
A new stand-alone MAC construct called SMAC

Dachao Wang1, Alexander Maximov2, Patrik Ekdahl2, and Thomas Johansson1

1 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
dachao.wang,thomas.johansson@eit.lth.se

2 Ericsson Research, Lund, Sweden
alexander.maximov,patrik.ekdahl@ericsson.com

Abstract. In this paper, we present a new efficient stand-alone MAC
construct based on processing using the FSM part of the stream cipher
family SNOW, which in turn uses the AES round function. It offers a
combination of very high speed in software and hardware with a truncat-
able tag. Three concrete versions of SMAC are proposed with different
security levels, although other use cases are also possible. For example,
SMAC can be combined with an external ciphering engine in AEAD
mode. Every design choice is justified and supported by the results of
our analysis and simulations. We also provide an aggregated mode ver-
sion SMAC-1×n whose performance in software reaches up to 925 Gbps
(around 0.038 cpb) for long messages in a single thread. A novelty of
the proposal is that it meets future performance requirements but is
still not directly vulnerable to attacks using repeated nonce when the
tag size is short, as is the case for other very fast MACs (MACs based
on polynomial hashing). This can be an important aspect in practical
applications.

Keywords: MAC · SNOW · AES

1 Introduction

A Message Authentication Code (MAC) is a standard symmetric primitive for
two parties that share a secret key to verify that a received message originates
from the sending party and that it was not modified by an attacker when sent on
a possibly insecure channel. Traditionally, most existing MACs are built either
from a block cipher or from cryptographic hash functions. Common examples
of constructs based on block ciphers are CBC-MAC and CMAC [IK03]. A com-
mon hash-based construct is HMAC [BCK96]. Another common direction is to
use universal hash functions (or equivalently unconditionally secure authentica-
tion codes [BJKS94]) as a basis for constructs, resulting in schemes like UMAC
[BHK+99], Poly1305-AES [Ber05] and GMAC [Dwo07].

The speed of our communication systems is increasing rapidly. 6G (sixth-
generation mobile) is the successor to the current 5G cellular technology, ex-
pected to be in use beyond 2030. 6G networks will use higher frequencies than
5G networks and provide substantially higher capacity together with a much



2 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

lower latency. 5G is delivering up to 20 Gbps peak data rates and more than 100
Mbps average data rates. 6G is expected to be a factor up to 100 faster than
5G [Eri24]. The protection of data in 5G and 6G requires very fast cryptographic
primitives and the possibility to implement them in a low-latency manner both
in software and hardware.

Along with virtualisation trends and faster performance requirements, there
is also a need for truncatable secure tags, which is important for many practical
use cases. For example, the 4G/5G radio link layers mostly use 32-bit tags,
transport and application layers commonly use 64-bit tags, and 80-bit tags are
used in media applications [CMM23], etc.

CMAC and HMAC. Well-known constructs such as HMAC and CMAC
are both slow in software (see e.g. our own measurements in Table 8). Consider,
for example, AES-CMAC [SLI05]. In terms of hardware reuse and sharing com-
ponents this seems like a good option, but performance wise it is a slow solution
as it needs at least 10 sequential calls to AES round function to process one
message block with a 128-bit key, and even more rounds with a 256-bit key.
AEAD schemes that use AES-CMAC as the MAC engine are considered slow
for virtualisation needs. Hash-based constructs appear to be too slow as well.

Polynomial-based MACs. The known fast algorithms are based on poly-
nomial evaluations such as GCM/GMAC, Poly1305, etc. Consider AES-GCM
based on GHASH [Dwo07], which can in turn be parallelised for a faster per-
formance. However, GCM produces a 128-bit tag but its security level is upper
bounded by 2τ−k−1, where τ is the length of the tag in bits, and the combined
plaintext and associated data are of maximum length 2k words. Thus, the secu-
rity of GCM is only around 96 bits while the tag cannot be truncated [MW16]
and should be kept as 128-bit long. Moreover, the GHASH core in hardware can
be large in terms of the number of gates.

As we describe later, most polynomial-based MACs seem not suitable to
produce short tags as they become directly vulnerable to nonce-misuse types
of attacks even if the nonce is respected. A possible solution to make them
truncatable is to adopt e.g. Hash-then-Encrypt, such as the CWC [KVW04]
mode of operation for block ciphers that relies on CTR mode for encryption with
polynomial Carter–Wegman MAC. CWC-AES uses a polynomial evaluation at
a secret point, like in GCM, then encrypts that result with AES, the output of
which is finally truncated and produced as the MAC tag. The main downside of
CWC mode is that it requires a block cipher for the tag encryption, whereas a
stream cipher cannot be used for this step. Such a construct may be seen as a
too heavy solution to serve as a stand-alone MAC engine.

A general weakness of polynomial-based MACs (including GCM and CWC)
is that the algebraic structure opens up for a variety of attacks such as weak
keys, summarised in [PC14]. There also exist other MAC schemes that are based
on polynomial hashing to go beyond the birthday bound while many of them
are also vulnerable to forgery attacks, see [SSW23] for a summary.

It seems that one of the advantages of polynomial-based MACs is the possibil-
ity to parallelise the computation and thus achieve a faster speed. However, the



A new stand-alone MAC construct called SMAC 3

Accordion mode discussed by NIST [NIS24b] turns non-parallelisable primitives
to be parallelisable, thus that advantage diminishes.

AES-NI3 based primitives. In order to meet fast performance in vir-
tualisation environments, there have been a number of efficient cryptographic
algorithms constructed by making use of the AES round function so that the
AES-NI instruction set can be used for speedups[BÖS11]. The first such attempt
may have been the stream cipher LEX [Bir07], and another was the AEGIS fam-
ily [WP14], which offers authenticated encryption. The stream ciphers SNOW-V
[EJMY19] and Rocca [SLN+21] are two other examples.

MAC algorithms based on the AES round function were also developed, for
example Alpha-MAC [DR05]. The state size of Alpha-MAC is only the block
width and further analysis showed that the construct is not sufficiently secure
[BDF11]. Another example of using AES-NI is AEZ [HKR15], one of the CAE-
SAR candidates, claimed to be fast and resistant to nonce-misuse attacks. It has
however been shown that all 5 versions of AEZ are indeed vulnerable to various
collision and key recovery attacks [FLS15,CG16,VV18] through nonce-misuse
scenarios.

AEAD. The development of authenticated encryption with associated data
(AEAD) schemes provides joint encryption and authentication in a single prim-
itive. This results in a highly efficient primitive. The sponge duplex is a popular
construct of AEAD schemes. It can be noted that almost half of the 56 round-1
submissions to the NIST lightweight cryptography standardisation process were
based on this construct, and the winner Ascon [DEMS21b] is one of them.

Although AEAD schemes are efficient solutions, some drawbacks can be
found. The security can be more difficult to analyse because the adversary has
more attack options compared to pure encryption or pure authentication. Take
for example Rocca [SLN+21], where encryption and authentication happen in
parallel by reusing the same registers of the internal state. The update function
of Rocca is based on AES round, and since the AES round is already “heavy”,
the update function cannot have the circuit depth of more than a single call to
the AES round in order to meet high performance.

By design, Rocca exposes information about its internal state in the form
of the ciphertext. The final tag can be truncated, and such dual use of the
internal state in combination with a short tag is challenging. It is shown in
[HII+22] that Rocca is highly vulnerable to a nonce-misuse attack, especially
for truncated tags, resulting in a key recovery even when the nonce usage is
respected. Furthermore, various forgery attacks were also found in the AEAD
candidates in the 3rd round of CAESAR [VV18], which indicates that the design
of a MAC scheme can be a challenging task in AEAD constructs.

3 An AES instruction set is a set of processor instructions specifically designed to per-
form AES encryption and decryption operations fast. These instructions are found
in modern processors and accelerate AES operations significantly compared to pure
software implementations. AES-NI was the first such implementation, an extension
to the x86 instruction set for processors from Intel and AMD.



4 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

On the other hand, Ascon-MAC [DEMS21a] adopts lightweight rounds but
the number of clocks between two message compressions is 12, which seems
sufficient for a good shuffling of the internal state, but due to these 12 clocks the
software performance is not very high and comparable to CMAC and HMAC.
The authors report at minimum 6.2 cycles per byte on Intel Core i5-6300U for
long messages which corresponds to around 3.9 Gigabits per second (Gbps).

It is possible to take some of the AEAD schemes as a MAC function for an
external cipher but, in reality, such a combination could be a too big solution. For
example, adding GMAC to a SNOW-family cipher basically means two ciphering
algorithms and the GHASH core in hardware.

Having all these complexities in mind, in this work we would like to focus
on an efficient non-polynomial generic stand-alone MAC engine that can be
combined with an external block or stream cipher independently.

MAC forgeries. In the context of MAC cryptanalysis, a forgery attack is
when the attacker obtains the correct MAC value for a chosen message, with
some success probability. Another attack is a universal forgery attack where the
attacker can retrieve the internal state of the MAC engine, or even worse, the
complete secret key; in this case, the attacker can create an infinite number of
valid messages with corresponding tags in time O(1). A good MAC engine should
preferably have the forgery success probability around 2−τ , where τ is the size of
the tag in bits, and the complexity to obtain a universal forgery to be as difficult
as an exhaustive key search. This is not always the case as, for example, the tag
size in GCM is 128 bits while only providing 96 bits of security.

Nonce-misuse with short tags. Many MAC algorithms require a nonce
to be guaranteed/checked for uniqueness by both the sender and the receiver
sides. In case of imperfect nonce-tracking implementations, nonce-misuse attack
scenarios become more likely, which affects the robustness. In practice, although
it is easy for the sender to ensure the nonce uniqueness, it is much harder for the
receiver side to track nonces that have already been used, especially if nonces
are taken as a pseudo-random (even non-repetitive) sequence, or when there are
multiple receivers of the same message, each of which can be used as a verification
oracle.

In a nonce-misuse scenario, universal forgery attacks on GCM [Jou06] and
many CAESAR candidates [VV18] only require a few nonce-reuses (merely 2 for
GCM and OCB). There is a strong recommendation that a check for the nonce
uniqueness is done on both sides [HP08].

Government organisations have demonstrated a particular interest in robust-
ness and highlight misuse-resistant AE (MRAE security) as a high-priority re-
quirement [Cam23]. Citing [Cam23] on GCM, “nonce misuse leads to a catas-
trophic loss of security”. Another such high-priority requirement is protection
against release of unverified plaintext. New schemes GLEVIAN and VIGOR-
NIAN addressing these concerns are proposed, but they lead to a degradation
in performance.

The desire to have short (truncatable) tags leads us to a new situation when
it comes to the nonce-misuse resistance property of a MAC scheme. If a MAC



A new stand-alone MAC construct called SMAC 5

algorithm produces a short tag of size τ bits (e.g., τ = 32), the attacker could
simply collect many pairs (Message, Tag) by using the verification oracle at
most 2τ times per one valid pair. This is equivalent to a nonce-misuse attack
with the sender oracle being virtually available, up to a multiplier 2τ for the
overall attack complexity, which is small for short tags, even though the MAC
algorithm requires a unique nonce and it is indeed respected on the sender side.

The problem with weak or non-perfect nonce tracking on the receiver side
becomes more severe when a polynomial-based MAC scheme is used to generate
a short truncated tag. For example, AES-GCM-SST [CMM23] scheme appears
to be vulnerable to the universal forgery attack in case the attacker has access
to the verification oracle and makes just O(232) queries to the oracle (for the
tag size of 32 bits) [IET24]. As a result, the attacker can create an unlimited
number of messages under the same security context (e.g., same key and IV).

A similar issue was identified in the NIST SP 800-38D publication [NIS07],
when using GCM-based MAC constructs with truncated tags [MW16]. Nowa-
days, NIST plans to revise that special publication by removing the support for
tags shorter than 96 bits [NIS24a].

Our contribution. In this paper, we present a new efficient stand-alone
MAC construct based on processing using the FSM part of the stream cipher
family SNOW, which in turn uses the AES round function. It offers a combi-
nation of very high speed in software, efficiency in hardware, truncatable MAC,
and a decent robustness in nonce-misuse scenario. We also provide an aggre-
gated version SMAC-1×n whose speed reaches up to 925 Gbps in software in a
single thread.

The design and security analysis consider Maximum Degree Monomial (MDM)
tests, Time-Memory Trade-Off (TMTO), Guess-and-Determine (GnD), nonce-
misuse, Key/IV/message differential, MAC forgery and cube attacks, and study
clustering effects of differential trails as well as the number of active Sboxes for
different choices of a particular permutation through CP/SAT/MILP modelling
tools. Every design choice is justified and supported by the results of our analysis
and simulations.

2 The SMAC construct

We propose a new MAC engine design framework, called SMAC. It is derived
from the finite state machine part of the SNOW family of stream ciphers [EJMY19],
as depicted in Figure 1.

The SMAC construct has three 128-bit internal state registers (A1, A2, A3)
and their values at time t are denoted by (A1t, A2t, A3t). Given a 128-bit wide
message wordM t at time t, the internal registers are updated by the compression



6 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

function Π as follows:

(A1t+1, A2t+1, A3t+1)←Π(A1t, A2t, A3t,M t) :=

A1t+1 = σ(A2t ⊕A3t ⊕M t)

A2t+1 = AESR(A1t,M t)

A3t+1 = AESR(A2t,M t)

where σ is a fixed 16-byte permutation, and AESR(X,K) is the AES round
function. A general way of usage of the compression function Π in the SMAC

mac.A1 AES Enc
Round A2 AES Enc

Round A3

σ

A1 t

A2 t

A3 t A1 t+1

A2 t+1

A3 t+1

AESR

AESR

M t

σ

M

the Π function

Fig. 1. SMAC compression function Π.

framework is shown in Figure 2, and consists of three phases:

– Initialisation phase. In the initialisation phase, the three 128-bit registers
A1, A2, A3 are loaded with the key material and other possible domain sepa-
ration parameters, for example a nonce and the MAC tag size. The compres-
sion function Π is then clocked d times with a fixed M = 1⋆ (to be defined
further), in order to bring the initial state to pseudo-random. The internal
state after the initialisation phase is denoted by (A1t, A2t, A3t), t = 0.

– Compression phase. The next n clocks are used to compress the sequence
of n 128-bit message blocks M0, . . . ,Mn−1, where the last message block
should contain the actual length of the message in bits, which would resist
attacks based on e.g. insertion and deletion of message words. The internal
state after the compression phase is denoted by (A1t, A2t, A3t), t = n.

– Finalisation phase. Before the MAC tag is produced, the SMAC engine
does d dummy calls to the compression function with M = 1⋆, similarly to
the initialisation phase. The output MAC tag is extracted from the state
(A1t, A2t, A3t), t = n+ d, by simply taking the required number of bits.



A new stand-alone MAC construct called SMAC 7

K1

K0
Clock Π 
d times

A1

A2

A3

M 0 M n-1

Π

A1

A2

A3

Π

A1

A2

A3

Clock Π 
d times

τ bits 
MAC 
tag

...

...

Initialisation phase Compression phase Finalisation phase

IV

1* 1*

Fig. 2. A general usage model of the SMAC framework.

2.1 Detailed description

The description is byte oriented and we will denote an array of bytes of length
l by {N8}l, where Nk denotes the natural numbers representable using k bits.
The elements in an array A ∈ {N8}l are referenced by

A[0], A[1], . . . , A[l − 1],

where A[0] is the first element in the array and A[l−1] is the last. An assignment
of an array A = B is done element by element, as is the XOR (also denoted by
⊕) of two arrays C = A ⊕ B, where then C[0] = A[0] ⊕ B[0], et cetera. The
registers are considered byte arrays A1, A2, A3 ∈ {N8}16.

The concatenation of two arrays A,B is denoted by C = A ∥ B and the
result C will carry the elements of A in its first positions and the elements of B
in its last positions.

Let σ(·) : {N8}16 → {N8}16 denote a byte permutation of an array of length
16. A specific permutation is defined as

σ = [π0, π1, . . . , π15], πk ∈ [0 . . . 15], πi ̸= πj ∀(i ̸= j).

This should be interpreted as the element at index π0 is moved to position 0,
the element at index π1 is moved to position 1, and so on. For example, σ(A)
will result in the permuted array

B = σ(A) = {A[π0], A[π1], . . . , A[π15]},

where B[0] = A[π0], B[1] = A[π1], . . . , B[15] = A[π15].
Furthermore, let

1⋆ = {1, 0, 0, . . . , 0}



8 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

denote the array of 16 bytes with a single one in the first position and zeros in
the rest. M = 1⋆ is the fixed constant value fed into Π during initialisation and
finalisation phases. A single instance of the AES round function is denoted by

AESR(X,K) : ({N8}16, {N8}16)→ {N8}16,

and defined as AESR(X,K) := MixColumns(ShiftRows(SubBytes(X))) ⊕ K.
In subsequent sections of this paper, we will also use the notation L · X =
MixColumn(X), π ·X = ShiftRows(X), and S(X) = SubBytes(X), so that the
AES round can be rewritten in a shorter form as

AESR(X,K) = LπS(X)⊕K.

The mapping between a byte array and the AES state X is done in the usual
way as defined in [oST01]. We can now formally define the compression function
Π in Algorithm 1. The initialisation and finalisation phases are identical in the
proposed framework and defined in Algorithm 2.

