
Lower Bounds for Levin–Kolmogorov Complexity

Nicholas Brandt

Department of Computer Science
ETH Zurich

Zurich, Switzerland
nicholas.brandt@inf.ethz.ch

The hardness of Kolmogorov complexity is intricately connected to the existence of one-way
functions and derandomization. An important and elegant notion is Levin’s version of Kolmogorov
complexity, Kt, and its decisional variant, MKtP. The question whether MKtP can be computed
in polynomial time is particularly interesting because it is not subject to known technical barriers
such as algebrization or natural proofs that would explain the lack of a proof for MKtP ̸∈ P.
We take a major step towards proving MKtP ̸∈ P by developing a novel yet simple diagonalization
technique to show unconditionally that MKtP ̸∈ DTIME[O(n)], i.e., no deterministic linear-time
algorithm can solve MKtP on every instance. This allows us to affirm a conjecture by Ren and
Santhanam [RS22] about a non-halting variant of Kt complexity.
Additionally, we give conditional lower bounds for MKtP that tolerate either more runtime or
one-sided error. If the underlying computational model has a linear-time universal simulation, e.g.
random-access machines, then we obtain a quadratic lower bound, i.e., MKtP ̸∈ DTIME[O(n2)].
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1 Introduction

The formal concept of “complexity” was spearheaded in the 1960’s by Solomonoff [Sol60; Sol64a; Sol64b],
Kolmogorov [Kol63; Kol65], and Chaitin [Cha66; Cha69]. Ideas and techniques from meta-complexity—the
computational hardness of complexity—have diffused into adjacent subfields like learning theory, deran-
domization and cryptography (see Section 2 for related work). We refer to Trakhtenbrot [Tra84] for a
historical survey of complexity and to the more recent survey by Allender [All21].

In this work we focus on Levin’s notion of Kolmogorov complexity Kt [Lev84], which elegantly
incorporates a time bound and thus evades the undecidability of the original Kolmogorov complexity.
The Levin–Kolmogorov complexity of a given string x is the minimum over all programs that produce x of
the sum of the program’s length plus the logarithm of its runtime, i.e., Kt(x) = minΠ 7→x(|Π|+ ⌈log2(t)⌉)
where Π computes the string x in time t. Its decisional problem is defined as MKtP := {(x, k) | Kt(x) ≤
k}. For an in-depth introduction to meta-complexity problems we refer the reader to [LV08].
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In fascinating works Liu and Pass [LP20; LP21b] uncover a surprising connection between deran-
domization and the existence of one-way functions (OWF) through Kt complexity. On the one hand,
they show that (weak) derandomization BPP ̸= EXP is equivalent to the zero-sided average-case hard-
ness of MKtP, and on the other that the existence of OWFs is equivalent to the two-sided average-case
hardness of MKtP. One-way functions are central to modern cryptography: they characterize symmet-
ric cryptography, dubbed “Minicrypt” by Impagliazzo [Imp95]. They are necessary and sufficient for:
digital signatures [Rom90], (cryptographic) pseudorandom generators [BM82; HIL+99], pseudorandom
functions [GGM84], private-key encryption [GM84], commitment schemes [Nao91] and much more. More-
over, the existence of OWFs is itself equivalent to the hardness of many other meta-complexity problems
(see at the end of Section 2).

These cross connections add to the importance of understanding the hardness of Kolmogorov com-
plexity. While most variants of complexity have (reasonable) unconditional lower bounds (again see
Section 2 for related work) and despite the plausible conjecture MKtP ̸∈ NP, only a comparatively weak
unconditional lower bound for Kt complexity is known. Namely, Hirahara [Hir20b] shows that the Kt-
random strings RKt := {x | Kt(x) ≥ |x|} are immune1 to the circuit class P-uniform ACC0 (constant
depth circuits with constant-modulo gates). Now, one might ask:

Why are there no stronger lower bounds for Kt complexity?

The reason that Hirahara’s approach fails for stronger classes is that it requires a satisfiability (SAT)
solver of the given class. In fact, Hirahara shows that immunity of RKt for class C result is indeed equiv-
alent to a SAT solver for C—which explains the lack of a stronger immunity lower bound. However, even
considering a weaker (compared to immunity) worst-case lower bound, the EXP-completeness of MKtP
under BPP reductions [LP21b] explains why there is no worst-case lower bound against probabilistic
polynomial-time algorithms (BPP); because it would imply BPP ̸= EXP which itself is subject to the
relativization barrier [BGS75]. In the face of this barrier we might ask about an even weaker worst-case
lower bound against a deterministic polynomial-time algorithms (P). Even proving the comparatively
weaker statement MKtP ̸∈ P (mentioned e.g. in [Oli19; Hir20b]) is a longstanding open problem at least
since Allender, Buhrman, Koucký, van Melkebeek, and Ronneburger [ABK+02] posed it explicitly in
2002. This is particularly interesting because MKtP ̸∈ P is not 2 subject to technical barriers like al-
gebrization [AW08; IKK09; AB18] or natural proofs [RR97]. Given the lack of barriers it is not clear
whether relativizing techniques suffice to prove MKtP ̸∈ P. That our lower bounds relativize can be taken
as a hint that relativizing techniques might in fact be strong enough to prove MKtP ̸∈ P.

2 Contributions & Related Work

Our main contribution is a new diagonalization technique tailored to Kt complexity. Using our technique
we give the first unconditional lower bound of Kt complexity against a uniform time class. This constitutes
a significant step towards proving MKtP ̸∈ P.
While our diagonalization strategy is fairly simple, its analysis is somewhat involved and simplifying it
would be interesting on its own. We stress that our approach differs strongly from all previous approaches
like the one of Hirahara [Hir20b] or for randomized complexity notions [Oli19; Hir22b]. A major technical
difficulty for Kt lower bounds based on diagonalization is that the diagonalization algorithm for Kt needs
to be deterministic, and thus no probabilistic tools from complexity theory are available. In Section 3
we explain why this leads to a black-box barrier for diagonalization-based proofs and how our technique
overcomes it. Also, note that derandomization is not useful here because a) we are interested in an
unconditional bound, and b) Liu and Pass [LP21b] already show that (weak) derandomization implies a
stronger zero-sided lower bound. Our main result is summarized as follows:

1 No infinite subset of RKt is in P-uniform ACC0.
2 Ren and Santhanam [RS22] show that the relativization barrier applies to the problem of approximating MKtP.

2



Theorem 1. The Levin–Kolmogorov complexity cannot be decided in deterministic linear time in the
worst-case, i.e., MKtP ̸∈ DTIME[O(n)].

On the K̃t notion of Ren and Santhanam. Because our lower bound relativizes we can partially affirm a
conjecture (Open Problem 4.7.) by Ren and Santhanam [RS22]. They introduce a “non-halting” variant

K̃t of Levin–Kolmogorov complexity whose definition3 is almost identical to the standard Kt complexity
except that the witness program producing a given string need not halt after writing the string on its
tape. Ren and Santhanam conjecture that—despite their close definitions—the two notions behave quite
differently in that infinitely many strings x have K̃t(x) ⪇ Kt(x). By analyzing the proof of Theorem 1 we
can give a concrete example affirming their conjecture. Concretely, infinitely many prefixes of Chaitin’s
constant Ω have K̃t(Ω1||...||Ωℓ) <io K(Ω1||...||Ωℓ) ≤ Kt(Ω1||...||Ωℓ). To see this assume the opposite

(all-but-finitely many prefixes have K̃t(Ω1||...||Ωℓ) ≥abf Kt(Ω1||...||Ωℓ)), then our proof of Theorem 1

allows us to prove the linear-time hardness of K̃t relative to any oracle. However, Ren and Santhanam
[RS22] already give an oracle relative to which K̃t is computable in linear time. Pushing the limits of our

technique we find K̃t(Ω1||...||Ωℓ) ≤io Kt(Ω1||...||Ωℓ)−Θ(ln ln(ℓ)) falling short of the stronger conjecture

K̃t(Ω1||...||Ωℓ) ≤io Kt(Ω1||...||Ωℓ)/Θ(1) as required by Ren and Santhanam.
In particular, relative to their oracle Kt can be approximated in linear time to within a multiplicative
factor of 2+ϵ for any ϵ > 0. Our relativizing result is compatible with [RS22] because Ren and Santhanam
only show that proving hardness of Kt for small thresholds ≲ n/(2 + ϵ) requires a non-relativizing proof
but we show hardness of Kt for a large threshold ≳ n. Consequently, showing (worst-case) hardness of
Kt for small thresholds seems qualitatively harder than for large thresholds. This should be contrasted
with recent developments [LP21a; LP23b] where the worst-case hardness (of a conditioned version) of
Kt for different thresholds between nδ and n− 2 is equivalent (Thm 1.1. in [LP23b]).

Comparison to Hirahara’s lower bound. Hirahara [Hir20b] shows an incomparable unconditional lower
bound for Kt complexity, namely, that the Kt-random strings RKt are immune to P-uniform ACC0

(see [All21] for a nice description of Hirahara’s approach). Compared to Hirahara’s immunity lower
bound (no infinite subset can be decided), our result is weaker in that it only provides worst-case
hardness (no algorithm can decide correctly for every string). On the other hand, our lower bound holds
against deterministic linear time DTIME[O(n)] which—we argue—is closer to P than the rather weak
circuit class P-uniform ACC0 for which Hirahara’s lower bound holds. The only case in which our result
would be subsumed by [Hir20b] is the implausible case that P = P-uniform ACC0 which would already
imply MKtP ̸∈ P and in fact a nontrivial SAT solver for P.

We emphasize that our proof strategy differs conceptually from the one in [Hir20b]. The approach
of Hirahara is based on the “algorithmic method” of Williams [Wil13; Wil14] where a nontrivial satisfia-
bility algorithm for a circuit class yields a lower bound against that class. Obtaining a stronger immunity
of RKt using the Hirahara–Williams approach is equivalent to satisfiability algorithms for stronger circuit
classes which may be subject to known barriers such as algebrization [AW08; IKK09; AB18] or natural
proofs [RR97]. In comparison, our approach opens new avenues for improved lower bounds that possibly
evade these barriers. See Section 3 for a discussion of the limitations of our technique and possible ways
to overcome them.

Stronger conditional bounds. By analyzing our approach for the proof of Theorem 1 we are able to give
conditional lower bounds which either tolerate larger runtime or one-sided error.

Theorem 2. For each time bound t(n) ≥ n at least one of the following is true:

3 Formally, Ren and Santhanam [RS22] define their K̃t notion not relative to any UTM but more informally “over

all machines”. We thus consider a K̃t notion that is defined formally analogously to our notion Definition 2.
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1. MKtP ̸∈ DTIME[t],
2. MKtP ̸∈ Heurγfp,γfn

DTIME[O(n)] with no false positive error γfp(n) := 0 and false negative error
γfn(n) := 1/2nt(2n) − 2/2n,

More related work. In recent years there has been a flurry of meta-complexity results—too many to
discuss here ([Hir18; Oli19; GII+19; Ila20a; Hir20c; Ila20b; Hir20a; Hir20b; LOS21; RS21; HN22; LO22;
LOZ22; Hir22a; AHT23; LP23c; LP23a; BLM+23; MP24b; MP24a; LP24] to name only a few). Here,
we restrict ourselves to some Kt-related notions and their resp. lower bounds to contextualize our lower
bound for MKtP.

The canonical time-bounded variant MKtP [Kol63; Sip83; Har83; Ko86] of Kolmogorov complexity
is parameterized over some time bound t and limits the witness program of a given string x to run in
time at most t(|x|). Limiting the witness program’s runtime makes this notion computable, opposed to
standard Kolmogorov complexity. For exponential time bounds t Hirahara [Hir20b] shows that MKtP is
EXP-complete under ZPP reductions and even that the set of Kt-random strings is immune to P (no
infinitely large subset of Kt-random strings is in P).

