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Abstract

A verifiable delay function (VDF) is a cryptographic primitive that requires a long time to compute
(even with parallelization), but produces a unique output that is efficiently and publicly verifiable.

We prove that VDFs with imperfect completeness and computational uniqueness do not exist in the
random oracle model. This also rules out black-box constructions of VDFs from other cryptographic
primitives, such as one-way permutations and collision-resistant hash functions.

Prior to our work, Mahmoody, Smith and Wu (ICALP 2020) prove that VDFs satisfying both
perfect completeness and perfect uniqueness do not exist in the random oracle model; on the other hand,
Ephraim, Freitag, Komargodski, and Pass (Eurocrypt 2020) construct VDFs with perfect completeness
and computational uniqueness in the random oracle model assuming the hardness of repeated squaring.
Our result is optimal – we bridge the current gap between previously known impossibility results and
existing constructions.
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1 Introduction

A verifiable delay function (VDF) [BBBF18] is a cryptographic primitive that requires a long sequential time
to compute, while the output is efficiently verifiable. More specifically, a VDF is defined by two algorithms:
Eval and Verify. On input x, Eval computes an output y and a proof π in time tEval, and Verify decides
whether to accept (y, π) in time tVerify, where tVerify ≪ tEval. The two main security requirements for VDFs are
uniqueness and sequentiality. Uniqueness says that given an input x, no adversary running in time poly(tEval)
can find a y′ ̸= Eval(x) and a proof π′ such that (y′, π′) convinces the verifier. Sequentiality says that no
adversary running in parallel time smaller than tEval can compute y = Eval(x).

VDFs are useful in scenarios where a delay in the computation is needed to ensure that certain operations
cannot be performed too quickly. It has potential applications in areas such as auction protocols, proof-of-
work systems, cryptographic timestamping, secure multiparty computation, and building randomness beacons
([BBBF18; BBF18; Pie19; Wes19; FMPS19; EFKP20; Sta20; HHKK23]).

Another line of work using VDFs as building blocks is proving hardness of TFNP classes. Establishing
the hardness of the TFNP class PPAD [Pap94], in which finding the Nash equilibrium of a non-cooperative
game is the complete problem, is a long-standing open question. [BPR15; HY17; LV20; Bit+22] discuss the
similarities between constructions of hard instances in PPAD and and constructions of VDFs.

[MSW20; DGMV20] study whether black-box constructions of VDFs are possible from unstructured
primitives, like hash functions or other symmetric primitives. Their starting point is to consider constructions
in the random oracle model (ROM). [MSW20] proves that VDFs satisfying perfect uniqueness (no adversary
can find a different solution) cannot be constructed in the ROM. [DGMV20] shows that tight VDFs, where the
evaluation time is close to the sequentiality requirement, do not exist in the ROM. On the other hand, [Pie19]
constructs a VDF with statistical uniqueness (no adversary can find an alternate solution with non-negligible
probability) based on repeated squaring and the soundness of the Fiat-Shamir heuristic for superconstant-
round proofs. Later, [EFKP20] constructs a continuous VDF satisfying computational uniqueness (no
computationally bounded adversary can find an alternate solution with non-negligible probability) based on
weaker assumptions.

As an effort to close the gap between existing constructions and known lower bounds, we show that:

VDFs with computational uniqueness do not exist in the random oracle model.

1.1 Our results

In this paper, we focus on VDFs in the random oracle model. We measure the number of queries made by
Eval and Verify to the random oracle instead of their running time. Specifically, on input x, Eval computes
an output y and a proof π with query complexity at most qEval, and Verify decides whether to accept (y, π)
with query complexity at most qVerify, where qVerify ≪ qEval. The uniqueness and sequentiality requirements are
adapted accordingly.

We provide an equivalent reformulation for VDFs in the ROM in terms of decision tree algorithms, which
is a different viewpoint towards this question compared to all previous works on VDFs [BBBF18; BBF18;
Pie19; Wes19; FMPS19; EFKP20; Sta20; MSW20; DGMV20; HHKK23]. This reformulation enables us to
use techniques in query complexity to show impossibility results regarding VDFs.

Theorem 1 (Informal). Suppose VDF = (Eval,Verify) is a VDF in the ROM. It cannot satisfy computational
uniqueness and sequentiality simultaneously. Specifically, one the following holds:

• there exists an O(qVerify)-round O(qVerify · qEval)-query adversary that computes Eval correctly with
non-negligible probability (a sequentiality breaker); or
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• there exists an O(qVerify · qEval)-query adversary who outputs y′ ̸= Eval(x) that convinces the verifier
with non-negligible probability (a uniqueness breaker).

We emphasize that both the uniqueness breaker and the sequentiality breaker described above run in time
poly(tVerify ·tEval), where tEval and tVerify represent the running times of Eval and Verify, respectively. This implies
that our adversaries are optimal in the ROM – [EFKP20] constructs a VDF that satisfies both computational
uniqueness and sequentiality in the ROM assuming the hardness of repeated squaring (the RSW assumption
[RSW96]). We give a detailed explanation in Section 6.3.

Theorem 1 implies that VDFs with perfect uniqueness or statistical uniqueness do not exist in the
ROM. However, we are able to prove a quantitatively better result regarding VDFs with stronger uniqueness
guarantee:

Theorem 2 (Informal). Suppose VDF = (Eval,Verify) is a VDF in the ROM with statistical uniqueness, then
there exists an O(qVerify)-round O(q2Verify)-query adversary that computes Eval correctly with non-negligible
probability.

Notice that the adversary in Theorem 2 that correctly computes Eval only makes O(q2Verify) queries, while
the adversary in Theorem 1 uses O(qVerify · qEval) queries. We leave as an open question whether one can
construct a O(qVerify)-round poly(qVerify)-query adversary that computes Eval with non-negligible probability
when the VDF has computational uniqueness.

1.2 Related works

VDF and related cryptographic primitives have been studied extensively in prior works since its introduction
[BBBF18]. We summarize the works that are most relevant to our results.

Verifiable delay functions. [MSW20] shows that VDFs with adaptive perfect uniqueness cannot exist in
the ROM. Our impossibility result on VDFs with imperfect completeness and non-adaptive computational
uniqueness in the ROM is more general (see Definition 3.4 and Remark 3.5). In fact, we also show a stronger
claim regarding VDFs with perfect uniqueness. We postpone a detailed comparison to Sections 2.2 and 4.
[DGMV20] presents an in-depth study of tight VDFs, a variant that requires the evaluation algorithm Eval
to run in time almost the same as the sequentiality requirement, and proves a negative result in the ROM.
[RSS20] shows that VDFs cannot be constructed in cyclic groups of known orders. In fact, their result works
for generic-group delay functions, a generalization of VDFs.

Proof of sequential works. VDFs are closely related to proof of sequential works (PoSWs)([MMV13;
CP18; AKKPW19; DLM19; AFGK22; AC23; Abu23]). The key difference is PoSWs do not have guarantee
on the uniqueness. Our results rule out the possibilities to construct VDFs with various uniqueness guarantees
in the ROM; however, it is known that PoSWs can be constructed in the ROM ([MMV13; CP18; DLM19]).

Time-lock puzzles. Time-lock puzzles ([RSW96]) are very similar to VDFs because they also have
the uniqueness and sequentiality guarantee. In a time-lock puzzle, a generator outputs a puzzle x and a
corresponding solution y efficiently. However, computing y from x still requires large sequential time. The
main difference between time-lock puzzles and VDFs is that time-lock puzzles allow the verifier to have
knowledge of a secret key to achieve efficient verification, while VDFs are publicly verifiable. [MMV11]
rules out the possibility to construct time-lock puzzles in the ROM.

Incrementally verifiable computations. Incrementally verifiable computation (IVC) [Val08] is a crypto-
graphic primitive that enables efficient verification for multi-step computation. It is believed, though only
partially proven [HN23; BCG24], that IVC does not exist in the ROM. [BBBF18] shows there is a black-box
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construction of VDFs from tight IVC (where IVC prover does not have too much overhead) for iterated
sequential functions. Consequently, our results rule out tight IVC for iterated sequential functions in the ROM.
However, since all hard sequential functions constructions use either the random oracle or cryptographic
assumptions, our results imply that tight relativized IVC (tight IVC for which the target computation itself
involves calls to the oracle) cannot be constructed in the ROM. In fact, [BCG24] proves a stronger claim:
relativized IVC does not exist in the ROM, even when security only holds against time-bounded (instead of
just query-bounded) adversaries. We leave as an open question whether our techniques can be used to prove
the impossibility of standard, non-relativized IVC in the ROM.
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2 Techniques

We overview the main ideas underlying our result. In Section 2.1, we discuss our reformulation of VDFs into
search problems that enables us to apply techniques developed for decision tree algorithms. In Section 2.2,
we provide a simpler proof for the impossibility of VDFs with perfect uniqueness in the ROM as a warm-up.
In Section 2.4, we start with proving that VDFs with statistical uniqueness in the ROM cannot exist and
explain how to generalize this approach to work for computational uniqueness.

2.1 From VDFs to search problems

Review: VDF. A VDF in the ROM is a tuple of algorithms VDF = (Eval,Verify) that works as follows:
for every security parameter λ ∈ N, let the random oracle O(λ) be the uniform distribution over the set of all
functions with output length λ ({f : {0, 1}∗ → {0, 1}λ}):

• The evaluation function Eval gets oracle access to a random oracle function f , receives an input x and
deterministically produces an output y. (Note that Eval should also output a proof π, we omit it in this
section for simplicity. Our formal proofs use the standard VDF definition as stated in Definition 3.2.)
Eval makes at most qEval queries to f .

• The verifier Verify gets oracle access to a random oracle function f , receives input (x, y) and determin-
istically decides whether to accept or reject. Verify makes at most qVerify queries to f .

