A New Hash-based Enhanced Privacy ID
Signature Scheme

Liqun Chen* Changyu Dong! Nada EL Kassem*
Christopher J. P. Newton* Yalan Wang*

Abstract

The elliptic curve-based Enhanced Privacy ID (EPID) signature scheme
is broadly used for hardware enclave attestation by many platforms that
implement Intel Software Guard Extensions (SGX) and other devices.
This scheme has also been included in the Trusted Platform Module
(TPM) specifications and ISO/IEC standards. However, it is insecure
against quantum attackers. While research into quantum-resistant EPID
has resulted in several lattice-based schemes, Boneh et al. have initiated
the study of EPID signature schemes built only from symmetric prim-
itives. We observe that for this line of research, there is still room for
improvement. In this paper, we propose a new hash-based EPID scheme,
which includes a novel and efficient signature revocation scheme. In addi-
tion, our scheme can handle a large group size (up to 2°° group members),
which meets the requirements of rapidly developing hardware enclave at-
testation applications. The security of our scheme is proved under the
Universal Composability (UC) model. Finally, we have implemented our
EPID scheme, which, to our best knowledge, is the first implementation
of EPID from symmetric primitives.

1 Introduction

The concept of Enhanced Privacy ID (EPID). Like group signatures [19]
and Direct Anonymous Attestation (DAA) signatures [II], EPID is a type of
anonymous signature scheme, which allows users in a group to sign messages
such that the signatures can be verified using a group public key, and the actual
signers’ identities are not revealed to the verifier (beyond the fact that they
belong to the group). The difference between these three types of signatures is
the methods that they handle traceability and revocation. A group signature is
traceable, meaning that given a signature, an authorised entity, namely a group
tracer, can find the actual signer. However, to avoid the tracer being a privacy
bottleneck, both DAA and EPID do not support traceability.

*University of Surrey, {liqun.chen, nada.elkassem, c.newton, yalan.wang}@surrey.ac.uk
TGuangzhou University, changyu.dong@gzhu.edu.cn

Revocation is defined as “the withdrawal of the power of a signing key that
has been granted”. A typical revocation method is using a revocation list. Dif-
ferent types of revocation lists are considered in anonymous signatures. When
a group public key is on the revocation list, the entire group can be revoked.
Group signatures, DAA, and EPID all support this type of revocation. When
a certain group member’s key material is on the revocation list, this member
can be revoked. Some group signature schemes put a part of the membership
credential on the revocation list, e.g. [9]. Both DAA and EPID can use a private
key revocation list, such that if a signer’s private key is revealed, this signer is
revoked. This is not a powerful revocation since a signer’s private key is known
only by the signer and there is no way to force a malicious signer to revoke it-
self. To avoid this weakness, both DAA and EPID further have signature-based
revocation. In DAA, this is through linkability, i.e., two DAA signatures signed
by the same signer are linked if they use the same basename. For example, to
access a digital service, signers are required to use a given basename from the
service provider, who based on the user’s behaviour can build a local signature
revocation list. In EPID, a signature can directly be put on the revocation
list, and an EPID signature includes an extra Non-Interactive Zero-Knowledge
Proof (NIZKP) to demonstrate that none of the signatures in the list was signed
using the current signing key, while it does not leak any extra information about
a signer who has not been revoked. This is a unique and powerful feature of
EPID. The challenge is to make the cost of the NIZKP as low as possible.
Related work. The idea and first scheme of EPID were proposed by Brickell
and Li [I2, [I5]. They aim to build a new DAA scheme with enhanced revocation
capabilities. Their security notion of EPID is a modification of the security
model of the original DAA scheme [I1] by replacing linkability with signature-
based revocation. The security of their scheme is based on the strong RSA
and the decisional Diffie-Hellman assumptions. Shortly after that, Brickell and
Li [I3} I4] proposed a more efficient EPID scheme using bilinear pairings,
and its security is based on the strong Diffie-Hellman and the decisional Diffie-
Hellman assumptions. The computational and communicational costs of both
proof generation and verification are linear to the size of the signature revocation
list. The authors expected that the revocation list would be rather small. Later,
Dall et al. [25] identified that the Intel SGX EPID implementation leaks sensitive
key information via a cache side channel. Based on our understanding, this side-
channel attack does not show any design flaw in EPID schemes. Recently, Faonio
et al. [31] introduced a subversion resilient EPID (SR-EPID) scheme, which
provides the same functionality and security guarantees of the original EPID,
despite potentially subverted hardware. Their scheme uses also bilinear pairings.
The security of their scheme is based on the External Diffie-Hellman assumption,
i.e., both pairing input groups hold the decisional Diffie-Hellman assumption.
As for security analysis, Muhammad et al. worked on the formal method-based
security analysis of EPID-based remote attestation [46]. They made use of a
fully automated formal approach using a popular automatic symbolic protocol
verifier, ProVerif [7], to specify and verify the EPID-based attestation process
in the Intel SGX. El Kassem et al. [30] presented a new security model for EPID

in the Universal Composability (UC) framework.

The pairing-based EPID scheme [14] is used for hardware enclave attestation
by many platforms that equip Intel Software Guard Extensions (SGX). This
scheme is included in ISO/IEC standards [37]. A TPM implementation of EPID
is included in the TPM 2.0 library specifications [47]. All these standard EPID
schemes make use of elliptic curves and their security is based on Diffie-Hellman-
related problems, so they are not quantum-safe. Designing a post-quantum
EPID scheme has drawn the cryptographic community’s attention. Solutions
based on lattices or hash functions have appeared in the literature.

In 2019, El Kassem et al. [30] proposed the first EPID scheme based on
lattices. The security of their scheme relies on the ring Short Integer Solution
(SIS) and Learning With Error (LWE) hard problems. Their scheme is proven
secure under the UC framework. In 2023, Biswas et al. [6] proposed another
lattice-based EPID scheme. The security of their scheme relies on the hardness
of the standard SIS problem. They adopted an updatable Merkle tree accumu-
lator to ensure that any group member can join or be revoked dynamically at
any time. Again in 2023, Chen et al. [20] proposed a new lattice-based Secure
Device Onboard EPID (SDO-LEPID) scheme, their construction is based on
the lattice-based DAA protocol in [23]. They implemented both the lattice-
based EPID scheme [29] and their proposed scheme and claimed that their new
EPID scheme is more efficient. However, we observe that the performance of
their protocol can be further improved by relying on more efficient and compact
lattice-based zero-knowledge proofs such as in [10} [42].

Boneh et al. [8] initiated the study of EPID from symmetric primitives and
proposed two EPID schemes. Their schemes rely on hash functions, pseudoran-
dom functions (PRFs), and Non-Interactive Zero-Knowledge Proofs (NIZKPs)
only. There is no known quantum attack on these primitives, so their schemes
are quantum-resistant. More specifically, the first scheme makes use of an
NIZKP of PRFs and the NIZKP is instantiated by MPC-in-the-Head (MPCitH);
considering a real-world use case of remote hardware attestation, the second
scheme uses a Merkle-tree-based accumulator to arrange group credentials, that
allows to reduce the signature size by moving many heavy verification steps
outside of the NIZKP. It is claimed that the maximum group size can reach 240
theoretically. They have not implemented their schemes although discussed key
sizes and signature sizes for different sizes of a group.

Our contributions. The focus of this paper is to improve the existing work on
EPID from symmetric primitives. We observe that the following aspects have
not yet been completed: (1) find an efficient method to prove an unrevealed sig-
nature key has not been used to create any signatures in a signature revocation
list; (2) let a symmetric-based EPID scheme handle a large group size, aiming
to 269; (3) prove the security of a symmetric-based EPID scheme under the Uni-
versal Composability (UC) model; and (4) implement a symmetric-based EPID
scheme and check their performance precisely. The contribution of this paper is
to complete these aspects. We propose a new hash-based EPID scheme, which
includes a novel and efficient signature revocation scheme. Our scheme can han-
dle a large group size (up to 2 group members), which meets the requirements

of rapidly developing hardware enclave attestation applications. The security
of our scheme is proved under the UC model. Finally, we have implemented
our EPID scheme, which, to our best knowledge, is the first implementation of
EPID from symmetric primitives.

Outline of the paper. The remaining part of this paper is arranged as follows:
§ [2| describes relevant preliminaries, § [3| presents the proposed EPID construc-
tion, § [and [f] provide security notions and proofs, § [6] discusses our imple-
mentation result and compares it with the existing post-quantum EPID imple-
mentation results, and § [7] concludes this paper. For the sake of completion,
we provide the security analysis of a group membership credential scheme in
Appendix A.

2 Preliminaries

2.1 Hash-based signatures

In a hash-based signature scheme, a private key is composed of a series of
randomly generated strings, while the corresponding public key is obtained by
applying hash functions to the private key. Early hash-based signature schemes,
such as the Lamport scheme [4I] and the Winternitz scheme [43], were one-
time signatures (OTS), meaning that each key pair can only be used to sign a
single message. The Merkle signature scheme [43] is the first hash-based few-
time signatures (F'TS). It generates several OTS key pairs and aggregates their
public keys using a Merkle tree. The root of the tree serves as the overall public
key. Every signature uses one OTS private key, and it is comprised of the
corresponding OTS and the Merkle tree authentication path for the OTS public
key. The verifier can verify multiple signatures using only the Merkle tree root.

These signature schemes are characterized as stateful, as the signer is re-
quired to maintain a state containing information such as the number of signed
messages and the keys utilized. In comparison, more recent FTS schemes, such
as FORS [, is stateless as they utilize a large set of secret random strings
that can be obtained from a pseudorandom function applied to the private key.
Signatures are then generated by selecting elements from the set based on the
message to be signed. While each signature discloses some secret strings in the
set, the set size is large, and the number of signatures can be controlled to make
it infeasible to forge a signature by mixing and matching secret strings from
previously generated signatures. Building on the top of FORS, SPHINCS+ [4]
is a more powerful stateless hash-based signature scheme. It employs a hyper-
tree, i.e., a tree of trees, to organize OTS and FTS key pairs. Each SPHINCS+
signature constitutes a chain of signatures, with the initial signature ¥y being
generated from the message, and each subsequent signature 3J; being a signature
of the public key that verifies the preceding signature ;1. By using the root
public key, the authenticity of the signature chain can be verified. Although
SPHINCS+ also has an upper limit on the number of signatures that can be
generated per key pair, it can be set to an extremely large value (up to 26%),

making it highly unlikely to reach this limit in practical scenarios. SPHINCS+
has been chosen as one of the three digital signature schemes by the National
Institute of Standards and Technology (NIST) to become a part of its post-
quantum cryptographic standard [45].

2.2 MPC-in-the-Head based signatures

Ishai et. al. [35] introduced the idea of Zero-Knowledge Proofs (ZKP) based on
“Multi-Party Communication in the Head” (MPCitH). Given a public value z,
the prover proves knowing a witness w such that f(w) = . To do so, the prover
simulates, by itself, an MPC protocol between m parties that realizes f, in which
w is secretly shared as an input to the parties, and commits to the views and
internal state of each party. Next, the verifier challenges the prover to open
a subset of these commitments, checks them, and decides whether to accept
or not. If the MPC realizes f properly, this protocol is complete, meaning a
valid statement will always be accepted. The protocol is also zero-knowledgeable
because only the views and internal states of a subset of the parties are available
to the verifier, and by the privacy guarantee of the underlying MPC protocol, no
information about w can be leaked. For soundness, if the prover tries to prove a
false statement, then the joint views of some of the parties must be inconsistent,
and with some probability, the verifier can detect that. The soundness error of
a single MPC run can be high, but by repeating this process independently
enough times, the soundness error can be made negligible. The interactive zero-
knowledge proofs can be made Non-Interactive Zero-Knowledge Proofs (NIZKP)
through techniques such as the Fiat-Shamir transformation.

