 ∈ Z2; P1 receives [c]21 ∈ Z2;
it holds that [c]20⊕ [c]21 = 1{a < b}.

Protocol:

• Let p ∈ [n,2n−2] be a prime, for i ∈ [n], P0 and P1
invoke [mi]←Π

p
convert(ai,bi).

• P0 sets an = [mn]0 = 0; P1 sets bn = [mn]1 = 1;

• For i ∈ [n+1], P0 computes
[si]0 = ∑

i
j=0[m j]0−2 · [mi]0 +1, and P1 computes

[si]1 = ∑
i
j=0[m j]1−2 · [mi]1 +1;

• P0 and P1 sets [sn+1]0 = [sn+1]1 = 1;

• P0 picks ∆←{0,1};

• P0 sets I := {ζ j} j∈Zk = {i|ai = ∆, i ∈ Zn+1}, where
we assume the size of I is k;

• For j ∈ {k, . . . ,n}, P0 appends ζ j = n+1 to get
n+1-dimension vector I ′;

• P0 inputs index list I and {[si]0}i∈[n+2] to F n+1,n+2,p
ozc ,

P1 inputs {[si]1}i∈[n+2] to F n+1,n+2,p
ozc and receives

z ∈ {0,1};

• P1 sets [c]21 = z⊕1.

• P0 set [c]20 = ∆.

Protocol Πn
cmp(a,b)

Figure 9: The Comparison Protocol

i. Secure
Evaluation

Select

ii. Output

ii. Output

Figure 10: The Overview of Secure Comparison

• At step 4, P0 and P1 sets [sn+1]0 = [sn+1]1 = 1 for dummy
queries.

• At steps 5-6, P0 picks random ∆, records all indices i
where ai = ∆, and denotes the set of these indices as
I . We assume the size of the set I is k, namely, I =
{ζ j} j∈Zk .

• At step 7, to prevent the leakage of the hamming weight
of a, P0 pads the size of I to n+1. Therefore, P0 appends
ζ j = n+1 for j ∈ n+1.

• At step 8, P0 and P1 invoke F n+1,n+2,p
ozc . Specifi-

cally, P0 inputs the index list I = {ζ j} j∈[n+1] and the
shared list {[si]0}i∈[n+1], and P1 inputs the shared list
{[si]0}i∈[n+2]. At the end of protocol, P1 receives z =

1
{

0 ∈ {sζ0 , . . . ,sζk−1
}
}

.

• At steps 9-10, P1 outputs [c]1 = z⊕ 1 and P0 outputs
[c]0 = ∆.

Efficiency. Our secure comparison protocol Πn
cmp requires to

perform n times invoking of Π
2→p
convert and one times of Fozc[n+

1,n+2, p]. The communication cost of Fozc[n+1,n+2, p], as
we instantiate its protocol in the next section, requires 2-round
(2n+3)⌈log p⌉= (2n+3)(logn+1) bits communication in
the online phase, and n log2 n+2n logn+2nλ log2n bits com-
munication in the offline phase. As mentioned before, n times
Π

2→p
convert requires one-round 2n bits communication in the on-

line phase and 2λ(logn+1) bits communication in the offline
phase. In summary, our secure comparison protocol Πn

cmp re-
quires 3-round communication of 4n+3+(2n+3) logn bits
in the online phase and λ(logn+ 1) + n log2 n+ 2n logn+
2nλ log2n≈ n log2 n+2nλ log2n bits communication in the
offline phase.
Security. We define the functionality Fcmp depicted in Fig. 11.
It is an instance of F2PC where Fcmp receives (Input,sid,a)
from P0 and (Input,sid,b) from P1, picks random value
[c]20 ← Z2, if P0 is corrupted, receives (Modify,sid, [c]20)
from A , calculates [c]21 = 1{a > b} ⊕ [c]20 and sends
(Output,sid, [c]20) to P0 and (Output,sid, [c]21) to P1. Next,
we prove our protocol Πcmp realizes functionality Fcmp. Sim-
ilar to equality testing, the offline computations are strictly
one-time use.

Theorem 2. The protocol Πcmp as depicted in Fig. 9 UC
realizes Fcmp in the (F(1,2)-OT,Fozc)-hybrid model against
semi-honest PPT adversaries with statical curroption.

Proof. cf. Appendix. C.2 for detail.

4.2 Construction of Fozc

We first provide a basic construction of the OZC protocol,
which requires heavy communication in the online phase.
After that, we optimize the communication of the online phase
by introducing the permutation tuples, which can be generated
in the offline phase.

10

F n
cmp interacts with P0, P1 and the adversary S . Let

cmp denote the comparison function.

Input:

• Upon receiving (Input,sid,a) from P0, record a and
send (Input,sid,P0) to S , where a ∈ {0,1}n.

• Upon receiving (Input,sid,b) from P1, record b and
send (Input,sid,P1) to S , where b ∈ {0,1}n.

Execution:

• If both a,b are recorded, pick [c]20← Z2;

• If P0 is corrupted, receive (Modify,sid, [c]20) from S ;

• Calculate [c]21 = 1{a > b}⊕ [c]20;

• Send (Output,sid, [c]20) to P0 and (Output,sid, [c]21)
to P1.

Functionality F n
cmp

Figure 11: The Ideal Functionality Fcmp.

The Basic Approach. Recall that the functionality Fozc

receives a list X := {x0, . . . ,xn−1} and a index list I :=
{ζ0, . . . ,ζk−1} from P0, while receives Y := {y0, . . . ,yn−1}
from P1. Fozc then sets a bit z = 1 if there exists ζi ∈ I such
that xζi + yζi = 0 and z = 0 otherwise. After that, Fozc sends
z to P1. Without considering security, we let P0 directly fetch
yζi from P1 using (1,n)-OT, and check if xζi + yζi equals to 0
for all ζi ∈ I . However, some challenges remain:

• The zero checking task should be performed by P1 rather
than P0 (according to Fozc);

• The plaintext value of xζi + yζi should not be leaked to
any party.

To address the first challenge, we let P0 and P1 generate the
share of di = xζi + yζi rather than plaintext di held by P0, and
open di to P1. In particular, for each index ζi held by P0 , P1
inputs {y0+ri, . . . ,yn−1+ri} to (1,n)-OT instead of Y , where
ri is a fresh random coin. P0 sets [di]0 = xζi + yζi + ri and P1
sets [di]1 =−ri. Depending on who receives the output of the
zero-checking task, we open di to the corresponding party.

For the second challenge, to avoid of leaking xζi + yζi to
P1, we introduce a non-zero scaler βi for each xζi +yζi , ζi ∈ I.
In short, we turn to use di = βi · (xζi + yζi) rather than di =
xζi + yζi . It is easy to see that if xζi + yζi ̸= 0 than di is a
random value; while, if xζi + yζi = 0 then di = 0. To avoid
potential errors (di = 0 yet xζi + yζi ̸= 0) caused by wrapping
around, we take p as prime and βi ∈ Z∗p. The share [di] can be
calculated by [di] = βi · (xζi + yζi + ri)− [βi · ri]. In the actual
protocol, we let P0 calculate xζi + yζi + ri as before and pick
βi← Z∗p. For the share [βi · ri], we adopt the Oblivious Linear
Evaluation (OLE) Fole in which P0 inputs βi, P1 inputs ri,

and each parties receives the corresponding share of [βi · ri] as
outputs. Subsequently, P0 sets [di]0 = βi ·(xζi +yζi +ri)− [βi ·
ri]0, while P1 sets [di]1 =−[βi · ri]1. After opening each di for
i ∈ [k] to P1, P1 can detect whether there exists xζi + yζi = 0
through zero checking for each di. The formal description of
our basic approach is shown in Fig. 16 (cf. Appendix. A.2).

Input : Index list I := {ζi}i∈[k] input by P0 which con-
tains k− t non-repeating items, and last t indices equal
to n; list X := {xi}i∈[n] input by P0; list Y := {yi}i∈[n]
input by P1;
Output : P1 receives z = 1 if exists ζi ∈ I such that
xζi + yζi = 0, otherwise, P1 receives z = 0.

Offline:

• P0 and P1 invoke:

– (βi,ri,ui,vi)← F p
ole, for i ∈ [n].

– ({β j} j∈[k−1],r,{u j} j∈[k−1],{v j} j∈[k−1])← F k−1,p
vole

• P1 concatenates {β j} j∈[k−1],r,{u j} j∈[k−1],{v j} j∈[k−1]
with βi,ri,ui,vi where copy k−2 copies of r as
alignment;

• P0 picks random permutation π : Sn+k−1 7→ Sn+k−1;

• P0 and P1 invoke F n+k−1,p
permute :

– P0 inputs the permutation π, and P1 inputs the list
{vi}i∈[n+k−1].