The VDF is complete if the solution computed by Eval is accepted by Verify with high probability. For
ease of discussion, we consider VDFs with perfect completeness in this section (imperfect completeness is
handled carefully in Sections 4 to 6). The VDF satisfies sequentiality if no rAdv-round qAdv-query (rAdv ≪ qEval

and qAdv = O(qEval)) algorithm can correctly compute Eval with non-negligible probability. Moreover, we
say that the VDF has perfect uniqueness if for every input x, Verify only accepts the output y := Evalf (x);
the VDF has statistical uniqueness if for every input x, Verify accepts an alternative output y ̸= Evalf (x)
with negligible probability; the VDF has computational uniqueness if for every input x and every poly(qEval)-
query adversary Adv, Verify accepts Advf (x) ̸= Evalf (x) with negligible probability. Note that the above
probabilities are with respect to the choice of the random oracle function f .

Review: search problems. A search problem S ⊆ F× Y is defined by a family of verifiers {Vy : F →
{0, 1}}y∈Y, where (f, y) ∈ S if and only if Vy(f) = 1. We say an algorithm D : F→ Y computes S if for
every f ∈ F, (f,D(f)) ∈ S.

Reformulation of VDFs. Recall that every query algorithm can be viewed as a decision tree: the internal
nodes of the tree represent the queries, the leaves represent the solutions, and the branching is based on the
answers from the oracle to the queries.

In the ROM, the efficiency of the algorithms is measured by the number of queries they make to the
random oracle. Thus, the execution of every sequential algorithm can be viewed as a decision tree. The same
holds for parallel algorithms except that the internal nodes are now labeled by the set of queries instead of a
single query.

Intuitively, fix a security parameter λ ∈ N, for every x ∈ X , we can define a search problem Sx ⊆
{f : {0, 1}∗ → {0, 1}λ} × Y such that (f, y) ∈ Sx if Verifyf (x, y) = 1. Moreover, we observe that it is
sufficient to define Sx as a subset of [2λ]n × Y since there is some large constant n such that VDF depends
on at most n positions of the random oracle: The total number of search problems we define is |X |. For each
search problem, we have at most |Y| verifiers of query complexity qVerify, so each of them depends on at most
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2λqVerify+1 positions in {0, 1}∗. Moreover, D has query complexity qEval, so it depends on at most 2λqEval+1

points in the domain of f . Thus we can bound n by n ≤ |X |
(
2λqVerify+1|Y|+ 2λqEval+1

)
.

For every VDF = (Eval,Verify) and x ∈ X , we define a search problem Sx ⊆ [2λ]n × Y by a family of
verifiers {V(x)

y : [2λ]n → {0, 1}}y∈Y such that for every y ∈ Y ,

V(x)
y (f) = Verifyf (x, y).

Moreover, we can define an algorithm D(x) : [2λ]n → Y that computes Sx:

For every f ∈ [2λ]n,D(x)(f) = Evalf (x).

Observe that for every (x, y) ∈ X × Y , V(x)
y has query complexity qVerify and D(x) has query complexity qEval.

These search problems preserve many properties of the original VDF:

• Algorithms computing these search problems can be transformed into algorithms computing the original
VDF with roughly the same complexity and success probability.

• VDFs with certain sequentiality and uniqueness properties correspond to search problems with similar
properties.

2.2 Warm-up: VDFs with perfect uniqueness in the ROM

As a warm-up, we present a new proof for the impossibility of VDFs with perfect uniqueness in the ROM.
Our proof is inspired by the classical algorithm witnessing that decision tree complexity is at most the square
of certificate complexity for total boolean functions ([AB09]).

Lemma 1 (VDFs with perfect uniqueness don’t exist in the ROM). Suppose VDF = (Verify,Eval) is a
VDF in the ROM with perfect completeness and perfect uniqueness, then there exists an O(qVerify)-round
O(q2Verify)-query adversary that computes Eval correctly with probability 1.

To prove Lemma 1, we consider the search problem reformulation outlined in Section 2.1. Hence, to
show that VDF does not satisfy sequentiality, we show that for every search problem Sx for x ∈ X , there is a
qVerify-round q2Verify-query adversary A(x) that solves Sx.

Since VDFs have perfect completeness and perfect uniqueness, we know that for every x ∈ X and
f ∈ [2λ]n, there is a unique y ∈ Y such that (f, y) ∈ Sx. Hence, the solution y can be fully determined by
the verifiers. In fact, we can construct our adversary solely from the verification algorithms.

Intuitively speaking, for a fixed input x ∈ X , let’s consider the set of all accepting leaves {ℓi}i of the
verifiers {V(x)

y }y∈Y . Note that each leaf ℓi is an element in ([2λ] ∪ {⋆})n such that for every f ∈ [2λ]n that
agrees with ℓi we have V(x)

y (f) = 1 for some y ∈ Y . For ease of notation, we define the domain dom(ℓ) for
each ℓ ∈ ([2λ] ∪ {⋆})n as the set of positions that are determined:

dom(ℓ) := {i ∈ [n] : ℓ[i] ̸= ⋆}.

For each ℓ ∈ ([2λ] ∪ {⋆})n, we define its corresponding cube Cube(ℓ) as follows:

Cube(ℓ) := {f ∈ [2λ]n : for all q ∈ dom(ℓ), f [q] = ℓ[q]}.

Since the VDF has perfect uniqueness, we know that every oracle function ℓ ∈ [2λ]n has a unique solution,
which implies that Cube(ℓi)’s are disjoint. Hence, for every ℓi ̸= ℓj , there is some q ∈ dom(ℓi) ∩ dom(ℓj)
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such that ℓi[q] ̸= ℓj [q]. In other words, if we pick an arbitrary ℓi and query the given random oracle function
f at all positions in dom(ℓi), we “learn” at least one position for every leaf {ℓi}i. Since V(x)

y makes at most
qVerify queries, each leaf contains at most qVerify non-⋆ positions. Thus, repeating the above process for qVerify

times suffices for an adversary to “learn” everything to determine the solution y. Hence, we can design an
adversary that always outputs the correct solution y as follows:

1. Let L be the set of all accepting leaves {ℓi}i of the verifiers {V(x)
y }y∈Y .

2. Initialize p∗ := ⋆n.
3. For i ∈ [qVerify]: Choose an arbitrary leaf ℓ in L. Query the given oracle function f at all positions in

dom(ℓ). Update p∗ to record the answers of f and remove from L every leaf inconsistent with p∗.
4. Output y where V(x)

y (ℓ) = 1 for every ℓ ∈ Cube(p∗).

Observe that the adversary makes at most q2Verify queries in qVerify rounds. However, it is not computationally
efficient since it needs to go over all accepting leaves, contrary to the adversaries we designed in Theorem 1.
We leave the detailed analysis to Section 4.

Remark 1. Note that Lemma 1 is proven in [MSW20] by constructing an adversary that computes Eval with
2qVerify +1 rounds and (2qVerify +1) · qEval queries. Qualitatively they show a similar result as in our Lemma 1:
VDFs with perfect completeness and perfect uniqueness cannot exist in the ROM. However, we construct a
sequentiality adversary using only qVerify rounds and q2Verify queries. Moreover, our construction still works
when VDFs have imperfect completeness (see Section 4).

2.3 VDFs with statistical uniqueness in the ROM

The classical result bounding decision tree complexity with the square of certificate complexity is generalized
to the case of overlapping certificates by Smyth [Smy02] using Berg-Kesten-Reimer (BKR) inequality [BK85;
Rei00]. Smyth proves that if a boolean function f : [M ]m → {0, 1} has a collection of certificates such that
with large constant probability a uniformly random point in [M ]m is covered with a correct certificate, then f
has a decision tree of depth quadratic in the size of the largest certificate in the collection.

This result is the statistical uniqueness analogue of the result that inspired the perfect uniqueness adversary
described in Section 2.2. The downside of Smyth’s result is that it only works in the boolean setting whereas
non-trivial VDFs have unbounded range.

In Section 5 we generalize Smyth’s result to work for functions with a superconstant range and thereby
prove Theorem 2.

2.4 VDFs with computational uniqueness in the ROM

We explain how to prove Theorem 1. In order to tackle VDFs with computational uniqueness, we start with a
different approach to rule out VDFs with statistical uniqueness. In fact, our proof has two steps:

• Step 1: We construct an adversary that computes Eval with small sequential time if the given VDF
admits statistical uniqueness;

• Step 2: We show that a modified adversary works well even when VDF only has computational
uniqueness.

2.4.1 Adversary for VDFs with statistical uniqueness in the ROM

In this section we present a proof ruling out VDFs with statistical uniqueness in the ROM with the additional
assumption that the completeness is perfect. We later show that this algorithm can be modified to work
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for computationally unique VDFs. We emphasize that this proof does not give the parameter specified in
Theorem 2; we present it only as an intermediate step for proving Theorem 1.

