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Abstract. Vector commitments (VC) have gained significant attention
due to their extensive use in applications such as blockchain and ac-
cumulators. Mercurial vector commitments (MVC) and mercurial func-
tional commitments (MFC), as variants of VC, are central techniques
for constructing more advanced cryptographic primitives, such as zero-
knowledge sets and zero-knowledge functional elementary databases (ZK-
FEDB). However, existing MFCs only support linear functions, which
limits their applicability—for instance, in building ZK-FEDBs that sup-
port only linear function queries. Moreover, to the best of our knowledge,
the current MFCs and ZK-FEDBs, including the state-of-the-art pro-
posed by Zhang and Deng (ASIACRYPT ’23) using RSA accumulators,
are all based on group-based assumptions and cannot resist quantum
computer attacks.
To address these limitations, we first formalize the system and security
models of MFC to support Boolean circuits. Then, we target specific
properties of a new falsifiable assumption, namely the BASIS assump-
tion proposed by Wee and Wu (EUROCRYPT ’23), to construct the
first lattice-based succinct mercurial functional commitment for Boolean
circuits. As an application of our construction, we demonstrate how it
can be used to build the first lattice-based ZK-FEDB within the existing
generic framework.

Keywords: Vector commitment · Mercurial commitment · Lattice ·
Zero-knowledge elementary database.

1 Introduction

Vector commitment (VC) [17,6] supports one to commit to a vector of messages
and later fine-grained opens the commitment at a specific index. Generally, a
standard VC has three properties:

– Succinctness: the sizes of the commitment and the opening are polylogarith-
mic with the length of the vector.
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– Binding : the adversary cannot open the commitment to different values at
the same index.

– Hiding : the adversary can only learn the message at the index given the
corresponding opening and cannot learn the messages at other indices.

Later, VCs have been extended to subvector commitment (SVC) [13,23] that
allow aggregating the openings to a subvector of the committed vector instead
of one index. And functional commitment (FC) supports opening to a linear
map [13], constant degree polynomial [2], or Boolean circuit [20,23,4,3,22] of the
committed input.

Besides, mercurial vector commitment (MVC) [17,6], as one of the most inter-
esting variants of VCs, satisfies the mercurial property additionally. The mercu-
rial property was first proposed by Chase et al. [7] in the mercurial commitment
(MC) which allows the committer to make two kinds of opening: In the soft
opening, the committer can claim that “If I have committed to anything at all,
then the committed value is m”, i.e. it implies that he may commit to the value
m or nothing. While in the hard opening, the committer can declare that “Yes,
I really have committed to the value m”. It means that he must commit to m.
In particular, the commitment c can either be both soft and hard opened only
to the unique value m (if c is hard commitment), or can only be soft opened
to arbitrary values, but cannot be hard opened at all (if c is soft commitment).
Moreover, the committer must decide before generating the commitment which
one of the two cases suits him better: the hard commitment of only one value,
or the soft commitment of nothing at all.

Correspondingly, the MVC allows one to commit a hard commitment to the
input vector or a soft commitment to nothing at all. The hard commitment can
be both hard and soft opened to the unique value at each index, while the soft
commitment can only be soft opened to arbitrary value at every index. Further-
more, the security of MVC, named mercurial hiding requires that the adversary
cannot distinguish between the soft commitment and hard commitment even
given their associated soft openings. One can find that the property of mercurial
hiding in MVC implies the property of hiding in VC. Subsequently, mercurial
subvector commitment (MSVC) [14] was proposed to open to the subvector,
while the existing mercurial functional commitment (MFC) [24] only supports
opening to a linear function of the committed vector.

Applications: MVC and MFC apply to many cryptographic building blocks
such as zero-knowledge set (ZKS) [7,18,5,15], zero-knowledge elementary database
(ZK-EDB) [8,6,14], and zero-knowledge functional elementary database (ZK-
FEDB) [24] in which all utilize the mercurial property in MVC and MFC, i.e.
using the hard commitment (and soft commitment) to denote the existent (and
non-existent) elements and then using the hard opening (and soft opening)
to compose the proof of membership, key-value or function value (and non-
membership) in the database. It guarantees that the generated proof does not
leak any knowledge about the database except the result itself.