There are many solutions for constructing MPCitH NIZKPs, e.g., IKOS [35],
ZKBoo [34], ZKB++ [18], KKW [39], Ligero++ [5], Limbo [27], BBQ [26], Ban-
quet [2], BN++ [38], Rainer [28], AIM [40], Aurora [3], VOLE-in-the-Head [I]
and Polaris [33]. They follow the same paradigm but are different in the under-
lying MPC protocols and have different concrete/asymptotic efficiency. In this
paper, to describe our scheme, we do not need to touch the low-level details,
hence we will use MPCitH (for Boolean circuits) in an abstract way. We will
use the following syntax to describe a NIZKP:

m = P{(public params);(witness)|relation to be proved}

For example, to prove the same key sk is used in two different instantiations
of a pseudorandom function F' with different data inputs, we write:

7 =P{(C1, 1), (C2, P,)); (sk)|C1 = F(sk, P) N Ca = F(sk, P2)}

MPCitH has been used to generate signature schemes from a symmetric key
setting. The first scheme is Picnic [48], (18] [49], in which the secret signing key
is k and the public verification key is a pair (¢, p), and the key pair satisfy the
equation ¢ = E(k, p) where E is a block cipher, k is a secret key, and p and ¢ are
respectively a plaintext and ciphertext block. To enhance security and improve
performance, more MPCitH-based signature schemes have been developed, e.g.,
Banquet [2], Rainer [28], FAEST [I], AIM [40] and Peron [24].

Our EPID scheme makes use of this type of signature scheme, and any
scheme that holds the Existential Unforgeability under a Chosen Message Attack
(EUF-CMA) can be used. More specifically, we create a public and private key
pair from a keyed pseudo-random function written as y = F(sk, z), where sk is
a secret signing key and the corresponding public verification key is pk = (x,).
Signing a message m essentially is to generate a non-interactive MPCitH proof
of knowing sk:

™ = P{(x,y); (sk)ly = F(sk,x)}(m)

2.3 M-FORS and F-SPHINCS+ signatures

To construct an EPID scheme from symmetric primitives, we need to select
symmetric setting-based group membership credentials. A credential is a signa-
ture on a group member’s key generated by the issuer. Following the research
on hash-based group signatures [22] and hash-based DAA [21], we choose an
F-SPHINCS+ signature as a group credential. The F-SPHINCS+ signature
scheme is a modification of the SPHINCS+ signature scheme [4]. As a result,
F-SPHINCS+ signatures are more MPCitH friendly than SPHINCS+ signa-
tures. As depicted in Fig. [1} F-SPHINCS+ signatures make use of a hyper-tree
that is a tree of M-FORS trees. We now recall the description of M-FORS and
F-SPHINCS+ from [21], 22].

Public key
AN
Hyper-tree Lo _
/\
fm | : M-FORS

om| (dmm| (dom| |doo;
Ooo| |(0om| |(ooo| (oo

5 5 g alle:

e R = N

oo oo o [fasan] [seeeni]
20 A A) R
. . -------------- . ---------------
o m rm omm| | oo

Figure 1: F-SPHINCS+ signatures.

2.3.1 M-FORS

The M-FORS signature scheme, as depicted in Fig. [2] is a modification of FORS
used in SPHINCS+ [4]. As mentioned before, FORS is a few-time signature
scheme such that each key pair can be used to sign up to g signatures. M-FORS,
short for Merkle FORS, differs from FORS in that, the public key is generated
as the root of a Merkle tree. The purpose of this modification is to allow a
partial proof in MPCitH, which will significantly imrove the performance (see
M-FORS partial proof later for a more detailed discussion). With M-FORS, the
hyper-tree in F-SPHINCS+ is a g-ary tree such that the public key in a child

pk=(T4

mty

To

@ | ¢
888@8’88@@88@

Hashvaluef‘10”01HOOHll‘f‘2|1|0|3‘

Figure 2: M-FORS signatures.

node is signed by the signing key in the parent node, and the signing key in
the leaf node signs the actual message hash. An F-SPHINCS+ signature then
contains a list of h + 1 signatures, where h is the height of the hyper-tree. The
benefit of M-FORS over XMSS that is used in the original SPHINCS+ scheme
is the lower verification cost. To verify a message hash that is k& blocks of d-bit
string, the cost is d - kK + k — 1 hash operations. This is much less than the
(2¢ — 1) - k hashes for verifying a WOTS+ signature. On the other hand, the
signing time is more than that of WOTS+. However, this is a lesser concern
because in our case signing will be done in the clear (while verification needs to
be done with zero knowledge). M-FORS consists of the algorithms below.

e keyGen(seed, n,d, k,aux): it takes as input a random seed seed, a security
parameter n, two positive integers d and k, and aux that is either an empty
string or some optional data. If seed is an empty string, an n-bit random
string will be chosen and assigned to it. Then a pseudorandom function
prf is used to expand seed into k lists (X(O),~-- ,X(k_l)), where each x(*)
contains 2¢ distinct n-bit pseudorandom strings. Then k + 1 Merkle trees
T = (mtg,--- ,mty) are built. In particular, each of mtg,--- ,mty_; has 2¢
leaf nodes. The jth leaf node in mt; is the hash of xy). The leaf nodes of
mtg are ro,--- ,Tk—1 that are the roots of (mtg,--- ,mty_1). keyGen outputs
(pk, sk, param), such that the public key pk = ry, where 7 is the root of mty,
the private key sk = seed, and the public parameters mp = (n, d, k, aux).

e sign(sk, MD, mp): to sign a message hash M D € {0,1}*4, parse it into k
blocks, each block is interpreted as a d-bit unsigned integers (po,- - ,Pr—1)-
Then for the i-th block p;, x(¥ and mt; (obtained by expanding sk) are used

to generate authpath(®, which is the authentication path of the p;-th leaf
node in the i-th Merkle tree. Then (X,(,?, authpath() is put into the signa-
ture. The signature is a list of k pairs o = {(xé?, authpath(®), ... (x §,’i 11),

authpath(F~1)}.

e recoverPK(o, M D, mp): This algorithm outputs the public key recovered from
a signature o and the message hash M D. First M D is parsed into k blocks

(pby-+ ,Ps_,). Then for 0 < i < k — 1, o; = (2;,authpath®) and p. are
used to re-generate a Merkle tree root and get the value 7} (p) is used to
determine the order of the siblings at each layer). Finally, r(,---,7}_, are
used to compute mt), and its root 7}, is returned.

o verify(o, pk, M D, mp): to verify a signature, call recoverPK(o, M D, mp). If
the recovered public key is the same as pk, accept the signature, otherwise
reject.

2.3.2 F-SPHINCS+

The hyper-tree nodes in F-SPHINCS+ are addressed by a pair (a,b) where a
is its layer and b is its index within the layer. The root node is at layer 0, and
the layer number of all other nodes is the layer number of its parent plus 1. All
nodes within a layer are viewed as an ordered list, and index each node in the
list from left to right, starting from 0. F-SPHINCS+ consists of the following
algorithms:

e keyGen(n,q,h): This algorithm outputs (sk,pk, fp). It takes as input a se-
curity parameter n, the degree of non-leaf nodes in the hyper-tree ¢, and
the height of the hyper-tree h. Then it chooses d,k that are the parame-
ters for the underlying M-FORS signature scheme. The public parameters
are fp = (n,q,h,d,k). It also chooses an n-bit random string as the pri-
vate key sk. It generates the M-FORS key pair for the root node by calling
genNode((0,0), sk, fp), and set the public key pk to be the M-FORS public
key pko,o-

e genNode(nodeAdr, sk, fp): This algorithm generates a node in the hyper-
tree given the address nodeAdr = (a,b). With the private key sk used as
a seed, the algorithm first generates a subseed with a pseudorandom func-
tion seed, ;, = prf(seed, a||b), then it calls M-FORS key generation algorithm
M-FORS keyGen (seedq s, n,d, k,a||b). The output (pka,p, Skap, MPap) is the
content of the node at (a,b).

e mHash(msg, gr):This algorithm produces message hash and the leaf node
index used in generating the F-SPHINCS+ signature. The input msg is
the message to be signed, gr is a random string. The algorithm produces
MDl||idx < Hs(msg||gr), where Hs : {0,1}* — {0, 1}¢F+(082)" ig 5 public
hash function, M D is d- k bit long and idx is interpreted as an (log, q) - h bit
long unsigned integer.

e sign(msg, sk, fp): This algorithm produces the F-SPHINCS+ signature as
a chain of M-FORS signature along the path from a leaf node to the root
node of the hyper-tree. It chooses an n-bit random string gr. Then obtain
MDIlidx < mHash(msg, gr). A leaf node at (h,idz) is then generated by
calling genNode((h, idz), sk, fp). The M-FORS signing key skj, ;4. is used to
sign M D and generate og. The parent node of (h,idz) is then generated by
calling genNode((h —1,b), sk, fp) where (h — 1,b) is the address of the parent

node. Then the parent secret key skj—14 is used to sign the child public key
Dk idz, and the signature is 01. Repeat the signing process until obtaining
oy, that is signed by sko ¢ on pkqp for some b'. The F-SPHINCS+ signature
is then (gr,S = (00, - ,0n)).

e verify(msg, gr, S, pk, fp): This algorithm verifies every M-FORS signature
that is chained up in S. Given S = (oy, -, op), first compute M D||idz +
Hs(msg||gr). Then obtain pkg « recoverPK(ao, M D, mpy), pki + recoverPK(
o1, pko, mp1), repeat until pky < recoverPK(op, pkn—1,mpp). If pk = pkp,
accept the signature, otherwise reject.

Remark 1 In M-FORS algorithms, we use two tweakable hash functions [4]
Hy:{0,1}* — {0,1}" and Hy : {0,1}* — {0,1}4*. Almost all hash operations
are done using Hy. H; is only used to map the k-th Merkle tree to the k - d-bit
M-FORS public key, so that when used in F-SPHINCS+ the public key is of
the right size to be signed by the parent node. If M-FORS is to be used as a
stand-alone signature scheme, these two hash functions can be the same.

Remark 2 The tweakable hash functions follow Construction 7 for tweakable
hash functions in [4]. Namely, the hash of an input M is produced by calling a
hash function with additional input as H (P||ADD||M), where P is a public hash
key and ADD acts as the tweak. The tweak is the address where the hash opera-
tion takes place within the hyper-tree, and it is a five part string aq||b1||v||az||b2:

e (a1,b1), where 0 < a3 < h,0 < by < 2% — 1, is the address of an hyper-tree
node. Within the node, an M-FORS key pair that is based on k + 1 Merkle
trees are stored.

e 0 < v <k is the index of a Merkle tree in the M-FORS key pair stored in the
hyper-tree node (aq,b1). When 0 < v < k — 1, the Merkle tree (of height d)
is used to sign the v-th block of the message; when v = k, the Merkle tree (of
height [log, k1) is used to accumulated the roots of all the previous Merkle
trees into the public key.

e (as,by) is the address of an Merkle tree node. When 0 < v <k—1,0<as <d
and 0 < by < 2% —1; Whenv =k, 0 < ag < [logy k] —1and 0 < by < 292 —1.