Similar to Section 2.1 we employ our search problems language for VDFs. Note that now the VDF
only satisfies statistical uniqueness, we don’t expect our sequentiality adversary to perfectly compute Eval
anymore. Rather, to show that VDF does not satisfy sequentiality, we show that there exists some constant C
such that for every x ∈ X , there is a O(qVerify)-round O(qVerify · qEval)-query adversary A(x) that computes Sx

with success probability at least 1− C · ϵ, where ϵ = negl(λ) is the uniqueness error of the VDF.
Our proof is inspired by [MSW20, Algorithm 1], which they use to show that VDFs with perfect

uniqueness cannot be constructed in the ROM. We first explain their idea and then present how we modify
it to work in our setting. ([MSW20] presents their proof in terms of VDF, we rephrase it to fit into our
decision tree framework.) For each input x ∈ X , [MSW20] constructs an adversary A(x) that proceeds in
2qVerify + 1 rounds to compute D(x). This adversary is described in Algorithm 1. [MSW20] observes that in

Algorithm 1 Adversary A(x) from [MSW20].
Input: f ∈ [2λ]n

Output: y ∈ Y ∪ {⊥}

1: Let L1 := {ℓi}i be the set of leaves of D(x).
2: Initialize p∗ := ⋆n.
3: Initialize W := [ ].
4: for i ∈ [2qVerify + 1] do
5: Choose an arbitrary leaf ℓi from Li.
6: Append yi := D(x)(ℓi) to W .
7: For every q ∈ dom(ℓi), query f at q and set p∗[q] := f [q].
8: Let Li+1 ⊆ Li be the set of all leaves in Li that are consistent with p∗.
9: return y if W contains some y that wins the majority vote; ⊥ otherwise.

each iteration, if A(x)(f) chooses a leaf that leads to some solution other than D(x)(f), it queries at least one
“new” position that has also been queried by V(x)

D(x)(f)
(f) in this iteration. Formally, let y = D(x)(f) and ℓV,f

be the unique accepting leaf of V(x)
y that contains f . Since VDF satisfies perfect uniqueness, which means

that for every chosen leaf ℓi such that yi = D(x)(ℓi) ̸= D(x)(f), let p∗i be the value of p∗ at the beginning of
iteration i, the following holds:

Cube(p∗i ∪ ℓi) ∩ Cube(p∗i ∪ ℓV,f ) = ∅.

In other words, every time A(x)(f) records a wrong solution, it makes progress in learning the verifier’s view
of f . Since V(x)

D(x)(f)
has query complexity at most qVerify, at most qVerify of the recorded solutions are not equal

to D(x)(f), which implies that the majority of recorded solutions is always D(x)(f).
However, the above adversary cannot be directly applied in the statistical uniqueness setting: the adversary

might not make progress when it records a wrong solution.
To be more specific, if the VDF does not have perfect uniqueness, in a round i that A(x)(f) chooses a

leaf ℓi that leads to some solution y′ ̸= D(x)(f), it is possible that the following happens:

Cube(p∗i ∪ ℓi) ∩ Cube(p∗i ∪ ℓV,f ) ̸= ∅.

Hence, we can neither record the correct solution nor learn the verifier’s view of f in this case.
The above issue can be addressed by the following two modifications to the adversary A(x):
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• In each iteration, instead of choosing an arbitrary leaf ℓi from Li, we need to carefully choose a leaf that
“breaks less perfect uniqueness”. More specifically, we choose leaf ℓi such that Cube(ℓi) ∩ Cube(p∗i )
contains fewer functions f ∈ [2λ]n that have non-unique solutions in Sx than that in Cube(p∗i ) (such
leaf ℓi exists by simple averaging argument).

• Our new adversary runs in (2 + δ)qVerify rounds for some constant δ > 0 instead of merely 2qVerify + 1
rounds.

As before, we know that there are at most qVerify rounds i such that

D(x)(ℓi) ̸= D(x)(f) and Cube(p∗i ∪ ℓi) ∩ Cube(p∗i ∪ ℓV,f ) = ∅.

Moreover, from statistical uniqueness, there are at most ϵ-fraction of f ∈ [2λ]n such that there exists some
y ∈ Y where y ̸= D(x) and V(x)

y = 1. By our specific choice of leaves in each round, in expectation, there
are (2 + δ)qVerify · ϵ rounds i such that

D(x)(ℓi) ̸= D(x)(f) and Cube(p∗i ∪ ℓi) ∩ Cube(p∗i ∪ ℓV,f ) ̸= ∅.

Hence, by Markov’s inequality, A(x) records the true solution in the majority of rounds with high probability.

2.4.2 Does computational uniqueness undermine the adversary?

We briefly discuss how the above adversary A(x) would still succeed even when the VDF satisfies only
computational uniqueness. (We do need to modify A(x) further for technical reasons, but the version outlined
in Section 2.4.1 is good enough for an intuitive explanation.) The rigorous proof can be found in Section 6.

In order to better understand which part of the analysis outlined in Section 2.4.1 fails after relaxing unique-
ness guarantee, we first recall the difference in the definitions of statistical uniqueness and computational
uniqueness:

• Statistical uniqueness: For a uniformly chosen x ∈ X , there are at most ϵ-fraction of f ∈ [2λ]n such
that there exists some y ∈ Y where y ̸= D(x) and V(x)

y = 1.
• Computational uniqueness: For a uniformly chosen x ∈ X and every computationally-bounded

adversary B(x), there are at most ϵ-fraction of f ∈ [2λ]n such that B can find some y ∈ Y where
y ̸= D(x) and V(x)

y = 1.

According to the above definitions, for a VDF that satisfies computational uniqueness, it is possible that more
than ϵ-fraction of f ∈ [2λ]n admits multiple solutions. Hence, the previous analysis in Section 2.4.1 fails to
work as we cannot directly bound the number of rounds such that D(x)(ℓi) ̸= D(x)(f) and Cube(p∗i ∪ ℓi) ∩
Cube(p∗i ∪ ℓV,f ) ̸= ∅ anymore.

Our key observation is that from such iterations we can extract non-canonical solutions for points in
the intersection of Cube(p∗i ∪ ℓi) and Cube(p∗i ∪ ℓV,f ): by the choice of ℓi, the value of D(x) for all these
points is D(x)(ℓi); and by definition of ℓV,f , the value D(x)(f) is accepted by the verifier. In order to
exploit this observation we devise a uniqueness adversary B(x) “coupled” with the sequentiality adversary
A(x) in Section 2.4.1, in such a way that if there are too many rounds i where D(x)(ℓi) ̸= D(x)(f) and
Cube(p∗i ∪ ℓi) ∩ Cube(p∗i ∪ ℓV,f ) ̸= ∅, B(x) breaks the computational uniqueness. Since B(x) needs to
work with non-negligible probability for a uniformly random function f ∈ [2λ]n, we have to modify the
sequentiality adversary A(x) such that the non-uniqueness witnesses are distributed uniformly.

We carefully explain how one can modify the construction of A(x) and construct an effective uniqueness
adversary B(x) to rule out VDFs with computational uniqueness in Section 6.
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3 Preliminaries

3.1 VDFs in the ROM

Definition 3.1 (The random oracle model (ROM)). For every λ ∈ N, the random oracle O(λ) is the uniform
distribution over the set of all functions f : {0, 1}∗ → {0, 1}λ.

Definition 3.2 (Verifiable delay function (VDF) [BBBF18] in the ROM). A verifiable delay function VDF
in the ROM is a tuple of oracle-aided algorithms VDF = (Setup,Eval,Verify) such that for every λ ∈ N
and f ∈ O(λ), the following hold:

• Setupf (1λ, qEval)→ pp: On input the security parameter λ and the query bound qEval, the deterministic
setup algorithm Setup outputs the public parameters pp, where pp determines a (uniformly) samplable
input space X and an output space Y .

• Evalf (pp, x) → (y, π): On input the public parameter pp and an element x ∈ X , the evaluation
algorithm Eval outputs y and a proof π, where y is generated deterministically while π can be
generated in a randomized way. We sometimes ignore the output proof π and write Evalf (pp, x)→ y
for simplicity.

• Verifyf (pp, x, y, π)→ {0, 1}: On input the public parameter pp, and element x ∈ X , a value y ∈ Y ,
and a proof π, the deterministic verification algorithm Verify outputs a bit indicating whether it
accepts or rejects.

We require that Setup, Eval and Verify make at most qSetup, qEval and qVerify queries, respectively, to the
random oracle, where qSetup = qSetup(λ, qEval) and qVerify = qVerify(λ, qEval). In practice, we want to have VDFs
where qSetup ≪ qEval and qVerify ≪ qEval.

Definition 3.3 (Completeness of VDF). VDF = (Setup,Eval,Verify) has completeness error α if for every
λ ∈ N and qEval ∈ N,

Pr

Verifyf (pp, x, y, π) = 1

∣∣∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

(y, π)← Evalf (pp, x)

 ≥ 1− α(λ).

When α = 0, we say the VDF has perfect completeness.

Definition 3.4 (Non-adaptive (qAdv, ϵ)-uniqueness of VDF). For every qAdv and ϵ, VDF = (Setup,Eval,Verify)
satisfies (qAdv, ϵ)-uniqueness if for every λ ∈ N, qEval ∈ N, and qAdv-query adversary Adv,

Pr

 y ̸= Evalf (pp, x)

∧Verifyf (pp, x, y, π) = 1

∣∣∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

(y, π)← Advf (pp, x)

 ≤ ϵ(λ).

We say that VDF satisfies perfect uniqueness if qAdv is unbounded and ϵ(λ) = 0. We say that VDF satisfies
statistical uniqueness if qAdv is unbounded and ϵ(λ) = negl(λ). We say that VDF satisfies computational
uniqueness if qAdv = poly(λ, qEval) and ϵ(λ) = negl(λ).

11



Remark 3.5. Note that in previous works (e.g. [BBBF18; MSW20; DGMV20]), uniqueness is defined
adaptively. In other words, instead of sampling an input x uniformly at random and giving to the adversary
Adv as input, they allow Adv to choose the input themselves. The adaptive uniqueness is a stronger security
notion than our non-adaptive uniqueness. However, since our focus in this paper is on impossibility results, we
work with non-adaptive uniqueness, which implies stronger impossibility results compared to their adaptive
analogues. We sometimes write “uniqueness” instead of “non-adaptive uniqueness” for simplicity; however,
we always write “adaptive uniqueness” explicitly.

