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Abstract. In this paper, we present efficient protected software imple-
mentations of the authenticated cipher AsCON, the recently announced
winner of the NIST standardization process for lightweight cryptography.
Our implementations target theoretical and practical security against
second-order power analysis attacks.

First, we propose an efficient second-order extension of a previously pre-
sented first-order masking of the KECCAK S-box that does not require
online randomness. The extension itself is inspired by a previously pre-
sented second-order masking of an AND-XOR construction. We then dis-
cuss implementation tricks that further improve performance and reduce
the chance of unintended combination of shares during the execution of
masked software on microprocessors. This allows us to retain the theo-
retic protection orders of masking in practice with low performance over-
head, which we also confirm via TVLA on ARM microprocessors. The
formal correctness of our designs is additionally verified using Coco on
the netlist of a RISC-V IBEX core.

We benchmark our masked software designs on 32-bit ARM and RISC-V
microprocessor platforms. On both platforms, we can perform ASCON-
128 authenticated encryption with a throughput of about 300 or 550
cycles/byte when operating on 2 or 3 shares. When utilizing a leveled
implementation technique, the throughput of our masked implementa-
tions generally increases to about 90 cycles/byte.

We publish our masked software implementations together with a generic
software framework for evaluating performance and side-channel resis-
tance of various masked cryptographic implementations.
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1 Introduction

Implementation attacks such as fault attacks [I7UT326] or power analysis [425T)[18)]
are among the most relevant threats for implementations of cryptographic al-
gorithms. To counteract such attacks, cryptographic devices like smart cards



typically implement dedicated countermeasures on algorithmic level. The most
prominent examples of algorithmic countermeasures are masking against power
analysis [554553139], and the usage of some form of redundancy against fault
attacks [4122].

Masking is a secret-sharing technique that splits up cryptographic computa-
tions in multiple shares that, when observed individually, do not reveal any useful
information about the processed data. This technique can be used to counteract
power analysis techniques such as differential power analysis (DPA) [42].

Redundant computations are usually used to detect and prevent the release
of erroneous cryptographic computations, that could otherwise be exploited by
an attacker that physically tampers with the device, using techniques like differ-
ential fault attacks [I7] or statistical fault attacks [31126].

One of the main practical challenges with implementation security is the ac-
companied overhead, in terms of area/code size and runtime, that can increase
by several orders of magnitude compared to plain (unprotected) implementa-
tions [II], mostly due to the overhead of masking countermeasures. The im-
portance of efficiency is also reflected by the NIST standardization process for
lightweight cryptography [46] that recently came to a close. Here, the goal was
to select future standards for authenticated encryption that should not only out-
perform current AES-based schemes but also, amongst others, allow the addition
of countermeasures against implementation attacks at low cost.

One way to achieve efficient protected implementations is to use crypto-
graphic schemes based on so-called lightweight building blocks that are compa-
rably cheap to protect against implementation attacks. Nearly all candidates in
the final round of the standardization process follow this approach, e.g., by us-
ing cryptographic building blocks with low-degree nonlinear layers that keep the
overhead of masking comparably low. On top of that, efficiency can be further
improved by using of cryptographic modes that can either reduce the attack
surface of certain implementation attacks or prevent them entirely. The attack
surface of DPA-based key recovery attacks can be reduced, e.g., by using crypto-
graphic modes allowing so-called leveled implementations that restrict the need
for algorithmic countermeasures to only certain parts of a cryptographic compu-
tation [50I28]. AscoN, the winner of the standardization process for lightweight
cryptography, follows both of these approaches.

Related Work Besides mode-level properties, another way to improve the ef-
ficiency of protected cryptographic implementations is to design more efficient
algorithmic countermeasure techniques. These efforts mostly focus on optimiz-
ing masking countermeasures as their performance overhead scales quadratically
with the desired security level. One important optimization goal for masking
countermeasures is to reduce the amount of randomness needed during the ex-
ecution of a masked cryptographic algorithm, which decreases the cost of addi-
tionally required RNGs. In recent years, multiple works have already proposed
efficient masking schemes for various (symmetric) cryptographic algorithms re-
quiring low online randomness [6II222I57J58]. Many of these works consider



masked implementations of cryptographic algorithms in hardware, often at the
cost of increasing the area of the cryptographic hardware circuit.

In software, however, such trade-offs are often not desirable as increasing the
computation state, i.e., the number of temporary variables required for compu-
tation, also increases software runtime. In fact, increasing the computation state
often disproportionally increases software runtime since a processor will need to
make excessive use of load and store instructions to keep all currently required
temporary variables in the register file [34]. Hence, efficient masked software
needs find good trade-offs between the size of the computation state and the
amount of required randomness from hardware/software RNGs. On top of that,
another practically relevant problem is side-effects of processor microarchitec-
tures (glitches, transitions) that cause reductions in masking security orders for
many published masked software implementations [9].

Independently to this work, Gaspoz et al. published a work on threshold im-
plementations in software that also takes micro-architectural leakage effects into
consideration [32]. To achieve, amongst others, non-completeness with respect
to architectural leakages in the register file, they propose storing certain sets of
intermediate (shared) values with certain rotation offsets. We make use of a sim-
ilar idea to (1) reduce the amount of fresh randomness for our constructions, (2)
harden the resulting implementations against various architectural leakages. The
authors of [32] also acknowledge the concurrent proposal of this idea by citing a
codebase containing a previous version of the masked ASCON implementations
presented in this paper.