Allender, Buhrman, Koucký, van Melkebeek, and Ronneburger [ABK+06] show that the Levin–
Kolmogorov complexity MKtP is EXP-complete under P/poly or NP reductions, i.e., MKtP ∈ P/poly ⇐⇒
EXP ⊆ P/poly. Liu and Pass [LP21b] improve this to BPP reductions, i.e., MKtP ∈ BPP ⇐⇒ EXP =
BPP. Thus, any nontrivial derandomization BPP ̸= EXP is equivalent to a lower bound MKtP ̸∈ BPP
against bounded-error probabilistic TMs. In turn, this means that any barrier preventing us from proving
BPP ̸= EXP also prevents us from proving the randomized lower bound MKtP ̸∈ BPP. In contrast,
our lower bound MKtP ̸∈ DTIME[O(n)] is much weaker both in the quantitative runtime (linear vs.
polynomial) as well as the computational model (deterministic vs. probabilistic)—and thus evades known
barriers.

Oliveira [Oli19] introduces rKt—a randomized version of Levin–Kolmogorov complexity—where the
witness program of a given string x must produce that string x on at least a 2/3-fraction of randomnesses.
This randomized complexity is BPE-complete (Lemma 12 in [Oli19]) and Oliveira shows hardness of his

notion against quasipolynomial time bounded-error TMs, i.e., MrKtP ̸∈ BPTIME[nlog(n)Θ(1)

]. Later Hi-
rahara [Hir22b] improves that bound to GapMrKtP ̸∈ io-BPTIME[2ϵn] for any ϵ ⪈ 0. Oliveira [Oli19]
also gives a potential avenue toward proving MKtP ̸∈ P via the implication MrKtP ∈ Promise-EXP =⇒
MKtP ̸∈ P.

For a nondeterministic NEXP-complete complexity notion KNt Allender, Koucký, Ronneburger, and
Roy [AKR+11] show unconditionally that the set of KNt-random strings is not in NP ∩ co-NP.

The canonical problem for circuit complexity is nowadays called the minimum circuit size problem
(MCSP) [KC00]. It has been previously considered by Trakhtenbrot [Tra84] (Task 4), and Levin report-
edly delayed the publication of his work on NP-completeness to include MCSP. Since MCSP ∈ NP an
unconditional lower bound seems unlikely; the question is rather whether MCSP is NP-complete which is
related to major open questions in theoretical computer science. We refer the interested reader to [All21;
AIV21] and references therein for more details about the NP-completeness of MCSP.

Oliveira, Pich, and Santhanam [OPS19] give “hardness magnification” results for gap versions ofMKtP
and MCSP. They establish that slightly improved lower bounds for these problems can be “magnified” to
strong lower bounds. The reason why we cannot use their result to magnify our linear-time lower bound
is a difference in the parameter regime (similar to [RS22]). They consider the hardness of distinguishing
strings of low complexity from string of even lower complexity (e.g. nϵ +Θ(log n) vs. nϵ). On the other
hand, we crucially use the fact (as our counter assumption) that we are able to exactly compute the
complexity of a given string x ∈ {0, 1}n even when Kt(x) ≈ n.

Huang, Ilango, and Ren [HIR23] show unconditional hardness of an oracle variant of the minimum
circuit size problem (MOCSP) using a cryptographic tool called witness encryption [GGS+13].
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Connection to one-way functions. In recent years there has emerged a research effort to characterize
one-way functions (OWF) by the hardness of meta-complexity problems. As an incomplete list: OWFs
are equivalent to the mild two-sided hardness of MKtP [LP20], the two-sided hardness of MKtP [LP21b],
the two-sided hardness4 of an (NP-complete) conditional variant McKTP [ACM+21] of Allender’s KT
complexity [All01], the mild two-sided hardness of (parameterized versions of) MKtP against sublinear
time over a smooth range of parameters [LP21a], the mild average-case hardness of the probabilistic
MpKtP (introduced in [GKL+22]) for polynomial t [LP23c], the worst-case hardness of a promise ver-
sion of MKtP (with small computational depth) [LP23b], the hardness of a distributional variant of
Kolmogorov complexity under the assumption NP ⊈ io-P/poly [Hir23].

3 Technical Overview

To simplify this overview, we assume that the UTM U simulates any given program Π without any
overhead. In the formal proof we will account for the logarithmic overhead of the UTM.

A natural approach to proving lower bounds for a given meta-complexity problem is to assume that
the problem is easy and then leverage an efficient solver for that problem to quickly construct a highly
complex string (w.r.t. to the given complexity measure). The historical proof of the undecidability of
standard Kolmogorov complexity as well as Hirahara’s much more sophisticated lower bound for Kt
complexity [Hir20b] are instantiations of this approach.

To directly apply this approach to Kt complexity it is useful to define what we call the “critical
threshold” θΠ,t := |Π| + ⌈log2(t)⌉ of a given TM Π after t steps of its execution. We will assume that
the decision problem MKtP can be worst-case decided by a TM ΠKt in linear time. Then we construct
a TM Π (using ΠKt as a subroutine) that quickly outputs a Kt-random string z (i.e., Kt(z) ≥ |z|). To
reach a formal contradiction, our TM Π must in t steps produce a Kt-random string z that is strictly
longer than the critical threshold θΠ ,t, i.e., θΠ ,t ≥ Kt(z) ≥ |z| ⪈ θΠ ,t where the first inequality is
by the definition of Kt complexity and the fact that Π outputs z in t steps, the second inequality is
the Kt-randomness of z, and the last inequality is by assumption. (In this overview, we gloss over some
minor definitional details that are rigorously taken care of in the formal proof.)

Black-box barrier. A conceptual problem to the algorithmic approach for a lower bound for MKtP is that
we know little about the structure of the Kt-random strings RKt := {x | Kt(x) ≥ |x|}. We say a TM
ΠBB yields a contradiction in a black-box way, if given access to any set of potentially Kt-random strings
R ̸= {0, 1}∗ it produces a string z ̸∈ R in t steps such that θΠBB,t ⪇ |z|. Intuitively, a potential TM ΠBB

ignores the structure of the set R since it works for any arbitrary R. Such a ΠBB cannot exist because
we can define RΠBB

:= {0, 1}∗ \ {z | ΠBB queries z to its oracle or outputs z in t steps and θΠBB,t ⪇ |z|}
that breaks ΠBB. This black-box barrier explains why a lower bound for deterministic Kt is so hard to
obtain (as opposed to randomized rKt5). So, for our algorithmic approach to succeed we need to exploit
some property exhibited by the actual set of Kt-random strings RKt but not by any set RΠBB

. Before we
explain how, let us first present our rather simple strategy for a TM Π .

Our search strategy. As a first step we use the length-monotonic depth-first-search described in Fig. 1.
The high-level idea is to traverse the binary tree of finite strings starting with the string 0.6 Whenever
the i-th string zi is visited our search algorithm TRAVERSE queries zi to its oracle RKt and if zi ∈ RKt

descends to the next length with zi+1 := zi||0 (the left child of zi), otherwise it continues with the
lexicographically next string of the same length zi+1 := next(zi) (the right neighbor of zi). See Fig. 2 for

4 Here, the error probabilities are not equal for both directions.
5 It is not even clear how RΠBB would be defined for probabilistic ΠBB.
6 We choose to start with 0 instead of ε because it simplifies some edge cases.
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TRAVERSE

1 : z1 := 0 ∈ {0, 1}∗

2 : for i ∈ N≥1

3 : if Kt(zi) ≥ |zi|
4 : zi+1 := zi||0
5 : else

6 : zi+1 := next(zi)

Fig. 1: Our (simplified)
traversal algorithm.
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Fig. 2: Exemplary run of TRAVERSE: white strings are Kt-random.

an exemplary run of TRAVERSE. Crucially, the length of the visited strings is non-decreasing. We note
that our TRAVERSE algorithm doesn’t terminate and hence does not suffice for a proper contradiction
(even if it visits a Kt-random string quickly enough). To actually reach a contradiction we have to a)
construct a TM ΠTRA implementing TRAVERSE that at some point visits a string ž within t̂ steps s.t.
θΠTRA,t̂

⪇ |ž|, and b) implement a mechanism s.t. ΠTRA also recognizes this fact—so that it can terminate
and output ž.
As a stepping stone it will be useful to see that TRAVERSE visits infinitely many different strings (zi)i∈N.
This follows from the existence of at least one Kt-random string of each length on which TRAVERSE
descends to the next length. Moreover, we observe that TRAVERSE never “wraps around”. That is
TRAVERSE never reaches an all 1s string at the right border of the binary tree. Assuming an infinite (1-
random) string s whose every prefix is Kt-random, this is also easy to see. Whenever TRAVERSE visits a
prefix zi = s1||...||sℓ it descends to the next string zi+1 := s1||...||sℓ||0—thus always staying “to the left”
of the infinite string s in the binary tree. Glossing over a minor technical issue, we can take Chaitin’s
constant Ω (encoded in binary) to be such an infinite 1-random string. In fact, the 1-randomness of Ω
is the crucial information about the actual set of Kt-random strings RKt that allows our TRAVERSE
algorithm to sidestep the aforementioned black-box barrier.

Analysis. Next, we analyze the behavior of TRAVERSE to prove that after some t̂ steps TRAVERSE
visits some Kt-random string zι̂ s.t. θΠTRA,t̂

⪇ |zι̂|. Let Z := {zi | i ∈ N} be the set of visited strings.

Let iℓ := |Z ∩ {0, 1}≤ℓ| be the number of strings visited of length at most ℓ. Let Zℓ := Z ∩ {0, 1}ℓ =
{ziℓ−1

||0, ..., ziℓ} be the set of visited strings of length exactly ℓ. Let Sℓ := {z ∈ {0, 1}ℓ | int(z) ⪈
int(ziℓ)} ⊂ {0, 1}ℓ be the lexicographical successors of Zℓ (the right neighbors of Zℓ). Now, note that
because TRAVERSE doesn’t wrap around, it holds that Zℓ+1 ·∪ Sℓ+1 = ({ziℓ} ·∪ Sℓ)||{0, 1} and thus
|Zℓ+1| + |Sℓ+1| = 2|Sℓ| + 2. Let γℓ := |Zℓ|/|Zℓ ·∪Sℓ| be the fraction of strings of length ℓ that TRAVERSE
actually visits to the strings that it could potentially visit. By recursion the number of visited strings of
length ℓ can be expressed as |Zℓ| = γℓ

∑ℓ
κ=1 2

κ
∏ℓ

i=ℓ−κ+1(1− γi). For our approach we’d like iℓ and thus
|Zℓ| to be asymptotically small. An informal argument for this is that the formula for |Zℓ| expresses a
“self-limiting” behavior that emerges from our TRAVERSE algorithm. Namely, the faster γi goes to 0
the smaller |Zℓ| because |Zℓ| depends linearly on γℓ. On the other hand, |Zℓ| depends on the product∏κ

i=j−κ+1(1− γi) which is closer to 1 the faster γi goes to 0. These antagonistic influences suggest there
is some asymptotic rate of γi that leads to an asymptotically maximal |Zℓ|. This behavior of |Zℓ| can
also be captured informally from the algorithmic view of TRAVERSE. Whenever |Zℓ−1| is large this
means that TRAVERSE moves far to the right, forcing the next |Zℓ| to be small because only few strings
remain to the right. In this manner, there cannot be many successive |Zj | that are large. Turning back
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to the more formal analysis, we can bound the number of visited strings of length at most ℓ by

iℓ :=

ℓ∑
j=1

|Zj | =
ℓ∑

j=1

γj

j∑
κ=1

2κ
j∏

i=j−κ+1

(1− γi) ≤
ℓ∑

j=1

γj

j∑
κ=1

2κeσj−κ−σj (1)

where σj :=
∑j

i=1 γi. Using the following technical lemma we can bound this quantity.

Lemma 1 (Infinitely-often bound). For any sequence (γj)j∈N with γj ∈ [0, 1] and σℓ :=
∑ℓ

i=1 γi it

holds that infinitely often
∑ℓ

j=1 γj
∑j

κ=1 2
κeσj−κ−σj ≤io

2ℓ/ℓ ln(ℓ).