Definition 3.6 ((rAdv, qAdv, γ)-sequentiality of VDF). For every rAdv, qAdv, and γ, VDF = (Setup,Eval,Verify)
is (rAdv, qAdv, γ)-sequential if for every λ ∈ N, rAdv ∈ N, qEval ∈ N, and rAdv-round qAdv-query adversary Adv,

Pr

y = Evalf (pp, x)

∣∣∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

y ← Advf (pp, x)

 ≤ γ(λ).

Remark 3.7. Note that we allow the adversary in the sequentiality definition to be parallel algorithms: it
can ask multiple queries in the same round, as long as the total number of queries across rounds is upper
bounded by qAdv. Moreover, canonical VDF definitions (e.g. [BBBF18]) require γ to be negligible in λ, here
we consider the more general definition that considers various γ.

3.2 Search problems

Definition 3.8. A search problem is defined by a relation S ⊆ F×Y. We say S is determined by a family
of nondeterministic verifiers {Vy,π}y∈Y,π∈Π if for every f ∈ F, y ∈ Y, (f, y) ∈ S iff. there exists some
π ∈ Π such that Vy,π(f) = 1. We say a search problem is total if, for every f ∈ F, there is at least one
solution y s.t. (f, y) ∈ S.

We focus on search problems with product input space F = [M ]m for M,m ∈ N. Given f ∈ [M ]m, I ⊆
[m], p ∈ [M ]I , we define fI→p ∈ [M ]m as follows:

fI→p[i] :=

{
p[i] i ∈ I
f [i] i /∈ I

.

Definition 3.9 (Subcube). Fix M,m ∈ N. Let F = [M ]m. We say F′ ⊆ F is a (sub)cube if F′ = F′1×· · ·×F′n
for some F′1, . . . ,F

′
m ⊆ [M ], where |F′i| ∈ {1,M} for each i ∈ [m].

Every query algorithm can be viewed as a decision tree: the internal nodes of the tree represent the
queries, the leaves represent the solutions, and the branching is based on the answers from the oracle to the
queries.

A partial assignment p ∈ ([M ] ∪ {⋆})m is a length-m string, where each entry is either fixed to be some
value in [M ], or “undetermined” (denoted by ⋆). The domain of p is defined as dom(p) := {i : pi ̸= ⋆}.

We say an input f ∈ [M ]m is consistent with a partial assignment p if they agree on the domain of p, i.e.
f [i] = p[i] for all i ∈ dom(p). We denote by Cube(p) := {f ∈ [M ]m : ∀ i ∈ dom(p), f [i] = p[i]} the set of
all inputs consistent with p.

We say that partial assignments p and q are consistent with each other if they agree on every position
in the intersection of their domains, i.e. for every i ∈ dom(p) ∩ dom(q) we have p[i] = q[i]. Equivalently,
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Cube(p) ∩ Cube(q) ̸= ∅. We use p ∪ q to denote the partial assignment with domain dom(p) ∪ dom(q) that
is consistent with both p and q. Note that Cube(p) ∩ Cube(q) = Cube(p ∪ q).

Given a distribution µ over some space F, for each F′ ⊆ F, we define µ(F′) :=
∑

x∈F′ µ(x) as the
probability of a random element sampled from µ is in F′. We use UF to denote the uniform distribution over
F.

For any two partial assignments p, q ∈ ([M ] ∪ {⋆})m, we say p and q are independent, denoted p ≁d q,
if dom(p) ∪ dom(q) = ∅. Otherwise, we say that p and q are dependent, denoted p ∼d q.

Theorem 3.10 (BKR inequality). [BK85; Rei00] Let P,Q be two collections of partial assignments over
[M ]m. Then for every product distribution µ over [M ]m,

µ⊗2

 ⋃
p∈P,q∈Q
p≁dq

Cube(p)× Cube(q)

 ≤ µ

⋃
p∈P
q∈Q

Cube(p) ∩ Cube(q)

 .

For ease of notation, we also identify each node p in a decision tree with a partial assignment p ∈
([M ] ∪ {⋆})m that records the query outcomes leading to the node p, if a position i is not queried, we set
pi := ⋆.

3.3 VDFs to search problems

Consider VDF = (Setup,Eval,Verify) with completeness error α. We present the formal reformulation of
VDF in terms of search problems as described in Section 2.1.

Fix λ ∈ N and a large enough constant n that depends on qSetup, qEval and qVerify. The search problems are
defined below:

For every leaf ℓ ∈ ([2λ] ∪ {⋆})n of the decision tree representation of Setup:
(a) Let pp denote the label of ℓ. Deduce X and Y from pp.
(b) For every x ∈ X , define the search problem Sℓ,x ⊆ Cube(ℓ)×Y where Y := Y as follows:

i. Sℓ,x is determined by verifiers Vy,π : Cube(ℓ) → {0, 1} of query complexity qVerify which
satisfy that Vy,π(f) = Verifyf (pp, x, y, π).

ii. There is an algorithm D : Cube(ℓ)→ Y ×Π of query complexity qEval which satisfies that
D(f) = Evalf (pp, x) and Prf←[M ]m [VD(f)(f) = 1] ≥ 1− αℓ,x for some αℓ,x ∈ [0, 1].

Moreover, for every f , let ℓS,f denote the leaf of the decision tree representation of Setup such that
f ∈ Cube(ℓS,f). It follows from Definition 3.3 that

E

αℓS,f ,x

∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

 ≤ α. (1)
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4 VDFs with perfect uniqueness

Lemma 4.1. Suppose VDF = (Verify,Eval) is a VDF in the ROM with completeness error α satisfying
perfect uniqueness. Fix λ ∈ N. Let qSetup and qVerify denote the query complexity of Setup and Verify,
respectively. Then VDF does not satisfy (qSetup +O(qVerify), qSetup +O(q2Verify), 1− α)-sequentiality.

According to Section 3.3, it suffices to prove the following lemma.

Lemma 4.2. Let S ⊆ [M ]m ×Y be a search problem determined by a family of nondeterministic verifiers
{Vy,π}y∈Y,π∈Π of query complexity t where for every f ∈ [M ]m, |{y ∈ Y | (f, y) ∈ S}| ≤ 1. Moreover,

Pr
f←[M ]m

[|{y ∈ Y | (f , y) ∈ S}|] ≥ 1− α.

Then there exists an O(t)-round and O(t2)-query adversary A : [M ]m → Y such that

Pr
f←[M ]m

[(f ,A(f)) ∈ S] ≥ 1− α.

Proof of Lemma 4.1 by Lemma 4.2. Let A be the adversary in Lemma 4.2. We construct a VDF sequentiality
adversary Adv that gets oracle access to f , runs Setup to locate the leaf ℓf , samples x← X , and executes
the adversary A corresponding to the search problem Sℓf ,x. If follows that Adv is a (qSetup + qVerify)-round
(qSetup + q2Verify)-query algorithm that correctly computes Eval with probability at least 1− α.

Proof of Lemma 4.2. We construct A as follows. We argue that (i) A is a O(t)-round O(t2)-query algorithm,

Algorithm 2 Sequentiality-breaking adversary A for perfect uniqueness.

Input: f ∈ [M ]m

Output: y ∈ Y ∪ {⊥}

1: for y ∈ Y do
2: Initialize Ly

1 := {ℓ1, . . . , ℓk} to be the set of all partial assignments corresponding to the accepting
leaves of all verifiers (Vy,π)π∈Π.

3: Initialize p∗ := ⋆n, y0 := ⊥.
4: for i ∈ [2t+ 1] do
5: Set Y′ := {y | Ly

i ̸= ∅}.
6: if Y′ = ∅ then return ⊥
7: if |Y′| = 1 then return the only element in Y′.
8: Set yi as an arbitrary element in Y ′ such that yi ̸= yi−1.
9: Choose an arbitrary partial assignment ℓi from Lyi

i .
10: For every q ∈ dom(ℓi), query f at q and set p∗[q] := f [q].
11: for y ∈ Y do
12: Let Ly

i+1 ⊆ Ly
i be the set of all partial assignments in Ly

i that are consistent with p∗.

13: return ⊥

and (ii) A outputs y such that y ̸= ⊥ and Vy(f) = 1 with probability 1− α .
Running time of A. A makes 2t+ 1 rounds of queries to f . Note that because the verifiers {Vy,π}y∈Y,π∈Π
have query complexity at most t, the number of positions q ∈ [n] such that ℓ[q] ̸= ⋆ is at most q for each
y ∈ Y and ℓ ∈ Ly

1. Therefore, in each round, A makes at most t queries to f .
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Correctness of A. Let f ∈ [M ]m be an input such that there exists a unique ŷ ∈ Y such that (f, ŷ) ∈ S.
We prove that A always outputs ŷ.

For every i ∈ [2t+1], let p∗i be the partial assignment p∗ at the beginning of the i-th iteration (if it exists).
If A terminates during the i′-th iteration of the for-loop. Let ℓ ∈ Lŷ

1 that such that f ∈ Cube(ℓ). Since p∗i′ is
consistent with ℓ, we have ℓ ∈ Lŷ

i′ thus Lŷ
i′ ̸= ∅. It follows that A must output ŷ.

It remains to show A always terminates inside the for-loop. Note that p∗i is consistent with every partial
assignment ℓ ∈ ∪y∈YLy

i . We define cyi to be the maximum number of entries fixed by ℓ but not by p∗i over all
ℓ ∈ Ly

i ; in other words,
cyi := max

ℓ∈Ly
i

|dom(ℓ) \ dom(p∗i )| .

Notice that cy1 ≤ t for every y ∈ Y because dom(ℓ) ≤ t for every ℓ ∈ Ly
1. We make the following claim.

Claim 4.3. For every i ∈ [2t] and y ̸= yi,

cyi+1 ≤ max{cyi − 1, 0}.