– P0 receives the sharing list {[vπ(i)]0}i∈[n+k−1] and
P1 receives {[vπ(i)]1}i∈[n+k−1], respectively.

• P0 sets [wi]0 = [vi]0 +uπ(i); P1 sets [wi]1 = [vi]1

Online:

• P1 sets y′i = yi + ri for i ∈ [n] and sends the set
Y ′ = {y′0, · · · ,y′n−1} to P0;

• P0 sets

– [di]0 = βζi · (xζi + y′
ζi
)− [wπ−(ζi)]0 for i ∈ [k− t];

– si = π−(ζi) for i ∈ [k− t];

– [di]0 = βn+i−k · (xn + y′n)− [wπ−(n+i−k)]0 for
i ∈ [k− t,k];

– si = π−(n+ i− k) for i ∈ [k− t,k];

• P0 sends {[di]0}i∈[k] and {si}i∈[k] to P1.

• P1 calculates di = [di]0− [wsi]1 for i ∈ [k− t].

• P1 outputs z = 1{0 ∈ {d0, · · · ,dk−1}}.

Protocol Π
k,n,p
ozc (I ,X ,Y)

Figure 12: The Oblivious Selective Multiplication Protocol

11

Online Phase Communication Optimization. For k indices,
the above basic approach requires invoking k times 1-out-
of-n OT in the online phase, which causes a huge commu-
nication cost. We optimize the online phase communication
through the oblivious permutation. Revisit the above basic
approach, we observe that if the mask value r is independent
and different for each item rather than single r, namely, P1
input {y0 + r0, . . . ,yn−1 + rn−1}, such a vector can be sent
to P0 directly. Using I := {ζ0, . . . ,ζk−1}, P0 can calculate
βζi(xζi + yζi + rζi), where βζi is a fresh random coin. Notice
that in the basic approach, each item corresponds to the same
ri, hence P1 only requires input ri to evaluate deterministic
OLE βi · ri; Nevertheless, in the optimized approach, ζi of
βζi · rζi is unknown to P1, resulting in the challenge in elimi-
nating βζi · rζi .

We tackle this challenge by introducing permutation tuples.
More sepcifically, we can generate a list of [βi · ri] where
P0 holds βi, P1 holds ri, and the shared product [βi · ri] is
randomly permuted with π, namely [wπ(i)] = [βi · ri]. Letting
P0 be aware of π, P0 can notify P1 the shared product [wπ(ζi)] =
[βζi ·rζi] with the corresponding permuted index π(ζi) without
revealing ζi. Utilizing π(ζi), both parties evaluate βζi(xζi +
yζi + rζi)− [βζi · rζi] and reveal it to P1 for zero checking.

Formally, we define the permutation tuple as
({βi,ri, [wi]0, [wi]1}i∈[n],π). In detail,

• π is a random permutation held by P0 (we use π(i) to
denote the permuted result of i);

• βi · ri = [wπ(i)]0 + [wπ(i)]1 are the permuted OLE tu-
ples, where P0 holds ({βi, [wi]0}i∈[n]) and P1 holds
({ri, [wi]1}i∈[n]).

Considering di = βζi(xζi + yζi + rζi)− βζi · rζi , we replace
βζi · rζi with [wπ(ζi)]0 +[wπ(ζi)]1. Namely, di = βζi(xζi + yζi +
rζi)− [wπ(ζi)]0− [wπ(ζi)]1. Since P0 is aware of ζi, we let P0
calculate [di]0 = βζi(xζi + yζi + rζi)− [wπ(ζi)]0 and send both
[di]0 and π(ζi) to P1. π(ζi) can be revealed to P1 directly with-
out leaking ζi, due to the fact that the random permutation π

is unknown to P1. Subsequently, P1 selects [di]1 =−[wπ(ζi)]1
and reconstructs di = [di]0 +[di]1.
Dealing with dummy queries. The foregoing version of the
protocol cannot deal with the duplicated indices. Because
the same index ζi will obtain the same permuted index π(ζi)
which can not be directly revealed to P1, leading to an incom-
patible with the original dummy queries approach. Consider-
ing that the dummy queries return the dummy item appended
in the tail, we generate k−1 duplications (k is the max num-
ber of queries) of the mask r corresponding to the dummy
item and produce the permutation tuple using the duplica-
tions. Since different βζi correlates to the same r, we utilize
the VOLE permutation tuple ({βi, [wi]0, [wi]1}i∈[k−1],r) for
dummy queries. In detail,

• βi · r = [wπ(i)]0 +[wπ(i)]1 are the permuted VOLE tuples;

• P0 holds (βi, [wi]0) and P1 holds (r, [wi]1).

The VOLE tuple is concatenated with the original OLE
tuples and the π : Zn+k−1

p 7→ Zn+k−1
p is performed on the

concatenated tuples; namely, ({βi,ri, [wi]0, [wi]1}i∈[n+k−1],π)
where rn = rn+1 . . . = rn+k corresponds to the r of VOLE
tuple. In particular, assume the last t items of I are du-
plicated indices (as the dummy queries) and their values
equal to rn, i.e. ζi = n for i ∈ [k − t,k]. P0 sets [di]0 =
βn+i−k+t · (xn + yn + rn)− [wπ(n+i−k+t)]0 and sends [di]0 and
π(n + i− k + t) to P1. Clearly, it holds that wπ(n+i−k+t) =
βn+i−k+t · rn+i−k+t = βn+i−k+t · rn so that the reveal value di
equals to βn+i−k+t ·(xn+yn), since rn = rn+1 . . .= rn+k. Note
that though dummy queries utilize the same item xn +yn + rn,
and different βn+i−k+t can ensure each reveal value di =
βn+i−k+t · (xn + yn) is individual.
Offline tuples generation. We generate the offline truples with
three primitives: Fole,Fvole,Fpermute. We let Fole and Fvole gen-
erate the OLE tuples and VOLE tuples for dummy queries,
denote them as {βi,ri,ui,vi} where βi · ri = ui + vi. We let
P0 input random permutation π and P1 input list {vi}i∈[n] to
functionality Fpermute. After that P0 and P1 receive [vπ(i)]
and calculate [wi] = [vπ(i)] + uπ(i). Now we have βi · ri =
[wπ−(i)]0 +[wπ−(i)]1 for i ∈ [n], while π− denote the inverse
of π. In our benchmark, we use the SOTA protocol to real-
ize Fole [36],Fvole [48],Fpermute [16]. Our complete protocol
design is illustrated in Figure. 12.

Efficiency. Our oblivious selective zero checking protocol
Π

k,n,p
ozc requires 2-round communication of (k+n) ·⌈log p⌉ bits

in the online phase. In the offline phase, it requires n times
invoking of Π

p
ole (the instance of F p

ole [36], n times invoking
require n log2 p bits communicaiton), one time invoking of
Π

k−1,p
vole (the instance of F k−1,p

vole [48], it requires 2(k−1) log p
bits communicaiton) and one time invoking of Π

n+k−1,p
permute (the

instance of F n+k−1,p
permute [16] requires (k+n−1)λ log(k+n−1)

bits communication). In summary, our oblivious selective zero
checking protocol Π

k,n,p
ozc requires n log2 p+ 2(k− 1) log p+

(k + n− 1)λ log(k + n− 1) bits communication in the of-
fline phase. For the invoking of Π

n+1,n+2,p
ozc in aforementioned

comparison, its offline communicaiton cost approximate to
n log2 n+2n logn+2nλ log2n.

Theorem 3. The protocol Πozc as depicted in Fig. 12 UC re-
alizes Fozc in the (Fole,Fvole,Fpermute)-hybrid model against
semi-honest PPT adversaries who can statically corrupt up
to one party.

Proof. cf. Appendix. C.3 for detail.

5 Performance Evalutaion

In this section, we respectively implement our equality test
(Section 3) and secure comparison (Section 4), and com-

12

(a) LAN (b) MAN (c) WAN

Figure 13: The running time in the online phase of equality testing protocol Πeq2 compare with ABY [20], GC scheme
implemented in EMP-toolkits [52] and DPF [27] in LAN/MAN/WAN setting. All benchmarks take the data length n = 64.

(a) LAN (b) MAN (c) WAN

Figure 14: The running time in the online phase of Πcmp compare with ABY [20], GC implemented in EMP [52], DCF [27]
SIGMA [28] and CrypFlow2 [47] in LAN/MAN/WAN setting; take the data length n = 64; CF2 refers to CrypTFlow2.

pare their performance with the CrypTFlow2 [47], ABY [20],
GC [3], FSS [27].