Overall, there is neither MFC that supports opening to Boolean circuits nor
lattice-based construction of MFC or ZK-FEDB.
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To fill these gaps at one time, roughly speaking, we observe that the property
of hiding in functional commitment is a subset of mercurial hiding property in
mercurial functional commitment, and the remaining challenge for achieving
mercurial hiding property is how to generate an indistinguishable valid (soft)
opening from the soft commitment. Meanwhile, we notice that the functional
commitment for Boolean circuits based on the BASIS assumption proposed by
Wee and Wu [23] supports hiding the committed messages. Thus, we intend to
solve the remaining challenges based on their constructions in this paper.

We refer to Table 1 for a comparison among the state of the art.

Scheme AS MC Functions |crs| |C| |π| Tc To Tv

[24] DDH ! linear maps ℓ 1 1 ℓ |f | |f |

[2] k-M-ISIS % d-degree polynomial ℓ2d 1 1 ℓ2d |f | 1∗

[23] BASIS % d-depth circuit ℓ2 1 1 ℓ |f | |f |
[4] SIS % d-depth circuit† ℓ 1 ℓ |f | |f | ℓ

[22] ℓ-succinct SIS % d-depth circuit ℓ2 1 1 ℓ |f | |f |

Cons. 4.1 BASIS ! d-depth circuit ℓ2 1 1 ℓ |f | |f |
* It needs additional pre-procession before the verification.
† It is a dual functional commitment where one commits to a function f and opens
to an input x, while other schemes in this comparison are standard functional
commitments where one commits to an input x and opens to a function f .

Table 1. Comparison to current works on (mercurial) functional commitments. For
each scheme, we report the assumption (AS) it is based on, whether it satisfies the
mercurial property (MC), the class of functions it supports, the size of common ref-
erence string crs, commitment C, opening π, and the running times Tc, To, Tv of the
commit, opening, and verification algorithms in terms of the input length ℓ and the
size of the associated function |f |, i.e., the input number of linear maps, the degree of
the polynomial, and the depth of Boolean circuits. We assume functions with a single
output. For simplicity, we suppress poly(λ, d, log ℓ) terms throughout the comparison
(where λ denotes the security parameter and d refers to either the fixed degree of poly-
nomials or the fixed depth of Boolean circuits).

1.1 Our Contribution

We first formalize the definition of succinct mercurial functional commitment for
Boolean circuits and propose the first lattice-based construction that supports
opening to a general (Boolean) circuit, achieves succinctness, and satisfies the
security requirements of mercurial (target) binding and mercurial hiding. Fur-
thermore, we show how to utilize our construction to build the first lattice-based
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ZK-FEDB directly within the existing generic framework that allows users to
make Boolean circuit queries.

1.2 Technical Overview

We first recall the construction of succinct functional commitment for Boolean
circuits based on the BASIS assumption that supports private opening proposed
by Wee and Wu [23]. To simplify, we omit some details.

In the setup, it first generates a random target vector u and a random matrix
A with its trapdoor R. There exists a PPT algorithm x← SampPre(A,R, t, s)
that input the random matrix A, its trapdoor R, any target vector t, and some
Gaussian parameter s, it can output a short vector x over the distribution of
discrete Gaussian A−1(t) conditioned on Ax = t. It publishes u, A, and other
public parameters as the common reference string and keeps R as a secret.

During the commitment phase, due to the property of BASIS assumption,
the commitment C of the input x ∈ {0, 1}ℓ can be sampled by SampPre(x, ·)
via a public matrix composed of A and some public parameters and its public
trapdoor. This mechanism can guarantee to hide the committed values x, even
given the trapdoor of a public matrix composed of A. The full analysis can be
found in Definition 2.5 and [23].

Then, we show the opening and verification phases in more detail:

– In the opening phase, it constructs the matrixDf and its associated trapdoor
Rf as below:

Df = [A|C̃f + (f(x)− 1) ·G], Rf =

[
−Vf

I

]
where G = I ⊗ gT is the gadget matrix, C̃f , Vf are generated by the
homomorphic encoding described in Theorem 2.6 taking commitment C,
Boolean circuit f : {0, 1}ℓ → {0, 1}, and input x ∈ {0, 1}ℓ (only for Vf ) as
input. Thus, we have DfRf = {−G,G} (by Theorem 2.6) so that Rf is the
gadget trapdoor of Df (by Theorem 2.1). Then it samples the preimage of
the public random target vector u as the opening:

vf ← SampPre(Df ,Rf ,u, s)

where s is the Gaussian parameter.
– In the verification phase, it accepts that vf is the valid opening to (f, y), i.e.

y = f(x), for the commitment C if

∥vf∥ ≤ β ∧ [A|C̃f + (y − 1) ·G]vf = u (1.1)

We omit the analysis of correctness and binding and would like to emphasize
the property of private opening : since the opening vf ← SampPre(Df ,Rf ,u, s)
is over the distribution of D−1

f (u), it means that there exist some simulating
algorithms that can randomly sample a fake commitment C without any input
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x and generate its valid equivocation opening vf to any function f at any value
y only with the trapdoor R of A over the same distribution.