The security analysis of F-SPHINCS+ is given in Appendix A.

2.3.3 M-FORS partial proof

The challenge for implementing a NIZKP of F-SPHINCS+ signature with MPCitH
comes from the cost of h + 1 M-FORS signature verifications. Following the de-
scription of M-FORS, to verify a single M-FORS signature, k- (d+1)+(k—1) =
kd + 2k — 1 hashes are needed, which is in the order of 100 for a practical set-
ting (with an extra factor of 2 if implementing with MPC_F, as a part of our
EPID scheme, which will be described in Section . The h + 1 factor means
that if implemented naively, the MPC would need to call thousands of times
the sub-procedure that implements the hash function, and the size of the circuit

for the whole MPC can go easily above a million-gates. Even worse, to reduce
the soundness error, the same circuit needs to be executed tens to hundreds
of times in an MPCitH proof. Thus, a naive implementation of a NIZKP of
F-SPHINCS+ signature will result in a very large signature size and a high

computational cost.
pk=(ra)
O

pri(sk,) o T o Lo o TR T T T P T T)
\

Hash value = [10]01]00]11]=[2]1]0]3]

Figure 3: M-FORS Patial Verification.

As suggested in |21, 22], in an efficient MPCitH proof, rather than repeating
t times an MPC procedure in which the M-FORS signatures are fully verified,
we run t' > k MPC procedures in which the M-FORS signatures are partially
verified, one block in each run (see the example of partial verification in Figure
. More precisely, we extend the M-FORS with the following algorithms:

e partialSig(o, M D, i, mp): to extract a partial signature of the i-th block of M D
from o = {(zo, authpath®), .. | (z;_, authpath®*~)}. The Merkle tree
mty, can be recomputed from o. The partial signature is 0, ; = (;, authpath(i),
authpath(k’i)) where (aci,authpath(i)) is a copy of the i-th pair in o, and
authpath(k’i) is the authentication path of r; (the root of the i-th Merkle
tree) in mtg.

e partialRec(0, , pi, %, mp): This algorithm recovers the public key from 0, ;
and p;. Given d,; = (z,authpath, authpath’), first compute the Merkle
tree root r; from (z,authpath,p;), then compute the Merkle tree root pk
from (r;, authpath’,i). Output pk.

With partial-rec, only one path is used to recover the M-FORS public key instead
of k paths. Why does this approach make sense? In an MPCitH proof, the
same procedure is run multiple times. FEach run has a soundness € that a
cheating prover can get away without being detected. Thus ¢ runs are needed
so that € is negligibly small. In our case, the main cost of the MPC procedure
comes from verifying all the M-FORS signatures. The full verification requires
every block of the message digest or the child public key to be verified. Our
observation is that if a prover has to cheat, then it has to cheat in more than
1 blocks with a high probability. If the prover has to cheat in n out of k

10

blocks, then using partial verification with ¢’, such that ¢’ - n/k > t, ensures
that the prover has to cheat in more than ¢ runs, and hence with a negligible
success probability. As we analysed, an implementation with full signature
verification requires t- (h+1) - (k-d+ 2k — 1) calls to the MPC hash procedure.
The partial verification based implementation, on the other hand, requires only
t'-(h+1)-(d+1+ [logk]) MPC hash calls. The improvement is roughly

times.

3 The Proposed EPID Scheme

3.1 Syntax
Players. The EPID scheme involves the following players:

e An issuer owns a group public and private key pair and manages the group
membership, decides who can be a group member, and issues a group mem-
bership credential to each group member. Each group has one issuer and the
issuer is also called the group manager.

e A group member generates a public and private key pair, receives a mem-
bership credential from the issuer for this key pair, and uses the key and cre-
dential to create EPID signatures. A group member is also called an EPID
signer. Each group has many members.

e A verifier verifies EPID signatures by using the issuer’s group public key.
Each group can have an arbitrary number of verifiers.

e A revocation authority decides whether a group member should be re-
moved from the group and maintains signature and key revocation lists. Each
group should have at least one revocation authority.

Revocation lists. There are two types of revocation lists:
e A key revocation list denoted by KRL lists revealed private signing keys.

e A signature revocation list denoted by SRL lists signatures created by
revoked signers.

Each verifier uses one KRL and one SRL, from their chosen revocation authority.
Note that key revocation provides the ability to revoke an existing signature
with an updated key revocation list. However, as for any EPID scheme, signa-
ture revocation does not provide such ability because a signature can only prove
that the signing key is not associated with any key in the SRL that is available
during signing. This proof cannot be extended to cover any items added into
the SRL later.

Algorithms/protocols. Our EPID scheme consists of the following algorithm-
s/protocols:

11

e Init(n): In the initialization algorithm, the issuer takes a security parameter
n as the input, and outputs a master (group) key pair (mpk, msk). The
master public key mpk is made public and the master secret key msk is
stored privately by the issuer. In all other algorithms and protocols, we will
assume mpk along with the security parameter n as an implicit input for all
parties.

e Join(msk): the joining protocol is an interactive protocol between the issuer
and a user u who wants to join the group. The issuer has a private input
msk and the user does not have input. At the end of the protocol, the issuer
outputs a decision: accept or reject. If reject, then stop. If accept, the
user obtains its group signing key gsk, = (sky, cred,) where sk, is a secret
key, and cred,, is a group membership credential. sk, is chosen and held by
the user, and cred, is generated by the issuer and given to the user. Now,
the user becomes a group member, who is a legitimate signer.

e Sign(gsk,, msg, SRL): the signing algorithm allows a signer to produce an
EPID signature ¥ on a message msg € {0, 1}* using its signing key gsk,,. The
signature includes proof of whether gsk, was used to generate any signatures
in the signature revocation list SRL.

e Verify(msg, 3, KRL, SRL): the verification algorithm allows a verifier to verify
whether a signature X is a valid signature of msg, whether the corresponding
signing key has been listed on a rogue key list KRL, and whether it has been
used to generate any signatures on the signature revocation list SRL.

e Revocation(KRL,SRL): The revocation algorithm allows a revocation authority
to add a revealed signing key in KRL and to add a signature generated by a
revoked signer in SRL.

3.2 Details of algorithms and protocols

Initialization Init(n) : Given a security parameter n, the issuer does the fol-
lowing to create a group master public and secret key pair to be used for the
F-SPHINCS+ signature scheme.

1. The issuer first chooses the hyper-tree node degree ¢ and the tree height
h, the values (d, k) for the underlying M-FORS scheme, a pseudorandom
function prf, three hash functions H; : {0,1}* — {0,1}", Hy : {0,1}* —
{0,1}4F Hy : {0,1}* — {0,1}4F+0og20)h " and a keyed pseudorandom
function F : {0,1}" x {0,1}™ — {0, 1}".

2. The issuer then runs (sk,rpk, gp) < F-SPHINCS+.keyGen(n, g, h), where
(rpk, sk) is the F-SPHINCS+ public and secret key pair, and gp = (n, q, h, d, k)
are the hyper-tree parameters.

3. The issuer then publishes the master public key mpk = (gp, rpk, Hy, Ha, Hs,
F, prf) and keeps the master secret key msk = sk private.

12

4. To prove the key construction correctness, the issuer provides a Non-
Interactive Zero-Knowledge Proof (NIZKP) 7z to demonstrate that the
key pair is generated correctly, meaning that the secret and public keys
are associated with each other. This NIZKP can be achieved by signing its
own public key rpk using F-SPHINCS+-.sign, which is similar to the issuer
creating a group membership credential in the joining protocol described
below.

5. In addition, the issuer initializes an empty group list GL.

Each verifier initializes two revocation lists: a key revocation list KRL and a
signature revocation list SRL. All these lists are empty when initialised. Alter-
natively, these two revocation lists can be managed by a centralised authority
and each signer and verifier can then download them for signing or verification.
Joining protocol Join(msk, n) : The joining protocol is run between a user and
the issuer. Note that this protocol involves the authentication of the user by the
issuer. The issuer has an authentic copy of the user’s endorsement key, which
is used to establish a secure and authenticated channel between the user and
the issuer. Our EPID scheme does not restrict which cryptographic mechanism
is used to establish this channel. In the following protocol description, it is
assumed the existence of such a channel. The protocol includes the following
steps:

1. A unique session ID u is assigned to the user. For simplicity, we can think
of the session ID as a monotonically increasing counter, and each invocation
of the joining protocol will increase it by 1. Alternatively, the value u can be
computed from the user’s endorsement key, which is unique to the user.

2. The user chooses a random secret key: sk, ¥id {0,1}"™ as its signing key.
3. The user computes the group identifier gid = Hy(rpk).

4. The user generates its entry token et, = F(sk,,gid) together with the
NIZKP =, : P{(gp, gid, ety); (sky)|et, = F(sky, gid)}.

5. The user chooses a random string cr pia {0,1}", computes a commitment
ct = Hy(ety||er), then sends (u, ct) to the issuer to request joining the group.

6. Upon receiving (u, ct), the issuer checks whether an entry with the same w is
in GL. If yes, the issuer rejects the user. Otherwise, if the issuer would like to
accept the user, the issuer chooses a random string gr, ¥id {0,1}" and sends
it to the user, who responds by sending (et,,, cr, 7,) back. The issuer verifies
ct = Hj(ety||er) and the NIZKP m,. If both verifications pass, the issuer
computes the group credential (gr,,S) < F-SPHINCS+sign(et,||gr.., msk,
gp) and adds (u, et,, gr.,S) to GL; otherwise, the issuer rejects the user.

7. The user, if accepted by the issuer, sets its group signing key gsk, = (sky, gru,
S). The user has now become an EPID signer for this group.

13

Signature generation Sign(gsk,,msg,SRL) : Given a message to be signed
denoted by msg and a signature revocation list SRL, the user u generates an
EPID signature using gsk, = (sku, gra, S) by performing the following steps:

1. The user gets the group public key rpk and generates a random data string
str & {0,1}", then computes sid, sst, gid, et,, mt,, idx as follows:

(a) The user first computes the signature identifier sid = H;(msg||str) and
the signature signing token sst = F'(sk,, sid).

(b) The user then computes the group identifier gid = H;(rpk), the group
membership entry token et,, = F(sky, gid) and mt,||[ide = Hs(ety||gr.).
Here Hs(et,||gr.) is used as F-SPHINCS+.mHash(et,,, gr..).

2. To prove that the user has not been revoked, the user generates a random

number 1 & {0,1}", then Vj € {1,...,J = [SRL|}, the user retrieves sid; =
H,(msg,||str;) and sst; = F(sk;, sid;) from SRL, and produces two signature
proof tokens A; = F(F(sky,sid;),r) and B; = F(sst;,r). Note that if
and only if sk, # sk;, A; # Bj. Also note that F(sk,,sid;) has been
kept secret, so that (A;, B;) will not reveal any sensitive information about
sky. As discussed in Remark 3 below, this novel and efficient privacy-
preserving inequivalence proof may have its interest.