Our Contribution

— We present efficient software implementations of ASCON-128 that come with
theoretical and practical security against second-order power analysis at-
tacks. Our designs do not require any online randomness which makes them
particularly efficient on low-end devices. While we do use the ASCON cipher
as the main discussion example, we also explain how ideas can be applied to
many other lightweight symmetric ciphers.

— We present additional implementation techniques that (1) further improve
performance and (2) help masked software implementations retain their the-
oretical protection order while being executed on real microprocessors, a
problem that is particularly widespread amongst published masked software
implementations.

— We benchmark our masked software designs on common 32-bit ARM and
RISC-V microprocessor platforms.

— We verify the practical and theoretical correctness of our masked implemen-
tations using TVLA on a STM32F3 32-bit ARM microprocessor, as well as
formal verification using CoCO and the netlist of the 32-bit RISC-V IBEX
core.

— We build a generic software framework based on the chipwhisperer toolchain
that allows practical evaluations of masked cryptographic software. The



framework has convenient features such as automatic sharing of data dur-
ing transmission over the serial interface, optional external bitinterleaving
or endian-swaps, features benchmark and TVLA scrips, and supports arbi-
trary orders of cipher input arguments. The code of our masked software
implementations and analysis framework is available on githudﬂ

Outline In[Section 2| we cover preliminaries on the authenticated cipher ASCON
and power analysis countermeasures. explains the design of our masked
software implementations of ASCON. describes how we use the tool
Coco to verify the formal correctness of our masked software designs.
describes performance metrics and practical evaluation results of our implemen-
tations. We conclude our work in

2 Background

2.1 ASCON

The cipher suite ASCON provides authenticated encryption with associated data
and hashing functionality, and has recently been selected as the new standard
for lightweight cryptography in the NIST Lightweight Cryptography competi-
tion [47]. The ASCON suite consists of the authenticated ciphers ASCON-128 and
ASCON-128A, the hash functions ASCON-HASH and ASCON-HASHA, and the ex-
tendable output functions ASCON-XOF and ASCON-XOFA. All schemes provide
128-bit security and internally use the same permutation ASCON-p operating
on a 320-bit state that is organized into 5 x 64 bit lanes. ASCON-p consists of
3 steps: a round constant addition, a non-linear substitution layer, and a lin-
ear mixing layer, that are consecutively applied on the state in each round (for
details see .

AscoN’s modes describe how ASCON-p can be used to realize authenti-
cated encryption, hashing, or extendable output functions. For the purpose of
this paper, we only give descriptions of the authenticated encryption schemes
AScoON-128 and ASCON-128A that are of main interest in the context of im-
plementation attacks. Here, the input consists of a secret key K, a nonce N,
associated data A, and a plaintext P. The produced output consists of the au-
thenticated ciphertext C' plus an authentication tag 7', which authenticates both
the associated data and the encrypted message. The decryption and verification
procedure takes as input the key K, nonce N, associated data A, ciphertext C
and tag T, and outputs either the plaintext P if the verification of the tag is
correct or an error if the verification of the tag fails. illustrates the
authenticated encryption modes of the ASCON suite. [Table 1] contains additional
parameters of these modes. The sizes of associated data A and plaintext P are
arbitrary, the ciphertext C' has the exact same length as P.

In the context of implementation security, one especially interesting prop-
erty of the ASCON mode is its keyed initialization and finalization (indicated in

! https://github.com /ascon /simpleserial-ascon



blue in which protects against trivial key recovery and forgery attacks
even if an attacker somehow gets knowledge of an internal state during the data
procession of ASCON. This property hence allows for so-called leveled implemen-
tations where the degree of algorithmic countermeasures can be reduced during
the data processing phase to improve efficiency [50128].
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Fig. 1: Illustration of ASCON’s mode for authenticated encryption. Protection
against DPA-based key recovery attacks can be achieved by only adding algo-
rithmic countermeasures to the initialization and finalization phase (indicated
in blue).

Table 1: Recommended parameters for ASCON’s modes for authenticated en-
cryption.

Bit size of Rounds
K N T r» ¢ a b

Ascon-128 128 128 128 64 256 12 6
AscoN-128A 128 128 128 128 192 12 8

Name

2.2 Masking

Masking is an algorithmic countermeasure against power analysis attacks such
as differential power analysis [42]. In a nutshell, masking is a secret-sharing
technique that splits intermediate values of a computation into d + 1 uniformly
random shares, such that observing up to d shares does not leak any information
about the underlying value. The used masking scheme determines the number
of masks d, and results in a dth-order masking scheme. In classical Boolean
masking, the sharing of a native variable s, when split into d + 1 random shares
S0 - - -84, must satisfy s = sg @ ... ® sq. Hereby, sg...sq—1 is chosen uniformly
at random while sq = so @ ... D sq—1 B s. This ensures that each share s; is



uniformly distributed and statistically independent of s. For example, in a first-
order masking scheme (d = 1), the secret variable s is split up into two shares sg
and s1, such that s = sqg®s1. sg is chosen uniformly at random, while s1 = s®sy.

When implementing masked cryptographic algorithms, dealing with linear
functions is trivial as they can simply be computed on each share individ-
ually. However, implementing masking for non-linear functions requires com-
putations on all shares of a native value, which is more challenging to im-
plement in a secure and correct manner, and thus the main interest in liter-
ature [40[4554I38/T0I22I3358].

2.3 Formal Verification of Masking

Masked implementations generally need to take care that each intermediate vari-
able of a computation is statistically independent of any native (unmasked) val-
ues. The verification of this property is usually done with the help of a security
model that specifies the abilities of an attacker. Typically, it is assumed that the
ability of the attacker is to place a certain amount of probes in a computation,
that allow monitoring concrete values at those locations.