We observe that private opening meets the part of the mercurial hiding prop-
erty, and the rest of this property requires generating the indistinguishable soft
opening for hard commitment and soft commitment without the trapdoor R of
A. To achieve it, inspired by [15,21], we secretly insert a “trapdoor” into the soft
commitment. Here, the difference between [21] is that due to the different phases
of generating the opening between functional commitment and vector commit-
ment, we need to modify the opening phase instead of the commitment phase.
This is non-trivial work because we need to guarantee it indistinguishable, valid,
and checkable without compromising the private opening. We sketch as follows:

We first provide two algorithms to generate the indistinguishable D in hard
commitment and soft commitment respectively:

D = AR̂ and D = G−AR̂

where R̂ is short and sampled randomly. Then we extend the matrix Df as
follows:

Df = [A|D|C̃f + (f(x)− 1) ·G]

After that, to generate an opening for the hard commitment, the trapdoor Rf

of Df can be extended naturally by Rf = [−Vf ,0, I]
T; To generate an opening

for the soft commitment, the trapdoor Rf can be constructed by R̂ instead of

Vf , i.e. Rf = [R̂, I,0]T. It means that without the trapdoor R of A, it can
still generate a valid and indistinguishable opening that satisfies Eq. 1.1 for the
soft commitment which does not contain any input messages and the private
opening still holds. Therefore, we need R̂ as the additional opening for the hard

commitment and add a check for D
?
= AR̂ during the verification for hard

opening. We provide the formal definition in Section 3 and full constructions
and analysis in Section 4.

1.3 Related Work

There are a number of breakthroughs in the academic research of MCs. The
first MC was proposed by Chase et al. [7] based on a variant of the Diffie-
Hellman (DH) assumption. Catalano et al. [5] presented a trapdoor mercurial
commitments (TMC) based on a one-way function. Libert et al. [15] propose
the first lattice-based construction of MC. In addition, Libert and Yung [17]
proposed the concept of MVC and provided two different constructions based on
q-DH assumption and RSA assumption, respectively, which support mercurially
commit on a q-length vector. Subsequently, Wang et al. [21] propose a lattice-
based construction of MVC that satisfies updatability and aggregatability. Wu
et al. [24] put forward the concept of MFC and gave a pairing-based construction
that supports opening the commitment to a linear function. Then, as the follow-
up of [10,17], Li et al. [14] proposed the first definitions of MSVC and provided a
construction based on Computational-DH (CDH) assumption in random oracle
(RO) model.
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Another line of work is to construct the vector commitments and functional
commitments. The concept of VC was first proposed by Catalano and Fiore
in [6] and provided two different constructions of VC based on CDH assump-
tions and RSA assumptions, respectively. Then, Libert et al. [16] generalized the
concept of the VC to FC that can open the commitment to a linear function.
Besides, there are numerous works in lattice-based constructions of VC [20,23]
and FC [20,2,23,4,22,3]. Among them, only the constructions of FC for Boolean
circuits proposed by Wee and Wu [23] using a new falsifiable family of basis-
augmented SIS assumption (BASIS) satisfy private opening which implies hiding
property. Therefore, our work is based on the BASIS assumption as well.

Overall, there is no work on an MFC that supports opening to a Boolean
circuit or a lattice-based construction.

2 Preliminaries

2.1 Notation

Let λ ∈ N denote the security parameter. For a positive integer ℓ, denote the
set (1, ..., ℓ) by [ℓ]. For a positive integer q, we denote Zq as the integers modulo
q. We use bold uppercase letters to denote matrices like A and bold lowercase
letters to denote vectors like x. ∥x∥ is denoted as the infinity norm of vector
x. When X is a matrix, ∥X∥ := maxi,j |Xi,j |. For matrices A1, ...,Aℓ ∈ Zn×m

q ,

we use diag(A1, ...,Aℓ) ∈ Znℓ×mℓ
q to be the block diagonal matrix with blocks

A1, ...,Aℓ along the main diagonal (and 0 elsewhere). We let poly(λ) be a fixed
function O(λc) for some c ∈ N and negl(λ) as a function o(λ−c) for all c ∈ N.
We use R

