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Abstract. In this paper we propose verifiable secret sharing (VSS)
schemes secure for any honest majority in the synchronous model, and
that only use symmetric-key cryptographic tools, therefore having plau-
sibly post-quantum security. Compared to the state-of-the-art scheme
with these features (Atapoor et al., Asiacrypt ‘23), our main improve-
ment lies on the complexity of the “optimistic” scenario where the dealer
and all but a small number of receivers behave honestly in the sharing
phase: in this case, the running time and download complexity (amount
of information read) of each honest verifier is polylogarithmic and the
total amount of broadcast information by the dealer is logarithmic; all
these complexities were linear in the aforementioned work by Atapoor
et al. At the same time, we preserve these complexities with respect to
the previous work for the “pessimistic” case where the dealer or O(n)
receivers cheat actively. The new VSS protocol is of interest in multi-
party computations where each party runs one VSS as a dealer, such as
distributed key generation protocols.
Our main technical handle is a distributed zero-knowledge proof of low
degreeness of a polynomial, in the model of Boneh et al. (Crypto ‘19)
where the statement (in this case the evaluations of the witness polyno-
mial) is distributed among several verifiers, each knowing one evaluation.
Using folding techniques similar to FRI (Ben-Sasson et al., ICALP ‘18)
we construct such a proof where each verifier receives polylogarithmic
information and runs in polylogarithmic time.
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1 Introduction

A (t, n)-threshold secret sharing scheme allows a dealer D to share a secret s
among n parties P1, . . . , Pn in such a way that any subset of t parties or less
has no information about s while any set of t+ 1 or more parties can recover s
if they collaborate. The most famous example of threshold secret sharing is the
scheme proposed by Shamir [Sha79]. The dealer samples a polynomial f(X) of
degree at most t with coefficients in a finite field F such that its evaluation in
a distinguished point α0 ∈ F is the secret s, i.e. f(α0) = s, and then sends an
evaluation si = f(αi) to each party individually, where αi are pairwise distinct
points in F (and different from α0). From the basic properties of polynomials it
follows that t or less parties do not have any information about s, while t + 1
parties can collaboratively reconstruct f(X) and hence recover s by Lagrange
interpolation. The above scheme however only provides security against passive
adversaries and does not prevent a dishonest dealer from sampling a polynomial
of the wrong degree or dishonest parties from sending incorrect values at the
moment of reconstruction.

A verifiable secret sharing (VSS) scheme solves these problems by ensuring
that the shares parties receive are part of a correct sharing of a secret accord-
ing to the specified underlying secret sharing scheme, and later that the honest
parties reconstruct the secret correctly. VSS is typically used for realizing dis-
tributed schemes, for example realizing distributed key generation (DKG), which
in turn is a fundamental building block for threshold cryptography [GJKR07],
and general purpose multiparty computation (MPC) protocols [BGW88].

VSS schemes have been realized from different assumptions, in both the syn-
chronous and asynchronous model. In this work we focus on the former. On
one side, starting with [BGW88] there are VSS that offer perfect security, see
[CCP22] for an exhaustive overview. These schemes do not rely on computa-
tional hardness assumptions and are typically computationally efficient, but re-
quire high communication and assume more than two thirds of parties being
honest for reconstructing the secret. If one is willing to admit an exponentially
small probability of error in the reconstruction (statistical security), there are
schemes that offer unconditional security assuming only a simple honest major-
ity starting with [RB89], but they still require a large amount of communication
between parties. On the other hand, computationally secure VSS schemes based
on public-key cryptography have been proposed [Fel87, Ped92, Sch99, CD17,
CD20, GHL22, CDGK22, Bag23, CD24]. Thanks to public-key tools some of
these schemes are able to achieve the property of public verifiability. A publicly
verifiable secret sharing (PVSS) is a VSS scheme where all communication is
done through a public channel and a public verifier can ensure the correctness of
the sharing and reconstruction. This typically employs a linearly homomorphic
encryption scheme by which the dealer encrypts the shares and then publishes
the ciphertexts, so that parties can use their own secret keys to get the shares.
The correctness of the shares is ensured by a proof that the plaintexts of those
ciphertexts are indeed shares of a polynomial of degree t, which can be checked
by everyone, not only the shareholders. This is particularly useful in some sce-



narios such as the construction of randomness beacons [CD17, CD20] and multi-
party computation in some restricted settings, e.g. in the so-called YOSO model
[CDGK22, CD24].

Many of these schemes, in particular all cited above, only require simple
honest majority for reconstructing the secret. The downside of this approach
is that it suffers from large bandwidth and high cost from the prover due to
public-key operations.

A third class of VSS lies in the middle in terms of required security assump-
tions and attain computational security but only use symmetric-key cryptogra-
phy. Giving up on perfect secrecy puts these schemes in the regime of honest
majority and at the same time relying on symmetric-key tools gives an advan-
tage in terms of efficiency over those relying on public-key primitives. While
these schemes are not publicly verifiable, this is enough for many applications,
for example multiparty computation and threshold cryptography.

Gennaro, Rabin and Rabin [GRR98] proposed the first computational VSS
that relies solely on symmetric-key tools. However their scheme only achieves a
weaker notion of security and communication is linear in the number of parties.
Backes, Kate and Patra [BKP11] proposed a VSS whose security relies solely
on the binding property of commitment schemes, that can be instantiated with
hash functions. However, sharing a secret involves using a bivariate polynomial
that yields O(n2) in communication.

The state-of-the-art is a recent work by Atapoor et al. [ABCP23], which uses
a novel approach for constructing VSS starting from distributed zero-knowledge
(dZK) proofs. The notion of distributed dZK proof was formally introduced
in [BBC+19]. In this setting a prover wants to convince n verifiers V1, . . . , Vn

that a statement x lies in some language L (in the case of NP-languages that
there exists a witness for which x ∈ L). The main difference with the standard
notion of interactive (zero-knowledge) proof is that now x is distributed among
the verifiers, but no single verifier knows x in full. A distributed zero-knowledge
proof system is required to satisfy correctness, meaning that if all verifiers accept
then x ∈ L; soundness, meaning that if there is no w for which x ∈ L then the
proof rejects even if the prover colludes with t− 1 verifiers; and zero-knowledge,
namely that the proof does not reveal any information about w to up to t
colluding verifiers.

As shown in [ABCP23], one can realize a VSS from a distributed dZK proof.
The dealer runs a dZK proof for membership to the following language

L = {x = (x1, . . . , xn) ∈ Rn : ∃f(X) ∈ R[X] : xi = f(αi), deg(f) ≤ t}. (1)

where R is a (commutative, with 1) ring, and (α1, . . . , αn) is a (fixed, public)
exceptional set in R.3 The share-receivers play the role of verifiers for this dZK
proof. Then a consensus protocol allows the parties to resolve conflicts in case
of rejections, and eventually disqualify the dealer.

3 An exceptional set is a set where the pairwise differences of distinct elements in the
set are all invertible in the ring



The starting point of [ABCP23] is a simple distributed Σ-protocol for (1).
At a high level their construction works as follows: the dealer with input a secret
polynomial f(X) of degree ≤ t with x0 = f(α0) and xi = f(αi), samples a
uniformly random polynomial b(X) also of degree ≤ t, broadcasts commitments
to its evaluations, and then computes a random linear combination r(X) =
b(X)+µf(X) where µ ∈ F is sampled by the verifiers. The prover then broadcasts
the polynomial r(X) while it sends, privately to each party i, the share xi and the
opening to the commitments to b(αi). Each verifier Vi can individually check the
proof by checking the openings of the commitments and that r(αi) = b(αi)+µxi.

The resulting VSS has a O(n log n) cost for the dealer, which is inherent due
to the need of evaluating a polynomial of degree O(n) on n points. Their VSS
works for more general structures than fields, for example rings with a large
enough exceptional set. However their protocol requires at least O(n) compu-
tational cost for the shareholders already in the sharing phase, as verification
requires to evaluate the polynomial r(X). In terms of communication, the dealer
needs to broadcast the whole polynomial r(X) (which amounts to a O(n) amount
of broadcast communication) and consequently each verifier has linear download
complexity, i.e. each verifier receives O(n) amount of communication.

An important observation for this work is that the above complexities hold
even in the “optimistic” case where no party eventually acts dishonestly. In
particular, the verifiers complexity is O(n) in that case. If there are Θ(n) corrupt
verifiers or if the dealer is corrupt, then the complexity becomes O(n log n).

This leads us to the question of whether we can design VSS protocols that
have a better optimistic complexity, i.e., that allow for sublinear o(n) or even poly-
logarithmic O(polylog n) verifier work, in the case where the dealer is honest
and up to a “small” number (say O(1)) of verifiers are corrupted, while still not
worsening the verifier complexity of the pessimistic cases where either the dealer
and/or a large number of verifiers up to certain bound t = O(n) are corrupted.

Note that even though there is one party (namely, the dealer) who may
on their own force the pessimistic case to happen, the scenario above can be
of interest in many uses of VSS in multiparty computation protocols where,
at a certain round, n instances of VSS are run, one for each of the parties
acts as a dealer. One of the most well known examples of this is the case of
distributed key generation protocols for discrete-log based threshold schemes,
where each party chooses and VSSs a random field element, and the secret key
is computed as the sum of the correctly VSSed elements. In cases as the above,
if the adversary actively corrupts, say, O(1) parties during the execution, these
parties will be able to force the worst case complexity in the O(1) instances where
they are acting as dealers, but the remaining instances will enjoy the optimistic
complexity. The total work of each honest party across the n VSS instances will
be O(n polylog n), which would be an improvement over the O(n2) complexity
that would arise from using [ABCP23]. At the same time, the VSS would still
remain secure against a more powerful adversary corrupting O(n) parties.

While verifier complexity is our main concern in this paper, we are also inter-
ested in improving the download complexity per party and broadcast communica-



tion in these optimistic cases. The latter is interesting in blockchain ecosystems,
where one wants to limit as much as possible the amount of information stored
on-chain. We do need to remark that this will come at the cost of increasing
the amount of private communication sent by the dealer to each party, as we
describe in the next paragraphs.