The rigorous proof of Lemma 1 is contained in Section 6. This means that for infinitely many “critical”

lengths ℓ̂ when TRAVERSE visits the last string ziℓ̂ ∈ {0, 1}ℓ̂ ∩ RKt it took at most O(iℓ̂ · ℓ̂) steps to
do so—assuming MKtP ∈ DTIME[O(n)]. Recall that for any length ℓ it holds that ziℓ ∈ RKt because ziℓ
is the last string of length ℓ that TRAVERSE visits from which it descends to the next length. Now, if
TRAVERSE were to output any such ziℓ̂ , then we would reach the contradiction

ℓ̂ ≤ Kt
(
ziℓ̂
)
≤ |ΠTRA|+

⌈
log2

(
O
(
iℓ̂ · ℓ̂

))⌉
≤ ℓ̂− ln ln

(
ℓ̂
)
+O(1) . (2)

The missing piece is hence to construct a TM Π ′
TRA that implements TRAVERSE such that it is aware

of its own critical threshold—so it knows when to output a string ziℓ̂ . A generic approach is to simply
simulate TRAVERSE with a O(n ln(n)) slowdown. However, this would result in

ℓ̂ ≤ Kt
(
ziℓ̂
)
≤ |ΠTRA|+

⌈
log2

(
O
(
iℓ̂ · ℓ̂ · ln

(
iℓ̂ · ℓ̂

)))⌉
≤ ℓ̂+ ln

(
ℓ̂
)
− ln ln

(
ℓ̂
)
+O(1) (3)

which does not suffice for a contradiction. Hence, we let Π ′
TRA count the size |Zℓ| not one-by-one but

only once it reaches a Kt-random string (the last string of each length). This way, each length ℓ incurs
an additive runtime overhead of O(ℓ) instead of Ω(|Zℓ|ℓ ln(ℓ)). Due to space restrictions and because the
details of the step-counting don’t provide much conceptual insight, we defer these details to the formal
proof of Theorem 1.

On Lemma 1. In the previous paragraph we have bounded the runtime of our contradicting TM Π ′
TRA

in terms of the number of visited strings iℓ which in turn can be bounded by the term in Lemma 1. As
alluded to earlier the specific term in Lemma 1 arises from the “self-limiting” behavior of our TRAVERSE
algorithm. Recall that on the binary tree TRAVERSE only moves to the right neighbor or the left child
of the current string. Fix some length ℓ̂. If for many of the previous lengths ℓ ⪇ ℓ̂ the TM TRAVERSE
visited few strings, then the number iℓ̂ of visited strings at length ℓ̂ will be small by definition. On
the other hand, if TRAVERSE visits many strings of length ℓ, then TRAVERSE moves farther to the
right, leaving fewer strings of subsequent lengths to be potentially visited. With this intuition in mind,
it remains to prove Lemma 1 formally, though we defer the rigorous proof of Lemma 1 to Section 6.
Instead, here we give a superficial sketch of our proof.
The basic idea is to prove Lemma 1 by contradiction, hence we may assume

ℓ∑
j=1

γj

j∑
κ=1

2κ−ℓeσj−κ−σj ≥ 1/ℓ ln(ℓ) (4)

for all ℓ ∈ N. We sum this inequality and bound the inner sum on the left-hand side of Eq. (4) by 2j−ℓ+1

(using the trivial inequality σj − σj−κ ≥ 0) to obtain a first lower bound for σℓ̂, i.e.,

2σℓ̂ ≥
ℓ̂∑

ℓ=1

ℓ∑
j=1

γj2
j−ℓ+1 ≥ 2

ℓ̂∑
ℓ=1

1

ℓ ln(ℓ)
≈
∫

1

ℓ̂ ln
(
ℓ̂
)dℓ̂ ∈ Ω

(
ln ln

(
ℓ̂
))

. (5)

Here, we use the crucial property that the antiderivative of 1/x ln(x) is superconstant.
In the next steps we reuse the same strategy. Instead of bounding the inner sum on the left-hand
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side of Eq. (4) trivially by 2j−ℓ+1 we use the stronger bound from Eq. (5) to obtain an even stronger

bound σℓ̂ ∈ Ω(ln(ℓ̂)1/17). Reapplying the same strategy a third time finally yields the lower bound

σℓ̂ ∈ Ω(ln(ℓ̂)3) which is strong enough to yield a contradiction to Eq. (4). In this brief sketch we glossed
over many details and refer the interested reader to the formal proof in Section 6. However, a quick
sanity check may be in order at this point. If γj ≤ 1/j ln(j), then Lemma 1 holds trivially. Considering

slightly larger γj := ϵ/j for any constant ϵ > 0 (thus σj ≈ ϵ ln(j)) yields O(
∑ℓ

j=1 γj
∑j

κ=1 2
κeσj−κ−σj ) =

O(
∑ℓ

j=1
1
j

∑j
κ=1 2

κ(1− κ/j)ϵ) = O(2ℓ/ℓ1+ϵ) which is also consistent with Lemma 1.

Robustness. While (unbounded) Kolmogorov complexity is quite robust against definitional changes
(by invariance theorems), resource-bounded notions of complexity are more sensitive. There are many
ways of defining Kt complexity formally: representative variations include [Hir20b; LP21b; RS22]. Our
Definition 2 essentially corresponds to the one in [Hir20b]. In general, the notion of Kt complexity
depends—aside from the underlying computational model—on whether

• the runtime is measure in terms of the number of steps of the simulated program Π (direct time) or
the simulating universal machine U (universal time),

• the witness program Π produces the entire string x (global compression) on the empty input or
outputs the i-th bit on input bin(i) (local compression),

• the universal machine is “prefix-free” (Kt) or “plain” (Ct).

First, we state that currently our technique only works for prefix-free complexity because it requires an
(infinite) strings whose prefixes are Kt-random, and we only know such a string for prefix-free complexity
(there is no plain 1-random string; Section 6.1 in [DH10]). Though, conceivably one might find another
way of arguing the “no-wrap-around” property of our search algorithm, to extend our result to plain Ct
complexity.

Second, we remark that resource-bounded universal time complexity is a somewhat fragile notion that
does not enjoy an invariance theorem. The reason is that one can always modify a universal machine
to artificially run an arbitrary amount of time to increase the ⌈log2(tU (Π))⌉ term arbitrarily, yet the
machine remains universal. So, to remain a meaningful notion we only consider universal machines with
at most logarithmic overhead.

All of our formal results are stated for the setting of global compression, universal time measurement
and logarithmic simulation overhead. Each result can be adapted to other settings as follows: When
considering direct time measurement or models with constant simulation overhead,7 we can actually
strenghen our lower bound to DTIME[O(n2)] because (to reach a contradiction) our search algorithm
saves a factor of roughly ℓ on level ℓ in runtime—which can be spend on an (assumed) more expensive
DTIME[O(ℓ2)] solver for MKtP. Independently, if we consider local compression, we have to reduce the
lower bound for global compression by a linear factor. The reason is that witness programs for global
compression are required to run for at least |x| steps but witness programs for local compression are only
required to run for O(log2 |x|) steps. We summarize the instantiations of our main result in different
settings in Fig. 3.

Limitations and stronger conditional lower bounds. As presented, our strategy using Π ′
TRA cannot (un-

conditionally) tolerate any errors because

• if Π ′
TRA obtains a false negative query response (false high complexity), then it outputs a string that

is not actually Kt-random which does not violate the definition of Kt-randomness, and
• if Π ′

TRA obtains a false positive query response (false low complexity), then it may skip (from left
to right) the separating line defined by Chaitin’s 1-random constant, thus potentially increasing the
runtime prohibitively.

7 E.g. random-access machines and Kolmogorov–Uspensky machines.
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Lower bound Global compression Local compression

Direct time DTIME[O(n2)] DTIME[O(n)]

Universal time + const. overhead DTIME[O(n2)] DTIME[O(n)]

Universal time + log. overhead DTIME[O(n)] (∗) –

Fig. 3: Our lower bounds for several definitional variantions of Kt complexity. As a rule of thumb going from
global to local, or from constant to logarithmic simulation overhead decreases the lower bound by a linear factor.
Our results are formally stated for the setting (∗).

However, we can conditionally tolerate some (false negative) one-sided errors. For example, suppose
MKtP ∈ DTIME[O(n2)] can be worst-case decided in quadratic time by a TM ΠKt,n2 , and MKtP ∈
Heur0,γfn

DTIME[O(n)] can be decided in linear time with false negative probability γfn(n) ∈ o(1/n2)

(and no false positives) by a TM Π̃Kt,n. Then we can construct a modified TM Π ′′
TRA which for each

visited string zi first queries zi to the quicker linear-time heuristic Π̃Kt,n. If Π̃Kt,n outputs b̃ = 0 (high
complexity), Π ′′

TRA queries zi to the slower ΠKt,n2 to obtain the definitive answer b = 0 ⇐⇒ zi ∈ RKt.

If b̃ = 0 ∧ b = 0, then Π ′′
TRA descends to zi+1 := zi||0, otherwise zi+1 := next(zi). First, note that Π ′′

TRA

visits exactly the same set of strings (in the same order) as TRAVERSE. In contrast to the unconditional

case, however, we find that whenever Π ′′
TRA visits a string ziℓ̂ of critical length ℓ̂ it took at most

O

 ℓ̂∑
ℓ=1

|Zℓ| · ℓ+ 2ℓγfn(ℓ) · ℓ2
 = O

(
iℓ̂ · ℓ̂+ 2ℓ̂γfn

(
ℓ̂
)
· ℓ̂2
)
⊆ o
(
2ℓ̂
)

(6)

steps because at length ℓ there are at most 2ℓγfn(ℓ) strings on which Π̃Kt,n gives a false negative answer.8

Consequently, when Π ′′
TRA visits and outputs such a string ziℓ̂ it yields the contradiction

ℓ̂ ≤ Kt
(
ziℓ̂
)
≤ |ΠTRA|+

⌈
log2

(
o
(
2ℓ̂
))⌉

≤ ℓ̂− ω(1) +O(1) . (7)

On overcoming the limitations. First, we want to point out a curious effect reminiscent of Williams’s
algorithmic method where a computational upper bound implies another lower bound. Namely, any
nontrivial worst-case upper bound for MKtP (Item 1 in Theorem 2 is false) implies an improved linear-
time lower bound for MKtP with one-sided error (Item 2 in Theorem 2 is true).

Above we state that—at first glance—our approach cannot tolerate any errors unconditionally. In
truth, our approach actually tolerates some false positive error, e.g. γfp(n) ≤ 1/4n ln(n+1)2. Recall that
the reason given above for not tolerating false positive errors is because then our algorithm might “skip”
Chaitin’s 1-random constant and thus the recursion formula Zℓ+1 ·∪ Sℓ+1 = ({ziℓ} ·∪ Sℓ)||{0, 1} no longer
holds. In turns outby Lemma 5that there are many Kt-random strings of each length, in fact, they have
an arbitrary (constant) density. Thus, it is fine for our algorithm to skip some prefixes of 1-random strings
in each length, because as long as we only skip a few, there will always be sufficiently many remaining
“to the right” of our algorithm’s current position.

Corollary 1. Let γfp be a false positive error rate s.t.
∑∞

ℓ=1 γfp(ℓ) ⪇ 1,9 and let γfn(n) := 0 be no false
negative error. The Levin–Kolmogorov complexity cannot be decided in deterministic linear time even
with some false positive error, i.e., MKtP ̸∈ Heurγfp,γfn

DTIME[O(n)].

The requirement
∑∞

ℓ=1 γfp(ℓ) ⪇ 1 is sufficient because in length ℓ we skip up to 2ℓγfp(ℓ) strings. This

means that at length ℓ̂ we might have skipped up to
∑ℓ̂

ℓ=1 2
ℓ̂−ℓ · 2ℓγfp(ℓ) strings (all strings of length ℓ̂

8 Here, we naturally assume that 2ℓγfn(ℓ) is non-decreasing.
9 That is, there exists some constant c such that

∑∞
ℓ=1 γfp(ℓ) ≤ c ⪇ 1.
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that have a skipped string as a prefix) whereas we have at least 2ℓ̂(1 − ϵ̂) many (prefixes of) 1-random

strings in length ℓ̂ (for any ϵ̂ ∈ R⪈0). Thus,
∑∞

ℓ=1 γfp(ℓ) ⪇ 1 ensures that in each length there are always
more prefixes of 1-random strings than are potentially skipped for ϵ̂ := (1−

∑∞
ℓ=1 γfp(ℓ))/2.

Another obvious question is whether our technique is capable of proving a worst-case bound beyond
linear time. By an improved analysis of the proof of Lemma 1 we can push our bound to slightly
superlinear time (resp. superquadratic for the corresponding settings in Fig. 3).