5.1 Experiment Setting

We implement our protocols in C++. For the FOT, we utilize
the OT library – libOTe [4]. For 2PC FSS, there are two pri-
mary approaches for offline implementations: (1) a variant of
the secure DPF generation protocol proposed by Doerner and
Shelat [21] (Figure 7), which was later extended to DCF by
Elette Boyle et al. [12](Appendix A.1); and (2) generic two-
party computation methods that implement the PRG using
AES or specially designed "MPC-friendly" ciphers. We follow
the first approach, which migrates the PRG to a local compu-
tation scheme. We update our code on the anonymous GitHub
repository [1]. A key advantage of this method is that it allows
MPC to perform only linear computations, without requiring
the execution of the PRG within the MPC framework. For
the garbled circuit, we utilize EMP-toolkits [3], which is in-
tegrated half-gate [55]. The source code of our protocol can
be obtained from the anonymous GitHub repository [5]. For
ABY and CrypTFlow, we utilize their open-source code [2].
Our experiments are performed in a local area network, using
traffic control in Linux to simulate three network settings:

(1) local-area settings (LAN): 20Gbps bandwidth with 0.01
ms round-trip latency (RTT). (2) metropolitan-area setting
(MAN): 400 Mbps bandwidth with 20 ms round-trip. (3)
wide-area setting (WAN): 10Mbps bandwidth with 100 ms
round-trip. Our benchmark setting is deployed on the server
running Ubuntu 18.04.2 LTS with Intel(R) Xeon(R) Silver
4214 CPU @ 2.20GHz, 48 CPUs, 128 GB Memory. In our
benchmark, we set the security parameter λ = 128. We select
the most commonly used constant-round protocols based on
different techniques as our baseline. ABY [20] is based on
binary circuits; emp-tool [52] is based on the garbled circuit;
SIGMA [28] and DCF [10] are based on FSS and CrypT-
Flow2 [47] is the typical secret-share-based constant round
secure comparison. Since SIGMA’s offline phase requires the
participation of an additional server, we only compare our
online phase with SIGMA’s.

5.2 Experiment Evaluation

In this section, we evaluate the performance of our equality
test and secure comparison.
Equality testing. The equality testing running time of the
online phase (for n = 64) is depicted in Fig. 13. In Table 2,
we present the runtime under a LAN setting for different bit

13

Table 2: Running time of our protocols compared to baselines (given in ms) in the LAN setting.

Batch Size
Element Size 8 16 32 64

Online Offline Total Online Offline Total Online Offline Total Online Offline Total

100

Equality
Testing

ABY [20] 1.78 3.08 4.86 2.87 4.20 7.07 4.58 9.91 14.50 10.12 16.82 26.94
EMP [52] 0.85 0 0.85 1 0 1 1.38 0 1.38 2.21 0 2.21
FSS [10] 0.70 1028.96 1029.66 0.70 3095.14 3095.84 0.84 - - 1.49 - -

Ours 0.35 3.85 4.20 0.43 6.90 7.33 0.48 11.11 11.59 0.51 17.50 18.01

Secure
Comparison

ABY [20] 2.14 3.21 5.35 3.55 5.67 9.22 6.31 10.34 16.65 9.23 16.52 25.75
EMP [52] 1.02 0 1.02 1.17 0 1.17 1.58 0 1.58 2.39 0 2.39
FSS [10] 0.57 1346.74 1347.31 0.84 4593.09 4593.93 1.14 - - 1.32 - -

SIGMA [28] 1.92 - - 2.55 - - 4.41 - - 4.59 - -
Ours 0.51 35.84 36.35 0.58 53.51 54.09 0.56 108.26 108.82 0.69 338.19 338.88

1000

Equality
Testing

ABY [20] 12.99 19.98 32.97 18.56 35.03 53.39 25.80 64.03 89.83 56.62 109.21 165.83
EMP [52] 3.23 0 3.23 5.22 0 5.22 12.10 0 12.10 15.56 0 15.56
FSS [10] 1.81 10344.30 10346.11 3.20 31406.90 31410.10 5.36 - - 10.14 - -

Ours 0.49 22.11 22.60 0.59 35.52 36.11 0.83 65.91 66.74 1.21 138.28 139.49

Secure
Comparison

ABY [20] 12.11 21.33 33.44 20.66 38.77 59.43 32.29 60.68 92.97 62.78 112.51 175.29
EMP [52] 4.01 0 4.01 6.40 0 6.40 10.24 0 10.24 18.18 0 18.18
FSS [10] 2.85 13495.70 13498.55 3.02 46101.70 46104.72 5.20 - - 10.01 - -

SIGMA [28] 6.84 - - 9.46 - - 11.53 - - 13.11 - -
Ours 0.71 116.09 116.80 0.87 266.45 267.32 1.66 701.29 702.95 2.88 2255.94 2258.82

10000

Equality
Testing

ABY [20] 74.96 135.39 210.35 173.26 249.03 422.29 295.78 399.57 695.35 601.67 667.26 1265.93
EMP [52] 21.92 0 21.92 34.11 0 34.11 67.09 0 67.09 112.38 0 112.38
FSS [10] 14.33 99811.90 99826.23 27.22 316994 317021.22 61.55 - - 94.26 - -

Ours 1.63 151.93 153.56 2.23 279.61 281.84 3.76 511.50 515.26 11.12 942.93 954.05

Secure
Comparison

ABY [20] 88.74 148.40 237.14 181.22 255.58 436.80 289.43 360.90 650.33 624.11 722.94 1347.05
EMP [52] 29.98 0 29.98 45.01 0 45.01 73.10 0 73.10 121.83 0 121.83
FSS [10] 11.86 132826 132837.86 22.80 463840 463862.80 45.53 - - 112.77 - -

SIGMA [28] 19.79 - - 29.50 - - 81.71 - - 92.54 - -
Ours 3.34 678.52 681.86 6.79 1768.91 1775.70 11.28 5812.32 5823.60 13.06 20969.40 20982.46

lengths and batch sizes. In Appendix B, we provide the cor-
responding runtime under other network settings. Compared
with other equality testing implementations, our protocol real-
izes multiple performance improvements for the online phase.
The communication cost of our protocol is close to FSS [27],
while the computation cost of our protocol is more subtle than
FSS, leading to a significant performance superiority in LAN
and MAN settings. In general, considering appropriate data
size, the online phase running time of our equality-testing is
(i) over 2× of the garbled circuit, over 7× of the FSS, and
over 40× of ABY in the LAN setting; (ii) over 9× of the
FSS, over 15× of garble circuit and over 50× of ABY in both
MAN and WAN settings. Fig. 17(a) (also, Table 2) depicts
the offline running time compared to FSS (with the corre-
lated keys generation) and ABY. Since the offline phase of
FSS is almost unable to halt for bit sizes above 32, we com-
pared the performance for bit sizes below 16. Our protocol’s
offline phase is several orders of magnitude faster than FSS.
Although the offline phase of our protocol is slower than other
protocols apart from FSS, it achieves significant gains in the
online phase.

Secure comparison. Fig. 14 depicts the online phase running
time of secure comparison compared to ABY [20], GC [52],
DCF [27], SIGMA [28] and CryptFlow2 [47]. Table 2 also
presents the runtime for different bit lengths and batch sizes.
In most cases, our protocol outperforms other protocols in
the online phase. In particular, the efficiency of our protocol
is (i) over 3× of the FSS/CrypTflow2/GC, and over 20× of
the ABY in the LAN setting; (ii) over 3× of the FSS, over
6× of GC/CrypTflow2 and over 15× of ABY in WAN set-
tings. When the network is worse and the data volume is
large enough, our protocol efficiency will be slightly lower
than FSS (WAN setting and > 105 number of comparisons).
Fig. 17(b) depicts the offline running time. The offline phase

performance of our protocol is 1000× of FSS. As a trade-off,
our offline phase is slower than ABY. The communication
cost in the online phase of our protocol is reduced by more
than 2× compared to the ABY and 10× compared to the EMP.
While SIGMA has fewer online communication rounds and a
lower communication volume compared to our protocol, its
computational workload is significantly higher. Under favor-
able network conditions—such as LAN or MAN—and with
larger data sizes, our protocol outperforms SIGMA. However,
in worse network conditions, SIGMA demonstrates better
performance. Nevertheless, SIGMA’s offline phase requires
three parties, meaning it is not a true 2-PC solution.

For more benchmarks, we refer readers to Appendix. B.