Proof. For every ℓ ∈ Ly
i , there must exist some j ∈ (dom(ℓ) ∩ dom(ℓi)) \ dom(p∗i ) such that ℓ[j] ̸= ℓi[j]

(as otherwise, ℓ is consistent with ℓi, so we can pick an arbitrary f ∈ (Cube(ℓ) ∩ Cube(ℓj)) ̸= ∅, then
(f, ŷ), (f, y) ∈ S, which leads to a contradiction). Since the algorithm query f [j] in the i-th iteration,
p∗i+1[j] ̸= p∗i [j] = ⋆, we have∣∣{k ∈ dom(ℓ) : p∗i+1[k] = ⋆}

∣∣ ≤ |{k ∈ dom(ℓ) : p∗i [k] = ⋆}| − 1.

By taking the maximum of the inequality over all ℓ ∈ Ly
i+1 and using the fact that Ly

i+1 ⊆ Ly
i , we obtain the

desired claim.

Since for every i ∈ [2t], yi ̸= yi−1, we can deduce that for every y ∈ Y and i ≥ 1, cyi ≤ max{0, cy1 −
⌊ i−12 ⌋}. In particular, for every y ̸= ŷ, cy2t+1 = 0, which implies that L2t+1

y = ∅. Thus A must terminate in
the 2n+ 1-th iteration, a contradiction.

Hence, for every f ∈ [M ]m such that there exists a unique solution, A computes the solution correctly.
This immediately implies that

Pr
f←[M ]m

[(f ,A(f)) ∈ S] ≥ 1− α.
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5 VDFs with statistical uniqueness

Theorem 5.1. Suppose VDF = (Setup,Verify,Eval) is a VDF in the ROM with completeness error α
satisfying statistical uniqueness with error ϵ. Fix λ ∈ N. Let qSetup and qVerify denote the query complexity of
Setup and Verify, respectively. Then for every non-zero constant d such that α+ ϵ ≤ d ≤ 10−2, VDF does
not satisfy (qSetup + qVerify/d), qSetup + q2Verify/d), 1− 6

√
d)-sequentiality.

According to Section 3.3, it suffices to prove the lemma below. The proof of Theorem 5.1 from Lemma 5.2
is similar to Section 4.

Lemma 5.2. Let S ⊆ [M ]m ×Y be a search problem determined by a family of nondeterministic verifiers
{Vy,π}y∈Y,π∈Π of query complexity t. Let ϵ, α ≥ 0 be two parameters such that

• Uniqueness: Prf←[M ]m [|{y ∈ Y | (f , y) ∈ S}| > 1] ≤ ϵ.
• Completeness: Prf←[M ]m [{y ∈ Y | (f , y) ∈ S} = ∅] ≤ α.

Then for every non-zero constant d such that α + ϵ ≤ d ≤ 10−2, there exists a t/d-round and t2/d-query
adversary A : [M ]m → Y such that

Pr
f←[M ]m

[(f ,A(f)) ∈ S] ≥ 1− 6
√
d.

Proof. Given a set F′ ⊆ [M ]m, we define Uniq(F′) := {f ∈ F′ | |{y ∈ Y | (f, y) ∈ S}| = 1} as the set of
inputs in F′ which has a unique solution w.r.t. S. Let a, b, c ∈ (0, 1/3) be parameters whose values will be
determined later. Choose K := 1−a

a(1−a)−(3−2a)d/b ≤
1

a−4d/b . We construct the adversary A as follows.
Let LA denote the set of leaves of the decision tree representation of A. Observe that for each fixed leaf

ℓ ∈ LA, A behaves identically for all f ∈ Cube(ℓ).
There are three cases that A outputs an invalid solution:

1. Algorithm 3 halts at Line 6 but returns a solution y such that (f, y) /∈ S.

2. Algorithm 3 halts at Line 7 and returns ⊥.

3. Algorithm 3 halts at Line 9 ands returns ⊥.

We denote the above three events by E1, E2, E3 respectively. We prove that each of them happens with low
probability (over random f ← [M ]m).

Claim 5.3. Prf←[M ]m [E1] ≤ a.

Proof. For each leaf ℓ ∈ LA such that A terminates on Line 6, let y(ℓ) denote the solution that A outputs. We
have Prf∼Cube(ℓ)[E1] = Prf∼Cube(ℓ)[(f , y(ℓ)) /∈ S] ≤ a, where the inequality follows from the if condition
on Line 6. By averaging over all the leaves in LA, we obtain the desired claim.

Claim 5.4. Prf←[M ]m [E2] ≤ b.

Proof. Let L(2)
A ⊆ LA denote the set of leaves that lead to E2. Observe that

d ≥ 1− U[M ]m(Uniq([M ]m))

≥
∑

ℓ∈L(2)
A

U[M ]m(Cube(ℓ) \ Uniq(Cube(ℓ)))
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≥ d/b ·
∑

ℓ∈L(2)
A

U[M ]m(Cube(ℓ)),

where the last inequality follows from the if condition on Line 7. As a consequence,

Pr
f←[M ]m

[E2] =
∑

ℓ∈L(2)
A

U[M ]m(Cube(ℓ)) ≤ b.

Algorithm 3 Sequentiality-breaking adversary A for statistical uniqueness.

Input: f ∈ [M ]m

Output: y ∈ Y ∪ {⊥}

1: for y ∈ Y do
2: Initialize Ly

1 := {ℓ1, . . . , ℓk} to be the set of all partial assignments corresponding to the accepting
leaves of all verifiers (Vy,π)π∈Π.

3: Initialize p∗ := ⋆n, y0 := ⊥.
4: for i ∈ [Kt/c+ 1] do
5: for y ∈ Y do
6: if UCube(p∗)(

⋃
ℓ∈Ly

i
Cube(ℓ ∪ p∗)) ≥ 1− a then return y

7: if UCube(p∗)(Uniq(Cube(p∗))) < 1− d/b then return ⊥
8: Set Li :=

⋃
y∈Y Ly

i .
9: if i = Kt/c+ 1 then return ⊥

10: for f ′ ∈
⋃

ℓ∈Li
Cube(ℓ ∪ p∗) do

11: Set minℓ(f ′) := argminℓ∈Li|f ′∈Cube(ℓ∪p∗) |dom(ℓ) \ dom(p∗)|.
12: for ℓ ∈ Li do
13: Set Cℓ := {f ∈ Cube(ℓ ∪ p∗) | minℓy(f) = ℓ}.
14: Set ℓi := argmaxℓ∈Li

|
⋃

ℓ′∈Li|ℓ′∼dℓCℓ′ |.
15: For every q ∈ dom(ℓi), query f at q and set p∗[q] := f [q].
16: for y ∈ Y do
17: Let Ly

i+1 ⊆ Ly
i be the set of all partial assignments in Ly

i that are consistent with p∗.

Claim 5.5. Prf←[M ]m [E3] ≤ c.

Proof. For each i ∈ [Kt/c], let Pi denote the set of all possible query outcomes p∗ at Line 8 in the i-th
iteration. Fix any p∗ ∈ Pi. For ease of notation, we will abbreviate UCube(p∗) as U in the remainder of the
proof.

For each ℓ ∈ Li, define
Fi(ℓ) :=

⋃
ℓ′∈Li
ℓ′∼l

Cℓ′ ,

where Cℓ′ is defined at Line 13 in Algorithm 3. We prove that there exists some ℓ̂ ∈ Li such that U(Fi(ℓ̂)) ≥
1/K+d/b. As a corollary, we have U(Fi(ℓi)) ≥ 1/K+d/b since ℓ = ℓi maximizes U(Fi(ℓ)) by our choice
of ℓi (Line 14).
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Since U(
⋃

ℓ∈Ly
i
Cube(ℓ ∪ p∗)) < 1− a for all y ∈ Y. We can find a partition Y = YP ⊔YQ such that

max

U
 ⋃

p∈Li(YP )

Cube(p ∪ p∗)

 ,U

 ⋃
q∈Li(YQ)

Cube(q ∪ p∗)

 ≤ 1− a,

where Li(YP ) :=
⋃

y∈YP
Ly
i and Li(YQ) :=

⋃
y∈YQ

Ly
i . Moreover, because U(Uniq(Cube(p∗))) ≥ 1−d/b,

we have

U⊗2

 ⋃
p∈Li(Yp)
q∈Li(YQ)

Cube(p ∪ p∗)× Cube(q ∪ p∗)

 ≥ (1− a)(a− d/b).

By applying Theorem 3.10, we have

U⊗2

 ⋃
p∈Li(YP ),q∈Li(YQ)

p≁dq

Cp × Cq



≤U⊗2

 ⋃
p∈Li(YP ),q∈Li(YQ)

p≁dq

Cube(p ∪ p∗)× Cube(q ∪ p∗)



≤U

 ⋃
p∈Li(YP ),q∈Li(YQ)

p≁dq

Cube(p ∪ p∗) ∩ Cube(q ∪ p∗)


≤1− U (Uniq(Cube(p∗)))

≤(α+ δ)/b,

hence

U⊗2

 ⋃
p∈Li(YP ),q∈Li(YQ)

p∼dq

Cp × Cq



=U⊗2

 ⋃
p∈Li(YP )
q∈Li(YQ)

Cube(p ∪ p∗)× Cube(q ∪ p∗)

− U⊗2
 ⋃

p∈Li(YP ),q∈Li(YQ)

p≁dq

Cp × Cq


≥(1− a)(a− d/b)− d/b

=(1− a)a− (2− a)d/b,
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equivalently,

∑
p∈Li(YP )

U(Cp) · U

 ⋃
q∈Li(YQ)

q≁dp

Cq

 ≥ (1− a)a− (2− a)d/b.

Observe that ∑
p∈Li(YP )

U(Cp) ≤ 1− a.