Corollary 2. The Levin–Kolmogorov complexity cannot be decided in deterministic slightly superlin-
ear time in the worst-case, i.e., MKtP ̸∈

⋃
k∈N DTIME[

∏k
i=0 ln

(i)(n)] where ln(i) is the i times iterated

logarithm (with ln(0)(n) := n).

Corollaries 1 and 2 can be combined. The reason for this somewhat peculiar time bound t(n) :=∏k
i=0 ln

(i)(n) is that the antiderivative (of its reciprocal)
∫

1/t(x)dx = ln(k+1)(x) ∈ ω(1) is supercon-
stant which is the property that we need to get our proof of Lemma 1 going(compare to the previous
paragraph on Lemma 1 and see the end of Section 6 for a sketch).
In contrast, going to some polynomial lower bound, i.e., MKtP ̸∈ DTIME[n1+ϵ] for some ϵ > 0 seems
challenging. With our current proof strategy this would require a stronger version of Lemma 1 in the
form of

∑ℓ
j=1 γj

∑j
κ=1 2

κ/eσj−σj−κ ≤ 2ℓ/ℓ1+ϵ for some ϵ > 0. However, this cannot hold for arbitrary γj

because of the following counter example: γj := ϵ/j implies
∑ℓ

j=1 γj
∑j

κ=1 2
κ/eσj−σj−κ ∈ Θ(2ℓ/ℓ1+ϵ).

Nonetheless, there is a possibility to achieve such a stronger bound by leveraging more structure of RKt

to restrict the space of possible γj (as we did by integrating Chaitin’s constant in our analysis). We
hope that our new technique inspires further research into even better diagonalization approaches. For
example, it could be that adding multiple 0’s to a high-complexity string or moving more steps to the
right on a low-complexity string might yield a better lower bound with an adapted analysis.

4 Preliminaries

Notation. Real functions are usually denoted by Greek letters γ, θ, ε, etc., while natural/bit functions by
Fraktur script t, f, etc. Languages are denoted by the uppercase letter L. The empty string is denoted by
ε. Integers related to sizes are denoted by lowercase Latin letters n, m, c, while indices are denoted by i,
j, k, κ. Strings are denoted by lowercase Latin letters x, y, z, etc. Turing machines (TM) are denoted by
caligraphic letters U , M as well as Π for the code of a TM. Complexity classes are denoted in sans-serif
letters P, NP, EXP, etc.

For convenience we add framed boxes with explanations of relevant (in-)equalities.

Notation 1 (Functional inequalities). Let f, g : N → R be two functions. We write

f ≤ g ⇐⇒ ∀n ∈ N : f(n) ≤ g(n) (8)

f ≤abf g ⇐⇒ ∃n0 ∈ N ∀n ≥ n0 : f(n) ≤ g(n) (9)

f ≤io g ⇐⇒ ∀n0 ∈ N ∃n ≥ n0 : f(n) ≤ g(n) (10)

when f is less or equal to g on all inputs, on all but finitely many inputs, or on infinitely many inputs.
Note that

f ≤ g =⇒ f ≤abf g ⇐⇒ f >io g =⇒ f ≤io g . (11)

It may be that g ≤io f while simultaneously g ≥io f. Sometimes we abuse notation and write f(n) ≤abf g(n)
to mean (n 7→ f(n)) ≤abf (n 7→ g(n)).

Notation 2 (Languages). Let L ⊆ {0, 1}∗, then for any x ∈ {0, 1}∗ we use the abbreviated notation
L(x) = 1 ⇐⇒ x ∈ L and L(x) = 0 ⇐⇒ x ̸∈ L.
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Notation 3 (Integers and strings). Let int : {0, 1}∗ → N : x 7→ 2|x|+1 +
∑|x|

i=1 2
i−1xi be the canon-

ical lexicographical bijection between strings and integers. Let bin := int−1 be its inverse operation. Let
next(x) := bin((int(x) + 1) mod 2|x| + 2|x|) be the function that returns the lexicographically next string
of the same length.

Computational Model. We present our result for Turing machines but they carry over to over computa-
tional models. We discuss this in more detail in Section 3.

We generally assume a Turing machine (TM) has fixed number of tapes, one of which is a read-only
the input tape, one a write-only output tape, and the rest are read-write work tapes. This naturally
extends to oracle machine with a dedicated oracle tape, although we will not need it in this work.

Let M be a deterministic Turing machine (TM). For any x ∈ {0, 1}∗ denote by M(x) ∈ {0, 1}∗∪{⊥}
the content of the output tape after M has entered a terminal state, or ⊥ if M does not terminate on
input x. In particular, if M halts with a string y ∈ {0, 1}n then it must have run for at least n steps.

Throughout the paper let U denote a prefix-free universal Turing machine (UTM). For any string
Π ∈ {0, 1}∗ let tU (Π) be the (minimum) number of steps after which U halts on input Π. We assume
that U simulates any given TM with (multiplicative) logarithmic overhead [HS66]. That is, there exists
some universal constant cU ∈ N such that if the TM encoded by Π halts in t steps on input ε, then
U halts on input Π in tU (Π) ≤ cU t log2(t) steps. Let t : N → N be a time bound. Let DTM[t] be the
set of deterministic TMs that halt within t(n) steps on inputs of length n ∈ N. For any TM M let
LM := {x ∈ {0, 1}∗ | M(x) = 1} be its (characteristic) language. Throughout, we require a time bound
t to be time-constructible, i.e., there exists a TM Mt ∈ DTM[O(t)] that computes t. Let

DTIME[t] :=
{
L ⊆ {0, 1}∗

∣∣ ∃M ∈ DTM[t] : L = LM
}

(12)

be the class of languages decided by some DTM in time t. Let DTIME[O(t)] :=
⋃

d∈N DTIME[d · t] be the
class of languages decided by some DTM in time O(t). In the following let C be some class of languages
that is closed under intersection. Let

Heurγfp,γfn
C :=

L ⊆ {0, 1}∗
∣∣∣∣∣∣ ∃L′ ∈ C :

∣∣∣(L \ L′) ∩ {0, 1}λ
∣∣∣ ≤abf γfp(λ)2

λ∣∣∣(L′ \ L) ∩ {0, 1}λ
∣∣∣ ≤abf γfn(λ)2

λ

 (13)

be the class of languages with a C-heuristic with false-positive error at most γfp and false-negative error
at most γfn.

Complexity Measures. The most basic notion of Kolmogorov complexity is the length of the smallest
program (witness program) that produces a given string w.r.t. some UTM.

Definition 1 (Solomonoff–Kolmogorov–Chaitin complexity [Sol60; Kol63; Cha69]). Let U be
a (prefix-free) UTM. For any string x ∈ {0, 1}∗ we say

KU (x) := min
{
|Π|

∣∣ Π ∈ {0, 1}∗ : U(Π) = x
}

(14)

is the (prefix-free) Kolmogorov complexity.10

While a powerful notion, it is not computable, hence Levin [Lev84] came up with an alternative
definition which charges an additional logarithmic term for the runtime of the witness program that
produces the given string.

Definition 2 (Levin–Kolmogorov complexity [Lev84; Tra84]). Let U be a (prefix-free) UTM.
For any string x ∈ {0, 1}∗ we say

KtU (x) := min
{
|Π|+ ⌈log2(t)⌉

∣∣ Π ∈ {0, 1}∗, t ∈ N : U(Π) = x ∧ tU (Π) ≤ t
}

(15)

10 For brevity and in accord with the literature [LV08] we simply use the term “Kolmogorov complexity”.
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is the (prefix-free global) Levin–Kolmogorov complexity. Let

MKtPU := {(y, k) ∈ {0, 1}m × [m] | m ∈ N : Kt(y) ≤ k} (16)

be the decisional minimum Kt-problem. This version is called “global compression” because the witness
program outputs the entire string y.

For reference, we also define the “local compression” version where the witness program outputs each
bit of the string y separately. For any string x ∈ {0, 1}∗ we say

K̈tU (x) := min

{
|Π|+ ⌈log2(t)⌉

∣∣∣∣∣ Π ∈ {0, 1}∗, t ∈ N : ∀i ∈ {1, ..., |x|} :

U(Π, i) = xi ∧ tU (Π, i) ≤ t

}
(17)

is the (prefix-free local) Levin–Kolmogorov complexity.

We mainly focus on the global version and discuss various definitional subtleties in Section 3.

Fact 1 (Relation between K and Kt). For any string x ∈ {0, 1}∗ it holds that Kt(x) ≥ K(x)+⌈log2(|x|)⌉.

Proof. This is because even the shortest (global witness) program for x must run for at least |x| steps.11

Definition 3 (1-/Martin-Löf-randomness ([DH10] referring to [Mar66; Lev74; Cha75])). Let
U be a (prefix-free) UTM. An infinite sequence of bits w = (wi)i∈N is called 1-random, iff there exists
some constant ĉU,w ∈ N such that for each n ∈ N it holds that K(w1||...||wn) ≥ n− ĉU,w.

Analogously, an infinite sequence of bits w = (wi)i∈N is called 1-Kt-random, iff there exists some
constant ĉU,w ∈ N such that for each n ∈ N it holds that Kt(w1||...||wn) ≥ n+ ⌈log2(n)⌉ − ĉU,w.

Going forward we fix some arbitrary UTM U but omit it in our notation and simply write K, Kt, MKtP,
etc. By Fact 1 K-randomness implies Kt-randomness.

Fact 2 (Chaitin’s Ω constant is 1-random [Cha75]). Let Ωi be the i-th bit of Chaitin’s constant [Cha75] in
binary representation. Then the sequence Ω = (Ωi)i∈N is 1-random and thus 1-Kt-random with constant
ĉΩ.

5 Formal Results

Lemma 2. The algorithm TRAVERSEĉΩ ,cKt in Fig. 4 visits infinitely many different strings (zi)i∈N.

Proof. First note that the lengths of zi are non-decreasing, i.e., |zi+1| ≥ |zi|. Suppose for contradiction

that there exists some maximal length ℓ̂ ∈ N such that all strings |zi| ≤ ℓ̂ for all i ∈ N. By inspection it

is apparent that from some point onward TRAVERSEĉΩ ,cKt cycles through all strings of length ℓ̂.
Because the prefixes of Chaitin’s constant Ω = (Ωi)i∈N are a 1-Kt-random sequence, for each length
ℓ ∈ N the string Ω1||...||Ωℓ ∈ {0, 1}ℓ has complexity Kt(Ω1||...||Ωℓ) ≥ K(Ω1||...||Ωℓ) ≥ ℓ+ ⌈log2(ℓ)⌉− ĉΩ .
Thus, once TRAVERSEĉΩ ,cKt

visits the string zi = Ω1||...||Ωℓ̂ the next string is zi+1 = Ω1||...||Ωℓ̂||0 due

to line 3. This contradicts ℓ̂+ 1 = |zi|+ 1 ≤ ℓ̂.

Now, we prove our main result.

Theorem 1. The Levin–Kolmogorov complexity cannot be decided in deterministic linear time in the
worst-case, i.e., MKtP ̸∈ DTIME[O(n)].

11 Here, we presume the global compression version of Kt, and add ⌈log2(|x|)⌉.
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Proof. The intuition of this proof is already outlined in Section 3. The high-level idea is to assume
that Kt can be computed quickly, and then construct a sufficiently fast TM that produces a highly
complex string. This then contradicts the definition of a complex string needing a large or slow program
to compute. Key properties of our constructed TM is that it finds a complex string sufficiently fast and
that the TM is aware of its own runtime. For the latter property we use a counter variable in our TM
to upper bound its runtime by counting the number of visited strings of a given length. This counter
needs to be larger than the actual runtime of the TM (Claim 1) so it is guaranteed to output a string
larger than its own critical threshold. On the other hand, the counter must not be too large (Claim 3),
for otherwise it would not output critical strings that would actually suffice for a contradiction.