The classical probing model by Ishai et al. [40] is the most commonly used
security model for masked hardware circuits and it’s accuracy in modeling real
world attacks has been confirmed by many works [30/56/38/33I58]. Here, an at-
tacker is allowed to place up to d probes at any location in a circuit, which can be
used to observe the corresponding gates/wires permanently. A masked hardware
circuit is considered d''-order secure if an attacker cannot learn any information
about the native values by combining all d observations. Examples of tools that
can verify classical probing security for masked hardware circuits are REBECCA
[15], Silver [41], and maskVerif [5].

On software side, there exist many methods and tools for automatically gen-
erating or verifying masked software implementations [7[44J829/6216JT10]. These
tools model an attacker to place probes on individual words of a processor’s
register file, and to use them for one cycle each during the execution of a masked
software implementation. Hereby, it is assumed that the probed registers cause
independent leakage, in other words, no additional potential side effects of a pro-
cessors architecture, such as glitches or register overwrites, are considered [52].
With Coco, Gigerl et al. have presented a tool that can verify the correctness of
masked software implementations while considering possible architectural side
effects of a given processor netlist [33].

2.4 Coco

Coco is a tool for the co-design and co-verification of masked software im-
plementations on processor netlists [33]. Coco formally verifies the security of
(any-order) masked assembly implementations that are executed on concrete
processors, defined by gate-level netlists.

Coco considers the time-constrained probing model, which allows an attacker
to distribute d probes in the processor netlist, in arbitrary execution cycles of the



masked software. Each probe can be used to measure information in one specific
clock cycle and at one specific location. The attacker can distribute the d probes
spatially and temporally. Hence, the attacker can perform d measurements at
different locations in the same clock cycle, or probes at the same location in
different clock cycles, or a mix of both. A masked software implementation is
considered dth-order secure in the time-constrained probing model if an attacker
cannot combine the recorded information to learn anything about native vari-
ables.

This security notion is verified in Coco by (1) defining an initial labeling
that indicates the location and dependencies of shares in a processor netlist prior
to the start of masked software execution, (2) propagating these labels efficiently
encoded as correlation sets throughout the netlist until the execution of masked
software is finished. In a nutshell, a correlation set contains the labels of all
variables which might be visible to the attacker on the gate output during a clock
cycle. For example, an XOR gate with 1-bit share a, and 1-bit random variable r,
as inputs will generate the correlation set {a@r} if we only consider stable signals
or {0,a,r,a®r} if we additionally consider glitches due to propagation delay of
signals. Put differently, an attacker can either observe an arbitrary independent
constant (denoted by 0), the share a (if r is delayed), the randomness r (if
a is delayed), or a @ r once the circuit has stabilized. In contrast, an AND
gate will generate the correlation set {0, a,r,ar} even if we only consider stable
signals [I5l33]. Coco reports a leak if there exists a correlation set in the circuit
which contains a term which directly depends on the native (unmasked) variables
in any clock cycle. For dth-order masking verification, Coco will check if any
combination of up to d probes depends on native variables.

One additional outcome of the work in [33] is a modified, secured version of
the IBEX core. This secured IBEX core features several small adaptions of the
microarchitecture that eliminate various sources of masking-related side-channel
leakage that are otherwise hard, if not impossible, to compensate for purely
in software. Additionally, they state a couple of constraints to be followed by
masked software that are otherwise to costly to address in hardware entirely.
These constraints mainly boil down to (1) shares of the same native value must
not be accessed within two successive instructions, and (2) a register or memory
location containing one share must not be overwritten by another share of the
same native value.

3 Protected Software Implementations of Ascon

In this section, we describe efficient masking schemes for ASCON in software. We
mostly focus our discussion on the 5-bit y S-box, which is prominently used in
KECCAK and in the core of the ASCON S-box (cf. . First, we recall a
previously presented efficient 2-share masking scheme for x that serves as the ba-
sis for our designs. We then describe how we extend this design using 3 shares to
lift probing security to the second order at low cost. After that, we describe how
we design an entire round of ASCON-p using additional implementation tricks



that further improve performance and reduce the impact of glitches/transitions
on microprocessors. Finally, we discuss how our masking scheme can also be
applied to software implementations of other cryptographic algorithms.

3.1 2-share Design of the x S-box

We now recall the 2-share design of the 5-bit x S-box from Daemen et al. [22]
that is based on ideas from Sugawara et al. [61] and Vivek et al. [60]. We denote
the input bits of x with a, b, ¢, d, e plus an additional intermediate variable r.
The shared versions of these variables are indicated with subscripts. The 2-share
design xag relies on repeated calls of the 2-share Toffoli gate pyas:

Name: y2s

In-/Output: {ao,al,bo,b1,co,cl,do,dl,eo,el,ro,rl}

Px25 (0,71, €0, €1, a0, ax) Name: pyas
px2S(a07a17b07b1,CO,CI) In-/Output: {00,01,a0,a1,b0,b1}
px2s(co, c1,do, d1,e0,€1) co +— co @ aobt
pxgs(eo,el,ao,al,bo,bl) co < ¢co @ aobo
pXQS(bQ,bl,Co,Cl,do,Ch) c1 < c1 ®arbr

do < do @ 1o c1 <+ c1 @ aibo

di < d1 ®r

Construction 3.2: 2-share Toffoli

Construction 3.1: 2-share x S- gate from [22].
box from [22].