3. To prove the EPID credential, the user generates another random number

s & {0,1}™ and computes com = Hi(s||pks|| - - - ||rpk)}, where pky,--- ,rpk
are the public keys for verifying the signatures in S, from the layer h to layer
0 (the public key at the layer 0 is rpk). The user produces an NIZKP g
(note that recoverPK was defined in Subsection [2.3.1] for M-FORS):

me P{(gp, rpk, gid, sid, sst, com, r, SRL,V cn,5 Aj);
(sku, €tu, gru, s, S={on, - ,00}) | sst = F(sku, sid)
AVjen,) Aj = F(F(sku, sid;),r)
A ety = F(sku, gid)
A miy||ide = Hs(ety||gra)
A pkp, = recoverPK(op, mty, (n,d, k, (h,idx)))
A pkn—1 = recoverPK(op_1, pkn, (n,d, k, (h — 1, LZd—xJ))) AR
q
A rpk = recoverPK (oo, pk1, (n,d, k, (0,0)))
A com = Ha(sllpknl -« [[rpk)}

4. The EPID signature is ¥ = (str, sst, com, r, ¥jcn, 5 Aj, Te).

Signature verification Verify(msg, ¥, KRL, SRL) : Given ¥ = (str, sst, com,
7, Vjen, s Aj, me) and msg together with two revocation lists KRL and SRL, the
verifier performs the following steps to verify this signature:

1. Vsk; € KRL, the verifier computes sst; = F(sk;, sid). If any sst; = sst,
rejects 2.

14

2. Otherwise, Vj € [1,J], the verifier checks if any sid; has been used in X
correctly. If not reject ¥. Otherwise, compute B; = F(sst;,r) and check
if any A; = B; holds, if so reject X.

3. Otherwise, the verifier recomputes sid = Hy(msg||str) and gid = Hy(rpk),
then verifies . Accept if the verification succeeds, otherwise reject.

Key and signature revocation Revocation(KRL,SRL) : There are two cases to
revoke the group membership of the user u:

1. Given sk,, the revocation authority adds it in KRL.

2. Given a signature X signed by the user u together with the corresponding
signed message msg, the revocation authority retrieves str and sst from
Y., computes sid = H;(msg||str), and adds the pair (sid, sst) in SRL.

Remark 3 In the existing EPID scheme [8], an EPID signature under the
signing key sk; contains of ¢ = (F'(sk;,r),r), where r is a random value. To
support signature revocation, for each revoked signature sig; € SRL, a new
EPID signature under the signing key sk} includes the NIZKP for Lsig; #
(F'(sk],7sig,), Tsig,). However, the paper does not provide a concrete construc-
tion for this inequality proof in zero-knowledge. To build a practical EPID
scheme from symmetric primitives, a concrete proof scheme is necessary. For
the first time, we propose a non-interactive zero-knowledge inequality proof 7g:

e P{(gp, sid, sst, v, Vjep, s : (sid;, sst;) € SRL, Aj); (sku)|
sst = F(sku, sid) AVjep1,s) Aj = F(F(sku, sid;),r)}

where sk, is the user’s long-term key and r is a public nonce, which allows the

verifier to compute B; = F(sst;,r). If A; # B, the verifier can be convinced
that sig; € SRL was not signed under sk,; since otherwise it contradicts the
collision-resistance of the keyed pseudorandom function F'. However, if sk, =
skj, A; = B; must hold. This proof is privacy-preserving for an unrevoked
user since such proof does not reveal any sensitive information of sk,. The
proof is reasonably efficient. When SRL has J revoked signatures, it requires the
NIZKP for 2J operations of F. In § we will discuss how to separate this
revocation proof from the credential proof to optimise the performance of our
EPID scheme.

3.3 The proof 7%

The most important part in the EPID signature ¥ = (str, sst, com, r, Vjci1, g Aj,
7g) is the proof 7. As ¥ is a signature of a message msg, the foremost thing 7g
needs to prove is that the signer knows a group signing key gsk, = (sky, gru, S)
and it was used to sign msg. Besides that, 7 also needs to prove that gsk, is
authorized by the issuer. To do that, in 7 the following is done:

1. It proves that given a nonce 7, Vjc1 gy sid; € SRL, A; = F(F(sky,sid;),r)
is correctly computed.

15

2. It proves that the same signing key sk, used in the previous step is also
used to generate two values et, and sst, where et, is bound with the group
root public key rpk (as it is computed from gid = Hp(rpk)) and sst is
bound with the message msg and random string str (as it is computed from
sid = Hq(msgl|str)). sst is revealed in ¥, and et,, is hidden.

3. It proves that mt,, which is computed from et,, is signed under a private
key in a leaf node of the hyper-tree generated by the group issuer. This is
done by verifying all the signatures in S such that mt, and o produce the
leaf public key pkj,, which in turn with o,_; produces pkj_1, and so on until
reaching the root. The last public key produced is rpk which is published
by the group issuer. All public keys recovered in this process match those
committed in the commitment com.

Before showing the MPCitH instance of g, let us first introduce the notation
used in such an MPCitH algorithm: [z] means that the value x is secret-shared
when using an MPC algorithm, meaning that = is known by the prover but
not the verifier. MPC_X means the MPC subroutine implementing the function
X (e.g. MPCF, MPC_H1, MPC_H2 and MPC_H3 implement F, Hy, Hy and
Hjs). This notation will be used throughout the paper. Based on [30], in an
implementation MPC_F can be used as a building block for the hash functions
that we need.

Following the method of M-FORS partial verification, as shown in Sub-
section [2.3.3] we now introduce the g MPC instance for the v-th block in
MPCitH The user uses partial signatures in the MPC. Recall that in the
group signing key gsk,,, a list S = {op, -+ ,00} of h + 1 signatures are stored,
one for each layer in the hyper-tree of F-SPHINCS+. The signer can extract a
partial signature for the v-th block from each signature, i.e. {0y, v, *** s Opgv)-
In Line [[2] an MPC subroutine MPC_partialRec that implements partialRec is
used. This subroutine uses the input to compute the corresponding public key
at the [-th layer in the hyper-tree (stored in [M] and also appended to [COM]).
After the last iteration, [COM] is hashed and [M] is revealed. The results will
be checked by the verifier to see whether they match com and rpk. If so, the
signer is likely to possess valid partial signatures along the path from the idz-th
leaf node to the root node in the hyper-tree. Note that the algorithm partialRec
was defined in Subsection for M-FORS partial proofs and the algorithm
Reveal([z]) is simply unmasking the value z.

3.4 Soundness Analysis of 7g

In 7g, k instances of MPC are run. In the ith instance, the partial verification
procedure is used to verify every M-FORS signature in S, but only the i-th
block of the hash value being signed. Out of the k blocks, the adversary may
have learned the secret strings correspond to A; blocks through queries and has
to cheat in all the remaining k& — A; blocks. For each MPC instance, the verifier
opens the views of a subset of the MPC parties and a cheat prover can be

16

MPCitH 1: g, — MPC instance for the v-th block
Public: gp = (n, ¢, h, d, k),
rpk, gid, sid, sst, com, r, v, Ven, g (sidj, Aj)
Private: [sk,], [etu], [gru], [s], [Ocn, o], -+, [Os0,]
Output: pko, Vjcp,s Aj, com/
Check: pko =1pk A com’ =com A Vjcn g (A = Aj)
for j =1; j <|SRL|; j++ do
[A] = MPC_F([sk,], sid;);
A% = MPC_F([A],7);
end
sst = MPC_F([sk.], sid);
[et.] = MPC_F([sk.], gid);
[t |lidz] = MPC_H3([et,]l [gr]):
[M] = [t]
[coM] = [3];
fori=h; [>0; I—— do
parse [M] into k blocks [po],-- - , [pr—1], each block is d-bits;
[M] = MPC_partialRec([0, o], [po], [idx], gp, I, v) ;
[COM] = MPC_HL([COM]||[M]);
lidz] = [lidz/q]];
end
com’ = Reveal([COM]);
pko = Reveal([M]);

© 00 N O ok W N -

Jun
o

e T S
e I = R | B N I

detected with a probability 1 — e. Therefore, if using an MPC protocol without
pre-processing, then the soundness error is;

k

> PriAy =]

=0

If using an MPC protocol with pre-processing, then the adversary can also cheat
in the pre-processing phase. If the adversary cheats in Ay (out of M) copies of
pre-processing data, and not being detected when checking the pre-processing
data (the probability is denoted as Succ? (Ag, k, M)), then it needs to cheat in
k — A1 — Ao MPC instances. The soundness error is:

k k=1
ZPT[/\l =] <Z Succ?™ (g, k, M) .ek—Al—m)
=0 A2=0

As a concrete example, let us consider a case in which we implement 7 using
KKW [39]. Then we have:

(%) 1
Succ?"¢(Ao, k, M) = L €= —
(arts) N

In the above, d, k,q are the parameters for the M-FORS signature, M is the
number of pre-processing data generated, and N is the number of MPC parties.
When d = 16,k = 70,q = 1024, M = 1120, and N = 16, then the soundness
error is 27257-769: when d = 16,k = 35,q = 1024, M = 560, and N = 16, then
the soundness error is 27128987,

3.5 Splitting revocation and credential proofs

The cost of proving or verifying that a signer is not revoked based on a given
SRL is dependent on the size of SRL, while the cost of proving or verifying that
a signer holds a valid group credential is related to the group size. The previous
specification of g in Subsection [3.3]includes these two proofs in a single NIZKP.
This may not be the best choice if the costs of these two proofs are not balanced,
so optionally we split the proof 7 into two separate NIZKPs, one for revocation
denoted by 7y and another for the credential denoted by ¢, i.e., g = (mr, 7¢).
We specify them in MPCitH [2| and MPCitH [3| respectively. Note that m does
not use a partial proof but ¢ does. The connection between these two NIZKPs
is that they share the same sid and sst values, which indicates that these two
NIZKPs are created by the same sk,,.

MPCitH 2: my — MPC Instance for Revocation
Public: gp = (n, q, h, d, k), sid, sst, r, Yjen,) (sid;, Aj)
Private: [sk,]
Output: sst’, Vjep1 5 4]

J

Check: sst = sst’ A Ve, A;, =A;

1 sst’ = MPC_F([sk,], sid);

2 for j =1; j <|SRL|; j++ do
3 [A] = MPC_F([sk.], sid;);
4 Al = MPC_F([A],7);

5 end

4 UC-based EPID Security Model

In this section, we recall the definition of the EPID UC model from [30], which
is a modification of the DAA UC model given by Camenisch et al. in [I7]. The
changes include replacing linkability with a revocation interface and adding the
signature revocation check from [I6]. The model covers the following security
properties:

Correctness: If a group member has completed the Join procedure and neither
its key nor any of its signatures have been revoked, that group member’s

18

MPCitH 3: m¢, — MPC instance for the v-th block

Public: gp = (n, ¢, h, d, k), rpk, gid, sid, sst, com, v

Private: HSkuﬂv [[etu]]a [[g’ruﬂv [[S]]v [[atfh,, Uﬂv T [[affo, UH

Output: pky, com’, sst’

Check: pko = rpk A com’ = com A sst' = sst

sst’ = MPC_F([sk.], sid);

[et,] = MPC_F([sk.], gid);

[mt,]|[[idz] = MPC_H3([et,]l [gr.]):

[M] = [mt.];

[COM] = [s];

for!=h; 1 >0; I—— do
parse [M] into k blocks [po],- - , [pk—1], each block is d-bit;
[M] = MPC_partialRec([05,], [po], [idz], gp, I, v);
[COM] = MPC_HL([COM]||[M]);
[idz] = [lidz/q]];

end

com’ = Reveal([COM]);

pko = Reveal([M]);

© 000 N O ok W N

[S G SO
W N = O

signatures should successfully verify.