Algorithm 1 Π : ({N8}16, {N8}16, {N8}16, {N8}16)→ ({N8}16, {N8}16, {N8}16)
1: function Π(A1, A2, A3,M) → (A1′, A2′, A3′)
2: A1′ = σ(A2⊕A3⊕M)
3: A2′ = AESR(A1,M)
4: A3′ = AESR(A2,M)
5: end function

Algorithm 2 InitFinal :
({N8}16, {N8}16, {N8}16)→ ({N8}16, {N8}16, {N8}16)
1: function InitFinal(A1, A2, A3) → (A1′, A2′, A3′)
2: (X1, X2, X3) = (A1, A2, A3)
3: for d times do ▷ In this specification d = 9
4: (A1, A2, A3) = Π(A1, A2, A3,1⋆)
5: end for
6: (A1′, A2′, A3′) = (A1, A2, A3)⊕ (X1, X2, X3)
7: end function

Since Π given M is an invertible function, we prevent back-tracking of the
state from the exposed MAC tag by adding the starting state of the function to
the ending state. This is also done during the initialisation phase to achieve an
instantiation of the FP(1) property introduced in [HK18].

2.2 Three instances SMAC-1, SMAC-3/4, and SMAC-1/2

While the previous subsection provides a detailed description of the framework,
we need some additional specifications to instantiate an implementable algo-



A new stand-alone MAC construct called SMAC 9

rithm. In this paper we provide three concrete instances called SMAC-1, SMAC-
3/4, and SMAC-1/2. They work as stand-alone integrity algorithms that provide
truncatable tags of size τ bits, where the upper limit is τ ≤ 128 , τ ≤ 160, and
τ ≤ 256 bits for these three instances, respectively.

The first instance, SMAC-1, has a lower security level but processes a new
message block for each round during the compression phase. The second variant,
SMAC-3/4, has a higher security level but only processes three message blocks
every 3 out of 4 compression round. It does so by running the compression
function Π with M = 1⋆ every fourth round of the compression phase. The
resulting rate is 3/4 of the rate of SMAC-1, neglecting the identical initialisation
and finalisation phases. The third variant is the half-rate SMAC-1/2, where every
second clock of the compression phase is the dummy clock with M = 1⋆.

The three instances SMAC-{1, 3/4, 1/2} use distinct permutations σ. The
different permutations are given by4

σ1 = {0, 7, 14, 11, 4, 13, 10, 1, 8, 15, 6, 3, 12, 5, 2, 9} for SMAC-1

σ42 = {7, 14, 15, 10, 12, 13, 3, 0, 4, 6, 1, 5, 8, 11, 2, 9} for SMAC-3/4

σ61 = {0, 11, 7, 14, 6, 4, 1, 15, 9, 3, 8, 5, 13, 2, 10, 12} for SMAC-1/2

All three instances take a 256-bit key K ∈ {N8}32 and a 128-bit domain
separation value IV ∈ {N8}16 as inputs. Two 128-bit halves of the key are
referred by K = (K0||K1). If the original key is shorter then the 256-bit K
is constructed from the original shorter key by extending it to 256 bits with
zeroes. Exactly how the domain separation is to be done is left for the user of
the algorithms, but separating different key and tag sizes together with a nonce
should probably be considered. The K and IV are loaded into the registers
according to Algorithm 3, before invoking the initialisation phase.

Algorithm 3 KeyIVLoad : ({N8}32, {N8}16)→ ({N8}16, {N8}16, {N8}16)
1: function KeyIVLoad(K, IV ) → (A1, A2, A3)
2: A1 = K[16 . . . 31] ▷ This part is zeroes if the original key is ≤ 128 bits long
3: A2 = K[0 . . . 15]
4: A3 = IV
5: end function

The output tag of SMAC-{1, 3/4, 1/2} is confined to a maximum of {16, 20,
32} bytes, and corresponds to the first bytes of the registers (A2 ∥ A3) after the
finalisation phase.

The last thing to specify is how the message to be integrity protected is
processed. Let us assume that there are two parts of the message that need to
be integrity protected; one part with plaintext data, and one part with ciphertext
data. This is a natural assumption in an AEAD scenario.

4 The rational and notation of these σ will be explained in Section 3.



10 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

Algorithm 4 MessagePrep : ({N8}LA , {N8}LC )→ {N8}LA+LC+P+16

1: function MessagePrep(A, C) → M
2: PA : N4 = 15− ((LA + 15) mod 16)
3: PC : N4 = 15− ((LC + 15) mod 16)
4: tmpA : {N8}LA+PA = A ∥ {0}PA

5: tmpC : {N8}LC+PC = C ∥ {0}PC

6: S : {N8}16 = LittleEndian64(8 · LA) ∥ LittleEndian64(8 · LC)
7: P : N5 = PA + PC

8: M = tmpA ∥ tmpC ∥ S
9: end function

Let A ∈ {N8}LA be the associated plaintext data of length LA bytes, and
let C ∈ {N8}LC be the ciphertext data of length LC bytes. We form the input
message to SMAC-{1, 3/4, 1/2} by firstly pad A and C to 16 bytes boundaries
by inserting 0:s. Then the ciphertext array is concatenated to the end of the
plaintext array. We now append a 16 byte block consisting of the lengths in bits
of the messages. The procedure is described in Algorithm 4.

In these instances, we only admit byte oriented inputs and hence we multiply
the array length by 8. If bit oriented inputs are needed, simply provide the total
number of bits as input and use those values in line 6. The input data arrays
need to be byte aligned in any case. The conversion function LittleEndian64(n)
takes a 64 bit integer n and converts it to a byte array with the least significant
byte of n in the first array element. If we write n as n = n7n6 . . . n0 with n0

being the least significant byte, N = LittleEndian64(n) will result in an array

N ∈ {N8}8 = {n0, n1, . . . , n7}.

This puts a restriction of the length of the plaintext and ciphertext messages to
be maximum 264 − 1 bits each.

We can now split the array M of length LM into blocks of 16 bytes each.
Let us denote those blocks by M i according to

M = M0 ∥ M1 ∥ . . . ∥ MLM/16−1.

Finally, we fix the number of rounds during the initialisation and finalisation
phases to d = 9 and in Algorithm 5 we provide the complete description of
SMAC-{1, 3/4, 1/2}. Here we assume τ as a constant parameter representing
the size of the Tag in bits; recall that the tag size τ is at most 128, 160 or 256
bits, depending on the SMAC variant. The extraction from the state is primarily
done from register A2 where the bytes of Tag are assigned by the corresponding
indices of A2. If τ > 128 the Tag array is appended by bytes from register A3,
starting with the first position.

2.3 Altered instantiations of SMAC

Depending on the use case, the model can be altered. For example, when SMAC
is used in AEAD mode paired with an encryption algorithm, the initialisation



A new stand-alone MAC construct called SMAC 11

Algorithm 5 SMAC-r : ({N8}32, {N8}16, {N8}LA , {N8}LC )→ {N8}16/20

1: function SMAC-{1, 3/4, 1/2}(K, IV,A, C) → Tag
2: M = MessagePrep(A, C)
3: Divide M into LM/16 sub-blocks M i of size 16 bytes
4: (A1, A2, A3) = KeyIVLoad(K, IV )
5: (A1, A2, A3) = InitFinal(A1, A2, A3)
6: for all sub-block M i in M do
7: (A1, A2, A3) = Π(A1, A2, A3,M i)
8: if (SMAC-3/4 ∧ (i mod 3 = 2)) or (SMAC-1/2) then
9: (A1, A2, A3) = Π(A1, A2, A3,1⋆)
10: end if
11: end for
12: (A1, A2, A3) = InitFinal(A1, A2, A3)
13: Tag = (A2 ∥ A3)τ ▷ First pick tag bits from A2, then from A3 if τ > 128
14: end function

phase can be skipped by assigning the internal state in time t = 0 with three
pseudo-random secret values produced by the accompanying cipher.

There could be various other use cases for the SMAC framework, and the
exact instances we have provided here is partly to give concrete security bounds
and advice on sufficient number of dummy clocks in the initialisation and finali-
sation phases. If an application needs a different security/performance trade-off,
the number of clocks during the initialisation/finalisation phase may be changed.

Minimum d. Depending on the use case, required performance, security
demands, the tag size etc., we advise the minimum number of rounds for the
initialisation phase must be dInit ≥ 6 (if not combined with an external cipher),
and for the finalisation phase it must be dFinal ≥ 4 rounds (the first time when
the tag is influenced by all registers). These absolute minimums are supported
by the results of our analyses in Section 3.

2.4 Example of using SMAC-1 with AES in AEAD mode

Assume we are using AES-256-CTR with an IV value consisting of 12 bytes of
nonce and domain separation and 4 bytes of counter value, starting at zero with
IV0. The subscript of IV indicates the counter value. The first three keystream
symbols are:

Z0 = AES-256K(IV0)

Z1 = AES-256K(IV1)

Z2 = AES-256K(IV2)

where AES-256K(P ) denotes the application of AES-256 on the 16 byte plaintext
array P using the key K. These values can be directly loaded into the SMAC
registers (A1, A2, A3) and compression of the messages (AAD and ciphertext)
can start immediately. This scheme is depicted in Figure 3.



12 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

AES-256K AES-256K AES-256K

...

AES-256K AES-256K

... ...

Compression
phase

Finalisation
phase

Tag

...

...

Length of AAD and
ciphertext

Fig. 3. Example of SMAC usage as AEAD integrity protection together with AES-
256-CTR.

2.5 Security claims and limitations

In the context of the current specification of SMAC-{1, 3/4, 1/2}, with d = 9
for both the initialisation and finalisation phases, we summarise security claims
and limitations as given in Table 1.

The nonce-misuse using a sender oracle scenario discussed in Section 3.13 is
highly theoretical since if the goal is to send some selected malicious messages
to the receiver, the direct solution would be to ask the oracle for the correct tag,
instead of using 259 queries in order to recover the state. As will be discussed
in Sections 3.7 and 3.9, a state recovery does not directly translate into a key
recovery so the state is only valid for that particular (K, IV ). The receiver oracle
is more plausible in a practical scenario, since if the protocol does not include
some replay protection, the receiver can indeed be used to verify correctly guessed
state collisions. From the table we conclude that even if the smallest allowed tag
size τ = 12 is used, the complexity of a receiver nonce-misuse attack is well
above the allowed number of messages to be MACed for that key.

As a good security practice, we advise that each pair (K, IV ) should be used
only once by the sender side. In order to prevent receiver side nonce-misuse
attacks when the protocol does not include replay protection, we advise to in-
troduce a counter of the number of verification requests per a key. If that counter
reaches the maximum allowed value (see the last row of Table 1), then the re-
ceiver side invalidates the key and e.g. requests a key renegotiation. If there are



A new stand-alone MAC construct called SMAC 13

Security and limitations aspects SMAC-1 SMAC-3/4 SMAC-1/2

Original key size in bits, κ κ ≤ 256 κ ≤ 256 κ ≤ 256
Truncated tag size in bits, τ τ ∈ [12..128] τ ∈ [12..160] τ ∈ [12..256]
Maximum length of AAD and ciphertext in bits 264 − 1 264 − 1 264 − 1
Maximum number of messages with the same key 264 264 264

Attack scenarios and complexities
Security level against a single message forgery ≥ min{κ, τ, 118} ≥ min{κ, τ, 152} ≥ min{κ, τ, 252}

in a nonce-respecting setting, in bits (Sec.3.3)
Security level against input/output differentials ≥ min{κ, 56 · 6} ≥ min{κ, 49 · 6} ≥ min{κ, 54 · 6}

in InitFinal, in bits (Sec.3.11)
GnD to recover the key from a T = O(2κ) T = O(2κ) T = O(2κ)

known single state and IV (Sec.3.9)
GnD to recover the state from a known T = O(2384) T = O(2384) T = O(2384)

tag(s) when (K, IV ) is fixed (Sec.3.9)
TMTO to recover the state with C = O(2192) C = O(2192) C = O(2192)

multiple known tags (Sec.3.7)

TMTO to recover the key with a fixed IV C = O(2κ/2) C = O(2κ/2) C = O(2κ/2)
and multiple known tags (Sec.3.7)

State recovery with nonce-misuse queries Q ≥ O(259) Q ≥ O(276) Q ≥ O(2126)
to the sender oracle (Sec.3.13)

State recovery with nonce-misuse queries Q ≥ O(259+τ ) Q ≥ O(276+τ ) Q ≥ O(2126+τ )
to the receiver oracle (Sec.3.13)

Table 1. Security claims and limitations. In the table we use Q=Queries, T=Time,
C=Time, Memory, and Data.

multiple independent receivers, say m, then each receiver should have the upper
limit for the counter been divided by m.

Note that the whole initial state of 384 bits may be initialised with a secret
initial state when e.g. SMAC is combined with an external cipher.

3 Security analysis and simulations

3.1 Differential forgery attack

For the sake of notations, some shorter or simpler forms are used in this and
further subsections. We use ‘+’ to denote the XOR operation, where applicable
depending on the context. Also, for bit-level differential trails, we call them bit-
trails which depict concrete differential trails in practical attacks. We refer a
byte-level trail to a byte-trail that indicates whether each byte value is zero or
not. This type of trail is good for e.g. counting the minimum number of active
Sboxes. A bit-differential message is denoted by ∆M , and its corresponding
byte-differential is denoted by µ(∆M).

One of the main security concerns in this construct comes from the second
preimage resistance, where an attacker given the first message M tries to con-
struct a new message M ′ such that the resulting tag would coincide. In this
scenario, the attacker may query the verification oracle to check if the tags for
M and M ′ collide.

Here we have two possibilities: either two tags of size τ bits would collide by
chance with probability 2−τ , or the attacker carefully selects∆M = M+M ′ such



14 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

that the internal state would collide with probability larger than 2−τ . In further
subsections, we analyse this scenario in more details and study the differential
MAC forgery attack.

In the SMAC compression function, the time frame where the state could
collide from a differential input is ∆t ≥ 3, because there are three registers that
shuffle in a nearly circular fashion, thus at least 3 clocks are needed to recover
the internal state (to make the internal state difference become zero) given a
differential input.

As the first step of our analysis, we find a differential byte-trail with the
minimum number of active Sboxes. The minimum number s of active differential
Rijndael Sboxes in a possible differential trail gives an upper bound for the
probability of the internal state collision to happen (without clustering effect,
which will be analysed in a later subsection), that probability is 2−6s, since a
differential trail of a single 8-bit Rijndael Sbox has probability at most 2−6:

∀δx, δy : Pr{S(x) + S(x+ δx) = δy} ≤ 2−6.

As a simplified example, let us derive the state expressions for the first 3
clocks, i.e., where ∆t = 3.

1st clock:


A1t+1 = σ(A2t +A3t +M t)

A2t+1 = LπS(A1t) +M t

A3t+1 = LπS(A2t) +M t

2nd clock:


A1t+2 = σ(LπS(A1t) + LπS(A2t) +M t+1) = x+ σM t+1

A2t+2 = LπS(σ(A2t +A3t +M t)) +M t+1 = LπS(y + σM t) +M t+1

A3t+2 = LπS(LπS(A1t) +M t) +M t+1 = LπS(z +M t) +M t+1

where: x = σ(LπS(A1t) + LπS(A2t)), y = σ(A2t +A3t), z = LπS(A1t)

3rd clock:


A1t+3 = σ(LπS(y + σM t) + LπS(z +M t) +M t+2)

A2t+3 = LπS(x+ σM t+1) +M t+2

A3t+3 = LπS(LπS(y + σM t) +M t+1) +M t+2

(1)

We want to find a differential∆(M t,M t+1,M t+2) such that∆(A1, A2, A3)t+3 =
0, then we have the following differential system:

0 = σ(LπS(y + σ∆M t) + LπS(z +∆M t) +∆M t+2)

0 = LπS(x+ σ∆M t+1) +∆M t+2

0 = LπS(LπS(y + σ∆M t) +∆M t+1) +∆M t+2

and after the substitutions∆M t+2 → Lπ∆M t+2, ∆M t+1 → σ′∆M t+1, ∆M t →
σ′∆M t, where σ′ = σ−1, the system is simplified to

∆M t+2 = S(y +∆M t) + S(z + σ′∆M t)

∆M t+2 = S(x+∆M t+1)

∆M t+2 = S(LπS(y +∆M t) + σ′∆M t+1)



A new stand-alone MAC construct called SMAC 15

The attacker starts introducing the first differential in time t, and can intro-
duce up to 3 consecutive differentials, hoping that the state will recover in time
t+3. Note that, since the compression function Π is reversible, the internal state
may only collide in that certain time t+ 3, and not later.

From the second equation it is clear that µ(∆M t+2) = µ(∆M t+1), and thus
the second equation can be virtually removed from consideration as follows:{

∆M t+2 = S(y +∆M t) + S(z + σ′∆M t)

∆M t+2 = S(LπS(y +∆M t) + σ′S−1(x+∆M t+2))

In a näıve approach it is obviously possible just to loop over all 16-bit masks
µ(∆M t) and µ(∆M t+2) in time 232 and check for feasibility of the above system
to have a solution. If a solution to the system is feasible, then the total number
of active Sboxes can be computed as 5:

# Sboxes = HW (µ(S(y +∆M t))) +HW (µ(S(z + σ′∆M t)))

+HW (µ(σ′S−1(x+∆M t+2))) +HW (µ(S−1(∆M t+2)))

= 2 · [HW (µ(∆M t)) +HW (µ(∆M t+2))].

For SMAC-1 with σ1 and ∆t = 3 we found the following byte differential
whose trail has 22 active Sboxes, which is the minimum in this scenario. Here,
µ(∆M t+2) is the value before the aforementioned substitution.

µ(∆M t) = (1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0)

µ(∆M t+1) = (1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1)

µ(∆M t+2) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

One of many possible bit-level differential vectors that correspond to the above
byte differential is given below. More details on the trail can be found in Ap-
pendix C.