$← {0, 1}m×m′
to denote a uniformly randomly sampled matrix R =

[r1|...|rm′ ] ∈ Zm×m′
where ri

$← {0, 1}m for all i ∈ [m′]. For any positive integer
k, we denote Ik as the identity matrix of order k. Let n be a positive integer,
q ∈ poly(n) be a modulus. Define the gadget matrix G = In⊗ (1, 2, ..., 2⌈log q⌉) ∈
Zn×m′

q where m′ = n(⌈log q⌉+ 1) and ⊗ denotes Kronecker product.

Min-entropy. According to [9,11,23], for a discrete random variable X, let
H∞(X) = − log(maxx Pr[X = x]) denote its min-entropy. For two (possibly
correlated) discrete random variables X and Y , the average min-entropy of X
given Y is denoted as H∞(X | Y ) = − log(Ey→Y maxx Pr[X = x | Y = y]). The
optimal probability of an unbounded adversary guessing X given the correlated
value Y is 2−H∞(X|Y ).

2.2 Lattice Preliminaries

Lattice. Let B ∈ Rn×n be a full-rank matrix over R. Then the n-dimensional
lattice L generated by B is L = L(B) = {Bz : z ∈ Zn}. If A ∈ Zn×m

q for integers

n, m, q, we define L⊥(A) = {x ∈ Zm
q : Ax = 0 mod q}.
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Discrete Gaussian over Lattice. For integer m ∈ N, we denote DZm,s as
the discrete Gaussian distribution centered at 0 over Zm with width parameter
s ∈ R+. For a matrix A ∈ Zn×ℓ

q and a vector v ∈ Zn
q , let A−1

s (v) be the pre-
image distributed on x ← DZm,s conditioned on Ax = v mod q. A−1

s can be
extended to matrices by applying A−1

s to each column of the input.

Theorem 2.1 (Gadget Trapdoor [23,19]). Let n, m, q, m′ be lattice param-
eters. There exist efficient algorithms (TrapGen, SampPre):

– (A,R) ← TrapGen(n,m, q): On input the lattice dimension n, the modulus
q, and the number of samples m, the trapdoor-generation algorithm outputs
a matrix A ∈ Zn×m

q statistically close to uniform over Zn×m
q together with

a trapdoor R ∈ Zm×m′

q which AR = G and ∥R∥ = 1.
– u ← SampPre(A,R,v, s): On input a matrix A ∈ Zn×m

q , a trapdoor R ∈
Zm×m′

q , a target vector v ∈ Zn
q , and a Gaussian width parameter s. If s ≥√

mm′∥R∥ω(
√
log n)), the preimage sampling algorithm outputs a vector u ∈

Zm
q satisfying Au = v and the distribution of u is statistically close to

A−1
s (v).

Remark 2.2. Denote H as a tag if AR = HG for some invertible matrix
H ∈ Zn×n

q .

Remark 2.3. To sample the preimage of a matrix V ∈ Zn×ℓ
q , we denote SampPre(A,

R,V, s) as the algorithms that outputs the matrix where the ith column is SampPre(A,
R,vi, s) and vi is the ith column of V.

Definition 2.4 (SIS Assumption [1]). Let λ be a security parameter, and
n = n(λ), m = m(λ), q = q(λ), β = β(λ) be lattice parameters. The short
integer solution assumption SISn,m,q,β holds if for all efficient adversaries A,

Pr

Ax = 0 ∧ 0 < ∥x∥ ≤ β

∣∣∣∣∣∣ A
$← Zn×m

q ;
x← A(1λ,A)

 = negl(λ)

Definition 2.5 (BASIS Assumption [23]). Let λ be a security parameter and
n = n(λ), m = m(λ), q = q(λ), β = β(λ) be lattice parameters, s be a Gaussian
width parameter, Samp be an efficient sampling algorithm that takes a security
parameter λ and a matrix A ∈ Zn×m

q as input and outputs a matrix B ∈
Zn′×m′

q along with auxiliary information aux. The basis-augmented SIS (BASIS)
assumption holds with respect to Samp if for all efficient adversaries A,

Pr

Ax = 0 ∧ 0 < ∥x∥ ≤ β

∣∣∣∣∣∣
A

$← Zn×m
q ;

(B, aux)← Samp(1λ,A),T← B−1
s (G′

n);
x← A(1λ,A,B,T, aux)

 = negl(λ)

Informally, BASIS assumption requires that SIS assumption is hard towards A
even given a trapdoor T for its related matrix B.
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The instantiation of the BASIS assumption with structured matrices (BASISstruct)

is that: algorithm Samp(λ,A) samples Wi
$← Zn×n

q for all i ∈ [ℓ] and outputs

Bℓ =

 W1A
. . .