Our contributions. In this work we present a VSS construction that only employs
secret key cryptography, tolerates t < n/2 corrupt parties, and improves on the
state of the art with regards to optimistic verifier complexity as well as optimistic
broadcast and download complexity, while still matching the complexities of pre-
vious works in the pessimistic case. In particular, in the optimistic case where
the dealer is honest and there are O(1) corrupt verifiers, the verifier complexity is
O(log(n)2), the dealer broadcasts O(log n) information and each party needs to
receive O(log(n)2) information in total, via the broadcast and private channels
4. All these complexities were O(n) in [ABCP23]. In the pessimistic case (where
the dealer and/or O(n) verifiers are corrupt) the asymptotic complexities match
those of [ABCP23]: the broadcast and download complexities are O(n) and the
verifier complexity is O(n log n). In all cases the prover complexity is O(n log n),
same as in [ABCP23]. This all comes at the cost of increasing the private com-
munication: while in [ABCP23] the dealer needs to send a constant amount of
information privately to each party, in our work this will be O(log(n)2). While
this increases the total amount of information communicated by the dealer, the
decreased use of the broadcast channel may be beneficial in some applications
as we have argued above.

Our main technical handle is a new distributed ZK proof for language (1) with
polylogarithmic proof size in the degree of the polynomial that only leverages
on symmetric-key primitives and supports rings with a large enough exceptional
set, and which we believe to be of independent interest.

In more detail, in our VSS protocol the dealer initially broadcasts O(log n)
information (the “public” part of the aforementioned distributed ZK proof), as
well as sending O(log(n)2) information to each party privately, which contains
the shares and private part of the distributed proof. The verifiers are required
to perform O(log(n)2) computation5. Only if there are complaints, the proto-
col incurs in more communication and computation as the prover then needs to
broadcast the private communication previously sent to the complaining par-
ties. In the worst case where O(n) share receivers complain, the dealer needs to
broadcast O(n) information (and no additional private communication) and the
share receivers need to perform O(n log n) computation. As mentioned above,
these costs are the same as in the state-of-the-art [ABCP23], with the one afore-
mentioned caveat that we require more private communication. See Table 1 for
comparisons.

4 Precise asymptotic costs according to active corruptions are given in Section 4.3
5 Specifically O(logn) ring operations and O(log(n)2) hashes



Our VSS tolerates up to t = n/2− 1 corruptions and is proven secure in the
random oracle model and, as in [ABCP23], we are able to support rings with a
large enough exceptional set.

Technical overview of our approach. To construct our VSS, we follow the paradigm
of [ABCP23] starting from a distributed ZKP of the existence of a low degree
polynomial interpolating the shares. At the heart of our work is an efficient
distributed proof (without zero-knowledge) for the same task.

More precisely, the n verifiers each have a piece xi ∈ R of the statement, and
the prover wishes to convince them that there is a polynomial f(X) of degree
< d such that xi = f(αi) for all i ∈ {1, . . . , n} (or more precisely, for all the
honest verifiers Vi).

Our interactive proof is recursive and based on a folding technique, similar
to proofs in the literature such as FRI [BBHR18] and DARK compilers [BFS20].
At every step k of the recursion the prover claims that a certain polynomial
f (k)(X) has degree < d/2k (where in addition f (0) = f); the recursion reduces
this task to proving that some related randomized polynomial f (k+1)(X) has
degree < d/2k+1. At the last step k = τ of the recursion, the prover simply
broadcasts f (τ) which is of small enough degree d/2τ . For the folding of f (k)

into f (k+1) we offer two alternatives: in our first alternative, which is inspired
by [BFS20], the prover splits f (k) in high and low degree terms (i.e. f (k)(X) =

g
(k+1)
0 (X)+Xd/2k+1

g
(k+1)
1 (X)), receives a random challenge µ(k) and constructs

f (k+1) as f (k+1)(X) = g
(k+1)
0 (X)+µ(k+1)g

(k+1)
1 (X). The second alternative is the

one in FRI: the prover splits f (k) in odd and even degree terms, i.e. as f (k)(X) =

g
(k)
0 (X2)+Xg

(k)
1 (X2), and again sets f (k+1)(X) = g

(k+1)
0 (X)+µ(k+1)g

(k+1)
1 (X).

The reason why we have two alternatives is that, for general rings R, the first
alternative requires fewer assumptions on the set of evaluation points {α1, . . . , αn};
namely, we require that this is an exceptional set, i.e. that the pairwise differ-
ences of all the elements in the set are invertible in the ring. On the other hand,
using the second alternative requires in addition that all sets {α2k

1 , . . . , α2k

n } for
k = 0, . . . , τ are exceptional. However, if we do have this guarantee, for exam-
ple if R is a finite field, the second alternative may also lead to more efficient
protocols.

A technical difference with FRI is in how the prover shows that this splitting
has been done correctly. Instead of committing to the evaluation of f (k)(X),
g
(k+1)
0 , g(k+1)

1 in a large set of points and then opening a random subset chosen
by the (single) verifier, in our case the prover commits to the evaluations of
these polynomials in {α1, . . . , αn} (or {α2k

1 , . . . , α2k

n } in the second alternative)
and then opens the evaluations in the i-th point privately to the i-th verifier.
Note that in our case, the prover cannot cheat, even with small probability,
in this step as essentially the honest verifiers are checking that the splitting is
correct in all honest points. The only source of soundness error in our case is
the fact that the degree of g

(k+1)
0 (X) + µ1g

(k+1)
1 (X) may be smaller than the

degrees of both g
(k+1)
0 (X) and g

(k+1)
1 (X), which happens with small probability

if µ is sampled from a large exceptional set of the ring.



The recursive nature of our protocol allows us to achieve a proof where the
size of the communication received by each verifier (both broadcast and pri-
vately) is polylogarithmic in the degree of the polynomial. Instantiating the
commitments with Merkle trees allows for efficient openings and give the proto-
col computational security based only on the security of hash functions.

Our technique allows us to work over rings with a large enough exceptional
set, and we believe this to be of independent interest as it would allow construct-
ing ring-friendly polynomial commitments that are plausibly post-quantum se-
cure.

We then show how to easily add zero-knowledge to the protocol above by
adding two additional rounds. In the first round the prover samples a uniformly
random polynomial b(X) of the same degree of f(X) and sends a commitment to
it to the verifiers, that will respond with a random challenge µ0. The prover then
computes the random linear combination r(X) = b(X) +µ0f(X) and applies to
it the above folding protocol. The zero knowledge property comes from the fact
that b(X) information-theoretically hides f(X).

By interpreting these two additional rounds as the first two rounds of the
distributed Σ-protocol of [ABCP23], we can see our construction as a dis-
tributed version of the technique used to compress standard Σ-protocols [AC20]
where the prover replaces the third message of a Σ-protocol by a (non zero-
knowledge) proof that this last message satisfies a certain property (in this case
that deg r(X) < d). We then turn the above (2τ + 3)-rounds dZK proof into a
non-interactive dZK proof using the Fiat-Shamir transform.

Following the construction of [ABCP23], we obtain a VSS by adding a con-
sensus protocol on the execution of the non-interactive dZK proof. The resulting
VSS inherits the logarithmic communication complexity and computational costs
from the dZKP.

Comparison with previous work. We compare our VSS with other honest major-
ity schemes in Table 1. For [ABCP23] and our work we include the costs for both
the optimistic (no complaints) and pessimistic (O(n) complaints) case. Such a
distinction does not exist in the case of PVSS thanks to the public verifiability
feature. Such a feature, however, comes at the price of having O(n) broadcast
communication and O(n log n) computational complexity for both dealer and
parties in terms of (expensive) group operations. Compared to the state-of-the-
art [ABCP23], in the optimistic case we decrease the amount of information to
be broadcasted from O(n) to O(log n), as well as the total download per party,
from O(n) to O(log(n)2), and parties computational cost from O(n) to O(log n).
Instead we add a polylogarithmic factor log(n)2 to the amount of private com-
munication. The computational cost for the dealer is the same, O(n log n) ring
operations, which is an inherent cost from the evaluation of the secret polyno-
mial defining the shares. In the pessimistic case, the cost are the same, except
we still pay for the polylogarithmic factor in private communication.

Other related work. In this work we only focus on protocols that operate in
the so-called synchronous model. Here the parties are synchronized by a global



Table 1. Comparison of our VSS with previous computationally secure VSS For
comparison, we specialize our scheme and that of [ABCP23] to R = F, a finite field.
PV: public verifiability, BC: broadcast, PC: private communication to each party, DW:
download per party, OF(•): complexity in terms of field operations, OG(•): complexity in
terms of group operations. Note that publicly verifiable secret sharing schemes assume
an initial PKI setup, or otherwise need an additional round to establish this PKI.

Scheme Assumption Rounds Prover Verifier Communication PVcomplexity complexity

[Sch99] DDH, RO 1 OG(n logn) OG(n2 logn)
BC: O(n)

yesPC: −
DW: O(n)

[CD17, CD20],
[CDGK22] DDH, RO 1 OG(n logn) OG(n logn)

BC: O(n)
yesPC: −

DW: O(n)

[CD24, KMM+23] Class group
assump., RO 1 OG(n logn) OG(n logn)

BC: O(n)
yesPC: −

DW: O(n)

[ABCP23]
optimistic case

SK, RO 2 OF(n logn) OF(n)
BC: O(n)

noPC: O(1)
DW: O(n)

[ABCP23]
pessimistic case

SK, RO 3 OF(n logn) OF(n logn)
BC: O(n)

noPC: O(1)
DW: O(n)

This work
optimistic case

SK, RO 2 OF(n logn) OF(log2 n)
BC: O(logn)

noPC: O(log2 n)
DW: O(log2 n)

This work
pessimistic case

SK, RO 3 OF(n logn) OF(n logn)
BC: O(n)

noPC: O(log2 n)
DW: O(n)

clock and there are strict (publicly-known) upper bounds on the message de-
lays. On the other hand, there is a line of works that explores protocols in the
asynchronous model [AKP20, CP23, AJM+23, SS24], where the parties are not
synchronized and where the we assume that the adversary can take control of
the network and arbitrarily delay the messages sent by the parties. Designing
VSS protocols in this setting is more challenging and inherently support at most
n/3 − 1 corruptions. Our techniques, in particular, do not apply to this asyn-
chronous case, where parties would need to broadcast and read decision bits (even
in the case everyone accepts) so communication and verification time would be
linear even in the optimistic case.

Outline. In Section 2 we recall and revise known definitions. Our distributed
proof of low degree is detailed in Section 3, starting from two (non ZK) protocols
(Sections 3.1-3.2) and later adding zero knowledge (Section 3.3) and removing
interaction (Section 3.4). Finally, Section 4 is devoted to building VSS from
distributed proofs of low degree.