Suppose for contradiction MKtP ∈ DTIME[O(n)], then there exists some cKt ∈ N such that MKtP ∈
DTIME[2cKtn], i.e., there exists some TM ΠKt that decides Kt(z) ≤ k in time at most t(n+ ⌈log2(n)⌉) ≤
t(2n) := 2cKt+1n on any instance (z, k) ∈ {0, 1}n × [n]. Later, we will choose a sufficiently large cKt.
Fix the constant ĉΩ from Fact 2. For any cKt let MĉΩ ,cKt

be the smallest TM implementing the
TRAVERSEĉΩ ,cKt

algorithm from Fig. 4. There exists some universal12 constant cfix ∈ N such that
for any integer cKt ∈ N the TM MĉΩ ,cKt has size |MĉΩ ,cKt | ≤ cfix + 2⌊log2(cKt) + 1⌋ by storing cKt

prefix-free. In particular, for any cKt ≥ 2(cfix+ cU )+8 the TM’s size is bounded by |MĉΩ ,cKt | ≤ cKt− cU
(recall that cU is the universal simulation constant). We derive a contradiction through a series of claims
about the TM MĉΩ ,cKt

.
The TM MĉΩ ,cKt visits the sequence (zi)i∈N of strings. Let Z := {zi | i ∈ N}. For each length ℓ ∈ N let

Zℓ := Z ∩ {0, 1}ℓ = {ẑℓ, ..., žℓ} where ẑℓ and žℓ are the lexicographically first resp. last string in Zℓ. Our
first claim establishes that—whenever MĉΩ ,cKt

checks whether to output a visited string in line 10—its
variable tℓ is larger than the number of steps that MĉΩ ,cKt

took so far. This means that MĉΩ ,cKt
can

use the variable tℓ to effectively bound its own critical threshold.

Claim 1 (Time counter lower bound). For any length ℓ let t̃ℓ be the number of steps that MĉΩ ,cKt
takes

to reach line 10 with length ℓ. It holds that tℓ ≥ t̃ℓ.

Proof. First, under the assumption MKtP ∈ DTIME[2cKtn] we argue that MĉΩ ,cKt
takes at most c3Ktℓ

2

steps to execute line 9. Our first goal is to bound the time needed to execute line 9.
First, we recursively bound the variable tℓ by

tℓ := tℓ−1 + (int(zi)− int(ẑℓ) + 2)2cKt+1ℓ+ 22cKt+ℓ−⌈log2(ℓ)⌉+1 (18)

= tℓ−1 + 2cKt+2|Zℓ|ℓ+ 22cKt+ℓ−⌈log2(ℓ)⌉+1 (19)

≤ tℓ−1 + 24ℓ+4cKt (20)

for sufficiently large cKt. Resolving this recursive upper bound for sufficiently large cKt it follows that
tℓ ≤ 24ℓ+4cKt + t0 where t0 := 0.
Now, the value tℓ can be computed by simple arithmetic (addition, multiplication) and bit shifting
operations taking at most quadratic time in the maximal bit length O(ℓ) of the operands ℓ, tℓ int(ẑℓ),
int(zi) = int(žℓ) and cKt. That means there is some c′ ∈ N (independent of cKt) such that tℓ can be
computed in time c′ log2(tℓ)

2 ≤ c′(4ℓ+ 4cKt)
2 ≤ c3Ktℓ

2 for sufficiently large cKt.

Taking a step back we observe that the TM MĉΩ ,cKt
takes at most ∆̃ℓ := t̃ℓ − t̃ℓ−1 actual steps to

iterate over the strings Zℓ of length ℓ (lines 6 through 13). We see through

∆̃ℓ := t̃ℓ − t̃ℓ−1 (21)

≤ |Zℓ|
(
2cKt+1ℓ+ 4ℓ

)︸ ︷︷ ︸
steps for Zℓ\{žℓ} in lines 6 and 15

+2cKt+1ℓ+ 4ℓ+ c3Ktℓ
2 + 2cKt+1ℓ+ cKtℓ+ 4ℓ︸ ︷︷ ︸

steps for žℓ in lines 6–13

(22)

≤
(
2cKt+1 + 4

)
|Zℓ|ℓ+

(
2cKt+2 + 8 + c3Kt + cKt

)
ℓ2 (23)

12 Independent of cKt.
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TRAVERSEĉΩ ,cKt

1 : z1 := 0 ∈ {0, 1}∗

2 : t0 := 0 ∈ N
3 : ℓ := 1 ∈ N
4 : ẑ1 := 1 ∈ {0, 1}∗

5 : for i ∈ N≥1

6 : if Kt(zi) ⪈ ℓ+ ⌈log2(ℓ)⌉ − ĉΩ // in 2
cKt+1

ℓ steps

7 : zi+1 := zi||0 ∈ {0, 1}ℓ+1 // in 4ℓ steps

8 : ẑℓ+1 := zi+1 ∈ {0, 1}ℓ+1 // store the starting node of length ℓ + 1

9 : tℓ := tℓ−1 + (int(zi)− int(ẑℓ) + 1)2cKt+2ℓ+ 22cKt+ℓ−⌈log2(ℓ)⌉+1 //
in c

3
Ktℓ

2
steps / add time spend

on length ℓ plus safety margin for
increasing the counter itself

10 : if Kt(zi) ⪈ cKt + ⌈log2(tℓ log2(tℓ))⌉ // in cKtℓ+2
cKt+1

ℓ steps for computing cKt+
⌈log2(tℓ log2(tℓ))⌉ and deciding MKtP

11 : return zi

12 : endif

13 : ℓ := ℓ+ 1 // in 4ℓ steps

14 : else

15 : zi+1 := next(zi) ∈ {0, 1}ℓ // in 4ℓ steps

16 : endif

17 : endfor

Fig. 4: Our search algorithm with runtime bounds under the assumption MKtP ∈ DTIME[2cKtn]. The parameters
ĉΩ , cKt ∈ N are hardcoded. It might not be obvious why line 9 can be executed in c3Ktℓ

2 steps, the reason is fleshed
out in the proof of Claim 1.

≤ 2cKt+2|Zℓ|ℓ+ 22cKt+ℓ−⌈log2(ℓ)⌉+1 cKt ≥ 4 (24)

= ∆ℓ (25)

that the variable tℓ grows more quickly than t̃ℓ and since t0 = 0 = t̃0, it follows that tℓ ≥ t̃ℓ for any
ℓ ∈ N. ■

Claim 2 (Non-termination). The TM MĉΩ ,cKt never halts, thus TRAVERSEĉΩ ,cKt never halts.

Proof. If MĉΩ ,cKt
halted and produced a string ẑ ∈ {0, 1}ℓ̂ within t̃ℓ̂ steps, then by definition of the

(prefix-free global) Levin–Kolmogorov complexity

Kt(ẑ) ≤ |MĉΩ ,cKt
|+ ⌈log2(tU (MĉΩ ,cKt

))⌉ (26)

≤ |MĉΩ ,cKt |+
⌈
log2

(
cU t̃ℓ̂ log2

(
t̃ℓ̂
))⌉

(27)

≤ cKt − cU +
⌈
log2

(
cU t̃ℓ̂ log2

(
t̃ℓ̂
))⌉

(28)

≤ cKt +
⌈
log2

(
t̃ℓ̂ log2

(
t̃ℓ̂
))⌉

(29)

≤ cKt +
⌈
log2

(
tℓ̂ log2

(
tℓ̂
))⌉

(30)

by the fact that |MĉΩ ,cKt
| ≤ cKt − cU and Claim 1. However, the only way MĉΩ ,cKt

returns a string is
in line 11, thus the condition in line 10 must be fulfilled, namely Kt(ẑ) ⪈ cKt + ⌈log2(tℓ̂ log2(tℓ̂))⌉. This
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contradicts Eq. (26). Consequently, under the hypothesis MKtP ∈ DTIME[2cKtn] the TM MĉΩ ,cKt never
halts. ■

Because of Claim 2 the TM MĉΩ ,cKt
visits the same sequence of strings (zi)i∈N as TRAVERSEĉΩ ,cKt

.

For any length ℓ let iℓ :=
∑ℓ

j=1 |Zj | be number of visited string of length at most ℓ.

Claim 3 (Time counter upper bound). For any length ℓ it holds that tℓ ≤ 22cKt+4(iℓℓ+ 2ℓ/ℓ).

Proof. Using Eqs. (18) and (25) we can bound the telescope sum

tℓ = t0 +

ℓ∑
j=1

∆j (31)

=

ℓ∑
j=1

(
2cKt+2|Zj |j + 22cKt+j−⌈log2(j)⌉+1

)
Eq. (25) (32)

≤ 2cKt+2ℓ

 ℓ∑
j=1

|Zj |

+ 22cKt+3+ℓ/ℓ (33)

= 2cKt+2iℓℓ+ 22cKt+3+ℓ/ℓ iℓ :=
∑ℓ

j=1|Zj | (34)

≤ 22cKt+4
(
iℓℓ+ 2ℓ/ℓ

)
. (35)

■

Now we have upper bounded the counter variable tℓ in terms of the number iℓ of visited strings of
length at most ℓ. It remains to argue that for infinitely many ℓ the value iℓ is sufficiently small, to reach a
contradiction. To this end, we will reexpress iℓ in a different form. Let Sℓ ⊂ {0, 1}ℓ be the lexicographical
successors of Zℓ (the right neighbors of Zℓ). Now, note that because TRAVERSEĉΩ ,cKt doesn’t wrap
around (staying to the left of Chaitin’s constant), it holds that Zℓ+1 ·∪Sℓ+1 = ({ziℓ} ·∪Sℓ)||{0, 1} and thus
|Zℓ+1|+|Sℓ+1| = 2|Sℓ|+2. Let γℓ := |Zℓ|/|Zℓ ·∪Sℓ| be the fraction of strings of length ℓ that TRAVERSEĉΩ ,cKt

actually visits to the strings that it could potentially visit. Using this expression for γℓ we can rewrite
the previous equality as a recursive formula for |Sℓ| (depending on γℓ), i.e.,

2|Sℓ|+ 2 = |Zℓ+1|+ |Sℓ+1| (36)

= (|Zℓ+1|+ |Sℓ+1|)γℓ+1 + |Sℓ+1| (37)

= 2(|Sℓ|+ 1)γℓ+1 + |Sℓ+1| (38)

=⇒ |Sℓ+1| = 2(|Sℓ|+ 1)(1− γℓ+1) (39)

By solving this recursion with |S1| := 1 we can express the number of successor strings as

|Sℓ| =
ℓ∑

κ=1

2κ
ℓ∏

i=ℓ−κ+1

(1− γi) . (40)

In turn, we can use the definition of γℓ to express the number of visited strings of length exactly ℓ as

|Zℓ| = 2(|Sℓ−1|+ 1)γℓ = γℓ

ℓ∑
κ=1

2κ
ℓ−1∏

i=ℓ−κ+1

(1− γi) . (41)

Lastly, we can sum over all lengths to obtain

iℓ :=

ℓ∑
j=1

|Zj | (42)

15



=

ℓ∑
j=1

γj

j∑
κ=1

2κ
j∏

i=j−κ+1

(1− γi) (43)

=

ℓ∑
j=1

γj

j∑
κ=1

2κe
∑j

i=j−κ+1 ln(1−γi) (44)

≤
ℓ∑

j=1

γj

j∑
κ=1

2κe−
∑j

i=j−κ+1 γi ln(1− x) ≤ −x (45)

=

ℓ∑
j=1

γj

j∑
κ=1

2κeσj−κ−σj (46)

where σℓ :=
∑ℓ

i=1 γi. This expression is bounded by Lemma 1.