∆M t = (80, 00, 00, 00, 00, 00, 59, 00, 00, 0e, 00, 00, 00, 84, 00, 00)

∆M t+1 = (ed, 00, 00, 00, 00, 44, 40, 00, 00, 32, 24, 00, 00, ac, 00, 10)

∆M t+2 = (c3, 11, 11, 33, c0, 80, 40, 40, 03, 02, 01, 01, 64, ac, c8, 64)

3.2 Simulations to find a strong permutation σ, generic tool, and
byte-trails for ∆t ≥ 3 in SMAC-1 and SMAC-3/4

From the previous subsection where we have derived expressions for a differential
forgery attack in the time frame ∆t = 3, it becomes clear that the minimum
number of active Sboxes depends heavily on the exact permutation σ. For ex-
ample, there are weak permutations where the best differential trail may involve

5 Note that for ∆t = 3 the number of active Sboxes is always an even number. I.e.,
if we filter for 26 active Sboxes and do not find permutations giving at least 25 in
other ∆t > 3, then the next step down would be ∆t = 3 with 24 active Sboxes.



16 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

only a few active Sboxes, and thus the success probability of the forgery attack
is high. Therefore, one of the goals in this work was to find strong permuta-
tion candidates, which can provide as high level of security as possible for the
considered SMAC framework.

SMAC-1 vs. -3/4. Searching for a strong permutation for the instance
SMAC-3/4 is similar to searching for the instance SMAC-1. We simply insert
artificial message blocks with a fixed value 1⋆, representing the dummy clocks
that happen in SMAC-3/4 after each three blocks of messages. Thus, the anal-
ysis for SMAC-1 and SMAC-3/4 can be carried out in the same way, with the
additional constraint that every 4th difference for SMAC-3/4 will be zero, i.e.
∆M t = 0 due to M t = 1⋆ in every fourth time instance t. However, when
analysing SMAC-3/4 and depending on ∆t there may be distinct cases where
those zero differences occur. For example in ∆t = 5 we can have three sub-cases
of a differential message, depending on t or where the dummy clocks actually
happen:

∆M = (∆M t ̸= 0, ∆M t+1 = 0, ∆M t+2 = ∗, ∆M t+3 = ∗, ∆M t+4 ̸= 0)

∆M = (∆M t ̸= 0, ∆M t+1 = ∗, ∆M t+2 = 0, ∆M t+3 = ∗, ∆M t+4 ̸= 0)

∆M = (∆M t ̸= 0, ∆M t+1 = ∗, ∆M t+2 = ∗, ∆M t+3 = 0, ∆M t+4 ̸= 0)

where the first and last must be nonzero differences (if one of them is a zero
difference then the case falls into another scenario with shorter ∆t due to the
reversible compression function). The dummy clock can occur at position t +
1, t+ 2, or t+ 3. The other positions can have any differential value.

There are 16! ≈ 244 possible permutations and in this work we aim at per-
forming cryptanalysis on all 244 instances of SMAC, each having a distinct per-
mutation, to extract the strongest candidates. Testing 244 permutations is a
challenging task. We were able to narrow it down using several steps of fast fil-
tering and pattern matching. The search was performed in two data centers6 with
thousands of compute nodes to test these permutation candidates in parallel.

First round of filtering. We have written highly optimised filters for two
time frames ∆t = 3 and ∆t = 4 in C/C++. Given a permutation candidate σ,
these filters test whether there exists a byte-trail with less number of minimum
Sboxes than some preselected threshold. If the number of active Sboxes is below
the threshold, the candidate is removed. After the first round of filtering, we
obtained the following number of remaining candidates:

– SMAC-1. Filters for ∆t = 3 and ∆t = 4 both with the threshold to have
at least 20 active Sboxes in the optimal differential trail resulted in 73073
remaining candidates out of 244.

– SMAC-3/4. Only one filter was applied in the first round – the case ∆t = 3
with at least 26 active Sboxes, resulted in 1.6 billion candidates7.

6 We used LUNARC at Lund University and E2C at Ericsson.
7 We did not include the filter for ∆t = 4 in the SMAC-3/4 search since the perfor-
mance for this filter at high thresholds wasn’t fast enough. Also, with the threshold of



A new stand-alone MAC construct called SMAC 17

Second round of filtering. With a larger time frame ∆t > 4 it became
quite difficult to code specialised filtering functions. We instead used the CP-
SAT optimisation solver from OR-Tools [PD] to perform cryptanalysis of the
remaining candidates in larger time frames up to ∆t = 9. A generic tool was
constructed by utilising Constraint Programming models to test one or a set of
permutation candidates, searching for a differential byte-trail with the minimum
number of active Sboxes. Our generic tool supports different parameters such
as the time frame ∆t, position(s) of the dummy message block(s), threshold for
the minimum number of Sboxes, et cetera. This tool can also be used to verify
and/or test permutations and experiment with SMAC rates other than {1, 3/4,
1/2} as given in this paper 8.

Patterns. An additional technique to filter out candidates is to collect pat-
terns of weak permutations. If we test a concrete permutation and a filter finds
a byte-trail that has less active Sboxes than the desired threshold, we can fur-
ther examine the permutation indices to spot which indices are contributing to
that weak behaviour. It turns out that in many cases there is a particular set of
indices that give rise to the low number of active Sboxes, and those permutation
indices form a group of candidates that instantly can be skipped during filter-
ing. By saving such groups as patterns we can significantly reduce the number
of permutations we need to test. We collected ∼50 million of unique patterns 9

that helped to truncate the search space by a lot.
Simulation results. In Appendix A, we give a short list of the strongest

permutation candidates found for SMAC-1 and SMAC-3/4, analysed in the time
frame ∆t = 3 . . . 9. Where the simulation running time was too long to find
the optimal byte-trail, we provide a lower bound for the minimum number of
active Sboxes reported by the tool. Notably, for SMAC-1, there are only two
permutations out of 244 that have at least 20 active Sboxes in all tested ∆t, and
for SMAC-3/4 we found candidates with at least 24 active Sboxes.

3.3 Clustering effects and forgery success probability

A differential trail typically contains an input difference, output difference, and
differences of intermediate variables. Usually, only the input and output differ-
ences are known to an attacker. In this case, trails that have the same input
and output differences but distinct intermediate differences can cluster together

26 we initially hoped to get a minimum of 25 active Sboxes overall (also for ∆t > 3),
but additional analysis and simulations showed that there are no permutations that
have a minimum of 25 active Sboxes. Then we settled for targeting 24 active Sboxes,
while already having 1.6B candidates from the first round, and we received the short
list of promising candidates among these candidates having at least 24 active Sboxes
in ∆t > 3. Thus, a separate round of first-phase heavy simulations for ∆t = 3 and
threshold 24 could be done, but we assessed it would not be advantageous.

8 The tool, along with a reference implementation and test vectors, is available at
GitHub: https://github.com/0NG/smac-tools

9 As a side note, we have also developed optimised algorithms for handling patterns,
such as collecting, sorting, merging, and checking for uniqueness in time O(N logN).

https://github.com/0NG/smac-tools


18 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

to form a differential with a higher probability, which is called clustering effect.
Several previous works [BdSF+22,SII23,LPS21] have shown the power of this
effect on various ciphers. Therefore, we need to study the clustering effect for
the permutation candidates obtained in the previous step of filtering. We have
again utilised the CP-SAT solver [PD] from OR-Tools for this part of analysis.

Adaptation of byte-trails for analysis of bit-level clusters. For SMAC,
an attacker can prepare a new message that differs from another known message
by ∆M , and hope the internal state of SMAC would be the same after a number
of clocks, thus resulting in the same MAC value. All intermediate differential
bit-trails that have the same ∆M are in the same cluster. However, testing all
possible clusters and identifying the strongest one is difficult, since there is an
exponential number of concrete input bit-differentials ∆M , and for each ∆M the
analysis of its cluster requires enumeration of all intermediate bit-trails. To make
this analysis feasible, we study the clustering effect on the level of byte-trails,
instead. In particular, we aim to find upper bounds on probabilities of clusters
corresponding to only those message differentials that contain optimal byte-trails
with the minimum number of active Sboxes. As the result, these bounds apply
to all bit-trails that follow the same byte-trails.

Analysis of a single byte-level cluster. A single cluster C on the byte
level is identified by a concrete fixed byte-differential µ(∆M). Given µ(∆M),
we enumerate all intermediate byte-trails which match that certain µ(∆M). Let
that set of byte-trails be denoted by SC . Then the probability of the cluster C
is upper bounded by

p(C) ≤
∑

Ψ∈SC

nΨ ·maxp(Ψ)

where nΨ is the number of possible bit-trails matching a certain intermediate
byte-trail Ψ ∈ SC , and maxp(Ψ) is the maximum probability of a single bit-trail
that follows the byte-trail Ψ .

In our analysis, we assume that all byte-trails from SC can be mapped to
the same ∆M on the bit-level as well. Therefore, the resulting cluster C, in
the way we construct it and taking into account nΨ s, cannot be smaller than
a corresponding valid bit-level cluster, and thus our bound of p(C) provides
a theoretical upper bound for the forgery success probability. This also means
that in reality the forgery success probability on SMAC is not greater, but likely
smaller than what we have derived.

Method to compute nΨ . Let us for the moment assume that, given the
byte-trail Ψ , its corresponding byte-differential µ(∆M) is assigned with some
(unknown to us) fixed bit-level difference ∆M . We propose a simple method to
determine whether all other intermediate differential bytes of the byte-trail Ψ
can be uniquely derived on the bit-level, given a hypothetical fixed bit-differential



A new stand-alone MAC construct called SMAC 19

value of ∆M . Recall that in each round the differential propagates as
∆A1t+1 = σ(∆A2t +∆A3t +∆M t)

∆A2t+1 = LπS(∆A1t) +∆M t

∆A3t+1 = LπS(∆A2t) +∆M t

∆A1t+2 = σ(∆A2t+1 +∆A3t+1 +∆M t+1)

(2)

To simplify the analysis, the differential distribution table (DDT) of Rijn-
dael Sbox is ignored, and we only consider whether involved Sboxes are active
or not. Furthermore, we assume that ∆A1t, ∆A2t, and ∆A3t are known, and
thus ∆A1t+1 is uniquely determined by ∆M on the bit-level due to Eq. (2).
Following the given byte-trail Ψ , some bytes can only take the value 0, and for
non-zero bytes the following rules are applied repeatedly to determine (most of)
the remaining bytes of Ψ on the bit-level given Eq. (2), where ∆A2t+1[i] means
the i-th byte of ∆A2t+1 and so on for other values.

1. If ∃i : ∆A2t+1[i] is known, then LπS(∆A1t)[i] = ∆A2t+1[i] +∆M t[i].
2. If ∃i : ∆A3t+1[i] is known, then LπS(∆A2t)[i] = ∆A3t+1[i] +∆M t[i].
3. If ∃i : σ−1(∆A1t+2)[i] = 0 and ∆A2t+1[i] are known, then ∆A3t+1[i] =

∆A2t+1[i] +∆M t+1[i].
4. If ∃i : σ−1(∆A1t+2)[i] = 0 and ∆A3t+1[i] are known, then ∆A2t+1[i] =

∆A3t+1[i] +∆M t+1[i].
5. If the number of unknown byte values in S(∆A1t) (resp. S(∆A2t)) is less

than or equal to the number of known byte values in LπS(∆A1t) (resp.
LπS(∆A2t)), then S(∆A1t) and LπS(∆A1t) (resp. S(∆A2t) and LπS(∆A2t))
are all determined.

Note that ∆A10 = ∆A20 = ∆A30 = 0. This way, this method propagates the
differential knowledge to intermediate bytes of Ψ round by round, and stops
when no new differential bytes can be determined on the bit-level. Although the
above rules are described on the bit-level when a hypothetical ∆M is known,
in our simulations we perform the same steps but on the byte-level where each
variable is a binary known/unknown flag.

It is surprising that for almost every Ψ we have tested all intermediate bytes
can be uniquely determined after applying these rules, except for a few cases.
I.e., given a byte-trail Ψ , there is in most cases only one corresponding bit-trail,
which means nΨ = 1.

In other cases where this method could not determine all values, we have
noticed that the remaining (undetermined) bytes are all in the last round and
all output from active Sboxes. By checking the number of free variables in the
linear system during the 5-th rule, the number of possible bit-trails can be upper
bounded. Due to the DDT of the Sbox, the number of possible output differences
is 27 given the input difference. Hence, every free variable in the linear system
can only take up to 27 possible values. If there are x free variables, then nΨ is
set to 27x.

Simulations and results. We now turn to the short list of promising per-
mutations in Table 10 derived in the previous filtering stage. Due to an extremely



20 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

high complexity of cluster analysis, we picked 5 permutations for SMAC-1 and
9 for SMAC-3/4, such that they cover all distinct characteristics (the vector of
minimum number of Sboxes for various ∆t-scenarios).

For every SMAC variant, permutation, and attack scenario ∆t and (∆t, k)
(where k defines dummy clocks), we first enumerate all clusters identified by dis-
tinct byte-differentials µ(∆M) that include at least one optimal byte-trail with
the minimum number of active Sboxes. Then for each such cluster we compute
the upper bound of the forgery attack success probability by using the above
method, where the enumeration of intermediate byte-trails as well as compu-
tation of maxp(Ψ) was done with OR-Tools. In the end, we get the maximum
probability over all attack scenarios for each SMAC variant and permutation,
from where the most secure permutations are determined.

The results of cluster analysis10 for SMAC-1 are given in Table 2, and a
similar table for SMAC-3/4 is given in Table 11 in Appendix A.

For SMAC-1, we found that σ1, σ11, and σ17 are the three strongest can-
didates with similar security levels. Our preference goes to σ1 for the reason
that it is one of only two permutations out of 244 that has minimum 20 active
Sboxes in all ∆t scenarios; also, both σ11 and σ17 are weaker than σ1 in other
analyses11; finally (though it is not relevant for the SMAC construct), σ1 could
as well be utilised for a SNOW-like stream cipher since it has a higher level of
resistance against correlation attacks. We then claim that our final choice is σ1

and it provides at least 118 bits of security level against forgery attacks.

For SMAC-3/4, we found that σ37 and σ42 are the strongest candidates with
a similar level of security. However, in this case, we would prefer σ42 with a
slightly better security, due to all other secondary considerations of these two
permutations are the same. Our final choice for SMAC-3/4 is σ42 that provides
at least 152 bits of security level against forgery attacks.

As the number of active Sboxes grows rapidly with larger ∆t, we believe that
the existence of a forgery differential attack, with complexity much lower than
the claimed security level and time frame ∆t > 9, is not likely.

10 We skipped testing some scenarios for certain permutations since the maximum
probability was already larger than another permutation candidates had at the time
of simulations, and thus unnecessary simulations on the already worse case would
only take resources with no influence on the final result. Also, some heavy cases such
as (∆t = 6, k = 2) and (∆t = 7, k = 1, 5) for SMAC-3/4 were also skipped, since
all remained “good” permutations have at least 27 and 31 active Sboxes in their
best byte-trails for these scenarios, respectively, which is already much larger than
the minimum 24 and therefore would not cross the maximum probability already
detected by testing other cases of the same permutations. Finally, for a few cases
where ∆t ≥ 6, the models in OR-Tools became too big and the number of byte-
trails was huge, so only those clusters with the highest chance to break through the
security level were checked thoroughly.

11 For example, in GnD test G5, Table 4, both σ11 and σ17 are not secure in all d < 9.



A new stand-alone MAC construct called SMAC 21

Case A few selected permutations from Table 10 for SMAC-1
σ1 σ3 σ11 σ13 σ17

∆t = 3 b : c 4:4 2:2 16:16 2:2 16:16
p 2−134 2−121 2−152 2−121 2−153

Sboxes # 22 20 24 20 24

∆t = 4 b : c 2496:192 534:192 60:44 382:80 2:2
p 2−121.21 2−120.44 2−124.41 2−120.83 2−122

Sboxes # 20 20 20 20 19

∆t = 5 b : c 4032:288 256:68 900:140 248:64 866:130
p 2−121.25 2−115.67 2−119.41 2−115.88 2−118.40

Sboxes # 20 19 19 19 19

∆t = 6 b : c 18321:96∗ 2352:232
p 2−118.95 — 2−123.56 — —

Sboxes # 20 19 20 19 20

∆t = 7 b : c 30264:46∗∗

p 2−129.27 — — — —
Sboxes # 21 19 22 19 22

Max. p 2−118.95 2−115.67 2−119.41 2−115.88 2−118.40

* Only these clusters are found in practical time.
** Only trails that have up to 24 active Sboxes were enumerated.

Table 2. Clusters of differential trails of SMAC-1. In this table, b is the number of
byte-trails, c is the number of clusters, and p is the probability of the cluster.

3.4 Search and selection of σ for SMAC-1/2

The half-rate SMAC-1/2 has an interesting property that only scenarios with
odd ∆t ≥ 5 are valid. In order to find decent permutation candidates for SMAC-
1/2, we collected all permutations that have been considered or filtered out in
previous stages of our work (except that large 1.6B set collected for SMAC-3/4),
and analysed around 180 million permutations resulting in 16 candidates that
have at least 41 Sboxes in ∆t ≤ 9. To note, it was infeasible for us to test all
244 permutations in this rate, thus a stronger candidate might still exist. The
best found 16 permutations for SMAC-1/2 and their analysis are summarised in
Table 9 in Appendix A.

The candidates are sorted in two groups by the number of active Sboxes,
and due to a high computation complexity we only checked one permutation
from each group – σ61 and σ69. Based on the number of active Sboxes only three
scenarios need to be considered for the clustering effect: ∆t = 5 and ∆t = 7 for
σ61, and ∆t = 5 for σ69.