2 Preliminaries

2.1 Notation

We denote by [n] the set {1, . . . , n}. In what follows R denotes a ring and R[X]
(resp. R[X]t) the ring of polynomials (resp. degree ≤ t polynomials) with coeffi-
cients in R. Vectors are denoted in bold. For a vector x we denote by xi its i-th
entry, while xH denotes the subvector (xi)i∈H for a given set of indices H. All
logarithms are assumed in base two.

2.2 Adversarial and communication model

In our protocols we will consider a network of n parties P1, . . . , Pn. We work in
the synchronous communication model and assume that parties are conncted to
each other by private, authenticated and bidirectional channels.

We further assume that all parties have access to a broadcast channel [PSL80].
This means that parties can send a message reliably to each other. In addition,
if a party receives a message via a broadcast, then it knows that all other honest
parties received the same value.

A synchronous network allows protocols to operate in a sequence of rounds.
In each round, parties perform some local computation, send messages (if any)
through the private and authenticated link, and broadcast some information over
the broadcast channel. At the end of each round, they receive all messages sent
or broadcast by the other parties in the same round.

For the adversarial model, we assume a static, malicious adversary that cor-
rupts up to t < n

2 parties in the protocol. While honest parties send messages
following the protocol, corrupt parties may send arbitrary messages. Also, the
adversary may be rushing, meaning that at each round of the protocol it waits
to see what the other parties have broadcasted before broadcasting its own mes-
sages.

2.3 Vector commitments

Definition 1. A vector commitment with message space VC.M and commitment
space VC.C is a tuple of algorithms VC = (VC.Setup,VC.Com,VC.Open,VC.Vfy)
defined as follows:

– pp← VC.Setup(1λ, n) : given the security parameter and size of the vectors
to be committed returns public parameters.

– (cm, aux)← VC.Com(pp,x) : given public parameters and a vector x ∈ VC.Mn

outputs a commitment cm and auxiliary information aux used for opening.
– op← VC.Open(pp, cm, i, aux) : given public parameters, an index i ∈ [n] and

a commitment cm with auxiliary information aux, returns an opening proof
op for position i.

– b← VC.Vfy(pp, cm, x, i, op) : given public parameters, an element x, position
i, proof op and a commitment cm, it checks the validity of the opening proof.



Properties that a secure VC is required to satisfy are correctness, position
binding and succinctness. In this work we further consider hiding VC.
Correctness. A vector commitment is correct if for any x ∈ VC.Mn

Pr

VC.Vfy(pp, cm, xi, i, op) = 1 :

pp← VC.Setup(1λ)

cm, aux← VC.Com(pp,x)

op← VC.Open(pp, cm, i, aux)

 = 1.

Position binding. Define the advantage:

AdvPBinding
VC (A) =

=Pr

[
VC.Vfy(pp, cm, x0, i, op0) = 1

VC.Vfy(pp, cm, x1, i, op1) = 1
: (cm, i, x0, op0, x1, op1)← A(pp)

]
.

Then a vector commitment VC satisfies position binding if, for all honestly gen-
erated public parameters pp, for all PPT adversaries A one has

AdvPBinding
VC (A) = negl(λ).

Hiding. The hiding property [Giu23] informally states that opening a number
of positions in a vector commitment should keep the unopened ones hidden.
Formally, for any non-empty subset T ⊂ [n] define the advantage

AdvHiding
VC (A, T ) = Pr

b = b′ :

pp← VC.Setup(1λ), b← {0, 1}
x0,x1 ← A(pp), x0[j] = x1[j] ∀j ∈ T

(cm, aux)← VC.Com(pp,xb)

opj ← VC.Open(pp, cm, j, aux) ∀j ∈ T

b′ ← A(pp, cm, {opj}j∈T )

 .

Then we say that VC is hiding if, for all non-empty T ⊂ [n] and all PPT
adversaries A one has that

AdvHiding
VC (A, T ) = 1

2
+ negl(λ).

Succintness. A vector commitment is succint if both the commitment cm and
opening proof op for a position i are independent of the size of the committed
vector. In this work, we will slightly relax this notion, by allowing the opening
proof for a position to be logarithmic in the size n of the vector. For example,
this is the case of Merkle trees, which are discussed next.

Merkle trees. In this work we will be using Merkle trees to instantiate (hiding)
vector commitments. 6 For Merkle trees we will be using the specific notation
6 The reason being that Merkle trees can be realized from hash functions only which

is fundamental to our purpose of realizing a VSS from symmetric-key cryptography
only. Furthermore they do not require setup.



MT = (MT.Setup,MT.Com,MT.Open,MT.Vfy). Let n be a power-of-two7 and
let H be a collision resistant hash function. A Merkle tree commitment to a
vector x of n elements consists in a binary tree, where the leaves are the hash of
the elements xi and each node is the hash of its children. It is a tree of height
log n. Formally, setting d = log n if we label the entries of x with the binary
representation of their indexes then

leaves: hb0b1...bd = H(xb0b1...bd)

level 1: hb0b1...bd−1
= H(hb0b1...bd−10∥hb0b1...bd−11)

level k: hb0b1...bd−k
= H(hb0b1...bd−k0∥hb0b1...bd−k1)

A public commitment to x then consists in the root of such a tree, with the
convention that the root is indexed by the empty string ϵ, namely cm = hϵ =
H(h0∥h1). Opening the commitment at position i can be done by revealing the
corresponding leaf xi and all the sibling values of all the nodes in the path from
xi till the root, which is logarithmic in the size of x.

Formally, for a bit b, let b denote 1− b. Then an opening for position i with
binary representation b0 . . . bd is given by the list(

xb0...bd−1bd , hb0...bd−1bd
, hb0...bd−2bd−1

, . . . , hb0...bd−kbd−k+1
, . . . , hb0

)
.

Verifying the opening requires hashing the siblings to recompute the nodes
in the path, and checking that the last node is indeed the same as the initial
commitment root. The position binding of the Merkle tree can be reduced to the
collision resistance of H.

It is possible to turn such a construction into an hiding vector commitment
by computing the leaves using a uniformly random string from {0, 1}λ, one for
each leaf. In other words hb0b1...bd = H(xb0b1...bd∥rb0b1...bd). Then an opening for
position i must include ri. For simplicity, in the rest of the paper we will assume
that all Merkle trees are hiding.

2.4 Distributed zero-knowledge proofs

Here we recall the definition of zero-knowledge proof for distributed relations,
introduced in [BBC+19], suitably adapted to rings.

Definition 2 (Distributed Inputs, Languages, and Relations [BBC+19]).
Let n be a number of parties, R be a ring, and l, l1, l2, · · · , ln ∈ N be length pa-
rameters, where l = l1 + l2 + · · · + ln. An n-distributed input over Rl (or just
distributed input) is a vector x = x(1)∥x(2)∥ · · · ∥x(n) ∈ Rl where each x(i) ∈ Rli

is called a piece (or share) of x. An n-distributed language L ⊂ Rl is a set of
n-distributed inputs. A distributed NP relation with witness length h is a binary
relation R ⊂ Rl×Rh of pairs (x,w) with n-distributed input x ∈ Rl and witness
w ∈ Rh, such that (x,w) ∈ R can be checked in polynomial time. Finally, we let
LR = {x ∈ Rl : ∃w ∈ Rh, (x,w) ∈ R}.
7 If not we can pad the vector with zeros.



Definition 3 (n-Verifier Interactive Proofs [BBC+19]). An n-Verifier In-
teractive Proof protocol over R is an interactive protocol Π = (P, V1, V2, · · · , Vn)
involving a prover P and n verifiers V1, V2, · · · , Vn. The protocol proceeds as fol-
lows.

– In the beginning of the protocol the prover holds an n-distributed input x =
x(1)∥x(2)∥ · · · ∥x(n) ∈ Rl, a witness w ∈ Rh, and each verifier Vj holds an
input piece (or share) x(j).

– The protocol allows the parties to communicate in synchronous rounds over
secure point-to-point channels and a broadcast channel.

– At the end of the protocol each verifier outputs either 1 (accept) or 0 (reject)
based on its view, where the view of Vj consists of its input piece x(j), its
random input r(j), and messages it received during the protocol execution.
The protocol accepts if all verifiers accept, and the protocol rejects if at least
one verifier rejects.8

In the following, Π(x,w) denotes running Π on shared input x and witness w,
and says that Π(x,w) accepts (respectively, rejects) if at the end all verifiers
(resp. at least one honest verifier) output 1 (resp., 0). V iewΠ,T (x,w) denotes
the (joint distribution of) views of verifiers {Vj}j∈T in the execution of Π on
distributed input x and witness w.

Let R(x,w) be an n-distributed relation over a ring R. We say that an n-
verifier interactive proof protocol Π = (P, V1, · · · , Vn) is a distributed strong
ZK proof protocol for R with t-security against malicious prover and malicious
verifiers, and with soundness error ε, if Π satisfies the following properties:

Definition 4 (Correctness). For every n-distributed input x = x(1)∥x(2)∥ · · · ∥x(n) ∈
Rl and w ∈ Rh such that (x,w) ∈ R, the execution of Π(x,w) accepts with
probability 1. Note this definition assumes the prover and all verifiers behave
honestly.

Definition 5 (ε-Soundness Against Prover and t Verifiers). For every
T ⊆ [n] of size |T | ≤ t, an adversary A controlling the prover P and verifiers
{Vj}j∈T , n-distributed input x = x(1)∥x(2)∥ · · · ∥x(n) ∈ Rl, and every w ∈ Rh,
the following holds. If there is no n-distributed input x′ ∈ LR such that x′

H = xH ,
where H = [n] \ T , the execution of Π⋆ rejects except with probability at most ε,
where Π⋆ denotes the interaction of A with the honest verifiers.

In analogy to ordinary interactive proofs, we say soundness holds adaptively if
the input is chosen by the malicious prover (see for instance [AFK22]), potentially
after observing the public parameters, or interacting with the random oracle.
8 We stress the fact that in our definition, the protocol rejects if at least one verifier

rejects, unlike [BBC+19], where the protocol rejects if all verifiers reject. Although
the latter is a stronger notion of soundness, it is always possible to achieve by adding
some rounds of consensus among the verifiers. Later we’ll construct a VSS from a
ZK proof on distributed inputs. This is done by adding such a consensus protocol
outside the proof system. We made this choice so as to mark clearly the step from
proof system to VSS.