Conclusion. Using Lemma 1 let ℓ̂ ≥ e2
3cKt+ĉΩ+6

be an arbitrarily large integer such that iℓ̂ ≤ 2ℓ̂/ℓ̂ ln(ℓ̂). Let

ziℓ̂ ∈ {0, 1}ℓ̂ be the last string of length ℓ̂ visited by TRAVERSEĉΩ ,cKt
. Because ziℓ̂ is the last string of

length ℓ̂ the condition Kt(ziℓ̂) ⪈ |ziℓ̂ |+⌈log2(|ziℓ̂ |)⌉− ĉΩ = ℓ̂+⌈log2(ℓ̂)⌉− ĉΩ in line 6 in TRAVERSEĉΩ ,cKt

must be fulfilled. Moreover, because TRAVERSEĉΩ ,cKt
never halts—according to Claim 2—the violated

return condition in line 10 in TRAVERSEĉΩ ,cKt dictates Kt(ziℓ̂) ≤ cKt + ⌈log2(tℓ̂ log2(tℓ̂))⌉. Thus we
arrive at the contradiction

ℓ̂+
⌈
log2

(
ℓ̂
)⌉

− ĉΩ ⪇ Kt
(
ziℓ̂
)

(47)

≤ cKt +
⌈
log2

(
tℓ̂ log2

(
tℓ̂
))⌉

(48)

≤ cKt +
⌈
log2

(
tℓ̂
)⌉

+ log2

(
ℓ̂
)

(49)

≤ cKt +
⌈
(2cKt + 4) + log2

(
iℓ̂ℓ̂+ 2ℓ̂/ℓ̂

)⌉
+ log2

(
ℓ̂
)

Claim 3 (50)

≤ cKt +
⌈
(2cKt + 4) + log2

(
2ℓ̂/ ln

(
ℓ̂
)
+ 2ℓ̂/ℓ̂

)⌉
+ log2

(
ℓ̂
)

Lemma 1 (51)

≤ cKt + 2cKt + 6 + log2

(
2ℓ̂/ ln

(
ℓ̂
))

+ log2

(
ℓ̂
)

ℓ̂ ⪈ 1 (52)

= cKt + 2cKt + 6 + ℓ̂− log2 ln
(
ℓ̂
)
+ log2

(
ℓ̂
)

(53)

≤ cKt + 2cKt + 6 + ℓ̂− (3cKt + ĉΩ + 6) + log2

(
ℓ̂
)

ℓ̂ ≥ e2
3cKt+ĉΩ+6

(54)

= ℓ̂+ log2

(
ℓ̂
)
− ĉΩ . (55)

The proof of Theorem 1 relativizes. By adapting it we can show analogous results for various defini-
tions of Kt complexity.

Corollary 3. Assume a computational model with constant universal simulation overhead, e.g. random-
access machines. The (global compression) Levin–Kolmogorov complexity cannot be decided in deter-
ministic quadratic time in the worst-case, i.e., MKtP ̸∈ DTIME[O(n2)]. The (local compression) Levin–
Kolmogorov complexity cannot be decided in deterministic linear time in the worst-case, i.e., MK̈tP ̸∈
DTIME[O(n)].

Next, we prove our conditional lower bounds.

Theorem 2. For each time bound t(n) ≥ n at least one of the following is true:
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1. MKtP ̸∈ DTIME[t],
2. MKtP ̸∈ Heurγfp,γfn

DTIME[O(n)] with no false positive error γfp(n) := 0 and false negative error
γfn(n) := 1/2nt(2n) − 2/2n,

TRAVERSE′
ĉΩ ,cKt,Πt,ΠKt,Π̃Kt

1 : z1 := 0 ∈ {0, 1}∗

2 : t0 := 0 ∈ N
3 : ℓ := 1 ∈ N
4 : ẑ1 := 1 ∈ {0, 1}∗

5 : for i ∈ N≥1

6 : b := Π̃Kt(zi, ℓ+ ⌈log2(ℓ)⌉ − ĉΩ) // in 2
c′+1

ℓ steps / quick error-prone check

7 : if b = 1

8 : b := ΠKt(zi, ℓ+ ⌈log2(ℓ)⌉ − ĉΩ) // in t(2ℓ) steps / slower exact check

9 : fi

10 : if b = 0 // assert Kt(zi) ⪈ ℓ + ⌈log2(ℓ)⌉ − ĉΩ

11 : zi+1 := zi||0 ∈ {0, 1}ℓ+1 // in 4ℓ steps

12 : ẑℓ+1 := zi+1 ∈ {0, 1}ℓ+1 // store the starting node of length ℓ + 1

13 : t′ℓ := tℓ−1 + (int(zi)− int(ẑℓ) + 2)2cKt+1ℓ+ 22cKt+ℓ−⌈log2(ℓ)⌉+1 //
in c

3
Ktℓ

2
steps / add time spend on length

ℓ plus safety margin for increasing the
counter itself

14 : if ΠKt(zi, cKt + ⌈log2(tℓ log2(tℓ))⌉) = 0 // in cKtℓ + t(2ℓ) steps / assert Kt(zi) ⪈ cKt + ⌈log2(tℓ log2(tℓ))⌉

15 : return zi

16 : endif

17 : ℓ := ℓ+ 1 // in 4ℓ steps

18 : else

19 : zi+1 := next(zi) ∈ {0, 1}ℓ // in 4ℓ

20 : endif

21 : endfor

Fig. 5: Our search algorithm with runtime bounds under the assumption MKtP ̸∈ DTIME[t] and MKtP ̸∈
Heurγfp,0DTIME[O(n)] where t is assumed to be time-constructible. The parameters ĉΩ , cKt ∈ N, the TM Πt

computing t, the t-time TM ΠKt and the linear-time TM Π̃Kt are hardcoded. Changes to Fig. 4 are marked in
gray.

Proof. This proof is a slight modification of the proof of Theorem 1, thus we only include the relevant
changes. For contradiction assume MKtP ∈ DTIME[t] (by a TM ΠKt) and MKtP ∈ Heur0,γfn

DTIME[O(n)]

with false negative error probability γfn(n) := 1/2nt(2n)− 2/2n (by a TM Π̃Kt). See Fig. 5 for the modified
traversal algorithm TRAVERSE′

ĉΩ ,cKt,Πt,ΠKt,Π̃Kt
. Let M′

ĉΩ ,cKt,Πt,ΠKt,Π̃Kt
be a TM implementing the

modified TRAVERSE′
ĉΩ ,cKt,Πt,ΠKt,Π̃Kt

. Clearly, if the analog of Claim 1 holds, then M′
ĉΩ ,cKt,Πt,ΠKt,Π̃Kt

does not terminate for the same reason as in Claim 2 (note there that the check in line 14 is an errorless
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check). Because the definition of the counter variable tℓ is identical to TRAVERSEĉΩ ,cKt,Πt,ΠKt,Π̃Kt
the

analog of Claim 3 also holds.
It remains to argue the analog of Claim 1. As before we observe that the TM M′

ĉΩ ,cKt,Πt,ΠKt,Π̃Kt

takes at most ∆̃ℓ := t̃ℓ − t̃ℓ−1 actual steps to iterate over the strings Zℓ of length ℓ (lines 6 through 17).
Though, note here that we incur an additional cost for the exact check using time t(2ℓ) on at most
2ℓγfn(ℓ) strings of length ℓ, plus one exact check at in line 14. Thus, we see through

∆̃ℓ := t̃ℓ − t̃ℓ−1 (56)

≤ |Zℓ|
(
2cKt+1ℓ+ 4ℓ

)
+ 2ℓγfn(ℓ)t(2ℓ)︸ ︷︷ ︸

steps for Zℓ\{žℓ} in lines 6,8,19

+2cKt+1ℓ+ t(2ℓ) + 4ℓ+ c3Ktℓ
2 + cKtℓ+ t(2ℓ) + 4ℓ︸ ︷︷ ︸

steps for žℓ in lines 6–17

(57)

≤
(
2cKt+1 + 4

)
|Zℓ|ℓ+

(
2ℓγfn(ℓ) + 2

)
t(2ℓ) +

(
2cKt+1 + 8 + c3Kt + cKt

)
ℓ2 (58)

≤ 2cKt+2|Zℓ|ℓ+
(
2ℓγfn(ℓ) + 2

)
t(2ℓ) + 22cKt+ℓ−⌈log2(ℓ)⌉ (59)

≤ 2cKt+2|Zℓ|ℓ+ 22cKt+ℓ−⌈log2(ℓ)⌉+1 (60)

= tℓ − tℓ−1 (61)

=: ∆ℓ (62)

that the variable tℓ grows more quickly than t̃ℓ and since t0 = 0 = t̃0, it follows that tℓ ≥ t̃ℓ for any ℓ ∈ N
which establishes Claim 3. The concluding part of the proof works exactly as in the proof of Theorem 1.

The reason why our proof can tolerate the additional runtime cost caused by the exact Kt solver
ΠKt is because the safety margin that we add to the counter in line 13 is more than we actually need
for Theorem 1.

6 Proof of Lemma 1

Lemma 1 (Infinitely-often bound). For any sequence (γj)j∈N with γj ∈ [0, 1] and σℓ :=
∑ℓ

i=1 γi it

holds that infinitely often
∑ℓ

j=1 γj
∑j

κ=1 2
κeσj−κ−σj ≤io

2ℓ/ℓ ln(ℓ).

Proof. Our proof of this claim is quite technical and somewhat tedious although it fundamentally only
requires analytic Riemann integration bounds (see Appendix A). A high-level intuition for our bound
may best be explained by looking at the double sum

s(ℓ) :=

ℓ∑
j=1

γj

j∑
κ=1

2κ

eσj−σj−κ
(63)

where σℓ :=
∑ℓ

i=1 γi. We don’t know the exact values of γj ∈ [0, 1] but we see that the summands of the
outer sum depend on γj in two ways. The faster γj grows the faster the outer summands grow because
the j-th summand depends linearly on γj . On the other hand, the faster γj grows the faster σj grows
and thus the slower the inner summands grow because of the eσj term in the denominator of the κ-th
inner summand. So, there is a “sweet spot” for the asymptotic growth rate of γj that maximizes the

growth rate of s. The maximal growth rate is close to Θ(
∑ℓ

j=1
1
j

∑j
κ=1 2

κ(1 − κ
j )

ϵ) = Θ(2ℓ/ℓ1+ϵ) for

small ϵ > 0 and γj = ϵ/j, thus σj ≈ ϵ ln(j). Thus we cannot hope to prove s(ℓ) ∈ O(2ℓ/ℓ1+ϵ) without
further restrictions on γj . However, we can prove a weaker bound s(ℓ) ≤io O(2

ℓ
/ℓ ln(ℓ)). The way we prove

this bound is by establishing increasingly stronger lower bounds for the sum σℓ. The first bound will be
of the rough form σℓ ∈ Ω(ln ln(ℓ)), the second one σℓ ∈ Ω(ln(ℓ)1/17) and the third one σℓ ∈ Ω(ln(ℓ)3).
The last bound then yields a contradiction to the counter assumption 2ℓ/ℓ ln(ℓ) ≤abf s(ℓ).

Let us proceed with the formal proof. In long equations we highlight changes relative to the previous

line with a gray background and give explanations in framed boxes . We use the convention that for
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any b < a the sum
∑b

i=a f(i) := 0. Suppose for contradiction

2ℓ

ℓ ln(ℓ)
≤abf s(ℓ) :=

ℓ∑
j=1

γj

j∑
κ=1

2κ

eσj−σj−κ
, (64)

then there exists some ℓ1 ∈ N such that for all ℓ ≥ ℓ1

1

ℓ ln(ℓ)
≤

ℓ∑
j=1

γj

j∑
κ=1

2κ−ℓ

eσj−σj−κ
(65)

≤
ℓ∑

j=1

γj

j∑
κ=1

2κ−ℓ (66)

≤
ℓ∑

j=1

2j+1−ℓγj (67)

where Eq. (66) trivially uses σj ≥ σj−k and Eq. (67) uses
∑j

κ=1 2
κ = 2j+1 − 2. For convenience, we

define a helper variable δℓ := max(0, ⌈ln ln(ℓ+ 1)/8− ln ln(ℓ1)/4⌉) ≤ ℓ. Note that δℓ ≥ log2 ln(ℓ)/16 for
ℓ ≥ ℓ1 if ℓ1 is sufficiently large (which is without loss of generality). Using Riemann integration on the
sum of Eq. (65) from ℓ1 to ℓ yields

1

4
ln ln(ℓ+ 1)− 1

4
ln ln(ℓ1) =

1

2

∫ ℓ+1

ℓ1

1

2x ln(x)
dx (68)

≤ 1

2

ℓ∑
i=ℓ1

1

2i ln(i)
Fact 3 (69)

≤ 1

2

ℓ∑
i=ℓ1

i∑
j=1

2j−iγj
Eq. (67)

1
2i ln(i) ≤

∑i
j=1 2

j−iγj
(70)

≤ 1

2

ℓ∑
i= 1

i∑
j=1

2j−iγj ℓ1 ≥ 1 (71)

=
1

2

ℓ∑
i=1

2−i
i∑

j=1

2jγj (72)

=
1

2

ℓ∑
j=1

2jγj

ℓ∑
i=j

2−i Lemma 3

sum switching
(73)

≤ 1

2

ℓ∑
j=1

2jγj

∞∑
i=j

2−i ℓ < ∞ and 2−i ≥ 0 (74)

=

ℓ∑
j=1

γj
∑∞

i=j 2
−i = 21−j (75)

= σℓ (76)

≤ σℓ − σδℓ + δℓ . σδℓ ≤ δℓ (77)
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Reordering the terms yields

σℓ − σδℓ ≥ ln ln(ℓ+ 1)/8 ≥ ln ln(ℓ)/16 (78)

for all ℓ ≥ ℓ1. To get this bound we started Eq. (65) off with the trivial bound σj ≥ σj−κ. Now, we can
use our new nontrivial bound for σj repeat the previous procedure and obtain an even better bound.