For SMAC-1/2 we adopt a rough method to estimate a cluster probability
such as, when considering a single byte-trail we force the CP solver to maximise
the number n6 of active Sboxes with the optimal probability 2−6. Upon reach-
ing a timeout the solver returns with the range of n6, from where we pick the
maximum bound and assume all other active Sboxes have probability 2−7, this
way we upper bound the probability of a particular trail. Note that if there are
free variables in the trail then we should also include these into the probability,



22 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

same as we did in SMAC-{1, 3/4}. The estimates we receive for all trails are
used to derive an upper bound for all clusters and therefore the forgery success
probability.

From Table 9 the permutation σ69 looks like a good choice, however it was
identified to have a weakness in other analyses12. For this reason we prefer to
pick σ61 which has better properties in all other tests. Also note that the derived
probability 2−252 is only a rough upper bound and in reality the forgery success
probability may be much smaller.

3.5 The constant 1⋆

The MixColumn linear transformation has a specific property such as if the in-
put bytes are all equal, X = {x}16, then the result Y = MixColumn(X) pre-
serves the same property and Y = {y}16. All other operations, such as XOR, σ,
ShiftRows, and SubBytes, also preserve this property. I.e., if all three registers
A1, A2, A3 have that property in some certain time, then that property preserves
over rounds if the message block M = 0, which may, in particular, affect the ran-
domness of the initialisation and finalisation phases. In the initialisation phase,
this property can further generate a weak key class. In order to remove this prop-
erty, we add 1⋆ as the round key to the state during the InitFinal function, as
well as for dummy clocks in SMAC-{3/4, 1/2}. Moreover, the implementation
of the constant is “cheap” in both software and hardware.

3.6 The PRP-PRF switch

The ending XOR with the input in the function InitFinal converts the scheme
from a pseudo-random permutation (PRP) to a non-invertible pseudo-random
function (PRF), similarly to the FP(1) mode of operation in stream ciphers [HK15].
This protects both the secret key and the state sequence. For example, suppose
the state in some time instance is recovered, say, through a side-channel attack.
In that case, it is not possible to revert the state back to the start of the ini-
tialisation phase and recover the secret key, the highest asset to be protected.
Moreover, since t bits of the internal state become the final MAC tag value, it
also makes sense to make the end of the finalisation phase more protected.

The InitFinal procedure can be simplified as

Y = Πd(X)⊕X,

where X,Y are 384-bit variables and Π is the SMAC round function with 1⋆as
the message. The ending ⊕X converts the PRP Π into a PRF. This is a stan-
dard technique and is used in many designs, for example, in MILENAGE for
computing OPc from OP [3GP], or in Grøstl [GKM+09] for the output transfor-
mation. The theoretical security of the finalisation function may be derived from

12 For example, in GnD test G5, Table 4, σ69 is only partially secure in d = 7 (only 9
bytes of 48 are secure) and d = 8 (36/48).



A new stand-alone MAC construct called SMAC 23

e.g. the security proof of Davies-Meyer construct where g(k,m) = Ek(m) ⊕m
is proved to be a collision-resistant one-way function, given that Ek is an ideal
block cipher [BRS02] and the same applies when the key k is fixed.

3.7 Internal state size and TMTO attacks

Assume that an attacker can observe the full 384-bit output Y (and not just the
tag that is of maximum size 256 bits). The question is: what is the complexity
of reverting Y into X? In case of PRP that would be a 1-to-1 mapping and
the reverting algorithm is trivial – just clock backwards d times. However, in
case of a PRF that mapping would in most cases have between 0 to 2 solutions
and it is not trivial how to revert it as ⊕X may be viewed as a masking of
Π(X). To revert that PRF, one may try a TMTO trade-off attack of complexity
T = M = D = O(2192) by just building a table of M = O(2192) (X,Y ) pairs
and then ask for D = O(2192) different Y ’s. This is a state-recovery attack. The
full Y is not available from the SMAC tag, but if the nonce is misused in the
verification oracle one can combine a few accepted tags from the same IV and
fixed messages to form an output Y unique for each X. If the tag size is 32
bits then 240 calls to the verification oracle are sufficient to get on average 28

accepted tags. But the complexity and data grow by at least a factor 232.
Generic key-recovery TMTO attacks are similarly also valid for our construct.

For example, one can create a large table that maps a subset of the key and
IV space to MAC tags for a predefined set of messages, and when the attacker
observes tags also found in the table the full key is recovered. This TMTO attack
would have a complexity around T = M ≈ O(2192) with data D = O(2192) tags
generated from different keys and IV pairs. Better is to fix the IV and have
the same TMTO attack on the key only, requiring T = M = D ≈ O(2128).
Allowing a large precomputation cost, one can reduce the memory and data
cost by Hellman’s approach [Hel80] and building Rainbow tables. It does not,
however, offer better performance than the generic case of a search for any 256-
bit key.

The state size 3× 128 bits ensures a high enough resistance against internal
state collision attacks in birthday paradox and TMTO settings. A single-state
collision may happen naturally among 2192 collected pseudo-random states, but
it does not impact the claimed forgery security levels.

3.8 The avalanche effect on full registers

A brief analysis of the initialisation/finalisation phases can be given by the
avalanche effect on the level of registers depending on the number of clocks
d. The results are given in Table 3 where, for the sake of notation, by kx we
denote that the initial value of Ak has been involved x times in a nonlinear ex-
pression for the resulting register after d clocks. As the result, after d = 3 clocks
the register A1 already involves all three input registers, and after d = 5 clocks
each of the three registers involves the whole input state.



24 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

clocks, d 0 1 2 3 4 5 6 7 8 9

A1 11 2131 1121 112131 112231 122231 122332 132432 142533 152734

A2 21 11 2131 1121 112131 112231 122231 122332 132432 142533

A3 31 21 11 2131 1121 112131 112231 122231 122332 132432

Table 3. The avalanche effect on registers depending on the number of clocks.

3.9 Guess and determine attacks

In this section, we consider the InitFinal function

(A1′, A2′, A3′) = Πd(A1, A2, A3,1⋆)⊕ (A1, A2, A3),

and study the complexity of a generic guess-and-determine attack for various
scenarios where some of the input/output register values are known, and we
want to derive the remaining values through guessing the smallest number of
other unknown bytes. We will model relations on the byte level, and while all
operations are simple, it is only MixColumn that is more complex to model which
includes 56 relations per a single 4-to-4 byte MixColumn. In order to find a
(almost) smallest guess base for our GnD attack scenarios, we utilise the tool
Autoguess from [HE22], as well as our own developed tool that is described in
Appendix B in brief.

We have three sets of GnD scenarios. First of all, in G1 we would like to
understand how good that PRF function is, i.e., given the complete output, how
many bytes need to be guessed to revert that PRF back to the input. In G2
we consider the case when two input states are related through, e.g., a known
differential, and both output states are fully available to the attacker. We see
that the additional knowledge of an extra output state in G2 does not much help
in a GnD attack as the complexity to recover the initial state is similar to G1.

The next set of scenarios G3-5 addresses the security of the initialisation
phase where, as a hypothetical assumption, we let the whole state after initiali-
sation to be known to the attacker, as well as some values of the input registers.
In these scenarios we are interested in the minimum guess base to recover the
missing input register (or even a single byte13), where the secret key may actually
be settled. These attack vectors may become realistic if e.g. one device performs
the initialisation and bypasses the computed output state to the second device
for actual MACing, but that second device may be compromised.

In the third set of scenarios G6-9, we analyse the finalisation part where,
given the knowledge of one or more output bytes (e.g. through the MAC tag), we
wonder about the complexity to recover the internal state before the finalisation
phase.

The absolute security level for all these scenarios is that guessing at most
1/16/32/48 bytes of the unknown input registers is enough to recover all other
variables – we call it as a trivial guess.

13 G5 simulates a scenario when all key bytes except one are guessed and the complete
output is also known; it demonstrates that with d ≥ 7 clocks that single byte is still
an unknown variable and cannot be determined through all other 95 known bytes.



A new stand-alone MAC construct called SMAC 25

Scen- Trivial Known input/output Number of rounds, d
ario guess registers and bytes 1 2 3 4 5 6 7 8 9 10

General: how strong the standalone PRF function is.

G1 48 All output regs. A1′, A2′, A3′ 8 16 16 27 31 32 41 46 48 48

General: state recovery for two related input states given corresponding output states.

G2 48 All 2× 48 output bytes 8 16 16 27 31 32 40 48 48 48

Initialisation: key recovery (or even a single byte) given the complete state after
initialisation and some values at loading time.

G3 32 One of A1, A2, A3 and A1′, A2′, A3′ 0 0 0 10 15 16 24 28 32 32
G4 16 Two of A1, A2, A3 and A1′, A2′, A3′ 0 0 0 0 0 0 8 12 16 16
G5 1 Any 47 input bytes and A1′, A2′, A3′ 0 0 0 0 0 0 1 1 1 1

Finalisation: state recovery given a tag taken from various registers.

G6 48 One of output regs. A1′, A2′, A3′ 32 32 32 32 32 32 42 47 48 48
G7 48 Two of output regs. A1′, A2′, A3′ 16 16 16 28 31 32 40 44 48 48
G8 48 20 output bytes A1′, A2′[0..3] 28 28 28 30 32 34 45 48 48 48

G9 48 20 output bytes A2′, A3′[0..3] 28 28 28 29 32 32 45 48 48 48

Table 4. The observed minimum sizes of guess bases for σ1, σ42, and σ61 under various
scenarios received from heuristic tools, in terms of the number of bytes to be guessed.

All GnD scenarios and the smallest size of the guess base that we managed
to derive and observe by using heuristic tools are given in Table 4. Since these
tools are heuristic, a smaller guess base may still exist. However, the results that
we received are still good indications on what the size of the guess base can be,
and how it grows with the number of rounds d.

Notably, the results of these simulations demonstrate that with d = 9 we
seem getting the absolute maximum possible security level in all GnD scenarios,
although many of them are only theoretical. To note, the highest security level
of 384 bits is not really needed as it is already much larger than we claimed for
SMAC, thus the number of rounds d could actually be lower for certain appli-
cations, and may also be different for the initialisation and finalisation phases.

3.10 MDM and cube tests

In this section, we perform the MDM test and cube attack on InitFinal to check
how many rounds are needed to fully mix the input bits. The initial state in time
t = 0 is supposed to be pseudo-random by the initial d clocks, which shuffles
the input parameters and the secret key. The first preimage resistance should be
ensured by the ending d clocks, which makes it hard to find a message that results
in a particular hash value. Note that practical distinguishers based on these two
methods require fixing some input bits to known values and enumerating another
subset of input bits which is called a cube. Meanwhile, both methods have to
compute the summation of the outputs. However, these requirements cannot be
satisfied simultaneously for either the initialisation or finalisation phase. Because
the output of the initialisation phase and the input of the finalisation phase
are secret to attackers. To analyse both phases, we view them as the same



26 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

standalone function, InitFinal, and assume that all the inputs and outputs
can be obtained.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

4.5

5

5.5

6

6.5

7

bit set sizes

N
o
n
-r
a
n
d
o
m

In
it
F
in
a
l
ro
u
n
d
s

σ1

σ42

σ61

Fig. 4. MDM tests of InitFinal.

In MDM test for a Boolean function, one fixes values to the input bits outside
the cube, enumerating all possible values of the bits in the cube, and then sums
the output values of the function. For a random Boolean function, the result will
be 1 with probability 1/2 while there is a bias for a non-random one. [Sta10]
provides a greedy algorithm to find a good cube that detects non-randomness
through ciphers. We regard the 384 output bits of InitFinal as 384 Boolean
functions and take this algorithm to check their non-randomness. Our test starts
with the worst 2-bit set that shows the longest non-random rounds. In each step,
we add two new bits that give the worst randomness. When the size of the bit
set reaches 16, the time complexity of finding the next two bits is too high, so
we have to switch to adding one new bit in the next steps until the bit set has
24 bits. To test with a larger bit set, a more powerful computer is needed. Our
results are shown in Figure 4. It can be seen that the first 7 rounds fail the MDM
test, ensuring a good mixing effect.

In cube attack, by computing the summation of the outputs, attackers aim
to recover the superpoly of the chosen cube. After the division property was
proposed by Todo [Tod15], it was further used in [TIHM17] to find the set of
key bits J that are involved in the superpoly of the given cube I. This method
was improved by Wang et al. [WHT+18], which reduces the time complexity of

the attack to 2|I| ·
∑d

i=0

(|J|
i

)
where d is the degree of the superpoly. We evaluate

the security of InitFinal against cube attacks by using the method described
in these papers. Our model is a MILP model. The linear operations can be
described by the models of XOR and COPY from [XZBL16] while the model of



A new stand-alone MAC construct called SMAC 27

Rounds, d 3 4 5 6 7 8 9

cube size |I| 7 7 7 103 103 128 128
degree d 21 126 231 231 255 254 255

involved key size |J | 24 152 256 256 256 256 256
time complexity 230.99 2159 > 2256 > 2256 > 2256 > 2256 > 2256

Table 5. Cube attacks on reduced-round of the initialisation phase (the results are the
same for σ1, σ42, and σ61).

the Rijndael Sbox is given by [Tod15]. Several different cubes were tested and
Table 5 shows the best results found by our model. One can see that, after 8
rounds, the degree is almost full which matches the result in Table 7. Meanwhile,
all key bits are involved in this superpoly and the time complexity of the cube
attack is larger than 2256.

3.11 (Key, IV, Msg) differential attack and loading registers

Another test that we performed is a differential analysis where the initial state
after loading (A1, A2, A3) may have a difference ∆(A1, A2, A3), then we check
the minimum number of active Sboxes after d initialisation rounds that bring the
state to any other difference ∆(A1′, A2′, A3′) (which may be zero or nonzero).
One may argue that since IV and IV′ for the pair of messages can be selected or
even be fixed to certain values, it might help the Key-differential to propagate
through the initialisation phase more efficiently. However, since the IV is loaded
into A3, we see that the very first clock would compute A3 ⊕ A2 where A2 is
the lower part of the secret key, thus making the intermediate result unknown.
This way, considering a differential over both IV and Key parts would be a
generic differential attack on the initialisation phase. This observation motivates
to reserve the lower part of the key for A2, then if the original key is larger than
128 bits, the remaining bits to be placed into A1.

Rounds, d 3 4 5 6 7 8 9 10

#Sboxes for σ1/σ42/σ61 5 6 13 30 32 40 56/49/54 70/64/[62,69]
Table 6. Minimum number of active Sboxes in a differential trail through InitFinal.

In our simulations, we find optimal trails that activate the minimum number
of Sboxes in the initialisation phase for each value of d and the results are given
in Table 6.

Let us take d = 6 as an example to explain these results. In order to bring
the difference of the internal state to zero either before the compression phase or
utilising the first difference of the message, the attacker would still have to deal
with at least 30 active Sboxes, which makes the collision probability to be upper
bounded by 2−180 (though without clustering effect). This probability is much



28 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

smaller than the target 2−160 in SMAC-3/4 and does not violate the claimed
security level.

3.12 Output MAC tag registers

Finally, in order to determine which registers should serve as the source of
the final tag, we performed yet another MILP-aided analysis which resulted
in the degree of the Boolean functions of the registers’ bits. This method comes
from [WHT+18] where the authors used it to determine degrees of superpolies.
It is also suitable to evaluate the degree of an arbitrary Boolean function. For
different rounds, our model gave the degree of the Boolean function correspond-
ing to each output bit. We notice that the degrees are the same for all the bits
within each register. The results are provided in Table 7 where some of them
are ranges since the MILP model cannot be completely solved in practical time.
We emphasise that the maximum degree is 383. This is because, without the
PRP-PRF switch, InitFinal is a permutation whose degree is upper bounded
by 383 and the switch does not change the final degree.

Rounds, d 3 4 5 6 7 8 9 10

A1 28 49 196 280 [352, 356] 376 382 383
A2 49 133 280 [352, 356] 376 382 383 383
A3 28 196 232 [352, 356] 372 382 383 383

Table 7. Degrees of Boolean functions of the registers.

From the results given in Table 7, we see that the degree of Boolean functions
of the register A1 is always slightly behind the other two registers A2 and A3,
for different ds. An obvious reason is that A1 is the linear combination of the
previous A2 and A3 which does not increase the degree. Although for d = 9
the output choices (A1 ∥ A2)τ and (A2 ∥ A3)τ do not differ much, in case of
shorter finalisation d < 9 the latter becomes more preferable. This motivates
us to produce the output tag from A2 first, and if more bits are needed, in
SMAC-{3/4, 1/2} with τ > 128, then we take them from A3.

3.13 State recovery attack using nonce-misuse queries

Atomic step. As a simplified scenario, let us demonstrate feasibility of a state
recovery using nonce-misuse queries when (K, IV ) is fixed. Recall a differential
forgery success probability as discussed in Sections 3.1 and 3.3. Let us take
the case SMAC-1, ∆t = 3, and assume we get two messages M and M ′ =
M+∆M where the message difference ∆M only happens during the time width
[t..t + 2] and results in ∆(A1, A2, A3)t+3 = 0 after these 3 clocks. In this case
we have a state collision. Now recall the middle equation from Eq. (1) which
is A2t+3 = LπS(x+ σM t+1) +M t+2, where x, y, z are one-to-one substitutions



A new stand-alone MAC construct called SMAC 29

from (A1, A2, A3)t. Since ∆A2t+3 = 0, and both M and M ′ are known to us,
we derive:

LπS(x+ σM t+1) +M t+2 = LπS(x+ σ(M t+1 +∆M t+1)) + (M t+2 +∆M t+2)

⇒ LπS(x′) = LπS(x′ + σ∆M t+1) +∆M t+2, where x′ = x+ σM t+1

⇒ S(x′) = S(x′ + a) + b, where a = σ∆M t+1, b = (Lπ)−1∆M t+2

Due to the state collision, for any i ∈ [0..15] we get either ai = bi = 0 or
ai ̸= 0 ∧ bi ̸= 0, and these byte values are derived from the (M,M ′) pair and
thus known. For the latter case where ai and bi are both nonzero, the x′

i may
have only 2 (in most cases) or 4 possible values. In this way we learn about
the internal state, represented by the substitution triple (x, y, z). We can then
take the other two equations from Eq. (1) and analyse these in a similar way to
learn about the unknown y, z. The idea of using a differential trail for the state
recovery is not new, see e.g. [HII+22].