By averaging argument, we can find some p ∈ Li(YP ) such that

U(Fi(p)) ≥ U

 ⋃
q∈Li(YQ)

q≁dp

Cq

 ≥ a(1− a)− (2− a)d/b

1− a
= 1/K + d/b.

Now given that U(Fi(ℓi)) ≥ 1/K + d/b, we show that A can make significant progress in each round. To
measure the progress, we define

wi(f) :=

{
minℓ∈Li|f∈Cube(ℓ) |dom(ℓ) \ dom(p∗)| f ∈ Cube(p∗)

0 f /∈ Uniq(Cube(p∗))
.

For all f such that A halts before line 8 of the i-th iteration, we define wi(f) := 0.
Let G(p∗) := Fi(ℓi) ∩ Uniq(Cube(p∗)). Observe that for all f ∈ G(p∗), we have wi+1(f) ≤ wi(f)− 1

since dom(ℓi) \ dom(p∗) has intersection with dom(minℓ(f)) \ dom(p∗). Moreover,

U(G(p∗)) ≥ U(Fi(ℓi))− (1− U(Uniq(Cube(p∗)))) ≥ 1

K
.

Define Hi := Ef←[M ]m [wi(f)]. Let ηi :=
∑

p∗∈Pi
U[M ]m(Cube(p

∗)) denote the fraction of inputs that
survive after the i-th iteration. Then

Hi+1 −Hi ≥
∑
p∗∈Pi

U[M ]m(Cube(p
∗)) · UCube(p∗)(G(p∗))

≥ 1

K

∑
p∗∈Pi

U[M ]m(Cube(p))

=
ηi
K

.

Observe that η1 ≥ . . . ≥ ηKt/c ≥ Prf←[M ]m [E3]. Moreover, H1 ≤ t,HKt/c+1 ≥ 0. Thus Prf←[M ]m [E3] ≤
K(H1−HKt/c+1)

Kt/c ≤ c, as desired.

Set a = 3
√
d, b = 2

√
d, c =

√
d, then K ≤ 1/

√
d. We conclude that A makes t2/d queries in t/d rounds

and succeeds with probability at least 1− (a+ b+ c) = 1− 6
√
d.
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6 VDFs with computational uniqueness

We discuss VDFs with computational uniqueness in the ROM.

Theorem 6.1 (Lower bounds for VDFs with computational uniqueness). Suppose VDF = (Setup,Verify,Eval)
is a VDF in the ROM with completeness error α. Fix λ ∈ N. Let qSetup, qEval and qVerify denote the query
complexity of Setup, Eval and Verify, respectively. Then, for every rAdv > 2qVerify, there exists ϵ ≥ 0 such that
VDF does not satisfy either (qSetup+rAdv, qSetup+rAdv ·qEval, γ)-sequentiality for every γ < 1− 2rAdv

rAdv−2qVerify ·ϵ−α
or (qAdv, ϵ)-uniqueness for qAdv = O(qVerify · qEval).

According to Section 3.3, it suffices to prove the following lemma:

Lemma 6.2. Let S ⊆ [M ]m × Y be a search problem, determined by nondeterministic verifiers V of
query complexity at most t. Let D : [M ]m → Y × Π be an algorithm of query complexity T such that
Prf←[M ]m [VD(f)(f) = 1] ≥ 1− α. Then for every t′ > 2t there is some ϵ = ϵ(t′) ≥ 0 such that either

1. there exists a t′-round adversary A : [M ]m → Y of query complexity t′T such that

Pr
f←[M ]m

[A(f) = DY(f)] ≥ 1− 2t′

t′ − 2t
ϵ− α; or

2. there exists an adversary B : [M ]m → Y ×Π of query complexity O(t′T ) such that

Pr
f←[M ]m

[BY(f) ̸= DY(f) ∧ VB(f)(f) = 1] ≥ ϵ,

where DY(f) (resp. BY(f)) is the Y-component of D(f) (resp. B(f)).

Proof of Theorem 6.1 by Lemma 6.2. We devise two adversaries: one for breaking sequentiality, and the
other for breaking computational uniqueness as follows: First, both adversaries run Setup to locate the leaf ℓf
and sample x← X . Then each adversary executes the corresponding algorithm described in Lemma 6.2 for
the search problem Sℓf ,x. It follows that for every rAdv > 2qVerify, there is some ϵ = ϵ(rAdv) ≥ 0 (by averaging
over all the search problems’ individual ϵ) and either

1. there exists a (qSetup + rAdv)-round (rAdv · qEval + qSetup)-query adversary Adv such that

Pr

y = Evalf (pp, x)

∣∣∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

y ← Advf (pp, x)

 ≥ 1− 2rAdv
rAdv − 2qVerify

· ϵ− α; or (2)

2. there exists an adversary Adv of query complexity O(rAdv · qEval + qSetup) such that

Pr

 y ̸= Evalf (pp, x)

∧Verifyf (pp, x, y, π) = 1

∣∣∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

(y, π)← Advf (pp, x)

 ≥ ϵ. (3)

Taking for example rAdv = 3qVerify, whatever ϵ is, either (2) is non-negligible, or (3) is non-negligible.
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Algorithm 4 Adversary A, the sequentiality breaker.
Input: f ∈ [M ]m

Output: y ∈ Y ∪ {⊥}

1: p∗ := ⋆m.
2: K := ∅.
3: for r ∈ [t′] do
4: Uniformly sample f∗ ∈ [M ]m consistent with p∗.
5: Let ℓ be the unique leaf of D such that Cube(ℓ) contains f∗.
6: K := K ⊎ {the solution associated with ℓ}.
7: For every j ∈ dom(ℓ) such that p∗[j] = ⋆, query f at j and update p∗[j] to be the query outcome.
8: return the majority of solutions in K if it exists; ⊥ otherwise.

6.1 The sequentiality breaker

We construct the adversary A below.
It is not hard to see A has t′ rounds and makes at most T queries in each round, thus making at most t′T

queries in total.
To prove the correctness, we will first go through the execution of A and introduce some useful notations.
Let F := {f : VD(f)(f) = 1} denote the set of functions computed correctly by D. Recall that in each

iteration, we choose some leaf ℓ of D according to some distribution conditioned on the current partial
assignment p∗. Let y denote the solution associated with ℓ. For any input f ∈ F, let ℓV,f denote the unique
leaf of VD(f) such that Cube(ℓV,f ) contains f . We classify the iterations into three types according to f, p∗, ℓ:

1. DY(f) ̸= y and Cube(p∗ ∪ ℓ) ∩ Cube(p∗ ∪ ℓV,f ) = ∅.
2. DY(f) ̸= y and Cube(p∗ ∪ ℓ) ∩ Cube(p∗ ∪ ℓV,f ) ̸= ∅.
3. DY(f) = y.

Let S(1)
r,f (resp. S(2)

r,f ) be random indicator variables, which equals 1 if and only if the r-th iteration is the
first type (resp. second type) for input f .

Intuitively, if both the first and the second type of iteration occur with low probability then we can
prove A(f) = DY(f) with high probability by simple Markov’s inequality. Now assume that Prf ,r[f ∈
F∧S(2)

r,f = 1] is negligible where r is uniformly sampled from [t′]. We will prove Prr[S
(1)
r,f = 1] is bounded

for every f ∈ F, which in turn implies A succeeds in simulating D with high probability. In Section 6.2 we
show that there exists an adversary breaking the computational uniqueness condition if this assumption is
false.

Lemma 6.3. Let ϵ := Prf ,r[f ∈ F ∧ S
(2)
r,f = 1]. Then Prf [A(f) ̸= DY(f)] ≤ 2t′

t′−2tϵ+ α.

Proof. We first prove that
∑t′

r=1 S
(1)
r,f ≤ t with probability 1 for every f ∈ F. Consider the r-th iteration, if

S
(1)
r,f = 1, that is, Cube(p∗ ∪ ℓ)∩Cube(p∗ ∪ ℓV,f ) = ∅, then there exists some index i ∈ dom(ℓ)∩dom(ℓV,f )

such that ℓ[i] ̸= ℓV,f [i]. The algorithm then queries f [i] in this iteration. Thus, i will not be the inconsistent
index in the later iterations. Since |dom(ℓV,f )| ≤ t, we deduce that for every f , there can be at most t
iterations such that Cube(p ∪ ℓ) ∩ Cube(p ∪ ℓV,f ) = ∅. Hence

∑
1≤r≤t′ S

(1)
r,f ≤ t with probability 1.

Now let us combine the bound for
∑t′

r=1 S
(1)
r,f with the assumption that Prf ,r[f ∈ F ∧ S

(2)
r,f ] is small.

Let ϵ′ := 2t′

t′−2tϵ. By Markov’s inequality, for all but on average (over the internal randomness of A) (ϵ′ + α)-
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fraction of f ∈ [M ]m (recall α = 1− U[M ]m(F)), we have f ∈ F and
∑t′

r=1 S
(2)
r,f < tϵ/ϵ′ = t′/2− t. For

those f ,
∑t′

r=1 S
(1)
r,f +S

(2)
r,f < t′/2. Thus the majority of recorded solutions are exactly DY(f). We conclude

that the algorithm succeeds with probability at least 1− ϵ′ − α.

6.2 The uniqueness breaker

Lemma 6.4. Let S(2)
r,f be defined as in the last subsection and ϵ := Prf ,r[f ∈ F ∧ S

(2)
r,f = 1]. Then there

exists an adversary B : [M ]m → (Y ×Π) ∪ {⊥} making O(t′T ) queries such that

Pr
f←[M ]m

[BY(f) ̸= DY(f) ∧ VB(f)(f) = 1] ≥ ϵ.