The 2-share Toffoli gate py2g, here used with an additionally negated input,
takes as input the shares of a, b, c and calculates ¢ <— ¢ @ @b. py2s is comprised
of four calls of the ordinary Toffoli gate in succession, each of which receives the
updated variables of previous calls and operates on an incomplete set of shares.
Since each ordinary Toffoli gate is invertible, given the construction of pyas, it
is possible to directly calculate input shares from output shares, which makes
Dy2s invertible and free of entropy loss.

As described in [60], every permutation (S-box) with an odd number of in-
puts can be implemented using reversible (Toffoli) gates by using at most one
additional variable. xo5 is a masked variant of one such implementation. The
additional masked input variables ry and r; of x2g should be initialized such
that they represent a sharing of zero, i.e., rg @ r; = 0. Since y2g is a permuta-
tion on the input shares, it is possible to use one share ry of the output of one
S-box layer as input to the next layer of S-boxes without reducing the entropy
of the state. Hence, it is possible to implement entire masked ciphers without



the need for additional online randomness, except the one needed for ry and 7
in the initial sharing of the first S-box layer.

Besides the suitability for masking, y2s has another convenient property as
it can be combined with redundant computation to achieve protection from sta-
tistical ineffective fault attacks (SIFA) that are otherwise notoriously difficult to
defend against [22]. More concretely, the y25 construction ensures that, within
one S-box computation, a single fault induction either (1) cannot cancel out
based on the all shares of any native value, or (2) is detectable by comparing
the result of the S-box computation to a redundant computation that is typi-
cally needed anyway to cope with other fault attacks. Put differently, if a fault
induction causes a difference within one of the ordinary Toffoli gates, it can only
cancel out due to an AND gate computation on incomplete sets of shares. If a
fault induction causes a difference outside of an ordinary Toffoli gate, it will
propagate to the S-box output where it can be detected by comparison with a
redundant computation.

3.2 3-share Design of the x S-box

The main idea behind our 3-share design of x is to keep the general structure
of the 2-share design but to use 3-share Toffoli gates instead. While this is not
difficult in principle, the situation becomes more challenging if we additionally
want to avoid using any online randomness. In this context, a recent work from
Shahmirzadi et al. [58] has explored the possibilities of implementing various
quadratic functions such as x with second-order probing security and without
the requirement of online randomness. Their constructions are based on the
AND-XOR3g construction that calculates x <— ab + ¢ on three shares:

As later stated in their paper, while AND-XOR3g produces correct outputs,
the computation itself is not second-order probing secure. Nevertheless, we use
AND-XOR3g as the basis for designing py3g, a Toffoli gate that calculates ¢ «
¢ @ ab on 3 shares.

From a runtime perspective, the main benefit of our Toffoli gate construction
is that it allows expressing the y S-box as a sequence of permutations which
reduces the computation state, i.e., the number of temporary variables required
for computation. This benefits software runtime, especially on low-end devices
with limited register file sizes, and with increasing masking order. Besides that,
our construction also features some logic-level optimizations that further reduce
the amount of computation steps.

In any case, additional measures need to be taken to make both of these
constructions second-order probing secure. The main problem with our second-
order extension of the masked Toffoli gate is that the single ¢ term is no longer
sufficient to refresh the multiplication of a and b if two probes can be used by
an attacker. Hence, if we want to implement p,3s as a permutation on the input
shares, we need to increase the number of inputs by introducing the additional
refreshing terms Ry, R1, Ry representing a sharing of zero. These terms can then
be used for refreshing in the individual calls of py3g. The description of the
3-share y3g is given in [Construction 3.5|




Name: AND-XORsg Name: pyss

Input:{ao, a1, az, bo, b1, b2, co,c1,c2} In-/Output:{co, c1, c2, a0, a1, az, bo, b1, b,
Output:{zo, z1,z2} Ro,R1, Ra}

xo <+ aobo ® bo co < co D aobz

x] + aoby co < co @ aob1®R2
xh < agba ® co co < co D aobo

xh < a1bo ® bo c1 < c1 D aibs

xhy < a1by c1  c1 Darbi®Ro
x5 < a1ba ® b ® ¢y c1 4 c1®aib

T 4 azbo @ az @ c2 c2 4 c2 @ boaz

xh < azby c2 < c2 B axb1®Ry
T§ + asbs @ az @ bo 2 c2Pax @b

7 7 7
To < 2o D1 22
/ / /
T1 < 3Dy D x5

! ! !
To < Tg D x7 D Ty

Construction 3.3: 3-share Construction 3.4: Our 3-share Toffoli
AND-XOR from [5§]. gate (with negated a).

Name: xss

In-/Output:

{ao, a1, az,bo, b1, b2, co,c1,c2,do,d1,d2, e, €1, €2,
ro,71,72, Ro, R1, Ra}

py3s(ro, 71,72, €0, €1, €2, A0, a1, az, Ro, R1, R2)
(Ro,R1,R2) + (Ro,R1,R2) > 1

Dx3s(ao, a1, az, bo, b1, b2, co, c1,c2, Ro, R1, Ra2)
(Ro,R1,R2) + (Ro,R1,R2) > 1

Dy3s(co, c1,c2,do,d1,da, €0, €1,€2,Ro,R1,R2)
(Ro,R1,R2) < (Ro,Ri,R2) > 1

Pxas(eo, e1, €2, a0,a1,az,bo, b1, b2, Ro, R1,Ra)
(R07R1:R2) — (RO7R17R2) >1
pXSS(bmb1,bz,Co,C1,62,d0,d1,d2,R0,R1,R2)
do < do @ 10

di < di ®m

da +—da B ra

Construction 3.5: Our 3-share second-order secure x S-box.
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While each call of p, 35 requires independent refreshing terms, we can achieve
this by simply rotating each term by some constant to derive a new refresh-
ing term for the next py3s call. In the above description, this is denoted as
(Ro,Ri1,R2) >> 1 for a rotation offset of one. With this trick, our construction
again becomes a permutation of shares, although, at the expense of an increased
computation state.