Repeat the atomic step several times. In SMAC-1, the optimal byte
trail involves at least 20 active Sboxes, which means that from a single atomic
step we learn around 20 bytes of the internal state. We can repeat the atomic
step by using a different byte trail with a different µ(∆M) (for the same time
instance t in all repeated atomic steps, but may involve different ∆t and distinct
trails), and recover new bytes of the internal state. After 3-4 such atomic steps,
the complete 48-byte internal state can be derived.

State collision detection. To detect a true state collision, and not a ran-
dom tag collision, we can append a single block to both M and M ′ and query
the oracle whether the sequences (M ||1), (M ||2) . . . and (M ′||1), (M ′||2) . . . still
produce the same tag. In case of a random tag collision, this will not be the case.

Complexity to get a related pair (M,M ′). Assume for the moment that
we can make queries to the sender oracle (although this scenario is not realistic
since in that case the attacker already has access to the universal oracle). In a
näıve approach, we choose ∆M , pick a random M and derive M ′ = M +∆M ,
then call the oracle to get the sequence of tags, and thereby determine whether
it is a state collision or not. If the success probability of the state collision for
the chosen ∆M is 2−s, then we need to make O(2s) queries.

However, that complexity may be improved as follows. We pick a byte-
differential µ(∆M), then make around O(N =

√
2s) queries to the oracle with

different messages M1, . . . ,MN , and get relevant tag-sequences T1, . . . , TN (each
sequence of tags should cumulatively have size at least s bits) for each message.
Each message is constructed to follow the chosen byte-differential µ(∆M) such
that if for any byte index i we have µ(∆M)[i] = 0 then in every message that byte
Mk[i] is a constant value for all k ∈ [1..N ] (we can choose that constant byte at
random); and when µ(∆M)[i] = 1 then Mk[i] is picked at random in every mes-
sage independently. In the end, we would get 2s/2 pairs {k ∈ [1..N ] : (Mk, Tk)},
and due to the birthday paradox there should be a pair (Ma, Ta) and (Mb, Tb)
in the list such that Ta = Tb, meaning that we fall into the state collision. The
actual bit-differential is ∆M = Ma +Mb, and the probability that this concrete



30 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

bit-differential value follows the chosen byte-differential µ(∆M) is high (we skip
further details at this point).

In order to find a related pair of messages among N collected, we can sort the
list after the tag-sequences in time O(N logN), then find a matching Ta = Tb in
linear time. The sorting complexity can be decreased by also using hash tables,
thus we should conservatively regard this step as the minimum O(2s/2).

The overall complexity of the state recovery attack by using nonce-misuse
queries to the sender oracle is at least O(2s/2) queries, or more. If the attacker
can only use a verification oracle, then the complexity is at least O(2s/2+τ ). For
SMAC-{1, 3/4, 1/2}, the minimum values for s are {118, 152, 252}, respectively,
thus the absolute lower bounds for this attack is at leastO(2{59,76,126}+τ ) queries.
These are very conservative estimates.

Note also that this attack does not lead to a key recovery, and the univer-
sal forgery can create messages only for a certain pair of (K, IV ). Also, the
above “birthday paradox” improvement may not work if the space of valid bit-
differentials ∆M that follow the selected byte-differential µ(∆M) contains ad-
ditional constraints on the bit-trails (e.g., not all ∆M are possible for the state
collision to happen), thus the attack complexity may actually be much larger,
up to O(2s+τ ) queries. We leave this study as an open question to refine the
nonce-misuse attack complexity in the future.

3.14 Other considerations and overall design justification

Yet another attack approach would be to perform some algebraic analysis. For
example, in a nonce misuse scenario where several truncated correct tags are
given for related messages, one may try to target the finalisation. But, with a
very high degree of output Boolean functions (Table 7) that seems not feasible.

Adding the last block with the AAD and ciphertext lengths makes it harder
to perform attacks based on insertions or deletions of message blocks and it
might also be useful for reasons beyond security.

To conclude this section, we have demonstrated that every design choice in
the SMAC framework has justified reasoning, and concrete analyses in various
security models, attack scenarios, and simulations support these.

4 The aggregated mode version SMAC-1×n

The SMAC compression function can be used in an aggregated mode of opera-
tion, where multiple cores of SMAC compress the stream of message blocks in
parallel, then their end results are combined to produce a single output MAC
tag. The mode of aggregation can be compared to a parallelised implementation
of GHASH.

In this section we present the aggregated mode of SMAC-1, called SMAC-
1×n, where n is the level of aggregation, or, by other words, the number of
parallel streams. Note that parallel streams can be implemented efficiently in
software by e.g. utilising wider SIMD registers such as 512-bit ZMM0..ZMM31,



A new stand-alone MAC construct called SMAC 31

and modern instructions such as AVX-512, thus making an aggregated mode as
an attractive option for various cryptographic primitives.

Key 
IV 
idx

S0

S1

S2

S3

S0

S1

S2

S3

...

...

...

...

Π

Π

Π

Π

M 0..3
1* M 4k-4..4k-1 

Π

Π

Π

S0

S1

S2

S3

...

...

...

...

S0

S1

S2

S3

...

...

...

1*

SΣ SΣ
...

1*

Initialisation phase 
8 clocks

Compression phase Finalisation phase 1 
6 clocks

Compression phase Finalisation phase 2 
8 clocks

Π

Π

Π

Π

Π

Π

Π

Π Π

Π

Π

Π ...Π

Π

Π

Π

Π

[4, 0]

[4, 1]

[4, 2]

[4, 3]

for each of the 4 states individually

Fig. 5. Exampled construct of SMAC-1×4 with 4 parallel compressions.

As a concrete example, we present the design of SMAC-1×4 with four par-
allel compression streams. The value of user-defined IV is limited to 15 bytes
IV [0..14], while the last byte of IV [15] is borrowed by the scheme to encode
the total number of streams (4 in this case) and a corresponding stream index
(from 0 to 3, in this case). The message M is constructed by concatenation of
zero-padded 16-byte blocks of AAD, ciphertext, and the “lengths” block. The
initialisation phase clocks 8 times in four parallel states, and the same padding
for every stream state (K1,K0, IV ) using the patched IV of the first stream.
The finalisation step is, however, modified and split into two sub-phases. In the
first phase, all four parallel cores perform 6 dummy clocks, the purpose of which
is to spread any introduced message differential over the three registers of each
stream. After that all states are bitwise XORed together to form a single state.
That single state is then finalised as SMAC-1 but with 8 finalisation clocks with
the ending PRP-PRF switch. The MAC tag is taken as A2τ , where τ ∈ [12..128].
Schematically, SMAC-1x4 is depicted in Figure 5.

A more general scheme of SMAC-1×n is defined by Algorithm 6. The number
of parallel streams is n ∈ [1, 16] (i.e., the design allows maximum 16 streams),
and a 1-byte encoding is IV [15] = (n− 1) · 16 + i, for the ith stream, where the
stream index is i ∈ [0, n− 1].

Security and limitations of SMAC-1×n are similar to that of SMAC-1, with
one additional note on the finalisation phase. If an attacker introduces some
message differences in two distinct streams and hopes they would cancel each
other due to the XOR-step, then the differential path would now include 2 × 6
rounds. Based on Table 6 that would mean dealing with at least 60 active Sboxes.



32 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

Algorithm 6 SMAC-1×n
1: function SMAC-1×n(n, τ,K0||K1, IV,A, C) → Tag
2: Construct 16-byte block L = LittleEndian64(len(A))||LittleEndian64(len(C)).
3: Pad A and C with zeroes to align with full 16-byte blocks.
4: Concatenate M = (A||C||L) and pad with zeroes to align with 16n-byte blocks.
5: Create n states S0, . . . , Sn−1 each having three registers Sk.A1, Sk.A2, Sk.A3
6: Patch the IV as IV [15] = (n− 1) · 16.
7: Initialise Sk.A1 = K1, Sk.A2 = K0, Sk.A3 = IV ⊕ (k · 2120), ∀k ∈ [0..n− 1].
8: for i = 1..8 do ▷ Initialisation loop
9: ∀k ∈ [0..n− 1] : (Sk.A1, Sk.A2, Sk.A3) = Π(Sk.A1, Sk.A2, Sk.A3,1⋆)
10: end for
11: ∀k ∈ [0..n−1] : (Sk.A1, Sk.A2, Sk.A3) = (Sk.A1, Sk.A2, Sk.A3)⊕(K1,K0, IV )
12: Divide M into mn sub-blocks M i of size 16 bytes each ▷ Compression
13: for i = 0..m− 1 do
14: ∀k ∈ [0..n− 1] : (Sk.A1, Sk.A2, Sk.A3) = Π(Sk.A1, Sk.A2, Sk.A3,M in+k)
15: end for
16: for i = 1..6 do ▷ Finalisation phase 1
17: ∀k ∈ [0..n− 1] : (Sk.A1, Sk.A2, Sk.A3) = Π(Sk.A1, Sk.A2, Sk.A3,1⋆)
18: end for
19: (A1, A2, A3) =

⊕
k∈[0..n−1](Sk.A1, Sk.A2, Sk.A3)

20: A2′ = A2 ▷ Finalisation phase 2
21: for i = 1..8 do
22: (A1, A2, A3) = Π(A1, A2, A3,1⋆)
23: end for
24: Tag = (A2⊕A2′)τ
25: end function

Therefore, the first phase of initialisation is important in order to diminish this
vector of attacks.

5 Software evaluation

SMAC compression function can be implemented with only a few SIMD instruc-
tions on modern CPUs, and our assessment is that SMAC is fast and competitive
design in both software and hardware.

void SMAC_Compress(__m128i& A1, __m128i& A2 , __m128i& A3, __m128i* msg)
{ __m128i M = msg ? *msg : const1; // if msg=NULL then dummy clock

__m128i T = Sigma(Xor3(A2 , A3 , M));
A3 = AesRound(A2, M);
A2 = AesRound(A1, M);
A1 = T;

}

Listing 1. SMAC compression function (implementation sketch).

We, however, made a slightly optimised implementation of SMAC-{1, 3/4,
1/2} leveraging SIMD instructions, partial unrolling, a better utilisation of regis-
ters, etc. All measurements were performed in a single threaded setup, averaging
over 3 seconds. The results of performance measurements are given in Table 8.



A new stand-alone MAC construct called SMAC 33

Performance, in Gbps Length of the message, in bytes
218 216 214 212 210 28 26

Platform P1: Intel Core i5-1145G7 @2.6/4.4GHz

GHASH (OpenSSL) 213 212 202 153 81 78 22
CMAC-AES-128 (OpenSSL) 16.8 16.7 16.6 16.1 13.9 9.3 3.6
HMAC-SHA3-256 (OpenSSL) 4.0 3.9 3.8 3.6 2.9 1.7 0.6
Poly1305 (estimate) [36, 92]
SMAC-1 (C++, SIMD) 156 155 152 142 113 65 19.1
SMAC-3/4 (C++, SIMD) 109 109 108 104 90 58 18.4
SMAC-1/2 (C++, SIMD) 73 73 72 70 63 44 18.4

SMAC-1×4 (C++, SIMD) 579 564 493 315 134 40 10.6
SMAC-1×8 (C++, SIMD) 925 877 723 415 151 40 10.6

Table 8. Software performance evaluation results.

The performance results show that SMAC is much faster than CMAC and
HMAC. However, when comparing to polynomial evaluations, SMAC is faster
than Poly130514 but slower than GHASH. The latter can be explained by par-
allelisation techniques used for GHASH implementation. E.g., as it can be seen
from the column for 1024 bytes messages where the switch from one parallelisa-
tion of GHASH to another did not yet happen, SMAC is faster.

Performance measurements for aggregated SMAC-1×4, as well as for 8-
streamed SMAC-1×8, demonstrate a significant speed up for long messages up
to 925 Gbps in a single thread, which is significantly faster than GHASH core
(as implemented in OpenSSL) even with the parallelised implementation.

6 Conclusions

In this paper, we presented a new efficient stand-alone MAC scheme based on
the processing in the FSM part of the stream cipher family SNOW. The proposal
offers a combination of very high speed in software and hardware, a truncatable
tag and resistance to nonce misuse. Three concrete versions of SMAC are pro-
posed with different security levels. SMAC can be combined with an encryption
scheme in an AEAD mode, with high performance and robust security. Every
design choice has been argued for through analysis and simulations. The aggre-
gated variant SMAC-1×n achieves the speed up to 925 Gbps, which is faster
than polynomial based MACs.

A direction for future work could be to examine the possibility of meaningful
security proofs for the construct. For example, one might investigate to what
extent the InitFinal algorithm with d = 9 is indistinguishable from a PRF. If
so, this might be extended to proofs for the full construct.

14 The version of OpenSSL 3.3.0-dev that we used does not seem to have a stand-alone
Poly1305 for a speed measurement, therefore we could only derive an estimate for
the speed range based on measurements of chacha20 and chacha20-poly1305.



34 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

Acknowledgements

We thank the cloud teams of E2C and LUNARC for their patience and help
in computing resources for our simulations that made these results possible.
We also thank John Preuß Mattsson, Erik Thormarker, and other reviewers for
providing constructive comments.

This work was supported by the Swedish Foundation for Strategic Research
(Grants No. RIT17-0005 and SM22-0050) and the ELLIIT program.

Appendix A: Permutation candidates

SMAC-1/2. Permutation, σ ∆t = 5, k = 1, 3 ∆t = 7, k = 1, 3, 5
b : c p b : c p

#Sboxes: 41 in ∆t = 5, k = 1, 3; 41 in ∆t = 7, k = 1, 3, 5; 49 in ∆t = 9, k = 1, 3, 5, 7

Clustering effect analysis for σ61 2838:266 2−256.22 15656:174* 2−252.30

σ61 ={0,11,7,14,6,4,1,15,9,3,8,5,13,2,10,12} σ62 ={1,6,14,0,4,15,11,2,10,8,5,3,13,7,12,9}
σ63 ={1,11,0,13,5,10,2,4,8,3,15,6,14,12,9,7} σ64 ={2,0,13,11,5,15,4,1,9,14,6,8,12,7,3,10}
* only significant trails with at most 51 active Sboxes were enumerated for ∆t = 7.

2854:267 — — —
σ65 ={0,6,13,9,7,4,10,2,11,15,8,1,14,5,3,12} σ66 ={2,9,7,0,4,10,1,13,11,8,14,6,15,3,12,5}
σ67 ={3,0,6,14,7,11,4,13,10,1,15,8,12,2,9,5} σ68 ={3,7,0,9,6,13,11,4,8,14,5,1,15,12,2,10}
#Sboxes: 41 in ∆t = 5, k = 1, 3; 43 in ∆t = 7, k = 1, 3, 5; 49 in ∆t = 9, k = 1, 3, 5, 7

Clustering effect analysis for σ69 4510:782 2−256.00 — —
σ69 ={0,5,15,10,14,8,1,13,7,3,12,6,11,2,9,4} σ70 ={10,4,13,9,3,15,8,2,7,14,5,0,12,1,11,6}
σ71 ={15,6,13,8,4,9,3,14,2,12,5,1,11,7,0,10} σ72 ={15,11,4,14,3,10,1,12,8,13,7,2,6,0,9,5}

4600:794 — — —
σ73 ={0,10,5,15,9,12,11,2,13,14,4,1,6,7,3,8} σ74 ={5,6,12,9,14,15,11,0,8,2,13,7,1,4,3,10}
σ75 ={5,8,7,14,9,10,0,13,2,3,15,4,12,6,1,11} σ76 ={10,11,7,12,4,14,9,3,13,0,15,6,1,2,8,5}

Table 9. Strong permutation candidates found for SMAC-1/2. In this table, #Sboxes
is minimum number of active Sboxes of a differential trail (∆M t, ..., ∆M t+∆t−1) where
the first and the last ∆s are nonzero, encountering cases with dummy middle clock(s),
i.e. where ∆M t+k = 0. For clustering effect, b is the number of byte-trails; c is the
number of clusters; and p is the upper bound for all clusters’ probabilities. For all
permutations, if used in FSM, the minimum number of active Sboxes in a linear ap-
proximation is 18.