Definition 6 (Strong Zero-Knowledge against t Verifiers). For every
T ⊆ [n] of size |T | ≤ t and a malicious adversary A controlling the verifiers
{Vj}j∈T , there exists a simulator Sim such that for every n-distributed input
x = x(1)∥x(2)∥ · · · ∥x(n) ∈ Rl, and witness w ∈ Rh such that (x,w) ∈ R, we have
Sim((x(j))j∈T ) ≡ V iewΠ⋆,T (x,w). Here, Π⋆ denotes the interaction of adversary
A with the honest prover P and the honest verifiers {Vj}j∈[n]\T .

In order to later provide a compiler analogous to the Fiat-Shamir transform,
we define a distributed proof to be public coin if in the interactive phase verifiers
only executes a coin-tossing protocol Fcoin. Finally we also consider the stronger
notion of round-by-round soundness [CCH+18], adapted to the distributed proof
setting and restricted for simplicity to the public coin case.

Definition 7. A distributed public coin proof has ε-round-by-round soundness
against a prover and t verifiers if there exists a set D of doomed transcripts such
that, for any T ⊆ [n] of size |T | ≤ t

1. Given (xi)i/∈T such that ∄x′ ∈ LR : x′
i = xi for i /∈ T , then (xi,∅)i/∈T ∈ D.

2. Given (xi, vi)i/∈T ∈ D, where vi denotes the view of verifier Vi till the current
state, for any reply (M,mi) where M , mi denote the messages broadcast and
privately sent to Vi respectively at the end of the current round, and random
coins µ tossed by the verifiers

Pr [(xi, (vi∥M∥mi∥µ))i/∈T /∈ D] ≤ ε(λ).

3. For any list of full transcripts9, (xi, vi)i/∈T ∈ D ⇒ ∃j /∈ T : Vj rejects.

2.5 Interpolation and Shamir secret sharing over rings

A (t, n)-Shamir secret sharing scheme allows n parties to individually hold a
share xi of a common secret x0, such that any subset of t parties or less are
not able to learn any information about the secret x0, while any subset of at
least t+1 parties are able to efficiently reconstruct the common secret x0. While
Shamir’s scheme is originally defined over a finite field F, meaning the secret and
all shares are values in F, it can be extended to rings through exceptional sets,
as described in [CDN15]. We recall the details here.

Definition 8. Let R be a ring. An exceptional set is a set S ⊂ R, where for
every pair x, x′ ∈ S with x ̸= x′, the difference x− x′ is invertible in R.

Lemma 1. Let m > t ≥ 0 be integers, R a ring, S = {α1, . . . , αm} ⊆ R an
exceptional set. Then for every Q = {i1, . . . , it+1} ⊆ [m] the map R[X]t → Rt+1

given by f(X) 7→ (f(αi1), . . . , f(αit+1)) is an R-module isomorphism.

9 The transcript until the point when the verifier halts.



In details, the inverse of the isomorphism above is given by mapping (x1, . . . , xt+1)

to f(X) =
∑

i∈Q xi · LQ
i (X) where

LQ
i (X) :=

∏
j∈Q\{i}

αj−X
αj−αi

are the Lagrange basis polynomials, which are all of degree t, and well defined
thanks to Q being exceptional.

Now (t, n)-Shamir secret sharing can be defined over R, as long as it contains
an exceptional set of “evaluation points” E = {α0, α1, . . . , αn} ⊂ R of size n+1.
Each party Pi, i ∈ [n], is associated to the element αi while α0 is associated to
the secret. To share secret x0, a polynomial f(x) is chosen uniformly at random
in the set of polynomials in R[X]t with f(α0) = x0. Each party Pi is assigned
the secret share xi = f(αi). Then any subset Q ⊆ {1, . . . , n} of at least t + 1
parties can reconstruct the secret x0 via Lagrange interpolation by computing
x0 = f(α0) =

∑
i∈Q xi · LQ

i (α0), where LQ
i is as above. Moreover, also based on

Lemma 1, a subset of t or fewer parties are not able to find x0 = f(α0), as this is
information theoretically hidden from the other shares. See [CDN15] for details.

Finally we will need another technical lemma involving exceptional sets,
which can be derived easily from Lemma 1.

Lemma 2. Let S ⊂ R be an exceptional set. Let N ≥ 1 be an integer and
h(0)(X), h(1)(X), . . . , h(N)(X) be N +1 arbitrary polynomials in R[X]. Let d :=
max

{
deg h(i)(X) : i ∈ {0, . . . , N}

}
.

Then if ν1, . . . , νN are sampled independently and uniformly at random in S,

Pr

[
deg

(
h(0)(X) +

∑N

i=1
νih

(i)(X)

)
< d

]
≤ 1

|S|

Proof. If d > deg h(i)(X) for all i ∈ {1, . . . , N} (hence also deg h(0) = d), then
the claim is trivial.

Otherwise there exists a (possibly non-unique) ℓ ∈ {1, . . . , N} such that
deg h(ℓ) = d. We show that for every fixed choice of (νi)i ̸=ℓ ∈ SN−1, there exists
at most one νℓ ∈ S such that deg(h0(X) +

∑N
i=1 νih

(i)(X)) < d. This is clearly
enough to show the claim.

Let f(X) = h(0)(X) +
∑N

i=1,i̸=ℓ νih
(i)(X). Note f(X) + νℓh

(ℓ)(X) is the

polynomial whose degree we want to bound. Let fd, h
(ℓ)
d respectively denote the

coefficients of Xd in f(X) and h(ℓ)(X) (if deg f < d then fd = 0). Note that
h
(ℓ)
d ̸= 0. Let m(X) = fd + h

(ℓ)
d X ∈ R[X]1. There is at most one value s ∈ S

such that m(s) = 0, otherwise if m(s′) = 0 for some other s′ ∈ S, then m(X)
and 0 would be two different polynomials in R[X]1 with the same evaluations in
a set {s, s′} ⊂ S of size 2, which is impossible by Lemma 1. Therefore there is at
most one value νℓ = s in S for which the coefficient of Xd in f(X) + νℓh

(ℓ)(X)
is 0, and hence for which this polynomial can have degree less than d.

2.6 Verifiable secret sharing scheme

Definition 9 (From [BKP11, CCP22]). A (t, n)-VSS protocol is an interac-
tive protocol between n parties P1, . . . , Pn and a distinguished party, the dealer,



denoted by D and consists of two phases, a sharing phase and a reconstruction
phase, defined as follows:

1. Share: initially D holds an input x0, referred to as the secret. The sharing
phase may consist of several rounds of interaction between the parties. At
the end of the sharing phase, each honest party Pi holds a view vi that may
be used later to reconstruct the dealer’s secret.

2. Reconstruction: in this phase each party Pi publishes its entire view vi from
the sharing phase, and a reconstruction algorithm Reconstruction(v1, . . . , vn)
is run and the output is taken as the protocol output.

Definition 10. A (t, n)-VSS is secure if for every adversary that controls parties
{Pi}i∈T belonging to a subset T ⊆ [n] of size |T | ≤ t, possibly including the
dealer, it satisfies the following properties up to negligible probability.

1. Correctness. If the dealer is honest (i.e., not controlled by the adversary),
then all honest parties output x0 at the end of Reconstruction.

2. t-Privacy. If the dealer is honest, then the adversary’s view at the end of
Share reveals no information about the secret x0. In other words, the adver-
sary’s view is identically distributed for all possible secrets x0.

3. Commitment. If the dealer is dishonest (i.e. controlled by the adversary),
then at the end of Share there exists a unique value x∗

0 ∈ R ∪ {⊥} such that
at the end of Reconstruction all parties return x∗

0.

A stronger notion of VSS requires correctness, t-privacy and strong commitment
defined as follows:

3. Strong commitment. The scheme has the commitment property above and
in addition, if the dealer is dishonest, at the end of the sharing phase each
(honest) party locally outputs a share of the secret chosen only in R, such
that the joint shares output by honest parties are consistent with a specified
secret sharing scheme.

In this work we will focus on Shamir secret sharing schemes. Then the def-
inition of strong commitment means that at the end of the sharing phase, the
shares xi held by the honest parties implicitly define a polynomial f(X) ∈ R[X]t
of degree t such that f(αi) = xi.

Our constructions will actually only achieve a computational flavor of privacy.
In this case, we argue that for any two different secrets x0, x∗

0, the distributions
of the views of any adversary corrupting at most t share-receivers in respectively
a sharing of x0 and x∗

0 are computationally indistinguishable. We capture this
by stating that for any such an adversary there is a simulator that can produce
a view that is computationally indistinguishable of the sharing of any secret x0.

Definition 11. Computational t-privacy. For any adversary A corrupting
a set of parties {Pi}i∈T , with |T | ≤ t, there exists a simulator S that inter-
acts with A, playing the role of the honest dealer and honest parties {Pi}i∈[n]\T ,
such that for any x0 ∈ R, V iewA,S ≡c V iewA,Share(x0) where V iewA,S and



V iewA,Share(x0) are the random variables describing the view of A when inter-
acting with S and when interacting with the dealer and {Pi}i∈[n]\T in the sharing
phase Share of the VSS, where the dealer has input x0.

3 Distributed low-degree proofs

3.1 Interactive (non-ZK) Distributed Low-Degree Proof

We describe now a distributed (interactive) proof for the existence of a low-
degree polynomial interpolating a distributed input, under the assumption that
no more than t out of n verifiers collude. More precisely, let R be a ring, E =
{α1, . . . , αn} ⊆ R an exceptional set and d ∈ N. Consider the relation

Rd,E
lowdeg = {(x, f) : x = (x1, . . . , xn) ∈ Rn, f ∈ R[X]d−1, f(αi) = xi ∀i ∈ [n]}.

Provided each verifier Vi holds xi, with x = (x1, . . . , xn), our protocol proves
x is in the language induced by the relation above. Note we are not concerned
with zero-knowledge here, which will be addressed later in Section 3.3.

The proof is based on folding, resembling FRI [BBHR18] and [BFS20]: the
problem of showing low-degree is self-reduced at each round to an instance with
half the initial degree. Specifically, let f (k−1) be the polynomial claimed to have
degree dk−1 at the start of round k.

The prover splits f (k−1) deterministically into g
(k)
0 , g

(k)
1 , both polynomials

of degree at most dk = dk−1/2. Each verifier Vi receives an evaluation of the
two polynomials above, at a certain point which depends on αi and k.Finally,
a random challenge is sampled, and the prover proceeds recursively, showing
f (k) = g

(k)
0 +µg

(k)
1 has degree at most dk. After τ rounds, f (τ) is eventually sent

in clear. Verifiers can then recursively check the split was correctly computed,
relative to their assigned point αi, using f (τ) and the evaluations provided by
the prover. The proof is eventually accepted if all honest verifiers accept it.