Anonymity: Given two signatures, no adversary can distinguish whether they
were created by one honest signer or two different honest signers.

Unforgeability: When the issuer is honest, no adversary can create a signature
on behalf of an honest signer.

Non-frameability: Regardless of whether the issuer is honest or not, no ad-
versary can create a signature that, if put in SRL, can revoke any honest
signers’ signatures.

Generally speaking, security in the UC framework follows the simulation-
based paradigm, where a protocol is secure when it is as secure as an ideal
functionality that performs the desired tasks in a way that is secure by design.
In a UC model, an environment £ passes inputs and outputs to the protocol
parties. The network is controlled by an adversary .4 that may communicate
freely with £. In the ideal world, the parties forward their inputs to the ideal
functionality F, which then (internally) performs the defined task and creates
outputs that the parties forward to £. A real-world protocol II is said to securely
realize a functionality F, if the real world is indistinguishable from the ideal
world, meaning for every adversary performing an attack in the real world,
there is an ideal world adversary (often called simulator) S that performs the
same attack in the ideal world. More precisely, a protocol II is secure if for
every adversary A, there exists a simulator S such that no environment £ can
distinguish executing the real world with IT and A, and executing the ideal world
with F and S.

19

The ideal functionality Fgpip is formally defined under the assumption of
static corruption, i.e., the adversary decides beforehand which parties are cor-
rupt and informs Fepip about them. Fgpip has five interfaces (SETUP, JOIN,
SIGN, VERIFY, REVOKE) described below. Several sessions of the protocol
are allowed to run at the same time and each session will be given a global identi-
fier SID that consists of an issuer Z and a unique string SID’, i.e. SID = (Z, SID’).
We also define the JOIN and SIGN sub-sessions by JSID and SSID. We also
define the algorithms that will be used inside the functionality as follows:

e Kgen(1*): A probabilistic algorithm that takes a security parameter A
and generates keys tsk for honest signers.

e sig(tsk, msg): A probabilistic algorithm used for honest signers. On input
of a key tsk, it calculates the signature identifier sid = H;(msg, str) for a
random str < {0,1}" and outputs a signature 3.

e ver(X, msg,KRL,SRL): A deterministic algorithm that is used in the VER-
IFY interface. On input of a signature ¥, it outputs f = 1 if the signature
is valid, f = 0 otherwise.

o Identify(tsk, >, msg): A deterministic algorithm that will be used to en-
sure consistency with the ideal functionality Fgpip’s internal records. It
outputs 1 if a key tsk was used to produce a signature 3 on sid, 0 other-
wise.

e Revoke(tsk™, X* KRL,SRL): A deterministic algorithm that takes input
tsk™ or X*, it adds tsk™ to KRL or X* to SRL respectively.

The UC framework allows us to focus on the analysis of a single protocol
instance with a globally unique session identifier SID. Fgpip uses session identi-
fiers of the form SID = (Z,SID’) for some issuer Z and a unique string SID’. In
the procedures, functions CheckTtdHonest and CheckTtdCorrupt are used that
return ‘1’ when a key belongs to a honest signer that has produced no signa-
ture, and when a key belongs to a corrupt user such that there is no signature
simultaneously linking back to the inputted key and another one, respectively;
and return ‘0’ otherwise. We label the checks that are done by the ideal func-
tionality in roman numerals.

Fepip SETUP: On input (SETUP, SID) from the issuer Z, Fepip verifies that
(Z,SID') = SID and outputs (SETUP, SID) to S. Fepip receives from the simu-
lator S the algorithms Kgen, sig, ver, ldentifyand revoke. These algorithms are
responsible for generating keys for honest signers, creating signatures for honest
signers, verifying the validity of signatures, checking whether a signature was
generated by a given key, and updating the revocation lists respectively. Fepip
stores the algorithms, checks that the algorithms ver, ldentify and Revoke are
deterministic [Check I}, and outputs (SETUPDONE, SID) to Z.

Fepip JOIN:

20

1. JOIN REQUEST: On input (JOIN, SID, JSID) from a signer Signer, cre-
ate a join session (JSID, Signer, request). Output (JOINSTART, SID, JSID,
Signer) to S.

2. JOIN REQUEST DELIVERY: Proceed upon receiving delivery notifica-
tion from S by updating the session record to (JSID, Signer, delivery).

e If 7 or Signer is honest and (Signer, %, *) is already in Member List
ML, output L [Check IIJ.

e Output (JOINPROCEED, SID, JSID, Signer) to Z.

3. JOIN PROCEED: Upon receiving an approval from Z, Fgpip updates the
session record to (JSID, SID, Signer, complete).
Then it outputs (JOINCOMPLETE, SID, JSID) to S.

4. KEY GENERATION: On input (JOINCOMPLETE, SID, JSID, tsk) from
S.

o If the signer is honest, set tsk = L, else verify that the provided tsk
is eligible by performing the following two checks that are described
above:

— CheckTtdHonest(t¢sk)=1 [Check III].
— CheckTtdCorrupt(tsk)=1 [Check IV].

o Insert (Signer, tsk) into Member List ML, and output JOINED.

Fepip SIGN:

1. SIGN REQUEST: On input a request (SIGN, SID, SSID, Signer, msg) from
the signer, the ideal functionality calculates the signature identifier sid
and aborts if Z is honest and no entry (Signer,*) exists in ML [Check
V], else creates a sign session (SSID, Signer,msg, request} and outputs
(SIGNSTART,

SID, SSID, Signer,msg)) to S.

2. SIGN PROCEED: On input (SIGNPROCEED, SID, SSID, msg) from Sig-
ner, Fepip outputs (SIGNCOMPLETE, SID, SSID, KRL, SRL, msg) to S,
where KRL and SRL represent the key and the signature revocation lists
respectively.

3. SIGNATURE GENERATION: On input (SIGNCOMPLETE, SID, SSID,
3, KRL, SRL) from S, if Signer is honest then Fepip will:

e Ignore an adversary’s signature X, and generate the signature for a
fresh or established tsk.

e Check CheckTtdHonest(¢sk)=1 [Check VI], and store (Signer, ¢sk) in
DomainKeys.

o Generate the signature X < sig(tsk, msg).

21

e Check ver(X, msg, KRL, SRL)=1 [Check VII], and check Identify (X, msg,
tsk) = 1 [Check VIII].

e Check that there is no signer other than Signer with key tsk’ regis-
tered in ML or DomainKeys such that Identify(3, msg, tsk’)=1 [Check
IX].

e For all (X*,msg*) € SRL, find all (tsk™, Signer*) from ML and Domain-
Keys such that Identify(X*, msg*, tsk™) =1

— Check that no two distinct keys ¢sk™ trace back to ¥* [Check X].
— Check that no pair (tsk™,Signer) was found [Check IX].

If Signer is honest, then store (X, Signer, sid) in Signed and output
(SIGNATURE, SID, SSID, &, msg, KRL, SRL).

Fepip VERIFY: On input (VERIFY, SID, msg, ¥,KRL, SRL), from a party V to
check whether ¥ is a valid signature on sid, KRL and SRL, the ideal functionality
does the following:

e Extract all pairs (¢sk’,Signer’) from the DomainKeys and ML, for which
Identify(tsk’, ¥, msg)=1. Set b = 0 if any of the following holds:

— More than one key t¢sk; was found [Check XII].
— 7 is honest and no pair (¢sk,Signer) was found [Check XIII].

— An honest Signer was found, but no entry (x, Signer,msg, str) was
found in Signed [Check XIV].

— There is a key ¢sk™ € KRL, such that Identify(3, msg, tsk*)=1 and no
pair (tsk,Signer) for an honest Signer was found [Check XV].

— For some matching tsk and (X*, msg*) € SRL, Identify(tsk, £*, msg*) =
1 [Check XVT]

o If b # 0, set b «ver(3, msg, SRL, KRL).

e Add (¥, msg,KRL, SRL, b) to VerResults, and output (VERIFIED, SID,b)
to V.

Fepip REVOKE: On input (tsk*,KRL), the ideal functionality replaces KRL with
KRL U tsk™. On input (X*, msg*, SRL), the ideal functionality replaces SRL with
SRL U X* after verifying >*.

We emphasize that our model catches all the required EPID security proper-
ties. The Correctness property is achieved since honestly generated signatures
always pass through verification check via the algorithm ver(3, msg, KRL, SRL)
[Check VIII]. This, in the real world, means that honestly generated signatures
are always accepted by the verifier and not being revoked. The Anonymity prop-
erty is guaranteed due to the random choice of the key tsk if the key belongs
to an honest signer. In the case of a corrupt signer, the simulator is allowed
to provide a signature that may reveal the signer’s identity, as the signing key
can be extracted from the respective signer key pair. This reflects that the

22

anonymity of an EPID signer is guaranteed only when the signer is honest. The
Unforgeability property is due to [Check XIII] and [Check XV] and the Non-
frameability property is due to the [Check IX]. Furthermore, CheckTtdHonest
prevents registering an honest ¢sk in the Join interface that matches an existing
signature so that conflicts can be avoided and signatures can always be traced
back to the original signer [Check III|. This ensures that honestly generated
signatures are not revoked due to the identified algorithm being deterministic
in our model. CheckTtdCorrupt [Check IV] is done when storing a new tsk
that belongs to a corrupt Signer, it checks that the new ¢sk does not break the
identifiability of signatures, i.e., it checks that there is no other known Signer
key tsk’, unequal to tsk, such that both keys are identified as the owner of a
signature.

5 UC Security Proof of the EPID Scheme

In this section, we provide a high-level description of the UC-based security
proof of our hash-based EPID scheme, which was described in Section [3] We
present a sequence of games to show that there exists no environment £ that
can distinguish the real-world protocol denoted by II with an adversary A,
from the ideal world F with a simulator S. Each of these games contains
further checks that guarantee a desired security requirement while proving game-
to-game indistinguishability. At the end of the proof, we showcase that our
real protocol guarantees the desired security requirements that the ideal world
provides.

We start with the real-world protocol execution in Game 1. In the next
game, we construct one entity C' that runs the real-world protocol for all honest
parties. Then we split C' into two pieces, an ideal functionality F and a simula-
tor S that simulates the real-world parties. Initially, we start with an “empty”
functionality F. With each game, we gradually change F and update S accord-
ingly, moving from the real world to the ideal world, and culminating to the
full Fepip being realized as part of the ideal world, thus, proving our proposed
security model presented in § [l The endmost goal of our proof is to prove the
indistinguishability between Game 1 and Game 14, i.e., between the complete
real world and the fully functional ideal world. This is done by proving that each
game is indistinguishable from the previous one starting from Game 1 to reach
Game 14. As aforementioned, our proof starts with setting up the real-world
games (Game 1 and Game 2), followed by introducing the ideal functionality
in Game 3. At this stage, the ideal functionality F only forwards its inputs to
the simulator which simulates the real world. From Game 4 onward, F starts
executing the setup interface on behalf of the Issuer. Moving on to Game 5,
F handles simple verification and consistency checks without performing any
detailed checks at this stage; i.e., it only checks if the signer belongs to a revo-
cation list. In Games 6-7, F executes the join interface while performing checks
to maintain the registered keys’ consistency. It also adds checks that allow only
the devices that have successfully been enrolled to create signatures. Game 8

23

proves the anonymity of EPID by letting F handle the sign queries on behalf
of an honest Signer using freshly generated random key instead of running the
sign algorithm using the signer’s signing key. At the end of this game, we prove
that an external environment will notice no change from previous games where
the real-world sign algorithm was executed. Now moving to Games 9 - 14, we
let F perform all other checks that are explained in our UC model that ends
with the ideal functionality Fepip defined in § [4}

Proof. Game 1 (Real Word): This is the real world protocol.