3.3 Further Performance Improvements and SCA-Hardening

We now discuss additional steps that can be taken to improve the performance
and practical side-channel resistance of our masked software implementations.
We then describe how we implement the round function ASCON-p, the main
building block of our ASCON implementations that will be used in the later
sections for benchmarks and formal/empirical masking verification.

The most notable downside of our previously discussed x3s construction,
when compared to xag, is the increase of the computation state with refreshing
terms which causes increased register spilling and thus performance degradation.
If we allow ourselves to deviate a bit from the so-far used design strategy, it is
however still possible to avoid most of this overhead. More concretely, we can
replace the previously required refreshing terms Ry, R1, Re with rotated versions
of the already existing additional inputs rg, 71,72 that also represent a shared
zero. On top of that, and to avoid potential entropy loss of the state over mul-
tiple rounds, we can then add these (rotated) refreshing terms back to the state
towards the end of the S-box computation. If we apply these modification to our
X35 construction, we end up with the optimized y3g+ variant in|Construction 3.6}

The main consequence of our modifications is that yss+ is not a direct per-
mutation of shares anymore since the values of Ry, R1, Ro are not part of the
input/output anymore. From a masking perspective, however, the computation
of one round of ysg+ is still correct since the refreshing terms are still in derived
from other independent computations in a changing of the guards fashion [21].
While this argument does not necessarily imply the correctness of masking over
multiple rounds, we do show in a later practical evaluation that we do not ob-
serve any degradation in masking protection order over multiple rounds (cf.
fon 5.3).

Nevertheless, one property that may be lost is SIFA protection if this con-
struction is combined with redundant computation. More concretely, a fault
induction outside of a Toffoli gate may not always propagate to the S-box out-
put.

SCA Hardening So far, we have discussed our masked constructions in a
somewhat abstract probing model. If one now wants to map these construc-
tions into concrete software implementations, one needs to additionally consider
that the practical security of masked software implementations does depend on
some assumptions that may not be satisfied when they are being executed on
real processors. Coron et al. [I9] were among the first who showed that, e.g.,

11



Name: x3s+

In-/Output:

{ao, a1, az,bo, b1, b2, co,c1,c2,do,d1,d2, €0, €1, €2,
7“0,7”1,7‘2}

(Ro,R1,Re2) + (ro,71,72) > 1

Dpy3s(ro, 71,72, €0, €1, €2, G0, a1, az, Ro, R1, R2)
(Ro,R1,Rz2) « (Ro,R1,Ra) 5> 1

Dx3s(ao, a1, az,bo, b1, b2, co, c1,c2, Ro, R1, Ra2)
(Ro,R1,R2) < (Ro, Ri,Ra) > 1

Dy3s(co, 1, c2,do, d1,d2, €0, €1,€2,Ro,R1,R2)
(Ro,R1,R2) + (Ro,R1,Ra) > 1

Dy3s(eo, €1, €2, a0, a1, az,bo, b1, b2, Ro, R1, Ra)
(Ro,R1,R2) + (Ro,R1,R2) > 1

Dx3s(bo, b1, b2, co, c1, c2,do, d1, d2, Ro, R1, Ra)
(Ro, R1,Ra) < (Ro, Ri,Ra) > 1

ro <10 @ Ro

r1 <11 O Ry

r2 <= 12 @ Re

do < do @ 1o

di+d1®rm

do < d2 D2

Construction 3.6: Our optimized 3-share second-order secure x S-box. The main
modifications compared to y3g are highlighted in blue.
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memory transitions in the register file or RAM can leak the Hamming distance
between two shares, thereby reducing the protection order of masking schemes
on processors. Later publications follow up on these observations and describe
many more potential sources for the reduction of security order of masked soft-
ware implementations due transition or glitch effects in processor microarchitec-
ture [4937I43I12133135]. Consequently, if one wants to counteract such problems,
one can either use masking scheme with a protection order that is higher than
theoretically required, or employ additional hardening tricks in software. We
opted to go with the second option.

Our main hardening technique involves the usage of constant rotation offsets
between all the shares of a native variable. This reduces information leakage
in the case that an unintentional combination of shares occurs in the processor
microarchitecture. The rotation offsets can be chosen in a way such that their
greatest common divisor is high, which reduces the information leakage, e.g., if
the hamming distance between two rotated shares is observed. Naturally, when-
ever a computation needs to be performed on multiple shares of the same native
variable, they need to be rotated back temporarily. For our purposes, we decided
on using the rotation offsets 0, 5, and 10 for our 3-share implementation.

Besides that, we also add to our implementations the optional possibility
of transmitting inputs and outputs of our ASCON implementations in a shared
representation, with or without bit-interleaving, and with or without swapped
endianness. This further reduces the processing of masked inputs/outputs which
can present another source of leakage in a practical side-channel evaluation.

The Design of ASCON-p Given masked descriptions of y, a protected im-
plementation of the entire round function ASCON-p is not too much additional
work. The ASCON S-box can be viewed as x with additional affine layers at the
beginning and the end (cf. [Section 6). These affine layers can be treated similar
as linear layers, i.e., they are computed individually on each share of the state.
The bitsliced algorithmic description of y allows to split its computation into
multiple parts, e.g., computation on the low and high words of the lanes in case
of 32-bit implementations. What remains is the linear layer which calculated on
each lane of each share individually. We keep the entire state in a bitinterleaved
representation such that 64-bit rotations can be more efficiently implementation
if dedicated 32-bit rotation instructions are available.