As for how to split the polynomials, we consider two possibilities: the first one
used in Πd,E

lowdeg (Figure 1) consists on splitting f into high-degree and low degree
terms as in [BFS20]. If we can however further assume each of the sets E(k) =
{α2k

i : i ∈ [n]} for k ∈ {0, . . . , τ} to be exceptional (which is the case for fields)10,
we could improve on efficiency setting f (k−1)(X) = g

(k)
0 (X2) +X · g(k)1 (X2) as

done in FRI. This is especially beneficial when E is the set of 2m-th roots of unity
over a field, for some m. This second variant Πd,E

lowdeg−alt, is detailed in Figure 2.
For simplicity, we assume that d is a power of 2, but this can easily be

extended to general d, see Section 3.6. For our proof we need a large exceptional
set S in the ring R, which may overlap with E . The soundness error will be
inversely proportional to the size of S. Soundness amplification techniques are
discussed in Section 3.7. The parameter τ ≤ log d is set for flexibility, so that we
stop the recursion when the current polynomial f (τ) has degree d/2τ . Nonetheless
for asymptotics we will always consider the choice τ = Θ(log d).
10 But it may be a stronger condition on rings; as an example consider R = Z15, where
E = {2, 3} is exceptional, while E(1) = {4, 9} is not, since 9− 4 divides 0.



Protocol Πd,E
lowdeg(x, f)

n-verifier interactive proof for the relation

Rd,E
lowdeg = {(x, f) : x ∈ Rn, f ∈ R[X]d−1, f(αi) = xi ∀i ∈ [n]}

where x is distributed among n verifiers (verifier Vi having as input xi), and
E = {α1, . . . , αn} ⊆ R is an exceptional set. We assume d to be a power of
2 The proof is parametrized by τ ∈ N with τ ≤ log2 d. For k ∈ [τ ] we set
dk = d/2k. The proof requires S ⊆ R be a (large) exceptional set, which may
overlap with E . FS

coin is a coin-tossing functionality sampling and broadcasting
a random element in S on each invocation.

Interactive Protocol: The prover P sets f (0) ← f . Then for k ∈ [τ ]:

1. P computes g
(k)
0 , g

(k)
1 of degree < dk such that f (k−1) = g

(k)
0 +Xdk · g(k)1

2. P privately sends g
(k)
0 (αi), g

(k)
1 (αi) to each Vi

3. The verifiers call the coin-tossing functionality µk ←$ FS
coin with µk ∈ S

4. P computes f (k) ← g
(k)
0 + µk · g(k)1

Finally P broadcasts the polynomial f (τ)

Verification: Each Vi sets f (k)(αi) ← g
(k+1)
0 (αi) + α

dk+1

i g
(k+1)
1 (αi) for k ∈ [τ − 1]

and accepts if and only if the following checks hold:

5. deg f (τ) < d/2τ

6. xi = g
(1)
0 (αi) + α

d/2
i · g(1)1 (αi)

7. f (k)(αi) = g
(k)
0 (αi) + µk · g(k)1 (αi) for all k ∈ [τ ]

Fig. 1. Distributed low-degree proof Πd,E
lowdeg.

Theorem 1. Protocol Πd,E
lowdeg in Figure 1 is a correct distributed proof for Rd,E

lowdeg

with 1/|S|-round by round soundness against a malicious prover and up to n cor-
rupted verifiers.

Proof. Correctness is trivial to verify. Regarding soundness we explicitly describe
a doomed set D. Let T be the set of corrupted parties, H = [n] \ T and EH =

{αi}i∈H . Given a state (xi, vi)i∈H until the h-th round, we call g(k)0 , g(k)1 the
polynomials obtained interpolating the values honest verifiers receive at round k,
f = f (0) the interpolation of (xi)i∈H and f (k−1) = g

(k)
0 +Xdkg

(k)
1 for 1 < k ≤ τ ,

with µk being the k-th round challenge from Fcoin. Then such tuple of views lies
if D if and only if at least one of the following conditions is satisfied:

1. deg
(
g
(h)
0 + µhg

(h)
1

)
≥ dh.

2. f (0)(X) ̸= g
(1)
0 (X) +Xd/2 · g(1)1 (X).

3. f (k)(X) ̸= g
(k)
0 (X) + µk · g(k)1 (X) for some k ≤ h, k < τ .

If the given input does not lie in the projection of the associated language
over indices H, i.e. if there is no polynomial of degree d−1 interpolating (xi)i∈H ,



then we have (xi)i∈H ∈ D from the first condition. Next, if a complete transcript
lies in D, then conditions 2, 3 implies one verifier rejects, as they are all explicitly
checked. Conversely if the complete transcript satisfies condition 1, then either
all verifiers reject as deg f (τ) ≥ dτ or deg f (τ) < dτ . The second case however
implies f (τ)(αi) ̸= g

(τ)
0 (αi)+µτg

(τ)
1 (αi) for some αi. This is true as g(τ)0 +µτg

(τ)
1

has degree at least dτ and it is the polynomial of minimum degree taking its
values in EH since both g

(τ)
0 and g

(τ)
1 must have degree smaller than |EH | − 1.

Finally, we show escaping D is hard (condition 2 in Definition 7) Regarding
the first message, if (xi,∅)i∈H ∈ D then deg f (0) ≥ d. Thus for any messages
resulting in g

(1)
0 , g

(1)
1 , if condition 2 is not satisfied, the extended view lies in

D. If not instead, at least one of the two polynomials must have degree ≥ d/2.
By Lemma 2 we then have that for a uniformly sampled µ1 the first condition
is not satisfied with probability ≤ 1/|S|. For a transcript until the h-th round
lying in D instead, if conditions 2 and 3 are satisfied no reply can end outside
of D. Conversely if they are both not satisfied, the first one must be. The next
message then is either such that

g
(h+1)
0 (X) +Xdh/2g

(h+1)
1 ̸= g

(h)
0 + µhg

(h)
1

which implies that the third condition is false, or not, which implies that at least
one of g(h+1)

0 , g
(h+1)
1 has degree at least dh/2 = dh+1. Using again Lemma 2, we

have that their random linear combination also has degree at least dh+1 up to
probability 1/|S|. This conclude our argument for round-by-round soundness.

3.2 Improvements for Specific Rings

Assume now that, for a given exceptional set E = {α1, . . . , αn}, all the sets
E(k) = {α2k

i : αi ∈ E} for k ∈ [τ ] are exceptional and |E(k)| = 2 · |E(k+1)|. In
particular, these assumptions hold if n is a power of 2, R is a finite field F with a
primitive n-th root of unity (i.e. the multiplicative order |F| − 1 is a multiple of
n) and E is the set of all n-th roots of the unity.11 In these conditions, we present
an alternative protocol Πd,E

lowdeg-alt in Figure 2. The only difference with Πd,E
lowdeg

lies in the splitting procedure for f , now divided into even and odd powers terms.
The main advantage of this approach is that, as the domain decreases in

size, evaluating the intermediates polynomials becomes faster for the prover.
More specifically, P performs O(n/2k · log n) ring operations in round k for two
FFTs, which in total amounts to O(n log n). Looking forward, this also improves
proof size for the compiled non-interactive proof by a factor 2, see Section 3.4.

3.3 Zero-Knowledge Compiler

We now show how to turn the protocol in Fig. 1 into a distributed zero-knowledge
proof. The (standard) idea is to make the prover mask f(X) with a random low-
degree polynomial b(X). Specifically, P first shares evaluations of b(X) among
11 For instance, the scalar fields of BLS12-377 and BLS12-381 admit 2m-th roots of

unity respectively for all m ≤ 44 and m ≤ 32.



Protocol Πd,E
lowdeg-alt(x, f)

Notation as in Figure 1. E = {α1, . . . , αn} and E(k) = {α2k

1 , . . . , α2k

n } are excep-
tional for k ≤ τ . Note E = E(0). We denote α

(k)
i = α2k

i .

Interactive Protocol: As in Figure 1 up to replacing line 1 and 2 in the loop by:

1∗. P computes g(k)0 , g
(k)
1 of degree < dk so that f (k−1)(X) = g

(k)
0 (X2)+X ·g(k)1 (X2)

2∗. P privately sends g
(k)
0

(
α
(k)
i

)
, g

(k)
1

(
α
(k)
i

)
to each Vi

Verification: Each Vi sets f (k)(α
(k)
i ) ← g

(k+1)
0 (α

(k+1)
i ) + α

(k)
i g

(k+1)
1 (α

(k+1)
i ) for

k ∈ [τ − 1] and accepts iff the checks in Figure 1 hold, up to replacing line 6 with:

6∗. xi = g
(1)
0 (α2

i ) + αi · g(1)1 (α2
i )

Fig. 2. Distributed low-degree proof with alternative splitting Πd,E
lowdeg-alt.

the verifiers, and later shows b(X) + µ0 · f(X), for a randomly sampled µ0, to
have low degree. The protocol is detailed in Fig. 3.

Protocol Πd,E
dZKlowdeg(x, f)

n-verifier interactive proof for the relation Rd,E
lowdeg. Notation is as in Figure 1.

Π is a (non-zk) distributed proof for Rd,E
lowdeg.

Interactive Protocol:
1. P samples b←$ R[X]d−1 and privately sends bi ← b(αi) to Vi

2. The verifiers call the random coin functionality µ0 ←$ FS
coin

3. All parties execute Π: P with input b(X)+µ0 ·f(X), Vi with input b(αi)+µ0 ·xi

Verification: Each verifier Vi accepts if and only if its execution of Π is accepting.

Fig. 3. Zero-knowledge distributed proof of low-degree.

Theorem 2. Let Π be a correct distributed proof for Rd,E
lowdeg with ε-round by

round soundness against any number of corruptions. Then Πd,E
dZKlowdeg (Figure 3)

is a correct distributed proof for the same relation with max(ε, 1/|S|)-round by
round soundness and perfect zero-knowledge against any number of corruptions.

We include a proof in Appendix A.1.

Remark 1. Applying either of our distributed proof for low-degree to the protocol
in Figure 3 yields a perfect zero-knowledge proof with round-by-round soundness
error 1/|S|.



3.4 Removing Interaction in the ROM

In this Section we describe a generic Fiat-Shamir like compiler for distributed
proofs in the Random Oracle Model (ROM). This is essentially an adaptation
of the one presented in [BCS16] to the distributed setting.