A new stand-alone MAC construct called SMAC 35

SMAC-1. Minimum number of active Sboxes of a differential trail If used in FSM,
(∆M t, ...,∆M t+∆t−1) where the first and the last ∆s are nonzero. min. number of
∆t = 3 ∆t = 4 ∆t = 5 ∆t = 6 ∆t = 7 ∆t = 8 ∆t = 9 active Sboxes

22 20 20 20 21 [22,23] [23,25] 18
σ1 ={0,7,14,11,4,13,10,1,8,15,6,3,12,5,2,9} σ2 ={0,9,6,13,4,11,2,15,8,1,14,5,12,3,10,7}

20 20 19 19 19 20 ≥22 18
σ3 ={4,9,2,13,0,11,6,15,12,1,14,5,8,3,10,7} σ4 ={4,9,6,13,0,11,2,15,12,1,10,5,8,3,14,7}
σ5 ={8,1,6,13,12,11,2,15,0,9,14,5,4,3,10,7} σ6 ={8,7,14,3,12,13,10,1,0,15,6,11,4,5,2,9}
σ7 ={8,7,14,11,12,5,10,1,0,15,6,3,4,13,2,9} σ8 ={8,9,6,13,12,11,2,7,0,1,14,5,4,3,10,15}
σ9 ={12,7,2,11,8,13,10,1,4,15,6,3,0,5,14,9} σ10 ={12,7,14,11,8,13,6,1,4,15,10,3,0,5,2,9}

24 20 19 20 22 24 ≥25 17
σ11 ={7,10,5,8,11,14,9,12,15,2,13,0,3,6,1,4} σ12 ={13,8,15,10,1,12,3,14,5,0,7,2,9,4,11,6}

20 20 19 19 19 20 22 16
σ13 ={4,1,14,11,0,13,10,7,12,15,6,3,8,5,2,9} σ14 ={4,7,14,11,0,13,10,1,12,9,6,3,8,5,2,15}
σ15 ={12,9,6,3,8,11,2,15,4,1,14,5,0,13,10,7} σ16 ={12,9,6,13,8,5,2,15,4,1,14,11,0,3,10,7}

24 19 19 20 22 24 ≥25 15
σ17 ={6,5,15,12,13,9,8,14,3,2,4,7,10,0,1,11} σ18 ={9,5,4,10,15,14,0,3,6,12,13,7,2,1,11,8}
σ19 ={11,10,12,15,2,8,9,3,14,13,7,4,5,1,0,6} σ20 ={14,4,5,15,10,9,3,0,1,13,12,2,7,6,8,11}

SMAC-3/4. Minimum number of active Sboxes of a differential trail If used
(∆M t, ...,∆M t+∆t−1) where the first and the last ∆s are nonzero, in FSM,

encountering cases with dummy middle clock(s), i.e. where ∆M t+k = 0. minimum
∆t = 3 ∆t = 4 ∆t = 5 ∆t = 6 ∆t = 7 ∆t = 8 ∆t = 9 number

k = 1/2 k = 1/2/3 k = 2/3 k = 1, 5 k = 1, 5 k = 1, 5 of active
/3 /2, 6 /2, 6/3, 7 Sboxes

26 24/30 24/24/24 24/24 29/25 27/33 ≥29/29/35 20
σ21 ={7,9,0,12,15,8,2,13,6,1,14,11,5,3,10,4} σ22 ={9,7,14,8,11,13,4,0,3,12,6,1,10,5,2,15}
σ23 ={11,4,14,9,2,13,10,7,1,15,6,0,3,5,12,8} σ24 ={14,9,6,3,13,11,2,12,15,1,8,4,7,0,10,5}

26 26/32 24/26/26 26/≥24 32/25 30/≥37 30/35/≥35 18
σ25 ={4,2,10,11,0,13,14,6,12,7,9,5,8,3,15,1} σ26 ={4,15,1,13,0,11,7,9,12,10,2,3,8,5,6,14}
σ27 ={8,3,6,5,12,7,10,9,0,11,14,13,4,15,2,1} σ28 ={8,15,14,1,12,3,2,5,0,7,6,9,4,11,10,13}
σ29 ={12,7,3,5,8,6,14,15,4,1,2,10,0,11,13,9} σ30 ={12,9,10,2,8,3,5,1,4,15,11,13,0,14,6,7}

26 35/30 24/≥25/24 ≥24/24 30/25 28/35 31/34/≥35 17
σ31 ={4,9,11,6,8,13,15,10,12,1,3,14,0,5,7,2} σ32 ={4,13,14,7,12,11,15,10,0,6,1,5,8,9,2,3}
σ33 ={8,7,11,6,12,2,13,1,4,5,14,15,0,9,10,3} σ34 ={8,14,9,13,0,1,10,11,12,5,6,15,4,3,7,2}
σ35 ={12,13,6,7,8,1,2,11,0,15,3,14,4,10,5,9} σ36 ={12,14,9,11,0,2,13,15,4,6,1,3,8,10,5,7}

26 26/28 24/25/25 27/24 31/24 27/37 30/35/≥34 17
σ37 ={4,7,12,15,8,13,10,9,0,1,3,14,2,6,5,11} σ38 ={4,8,6,10,12,11,14,15,1,5,13,7,0,9,2,3}
σ39 ={4,9,6,5,12,13,15,10,14,2,1,7,0,3,8,11} σ40 ={4,13,6,7,8,12,10,14,0,15,2,3,5,9,1,11}
σ41 ={6,10,9,15,8,11,0,3,12,1,14,13,4,5,7,2} σ42 ={7,14,15,10,12,13,3,0,4,6,1,5,8,11,2,9}
σ43 ={8,7,10,11,13,1,9,3,12,5,14,15,0,4,2,6} σ44 ={8,9,10,13,0,14,2,12,4,5,6,15,7,1,11,3}
σ45 ={8,9,11,6,10,14,13,3,12,15,4,7,0,5,2,1} σ46 ={8,9,15,12,0,2,13,1,4,7,14,5,3,10,11,6}
σ47 ={8,14,9,11,0,3,2,15,4,13,12,5,10,1,7,6} σ48 ={9,13,5,15,8,1,10,11,12,0,14,2,4,3,6,7}
σ49 ={11,5,15,7,12,13,14,1,4,2,6,0,8,9,10,3} σ50 ={12,5,4,13,2,9,15,14,0,6,1,3,8,11,10,7}
σ51 ={12,10,14,8,0,1,2,11,3,13,7,15,4,5,6,9} σ52 ={12,13,14,7,15,9,3,11,0,1,2,5,8,6,10,4}
σ53 ={12,14,9,13,0,3,10,1,15,6,7,2,4,5,11,8} σ54 ={12,15,6,13,11,2,3,14,0,1,7,4,8,10,5,9}
σ55 ={12,15,14,11,0,9,8,1,6,13,3,2,4,10,5,7} σ56 ={14,5,11,10,12,2,13,15,4,7,6,3,8,1,0,9}

26 26/26 24/24/25 24/24 30/26 29/32 31/31/35 16
σ57 ={4,15,5,11,14,1,8,2,12,7,13,6,9,3,0,10} σ58 ={4,15,5,14,1,11,8,2,12,7,13,3,6,9,0,10}
σ59 ={10,13,4,14,8,3,9,2,5,15,12,6,0,11,1,7} σ60 ={13,7,4,14,8,3,9,15,2,5,12,6,0,11,1,10}

Table 10. Strong permutation candidates found for SMAC-1 and SMAC-3/4.



36 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

C
a
se

A
fe
w

se
le
ct
ed

p
er
m
u
ta
ti
o
n
s
fr
o
m

T
a
b
le

1
0
fo
r
S
M
A
C
-3
/
4

σ
2
1

σ
2
5

σ
2
7

σ
3
1

σ
3
2

σ
3
6

σ
3
7

σ
4
2

σ
5
7

∆
t
=

3
b

3
9

4
4

4
4

8
8

8
1
2

1
2

3
8

c
2
4

2
8

2
8

8
8

8
1
2

1
2

3
2

p
2
−
1
5
9
.6
7

2
−
1
6
2

2
−
1
6
2
.4
1

2
−
1
6
3

2
−
1
6
3

2
−
1
6
3

2
−
1
6
2

2
−
1
6
3

2
−
1
6
0
.6
7

S
b
ox

es
#

2
6

2
6

2
6

2
6

2
6

2
6

2
6

2
6

2
6

∆
t
=

4
b

1
/
2

4
/
4

4
/
4

2
3
6
/
4

2
3
6
/
4

2
3
6
/
4

4
/
4

4
/
4

4
/
5

c
1
/
1

4
/
4

4
/
4

2
1
2
/
4

2
1
2
/
4

2
1
2
/
4

4
/
1

4
/
1

4
/
2

k
=

1
p

2
−
1
5
1

2
−
1
6
3

2
−
1
6
4

2
−
2
1
8
.4
1

2
−
2
1
6
.4
1

2
−
2
1
8
.4
1

2
−
1
6
2

2
−
1
6
3

2
−
1
6
1

k
=

2
p

2
−
1
9
5
.4
1

2
−
2
0
8

2
−
2
0
8

2
−
1
9
4

2
−
1
9
2

2
−
1
9
3

2
−
1
7
8
.1
9

2
−
1
7
9
.6
7

2
−
1
6
7
.8
3

S
b
ox

es
#

2
4
/
3
0

2
6
/
3
2

2
6
/
3
2

3
5
/
3
0

3
5
/
3
0

3
5
/
3
0

2
6
/
2
8

2
6
/
2
8

2
6
/
2
6

∆
t
=

5
b

1
1
5
8

2
5
8
3

2
6
1
6

2
8
8
8

3
1
7
2

3
2
7
2

1
7
1

1
5
5

7
9
6

/
3
/
7

/
5
2
/
3
4
2

/
9
8
/
3
0
4

/
1
0
2
/
1
2

/
8
/
1
7

/
1
0
2
/
8

/
5
/
4

/
5
/
4

/
1
4
/
2
0
3

c
4
0
/
2
/
4

9
0
/
1
9
/
4

1
0
0
/
3
2
/
4

4
8
/
3
6
/
4

5
2
/
1
/
8

5
2
/
3
6
/
4

2
0
/
5
/
1

2
0
/
5
/
1

2
7
/
4
/
2
5

k
=

1
p

2
−
1
4
6
.2
3

2
−
1
4
5
.5
7

2
−
1
4
6
.0
8

2
−
1
3
9
.7
5

2
−
1
3
9
.2
7

2
−
1
3
7
.8
3

2
−
1
5
1
.3
7

2
−
1
5
2
.2
9

2
−
1
4
6
.0
2

k
=

2
p

2
−
1
4
9
.6
7

2
−
1
6
4
.9
1

2
−
1
6
5
.0
9

2
−
1
6
5
.6
7

2
−
1
6
0
.4
1

2
−
1
6
4
.6
7

2
−
1
6
4

2
−
1
6
5

2
−
1
5
2
.5
4

k
=

3
p

2
−
1
5
7
.4
1

2
−
1
5
9
.0
6

2
−
1
5
2
.3
9

2
−
1
5
6
.5
4

2
−
1
5
6

2
−
1
5
6
.8
3

2
−
1
5
3
.8
3

2
−
1
5
4
.8
3

2
−
1
4
9
.2
1

S
b
ox

es
#

2
4
/
2
4
/
2
4

2
4
/
2
6
/
2
6

2
4
/
2
6
/
2
6

2
4
/
2
6
/
2
4

2
4
/
2
5
/
2
4

2
4
/
2
6
/
2
4

2
4
/
2
5
/
2
5

2
4
/
2
5
/
2
5

2
4
/
2
4
/
2
5

∆
t
=

6
b

4
/
1
9
1

–
/
3
1
6

–
/
2
6
4

1
3
3
3
/
1
1
2

c
1
/
1
2

—
—

—
—

—
–
/
4
5

–
/
3
5

1
4
/
6

k
=

2
p

2
−
1
5
9
.8
3

–
–

2
−
1
4
7
.8
6

k
=

3
p

2
−
1
4
5
.7
9

2
−
1
5
1
.2
1

2
−
1
5
2
.8
6

2
−
1
4
9
.0
4

S
b
ox

es
#

2
4
/
2
4

2
6
/
2
5

2
6
/
2
4

2
4
/
2
4

2
4
/
2
4

2
5
/
2
4

2
7
/
2
4

2
7
/
2
4

2
4
/
2
4

∆
t
=

7
b

–
/
5
∗

–
/
6
∗

c
—

—
—

—
—

—
–
/
2

–
/
1

—
k
=

1
,5

p
–

–
k
=

3
p

2
−
1
5
6
.6
0

2
−
1
5
6
.8
3

S
b
ox

es
#

2
9
/
2
5

3
2
/
2
5

3
2
/
2
5

3
0
/
2
5

3
0
/
2
5

3
0
/
2
5

3
1
/
2
4

3
1
/
2
4

3
0
/
2
6

M
a
x
.

p
2
−
1
4
5
.7
9

2
−
1
4
5
.5
7

2
−
1
4
6
.0
8

2
−
1
3
9
.7
5

2
−
1
3
9
.2
7

2
−
1
3
7
.8
3

2
−
1
5
1
.2

1
2
−
1
5
2
.2

9
2
−
1
4
6
.0
2

*
O
n
ly

si
gn

ifi
ca
n
t
tr
a
il
s
th
a
t
h
a
ve

a
t
m
o
st

5
7
a
ct
iv
e
S
bo
xe
s
w
er
e
en

u
m
er
a
te
d
.

In
th
is

ta
b
le
,
b
is

th
e
n
u
m
b
er

o
f
b
y
te
-t
ra
il
s,

c
is

th
e
n
u
m
b
er

o
f
cl
u
st
er
s,

p
is

th
e
p
ro
b
a
b
il
it
y
o
f
th
e
cl
u
st
er
,
a
n
d
va
-

lu
e(
s)

in
k
m
ea
n
th
a
t
∆
M

t+
k
=

0
a
re

d
u
m
m
y
b
lo
ck
s.

Table 11. Cluster characteristics of differential trails of SMAC-3/4.



A new stand-alone MAC construct called SMAC 37

Appendix B: A fast heuristic algorithm to find a small guess
base in guess-and-determine attack scenarios

The main idea on describing relations between variables comes from [HE22],
but since Autoguess works very slow already for d ≥ 3, we decided to develop
a simplified yet powerful enough tool to solve GnD systems where all variables
have the same weight (weight 1 to all byte variables in our case) and only the
basic type of relation supported.

A relation on n variables [x0, x1, . . . , xn−1] is added to the system when the
knowledge of any n − 1 variables results in the knowledge of the remaining
unknown in the list. To note, a new relation and new variables are added to the
system only at the points of branching. In our case, we have two such points.

Relations for XOR: Let us have a branching point such as c = a ⊕ b, then
the relation here is simply [a, b, c], meaning that the knowledge of any 2 values
(bytes) would result in the knowledge of the third value. Note that here a new
variable c is introduced into the system.

Relations for MixColumn: Consider a 4-by-4 MixColumn operation from AES.
The input is four existing variables (x0, x1, x2, x3), and the output are new vari-
ables (y0, y1, y2, y3) to be added to the system. The MixColumn linear transfor-
mation is such that knowing any 4 values from 8 input and output variables
would result in the knowledge of all other 4 values. This can be described with
56 5-tuple relations (8 choose 5) such as [x0, x1, x2, x3, y0], . . . , [y0, y1, y2, y3, x3].

Application of Sboxes and permutations of the array of variables do not
create any new relation nor introduce any new variable. This way, the complete
system comprises a set of v variables (some of which can be set as known) and a
set of r relations between these variables, and that system can be described by
a binary matrix R of size r × v, e.g.:

Rr,v =

x0 x1 ... xv−1

1 0 ... 1
1 1 ... 0
...
0 1 ... 1

where v columns represent variables and r rows are relations. Introduce the
following v-bit vectors:

– Kv – the vector of variables that are known from the start, such as observed
output bytes or those bytes where we insert IV, which are known, etc.

– Gv – the vector of the guess base, initialised as Gv = 0.

The target of the solver is to find G with the minimum Hamming weight such
that given only variables from the set (K ∨G) one can derive all other variables
in time O(1) by using the relation matrix R.

Let us now introduce a knowledge propagation function: FKP (Rr×v,Kv)→
K ′

v, which is, given the relation matrix R and a vector of all known variables at



38 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

the moment K, derives a new vector of known variables K ′ after applying the
matrix with relations R. This function works as follows:

Algorithm 7 Knowledge propagation function.

1: function FKP : (R,K) → K′

2: Set K′ = K
3: for all i = 0, 1, . . . , r − 1 do
4: if Hamming weight of (NOT(K′) ∧R.row(i)) is 1 then
5: K′ = K′ ∨R.row(i)
6: end if
7: end for
8: If at least one bit was added to K′ during the above for-loop, repeat that loop

again until no more new bits can be added to K′.
9: end function

The algorithm of finding the guess base consists of two phases – the Approx-
imation and Reduction phases, as briefly described below. The algorithm is a
variation of a greedy approach, but comparing to Autogess it works extremely
fast and still gives quite good results. Since it is still a heuristic algorithm, one
should expect that the resulting guess base may not be optimal, but hopefully
close to the minimum.

Approximation phase. We start by computing Y = FKP (R,K ∨G), and
then also remove rows R.row(i) from R where Hamming weight of Y ∧R.row(i)
is zero – i.e., these relations become not helpful in the GnD flow.

Then, in each step of this phase we try all unknown variables one by one
(those where Y is ‘0’), and collect metrics for each of these unknowns – we will
talk about various metrics further. The unknown variable with the best metric
is added to the guess base G, and Y is updated as Y = FKP (Y ∨ x), while also
removing rows from R that in this step became covered by Y .

The phase ends when the Hamming weight of Y becomes equal to v, i.e., all
variables became known.

In an improved variant each step we test all possible pairs of unknown vari-
ables and the one with best metrics is added to the guess base G, and Y is
updated with two points added. Testing a triple-point is more costly but still
feasible time. However, we used the 3-points method only on few analysis cases.

Metrics. Let us pick one unknown variable x that is not in Y . We have
identified two main metrics:

(a) the Hamming weight of FKP (R, Y ∨ x) – the larger Hamming weight the
more variables become known if that particular x is added to the guess base.

(b) the Hamming weight of the column of (the truncated) R corresponding to x
– the more 1s are removed from R, the more new variables may be derived
through the knowledge propagation.

There can be any order of (a) and (b) metrics for the decision which candidate
for the base guess is better to adopt, and we have tried both orders in our



A new stand-alone MAC construct called SMAC 39

simulations and finally took the shorted guess base from both methods. In case
of a tie-break decision, we apply additional metrics:

(c) choose the best candidate between two equal options at random
(d) prioritise the candidate involving the unknown variable closer to other known

variables – i.e., in case of SMAC analysis we prefer to avoid guessing variables
somewhere in the middle of d rounds of InitFinal.