3.4 Application to Other Cryptographic Algorithms

While we only discuss masking techniques for software implementations of ASCON
(or KECCAK), these techniques are also applicable to S-box layers of many other
cryptographic block ciphers or permutations.

3-bit S-boxes have recently become prominent, e.g., with their usage in
LowMC [I], or XooD0oo0 [23]. We focus our discussion on the 3-bit y-layer of
X00Dpo00 [20123]. Daemen et al. pointed out that it is possible to compute 3-bit
X in-place in its registers as a sequence of three Toffoli gates [23] which makes it
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compatible with the optimizations techniques presented in this section. Toffoli-
based descriptions for other affine equivalent 3-bit S-boxes can be derived by
finding corresponding affine layers using tools such as PEIGEN [3].

4-bit S-boxes have been partitioned into 302 equivalence classes by De Can-
niére [25] where one class contains all affine functions, six classes contain quadratic
functions, and 295 classes represent the cubic functions. As shown by Bilgin et al. [14],
144 cubic classes can be constructed by iterating the S-boxes of the quadratic
classes separated by affine layers up to 3 times. This covers many prominent
S-boxes, e.g., the S-boxes used in Noekeon [24] and Present [16]. Toffoli-based
descriptions for all quadratic 4-bit S-boxes are given in [22].

While we already discuss Toffoli-based descriptions for the 5-bit ASCON and
KECCAK S-boxes in this paper, such descriptions still need to be found for many
other larger S-boxes. One exception is the 8-bit AES S-box with a Toffoli-based
description in [22], however, it should be noted that this description is primarily
intended for hardware designs as it will not allow efficient execution in software.

4 Formal Masking Verification

In this section, we describe how we apply the formal verification tool Coco
[33] to verify the correctness of our masked designs of x and ASCON-p from the
previous section. We first describe the general verification flow of Coco and how
we adapt it for our purposes. We then discuss the verification results.

4.1 Verification Flow

We use the secured version of the 32-bit IBEX core from [33] as the reference
processor netlist for our formal verification of masked software designs. This core
is roughly comparable to an ARM Cortex-MO0 in terms of area and performance.

As a first step for the verification process, we prepare RISC-V assembly
implementations of the previously presented masked designs of ASCON-p that
adhere to all constraints for masked software listed in [33] to achieve protection
against transitions and glitches on the secured IBEX core. We then copy the as-
sembly code into the SRAM model that is used by the netlist simulation of the
secured IBEX core. Next, we assign labels indicating the position and dependen-
cies of shares at the start of the execution of the masked software. Labels are
either shares of a native value, fresh randomness in case of a fresh independent
random variable, or public, which includes constants and control signals like the
clock signal. In our case, we simply label the contents of the register file which
holds the shares of the ASCON-p state before the start of the computation. For
the 2-share implementation based on x25 we label the entire masked state and
execute one round of ASCON-p. For the 3-share implementation based on ysg«
we only add labels for the lower 32-bit of each lane since the IBEX register file
(32 x 32-bit) cannot hold 3 shares of the entire ASCON-p state at once. During
verification we then execute one entire round of ASCON-p in case of the 2-share
implementation, and the ASCON S-box for the lower word of each lane in case of
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the 3-share implementation. While we could also include the computation for the
upper words in the verification of our 3-share implementation, e.g., by executing
them one after another and loading/storing them in SRAM, we avoid this step
since they are anyway independent from each other.

During the verification with CocCoO, these labels are propagated through the
netlist until the execution of the masked software implementation is finished.
Coco reports a leak if there exists a correlation set in the circuit which contains
a term which directly depends on the native (unmasked) value. In case of second-
order masking verification, Coco will check if any combination of up to two
probes depends on native variables.

4.2 Verification Results

We have summarized our verification results, as well as the corresponding run-
time of the verification procedures in Stable verification only considers
probes of signals in the processor netlist after they have stabilized while tran-
sient verification also considers side-effects such as transitions and glitches in the
netlist.

In case of our 2-share implementation, we could immediately successfully
verify first-order security for stable and transient masking verification. The veri-
fication runtime for transient execution is significantly increased which is mainly
due to the large amount of possible glitches during rotation operations in the
linear layer.

In case of our 3-share implementation, we could not immediately verify
second-order security successfully. As it turns out, the IBEX core, same as sim-
ilar other processors, feature logic in the ALU for the computation of sign-bits
and processor flags that does cause masking-related issues with our y3g« con-
struction. More concretely, while our used rotation offset by one should result
in independent refreshing terms in theory, the additional ALU logic does vio-
late this assumption. Nevertheless, a simple increase of the rotation offset from
one to two eliminates this problem on this core and we can successfully verify
second-order security for stable and transient masking verification. This time,
the runtime between stable and transient masking verification is smaller since
only the S-box execution is considered in the verification.

Stable Transient
Implementation Input Labels Order
Result Time Result Time
2-share ASCON-p round 5 x 64 x 2 bits 1 3m 5h 20m
3-share AscoN S-box 5 x 32 x 3 bits 2 26m 1h 17m

Table 2: Summary of formal masking verification results on the secured IBEX
core. Verification runtimes stem from single-threaded executions on an Intel

Core i7 notebook processor with 16GB of RAM.
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5 Performance and Side-Channel Evaluation

In this section, we present performance numbers, as well as practical side-channel
evaluation results of our masked software implementations. We first compare the
performance of ASCON-128 implementations using 2 shares (x2s) and 3 shares
(x3s+) to plain (unmasked) implementations. We then evaluate practical first and
second-order security of our masked implementations using test-vector leakage
assessment (TVLA) methodology.