Proof. We construct the adversary B in Algorithm 5. Through the execution of B, we can define DB

Algorithm 5 Adversary B, the uniqueness breaker.
Input: f ∈ [M ]m

Output: z ∈ (Y ×Π) ∪ {⊥}

1: Run D(f), let I be the set of indices queried during the execution.
2: p∗ := ⋆m.
3: for r ∈ [t′] do
4: Uniformly sample p′ ← [M ]I\dom(p∗).
5: f ′ := f(I\dom(p∗))→p′ .
6: (y, π) := D(f ′).
7: if y ̸= DY(f) ∧ Vy,π(f

′) = 1 then return (y, π).
8: Uniformly sample f∗ ∈ [M ]m consistent with p∗.
9: Let ℓ be the unique leaf of D such that Cube(ℓ) contains f∗.

10: For every j ∈ dom(ℓ) such that p∗[j] = ⋆, query f at j and update p∗[j] to be the query outcome.
11: return ⊥

as the following joint distribution of (r ∈ [t′],p∗ ∈ ([M ] ∪ {⋆})m,f ∈ [M ]m,f ′ ∈ [M ]m): Sample
f ← [M ]m, r ← [t′] uniformly at random. Randomly simulate the for-loop in B on f = f for r − 1
iterations. Let p∗ denote the partial assignment at the start of the r-th iteration and f ′ denote the random
function f ′ sampled in the r-th iteration of B (Line 5). See Fig. 1 for visualization.

To prove the lemma, it suffices to show

Pr
(r,p∗,f ,f ′)←DB

[DY(f ′) ̸= DY(f) ∧ VD(f ′)(f) = 1] ≥ ϵ. (4)

To this end, we give an alternative view of DB based on the execution of A.
First, we sample f ′ ← [M ]m, r ← [t′] uniformly at random. Then randomly simulate the for-loop in A

on f = f ′ for r−1 iterations and let p∗ denote the partial assignment p∗ at the start of r-th iteration. Recall in
the r-th iteration, we randomly choose some leaf ℓ of D conditioned on p∗, and denote the solution associated
with ℓ by y. Let f denote the projection of f = f ′ on Cube(p∗ ∪ ℓ). Formally, let J := dom(ℓ) \ dom(p∗)
denote the set of indices fixed by ℓ but not by p∗ and we can define f := fJ→ℓJ .

Now observe that if f ′ ∈ F and S
(2)
r,f ′ = 1, then Cube(p∗ ∪ ℓ) ∩ Cube(p∗ ∪ ℓV,f ′) ̸= ∅. Since

f ∈ Cube(ℓ ∪ p∗), f is consistent with ℓV,f ′ on I . Moreover, f equals f ′ on [m] \ I , and Cube(ℓV,f ′)
includes f ′, hence f is consistent with ℓV,f ′ on [m] \ I . We can deduce that f ∈ Cube(ℓV,f ′), which
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Cube(ℓ)

Cube(ℓV,f ′)

[M ]I

[M ][m]\I

Cube(p∗)
f

f ′

Figure 1: Distribution DB.

immediately implies VD(f ′)(f) = 1. Note that we also have DY(f ′) = y ̸= DY(f) by the definition of

S
(2)
r,f ′ = 1.

Finally, let DA denote the distribution of (r,p∗,f ,f ′) according to the above sampling process. Since
f ′ ∈ F ∧ S

(2)
r,f ′ = 1 implies that DY(f ′) ̸= DY(f) ∧ VD(f ′)(f) = 1, we can deduce that

Pr
(r,p∗,f ,f ′)←DA

[DY(f ′) ̸= DY(f) ∧ VD(f ′)(f) = 1] ≥ Pr
r,f ′

[f ′ ∈ F ∧ S
(2)
r,f ′ = 1] = ϵ.

Thus to prove (4), it suffices to show DB ≡ DA, that is, for every r ∈ [t′], p∗ ∈ ([M ] ∪ {⋆})m, f, f ′ ∈
[M ]m,

Pr
DA

[r = r,p∗ = p∗,f = f,f ′ = f ′] = Pr
DB

[r = r,p∗ = p∗,f = f,f ′ = f ′].

Lemma 6.5. DA ≡ DB.

Proof. We need the following four statements.

Claim 6.6. For every r ∈ [t′], PrDA [r = r] = PrDB [r = r].

Proof. Trivial since the marginal distributions of r are both uniform under A and B.

Claim 6.7. For every r ∈ [t′] and p∗ ∈ ([M ] ∪ {⋆})m, PrDA [p
∗ = p∗ | r = r] = PrDB [p

∗ = p∗ | r = r].

Proof. In both A and B, p∗ is the transcript of the query outcomes the following random process repeated
for r − 1 times: Sample a uniformly random f∗ consistent with the query outcome so far. Simulate D on f∗

and query all the variables on the corresponding root-to-leaf path.

Claim 6.8. For every r ∈ [t′], p∗ ∈ ([M ] ∪ {⋆})m such that PrDA [p
∗ = p∗ | r = r] > 0, and every

f ∈ [M ]m, PrDA [f = f | r = r,p∗ = p∗] = PrDB [f = f | r = r,p∗ = p∗].

Proof. Conditioned on r = r,p∗ = p∗, it is easy to see that f ′ is uniformly distributed over Cube(p∗) under
DA and f is uniformly distributed over Cube(p∗) under DB by Bayes’ rule. It suffices to show that f is also
uniformly distributed over Cube(p∗) under DA.

Recall in the r-th round of A, we choose some leaf ℓ of D, and ℓ is chosen with probability |Cube(p∗ ∪
ℓ)|/|Cube(p∗)|. Note that f ∈ Cube(p∗ ∪ ℓ), we only need to prove f is uniformly distributed over
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Cube(p∗ ∪ ℓ) conditioned on ℓ is chosen. This is obvious since f ′ is uniformly distributed over Cube(p∗),
and by definition, f is the projection of f ′ on Cube(p∗ ∪ ℓ).

To conclude, PrDA [f = f | r = r,p∗ = p∗] = |Cube(p∗∪ℓ)|
|Cube(p∗)| ·

1
|Cube(p∗∪ℓ) =

1
|Cube(p∗)| .

Claim 6.9. For every r ∈ [t′], p∗ ∈ ([M ] ∪ {⋆})m such that PrDA [p
∗ = p∗ | r = r] > 0, and every

f ∈ Cube(p∗), PrDA [f
′ = f ′ | r = r′,p∗ = p∗,f = f ] = PrDB [f

′ = f ′ | r = r′,p∗ = p∗,f = f ].

Proof. Without loss of generality, we assume that f ′ ∈ Cube(p∗), as otherwise, PrDA [f
′ = f ′ | r = r′,p∗ =

p∗,f = f ] = PrDB [f
′ = f ′ | r = r′,p∗ = p∗,f = f ] = 0.

By Bayes’ rule,

Pr
DA

[f ′ = f ′ | r = r′,p∗ = p∗,f = f ]

=
PrDA [f

′ = f ′ | r = r′,p∗ = p∗] · PrDA [f = f | r = r′,p∗ = p∗,f ′ = f ′]

PrDA [f = f | r = r′,p∗ = p∗]

=Pr
DA

[f = f | r = r′,p∗ = p∗,f ′ = f ′].

where the second equality follows since PrDA [f = f | r = r′,p∗ = p∗] = PrDA [f
′ = f ′ | r = r′,p∗ =

p∗] = 1
|Cube(p∗)| . Let ℓ denote the unique leaf of D such that f ′ ∈ Cube(ℓ) and I = dom(ℓ) \ dom(p∗). Now

observe that

Pr
DA

[f = f | r = r′,p∗ = p∗,f ′ = f ′] =

{
|Cube(p∗ ∪ ℓ)|/|Cube(p∗)| f[m]\I = f ′[m]\I

0 otherwise
.

On the other hand, for DB, given r = r,p∗ = p∗,f = f , f ′ uniformly from {f ′ : f ′[m]\I = f[m]\I}. Thus
PrDB [f

′ = f ′ | r = r′,p∗ = p∗,f = f ] = PrDA [f = f | r = r′,p∗ = p∗,f ′ = f ′] = PrDA [f
′ = f ′ |

r = r′,p∗ = p∗,f = f ], as desired.

Finally, by combining the above four claims and applying chain rule, we deduce that DA ≡ DB.

To summarize, our uniqueness breaker B satisfies that

Pr
f←[M ]m

[BY(f) ̸= DY(f) ∧ VB(f)(f) = 1]

= Pr
(r,p∗,f ,f ′)←DB

[DY(f ′) ̸= DY(f) ∧ VD(f ′)(f) = 1]

= Pr
(r,p∗,f ,f ′)←DA

[DY(f ′) ̸= DY(f) ∧ VD(f ′)(f) = 1]

≥ Pr
r,f ′

[f ′ ∈ F ∧ S
(2)
r,f ′ = 1]

=ϵ.

6.3 Computational efficiency of the breakers

In this section we explain how to efficiently implement our sequentiality breaker A and uniqueness breaker B.
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Algorithm 6 Uniform version of the sequentiality breaker.
Input: pp; x ∈ X ; oracle access to f : {0, 1}∗ → {0, 1}λ
Output: z ∈ Y ∪ {⊥}

1: K := ∅.
2: p∗ := ∅. ▷ p∗ ⊆ {0, 1}∗ × {0, 1}λ.
3: Define function dom(p) := {x ∈ {0, 1}∗ | ∃y ∈ {0, 1}λ : (x, y) ∈ p} returning the set of the first

elements of a set of pairs.
4: for r ∈ [t′] do
5: Uniformly sample f∗ : {0, 1}∗ → {0, 1}λ consistent with p∗. ▷ See Remark 6.11
6: (y, π) := Evalf

∗
(pp, x);

7: K := K ⊎ {y}.
8: Let ℓ ⊆ {0, 1}∗ × {0, 1}λ be the set of query-answer pairs from the execution in Line 6.
9: For every z ∈ dom(ℓ) \ dom(p∗) query f(z) and update p∗ := p∗ ∪ (z, k) where (z, k) ∈ ℓ.