Reduction phase. After an approximate guess base is received, we then
start the last phase of reduction of the base. We simply try to remove two guessed
variables from the guess base, and see whether adding one other unknown would
still give a valid guess base. In an improved variant, one may also remove 3
variables, try to add 1 or 2 other unknowns and check if the guess base is still
valid. But this appeared to bee too timely and thus we did not use 3-points
reduction.

Appendix C: Example trail

Clocks Variables Intermediate differences

0 ∆A1 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

∆A2 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

∆A3 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

1 ∆S(A1) 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

∆S(A2) 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

∆M t 80,00,00,00,00,00,59,00,00,0e,00,00,00,84,00,00

∆A1 80,00,00,00,00,84,00,00,00,00,59,00,00,00,00,0e

∆A2 80,00,00,00,00,00,59,00,00,0e,00,00,00,84,00,00

∆A3 80,00,00,00,00,00,59,00,00,0e,00,00,00,84,00,00

2 ∆S(A1) 39,00,00,00,00,a8,00,00,00,00,01,00,00,00,00,71

∆S(A2) 11,00,00,00,00,00,64,00,00,40,00,00,00,01,00,00

∆M t+1 ed,00,00,00,00,44,40,00,00,32,24,00,00,ac,00,10

∆A1 ed,00,00,00,00,ac,24,00,00,10,40,00,00,44,00,32

∆A2 0c,00,00,00,00,44,40,00,00,32,24,00,00,ac,00,10

∆A3 cf,11,11,33,c0,c4,00,40,03,30,25,01,64,00,c8,74

3 ∆S(A1) 28,00,00,00,00,a8,64,00,00,40,01,00,00,01,00,71

∆S(A2) 28,00,00,00,00,a8,64,00,00,40,01,00,00,01,00,71

∆M t+2 c3,11,11,33,c0,80,40,40,03,02,01,01,64,ac,c8,64

∆A1 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

∆A2 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

∆A3 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

Table 12. An example trail for SMAC-1 in ∆t = 3.



40 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

Appendix D: Reference implementation (C/C++, SIMD)

#define SMAC_VER 1 /* SMAC instance: {1,34 ,12} for SMAC -{1 ,3/4 ,1/2} resp.*/
#define SIGMA (SMAC_VER == 1 ?\

_mm_setr_epi8 (0,7,14,11,4,13,10,1,8,15,6,3,12,5,2,9) /* SMAC -1 */\
: (SMAC_VER == 34?\

_mm_setr_epi8 (7,14,15,10,12,13,3,0,4,6,1,5,8,11,2,9) /* SMAC -3/4 */\
: _mm_setr_epi8 (0,11,7,14,6,4,1,15,9,3,8,5,13,2,10,12))) /* SMAC -1/2 */

#define load(ptr) _mm_loadu_si128 (( __m128i *)(ptr))
#define store(ptr , x) _mm_storeu_si128 (( __m128i *)(ptr), x)
#define aes(a, k) _mm_aesenc_si128(a, k)
#define sigma(x) _mm_shuffle_epi8(x, SIGMA)
#define xor2(x, y) _mm_xor_si128(x, y)
#define xor3(x, y, z) xor2(xor2(x,y),z)

void SMAC_Compress(__m128i& A1, __m128i& A2 , __m128i& A3, uint8_t* msg)
{ __m128i M = msg ? load(msg) : _mm_cvtsi32_si128 (1);

__m128i T = sigma(xor3(A2 , A3 , M));
A3 = aes(A2, M);
A2 = aes(A1, M);
A1 = T;

}

void SMAC_InitFinal(__m128i& A1 , __m128i& A2, __m128i& A3)
{ __m128i T1 = A1, T2 = A2, T3 = A3;

for (int i = 0; i < 9; i++)
SMAC_Compress(A1, A2, A3, NULL);

A1 = xor2(A1 , T1);
A2 = xor2(A2 , T2);
A3 = xor2(A3 , T3);

}

// (!) In this implementation , aad/ct must reserve 16/32 extra bytes , resp.
void SMAC(uint8_t key[32], uint8_t iv[16], uint8_t* aad , int aad_sz ,

uint8_t * ct, int ct_sz , uint8_t * tag , int tag_sz)
{

// initialise with the key and iv
__m128i A1 = load(key + 16), A2 = load(key), A3 = load(iv);
SMAC_InitFinal(A1 , A2 , A3);

// zeroise ending unaligned bytes , and add LEN -block
memset(aad + aad_sz , 0, 16);
memset(ct + ct_sz , 0, 16);
int aad_blocks = (aad_sz + 15) >> 4;
int ct_blocks = (ct_sz + 15) >> 4;
*( uint64_t *)(ct + (ct_blocks * 16) + 0) = aad_sz * 8;
*( uint64_t *)(ct + (ct_blocks * 16) + 8) = ct_sz * 8;

// compress full blocks , including the ending LEN -block to ct
for (int i = 0; i <= (aad_blocks + ct_blocks); i++)
{ uint8_t* msg = i < aad_blocks ? (aad + i * 16)

: (ct + (i - aad_blocks) * 16);
SMAC_Compress(A1, A2, A3, msg), num_clocks ++;
if (SMAC_VER == 12 || (SMAC_VER == 34 && (i % 3) == 2))

SMAC_Compress(A1, A2, A3, NULL);
}

// finalise and derive the MAC value
SMAC_InitFinal(A1 , A2 , A3);
memcpy(tag , (uint8_t *)&A2, (tag_sz <= 16 ? tag_sz : 16));
if (tag_sz > 16)

memcpy(tag + 16, (uint8_t *)&A3, tag_sz - 16);
}

Listing 2. Reference implementation of SMAC-{1, 3/4, 1/2} in C/C++.



A new stand-alone MAC construct called SMAC 41

Appendix E: Test vectors

The MAC tag is taken as (A2||A3)τ after the finalisation phase.

=== TEST 1 ===
KEY = { 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }
IV = { 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }

AAD = { }
CIPHER = { }

For SMAC -1:
After initialisation:

A1 = { fa 4e 8b ba 5b a3 79 be 90 a7 ee d8 00 12 03 5b }
A2 = { 8c 99 e7 01 95 ba 79 b6 e1 3f 0f 56 6a d4 5c 60 }
A3 = { 59 ec 45 58 1d a5 08 9e e4 ad 8e 4d e2 da b1 08 }

After compression (1 clock):
A1 = { d5 28 ed 1b 88 0e 81 75 05 68 71 59 88 1f a2 92 }
A2 = { 55 78 3c 27 19 f8 94 9f 13 00 3a 13 60 9d 98 fe }
A3 = { 69 dd 17 95 fd 62 4f b9 e9 81 51 53 2a b5 53 27 }

After finalisation:
A1 = { aa 8c 58 31 e0 ce 87 91 08 b7 c2 63 1e 2e 9b f9 }
A2 = { d8 2c 49 ea 46 81 ca 1f ba 97 93 49 5f 9a 60 85 }
A3 = { 39 ce be 86 12 c8 0f 70 60 cf 18 41 2e 98 92 ee }

For SMAC -3/4:
After initialisation:

A1 = { 10 34 48 ab 43 0d ac c5 e1 b8 38 03 ed 27 fe 80 }
A2 = { 7c 90 c3 d8 c9 55 eb 3a 83 98 a1 5f 92 30 fb 56 }
A3 = { ae 25 80 ee 48 1a bd 5e b7 73 2f 62 a9 a6 ed 37 }

After compression (1 clock):
A1 = { 64 16 61 8e 3b 96 36 d2 81 56 b5 4f 34 3d 43 eb }
A2 = { 27 bb 5f 14 59 76 bd 3d 50 2b 61 da 68 b6 f9 80 }
A3 = { bc 14 40 87 05 21 26 f7 61 16 2f 1e 18 60 ac dd }

After finalisation:
A1 = { df a6 f5 9c 06 06 36 cf b5 85 9d 4c a5 ca bc f7 }
A2 = { 66 49 62 35 b1 7d 4c 42 2c ce 5f 42 9d 45 6c 91 }
A3 = { 3f 41 13 bc 6d 27 65 ac bb 5e 83 72 ca 99 41 f1 }

For SMAC -1/2:
After initialisation:

A1 = { 3a a2 52 41 82 fa 64 14 23 2e b7 fb f7 14 b6 76 }
A2 = { 57 a4 aa dd 99 2e 1e c7 44 c7 82 b8 51 8d c5 c5 }
A3 = { 3e 72 05 09 7f 54 e2 9d 30 e9 92 6c 0d f8 ea e2 }

After compression (2 clocks):
A1 = { ac 34 87 0d 07 49 a8 54 bb f7 18 69 6f 11 9d ae }
A2 = { b9 19 96 98 7c 70 48 63 9b d6 60 17 d5 d6 57 ad }
A3 = { 28 c3 fb b1 88 a8 1b 9a df 0e 28 cf 8d 4b da bb }

After finalisation:
A1 = { 88 49 95 3a 08 db 76 e3 4a dc c6 af c7 78 cc d0 }
A2 = { 67 06 22 e0 2a d6 85 85 b9 90 4c 1c 8f 33 45 51 }
A3 = { 7d 2b d8 95 62 6d 99 dd 40 c9 34 d9 85 13 3f 64 }

=== TEST 2 ===
KEY = { 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }
IV = { 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }

AAD = { 03 }
CIPHER = { }

For SMAC -1:
After initialisation:

A1 = { 42 e3 c1 df bd 96 9f a1 04 02 9a 30 c4 93 fa 26 }
A2 = { 3a fc c4 b7 10 45 50 5e b1 d1 09 49 f9 d6 de 13 }
A3 = { 25 c5 ff c2 ab 2b 5b 15 62 43 fc f0 e5 6a be 33 }

After compression (2 clocks):
A1 = { 61 dc 6e d4 a7 60 66 11 04 c3 c0 a7 5e 45 be a8 }
A2 = { e0 64 7e 6f b9 f4 78 dc b4 3a 74 c1 96 4d 44 cb }
A3 = { 48 34 ed 24 58 af a3 e2 9d 2e 4c ac 5b 10 07 52 }

After finalisation:
A1 = { 13 0e 94 2c 5b 1f 89 23 5e c6 9a c0 77 f6 9c 91 }
A2 = { a1 35 23 df 28 37 ed d8 0f 6b 56 aa 61 17 80 b3 }



42 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

A3 = { 8a 7b 4b e4 8f 4b 4b de b7 d5 af 8c 82 6d 81 6d }
For SMAC -3/4:

After initialisation:
A1 = { a3 1a 8c d8 b9 c6 d7 24 d4 9b 5b 75 ff 67 41 64 }
A2 = { 5f db ff 2f c9 aa f4 3e 32 ef f5 a9 ff 07 42 33 }
A3 = { 1e eb df 0b eb e4 70 6b b8 3f f6 da cf 73 cf 24 }

After compression (2 clocks):
A1 = { 0a b0 36 58 d2 b0 88 ee 90 99 0f 98 e0 9c e3 f9 }
A2 = { 32 bf f6 69 25 03 a3 12 6b b1 93 89 02 b1 3e b7 }
A3 = { 39 57 c5 65 51 50 6a a6 c6 b8 8c 8f ea 46 eb 84 }

After finalisation:
A1 = { f2 33 7e b0 54 87 37 5b 6e f6 f3 64 67 07 93 80 }
A2 = { 39 bf fe 0e 2c 33 11 f7 51 69 8e 64 d0 4e 52 70 }
A3 = { c0 99 5e 83 54 a5 a8 22 57 94 06 c0 49 f2 0a 6f }

For SMAC -1/2:
After initialisation:

A1 = { e2 fc c5 64 a8 dd ed c1 53 57 50 cb a4 e4 15 7d }
A2 = { 60 e1 3c 40 92 1c 80 0c 91 dc 4c 1f b8 59 e6 d3 }
A3 = { 3e 18 80 f9 9a 46 60 fb b1 c3 7f ca 59 e6 7c 39 }

After compression (4 clocks):
A1 = { 25 c0 5f db 33 85 76 df c7 22 96 2f e2 fb 4d 36 }
A2 = { 10 b2 5a 50 03 32 3d 61 19 b8 39 16 e2 48 ff f2 }
A3 = { ad a1 eb 31 ff f9 e6 39 c9 7d dd 72 3b fe 90 66 }

After finalisation:
A1 = { 79 ee 8b fa 25 19 39 7d 64 f7 6a ec e6 9e 3f bb }
A2 = { e0 a3 33 94 3d 50 cd 2c 31 6d f0 a5 b6 4b 76 21 }
A3 = { 70 87 5c 28 5d 9b 39 be 56 4f 6b 9a 7a 0a d1 e8 }

=== TEST 3 ===
KEY = { b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf }
IV = { d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df }

AAD = { e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec dd de ef }
CIPHER = { f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff }

For SMAC -1:
After initialisation:

A1 = { db 1d 65 de 28 12 23 17 15 8d ab 00 04 5f 22 5c }
A2 = { e1 11 bc 2b c5 47 d0 19 15 83 6f 95 1f 47 5f 84 }
A3 = { 00 91 7c c9 66 f0 f3 84 07 b2 6d 48 cf 7c 06 f8 }

After compression (3 clocks):
A1 = { 0f 0f 18 4b 4a 3a 25 0a ef b3 82 01 ce 2c 59 9c }
A2 = { 0f 1a 78 a3 a9 a9 00 63 e8 21 f0 ed 82 52 80 12 }
A3 = { 56 b8 b1 7f 40 bf a9 16 e9 5a 19 9f dd b9 98 60 }

After finalisation:
A1 = { a9 d2 6c f8 c3 75 b6 6f b5 28 d3 e2 80 75 b8 cc }
A2 = { 61 3f ad 89 9e 94 51 48 1a eb d1 7a 5c 64 dd 18 }
A3 = { 9a c4 ac 2e 18 74 a4 e1 cf 9b 42 92 15 38 a9 a1 }

For SMAC -3/4:
After initialisation:

A1 = { 30 b2 8e a9 d7 6b 44 d1 74 21 21 c5 68 43 45 62 }
A2 = { 84 79 59 30 73 11 5b a2 bd 12 a3 85 66 66 43 20 }
A3 = { c6 56 7a de ff 9f 3e fa a0 fb a4 6f f2 73 b8 d3 }

After compression (4 clocks):
A1 = { 13 5b 81 4d 81 50 f1 cf 5a cf 7b cf e5 1e b0 7c }
A2 = { 72 13 2e cf 8b 8a f1 54 0c f2 8b 27 c4 66 b8 0d }
A3 = { 75 3b de a8 94 36 d3 da 52 49 e6 17 8c 92 78 7c }

After finalisation:
A1 = { 98 d5 fe f2 0c e2 c7 4d 74 2a ed b1 25 81 3e da }
A2 = { db 13 1c b3 ff bc a2 ed ae a4 78 93 58 18 67 5a }
A3 = { 6b b8 f5 a9 83 7b c5 9f 4d 45 fd a7 60 31 cf 53 }

For SMAC -1/2:
After initialisation:

A1 = { b5 eb ed ac 6b bd 4d ab 56 23 a6 ce 3b 0e dc 0e }
A2 = { b4 a2 75 44 a1 ac 33 d0 a7 96 f2 ff 3f ce c3 cd }
A3 = { 5b 81 96 5a ad 89 aa c2 28 54 a3 8c 43 f7 15 c9 }

After compression (6 clocks):
A1 = { f1 2a 8a 10 99 80 d7 bf ff 6d e3 e1 cf 4b 6d 22 }
A2 = { c0 16 59 c7 eb 5f b5 44 4c f5 27 82 b6 4c 42 e8 }



A new stand-alone MAC construct called SMAC 43

A3 = { c4 de c3 46 fe b3 e3 19 13 61 48 bf 3a 89 10 7f }
After finalisation:

A1 = { 4a b7 f0 63 c8 60 7f ca 08 4b 27 bb 1f 4a dc 70 }
A2 = { 80 ea 3b d5 07 42 40 bd 8e 66 ae 69 68 99 99 e7 }
A3 = { 53 e2 de f4 17 c1 6f 53 c4 ce c2 73 37 74 e9 3b }

=== TEST 4 ===
KEY = { 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f }
IV = { ff fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 }

AAD = { 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10
11 12 13 }

CIPHER = { 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 }
For SMAC -1:

After initialisation:
A1 = { 5c f1 48 92 aa 70 1c 6c 0f 7b 8d 57 96 0c 39 4b }
A2 = { ee 31 08 25 85 30 fc 59 8e a6 c3 ec 57 2f dc 59 }
A3 = { 45 cc 6d 77 d2 56 28 a9 be 38 5a 78 4b a1 ba 14 }

After compression (4 clocks):
A1 = { 50 62 2a 64 fc 70 1b 1d 8e 6d 9f 12 dc f5 b7 7c }
A2 = { d8 9d 7b 14 68 94 59 74 51 74 60 c7 56 d2 16 3f }
A3 = { 45 73 4e 18 8e d3 4d ae 78 31 d3 59 6b fa 47 c7 }

After finalisation:
A1 = { 82 98 b1 ab 90 54 76 e4 24 76 b3 78 d6 14 e8 08 }
A2 = { c3 44 52 16 99 48 2d 93 28 3c 03 ec 7c 3d b8 b5 }
A3 = { c7 77 64 62 16 89 98 ee 28 03 06 f9 25 33 09 7c }

For SMAC -3/4:
After initialisation:

A1 = { b7 1a 78 eb a6 e1 a2 02 6f 0b 87 2d f3 82 29 93 }
A2 = { 06 46 fe a4 94 d8 20 18 e3 3d 52 b3 bd b7 19 5e }
A3 = { 34 55 a2 94 e7 11 e2 10 cc b8 89 fb c9 98 29 6d }

After compression (5 clocks):
A1 = { fa 9e 30 f3 39 72 e3 0b c3 57 f3 49 1f 76 cc c3 }
A2 = { cb db bb df 38 4f 34 f1 ef 48 fd 7f d3 1f 7d a7 }
A3 = { e9 cd ed 82 6b eb 7e e2 20 db 2f df 34 bf 8e 55 }

After finalisation:
A1 = { 84 9c ca a1 1b 55 64 ba 15 72 b2 b9 0d 73 ba d3 }
A2 = { 69 6e d0 a9 9e 04 84 3a 59 6d a5 b6 25 7d db de }
A3 = { 65 6d 19 04 1d bb 04 58 35 c3 42 3b c4 92 61 4f }

For SMAC -1/2:
After initialisation:

A1 = { 06 55 0f dc 34 89 87 c6 52 d3 cf 05 65 fb 6a 6a }
A2 = { fc fb 2c 8d 45 a3 0d 79 26 88 fd fa e2 ca 7d 06 }
A3 = { 45 3d 86 5e 1e 98 85 c5 0c 39 09 71 bb 99 c2 c0 }

After compression (8 clocks):
A1 = { 11 15 96 5f 0d 8f e9 d3 56 e6 4b 5d d6 4c 2a c7 }
A2 = { 96 e8 fa 24 65 d4 aa 40 73 8e 62 77 12 98 ff 2b }
A3 = { 69 12 b5 35 47 3e f8 00 eb 95 c3 7e dc 13 25 30 }

After finalisation:
A1 = { 81 db 76 2f 94 f8 c1 34 bb 37 48 2a fc 0f 0f 4f }
A2 = { f7 c3 6b bf 83 44 90 6e 17 ca cb 97 0e 37 50 26 }
A3 = { dc 06 99 2b 75 0e 08 66 f6 54 79 ed d0 2e 3c a4 }

Listing 3. Test vectors.