Plugging Eq. (78) back into a weighted sum of Eq. (65) gives the better bound on σℓ for ℓ ≥ ℓ1, i.e.,

ln(ℓ+ 1)− ln(ℓ1) (79)

=

∫ ℓ+1

ℓ1

1

x
dx (80)

≤
ℓ∑

i=ℓ1

1

i
Fact 3 (81)

=

ℓ∑
i=ℓ1

ln(i)

i ln(i)
(82)

≤
ℓ∑

i=ℓ1

ln(i)

i∑
j=1

γj

j∑
κ=1

2κ−i

eσj−σj−κ
Eq. (65) (83)

=

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=1

γj

j∑
κ=1

2κ

eσj−σj−κ
(84)

≤
ℓ∑

i=ℓ1

ln(i)

2i

i∑
j=1

γj

max(j,ℓ1−1)∑
κ=1

2κ

eσj−σj−κ
j ≤ max(j, ℓ1 − 1) (85)

=

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=1

γj

 ℓ1−1∑
κ=1

2κ

eσj−σj−κ
+

j∑
κ=ℓ1

2κ

eσj−σj−κ

 split sum

if j ⪇ ℓ1 then∑j
κ=ℓ1

2κ

eσj−σj−κ
= 0

(86)

≤
ℓ∑

i=ℓ1

ln(i)

2i

i∑
j=1

γj

(
2ℓ1 +

j∑
κ=ℓ1

2κ

eσj−σj−κ

)
σj ≥ σj−κ and∑ℓ1−1
κ=1 2κ = 2ℓ1 − 2

(87)

=

ℓ∑
i=ℓ1

ln(i)

2i

 2ℓ1σi +

i∑
j=1

γj

j∑
κ=ℓ1

2κ

eσj−σj−κ

 (88)

≤ 2ℓ1
ℓ∑

i=ℓ1

i ln(i)

2i
+

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j= ℓ1

γj

j∑
κ=ℓ1

2κ

eσj−σj−κ
γj ≤ 1 =⇒ σi ≤ i (89)

≤ 2ℓ1+ 1 +

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=ℓ1

γj

j∑
κ=ℓ1

2κ

eσj−σj−κ

∑∞
i=1

i ln(i)
2i ≤ 2 (90)

≤ 2ℓ1+1 +

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=ℓ1

γj

 j−1−δj∑
κ=ℓ1

2κ

eσj−σj−κ
+

j∑
κ=j−δj

2κ

eσj−σj−κ

 split sum (91)
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≤ 2ℓ1+1 +

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=ℓ1

γj

j−1−δj∑
κ=ℓ1

2κ +

j∑
κ=j−δj

2κ

eσj−σj−κ

 σj ≥ σj−κ (92)

≤ 2ℓ1+1 +

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=ℓ1

γj

 2j−δj +

j∑
κ=j−δj

2κ

eσj−σj−κ

 ∑j−1−δj
κ=ℓ1

2κ ≤ 2j−δj (93)

≤ 2ℓ1+1 +

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=ℓ1

γj

2j−δj +

j∑
κ=j−δj

2κ

e
σj− σδj

 κ ≥ j − δj

=⇒ δj ≥ j − κ
(94)

≤ 2ℓ1+1 +

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=ℓ1

γj

2j−δj +

j∑
κ=j−δj

2κ

ln(j)
1/16

 σj − σδj ≥ ln ln(j)/16

∀j ≥ ℓ1 by Eq. (78)
(95)

≤ 2ℓ1+1 +

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=ℓ1

γj

 2j

ln(j)
1/16

+

j∑
κ=j−δj

2κ

ln(j)
1/16

 δj ≥ log2 ln(j)/16 (96)

≤ 2ℓ1+1 +

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=ℓ1

γj

 2j+ 1

ln(j)
1/16

+

j∑
κ=j−δj

2κ

ln(j)
1/16

 (97)

= 2ℓ1+1 +

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=ℓ1

γj

j+1∑
κ=j−δj

2κ

ln(j)
1/16

(98)

≤ 2ℓ1+1 +

ℓ∑
i=ℓ1

ln(i)

2i

i∑
j=ℓ1

γj ·
2j+2

ln(j)
1/16

∑j+1
κ=j−δj

2κ ≤ 2j+2 (99)

= 2ℓ1+1 + 4

ℓ∑
j=ℓ1

γj ·
2j

ln(j)
1/16

ℓ∑
i=j

ln(i)

2i
Lemma 3

sum switching
(100)

≤ 2ℓ1+1 + 4

ℓ∑
j=ℓ1

γj ·
2j

ln(j)
1/16

∞∑
i=j

ln(i)

2i
ℓ < ∞ (101)

≤ 2ℓ1+1 + 16

ℓ∑
j=ℓ1

γj ·
2j

ln(j)
1/16

ln(j)

2j
Lemma 4 with

ν = 0, j ≥ ℓ1 ≥ 4
(102)

= 2ℓ1+1 + 16

ℓ∑
j=ℓ1

γj ln(j)
15/16

(103)

≤ 2ℓ1+1 + 16

ℓ∑
j=ℓ1

γj ln(ℓ)
15/16 ln(x)

15/16

is non-decreasing
(104)

≤ 2ℓ1+1 + 16 σℓ ln(ℓ)
15/16

. (105)

Let δ′ℓ := ⌈log2(e) ln(ℓ)1/17⌉. Thus there exists some sufficiently large ℓ2 ∈ N s.t. for all ℓ ≥ ℓ2 it holds
that

σℓ − σδ′ℓ
≥ σℓ − δ′ℓ (106)
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≥
(
ln(ℓ+ 1)− ln(ℓ1)− 2ℓ1+1

)
/
(
16 ln(ℓ)

15/16
)
− log2(e) ln(ℓ)

1/17 − 1 (107)

≥ ln(ℓ)
1/17

. (108)

Now, we repeat the previous strategy for a third time to reach the final sufficient bound σℓ ∈ Ω(ln(ℓ)3).
Plugging Eq. (106) back into a weighted sum of Eq. (65) gives the better bound on σℓ for ℓ ≥ ℓ2

2(ℓ+ 1)
1/2 − 2ℓ

1/2
2 (109)

=

∫ ℓ+1

ℓ2

x1/2

x
dx (110)

≤
ℓ∑

i=ℓ2

i1/2

i
Fact 3

(111)

=

ℓ∑
i=ℓ2

i1/2 ln(i)

i ln(i)
(112)

≤
ℓ∑

i=ℓ2

i1/2 ln(i)

2i

i∑
j=1

γj

j∑
κ=1

2κ

eσj−σj−κ
Eq. (65)

(113)

≤
ℓ∑

i=ℓ2

i1/2 ln(i)

2i

i∑
j=1

γj

max(j,ℓ2−1)∑
κ=1

2κ

eσj−σj−κ
j ≤ max(j, ℓ1 − 1)

(114)

≤
ℓ∑

i=ℓ2

i1/2 ln(i)

2i

i∑
j=1

γj

 ℓ2−1∑
κ=1

2κ

eσj−σj−κ
+

j∑
κ=ℓ2

2κ

eσj−σj−κ

 split sum

if j ⪇ ℓ2 then∑j
κ=ℓ2

2κ

eσj−σj−κ
= 0

(115)

≤
ℓ∑

i=ℓ2

i1/2 ln(i)

2i

i∑
j=1

γj

(
2ℓ2 +

j∑
κ=ℓ2

2κ

eσj−σj−κ

)
σj ≥ σj−κ and∑ℓ2−1
κ=1 2κ = 2ℓ2 − 2

(116)

=

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

2ℓ2 σi +

i∑
j=1

γj

j∑
κ=ℓ2

2κ

eσj−σj−κ

 (117)

≤ 2ℓ2
ℓ∑

i=ℓ2

i3/2 ln(i)

2i
+

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

i∑
j= ℓ2

γj

j∑
κ=ℓ2

2κ

eσj−σj−κ
γi ≤ 1 =⇒ σi ≤ i

(118)

≤ 2ℓ2+ 1 +

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

i∑
j=ℓ2

γj

j∑
κ=ℓ2

2κ

eσj−σj−κ

∑ℓ
i=ℓ2

i3/2 ln(i)
2i ≤ 2

(119)
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≤ 2ℓ2+1 +

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

i∑
j=ℓ2

γj

 j−1−δ′j∑
κ=ℓ2

2κ

eσj−σj−κ
+

j∑
κ=j−δ′j

2κ

eσj−σj−κ

 split sum

(120)

≤ 2ℓ2+1 +

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

i∑
j=ℓ2

γj

j−1−δ′j∑
κ=ℓ2

2κ +

j∑
κ=j−δ′j

2κ

eσj−σj−κ

 σj ≥ σj−κ

(121)

≤ 2ℓ2+1 +

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

i∑
j=ℓ2

γj

 2j−δ′j +

j∑
κ=j−δ′j

2κ

eσj−σj−κ

 ∑j−1−δj
κ=ℓ2

2κ ≤ 2j−δj

(122)

≤ 2ℓ2+1 +

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

i∑
j=ℓ2

γj

2j−δ′j +

j∑
κ=j−δ′j

2κ

e
σj− σδ′

j

 κ ≥ j − δ′j
=⇒ δ′j ≥ j − κ

(123)

≤ 2ℓ2+1 +

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

i∑
j=ℓ2

γj

2j−δ′j +

j∑
κ=j−δ′j

2κ

e
ln(j)1/17

 σj − σδ′j
≥ ln(j)

1/17

∀j ≥ ℓ2 by Eq. (106)

(124)

≤ 2ℓ2+1 +

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

i∑
j=ℓ2

γj

 2j

eln(j)
1/17

+

j∑
κ=j−δ′j

2κ

eln(j)
1/17

 δ′j ≥ log2(e) ln(j)
1/17

(125)

≤ 2ℓ2+1 +

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

i∑
j=ℓ2

γj

 2j+ 1

eln(j)
1/17

+

j∑
κ=j−δ′j

2κ

eln(j)
1/17

 (126)

= 2ℓ2+1 +

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

i∑
j=ℓ2

γj

j+1∑
κ=j−δ′j

2κ

eln(j)
1/17

(127)

≤ 2ℓ2+1 +

ℓ∑
i=ℓ2

i1/2 ln(i)

2i

i∑
j=ℓ2

γj
2j+2

eln(j)
1/17

∑j+1
κ=j−δ′j

2κ ≤ 2j+2

(128)

= 2ℓ2+1 + 4

ℓ∑
j=ℓ2

γj ·
2j

eln(j)
1/17

ℓ∑
i=j

i1/2 ln(i)

2i
Lemma 3

sum switching

(129)

≤ 2ℓ2+1 + 4

ℓ∑
j=ℓ2

γj ·
2j

eln(j)
1/17

∞∑
i=j

i1/2 ln(i)

2i
ℓ < ∞

(130)
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≤ 2ℓ2+1 + 16

ℓ∑
j=ℓ2

γj ·
2j

eln(j)
1/17

j1/2 ln(j)

2j
Lemma 4 with

ν = 1/2, j ≥ ℓ2 ≥ 4

(131)

= 2ℓ2+1 + 16

ℓ∑
j=ℓ2

γj
j1/2 ln(j)

eln(j)
1/17

(132)

≤ 2ℓ2+1 + 16

ℓ∑
j=ℓ2

γj
ℓ1/2 ln(ℓ)

eln(ℓ)
1/17

x1/2 ln(x)/eln(x)
1/17

is non-decreasing

(133)

≤ 2ℓ2+1 + 16 σℓ
ℓ1/2 ln(ℓ)

eln(ℓ)
1/17

. (134)