6 Conclusion

We propose constant-round equality testing and secure com-
parison protocols, where each of our protocols enjoys a low
communication round and volume in the online phase. Our
benchmarks show that the performance of our protocols is
several times better than that of SOTA, both in the equality
testing and secure comparison.

Acknowledges

This work was supported in part by the National Natu-
ral Science Foundation of China (62072401, 62232002,
U21A20464, U23A20306, U23A20307, 62261160651,
U2436206,62406239), in part by the National Key Research
and Development Program of China (2023YFE0111100), in
part by Input Output (iohk.io), in part by Ant Group, and in
part by Cybersecurity College Student Innovation Funding,
in part by China Postdoctoral Science Foundation (No.

14

2023M742739), in part by the Fundamental Research Funds
for the Central Universities (Program No.QTZX24081).

Ethical Implications

The proposed equality testing and secure comparison pro-
tocol adheres to ethical standards by ensuring the privacy
of input values, as no sensitive data is disclosed during the
process. While the protocol enhances privacy and security in
data comparisons, we acknowledge the potential for misuse in
unethical contexts and recommend its use in secure, regulated
environments. Overall, this work contributes to improving
privacy-preserving cryptographic protocols, supporting ethi-
cal data handling and secure communications.

Compliance with Open Since Policy

According to the open science policy, all experiments were
conducted using synthetic, randomly generated data, avoiding
the use of any personal or private information. In addition, we
will make the source code for our equality testing and secure
protocols publicly available following the paper’s acceptance
and before the camera-ready submission deadline, promoting
transparency and supporting further research in this field.

References

[1] Correlated FSS keys generation. https://github.
com/Esion-lin/oram_pro.

[2] Cryptflow2-code. https://github.com/mpc-msri/
EzPC.

[3] Emp-toolkit. https://github.com/emp-toolkit.

[4] libote. https://github.com/osu-crypto/libOTe.

[5] Our code. https://zenodo.org/records/
14580231.

[6] Carsten Baum, Daniel Escudero, Alberto Pedrouzo-
Ulloa, Peter Scholl, and Juan Ramón Troncoso-Pastoriza.
Efficient protocols for oblivious linear function evalu-
ation from ring-lwe. Journal of Computer Security,
30(1):39–78, 2022.

[7] Donald Beaver. Efficient multiparty protocols using
circuit randomization. In CRYPTO, 1991.

[8] Donald Beaver. Precomputing oblivious transfer. In
Annual International Cryptology Conference, pages 97–
109. Springer, 1995.

[9] Ian F Blake and Vladimir Kolesnikov. Strong condi-
tional oblivious transfer and computing on intervals. In
International Conference on the Theory and Application

of Cryptology and Information Security, pages 515–529.
Springer, 2004.

[10] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya
Gupta, Yuval Ishai, Nishant Kumar, and Mayank Rathee.
Function secret sharing for mixed-mode and fixed-point
secure computation. In EUROCRYPT, 2021.

[11] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
Lisa Kohl, and Peter Scholl. Efficient pseudorandom
correlation generators: Silent ot extension and more. In
CRYPTO, 2019.

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing: Improvements and extensions. In CCS,
2016.

[13] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith
Suresh. Flash: Fast and robust framework for privacy-
preserving machine learning. In PoPETs, 2020.

[14] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings
42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE, 2001.

[15] Nishanth Chandran, Divya Gupta, and Akash Shah.
Circuit-psi with linear complexity via relaxed batch op-
prf. Proceedings on Privacy Enhancing Technologies,
2022.

[16] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya.
Secret-shared shuffle. In Advances in Cryptology–
ASIACRYPT 2020: 26th International Conference on
the Theory and Application of Cryptology and Informa-
tion Security, Daejeon, South Korea, December 7–11,
2020, Proceedings, Part III 26, pages 342–372. Springer,
2020.

[17] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and
Ajith Suresh. Astra: High throughput 3pc over rings
with application to secure prediction. In CCSW, 2019.

[18] Jung Hee Cheon, Dongwoo Kim, and Duhyeong
Kim. Efficient homomorphic comparison methods
with optimal complexity. In Advances in Cryptology–
ASIACRYPT 2020: 26th International Conference on the
Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7–11, 2020,
Proceedings, Part II 26, pages 221–256. Springer, 2020.

[19] Geoffroy Couteau. New protocols for secure equality
test and comparison. In International Conference on
Applied Cryptography and Network Security, pages 303–
320. Springer, 2018.

[20] Daniel Demmler, Thomas Schneider, and Michael
Zohner. Aby-a framework for efficient mixed-protocol
secure two-party computation. In NDSS, 2015.

15

https://github.com/Esion-lin/oram_pro
https://github.com/Esion-lin/oram_pro
https://github.com/mpc-msri/EzPC
https://github.com/mpc-msri/EzPC
https://github.com/emp-toolkit
https://github.com/osu-crypto/libOTe
https://zenodo.org/records/14580231
https://zenodo.org/records/14580231

[21] Jack Doerner and Abhi Shelat. Scaling oram for secure
computation. In CCS, 2017.

[22] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi,
Daniel Masny, and Daniel Wichs. Two-round oblivi-
ous transfer from cdh or lpn. In Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 768–797. Springer, 2020.

[23] Shimon Even, Oded Goldreich, and Abraham Lempel.
A randomized protocol for signing contracts. Communi-
cations of the ACM, 28(6):637–647, 1985.

[24] Philippe Fournier-Viger, Yanjun Yang, Peng Yang, Jerry
Chun-Wei Lin, and Unil Yun. Tke: Mining top-k fre-
quent episodes. In Trends in Artificial Intelligence
Theory and Applications. Artificial Intelligence Prac-
tices: 33rd International Conference on Industrial, En-
gineering and Other Applications of Applied Intelligent
Systems, IEA/AIE 2020, Kitakyushu, Japan, September
22-25, 2020, Proceedings 33, pages 832–845. Springer,
2020.

[25] Juan Garay, Berry Schoenmakers, and José Villegas.
Practical and secure solutions for integer comparison.
In Public Key Cryptography–PKC 2007: 10th Interna-
tional Conference on Practice and Theory in Public-Key
Cryptography Beijing, China, April 16-20, 2007. Pro-
ceedings 10, pages 330–342. Springer, 2007.

[26] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game. In STOC, 1987.

[27] Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang,
Xiang Xie, Jiang Zhang, and Zheli Liu. Half-tree: Halv-
ing the cost of tree expansion in cot and dpf. In EURO-
CRYPT, 2023.

[28] Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nis-
hanth Chandran, Divya Gupta, Ashish Panwar, and
Rahul Sharma. Sigma: Secure gpt inference with func-
tion secret sharing. Cryptology ePrint Archive, 2023.

[29] Manoj Kumar Gupta and Pravin Chandra. A compre-
hensive survey of data mining. International Journal of
Information Technology, 12(4):1243–1257, 2020.

[30] Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen jie
Lu, Cheng Hong, and Kui Ren. Ciphergpt: Secure two-
party gpt inference. Cryptology ePrint Archive, Paper
2023/1147, 2023.

[31] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jian-
sheng Ding. Cheetah: Lean and fast secure two-party
deep neural network inference. In 31st USENIX Secu-
rity Symposium (USENIX Security 22), pages 809–826,
2022.

[32] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending oblivious transfers efficiently. In Annual
International Cryptology Conference, pages 145–161.
Springer, 2003.

[33] Markus Jakobsson and Moti Yung. Proving with-
out knowing: On oblivious, agnostic and blindfolded
provers. In Annual International Cryptology Confer-
ence, pages 186–200. Springer, 1996.

[34] Neha Jawalkar, Kanav Gupta, Arkaprava Basu, Nishanth
Chandran, Divya Gupta, and Rahul Sharma. Orca: Fss-
based secure training and inference with gpus, 2024.

[35] Bo Jiang, Jian Du, and Qiang Yan. Anonpsi: An
anonymity assessment framework for psi. arXiv preprint
arXiv:2311.18118, 2023.

[36] Florian Kerschbaum, Erik-Oliver Blass, and Ra-
soul Akhavan Mahdavi. Faster secure comparisons with
offline phase for efficient private set intersection. In
NDSS, 2023.

[37] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and
Thomas Schneider. Improved garbled circuit building
blocks and applications to auctions and computing
minima. In Cryptology and Network Security: 8th
International Conference, CANS 2009, Kanazawa,
Japan, December 12-14, 2009. Proceedings 8, pages
1–20. Springer, 2009.