At a high level, let Π be a public-coin τ -rounds distributed protocol. That
is, one where verifiers can only invoke Fcoin at the end of each round, and decide
whether to accept or not based on their view after the protocol ends. Given
such Π and random oracle H the non-interactive protocol works as follows. The
prover internally simulates Π. At the end of round k, it collects the message Mk

it wishes to broadcast and mk,i the message it would have privately sent to Vi.
Then it computes ck as a commitment to the vector of all mk,i, i ∈ [n], and
obtain its next challenge µk (i.e. the expected output of Fcoin) as the hash of
all the commitments cj and virtually broadcast message Mj computed so far.
When Π halts, P broadcasts all ck,Mk and privately sends mk,i to Vi along with
opening information. Finally, verifiers accept if all openings are correct and if
the transcript is accepting. A detailed description is provided in Figure 4.

FS-like Compiler FS [Π] (x,w)

H is a random oracle. MT is a Merkle tree vector commitment realized with H.
Π is a τ rounds distributed proof for relation R.

Interactive Protocol: The prover P performs the following:

1. Computes (c0, aux0)← MT.Com(pp, x) commitment to the distributed input
2. op0,i ← MT.Open(pp, i, aux0) openings of c0
3. Internally runs Π on input (x,w)

4. For k ∈ [τ ], at the end of the k-th round:
5. Let mk,i be the messages it would have privately sent to Vi

6. Let Mk be the message it would have broadcast
7. ck, auxk ← MT.Com(pp,mk,1, . . . ,mk,n), commitment to private messages
8. opk,i ← MT.Open(pp, i, auxk), opening of ck in position i

9. µk ← H(c0, c1,M1, . . . , ck,Mk) and set it as the output of Fcoin in Π

10. When the execution of Π terminates sets:
11. π ← (c0, c1,M1, . . . , cτ ,Mτ ) and πi ← (op0,i,m1,i, op1,i, . . . ,mτ,i, opτ,i)

12. Broadcast π and privately send πi to Vi

Verification: Each verifier Vi retrieves c0, op0,i and Mk,mi,k, ck, opk,i for k ∈ [τ ]
from (π, πi). Next it computes µk as done in Line 9, and accepts if and only if

13. 1 = MT.Vfy(pp, c0, xi, i, op0,i)

14. 1 = MT.Vfy(pp, ck,mk,i, i, opk,i) for all k ∈ [τ ]

15. Its local view (xi,m1,i,M1, µ1, . . . ,mτ,i,Mτ , µτ ) is accepting according to Π

Fig. 4. Generic Fiat-Shamir like compiler for distributed proofs.



Theorem 3. Let Π be a correct τ -rounds distributed proof for R with ε-round
by round soundness against up to t verifiers. Then FS [Π] is correct and ε′-
sound for adaptively chosen inputs in the ROM against a q-query adversary A
corrupting up to t verifiers, where

ε′ = (q + τ)ε + (2q2)/2λ.

In order to preserve zero-knowledge a necessary condition is for the used MT
commitment to be hiding (see Section 2.3). Let then FSzk be the compiler FS up
to replacing MT with hiding MT. This can be shown to preserve zero-knowledge.

Theorem 4. Let Π be a public-coin zero-knowledge distributed proof for R
against t malicious verifiers. Then FSzk [Π] is computationally zero-knowledge
in the ROM against t malicious verifiers.

We include the proofs of Theorems 3 and 4 in Appendix A.2.

3.5 Efficiency

Following are the asymptotic costs of protocols in Figure 1-2 made ZK (Figure 3)
and then non-interactive via FSzk (Figure 4). We set τ = Θ(log d) and assume
that the points αi were pre-assigned to the respective verifier.

Communication. In the general ring setting, the prover broadcasts Θ(log d) hash
values (the MT roots) and d 2−τ = Θ(1) ring elements. It further privately
communicates Θ(log n · log d) hash values and Θ(log d) ring elements. For rings
supporting the alternative protocol instead, private communication involves only
≤ (τ + 1) log n− 1/2 · τ2 hashes. For d ≈ n those are roughly half as before.

Verifier Computation. Each verifier performs O(log d) operations12 in R for
checks 6-7 (Figure 1) and O(log d · log n) hash evaluations to check the MT
openings. As before, the second protocol requires about half hash evaluations
for d ≈ n.

Prover computation. Here the computation is dominated by the evaluations of
intermediate polynomials in over E . Without additional assumptions, Hörner’s
method allows evaluating in O(nd) ring operations13. If we can use FFTs then
computation is reduced to O(n log n log d). Finally, if the alternative protocol is
used, this is further reduced to O(n log d) ring operations as we perform 2 FFTs
evaluation on a domain of size n/2k for a degree d/2k polynomial, for 0 ≤ k ≤ τ .

In addition to the above, the basic protocol requires O(n log n) hash evalua-
tions, whereas the alternative one only requires O(n).

12 Assuming α
(k)
i = α2k

i was precomputed.
13 Here we are using the fact that each evaluation of a polynomial of degree dk would

take O(dk) operations in R, and
∑τ

k=0 dk =
∑τ

k=0 d/2
k < 2d.



3.6 Dealing with any Degree d

The protocols in Figure 1 and Figure 2 can be extended to deal with the case
where d is not a power of 2, as follows. Let d1 be the largest power of two strictly
smaller than d, and dk = d1/2

k−1, for k ≥ 1. Modify then the first loop iteration
for k = 1 computing g

(1)
0 , g(1)1 such that f (0)(X) = g

(1)
0 (X) + Xd−d1g

(1)
1 (X),

with the degree conditions deg g
(1)
0 (X) < d − d1, deg g

(1)
1 (X) < d1 (we use this

splitting for the first step even in the case of Figure 2)
From there on all successive steps hold in the same way (with the small

change that check 1 by the verifier should be that deg f (τ) < d1/2
τ−1). It is easy

to see that Theorem 1 would still hold.

3.7 Soundness Amplification

All our interactive constructions have round-by-round soundness error 1/|S|,
where S is the largest exceptional set in R, thus requiring S to be exponentially
large in λ. Note however that there is in principle no guarantee such S exists:
indeed, while the relation Rd,E

lowdeg requires the existence of an exceptional set E ,
this only needs to be of size n, which is not enough by itself.

Unfortunately, parallel repetitions of (FS-compiled) multi-round proofs may
not amplify soundness efficiently [AFK22]. For this reason we show a simple way
to improve soundness assuming a ring extension R ⊆ R′ with an exponentially
large exceptional set S′ ⊆ R′ is known. The idea is to execute the protocol
in Figure 1 replacing R by R′ and with S′ playing the role of S. However,
while this guarantees soundness, it only shows, in principle, the existence of a
witness f ∈ R′[X] but not in R[X]. Nevertheless, provided each party also checks
f(αi) ∈ R, this is sufficient as the following lemma shows.

Lemma 3. Let d, n be positive integers, R a ring with an exceptional set E =
{α1, . . . , αn} and extension R ⊆ R′ and call EH = {αi : i ∈ H} ⊂ E for a given
subset H ⊆ [n] of size m. Finally let xi ∈ R for all i ∈ H. If there exists a
polynomial f ′ ∈ R′[X]d−1 with f ′(αi) = xi for all i ∈ H, then there exists a
polynomial f ∈ R[X]d−1 with f(αi) = xi for i ∈ H. Moreover d < m ⇒ f = f ′.

Proof. First, by Lemma 1, since EH is exceptional and contained in R, we know
there is a polynomial f ∈ R[X] of degree ≤ m − 1 such that f(αi) = xi for
i ∈ H. If d ≥ m we are done. Assume then that d < m. Note that f is also in
R′[X], hence f and f ′ are two polynomials in R′[X] with f(αi) = f ′(αi) for i in
H. Since they are both polynomials of degree ≤ m − 1 (because we are in the
case d < m) then Lemma 1 guarantees f = f ′ and therefore f ∈ R[X]d−1.

For the simple and commonly encountered case of R = Zpk such extension
consists of the Galois ring R′ = GR(pk, r) for extension degree r = λ/ log p.
Indeed, it is well known that GR(pk, r) contains an exceptional set of pr elements
[BCFK21].



4 Verifiable Secret Sharing

4.1 Verifiable Secret Sharing Scheme

In this section we construct a VSS (see Definition 10) starting from the non-
interactive distributed proof from the previous section. Our VSS supports Shamir
secret sharing of elements in a ring R among n users, as long as there exists an
exceptional set E∗ = {α0, α1, . . . , αn} ⊆ R of size at least n+1. We also assume
a large S ⊆ R exceptional set to instantiate the non-interactive distributed
proof in Section 3 with high soundness. Otherwise the techniques presented in
Section 3.7 could be used.

At a high level, following [ABCP23], our VSS is obtained combining a (non-
interactive) distributed proof of low degree with a complaining phase. The shar-
ing phase consists of three rounds. In the first round, the dealer computes shares
xi of a secret x0 along with a distributed proof (π, π1, . . . , πn) of low degreeness.
It then broadcasts π and privately sends each proof piece to the corresponding
verifier. Next, in the second round, every user checks the received proof and, if
incorrect or missing, broadcasts a complain bit. Finally, in case of complaints,
there is a third round where the dealer publicly broadcasts the share and proof
of each complaining users, which all parties locally verify.

In order to reconstruct, users simply broadcast their (local) views. If the
dealer was previously disqualified14, then parties agree on 0 being the final se-
cret. Otherwise, each party collects the shares xj sent with an accepting proof,
computes f(X) ∈ R[X]t interpolating them, and obtains the secret x0 = f(α0).
The full protocol is detailed in Figure 5.

Theorem 5. Suppose 2t + 1 ≤ n and Π is a non-interactive ZK distributed
proof with ε-adaptive soundness, with negligible ε. Then the protocol in Figure 5
is a VSS satisfying correctness, t-privacy and strong commitment in the ROM.

Proof. We prove each property separately.

Correctness. Assuming the dealer is honest, let A be an adversary corrupting
T verifiers. Let B be an adversary playing against the soundness game of the
distributed ZKP. Specifically, B will start the protocol and play the role of the
honest parties, until the reconstruction phase, where it picks an index i uniformly
at random from the parties in [n] \ H that output an accepting view. Then it
outputs the partial proof πi along with the public part of the proof πpub.