5.1 Performance Evaluation

STM32F3 For our performance evaluation on ARM microprocessors, we use
a STM32F303 microprocessor as target devicesﬂ This device is based on the 32-
bit ARM Cortex-M4 and is used in combination with the ChipWhisperer UFO
boar(ﬂ and the open-source ChipWhisperer toolchain [48].

In our experiments, we send masked versions of key, nonce and plaintext to
our target device. The software interface on the target device corresponds to the
one defined in the call for protected software implementations of the NIST stan-
dardization process for lightweight cryptographyﬂ Since our implementations do
not require online randomness, we can use a simple software RNG on the target
device to generate the necessary additional randomness for the initial sharing
of the ASCON-p state without much performance impact. We then measure the
runtime (cycles) of processing one block of plaintext (i.e. 8 bytes) without the
overhead of initialization and finalization. The resulting numbers are presented
in

Compared to a plain (unmasked) implementation, the masked variants using
2 (3) shares have a runtime that is increased by a factor of about 6 (10). Even
though the pure algorithmic overhead of our masking schemes is a lot lower
than that, the main explanation for the observed runtime is the comparably
small register file of Cortex-M4 (16 x 32-bit) and the resulting register spilling
when computing on the shared state.

Since the AscoN AEAD mode allows the usage of so-called leveled imple-
mentations that provide protection against DPA-based key-recovery attacks us-
ing masking only during the initialization/finalization phases, we also present
performance numbers for this case. To no surprise, our leveled implementation
of ASCON using 2 or 3 shares can processes plaintext blocks with a similar
performance to plain implementations. Nevertheless, with a bit more work, it
should be possible to design a leveled implementation of ASCON that matches
the throughput of the plain implementation.

* https://rtfm.nevae.com/Targets/UF0%20Targets/CW308T-STM32F/

® https://rtfm.newae.com/Targets/CW308%20UF0D/

S https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_
Implementations.pdf
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IBEX For our performance evaluation on the RISC-V IBEX core, we perform
a cycle-accurate simulation of the IBEX netlist while executing one round of
our masked software implementations of ASCON-p. The used assembly code and
netlist is the same that was used for our formal verification efforts in
We then extrapolate the required cycles of processing one block of plaintext by
multiplying the measured cycle count of one round by 6 (round parameter b)
and dividing by 8 (block size in bytes). The results are presented in and
show a generally better performance than the ARM devices. This is mainly due
to the fact that the register file of the IBEX core (32 x 32-bit) causes significantly
reduced register spilling.

Implementation STM32F303 IBEX
Plain 59 -
Leveled 89 -
2-shares 318 260*
3-shares 542 500"

*Estimated based on cycle counts of linear and non-linear layer.
Table 3: Performance of ASCON-128 for processing a single plaintext block on
32-bit microprocessors in cycles/byte (X+0 encrypt for long messages).

5.2 Practical Side-Channel Evaluation

In our practical side-channel evaluation we perform standard test-vector leakage
assessment (TVLA) following the guidelines of Goodwill [36], which is a standard
method to measure information leakage of masked software implementations.
The basic idea behind TVLA is to create two sets of power measurements, one
corresponding to the processing of random inputs, and one corresponding to
fixed inputs. Given such sets of measurements, one can compare their first and
second-order statistical moments, i.e., mean and variance. The null-hypothesis
is that both sets of measurements have equal means/variances, which is rejected
with a confidence greater than 99.999% if the absolute t-score does not exceed the
value 4.5. In this case, the sets of measurements cannot be reliably distinguished
from each other and the masking countermeasure works as intended.

In our evaluation, we call masked versions of the ASCON-128 authenticated
encryption procedure running on a STM32F303 microprocessor using a fixed key,
fixed or random nonces, and zero bytes of plaintext and associated data. The
initial sharing of these inputs is generated using a proper source of randomness
before transmitting them to the target device. The goal of our evaluation is to
provide evidence that:

G1 Our 3-share implementations achieve practical second-order protection de-
spite potential micro-architectural side-effects.
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G2 Our 3-share masking scheme remains secure over multiple rounds without
any fresh randomness.

For this purpose, we perform multiple measurements covering one (four) rounds
of ASCON-p during ASCON’s initialization phase (cf. using a synchro-
nized sampling frequency that is set to four (one) times the clock frequency.
The restriction on the sampling rate for the four-round measurement is due to
the fact that a bivariate analysis would otherwise become too computationally
expensive. With our restrictions in place, a single measurement never contains
much more than 4000 samples. For the sake of comparison, we also provide
measurements of 2-share implementations and implementations using a share
rotation offset of zero which essentially deactivates our additional side-channel
hardening technique. The power measurements themselves are recorded by a
ChipWhisperer-Lite [48]. Given such sets of measurements, we evaluate their
first /second-order statistical moments using the univariate and bivariate t-test
functionality of the SCALib libraryﬂ The evaluation results of our 2 and 3-
share ASCON implementations using 10M measurements are shown in [Figure 2|

and discussed in more detail in the following.

4.5 - - 4.5 —
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(a) shares:2, rounds:1, share-rotation:5.  (b) shares:3, rounds:1, share-rotation:5.

Fig. 2: Univariate t-test of ASCON-p using 10M traces on the STM32F303.