[38] Vladimir Kolesnikov and Thomas Schneider. Improved
garbled circuit: Free xor gates and applications. In
Automata, Languages and Programming: 35th Inter-
national Colloquium, ICALP 2008, Reykjavik, Iceland,
July 7-11, 2008, Proceedings, Part II 35, pages 486–498.
Springer, 2008.

[39] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious
neural network predictions via minionn transformations.
In CCS, 2017.

[40] Tianpei Lu, Bingsheng Zhang, Lichun Li, and Kui Ren.
Aegis: A lightning fast privacy-preserving machine
learning platform against malicious adversaries. Cryp-
tology ePrint Archive, Paper 2023/1890, 2023.

[41] Pieter Moree. Bertrand’s postulate for primes in arith-
metical progressions. Computers & Mathematics with
Applications, 26(5):35–43, 1993.

[42] Moni Naor and Benny Pinkas. Efficient oblivious trans-
fer protocols. In SODA, volume 1, pages 448–457, 2001.

[43] Dimitrios Papakyriakou and Ioannis S Barbounakis.
Data mining methods: a review. International Journal
of Computer Application, 183(48):5–19, 2022.

16

[44] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hos-
sein Yalame. Aby2. 0: Improved mixed-protocol secure
two-party computation. In 30th USENIX Security Sym-
posium (USENIX Security 21), pages 2165–2182, 2021.

[45] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient circuit-
based psi with linear communication. In Advances in
Cryptology–EUROCRYPT 2019: 38th Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May
19–23, 2019, Proceedings, Part III 38, pages 122–153.
Springer, 2019.

[46] Srinivasan Raghuraman and Peter Rindal. Blazing fast
psi from improved okvs and subfield vole. In Proceed-
ings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’22, page
2505–2517, New York, NY, USA, 2022. Association
for Computing Machinery.

[47] Deevashwer Rathee, Mayank Rathee, Nishant Kumar,
Nishanth Chandran, Divya Gupta, Aseem Rastogi, and
Rahul Sharma. Cryptflow2: Practical 2-party secure
inference. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
pages 325–342, 2020.

[48] Peter Rindal and Phillipp Schoppmann. Vole-psi: Fast
oprf and circuit-psi from vector-ole. In Advances
in Cryptology – EUROCRYPT 2021, pages 901–930,
Cham, 2021. Springer International Publishing.

[49] Mike Rosulek and Lawrence Roy. Three halves make
a whole? beating the half-gates lower bound for gar-
bled circuits. In Tal Malkin and Chris Peikert, editors,
CRYPTO, 2021.

[50] Abir Smiti. A critical overview of outlier detection
methods. Computer Science Review, 38:100306, 2020.

[51] Wen-Guey Tzeng. Efficient 1-out-n oblivious transfer
schemes. In Public Key Cryptography: 5th International
Workshop on Practice and Theory in Public Key Cryp-
tosystems, PKC 2002 Paris, France, February 12–14,
2002 Proceedings 5, pages 159–171. Springer, 2002.

[52] Xiao Wang, Alex J Malozemoff, and Jonathan Katz.
Emp-toolkit: Efficient multiparty computation toolkit,
2016.

[53] Andrew Chi-Chih Yao. How to generate and exchange
secrets extended abstract. In 27th FOCS, pages 162–167,
1986.

[54] Samee Zahur, Mike Rosulek, and David Evans. Two
halves make a whole. In EUROCRYPT, 2015.

[55] Samee Zahur, Mike Rosulek, and David Evans. Two
halves make a whole: Reducing data transfer in garbled
circuits using half gates. In Advances in Cryptology-
EUROCRYPT 2015: 34th Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceed-
ings, Part II 34, pages 220–250. Springer, 2015.

[56] Lijing Zhou, Ziyu Wang, Hongrui Cui, Qingrui Song,
and Yu Yu. Bicoptor: Two-round secure three-party non-
linear computation without preprocessing for privacy-
preserving machine learning. In S&P, 2023.

A Other building block

This section gives other building blocks such as the OLE and
the oblivious selective zero check.

A.1 OLE protocol

In the OLE, both parties have no input initially, and then P0
receives (a,c) and P1 receives (b,d) such that ab = c+ d.
The OLE can be implemented by invoking p times F(1

2)-OT
.

Specifically, P1 picks a ∈ Zp and
{

r j
}

j∈Zp
, while P1 picks

b ∈ Z∗p. Subsequently, For each invoking of F(1,2)-OT, P0

sets m0 = −r j and m1 = a · 2 j − r j, and as the sender in-
puts (m0,m1) to F(1,2)-OT; P1 as the receiver inputs the
chooes bit b j and receives output z j. Finally, P0 computes
c = ∑

p
j=1 r j, and P1 computes d = ∑

p
j=1 z j. Clearly, c+d =

∑
p
j=1 r j +∑

p
j=1 z j = ∑

p
j=1 a ·2b j = ab.

Input : P0 and P1 have no input.
Output : P0 receives a ∈ Zp and c ∈ Zp, while P1 re-
ceives b ∈ Zp and d ∈ Zp, where a ·b = c+d.

Protocol:

• P0 samples a ∈ Zp and
{

r j
}

j∈Zp
.

• P1 samples b ∈ Z∗p.

- For j ∈ Zp, P0 and P1 invoke F(1,2)-OT:

– P0 inputs m0 =−r j and m1 = a ·2 j− r j.

– P1 inputs the chooes bit b j and receives output
z j.

- P0 computes c = ∑
p
j=1 r j, P1 computes d = ∑

p
j=1 z j.

Protocol Π
p
ole

Figure 15: The Oblivious Linear Evaluation Triple Generation
Protocol

17

A.2 Oblivious Selective Zero Check with OLE
We describe the implementation of the oblivious short-list
zero check with OLE in Figure 16.

Input : Index list I := {ζi}i∈[k] input by P0 which con-
tains k− t non-repeating items, and last t indices equal
to n; list X := {xi}i∈[n] input by P0; list Y := {yi}i∈[n]
input by P1;
Output : P1 receives zi = (xζi + yζi) ·βζi for the random
value βζi which is unknown to P1.

Offline:

• P0 and P1 invoke n times {βi,ri, [ti]
p
0 , [ti]

p
1}←Πole,

where P0 holds {βi, [ti]
p
0}, P1 holds {ri, [ti]

p
1}.

Execution:

• For i ∈ [k]:

– P1 set y′j = y j + ri for j ∈ [n];

– P0 and P1 invoke F(1,n)-OT:

* P1 as a sender inputs a set
Y ′ =

{
y′0, · · · ,y′n−1

}
;

* P0 as a receiver inputs select index ζi and
receives y′

ζi
;

– P0 calculates [zi]0 = βi · (xζi + y′
ζi
)− [ti]

p
0 ;

– P1 sets [zi]1 =−[ti]p1 ;

– P0 and P1 reveal zζi to P1;

– P1 outputs c = 1{0 ∈ {z0, . . . ,zk−1}}.

Protocol Π
k,n,p
ozc (I ,X ,Y)

Figure 16: The Oblivious Selective Zero Check with OLE
Protocol.

B Other Benchmarks

In this section, we give more benchmarks. In Table 4, we
provide detailed performance reports of the SOTA, including
comparisons of different input lengths and batch sizes under
various network settings.
Offline Trade-off. Due to the extremely slow offline phase
of FSS, it is almost infeasible to halt at 32 bits, so we only
evaluated its offline phase at 16 bits. Figure 17 shows the
running time (for 16 bits) in the offline phase for the equality
testing and comparison protocol compared with ABY [20]
and DPF [27] in the LAN setting. The other detailed data
for offline is shown in Table 2 and Table 4. The running
time of our equality testing in the offline phase is entirely
superior to the DPF [27], with performance nearly identical to
ABY [20]. Similarly, our secure comparison protocol is also
based entirely on the DPF [27]. Although it is slower than

ABY [20], the offline performance loss is acceptable for the
overall protocol as it achieves a 10× improvement in running
time over ABY during the online phase.

(a) Equality testing. (b) Secure comparison.

Figure 17: The running time of offline phase on equality
testing protocol Πeq2 and secure comparison protocol Πcmp

compare with ABY [20] and DPF [27] in LAN setting.