Game 2 (Transition to the Ideal World): An entity C' is introduced. C
receives all inputs from the honest parties and simulates the real-world protocol
for them. This is equivalent to Game 1, as this change is invisible to &.

Game 3 (Transition to the Ideal World with Different Structure):
We now split C' into two parts, F and S, where F behaves as an ideal func-
tionality. It receives all the inputs and forwards them to &, which simulates
the real-world protocol for honest parties and sends the outputs to F. F then
forwards these outputs to £. This game is essentially equivalent to Game 2 with
a different structure which is invisible to €.

Game 4 (F handles the setup): F now behaves differently in the setup
interface, as it stores the algorithms defined in § [f] that are provided by S from
real-world protocol. F stores the algorithms, and checks that the algorithms
ver, |dentify and Revoke are deterministic [Check I, such check is indistinguish-
able from the real world since the algorithms are adopted from the real-world
protocol. F also performs checks and ensures that the structure of SID, which
represents the issuer’s unique session identifier defined in § [4] is correct for an
honest Z, and aborts if not. When Z is honest, S will start simulating it. Since
S is now running the Issuer, it knows its secret key. In case Z is corrupt, S
extracts Z’s secret key from w7 when the issuer registers his key with F.,, a
common certificate authority functionality that is available to all parties and
controlled by the simulator, then proceeds to the setup interface on behalf of
7. By the simulation soundness of 7z, this game transition is indistinguishable
from the previous game (Game 4 =~ Game 3).

Game 5 (F handles the verification and the revocation checks): F
now performs the verification and the revocation checks instead of forwarding
them to S. There are no protocol messages and the outputs are exactly as in
the real-world protocol. Knowing the lists KRL and SRL for corrupt signers, F
can perform the revocation checks, and the outcomes of these checks are equal
to the real-world protocol (Game 5 ~ Game 4).

Game 6: (F handles the join queries): F stores in its records the
members that have joined. If 7 is honest, F stores the secret key tsk, extracted
from S, for a corrupt signer. S always has enough information to simulate the
real-world protocol except when the issuer is the only honest party. In this case,
S does not know who initiated the join, and so cannot make a join query with
F on the signer’s behalf. Thus, to deal with this case, F can safely choose any
corrupt signer and put it into ML. The identities of signers are only used for
creating signatures for honest signers, so corrupted signers do not matter. In

24

the case that the signer is already registered in ML, F would abort the protocol
[Check II], but Z will have already tested this case before continuing with the
proceeding with the join query. Hence F will not abort. Thus in all cases, F
and S can interact to simulate the real-world protocol, so Game 6 ~ Game 5.

Game 7: (F performs pre-sign checks): If 7 is honest, then F now
only allows members that joined to sign [Check V]. An honest signer will always
check whether it has successfully joined (i.e., has been issued a valid credential)
before signing in the real-world protocol, so there is no difference for honest
signers. Therefore Game 7 ~ Game 6.

Game 8: (F handles the sign queries by simulating the Signer
without knowing the secret): We now transform F such that it internally
handles the signing queries of honest signers instead of merely forwarding them
to S that simulates the Signer and creates a signature using the Signer’s key
tsk = sk, as in the games before. When the Signer is honest, F creates
the signatures internally as follows: It chooses a new key key < {0,1}" per
signature and then runs the sign algorithm sig(key, msg) defined in Section
for that fresh key. To prove the anonymity of our EPID scheme, we show that if
there exists an environment that can distinguish a signature of an honest party
using tsk = sk, from a signature using a random key key < {0,1}", then the
environment can break the pseudorandom property of the function F'.

Suppose that & is given tuples ¥ = (str, sst, com, r, Ve s Aj, 7e),
where J denote the total number of the revoked signatures. In the reduction,
we have to be able to simulate the Signer u without knowing the secret sk,.
Let key be a randomly sampled key from {0,1}" that will be used to generate
signatures on behalf of the honest Signer rather than using the real Signer
secret key sk,. Since the issuer’s secret key msk can be extracted from the
issuer’s zero-knowledge proof nz for the correctness of the master secret and
public key pair due to the soundness of the proof m7 and getting access to
Fers, a common reference string functionality that provides participants with
all system parameters. Then a credential can be created on et!], = F(key, gid) by
running the signing algorithm of F-SPHINCS+ with the input (et!,, msk, gp).
After getting a credential on et!, sst will be calculated as functions of key
such that sst = F(key, sid) where sid = H(msg, str). All other parts of the
signature follow the same real-world protocol (i.e. when using the Signer’s
sky). The commitment com is calculated as our defined sign algorithm and the
proof 7 can then be perfectly simulated using the random secret key. Due
to the zero-knowledge property of the proof 7z and the pseudorandom outputs
of the function F', we argue that an external environment cannot distinguish
between 1) a signature generated using the Signer’s (sk,, et,) and 2) a signature
generated by a random (key,et!). The signature will not match one of the
revoked signatures »; € SRL with an overwhelming probability, because the
probability that ¥ matches one of the revoked signatures is that key matches
one of the keys that were used to generate ¥; which is J/2". For large n, this
becomes negligible. With a high probability the signature that is generated
from a random key r will not be revoked, so Game 8 ~ Game 7.

Game 9: (F performs pre-signing checks): When storing a new tsk =

25

sky, F checks CheckTtdCorrupt(tsk)=1 [Check IV] or CheckTtdHonest(¢sk)=1
[Check IIT] . We want to show that these checks will always pass. A valid
signatures always satisfy et, = F(sky, gid), sst = F(sky,sid) and (gr,,S) +
F-SPHINCS+sign(et,, msk, gp) where et,, corresponds to a signing key sk,. In
the real-world protocol, we have tsk = sk,. By the soundness property of
mg that is proved in § there exists one sst that matches this signature.
Thus, CheckTtdCorrupt(tsk) = 1 will always give the correct output. Also,
due to the large min-entropy of the uniform distribution the probability that
sampling a selected sk, is negligible for large n with probability equal to 1/2",
with overwhelming probability, there doesn’t exist a signature already using the
same sk,, which implies that CheckTtdHonest(tsk) = 1 will give the correct
output with overwhelming probability. Hence, Game 9 ~ Game 8.

Game 10: (F checks the correctness of the protocol): In this game
F checks that any honestly generated signature > = (str, sst, com, 7g) is always
valid due to the completeness property of mg and the correctness of the F-
SPHINCS+ signature. A valid proof mg on the credential ensures that the
credential has the correct structure and always leads to the correct extraction
of the issuer public key rpk due to the soundness of mg and the correctness of
the F-SPHINCS+ signature. Second, F makes sure identify(tsk, X, msg) = 1,
which is also achieved in the real-world protocol due to the soundness of ng.
F checks, using its internal records ML and DomainKeys that honest users are
not sharing the same secret key tsk. The soundness of 7z also ensures that
the honestly generated signatures will not match any revoked signature, this is
checked by F [Check XV] and [Check XVI] in the ideal world. This due to the
calculations of A; = F(F(sky,sid;),r) and B; = F(sstj,r) for V ¥; € SRL,
where sst; = F(skj, sid;) and & {0,1}", if A; # B; then F(skj,sid;) #
F(sky, sid;) and hence sk; # sk, due to the collision resistance property of the
function F. Therefore Game 10 ~ Game 9.

Game 11 (F checks that valid signatures are deterministic): Add
[Check IX] to ensure that there are no multiple sk, values matching to one
signature. However, since there exists only one sk, such that sst = F(sk,, sid)A
ety = F(sky, gid) A com = Hy(s||pkr||---||rpk) due to collision resistance of
the function F' and the binding property of the commitment com, thus two
different signatures cannot share the same sk,. In general, if there exist two
signatures sharing the same sk, then this breaks the soundness of 7g, thus any
valid signature should be identified to one sk,. Thus Game 11 ~ Game 10.

Game 12 (F checks the unforgeability of a credential): To prevent
accepting signatures whose corresponding credentials are not issued by the hon-
est issuer, F adds a further check [Check XIII]. This follows the unforgeability
property of the F-SPHINCS+ scheme as analysed in Appendix A. In our EPID
scheme, a membership credential is the issuer’s F-SPHINCS+ signature on the
Signer’s public key, so we get Game 12 ~ Game 11.

Game 13 (F checks the unforgeability of EPID signatures): [Check
XIV] is added to F to prevent anyone forging a signature, which should be
signed under honest signer’s group signing key gsk, = (sky, gry, S). If such

26

a signature is verified then due to the binding property of the commitment
scheme used to generate com = Hi(s||pkn||---||rpk), where s is a nonce and
pkn,- -+ ,rpk are the root values of a chained M-FORS trees. These keys are
used to verify the F-SPHINCS+ signature S. The signature should correctly
verify on an entry token (et,||gr,) under the first committed verification key
pkp, where et,, = F(sk,, gid) for some honest signer’s signing key sk,. We
argue that any modification in the committed verification keys would end with
a failed verification of the signature S on the user entry token (et,||gr,) due
to the correctness of F-SPHINCS+. Now suppose that an adversary knows
the credential (gr,,S) but not sk,. The adversary chooses a random sk, and
proceeds with the MPCitH NIZKPs for the construction of et, = F(sk.,, gid).
Due to the soundness of 7g, the proof cannot be simulated unless (et!,||gr.)
verifies to be correctly signed under pky, - - -, rpk used in com. This would only
happen if et], = et, due to F-SPHINCS+ being a q-EU-CMA secure signature
(see Appendix A for a proof). Therefore sk!, should match sk,. The probability
of this to happen is 1/2", then the advantage of the adversary is negligible for
large n. Therefore, Game 13 ~ Game 12 with overwhelming probability.
Game 14 (F checks the correct revocation): [Check XV] and [Check
XVI] are added to F to ensure that honestly generated signatures are not
being revoked. If there exists a matching revoked key sk € KRL which be-
longs to an honest signer and is not revoked, then this breaks the collision
resistance property of F'. Suppose that there exists a 3; € SRL, such that
Identify(sk}, ¥;,msg;) = 1, i.e., the equation A; = B; holds. This means
F(F(sk},sid;),r) = F(sst;,r), where sst; = F(skj,sid;) € £;. Due to the
soundness of the MPCitH proof of F, sk; will match to sk; which was used to
generate ¥; € SRL. However, as we assumed that sk, is not revoked, so A; # B;
will hold for all 3; € SRL. Therefore, Game 14 ~ Game 13. O

6 Implementation and Comparison

We implemented the signature revocation algorithm to show its feasibility and
assess its performanceﬂ The implementation was in C++ and used much of the
code provided by Chen et al. [22] in support of their paper on hash-based group
signatures. This code was itself based on the Picnic KKW scheme (namely
picnic3d) and used some subroutines from the Picnic implementation [48] sub-
mitted to the NIST Post-Quantum Cryptography Standardization project [44].
In their implementation, Chen et al. used two different security parameters,
i,e. n =129 and n = 255 and we use these same values for our tests. For the
MPC-in-the-Head parameters, we use those from the Picnic implementations.
Namely for n = 129, NR = 250 and NO = 36, while for n = 255, NR = 601
and NO = 68. NR and NO are the total number of MPC instances and the
number of opened MPC instances respectively.