References

3GP. 3GPP. 3GPP confidentiality and integrity algorithms. https://www.

3gpp.org/specifications-technologies/specifications-by-series/

confidentiality-algorithms.

BCK96. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Neal Koblitz, editor, Advances in Cryptology
– CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages

https://www.3gpp.org/specifications-technologies/specifications-by-series/confidentiality-algorithms
https://www.3gpp.org/specifications-technologies/specifications-by-series/confidentiality-algorithms
https://www.3gpp.org/specifications-technologies/specifications-by-series/confidentiality-algorithms


44 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

1–15, Santa Barbara, CA, USA, August 18–22, 1996. Springer, Heidelberg,
Germany.

BDF11. Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Auto-
matic search of attacks on round-reduced AES and applications. In
Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, vol-
ume 6841 of Lecture Notes in Computer Science, pages 169–187, Santa
Barbara, CA, USA, August 14–18, 2011. Springer, Heidelberg, Germany.
https://dx.doi.org/10.1007/978-3-642-22792-9_10.

BdSF+22. Alex Biryukov, Luan Cardoso dos Santos, Daniel Feher, Vesselin Velichkov,
and Giuseppe Vitto. Automated truncation of differential trails and trail
clustering in ARX. In Riham AlTawy and Andreas Hülsing, editors, SAC
2021: 28th Annual International Workshop on Selected Areas in Cryptog-
raphy, volume 13203 of Lecture Notes in Computer Science, pages 286–307,
Virtual Event, September 29 – October 1, 2022. Springer, Heidelberg, Ger-
many.

Ber05. Daniel J. Bernstein. The poly1305-AES message-authentication code. In
Henri Gilbert and Helena Handschuh, editors, Fast Software Encryption –
FSE 2005, volume 3557 of Lecture Notes in Computer Science, pages 32–
49, Paris, France, February 21–23, 2005. Springer, Heidelberg, Germany.

BHK+99. John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Ro-
gaway. UMAC: Fast and secure message authentication. In Michael J.
Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of
Lecture Notes in Computer Science, pages 216–233, Santa Barbara, CA,
USA, August 15–19, 1999. Springer, Heidelberg, Germany.

Bir07. Alex Biryukov. The design of a stream cipher lex. In Selected Areas in
Cryptography: 13th International Workshop, SAC 2006, Montreal, Canada,
August 17-18, 2006 Revised Selected Papers 13, pages 67–75. Springer,
2007.

BJKS94. Jürgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, and Ben
Smeets. On families of hash functions via geometric codes and concatena-
tion. In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’93,
volume 773 of Lecture Notes in Computer Science, pages 331–342, Santa
Barbara, CA, USA, August 22–26, 1994. Springer, Heidelberg, Germany.

BÖS11. Joppe W. Bos, Onur Özen, and Martijn Stam. Efficient hashing using the
AES instruction set. In Bart Preneel and Tsuyoshi Takagi, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2011, volume 6917 of
Lecture Notes in Computer Science, pages 507–522, Nara, Japan, Septem-
ber 28 – October 1, 2011. Springer, Heidelberg, Germany.

BRS02. John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis
of the block-cipher-based hash-function constructions from PGV. In Moti
Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 320–335, Santa Barbara, CA,
USA, August 18–22, 2002. Springer, Heidelberg, Germany.

Cam23. Peter Campbell. Glevian and vigornian: Robust beyond-birthday aead
modes. Cryptology ePrint Archive, Report 2023/1379, 2023. https://

eprint.iacr.org/2023/1379.
CG16. Colin Chaigneau and Henri Gilbert. Is AEZ v4.1 sufficiently resilient

against key-recovery attacks? IACR Transactions on Symmetric Cryp-
tology, 2016(1):114–133, 2016. https://tosc.iacr.org/index.php/ToSC/
article/view/538.

https://dx.doi.org/10.1007/978-3-642-22792-9_10
https://eprint.iacr.org/2023/1379
https://eprint.iacr.org/2023/1379
https://tosc.iacr.org/index.php/ToSC/article/view/538
https://tosc.iacr.org/index.php/ToSC/article/view/538


A new stand-alone MAC construct called SMAC 45

CMM23. Matthew Campagna, Alexander Maximov, and John PreußMatts-
son. Galois Counter Mode with Secure Short Tags (GCM-SST).
IETF Datatracker, May 2023. https://www.ietf.org/archive/id/

draft-mattsson-cfrg-aes-gcm-sst-00.html.
DEMS21a. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin

Schläffer. Ascon PRF, MAC, and short-input MAC. Cryptology ePrint
Archive, Report 2021/1574, 2021. https://eprint.iacr.org/2021/1574.

DEMS21b. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon v1.2: Lightweight authenticated encryption and hashing.
Journal of Cryptology, 34(3):33, July 2021.

DR05. Joan Daemen and Vincent Rijmen. A new MAC construction ALRED
and a specific instance ALPHA-MAC. In Henri Gilbert and Helena Hand-
schuh, editors, Fast Software Encryption – FSE 2005, volume 3557 of Lec-
ture Notes in Computer Science, pages 1–17, Paris, France, February 21–
23, 2005. Springer, Heidelberg, Germany. https://dx.doi.org/10.1007/
11502760_1.

Dwo07. Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-
38D, November 2007. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-38d.pdf.

EJMY19. Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang.
A new SNOW stream cipher called SNOW-V. IACR Transactions on
Symmetric Cryptology, 2019(3):1–42, 2019.

Eri24. Ericsson Blog. Follow the journey to 6G, 2024. https://www.ericsson.

com/en/6g.
FLS15. Thomas Fuhr, Gaëtan Leurent, and Valentin Suder. Collision attacks

against CAESAR candidates - forgery and key-recovery against AEZ and
Marble. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptol-
ogy – ASIACRYPT 2015, Part II, volume 9453 of Lecture Notes in Com-
puter Science, pages 510–532, Auckland, New Zealand, November 30 – De-
cember 3, 2015. Springer, Heidelberg, Germany.

GKM+09. Praveen Gauravaram, Lars R Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S Thomsen.
Grøstl-a sha-3 candidate. Schloss-Dagstuhl-Leibniz Zentrum für Infor-
matik, 2009.

HE22. Hosein Hadipour and Maria Eichlseder. Autoguess: A tool for finding
guess-and-determine attacks and key bridges. In Giuseppe Ateniese and
Daniele Venturi, editors, ACNS 22: 20th International Conference on Ap-
plied Cryptography and Network Security, volume 13269 of Lecture Notes in
Computer Science, pages 230–250, Rome, Italy, June 20–23, 2022. Springer,
Heidelberg, Germany.

Hel80. Martin Hellman. A cryptanalytic time-memory trade-off. IEEE transac-
tions on Information Theory, 26(4):401–406, 1980.

HII+22. Akinori Hosoyamada, Akiko Inoue, Ryoma Ito, Tetsu Iwata, Kazuhiko
Minematsu, Ferdinand Sibleyras, and Yosuke Todo. Cryptanalysis of Rocca
and Feasibility of Its Security Claim. IACR Transactions on Symmetric
Cryptology, 2022(3):123–151, September 2022. https://tosc.iacr.org/

index.php/ToSC/article/view/9852.
HK15. Matthias Hamann and Matthias Krause. Stream cipher operation modes

with improved security against generic collision attacks. Cryptology ePrint
Archive, Report 2015/757, 2015. https://eprint.iacr.org/2015/757.

https://www.ietf.org/archive/id/draft-mattsson-cfrg-aes-gcm-sst-00.html
https://www.ietf.org/archive/id/draft-mattsson-cfrg-aes-gcm-sst-00.html
https://eprint.iacr.org/2021/1574
https://dx.doi.org/10.1007/11502760_1
https://dx.doi.org/10.1007/11502760_1
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://www.ericsson.com/en/6g
https://www.ericsson.com/en/6g
https://tosc.iacr.org/index.php/ToSC/article/view/9852
https://tosc.iacr.org/index.php/ToSC/article/view/9852
https://eprint.iacr.org/2015/757


46 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

HK18. Matthias Hamann and Matthias Krause. On stream ciphers with prov-
able beyond-the-birthday-bound security against time-memory-data trade-
off attacks. Cryptography and Communications, 10(5):959–1012, 2018.

HKR15. Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust
authenticated-encryption AEZ and the problem that it solves. In Elis-
abeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EU-
ROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Sci-
ence, pages 15–44, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg,
Germany.

HP08. Helena Handschuh and Bart Preneel. Key-recovery attacks on universal
hash function based MAC algorithms. In David Wagner, editor, Advances
in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes in Computer
Science, pages 144–161, Santa Barbara, CA, USA, August 17–21, 2008.
Springer, Heidelberg, Germany.

IET24. IETF CFRG Mail Archive. Comments on AES-GCM-
SST, 2024. https://mailarchive.ietf.org/arch/msg/cfrg/

51ZYKcZQDKF2RkzRFtMcH4xCy6E/.
IK03. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MAC. In

Thomas Johansson, editor, Fast Software Encryption – FSE 2003, volume
2887 of Lecture Notes in Computer Science, pages 129–153, Lund, Sweden,
February 24–26, 2003. Springer, Heidelberg, Germany.

Jou06. Antoine Joux. Authentication failures in nist version of gcm. NIST Com-
ment, 3, 2006.

KVW04. Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-
performance conventional authenticated encryption mode. In Bimal K.
Roy and Willi Meier, editors, Fast Software Encryption – FSE 2004, vol-
ume 3017 of Lecture Notes in Computer Science, pages 408–426, New Delhi,
India, February 5–7, 2004. Springer, Heidelberg, Germany.

LPS21. Gaëtan Leurent, Clara Pernot, and André Schrottenloher. Clustering effect
in simon and simeck. In Mehdi Tibouchi and Huaxiong Wang, editors, Ad-
vances in Cryptology – ASIACRYPT 2021, Part I, volume 13090 of Lecture
Notes in Computer Science, pages 272–302, Singapore, December 6–10,
2021. Springer, Heidelberg, Germany.

MW16. John Mattsson and Magnus Westerlund. Authentication Key Recovery on
Galois/Counter Mode (GCM). In David Pointcheval, Abderrahmane Nitaj,
and Tajjeeddine Rachidi, editors, AFRICACRYPT 16: 8th International
Conference on Cryptology in Africa, volume 9646 of Lecture Notes in Com-
puter Science, pages 127–143, Fes, Morocco, April 13–15, 2016. Springer,
Heidelberg, Germany.

NIS07. NIST. SP 800-38D: Recommendation for Block Cipher Modes of Oper-
ation: Galois/Counter Mode (GCM) and GMAC, 2007. https://csrc.

nist.gov/pubs/sp/800/38/d/final.
NIS24a. NIST. NIST News. NIST to Revise Special Publication

800-38D — Galois/Counter Mode (GCM) and GMAC Block
Cipher Modes, 2024. https://csrc.nist.gov/News/2024/

nist-to-revise-sp-80038d-gcm-and-gmac-modes.
NIS24b. NIST. NIST Workshop on the Requirements for an Accordion

Cipher Mode 2024, 2024. https://csrc.nist.gov/Events/2024/

accordion-cipher-mode-workshop-2024.
oST01. National Institute of Standards and Technology. Advanced encryption

standard. NIST FIPS PUB 197, 2001.

https://mailarchive.ietf.org/arch/msg/cfrg/51ZYKcZQDKF2RkzRFtMcH4xCy6E/
https://mailarchive.ietf.org/arch/msg/cfrg/51ZYKcZQDKF2RkzRFtMcH4xCy6E/
https://csrc.nist.gov/pubs/sp/800/38/d/final
https://csrc.nist.gov/pubs/sp/800/38/d/final
https://csrc.nist.gov/News/2024/nist-to-revise-sp-80038d-gcm-and-gmac-modes
https://csrc.nist.gov/News/2024/nist-to-revise-sp-80038d-gcm-and-gmac-modes
https://csrc.nist.gov/Events/2024/accordion-cipher-mode-workshop-2024
https://csrc.nist.gov/Events/2024/accordion-cipher-mode-workshop-2024


A new stand-alone MAC construct called SMAC 47

PC14. Gordon Procter and Carlos Cid. On weak keys and forgery attacks against
polynomial-based MAC schemes. In Shiho Moriai, editor, Fast Software
Encryption – FSE 2013, volume 8424 of Lecture Notes in Computer Sci-
ence, pages 287–304, Singapore, March 11–13, 2014. Springer, Heidelberg,
Germany.

PD. Laurent Perron and Frédéric Didier. CP-SAT (v9.9). https://

developers.google.com/optimization/cp/.
SII23. Kosei Sakamoto, Ryoma Ito, and Takanori Isobe. Parallel SAT framework

to find clustering of differential characteristics and its applications. In
Claude Carlet, Kalikinkar Mandal, and Vincent Rijmen, editors, Selected
Areas in Cryptography - SAC 2023 - 30th International Conference, Freder-
icton, Canada, August 14-18, 2023, Revised Selected Papers, volume 14201
of Lecture Notes in Computer Science, pages 409–428. Springer, 2023.

SLI05. JH. Song, J. Lee, and T. Iwata. The AES-CMAC Algorithm. IETF
RFC4493, June 2005. https://www.rfc-editor.org/rfc/rfc4493.html.

SLN+21. Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and
Takanori Isobe. Rocca: An Efficient AES-based Encryption Scheme for
Beyond 5G. IACR Transactions on Symmetric Cryptology, 2021(2):1–30,
2021.

SSW23. Yaobin Shen, François-Xavier Standaert, and Lei Wang. Forgery attacks
on several beyond-birthday-bound secure MACs. In Jian Guo and Ron
Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023, Part III,
volume 14440 of Lecture Notes in Computer Science, pages 169–189,
Guangzhou, China, December 4–8, 2023. Springer, Heidelberg, Germany.

Sta10. Paul Stankovski. Greedy distinguishers and nonrandomness detectors. In
Guang Gong and Kishan Chand Gupta, editors, Progress in Cryptology
- INDOCRYPT 2010 - 11th International Conference on Cryptology in
India, Hyderabad, India, December 12-15, 2010. Proceedings, volume 6498
of Lecture Notes in Computer Science, pages 210–226. Springer, 2010.

TIHM17. Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks
on non-blackbox polynomials based on division property. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
Part III, volume 10403 of Lecture Notes in Computer Science, pages 250–
279, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg,
Germany.

Tod15. Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology –
EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 287–314, Sofia, Bulgaria, April 26–30, 2015. Springer, Hei-
delberg, Germany.

VV18. Serge Vaudenay and Damian Vizár. Can caesar beat galois? - Robustness
of CAESAR candidates against nonce reusing and high data complexity
attacks. In Bart Preneel and Frederik Vercauteren, editors, ACNS 18: 16th
International Conference on Applied Cryptography and Network Security,
volume 10892 of Lecture Notes in Computer Science, pages 476–494, Leu-
ven, Belgium, July 2–4, 2018. Springer, Heidelberg, Germany.

WHT+18. Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe,
and Willi Meier. Improved division property based cube attacks exploit-
ing algebraic properties of superpoly. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part I, vol-

https://developers.google.com/optimization/cp/
https://developers.google.com/optimization/cp/
https://www.rfc-editor.org/rfc/rfc4493.html


48 Dachao Wang, Alexander Maximov, Patrik Ekdahl, and Thomas Johansson

ume 10991 of Lecture Notes in Computer Science, pages 275–305, Santa
Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

WP14. Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption
algorithm. In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, SAC
2013: 20th Annual International Workshop on Selected Areas in Cryptog-
raphy, volume 8282 of Lecture Notes in Computer Science, pages 185–201,
Burnaby, BC, Canada, August 14–16, 2014. Springer, Heidelberg, Ger-
many.

XZBL16. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division prop-
erty for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, Part I, vol-
ume 10031 of Lecture Notes in Computer Science, pages 648–678, Hanoi,
Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany.


	A new stand-alone MAC construct called SMAC