Benchmarks of Different Input Lengths. Overall, as the
input lengths and batch size increase, the performance gains
of our protocol improve. As shown in Table 4, the online
phase of our protocol is 10× faster than ABY. We observe the
following conclusions: due to its fewer online communication
rounds, SIGMA outperforms our protocol in certain data sce-
narios under WAN and MAN settings. Our equality testing
protocol performs slightly better than ABY overall, and when
the input length is small, our comparison protocol’s total time
is close to that of ABY. Regardless of the input lengths and
batch size, the offline phase of our protocol is significantly
faster than that of FSS.
Communication Cost. Table 3 compares the communica-
tion costs with batch size 10000 of our protocols to those
of ABY [20], EMP [52], and DCF [10]. For equality testing,
it is evident that our protocol significantly outperforms the
others in the online phase across all input lengths and batch
sizes, demonstrating lower communication costs. This advan-
tage is especially noticeable as the batch size increases. For
comparison, our protocol demonstrates superior performance
in the online phase, particularly as the batch size increases.
Despite the offline performance being slower than ABY [20],
our approach achieves a better trade-off overall, especially in
large batch sizes where communication efficiency is critical.

C Proof of Security

C.1 Proof of Theorem. 1
Proof. To prove Theorem 1, we construct a PPT simulator S ,
such that no non-uniform PPT environment Z can distinguish
between the ideal world IdealFeq,S ,Z(1

λ) and the real world

Real
F(1,2)-OT,F(n−1,n)-OT

Πeq1 ,A ,Z (1λ). We consider the following cases:
Case 1: P0 is corrupted. We construct the simulator S which

internally runs A , simulates F(1,2)-OT and F(n−1,n)-OT , for-
wards messages to/from Z, and simulates the interface of the
honest party P1.

18

Table 3: Communication cost with batch size 10000 of our protocols compared to baselines in MB.

Protocol
Element Size 8 16 32 64

Online Offline Total Online Offline Total Online Offline Total Online Offline Total

Equality Testing

ABY [20] 3.67 3.36 7.03 7.34 7.02 14.36 14.68 14.34 29.03 29.39 29.00 58.38
EMP [52] 3.52 0 3.52 7.28 0 7.28 14.82 0 14.82 29.89 0 29.89
FSS [10] 0.15 46.14 46.22 0.31 87.19 87.27 0.61 - - 1.22 - -

Ours 0.04 2.34 2.38 0.06 4.04 4.10 0.10 7.15 7.25 0.17 13.07 13.23

Secure Comparison

ABY [20] 3.67 3.66 7.34 7.34 7.33 14.67 14.69 14.65 29.34 29.37 29.3 58.67
EMP [52] 3.52 0 3.52 7.29 0 7.29 14.82 0 14.82 29.89 0 29.89
FSS [10] 0.15 66.15 66.22 0.31 132.29 132.37 0.61 - - 1.22 - -

Ours 0.19 12.65 12.85 0.36 26.91 27.27 0.71 63.92 64.63 1.39 171.47 172.86

Table 4: Running time of our protocols compared to baselines (given in ms) in the WAN setting.

Batch Size
Element Size 8 16 32 64

Online Offline Total Online Offline Total Online Offline Total Online Offline Total

100

Equality
Testing

ABY [20] 405.0 207.2 612.2 408.8 213.0 621.9 416.2 625.7 1041 599.4 1046 1646
EMP [52] 630.4 0 630.4 633.1 0 633.1 835.5 0 835.5 1044 0 1044
FSS [10] 827.3 7.205e5 7.214e5 827.7 1.363e6 1.364e6 828.7 - - 830.2 - -

Ours 401.1 908.1 1309 401.1 912.4 1313 401.2 921.8 1323 401.2 1333 1735

Secure
Comparison

ABY [20] 405.3 207.8 613.2 409.4 213.9 623.3 417.4 625.6 1043.1 600.6 1046 1646
EMP [52] 630.4 0 630.4 633.2 0 633.2 835.6 0 835.6 1044 0 1044
FSS [10] 827.4 1.057e6 1.058e6 828.0 2.116e6 2.117e6 828.0 - - 830.7 - -

SIGMA [28] 205.7 - - 205.7 - - 213.0 - - 214.8 - -
Ours 401.2 2058 2459 401.3 2278 2679 401.6 2546 2948 402.3 2988 3390

1000

Equality
Testing

ABY [20] 613.1 1253 1866 636.5 1492 2129 837.5 2132 2969 1140 3170 4311
EMP [52] 1051 0 1051 1259 0 1259 1752 0 1752 2532 0 2532
FSS [10] 829.2 7.015e6 7.016e 834.9 1.342e7 1.342e7 841.9 - - 845.1 - -

Ours 401.3 1542 1943 401.9 1743 2145 402.9 2025 2428 404.7 2704 3109

Secure
Comparison

ABY [20] 441.0 1445 1886 642.1 1499 2141 839.7 2133 2973 1147 3198 4345
EMP [52] 1052 0 1052 1260 0 1260 1753 0 1753 2532 0 2532
FSS [10] 829.0 9.975e6 9.976e6 834.0 2.114e7 2.114e7 838.7 - - 845.0 - -

SIGMA [28] 207.4 - - 207.1 - - 219.2 - - 224.9 - -
Ours 403.0 3175 3578 405.0 3816 4221 409.1 4914 5323 417.2 8460 8877

10000

Equality
Testing

ABY [20] 1495 3425 4920 1631 5160 6791 2273 7015 9289 3731 9402 1.313e4
EMP [52] 2641 0 2641 3887 0 3887 4580 0 4580 6364 0 6364
FSS [10] 850.8 7.009e7 7.009e7 858.9 1.337e8 1.337e8 881.708 - - 925.564 - -

Ours 406.1 2997 3403 410.5 3729 4140 416.1 4425 4841 435.2 5693 6128

Secure
Comparison

ABY [20] 1368 3633 5001 1649 5212 6861 2210 7133 9343 4305 9478 1.378e4
EMP [52] 2645 0 2645 3889 0 3889 4543 0 4543 6350 0 6350
FSS [10] 846.2 1.019e8 1.019e8 857.5 2.109e8 2.109e8 878.6 - - 921.5 - -

SIGMA [28] 226.9 - - 241.1 - - 284.0 - - 549.0 - -
Ours 422.8 5521 5943 441.8 8984 9426 480.0 1.831e4 1.879e4 729.1 4.633e4 4.706e4

Upon receiving (Input,sid,P1) from Feq, S does as follows.

• For the simulation of the ith times of Π
2→p
convert, where

i ∈ [n],

– When corrupted P0 inputs (m0,i,m1,i) to F(1,2)-OT,
S records (m0,i,m1,i).

– S computes [si]
p
0 and [ti]

p
0 with m0,i,m1,i.

– S picks [wi]
2
1 ∈ {0,1} and acts as P1 to send it to

P0.

– Upon receiving [wi]
2
0 from P0, S computes wi =

[wi]
2
0⊕ [wi]

2
1 and s′i = wi +[ti]

p
0 −2wi[ti]

p
0 .

• S computes d0 = ∑
n−1
i=0 s

′
i.

• For the simulation of Πeq1 ,

– When P1 invokes F(2n−1,2n)-ROT, S selects mi ∈
{0,1}2n for i ∈ [2n − 1] and computes vi =⊕2n−2

j=0 m(i, j). Upon receiving (Output,sid, [e]0) from
Feq, if each bit of vi is equal, S samples m2n−1 such
that each bit of it is not all equal to vi⊕ [e]0⊕1. Then,
S emulates F(2n−1,2n)-ROT and forwards mi for i∈ [2n]
to P0. Note that 2log p = 2logn+1 = 2n.

– S generates the binary matrix M by using the
{mi}i∈[2n] as the binary column vectors, and perform
a right circular shift on the ith row of M by an offset
of i locally for i ∈ [2n].

– S computes [ti]0 =
⊕2n−1

j=0 m(i, j) to generate T⃗0 and
computes ui =

⊕2n−1
j=0 m(j,i) to generate U⃗ .

– Upon receiving S⃗′ from P0, S computes T⃗ ′ = S⃗′⊕U⃗
to extract ε0, where only the εth0 element of T⃗ ′ is equal
to 1.

– S picks a random index ρ satisfying [tρ]0 = [e]0.

– S computes w1 = ρ− (ε0 +d0) and acts as P1 to send
it to P0.

Indistinguishability. We show that the incoming message and
the output of P0 in the ideal world are indistinguishable from
the real world.

Claim 1. The ideal world IdealFeq,S ,Z(1
λ) and the real world

Real
F(1,2)-OT,F(n−1,n)-OT

Πeq1 ,A ,Z (1λ) are perfectly indistinguishable.

Proof. There are three parts of incoming mes-
sages that are different between IdealFeq,S ,Z(1

λ) and

Real
F(1,2)-OT,F(n−1,n)-OT

Πeq1 ,A ,Z (1λ).

19

• In the ideal world, [wi]
2
1 are calculated with dummy b′

rather than real b.