2 Shares Our 2-share implementation is based on the y2g construction from[Sec]
tion 3.1Jand features share-rotations as an additional hardening technique (cf.
tion 3.3). As can be seen in our 2-share implementation does show
some first-order leakage in the univariate t-test. While this should not hap-
pen in theory, many works in the past have pointed out that the practical
security of masked software does depend on some assumptions that may not
be satisfied on real processors due to microarchitectural side-effects such as
transitions or glitches. Hence, without concrete knowledge of the microarchi-
tecture of the target device, a certain reduction in practical protection order

" https://github.com/simple-crypto/SCALib
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is not unexpected [49J37I43/5935]. While hardening techniques such as share-
rotations (cf. [Section 3.3|) can significantly reduce such unwanted side-effects,
these measures were not sufficient to fully prevent first-order leakage in our
measurements. As expected, if we take a look at the bivariate t-test result of our
2-share implementation in we see a clear indication of second-order
leakage after evaluating 10M traces.
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Fig. 3: Bivariate t-test of ASCON-p using 10M traces on the STM32F303.

3 Shares Our 3-share implementation is based on the y3g+ construction from[Sed-

fion 3.3]that we have also formally verified for the correctness of masking in [Sec
tion 4[ Again, we use share-rotations as an additional hardening technique (cf.
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tion 3.3)). Somewhat expected, as can be seen in|Figure 2b} our 3-share implemen-

tation does not show any significant first-order leakage in our univariate t-test
evaluation after 10M traces. In case of bivariate analysis, and corresponding to
our evaluation goal G1, [Figure 3b| and [Figure 3c| show the practical difference
of using a share-rotation hardening technique for our 3-share implementations.
While a rotation offset of zero already leads to significant second-order leakage
after evaluating only 10000 traces, a non-zero offset results in no significant
second-order leakage after evaluating 10M traces, thereby noticeably improving
the practical side-channel security of our implementations. Generally, a certain
security degradation of the masking due to transitions/glitches in the microar-
chitecture, or even more measurements, is also possible here. However the mag-
nitude of these problems was not large enough to be of practical concern in our
bivariate evaluation scenario where an attacker is forced to work with combina-
tions of samples (and thus also their combined noise). Regarding our evaluation
goal G2, shows a bivariate analysis covering four rounds of ASCON-p
and gives no indication that the practical side-channel security of our implemen-
tation degrades over the course of four rounds, despite the fact the we do not
use any fresh randomness during the computation.

6 Conclusion

We have presented efficient protected software implementations of the authenti-
cated cipher ASCON targeting theoretical and practical security against second-
order power analysis attacks. Our designs use a second-order extension of a
previously presented first-order masking of the KECCAK S-box based on Toffoli
gates. This allows us to implement second-order masked software implemen-
tations of ASCON that do not require any online randomness and are hence
especially suitable for the execution on low-end microprocessor devices. Our im-
plementations also feature some implementation tricks that reduce the chance
of unintended combinations of shares during the execution on microprocessors
which helps them to preserve their theoretical protection against power analysis
attacks in practice.

We benchmark our masked software implementations on 32-bit ARM and
RISC-V microprocessors platforms and verified the practical and theoretical
correctness of our masked implementations using TVLA on ARM microproces-
sors, as well as formal verification using COCO on the netlist of a RISC-V IBEX
core. On both platforms, our second-order masked implementation of ASCON-128
reaches a throughput of about 550 cycles/byte or 90 cycles/byte if the leveled
implementation technique is used.

While we do use the ASCON cipher as a discussion example, our techniques
are also applicable to other lightweight symmetric ciphers, such as KEccaxk-like
ciphers, or ciphers using 4-bit S-boxes that can be expressed as a sequence of
Toffoli gates. We publish our software implementations together with generic
software framework based on the ChipWhisperer toolchain that allows perfor-
mance and side-channel evaluations of various masked cryptographic algorithms.
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Appendix: ASCON-p

The following description of the ASCON-p permutation is adapted from the
AscoN specification [27]. The permutation iteratively applies an SPN-based
round transformation p that in turn consists of three steps pc, ps, pr and differ
only in the number of rounds:

p=prLopsopc.
For the description and application of the round transformations, the 320-bit
state S is split into five 64-bit registers words x;, S = zq || 21 || z2 || 23 || z4.
Addition of Constants

The constant addition step pc adds a round constant ¢, to register word zo of
the state S in round ¢. Both indices r and i start from zero and we use r = ¢ for

p® and 7 =i+ a — b for p® (see|Table 4)):

To < To D Cyp .

Substitution Layer

The substitution layer ps updates the state S with 64 parallel applications of
the 5-bit S-box S(x) defined in to each bit-slice of the five registers
Zg - .. T4. It is typically implemented in bitsliced form with operations performed

on the 64-bit words.
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Table 4: The round constants ¢, used in each round 7 of ASCON.

pt? p8 p° Constant ¢, pt? p8 p° Constant ¢,

0 00000000000000£0 6 2 0 0000000000000096
1 00000000000000e1 7 3 1 0000000000000087
2 00000000000000d2 8 4 2 0000000000000078
3 00000000000000c3 9 5 3 0000000000000069
4 0 00000000000000b4 10 6 4 000000000000005a
5 1 00000000000000a5 11 7 5 000000000000004b

Linear Diffusion Layer

The linear diffusion layer py, provides diffusion within each 64-bit register word

x;. It applies a linear function X;(x;) defined in |[Figure 4b|to each word x;:
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Fig. 4: ASCON’s substitution layer and linear diffusion layer
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