Note that the dealer cannot be disqualified at the end of the sharing phase
and in case of complaints from corrupt parties it will output views that are going
to be accepted by the correctness of the distributed ZKP. Therefore the only step
where correctness might fail is in the reconstruction, in the event that a corrupt
party opens an incorrect view that passes verification. More specifically, call E the
event that at least one party Pi controlled by the adversary A outputs an incor-
rect view that verifies in the reconstruction phase. If E happens then B will pick
14 This may happen if the dealer addressed a complaint by broadcasting an incorrect

proof.



Verifiable Secret Sharing scheme
(t, n)-VSS for sharing a secret x0 ∈ R. We assume E∗ = {α0, α1, . . . , αn} ⊆
R is an exceptional set, call E = {α1, . . . , αn} and let S ⊆ R be the largest
exceptional subset. We call Π = FSzk

[
Πt+1,E

dZKlowdeg

]
. See Sections 3.3-3.4.

Share: Let x0 ∈ R be the secret to be shared.

– First Round. The dealer proceeds as follows:
1. Sample a uniformly random f(X)←$ R[X]t such that f(α0) = x0

2. Set xi := f(αi) the i-th user’s share, for i ∈ [n]

3. Run Π on input (x, f) where x = (xi)i∈[n] and get π, (πi)i∈[n].
4. Broadcast π and privately send (xi, πi) to Vi

– Second Round. Each user Pi, upon receiving xi and π, πi, verifies its proof
running Π as the i-th verifier. If it rejects, Pi broadcasts a complaint bit.

– Third Round. For each complaining Pj , the dealer broadcasts (xj , πj).
– Finalization. If all broadcast πj are accepting, the protocol continues as normal

(Pi with share xi). Otherwise, parties disqualify the dealer and set their share
to the default value 0.

Reconstruction: To reconstruct the secret x0, parties proceed in one round as follows:

– Each party Pi broadcasts its local view (xi, πi) from the sharing phase
– Each party Pi performs Lagrange interpolation on values xj with an accepting

proof (π, πj), and returns the evaluation of such polynomial in α0.

Fig. 5. Verifiable Secret Sharing from non-interactive distributed ZKP.

the corresponding view with probability at least 1
t . Thus the advantage of B in

winning the soundness game is bounded by 1
tPr [E]. If the event E does not hap-

pen, then all parties output correct views that by the property of correctness of
the distributed ZKP are accepted and thus honest parties are able to reconstruct
the correct share with probability 1, hence A does not win the game against the
correctness of the VSS. This means that Advcorr

VSS(A) ≤ Pr [E] ≤ tAdvsnd
dZKP(B).

t-Privacy. Given an adversary A corrupting parties {Pi}i∈T for some T ⊆ [n]
with |T | ≤ t, we describe a simulator S playing the role of the honest parties.
First, let SΠ be a simulator for Π against an adversary corrupting T parties15
Then, S initially samples uniformly randomly xi ←$ R[X]t for i ∈ T . Next, it
computes (π, πi) executing SΠ on input (xi)i∈T , and proceed sending (π, xi, πi)
to corrupted parties. In case of complaints by a corrupted Pi, S broadcasts its
local view (xi, πi). For all x0, we show the resulting transcript to be indistin-
guishable form one obtained through Share with secret x0 using a sequence of
hybrid distributions.

15 In a non-interactive distributed proof, an adversary’s behavior is fully determined
by the set of parties it corrupts.



– D1: The distribution of corrupted parties’ transcripts when A interacts with
S as above.

– D2: As D1 but S computes xi = f(αi) for f ←$ R[X]t such that f(α0) = x0.
– D3: The distribution of corrupted parties’ transcripts when A interacts with

a dealer using Share on input x0.

D1 and D2 follow the same distribution because (by Lemma 1) |T | ≤ t implies
that (f(αi))i∈T is a uniformly random vector in R|T | when f is a random poly-
nomial such that f(α0) = x0. On the other hand, the difference between D2 and
D3 is that in the former the simulator SΠ for Π is used while the latter uses
the actual proof Π, but we know the transcripts are indistinguishable by the
zero-knowledge property of Π.

Strong Commitment. If the malicious dealer gets disqualified for broadcasting
an incorrect proof in the third round, all honest players set their own share to
0. Moreover, in the reconstruction phase they always return 0. Thus in this case
strong commitment holds perfectly.

Conversely, if the dealer is not disqualified, each honest user ends Share with
share xi and accepting proof πi. As we assumed n ≥ 2t + 1, then H = [n] \ T
has size |H| ≥ t + 1. From ε-soundness we have that, up to probability ε, the
shares xi are the evaluation of a (unique) polynomial f(X) of degree ≤ t, which
identifies a unique secret x0 = f(α0).

Next, during the reconstruction phase, let Badj for j ∈ T be the event in
which Pj broadcast (xj , πj) where πj is accepting but f(αj) ̸= xj . We then
argue Pr [Badj ] ≤ ε. Indeed, consider Ai an adversary for the adaptive-input
soundness of Π which corrupts users in T \ {j}. Initially, in runs the t-privacy
adversary which return π, (xi, πi)i∈H . Next, it correctly simulates an execution
of Reconstruct with the same adversary from which it retrieves (xj , πj). If all
partial proofs verifier correctly, it returns (xi)i∈H∪{j} and proof π, (πi)i∈H∪{j}.
If all proofs are accepting but Badj occurs, then A violates adaptive soundness.
Thus Pr [Badj ] ≤ ε.

Finally, setting Bad = ∨j∈TBadj we have that Pr [Bad] ≤ tε by a union
bound. Assuming ¬Bad instead, we have that all xj with an accepting proof are
such that f(αj) = xj . Thus, regardless of the chosen interpolation set, all honest
parties recover f during Reconstruct and in particular they all return x0 = f(α0).

4.2 Optimizations

We now detail two optimizations to the VSS scheme presented in the previous
section.

Path-pruning. In the third round of the sharing protocol, assume parties Pi for
i ∈ T with |T | = ϑ issued a complain. Naïvely broadcasting each complain-
ing user’s proof would require Oη(ϑ log(n)2) communication, with η being the
hash output length. This however includes several repeated hash values, as we
authenticate every path for every index in T individually. Removing redundant



values allows opening a MT of n leaves in O(ϑ log(n/ϑ)) hashes ([NNL01], see
Section B for a proof). This implies that over arbitrary rings, the complain phase
involves the communication of O(ϑ log(n/ϑ) log(n)) hashes (which is in particu-
lar O(n log n)). Conversely, over rings where the protocol in Figure 2 can be used,
the k-th MT only involves n · 2−k leaves. This implies that with path-pruning
communication is bounded by O(ϑ log(n/ϑ)2) which is in particular O(n).

Two-rounds reconstruction. Since each proof has size O(log(n)2), in order to
avoid a broadcast complexity of O(n log(n)2) we could split the reconstruction
phase in two. Initially all parties broadcast their share. Next, they check whether
there exists a polynomial of degree t which interpolates those values. This can
be checked probabilistically in linear time [CD17]. Finally, all parties broadcast
their local proofs as in the previous protocol.

In spite of the possible fall back to an O(n log(n)2) sized broadcast, this only
occurs when at least one actively malicious user is identified. Such case could
then be mitigated through incentives/stake, although analyzing such option in
detail is outside of our scope.

4.3 Efficiency

In light of the optimizations previously discussed, we now detail the overall
sharing costs of our VSS. We call η the hash output length, ρ = log2 |R|. In the
optimistic case in which no complaint is raised we have:

– Communication. The dealer needs to broadcast Oη(log(n))+Oρ(1) bits and
privately send Oη(log(n)

2) +Oρ(log(n)) bits to each user.
– Dealer computation. This is dominated by the proof cost, which amounts

to O(n log(n)2) and O(n log n) ring operations, when using respectively the
protocol in Figure 1 or Figure 2.

– Parties computation. Each party needs to do O(log(n)) ring operations and
O(log(n)2) hash evaluations to check the openings of the commitments they
received.

Next, we study the overhead induced by ϑ complains in the sharing phase.
We remark verification time remains sub-linear as long as ϑ = o(n/ log(n)2).

– Communication. Using path-pruning, Protocol 1 requires Oµ(ϑ log(n/ϑ) log n)+
Oρ(ϑ) extra broadcast communication, there the first term is Oµ(n log n) in
the worst case. Conversely, Protocol 2 requires Oµ(ϑ log(n/ϑ)2)+Oρ(ϑ) ad-
ditional bits, where the first term is Oµ(n) in the worst case.

– Dealer computation. The dealer costs remains the same asymptotically.
– Parties computation. Each party needs to do extra O(ϑ log(n/ϑ) log(n)) hash

evaluations (respectively O(ϑ log(n/ϑ)2) using protocol 2) and O(ϑ) ring
operations.
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A Postponed Proofs

A.1 Adding Zero-Knowledge

Proof of Theorem 2. Correctness follows from Π. Next we show soundness and
zero-knowledge.

Round-by-Round Soundness. Let D be a set of doomed states for Π realizing
ε-round-by-round soundness. Then define D′ set of states for the protocol in
Figure 3 such that, for any set H of non corrupted parties (with associated
points EH = {αi}i∈H)

1. (xi,∅)i∈H ∈ D′ iff f interpolating xi over EH has deg f ≥ d.
2. (xi, bi, µ0, vi)i∈H ∈ D′ iff (bi + µ0xi, vi)i∈H ∈ D, where vi could be empty.

Is easy to verify that an input not lying in the projection of the associated
language of Rd,E

lowdeg satisfies the condition 1. Similarly, a complete state in D′

is by condition 2 such that its sub-proof of low-degree for b + µ0f lies in the
doomed set D. Thus by Definition 7 Π rejects and so does our protocol for some
verifier.

Finally we show escaping D′ is hard. Indeed, by Lemma 2, if deg f(X) ≥ d,
regardless of the degree of b(X), with b(X) being the interpolation of bi over EH
of (bi)i∈H , their random linear combination has degree at least d with probability
1 − 1/|S|. In such case moreover (bi + µ0xi)i∈H does not lie in the projection
of the associated language Rd,E

lowdeg. Thus (xi, bi, µ0)i∈H ∈ D. Conversely, non-
initial states lie in D′ only if condition 2 is satisfied, and in particular only if the
sub-view lies in D. Thus the probability it does not lie in D′ upon adding the
next message and challenge is smaller than ε.

Strong Zero-Knowledge. Let T be the set of malicious verifiers. The simulator
Sim takes as input the shares (xi)i∈T corresponding to the dishonest parties.
First, it chooses a polynomial f∗(X) of degree < d such that f(αi) = xi for i ∈ T .
This can be done because the distributed input lies in the associated language
of Rd,E

lowdeg. Next it samples µ0 ←$ S, the output of FS
coin, and r(X)←$ R[x]d−1.