• The output of F(2n−1,2n)-ROT to P0 is indistinguishabe
between the ideal world and the real world.

• In the ideal world, w1 = ρ−(ε0+d0) rather than ε1+d1.

For the first part, due to randomly picked [ri]
2
1, [ri]

2
1⊕bi are

uniformly random whether bi is input by P1 in the real world
or picked random in the ideal world. For the third part, w1 =
ρ− (ε0 +d0) in the ideal world, where ρ is a random index.
In the real world, w1 = ε1 +d1, where ε1 is a random index.
Therefore, w1 is uniformly random in both the ideal world
and the real world.

Case 2: P1 is corrupted. We construct the simulator S which
internally runs A , simulates F(1,2)-OT and F(N−1,N)-OT , for-
wards messages to/from Z, and simulates the interface of the
honest party P0.

Upon receiving (Input,sid,P0) from Feq, S does as follows.

• For the simulation of the ith times of Π
2→p
convert, where

i ∈ [n],

– S picks random [ri]
2
0 ∈ {0,1} and [si]

p
0 ∈ Zp, and

emulates F(1,2)-OT with the inputs m0 = [si]
p
0− [ri]

2
0

and m1 = [si]
p
0 − (1− [ri]

2
0).

– When a corrupted P1 inputs [ri]1
2 to F(1,2)-OT, S

records [ri]1
2, sends [s]p1 = m[ri]

2
1

to P1, and denotes
−[s]p1 as [t]p1 .

– S picks [wi]
2
0 ∈ {0,1} and acts as P0 to send it to

P1.

– Upon receiving [wi]
2
1 from P1, S computes wi =

[wi]
2
0⊕ [wi]

2
1 and t ′i = [t]p1 −2wi[t]

p
1 .

• S calculate d1 = ∑
n−1
i=0 t

′
i .

• For the simulation of Πeq1 ,

– When P0 invokes F(2n−1,2n)-ROT, S selects ε1 and mi ∈
{0,1}2n for i ∈ [2n\{ε1}] and forwards them to P1.
Note that 2⌈log p⌉ = 2logn+1 = 2n.

– S generates the binary matrix M by using the set
{mi}i∈[2n]\ε1 as the binary column vectors, omitting
the ε1

th column. Then, for each i ∈ [2n], S performs a
right circular shift on the ith row by an offset of i.

– For i ∈ [2n], S computes the XOR of all elements in
the ith row and the (ε1 + i)th column of the binary
matrix M to generate wi.

– Upon receiving (Output, [e]1) from Feq, S samples
T⃗1 ∈ Z2n

2 such that each bit of it is not all equal to
[e]1⊕1, and then computes S⃗′ = T⃗1⊕W⃗ . S acts as P0
to send it to P1.

– S picks a random ρ satisfying [tρ]1 = [e]1.

– S computes w0 = ρ− (ε1 +d1) and acts as P0 to send
it to P1.

Indistinguishability. We show that the incoming message and
the output of P1 in the ideal world are indistinguishable from
the real world.

Claim 2. The ideal world IdealFeq,S ,Z(1
λ) and the real world

Real
F(1,2)-OT,F(n−1,n)-OT

Πeq1 ,A ,Z (1λ) are perfectly indistinguishable.

Proof. There are five parts of incoming messages
that are different between IdealFeq,S ,Z(1

λ) and

Real
F(1,2)-OT,F(n−1,n)-OT

Πeq1 ,A ,Z (1λ).

• [s]p1 are generated from the random [s]p0 , which is indis-
tinguishable between the ideal world and the real world.

• In the ideal world, [wi]
2
0 are calculated with dummy a′

rather than real a.

• The output of F(2n−1,2n)-ROT to P1 is indistinguishable
between the ideal world and the real world.

• In the ideal world, S⃗′ is a random vector rather than
T⃗ ′⊕U⃗ .

• In the ideal world, w0 = ρ−(ε1+d1) rather than ε0+d0.

For the second part, due to randomly picked [ri]
2
0, [ri]

2
0⊕ai

are uniformly random whether ai is input by P0 in the real
world or picked random in the ideal world. For the fourth part,
S⃗′ = T⃗ ′⊕ U⃗ in the real world, where the U⃗ is a uniformly
random vector. Therefore, S⃗′ is uniformly random in both
the ideal world and the real world. For the fifth part, w0 =
ρ− (ε1 +d1) in the ideal world, where ρ is a random index.
In the real world, w0 = ε0 +d0, where ε0 is a random index.
Therefore, w1 is uniformly random in both the ideal and real
worlds.

This concludes the proof.

C.2 Proof of Theorem. 2
Proof. To prove Thm. 2, we construct a PPT simulator S ,
such that no non-uniform PPT environment Z can distinguish
between the ideal world IdealFcmp,S ,Z(1

λ) and the real world

Real
Fozc,F(1,2)-OT

Πcmp,A ,Z (1λ). We consider the following cases:
Case 1: P0 is corrupted. We construct the simulator S which

internally runs A and simulates Fozc and F(1,2)-OT, forwarding
messages to/from Z and simulates the interface of honest P1.

Upon receiving (Input,sid,P1) from Fcmp, S acts as P1
does as follows.

• For the simulation of ith times of Π
2→p
convert, i ∈ [n],

20

– S picks random [ri]
2
1 ∈ Z2 and input it to F(1,2)-OT;

– When corrupted P0 inputs (m0,i,m1,i) to F(1,2)-OT, S
records (m0,i,m1,i); F(1,2)-OT outputs [s]p1 = m[ri]

2
1

to
S .

– S calculate ri and si with m0,i,m1,i;

– S picks [wi]
2
1 ∈ Z2 and acts as P1 to send it to P0.

– Upon receiving [wi]
2
0 from P0, S calculate ai = [wi]

2
0⊕

[ri]
2
0

• S sends (Input,sid,a) to external Fcmp.

• S picks random list {si}i∈Zn+1 ← (Zp)
n+1 and input to

internal Fozc.

• When P0 input I to Fozc, S records I and calculates
∆ := ai for i ∈ I ∧ i ̸= n+1.

• If a = 0 or a = 2n− 1 and I := {n+ 1, . . . ,n+ 1}, set
∆ = 1⊕a0.

• S sends (Modify,sid,∆) to external Fcmp.

Indistinguishability. We show that the incoming message and
the output of P0 in the ideal world are indistinguishable from
the real world.

Claim 3. The ideal world IdealFcmp,S ,Z(1
λ) and the real

world Real
Fozc,F(1,2)-OT

Πcmp,A ,Z (1λ) are perfectly indistinguishable.

Proof. Observe that P0 locally set [c]0 = ∆, so that the output
of ideal execution keeps consistent with the real execution. In
addition, there are two parts of incoming messages that are

different between IdealFcmp,S ,Z(1
λ) and Real

Fozc,F(1,2)-OT

Πcmp,A ,Z (1λ).

• In the ideal world, [wi]
2
1 for each invoking of Π

2→p
convert are

picked random rather than calculated by [b]2i ⊕ [r]2i ;

• The output of Fozc is indistinguishable between the ideal
world and the real world.

For the first part, [r]2i is uniformly random for P0 such that
[b]2i ⊕ [r]2i is also uniformly random. Obviously, [wi]

2
1 and

[b]2i ⊕ [r]2i is indistinguishable. For the second part, Fozc only
outputs a message to P1 so that corrupted P0 receives no
message.

Case 2: P1 is corrupted. We construct the simulator S which
internally runs A and simulates Fozc and F(1,2)-OT, forwarding
messages to/from Z and simulates the interface of honest P0.

Upon receiving (Input,sid,P0) from Fcmp, S does as fol-
lows.

• Picks a← Z2n ;

• For the simulation of ith times of Π
2→p
convert, i ∈ [n],

– S picks random [ri]
2
0 ∈ Z2, [si]

p
0 ∈ Zp and inputs

m0 = [si]
p
0 − [ri]

2
0, m1 = [si]

p
0 − (1− [ri]

2
0) to internal

F(1,2)-OT;

– When corrupted P1 inputs [ri]
2
1 to F(1,2)-OT, S records

[ri]
2
1 and F(1,2)-OT sends m[ri]

2
1

to P1;

– When P0 receives [wi]
2
1 from P1, S calculates bi =

[wi]
2
1⊕ [ri]

2
1;

– S calculates [wi]
2
0 = [ri]

2
0⊕ai and acts as P1 to send it

to P0;

• S calculates {si}i∈[n+1] with φ((a||0)⊕ (b||1)). There
exists ρ ∈ [n+1] such that sρ = 0.