Let δ′′ℓ := ⌈log2(e) ln(ℓ)3⌉. Thus there exists some sufficiently large ℓ3 ∈ N s.t. for all ℓ ≥ ℓ3 it holds that

σℓ − σδ′′ℓ
≥ σℓ − δ′′ℓ ≥

(
(ℓ+ 1)

1/2 − (ℓ2)
1/2 − 2ℓ2+1

) eln(ℓ)
1/17

16ℓ1/2 ln(ℓ)
− log2(e) ln(ℓ)

3 − 1 ≥ ln(ℓ)
3
. (135)

Finally, we can use our last bound to obtain a contradiction. Plugging Eq. (135) into Eq. (65) yields

1

ℓ ln(ℓ)
≤

ℓ∑
j=1

γj

j∑
κ=1

2κ−ℓ

eσj−σj−κ
(136)

≤
ℓ3−1∑
j=1

γj

j∑
κ=1

2κ−ℓ

eσj−σj−κ
+

ℓ∑
j=ℓ3

γj

j∑
κ=1

2κ−ℓ

eσj−σj−κ
split sum (137)

≤
ℓ3−1∑
j=1

γj

j∑
κ=1

2κ−ℓ +

ℓ∑
j=ℓ3

γj

j∑
κ=1

2κ−ℓ

eσj−σj−κ
σj − σj−κ ≥ 0 (138)

≤
ℓ3−1∑
j=1

γj 2j+1−ℓ +

ℓ∑
j=ℓ3

γj

j∑
κ=1

2κ−ℓ

eσj−σj−κ
(139)

≤ 2ℓ3+1−ℓ +

ℓ∑
j=ℓ3

γj

j∑
κ=1

2κ−ℓ

eσj−σj−κ
(140)

≤ 2ℓ3+1−ℓ +

ℓ∑
j=ℓ3

γj

 j−1−δ′′j∑
κ=1

2κ−ℓ

eσj−σj−κ
+

j∑
κ=j−δ′′j

2κ−ℓ

eσj−σj−κ

 split sum (141)

≤ 2ℓ3+1−ℓ +

ℓ∑
j=ℓ3

γj

j−1−δ′′j∑
κ=1

2κ−ℓ +

j∑
κ=j−δ′′j

2κ−ℓ

eσj−σj−κ

 σj − σj−κ ≥ 0 (142)

≤ 2ℓ3+1−ℓ +

ℓ∑
j=ℓ3

γj

 2j−δ′′j −ℓ +

j∑
κ=j−δ′′j

2κ−ℓ

eσj−σj−κ

 ∑j−1−δ′′j
κ=1 2κ ≤ 2j−δ′′j (143)

≤ 2ℓ3+1−ℓ +

ℓ∑
j=ℓ3

γj

 2j−ℓ

eln(ℓ)
3 +

j∑
κ=j−δ′′j

2κ−ℓ

eσj−σj−κ

 δ′′j ≥ log2(e) ln(j)
3

(144)
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≤ 2ℓ3+1−ℓ +
2ℓ

eln(ℓ)
3 +

ℓ∑
j=ℓ3

γj

j∑
κ=j−δ′′j

2κ−ℓ

eσj−σj−κ
γj ≤ 1 (145)

≤ 2ℓ3+1−ℓ +
2ℓ

eln(ℓ)
3 +

ℓ∑
j=ℓ3

γj

j∑
κ=j−δ′′j

2κ−ℓ

e
σj− σδ′′

j

κ ≥ j − δ′′j
=⇒ δ′′j ≥ j − κ

(146)

≤ 2ℓ3+1−ℓ +
2ℓ

eln(ℓ)
3 +

ℓ∑
j=ℓ3

γj

j∑
κ=j−δ′′j

2κ−ℓ

e
ln(j)3

σj − σδ′′j
≥ ln(j)

3

∀j ≥ ℓ3 by Eq. (135)
(147)

≤ 2ℓ3+1−ℓ +
2ℓ

eln(ℓ)
3 +

ℓ∑
j=ℓ3

γj

j∑
κ=j−δ′′j

2
j −ℓ

eln(j)
3 κ ≤ j (148)

≤ 2ℓ3+1−ℓ +
2ℓ

eln(ℓ)
3 +

ℓ∑
j=ℓ3

γj

j∑
κ=j−δ′′j

2ℓ−ℓ

eln(ℓ)
3

2x/eln(x)
3

is non-decreasing
(149)

≤ 2ℓ3+1−ℓ +
2ℓ

eln(ℓ)
3 +

ℓ2

eln(ℓ)
3 γj ≤ 1 (150)

≤ 2ℓ3+1−ℓ +
2ℓ2

eln(ℓ)
3 ℓ ≥ 2 (151)

or equivalently the contradiction

1 ≤ ℓ ln(ℓ)

2ℓ−ℓ3−1
+

2ℓ3 ln(ℓ)

eln(ℓ)
3 → 0 (152)

for ℓ → ∞.

To the valiant reader that has retraced the full proof of Lemma 1 we want to put the proposition
that the proof can be carried out so long as the right-hand side of the lemma has the form 2ℓ/

∏k
i=0 ln(i)(ℓ)

for some fixed k ∈ N where ln(i) is the i-th times iterated logarithm. Towards this, we assume a slight
simplification of the form

∑ℓ
j=1 γj

∑j
κ=1 2

κ/eσj−σj−κ ≈
∑ℓ

j=1 2
jγj/e

σj ≤io
2ℓ/

∏k
i=0 ln(i)(ℓ). We sketch a

proof by induction where we go from a bound σℓ ∈ Ω(ln(k+1)(ℓ)) to σℓ ∈ Ω(ln(k)(ℓ)).

Starting out with the counter assumption
∑ℓ

j=1 2
jγj/e

σj ≥abf
2ℓ/

∏k
i=0 ln(i)(ℓ) we find that the first repe-

tition of Eq. (68) is of the form Θ(ln(k+1)(ℓ)) = Θ(
∫

1/
∏k

i=0 ln(i)(ℓ)dℓ) ≤ Θ(σℓ). Inserting this bound into
the counter assumption gives

ℓ∑
j=1

2jγj/e
ln(k+1)(j)·Θ(1) =

ℓ∑
j=1

2jγj/ ln
(k)(j)

Θ(1) ≥ 2ℓ/
∏k

i=0 ln(i)(ℓ) (153)

=⇒ σℓ ≥ ln(k)(j)Θ(1)
/
∏k

i=0 ln(i)(ℓ) (154)

The second repetition of Eq. (68) takes the form

Θ
(
ln(k)(ℓ)

)
= Θ

(∫
ln(k)(ℓ)∏k
i=0 ln

(i)(ℓ)
dℓ

)
(155)

≤ Θ

 ℓ∑
ℓ′=1

ln(k)(ℓ′)

ℓ′∑
j=1

2j−ℓγj/ ln
(k)(j)

Θ(1)

 (156)

≤ Θ
(
ln(k)(ℓ)

1−Θ(1)
σℓ

)
(157)
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=⇒ σℓ ∈ Ω
(
ln(k)(ℓ)

Θ(1)
)

(158)

which is already a better bound than from the first repetition, although not quite Θ(σℓ) ≥ Θ(ln(k)(ℓ)).
The third repetition of Eq. (68) takes the form

Θ
(
ln(k)(ℓ)

)
= Θ

(∫
ln(k)(ℓ)∏k
i=0 ln

(i)(ℓ)
dℓ

)
(159)

≤ Θ

 ℓ∑
ℓ′=1

ln(k)(ℓ′)

ℓ′∑
j=1

2j−ℓγj/e
ln(k)(j)Θ(1)

 (160)

≤ Θ
(
ln(k)(ℓ)/eln

(k)(j)Θ(1)

· σℓ

)
(161)

=⇒ σℓ ∈ Ω
(
eln

(k)(ℓ)Θ(1)
)
≥ Θ

(
ln(k)(ℓ)

)
(162)

which concludes the induction step.

7 Acknowledgments

The author would like to thank the anonymous reviewers for their helpful comments. Moreover, the author
expresses his gratitude to Rafael Pass for suggesting the problem of an unconditional lower bound for
Kt, Yanyi Liu for many helpful discussions about meta-complexity, Akın Ünal for checking the proof of a
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A Technical Lemmas

Lemma 3 (Sum-switching). Let a, b, n, c ∈ N be integers. Let f, g : N → R be functions. Then

n∑
i=a

f(i)

i−c∑
j=b

g(j) =

n∑
i=a

i−c∑
j=b

f(i)g(j) =

n−c∑
j=b

g(j)

n∑
i=max(j+c,a)

f(i) . (163)
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Fact 3 (Riemann integration). Let a, n ∈ N be integers. Let f : R → R be a monotonically decreasing
integrable function. Then ∫ b+1

a

f(x)dx ≤
b∑

i=a

f(i) ≤
∫ b

a−1

f(x)dx . (164)

Lemma 4 (Riemann bound). Let ν ∈ [0, 1] and j ∈ N≥4.
∞∑
i=j

iν ln(i)

2i
≤ 4 · j

ν ln(j)

2j
(165)

Proof.

− ∂

∂x

xν ln(x)

2x
=

xν ln(x) ln(2)

2x
− xν−1(ν ln(x)− 1)

2x
≥ xν ln(x)

2x+1
(166)

for all x ⪈ 0. Because
xν ln(x)

2x
is monotonically decreasing for x ≥ 3 it follows

∞∑
i=j

iν ln(i)

2i
≤
∫ ∞

j−1

xν ln(x)

2x
dx (167)

= 2

∫ ∞

j−1

xν ln(x)

2x+1
dx (168)

≤ 2

∫ ∞

j−1

(
− ∂

∂x

xν ln(x)

2x

)
dx (169)

= 2

[
xν ln(x)

2x

]j−1

∞
(170)

= 2
ln(j − 1)

2j−1
(171)

≤ 4
ln(j)

2j
. (172)

Density of 1-random strings For any (finite or infinite) string w ∈ {0, 1}∗∪2ω and any length ℓ let w ↾ ℓ :=
w1||...||wℓ be the ℓ-bit prefix of w. For each complexity deficiency d ∈ N let Wd := {w ∈ {0, 1}∗ | ∀ℓ ∈
{0, ..., |w|} : K(w ↾ ℓ) ≥ ℓ− d} be the (finite) strings that are “d-prefix-random”. Analogously, let Wd :=
{w ∈ 2ω | ∀ℓ ∈ N : K(w ↾ ℓ) ≥ ℓ− d} be the (infinite) strings that are “d-prefix-random”.

Lemma 5. Prefixes of 1-random strings have arbitrary (constant) density on each length. More tech-

nially, for each ϵ̂ ∈ R⪈0 there exists some d̂ ∈ N such that |Wd̂ ∩ {0, 1}ℓ| ≥ 2ℓ(1− ϵ̂).

Proof. For each string σ ∈ {0, 1}∗ let [[σ]] := σ||2ω be its infinite extension. Let µ be the uniform measure
on the Cantor space 2ω where for each σ ∈ {0, 1}∗ its probability is µ([[σ]]) := 2−|σ|. Let W :=

⋃
d∈N Wd

be the set of 1-random strings.
We know from [Mar66] (Corollary 6.2.6 in [DH10]) that µ(W) = 1. Suppose for contradiction there

existed some ϵ̂ ∈ R⪈0 such that for each d̂ ∈ N it holds that µ(Wd̂) ⪇ 1 − ϵ̂. Then, we would find the
following contradiction 1 = µ(W) = limd̂→∞ µ(Wd̂) ≤ 1 − ϵ̂ ⪇ 1. Consequently, for each ϵ̂ ∈ R⪈0 there

exists some d̂ ∈ N such that µ(Wd̂) ≥ 1− ϵ̂.

Let Rℓ := Wd̂ ∩ {0, 1}ℓ be the d̂-prefix-random strings of length ℓ. Note that Wd̂ ⊆
⋃

σ∈Rℓ
[[σ]].

Hence 1− ϵ̂ ≤ µ(Wd̂) ≤
∑

σ∈Rℓ
µ([[σ]]) ≤

∑
σ∈Rℓ

2−ℓ. Thus, the d̂-prefix-random strings have (at least)

constant density in each length, i.e., |Rℓ| ≥ 2ℓ(1− ϵ̂).
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