Finally it sets b(X) = r(X)−µ0f(X), and proceeds correctly executing Π giving
r on input to the prover. Eventually Sim returns (b(αi))i∈T , µ0 and the view of
each malicious verifier during the execution of Π.



The output of Sim follows the same distribution of the adversary’s view in the
real protocol. Indeed, as r is uniform, b = r−µ0f

∗ is uniformly distributed over
R[X]d−1, as in the real protocol. Moreover, conditioning on b, in both worlds
the execution of Π is performed with a prover holding r that is a uniformly
distributed polynomial satisfying r(αi) = b(αi) + µ0xi for all i ∈ T . Thus the
views of malicious parties executing Π follows the same distribution conditioning
on µ0 and b This concludes the proof.

A.2 Non-Interactive Case

Proof of Theorem 3. Correctness readily follows from that of Σ. Regarding sound-
ness, let T be the set of corrupted parties indices and H = [n] \ T , and A an
adversary corrupting parties in T . At the end of A’s execution, let z1, . . . , zq be
the values it queries to H. Calling Coll the event that two distinct zi, zj collide,
then Pr [Coll] ≤ q2/2λ assuming H outputs λ bits. Next let π and (xi, πi)i∈H

the values returned by A, where π = (c0, c1,M1, . . . , cτ ,Mτ ) and πi = (op0,i,
m1,i, op1,i, . . . ,mτ,i, opτ,i). Up to increasing the number of queries by τ , we can
assume A queried before halting µk ← H(c0, c1,M1, . . . , ck,Mk). Moreover we
assume without loss of generality A does not repeat queries.

Next we argue A must know an opening for ck for all honest parties’ in-
dices before computing µk. Let BadMTk the event in which, given all previous
RO queries before computing µk, an opening of ck to position i is not known.
Assuming ¬Coll we show this to happen with negligible probability if (π, πi) is
accepting. Indeed, let h1, . . . , hℓ, h

∗
ℓ be the longest co-path for position i that

can be observed among A’s queries before obtaining µk. I.e. such that (up to
adjusting the order of H’s inputs to match the bit representation of i)

h∗
ℓ−1 = H(h∗

ℓ ||hℓ), . . . h∗
1 = H(h∗

2 ||h2), ck = H(h∗
1 ||h1)

Note this is unique thanks to ¬Coll. If the proof is accepting, A eventually
provides a full path to mi,k and in particular finds a preimage for h∗

ℓ , which
occurs only with probability q · 2−λ. Let BadMT = BadMT0 ∨ . . .∨BadMTτ and
Accept the event in which π, (xi, πi)i∈H is accepted by all verifier. With a union
bound we obtain

Pr [Accept, BadMT, ¬Coll] ≤ q(τ + 1)

2λ
≤ q2

2λ
.

Finally we study the probability of Accept when (xi)i∈H cannot be extended to
an input in the language. By ε-round by round soundness there exists a set D of
doomed views satisfying Definition 7. Then we define Escapej the event in which
the j-th RO query produces a state not in D from one in D. Formally Escapej
is the event in which for some index h ∈ [τ ]

1. The j-th query is µ′
h = H(c′0, c′1,M ′

1, . . . , c
′
h,M

′
h).

2. c′k is a MT s.t. the first j RO queries define an opening to m′
k,i in position

i ∈ H, for all k ∈ [h].



3. µ′
k = H(c′0, c′1,M ′

1, . . . , c
′
k,M

′
k) for k ∈ [h].

4. vi = (m′
1,i,M

′
1, µ

′
1, . . . ,m

′
h−1,i,M

′
h−1, µ

′
h−1) the view of Vi until round h−1.

5. (xi, vi)i∈H ∈ D.
6. (xi, vi,m

′
h,i,M

′
h, µ

′
h) /∈ D, i.e. escapes D at round h.

Note that if ¬Coll all those values are unique. Moreover, by condition 1 and 2,
µ′
k is sampled uniformly and independently from all messages m′

k,i,M
′
i , as they

figure in previous RO queries. Thus, the probability that the extended views lie
outside of D (conditions 5-6) is smaller that ε.

Pr
[
Escapej , ¬Coll

]
≤ ε. ⇒ Pr [Escape, ¬Coll] ≤ q · ε

where Escape is the disjunction of all Escapej for j ∈ [q]. Combining the three
bounds obtained so far

Pr [Accept] ≤ Pr [Accept, ¬Coll] + q

2λ

≤ Pr [Accept, ¬BadMT, ¬Coll] + 2q2

2λ

≤ Pr [Accept, ¬Escape, ¬BadMT, ¬Coll] + q · ε+ 2q2

2λ
.

To conclude we show the first term in the last expression to be 0. We do so
showing by induction that, calling vk,i = (m1,i,M1, µ1, . . . ,mk,i,Mk, µk), we
have (xi, vk,i) ∈ D. The base case (xi,∅)i∈H ∈ D follows by Definition 7 as
the distributed input chosen by A cannot lie in the projection of the associated
language. Next, assuming the thesis for k, we have that (xi, vk,i) ∈ D and, as
we assumed ¬BadMT, the condition 2 is satisfied. Therefore, the assumption
¬Escape implies that 6 must be false and in particular (xi, vk+1,i)i∈H ∈ D We
thus conclude the list of final transcripts to be in D which, by Definition 7 implies
that at least one verifier rejects. The thesis follows.

Proof of Theorem 4. For the sake of presentation we proceed assuming MT is a
hiding VC [Giu23], which readily follows as H(x, r) is a computationally hiding
commitment to x.

Let A an adversary for FSzk [Π] corrupting parties in T ⊆ [n]. Because Π is
zero-knowledge, there exists a simulator S against an adversary which corrupts
all verifiers in the same set T , but which during the execution of the interactive
protocol behaves honestly.

We can then define T simulator for A. Initially it executes S to get the simu-
lated views (xi, vi)i∈T of each party. It then parses vi = (m1,i,M1, µ1, . . . ,mτ,i,
Mτ , µτ ). Next, it generates the vectors x,mk setting them to 0 in position asso-
ciated to honest users, and xi,mk,i for malicious ones, i.e. for i ∈ T . With them
it computes c0, ck hiding-MT commitments to x,mk and opk,i their respective
openings. Finally it programs H(c0, c1,M1, . . . , ck,Mk) = µk and sets

π = (c0, c1,M1, . . . , cτ ,Mτ ), πi = (op0,i,m1,i, op1,i, . . . ,mτ,i, opτ,i).

To conclude we proceed through an hybrid argument for distributions D1, D2, D3

where:



D1: The output distribution of T .
D2: The output of T replacing (xi, vi)i∈T = V iewΠ⋆,T (x,w).
D3: The view with an honest prover V iewFSzk[Π]⋆,T (x,w).

Distinguishing D1, D2 reduces to distinguishing between the simulator S’s out-
put and the honest view of its adversary. Regarding D2, D3 instead, their only
differences are the values used in c0, . . . , cτ for honest indices, i.e. i /∈ T . However,
as no opening for those positions is provided in both distributions, the two are
indistinguishable (through a standard sequence of τ + 1 hybrids) by the hiding
property of the VC in use. This concludes the proof.

B Merkle Trees

In this section we discuss the opening size of a Merkle-tree when several positions
are opened at once (see for instance [BCR+19, CG22]). Specifically, we assume
c to be a MT commitment to n leaves, with n power of 2, and ask how many
hash values are necessary to open positions S ⊆ [n] with |S| = ϑ. Eventually
we upper-bound the opening size with ϑ ⌈log n/ϑ⌉ hash values, along with the
content of those ϑ leaves, in the worst case. As a stepping stone, a preliminary
lower bound is presented in the following Lemma, only mildly improving on
the trivial one ϑ log n. There, we denote Sign the sign function, which is −1 for
negative input, 0 on input 0, and 1 for positive values.

Lemma 4. Given a MT-commitment to n leaves, n a power of 2, and calling π
a minimal opening for positions S ⊆ [n] with |S| = ϑ, then

|π| · η−1 ≤ ϑ(log(n)− 1) + Sign(ϑ)

with η being the hash function output length.

Proof. If ϑ = 0, no hash has to be sent, and the above expression evaluates to 0.
If ϑ = 1, the cost is log(n) hashes regardless of the position. Finally, for ϑ ≥ 1,
given a co-path for the first element in S, we can compute both left and right
preimage of the root. Hence, openings for the remaining elements in S are either
opening of the left or right sub-tree, both of which have n/2 leaves. Thus those
ϑ− 1 remaining entries can be opened with log n− 1 hashes and in conclusion

|π| · η−1 ≤ ϑ+ (ϑ− 1)(log(n)− 1) = ϑ(log(n)− 1) + Sign(ϑ).

Next, using this Lemma, we will show a tighter bound on the opening size.

Theorem 6. Given a MT-commitment to n leaves, n a power of 2, and calling
π a minimal opening for positions S ⊆ [n] with |S| = ϑ, then

|π| · η−1 ≤ ϑ ⌈log(n/ϑ)⌉ .

with η being the hash output length.



Proof. The proofs works dividing the Merkle-tree into α sub-trees each with
n/α leaves, where α is a power of two. Next, to provide an upper-bound to the
opening cost, we assume all those α sub-trees as opened individually. Note that
for those sub-trees containing a leaf i ∈ S, their root does not need to be given in
the opening, as it can be computed from the co-path for position i. Conversely,
the roots those sub-tree with no opened positions have to be (pessimistically)
added to the proof. Thus, calling ϑi the number of leaves S contains in the i-th
sub-tree, for i ∈ [α], we have that the cost of opening such i-th sub-tree is

ci · η−1 ≤ ϑi(log(n/α)− 1) + Sign(ϑi) + (1− Signϑi)

= ϑi log(n/α)− ϑi + 1.

The first term in the above expression follows from Lemma 4, while the term
(1− Signϑi) accounts for the root of the sub-tree, given only if ϑi = 0. Finally,
the total opening cost is smaller than the sum of those terms:

|π| · η−1 ≤
α∑

i=1

ci · η−1 ≤
α∑

i=1

(ϑi log(n/α)− ϑi + 1)

= ϑ log(n/α)− ϑ+ α.

Finally setting α as the largest power of 2 such that α ≤ ϑ, we get that
log(n/α) = ⌈log(n/ϑ)⌉ and in particular |π| · η−1 ≤ ϑ⌈log(n/ϑ)⌉.
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