• S sends (Input,sid,b) to external Fcmp.

• Upon receiving (Output,sid, [c]21) from Fcmp, S does:

– if [c]21 = 1, set I ′ := {n+ 1,n+ 1, . . . ,n+ 1,n+ 1}
with n+1 dimension.

– if [c]21 = 0, set I ′ := {n+ 1,n+ 1, . . . ,n+ 1,ρ} with
n+1 dimension.

• When corrupted P1 inputs {[si]1}i∈[n+2] to Fozc, S calcu-
lates [si]0 = si− [si]1 for i ∈ [n+2].

• S inputs {[si]0}i∈[n+2] and selection list I to Fozc.

Indistinguishability. We show that the incoming message and
the output of P0 in the ideal world are indistinguishable from
the real world.

Claim 4. The ideal world IdealFcmp,S ,Z(1
λ) and the real

world Real
Fozc,F(1,2)-OT

Πcmp,A ,Z (1λ) are perfectly indistinguishable.

Proof. We first show that in the ideal world, P1 reveives same
output as the real world: If I ′ := {n+1,n+1, . . . ,n+1,n+
1}, Fozc will output z = 0 to P1 induce P1 to output [c]21 =
1⊕ z = 1. On the contrary, if I ′ := {n+1,n+1, . . . ,n+1,ρ},
Fozc will output 1 to P1 such that P1 output [c]21 = 0.

In addition, there are two parts of incoming mes-
sages that are different between IdealFcmp,S ,Z(1

λ) and

Real
Fozc,F(1,2)-OT

Πcmp,A ,Z (1λ).

• In the ideal world, [wi]
2
1 are calculated with dummy a

rather than real a;

• The output of Fozc is indistinguishable between the ideal
world and the real world.

For the first part, due to randomly picked [ri]
2
0, [ri]

2
0⊕ai are

uniformly random whether ai is input by P0 in the real world
or picked random in the ideal world; for the second part, we
have proven the output of Fozc is consistent between the ideal
world and the real world.

This concludes the proof.

21

C.3 Proof of Theorem. 3
Proof. To prove Thm. 3, we construct a PPT simulator S ,
such that no non-uniform PPT environment Z can distinguish
between the ideal world IdealFozc,S ,Z(1

λ) and the real world
RealΠozc,A ,Z(1λ). We consider the following cases:

Case 1: P0 is corrupted. We construct the simulator S which
internally runs A and simulates Fole, Fvole and Fpermute inter-
nal, forwarding messages to/from Z and simulates the inter-
face of honest P1.

Upon receiving (Input,sid,P1) from Fcmp, S does as fol-
lows.

• When P0 invokes Fole, Fole outputs (βi,ri,ui,vi) for i ∈
[n] to S ; S forwards (βi,ui) to corrupted P0.

• When P0 invokes Fvole, Fvole outputs (β j,r,u j,v j) for
j ∈ [k−1] to S ; S forwards (β j,u j) to corrupted P0.

• When P0 sends permutation π to Fpermute, S sends
{vi}i∈[n+k−1] to Fpermute;

• Upon receiving {[vπ(i)]}i∈[n+k−1] from Fpermute; S for-
wards {[vπ(i)]0}i∈[n+k−1] to corrupted P0.

• S picks random list {y′i}i∈[n]← (Zp)
n and acts as P1 to

send it to P0.

• Upon receiving {[di]0}i∈[k] and {si}i∈[k] from P0, S does

– calculate ζi = π(si) for i ∈ [k].
– calculate xζi = β

−
ζi
([di]0 +[wπ−(ζi)])

– set x j← Zp for j ∈ [n]\{ζi}i∈[k]

– send (Input,sid,{ζi}i∈[k],{x j} j∈[n]) to Fozc.

Indistinguishability. We show that the incoming message P0
and the output in the ideal world are indistinguishable from
the real world.

Claim 5. the ideal world IdealFozc,S ,Z(1
λ) and the real world

Real
Fole,Fvole,Fpermute

Πozc,A ,Z (1λ) are perfectly indistinguishable.

Proof. Observe that input ((Input,sid,{ζi}i∈[k],{x j} j∈[n])) of
Fozc in the ideal world is the same as the real world, which
makes the output of P1 equals to the real world execution. In
addition, the incoming message corrupted P0 received differ-
ent from the real world is {y′i}i∈[k]. In the ideal world, {y′i}i∈[k]
is picked random rather than mask random ri to input yi. Since
ri is a random secret for P0, yi + ri is uniformly random for
P0 and is indistinguishable from y′i.

Case 2: P1 is corrupted. We construct the simulator S which
internally runs A and simulates Fole, Fvole and Fpermute inter-
nal, forwarding messages to/from Z and simulates the inter-
face of honest P0.

Upon receiving (Input,sid,P0) from Fozc, S acts as P0 do
as follows.

• When P1 invokes Fole, Fole outputs (βi,ri,ui,vi) for i ∈ [n]
to S ; S forwards (ri,vi) to corrupted P1;

• When P1 invokes Fvole, Fvole outputs (β j,r,u j,v j) for
j ∈ [k−1] to S ; S forwards (r,v j) to corrupted P1;

• When P1 sends {vi}i∈[k+n−1] to Fpermute, S picks permuta-
tion π and sends it to Fpermute; S records {vi}i∈[k+n−1];

• Upon receiving {[vπ(i)]}i∈[n+k−1] from Fpermute, S forwards
{[vπ(i)]1}i∈[n+k−1] to corrupted P1;

• When P0 receiving {y′i}i∈[n] from P1, S does,

– calculate yi = y′i− ri for i ∈ [n].

– send (Input,sid,{yi}i∈[n]) to Fozc.

• Upon receiving (Output,sid,z) from Fozc, S does,

– pick random list {r0, . . . ,rk−1} ∈ (Z∗p)k.

– pick random set I ′ := {s0, . . . ,sk−1} ∈ Zk
n+k−1.

– for i ∈ [k], set [di]0 = [wsi]1 + ri;

– if z = 1, pick η← I ′ and set [dη]0 = [dη]0− rη.

– act as P0 to send {[di]0}i∈[k] and I1 to P1.

Indistinguishability. We show that the incoming message of
P1 and the output in the ideal world are indistinguishable from
the real world.

Claim 6. the ideal world IdealFozc,S ,Z(1
λ) and the real world

Real
Fole,Fvole,Fpermute

Πozc,A ,Z (1λ) are perfectly indistinguishable.

Proof. Obliviously, the input of Fozc is the same as the real
world. When P1 evaluates di = [di]0− [wsi]1, considering the
output of Fozc, if z = 1, the item dη = 0 leads to P1 output 1;
otherwise, all items di = ri ∈ Z∗p are positive, leading to P1
output 0. Therefore, the output is indistinguishable from the
real world. In addition, for the incoming message of P1, index
set I := {si}i∈[k] and {[di]0}i∈[k] are generated through

• pick random list {r0, . . . ,rk−1} ∈ (Z∗p)k.

• pick random set I ′ := {s0, . . . ,sk−1} ∈ Zk
n+k−1.

• for i ∈ [k], set [di]0 = [wsi]1 + ri;

• if z = 1, pick η← I ′ and set [dη]0 = [dη]0− rη.

rather than,

• [di]0 = βζi · (xζi + y′
ζi
)− [wπ−(ζi)]0 for i ∈ [k− t];

• si = π−(ζi) for i ∈ [k− t];

• [di]0 = βn+i−k · (xn + y′n)− [wπ−(n+i−k)]0 for i ∈ [k− t,k];

• si = π−(n+ i− k) for i ∈ [k− t,k];

22

Since π is a random permutation, set {si = π−(ζi)}i∈[k] is
uniformly random in the distribution Zk

n+k−1, which is in-
distinguishabe from the ideal world. For the list {[di]0}i∈[k],
considering z = 0, in the real world, each item di is positive,
it indicates that the distribution of [di]0 = di +[wsi]1 is deter-
mined by sum of random value in Z∗p and random value in Zp
which is same as the ideal world.

This concludes the proof.

23

	Introduction
	Our Result.
	Related work

	Preliminaries
	Equality Testing
	One-round equality testing
	Two-round equality testing

	Secure Comparison
	Protocol Overview
	Construction of Fozc

	Performance Evalutaion
	Experiment Setting
	Experiment Evaluation

	Conclusion
	Other building block
	OLE protocol
	Oblivious Selective Zero Check with OLE

	Other Benchmarks
	Proof of Security
	Proof of Theorem. 1
	Proof of Theorem. 2
	Proof of Theorem. 3