We measure the performance of our EPID revocation scheme based on our
C++ implementation. The programs were compiled using the GNU GCC com-

IThe revocation code is available at: https://github.com/UoS-SCCS/HB_EPID_Revocation.

27

https://github.com/UoS-SCCS/HB_EPID_Revocation

piler [32] version 12.3.0 and executed on a laptop (Intel i7-8850H CPU @2.6GHz
: 32Gb RAM) with the Ubuntu operating system. Although the CPU has mul-
tiple cores, the timings were obtained using a single core. The performance
figures are given in Table [I] and are the averages for 10 runs. The timings were
obtained using the C++ timing routines. It should be noted that, unlike the
credential signing times these times are independent of the group size. They

are, as to be expected, approximately linear in the revocation list size.

Table 1: Revocation test results for different signature revocation list sizes
(times are in seconds and sizes in MB).

n SRL size sign verify TR, size
10 0.7 0.3 0.12
100 6.7 3.2 1.0
129
500 34.3 16.3 5.2
1000 67.5 32.5 10.4
10 3.4 1.6 0.43
100 33.1 15.7 3.9
255
500 164.2 78.0 19.2
1000 328.0 | 155.8 38.2

Table 2: Test results from Chen et al. [22] for various group sizes (times are in
seconds and sizes in MB).

n group size sign verify | sig. size
210 8.7 4.4 0.56
220 12.9 6.3 0.83
129
240 214 10.2 1.39
260 294 | 139 1.95
210 36.4 17.3 2.28
220 53.0 25.6 3.40
255
210 89.4 | 43.0 5.65
260 125.1 60.0 7.91

The timings are consistent with those obtained by Chen et al.

but are

very slow when compared against the results reported for the reference Picnic

28

implementation. We are currently investigating this discrepancy. As, to support
confidentiality, the code allows the inputs and outputs to the LowMC function to
be masked this introduces extra overheads when calculating each single LowMC
function and this may partially explain the discrepancy. This idea is supported
by the results of profiling the code when approximately 60% of the time is
reportedly spent in the (Picnic) tape generation and bit manipulation routines.

To enable comparison with other post-quantum EPID schemes we combine
the measurements from Chen et al. [22] (reproduced in Table [2) with those that
we obtained for my to give us an estimate of the signing times and signature
sizes for our EPID scheme. In Table |3| we show a comparison with several
lattice-based EPID implementations for which data is available. For these im-
plementations figures were given for a signature revocation list containing 1000
items and to make the comparison we use our figures for 1000 items and group
sizes of 240 and 25°. While our scheme is clearly better when considering the
user private key and signature sizes, the situation is less clear for the timings;
We are certainly on a par with the lattice-based schemes for n = 129, but lose
out when the security parameter is increased to n = 255. However, it should be
noted that this is a reference implementation in C++ with no attempt at op-
timisation or adaptation to use more efficient, but processor specific, processor
instructions. There is much scope for improving these timings.

Table 3: Comparison with lattice-based EPID schemes (signature sizes in MB
and times in seconds).

scheme private-key signing verification sig. size
LEPID [20] 58 KB 200 80 9f
LEPID [30] 100 KB 374 121 854
n =129, GS = 2%° 17 bytes 89 43 11.8
n=129,GS = 2% 17 bytes 97 46 12.4
n = 255,GS = 2 32 bytes 417 199 43.9
n =255 GS = 2°° 32 bytes 453 216 46.1

t This figure is estimated from the signature revocation size in [30] and the signature size in [23].

7 Conclusions

This paper proposes a new EPID scheme from symmetric primitives. Following
recent research on group signatures and direct anonymous attestation, we make
use of a modified SPHINCS+ signature as a group membership credential and
use an MPCitH-based signature to prove the possession of that credential. This
choice allows our EPID scheme to handle a large group size (up to 2°°), which
is suitable for rapidly increasing cyber security and trusted computing appli-
cations. Our EPID scheme has an efficient signature-based revocation method.
The security of the EPID scheme is proved under the UC framework. We present
several optimizations to improve performance and provide a prototype imple-

29

mentation. For future work, we will investigate ways of improving performance
and obtaining more practical benchmarks.

Acknowledgments

We thank the European Union’s Horizon research and innovation program for
support under grant agreement numbers: 779391 (FutureTPM), 952697 (AS-
SURED), 101019645 (SECANT), 101069688 (CONNECT), 101070627 (REWIRE)
and 101095634 (ENTRUST). These projects are funded by the UK government’s
Horizon Europe guarantee and administered by UKRI. We also thank the Na-
tional Natural Science Foundation of China for support under grant agreement
numbers: 62072132 and 62261160651. Finally, we appreciate the valuable com-
ments from the anonymous reviewers of PQCrypto 2024; particularly, the sug-
gestion that removing B; values from a signature would improve the perfor-
mance of our scheme.

30

References

[1]

Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael
Kloof}, Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly verifi-
able zero-knowledge and post-quantum signatures from VOLE-in-the-Head.
In CRYPTO, pages 581-615, 2023.

Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Em-
manuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and
fast signatures from AES. In Public-Key Cryptography - PKC, pages 266—
297, 2021.

Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct argu-
ments for R1CS. In EUROCRYPT, pages 103128, 2019.

Daniel J. Bernstein, Andreas Hiilsing, Stefan Ko6lbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The SPHINCST signature framework.
In ACM CCS, pages 2129-2146, 2019.

Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan
Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang. Ligero++: A
new optimized sublinear IOP. In ACM CCS, pages 2025-2038, 2020.

Chinmoy Biswas, Ratna Dutta, and Sumanta Sarkar. An efficient post-
quantum secure dynamic EPID signature scheme using lattices. Multimedia
Tools and Applications, pages 1-30, 2023.

Bruno Blanchet et al. Modeling and verifying security protocols with the
applied Pi calculus and ProVerif. Foundations and Trends®) in Privacy
and Security, 1(1-2):1-135, 2016.

Dan Boneh, Saba Eskandarian, and Ben Fisch. Post-quantum EPID sig-
natures from symmetric primitives. In CT-RSA, pages 251-271, 2019.

Dan Boneh and Hovav Shacham. Group signatures with verifier-local re-
vocation. In ACM CCS, pages 168-177, 2004.

Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Alessan-
dro Sorniotti. A framework for practical anonymous credentials from
lattices. Cryptology ePrint Archive, Paper 2023/560, 2023. https:
//eprint.iacr.org/2023/560.

Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous
attestation. In ACM CCS, pages 132-145, 2004.

Ernie Brickell and Jiangtao Li. Enhanced privacy ID: A direct anonymous
attestation scheme with enhanced revocation capabilities. In Proceedings
of the 2007 ACM workshop on Privacy in electronic society, pages 21-30,
2007.

31

https://eprint.iacr.org/2023/560
https://eprint.iacr.org/2023/560

[13]

[14]

[15]

[16]

Ernie Brickell and Jiangtao Li. Enhanced Privacy ID from bilinear pairing.
Cryptology ePrint Archive, Paper 2009/095, 2009. https://eprint.iacr.
org/2009/095.

Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pair-
ing for hardware authentication and attestation. International Journal of
Information Privacy, Security and Integrity 2, 1(1):3-33, 2011.

Ernie Brickell and Jiangtao Li. Enhanced privacy ID: A direct anonymous
attestation scheme with enhanced revocation capabilities. IEEE Trans.
Dependable Secur. Comput., 9(3):345-360, 2012.

Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick,
and Rainer Urian. One TPM to bind them all: Fixing TPM 2.0 for prov-
ably secure anonymous attestation. In IEEE Symposium on Security and
Privacy, pages 901-920. IEEE, 2017.

Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally compos-
able direct anonymous attestation. In Public-Key Cryptography — PKC,
pages 234—264. Springer, 2016.

Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primi-
tives. In ACM CCS, pages 1825-1842, 2017.

David Chaum and Eugene van Heyst. Group signatures. In EUROCRYPT,
pages 257-265, 1991.

Liquan Chen, Zeyu Xu, Tianyang Tu, and Zhongmin Wang. Lattice-based
privacy enhanced identity protocol for SDO services. In International Con-
ference on Signal and Image Processing (ICSIP), pages 609-613, 2023.

Liqun Chen, Changyu Dong, Nada El Kassem, Christopher JP Newton,
and Yalan Wang. Hash-based direct anonymous attestation. In PQCrypto,
pages 565600, 2023.

Liqun Chen, Changyu Dong, Christopher JP Newton, and Yalan Wang.
Sphinx-in-the-head: Group signatures from symmetric primitives. ACM
Transactions on Privacy and Security, 2023.

Liqun Chen, Nada El Kassem, Anja Lehmann, and Vadim Lyubashevsky.
A framework for efficient lattice-based DAA. In Proceedings of the 1st ACM
Workshop on Workshop on Cyber-Security Arms Race, pages 23-34, 2019.

Ming-Shing Chen, Yu-Shian Chen, Chen-Mou Cheng, Shiuan Fu,
Wei-Chih Hong, Jen-Hsuan Hsiang, Sheng-Te Hu, Po-Chun Kuo,
Wei-Bin Lee, Feng-Hao Liu, and Justin Thaler. Preon: zk-
SNARK based signature scheme. NIST PQ Signatures submissions,
2023. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/
documents/round-1/spec-files/Preon-spec-web.pdf.

32

https://eprint.iacr.org/2009/095
https://eprint.iacr.org/2009/095
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/Preon-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/Preon-spec-web.pdf

[25]

[34]

[35]

Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Na-
dia Heninger, Ahmad Moghimi, and Yuval Yarom. Cachequote: Efficiently
recovering long-term secrets of SGX EPID via cache attacks. ICAR Trans-
actions on Cryptographic Hardware and Embedded Systems, pages 171-191,
2018.

Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini,
and Nigel P. Smart. BBQ: using AES in Picnic signatures. In Selected
Areas in Cryptography - SAC, pages 669692, 2019.

Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tan-
guy. Limbo: Efficient zero-knowledge MPCitH-based arguments. In ACM
CCS, pages 3022-3036, 2021.

Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus
Schofnegger, and Greg Zaverucha. Shorter signatures based on tailor-made
minimalist symmetric-key crypto. In ACM CCS, pages 843-857, 2022.

Nada El Kassem. Lattice-based direct anonymous attestation. PhD thesis,
University of Surrey, 2020.

Nada El Kassem, Luis Fiolhais, Paulo Martins, Liqun Chen, and Leonel
Sousa. A lattice-based enhanced privacy ID. In Information Security The-
ory and Practice, WISTP 2019, pages 15-31. Springer, 2020.

Antonio Faonio, Dario Fiore, Luca Nizzardo, and Claudio Soriente.
Subversion-resilient enhanced privacy ID. In CT-RSA, pages 562-588.
Springer, 2022.

Free Software Foundation, Inc. GCC, the GNU Compiler Collection.
https://ggcc.gnu.org, 2022.

Shihui Fu and Guang Gang. Polaris: Transparent succinct zero-knowledge
arguments for R1CS with efficient verifier. In Proceedings on Privacy En-
hancing Technologies, pages 544-564, 2022.

Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-
knowledge for boolean circuits. In USENIX Security, pages 1069-1083,
2016.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In STOC, pages 21-30,
2007.