10: return majority of K if it exists an ⊥ otherwise.

Lemma 6.10. Suppose that Eval is computable in time tEval and Verify computable in time tVerify. Then time
complexity of the sequentiality adversary A (Algorithm 4) and the uniqueness adversary B (Algorithm 5) are
both poly(tVerify · tEval).

Lemma 6.10 follows directly by the following implementation of the breakers (Algorithm 6 and Algorithm 7).

Remark 6.11. When we write assignments to oracles, we mean those to be defined lazily. In particular, the
oracle defined in Line 6 is evaluated as follows: when f ′(z) is queried we first check if z ∈ I \ dom(p∗), if it
is we return p′(z), otherwise we query f(z) and return the answer. The oracle defined in Line 9 is evaluated
as follows: when f∗(z) is queried we first check if z ∈ dom(p∗), if it is we return the unique k such that
(z, k) ∈ p∗, otherwise if z was queried before we return the previously returned value, otherwise we sample
k from {0, 1}λ uniformly at random and return k.

Remark 6.12. It is clear that the sequentiality breaker A runs in time poly(tVerify · tEval). However, A is not
parallelizable. If one can construct a sequentiality breaker that runs in parallel time smaller than tEval, it
would contradict the construction in [EFKP20], which presents a VDF that satisfies computational uniqueness
and sequentiality in the ROM, assuming the hardness of repeated squaring. Hence, only a polynomial
improvement is possible in the time complexity in either of our breakers unless the RSW assumption
[RSW96] fails.
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Algorithm 7 Uniform version of the uniqueness breaker.
Input: pp; x ∈ X ; oracle access to f : {0, 1}∗ → {0, 1}λ
Output: z ∈ (Y ×Π) ∪ {⊥}

1: (y0, π0) := Evalf (pp, x); let I be the set of random oracle queries made during the execution.
2: p∗ := ∅. ▷ p∗ ⊆ {0, 1}∗ × {0, 1}λ.
3: Define function dom(p) := {x ∈ {0, 1}∗ | ∃y ∈ {0, 1}λ : (x, y) ∈ p} returning the set of the first

elements of a set of pairs.
4: for r ∈ [t′] do
5: Uniformly sample p′ ← ({0, 1}λ)I\dom(p∗).
6: f ′ := f(I\dom(p∗))→p′ . ▷ Here we only mean it symbolically, see Remark 6.11 for details.
7: (y, π) := Evalf (pp, x).
8: if y ̸= y0 ∧ Vf ′

(pp, y, π) = 1 then return (y, π).
9: Uniformly sample f∗ : {0, 1}∗ → {0, 1}λ consistent with p∗. ▷ See Remark 6.11

10: Run Evalf
∗
(pp, x);

11: Let ℓ ⊆ {0, 1}∗ × {0, 1}λ be the set of query-answer pairs from the execution in Line 10.
12: For every z ∈ dom(ℓ) \ dom(p∗) query f(z) and update p∗ := p∗ ∪ (z, k) where (z, k) ∈ ℓ.
13: return ⊥
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supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract
number MB22.00026. Ziyi Guan is partially supported by the Ethereum Foundation.

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. 1st. USA: Cambridge

University Press, 2009. ISBN: 0521424267.

[AC23] Hamza Abusalah and Valerio Cini. “An Incremental PoSW for General Weight Distributions”. In: Pro-
ceedings of the 42th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’23. 2023, pp. 282–311.

[AFGK22] Hamza Abusalah, Georg Fuchsbauer, Peter Gaži, and Karen Klein. “SNACKs: Leveraging Proofs
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A Tightness of Theorem 6.1

Theorem 6.1 is essentially “tight” in terms of sequentiality: a VDF can be constructed in the ROM with
statistical uniqueness and weaker sequentiality.

Lemma A.1. Fix λ ∈ N and T ∈ N. There exists a VDF = (Setup,Eval,Verify) in which qSetup = 0,
qEval = T + 1, and qVerify = O(1) that satisfies

– perfect completeness,
– (qAdv, ϵ)-uniqueness for unbounded qAdv and ϵ = negl(λ), and
– (rAdv, q

′
Adv, γ)-sequentiality for every rAdv ∈ N, q′Adv = 2λ(T/rAdv−1)−1, and γ ≥ 1− ϵ/4.

In Theorem 6.1, we have that sequentiality error γ is upper bounded by 1− 2rAdv
rAdv−2qVerify · ϵ− α, which is

at most 1− 2ϵ− α. Therefore, Lemma A.1 complements Theorem 6.1 by arguing for the existence of VDFs
with perfect completeness and relaxed sequentiality error γ ≥ 1− ϵ/4.

To show Lemma A.1, it suffices to prove the following lemma:

Lemma A.2. For any security parameter λ, query complexity parameter T ∈ N+. Let n = (MT −1)/(M −
1) + 1. Then there is a search problem S ⊆ [2λ]n × [2] defined by verifiers V1,V2 and an algorithm D
computing S which satisfies the following:

(i) Both verifiers V1,V2 have query complexity O(1). D has query complexity T + 1.
(ii) Exactly 1/2λ-fraction of inputs have alternative solutions, i.e. there exists z ∈ Y such that (f, z) ∈ S

but z ̸= D(f).
(iii) For every r-round adversary A with query complexity at most 2λ(T/r−1)−1,

Pr
[
A(f) = D(f)

∣∣∣ f ← [2λ]n
]
≤ 1− 1

2λ+2
.

To construct the search problem in Lemma A.2, we define the following hard (on average) functions
against parallel decision trees.

Definition A.3. Let M > 0 be even, T ∈ N+. For n := (MT − 1)/(M − 1), let hM,T : [M ]n → {0, 1}
be the sequential function whose computation can be defined as a complete depth-T decision tree, where
different non-leaf nodes are labeled with different variables. The leaf nodes are labeled with the parity of the
variable associated with their respective parent nodes so that any non-trivial subtree is balanced, namely, the
subtree contains an equal number of 0-leaves and 1-leaves.

Lemma A.4. Any r-round algorithm computing hM,T with success probability 3/4 over the uniformly
random input has query complexity at least M ⌊(T−1)/r⌋/2.

Proof. Fix ℓ = ⌊(T − 1)/r⌋. We prove by induction on R ∈ N that the following alternative statement holds:
Any R-round algorithm of query complexity Q⋆ ≤M l computing hM,kℓ+1 has success probability at most
(1 +Q⋆/M ℓ)/2.

When R = 0, any 0-round algorithm cannot make any queries. Since hM,1 is 0 on exactly half of the
inputs, the algorithm must compute hM,1 with success probability exactly 1/2.

Now assume that the statement is true when R = k − 1 ≥ 0. Then for R = k and any k-round algorithm
Ak of query complexity Q⋆ computing hM,kℓ+1. Let I0 ⊆ [n(M,kℓ+1)] of size |I0| = Q0 denote the set of
indices queried in the first round.
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Recall that there is a complete depth-T decision tree computing hM,kℓ+1, whose nodes are labeled with
different variables. Let w1, . . . , wMℓ be all the nodes on the ℓ-th level. Moreover, for any 1 ≤ v ≤M ℓ, let
Iv be the set of indices of variables that appear in the subtree with root wv, gv := hM,kℓ+1|Cube(wv). That is,
gv is a function mapping from Cube(wv) to {0, 1} where gv(f) = hM,kℓ+1(f) for all f ∈ Cube(wv). Let
V := {v : Iv ∩ I0 ̸= ∅}. By the definition of hM,kℓ+1, I1, . . . , IMℓ are pairwise disjoint, so |V | ≤ |I0| = Q0.

For any v ∈ [M ℓ]\V , since Ak does not query any variable in Iv in the first round, it performs exactly the
same as some k − 1-round Q⋆ −Q0-query algorithm computing gv. It follows from the induction hypothesis
and the fact that gv is isomorphic to hM,(k−1)ℓ+1 that Ak computes gv with success probability at most
(1 + (Q⋆ −Q0)/M

ℓ)/2.
Then we can bound the probability that Ak computes hM,kℓ+1:

Pr
f←[M ]m

[Ak(f) = hM,kℓ+1(f)]

=
1

M ℓ

∑
v∈V

Pr
f←Cube(wv)

[Ak(f) = hM,kℓ+1(f)] +
∑

v∈[Mℓ]\V

Pr
f←Cube(wv)

[Ak(f) = hM,kℓ+1(f)]


≤ 1

M ℓ

(
|V |+ (M ℓ − |V |)(1 + (Q⋆ −Q0)/M

ℓ)/2
)

≤ 1

M ℓ

(
Q0 + (M ℓ −Q0)(1 + (Q⋆ −Q0)/M

ℓ)/2
)

≤(1 +Q⋆/M ℓ)/2.

Finally, by replacing Q⋆ with M ℓ/2 and observing that t ≥ rℓ+ 1, we obtain the desired claim.

Proof of Lemma A.2. The search problem is defined by two verifiers V1, V2 : [2
λ]n → {0, 1}: V1 accepts all

the inputs, and V2 only accepts f such that f1 = 1.
Now let us define D. For the set of input inputs {f : f1 ̸= 1}, D simply outputs 1. For rest of the inputs,

we embed the sequential function h2λ,T in the subcube {f : f1 = 1}. Specifically, we define

D(f) :=
{

1 f1 ̸= 1
h2λ,T

(
f[n]\{1}

)
+ 1 f1 = 1

.

It is clear that (i)(ii) hold. Note that any algorithm computing D with success probability at least 1− 2λ+2

also computes h2λ,T with success probability at least 3/4. By Lemma A.4, (iii) holds.
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