ISO/IEC 10118-2:2010. Information technology — Security techniques —
Hash-functions — Part 2: Hash-functions using an n-bit block cipher. Stan-
dard, International Organization for Standardization, Geneva, CH, 2010.

33

https://ggcc.gnu.org

[37]

ISO/IEC 20008-2:2013. Information technology — Security techniques —
Anonymous digital signatures — Part 2: Mechanisms using a group public
key. Standard, International Organization for Standardization, Geneva,
CH, 2013.

Daniel Kales and Greg Zaverucha. Efficient lifting for shorter zero-
knowledge proofs and post-quantum signatures. Cryptology ePrint Archive,
Paper 2022/588, 2022. https://eprint.iacr.org/2022/588.

Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signatures.
In ACM CCS, pages 525-537, 2018.

Seongkwang Kim, Jincheol Ha, Mincheol Son, Byeonghak Lee, Dukjae
Moon, Joohee Lee, Sangyub Lee, Jihoon Kwon, Jihoon Cho, Hyojin Yoon,
et al. AIM: symmetric primitive for shorter signatures with stronger secu-
rity. In ACM CCS, pages 401-415, 2023.

Leslie Lamport. Constructing digital signatures from a one-way function.
Tech. Report: SRI International Computer Science Laboratory, 1979.

Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plancon. Lattice-
based zero-knowledge proofs and applications: shorter, simpler, and more
general. In CRYPTO, pages 71-101. Springer, 2022.

Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor,
CRYPTO, pages 218-238, 1989.

NIST. Post-quantum cryptography standardization. https:
//csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization, 2017-2022.

NIST. NIST announces first four quantum-resistant cryptographic
algorithms. https://nist.gov/news-events/news/2022/07/nist-
announces-first-four-quantum-resistant-cryptographic-algorithms,

2022.

Muhammad Usama Sardar, Christof Fetzer, et al. Towards formalization
of enhanced privacy ID (EPID)-based remote attestation in Intel SGX. In
Euromicro Conference on Digital System Design (DSD), pages 604—607,
2020.

TCG. TPM 2.0 library specification. https://trustedcomputinggroup.
org/resource/tpm-library-specification/|

Zaverucha, Ramacher, Kales, and Goldfeder. Reference implementation
of the Picnic post-quantum signature scheme. https://github.com/
Microsoft/Picnic), 2020.

Gerg Zaverucha. The Picnic signature algorithm specification. Supporting
Documentation in https://github.com/Microsoft/Picnic, 2020.

34

https://eprint.iacr.org/2022/588
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://nist.gov/news-events/news/2022/07/nist-
announces-first-four-quantum-resistant-cryptographic-algorithms
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://github.com/Microsoft/Picnic
https://github.com/Microsoft/Picnic
https://github.com/Microsoft/Picnic

Experiment Expg‘%UACMA (n)

- (sk,pk) « kg

- (M*,0%) < A®9"(k) (pk), and A can query the sign Oracle at most ¢
times.

- Return 1 iff vf(pk, M*,0%) = L AN M* & {M;}_,

Figure 4: ¢-EU-CMA game.

Appendix
A Security Analysis: F-SPHINCS+

The standard security definition for digital signature schemes is existential un-
forgeability under adaptive chosen-message attacks (EU-CMA). It can be ex-
tended to a few-time signature by limiting the adversary’s call to the sign oracle
to ¢ times where g is the maximum number of signatures that the few-time signa-
ture scheme is allowed to generate for each signing key. Let SIG = (kg, sign,vf)
be a ¢-time signature scheme, Figure [d] shows the ¢-EU-CMA game.

Definition 1 (¢-EU-CMA). Let SIG be a digital signature scheme. It is said
to be ¢-EU-CMA secure, if for any adversary A, the following holds:

Succk ETOMA(A(n)) = Pr [Expg}%%CMA(n) = 1| < negl(n)

Theorem 1. For suitable parameters, n,d, k, h,q, the F-SPHINCS+ signature
is ¢"-EU-CMA secure if:

e Hy is SM-TCR and SM-DSPR secure;

e H5 is TSR secure with at most q queries;

e Hy is ITSR secure with at most q" queries;
o prfis a secure pseudorandom function.

Proof. To successfully forge a group issuer’s signature on a message M chosen
by the adversary, there are the following mutually exclusive cases:

1 Let M D||idx = H3(M]||gr) for some gr. In the forged signature, All secret
strings corresponding to MD = pol|- - ||px_1, i.e. {x}’ ks, are the same
as generated from leaf;;,’s secret key. This case consists of the following

sub-cases:

35

1.1 The adversary learns all secret strings from signatures obtained in the
query phase.

1.2 Some secret strings are not leaked from previous signatures, and for each
of them, the adversary either:

1.2.1 learns it by breaking the pseudorandom function that is used to
expand the secret key into x;;

1.2.2 or learns it by looking at their H; hash values and find the pre-
images.

2 Let M D||ide = H3(M]||gr) for some gr. In the forged signature, some secret
strings corresponding to M D = pyl|---||pk—1, ie. {x,(fi) kL, are NOT the
same as generated from leaf;,,’s secret key. Then let S be the list of h + 1
M-FORS signatures in the forged signature, we can find 7 such that when
verifying the i-th signature (0 < i < h), we obtain the same public key as
would be generated by the signer, but for all 0 < j < i, we obtain a different
public key as would be generated by the signer. This means:

2.1 The adversary has found at least one second-preimages of H; so that
some Merkle trees in the ith signature are computed with the second-
preimages. They end up having the same roots as the trees computed
by the group issuer.

2.2 The adversary knows all secret strings corresponding to the public key
produced from verifying the (¢ — 1)th signature. This public key is dif-
ferent from the public key at the same location generated by the group
issuer. This can be done by either:

2.2.1 learning all from previous signature queries;
2.2.2 or breaking the pseudorandom function;
2.2.3 or finding some pre-images of Hj.

Given the above, we analyze the F-SPHINCS+ signature scheme through a
series of games:
Game 0: The original EU-CMA game in which the adversary needs to forge a
valid group issuer’s signature after g, queries.
Game 1: Exactly as Game 0 except all output of prf are replaced by truly
random n-bit strings. We eliminate from the above list Case 1.2.1 and 2.2.2 by
this modification. Since each call to prf uses a secret key and a distinct value
as input, assuming prf is a pseudorandom function, we have:

|Succ™C(A(n)) — Succ® (A(n))| < negl(n)

Game 2: Game 2 differs from Game 1 in that we consider the adversary lost
if the adversary outputs a forgery by breaking the ITSR security of Hz. This
modification eliminates from the above list Case 1.1. The winning condition in
Figure [4] is changed to:

~ Return 1 iff ITSR(Hs, M*) = 0 A vf(pk, M*,0%) = 1 A M* & {M;}2,.

36

The predicate ITSR is defined as the following:

e Let M™ be the message that the adversary chooses to generate the forgery
on, and gr* the random string used by the adversary to compute M D*||idx* =
Hy(M*[|gr).

e Parse MD* = pj||---||pj_; where each p} € [0,2¢ — 1]. From the above
we obtain a set C* = ((idz™*,0,pj), - - -, (idx*, k — 1,p;_,)).

e For each message queried in the query phase M; (1 < i < ¢"), and gr;
the random string, compute M D;||idz; = Hs(M;||gr;) and obtain C; =
((idxia Ovpi,0)7 R (de’u k— 17pi,k71))'

e Return 1 iff C* C Ugil C;.

We can see that ITSR(Hs, M*) = 0 iff the adversary can break the ITSR
security of Hs. Hence, we have:

Suce®™ ! (A(n)) — Succ“*™*(A(n))| < Succh>H (A) < negl(n)

Game 3: Game 3 differs from Game 2 in that we consider the adversary lost
if the forgery contains a second preimage for an input to H; that was part of a
signature returned as a signing-query response. Here the second preimage can
be included explicitly in the signature, or implicitly observed when verifying the
signature. This eliminates from the above list Case 2.1. Then we have:

|Succ* ™2 (A(n)) — Succ® ™ (A(n))| < Succflllv{;TCR(A) < negl(n)

Game 4: Game 4 differs from Game 3 in that we consider the adversary lost
if the adversary outputs a forgery by breaking the TSR security of Hs, which
allows the adversary to forge an intermediate signature in S, and then any
signature earlier in the chain. This eliminates from the above list Case 2.2.1.
The winning condition in Figure [is changed to:

- Return 1 iff TSR(Hy, M*) = 0 A ITSR(Hs, M*) = 0 Avf(pk, M*,0*) =
h
LAM* ¢ {M;}L,.
The predicate TSR is defined as the following:

e The adversary chooses an intermediate node in the hyper-tree at address
(a,b), and two n-bit string L*, R*.

e For each signature obtained in the query phase, if S; includes a signature
generated using the secret key in node (a,b) over the public key in one
of its child node, parse this public key into k blocks, each of d-bit pk; =

pioll- - ||pik—1, and generate a set C; = {(4,p; ;) ?;&.
o Compute pk* = Hy(aux||k||0]|0]|L*||R*), parse pk* into p§]| - - - |[p}_;, and

k-1

generate a set C* = {(j,p})}; ;-

e Return 1iff C* C L, C;.

37

Note that each M-FORS public key is the root of a Merkle tree generated
from pseudorandom strings. Also for each intermediate node in a hyper-tree, it
has at most ¢ children, hence no more than ¢ signatures signed by the secret key
in this intermediate node can be obtained by the adversary. So TSR(Hy, M*) =
0 iff the adversary can break the TSR security of Hs. Hence, we have:

|Succ“™ 3 (A(n)) — Succ™* (A(n))| < Succr, (A) < negl(n)

Now the cases in which the adversary can forge a signature are all eliminated
except Case 1.2.2 and 2.2.3, which requires the adversary to find a pre-image of
at least one hash values produced by H;. The success probability of finding a
pre-image is as analyzed in [4]:

Succ? ™ (4) < 3. Succfg{;TCR(A) + Advfl]f{;DSPR(A)
< negl(n)

So overall, the advantage of the adversary is negligible. O

TSR security of H,

In any case, ¢ signatures can be generated under the secret key of a non-leaf
node in the hyper-tree. Assuming the adversary knows all of them, then for each
block of the chosen pk*, the probability of the secret string has been leaked is
1 — (1 — 57)9, so all secret string have been leaked is (1 — (1 — 57)?)*. For
d =16, q = 1024, k = 68, this probability is 2746887 if k = 35, this probability
is 27210.39'

ITSR security of Hs

For a leaf node of the hyper-tree, it may have been used to sign 7 signatures
out of the total ¢, signature queries. So the probability that all secret string of
a chosen message M being leaked through query is:

Ly 4s Lyg— 1
-5)k()(1—(1,1) 7

V g

For d = 16,q = 1024,k = 68,h = 6,q, = 29, this probability is 2740732 if
k = 35, this probability is 27208:95,

38

	Introduction
	Preliminaries
	Hash-based signatures
	MPC-in-the-Head based signatures
	M-FORS and F-SPHINCS+ signatures
	M-FORS
	F-SPHINCS+
	M-FORS partial proof

	The Proposed EPID Scheme
	Syntax
	Details of algorithms and protocols
	The proof E
	Soundness Analysis of E
	Splitting revocation and credential proofs

	UC-based EPID Security Model
	UC Security Proof of the EPID Scheme
	Implementation and Comparison
	Conclusions