WℓA

∣∣∣∣∣∣∣
−Gn

...
−Gn

 , aux = (W1, ...,Wℓ)

Note that the BASISstruct assumption is conceptually similar to k-R-ISIS assump-
tion [2] in which some instances are as hard as standard SIS. However, for now,
there is no analogous reduction for the BASISstruct assumption or k-R-ISIS as-
sumption from the standard lattice assumption.

To simplify, we use BASIS to represent BASISstruct in the following, unless
otherwise noted.

Theorem 2.6 (Homomorphic Encoding [11,23]). Let λ be a security pa-
rameter and n = n(λ), m = m(λ), q = q(λ) be lattice parameters. Let m′ =
n(⌈log q⌉ + 1). Let ℓ = ℓ(λ) be an input length. Let Fλ be a family of functions
f : {0, 1}ℓ → {0, 1} that can be computed by a Boolean circuit of depth at most
d = d(λ). Then, there exists a pair of efficient algorithms (EvalF, EvalFX) with
the following properties:

– C̃f ← EvalF(C̃, f): Input a matrix C̃ ∈ Zn×ℓm′

q and a function f ∈ Fλ, the

input-independent evaluation algorithm outputs a matrix C̃f ∈ Zn×m′

q .

– HC̃,f,x ← EvalFX(C̃, f,x): Input a matrix C̃ ∈ Zn×ℓm′

q and a function f ∈
Fλ, and an input x ∈ {0, 1}ℓ, the input-independent evaluation algorithm
outputs a matrix HC̃,f,x ∈ Zlm′×m′

q .

Moreover, for all security parameter λ ∈ N, matrix C̃ ∈ Zn×ℓm′

q , all functions

f ∈ Fλ, and all inputs x ∈ {0, 1}ℓ, the matrix C̃f ← EvalF(C̃, f) and HC̃,f,x ←
EvalFX(C̃, f,x) satisfy the following properties:

– ∥HC̃,f,x∥ ≤ (n log q)O(d).

– (C̃− xT ⊗G) ·HC̃,f,x = C̃f − f(x) ·G.

3 System Model and Security Model

In this section, we show the definition of our mercurial functional commitment
for Boolean circuits and the security properties required to satisfy.

Definition 3.1 (Mercurial Functional Commitment). Let λ be the secu-
rity parameter. Let Fλ be a family of functions f : {0, 1}ℓ → {0, 1} on inputs
of length ℓ = ℓ(λ) that can be computed by Boolean circuits of depth at most
d = d(λ). A succinct (trapdoor) mercurial functional commitment for Fλ com-
prises the following algorithms:
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– crs← Setup(1λ, 1ℓ, 1d): Input a security parameter λ and an input length ℓ,
and a circuit depth d, it outputs common reference string crs and a trapdoor
key tk optionally.

– {(C,D), aux} ← HCom(crs,x): Input the common reference string crs and
an input x ∈ {0, 1}ℓ, it outputs a hard commitment (C,D) and auxiliary
information aux.

– π ← HOpen(crs, f, aux): Input the common reference string crs, a function
f ∈ Fλ, and the auxiliary information aux, it outputs a hard opening π.

– {0, 1} ← HVerify(crs, (C,D), f, y, π): Input the common reference string crs,
a hard commitment (C,D), a function f ∈ Fλ, a value y ∈ {0, 1}, and a hard
opening π, it outputs 0 or 1 to indicate whether π is a valid hard opening.

– {(C,D), aux} ← SCom(crs): Input the common reference string crs, it out-
puts a soft commitment (C,D), and auxiliary information aux.

– τ ← SOpen(crs,F, f, y, aux): Input the common reference string crs, a flag
F ∈ {H,S} which indicates that the soft opening τ is for hard commitment
or soft commitment, a function f ∈ Fλ, a value y ∈ {0, 1} and the auxiliary
information aux, it outputs the soft opening τ . If F = H and y ̸= f(x), it
aborts and outputs ⊥.

– {0, 1} ← SVerify(crs, (C,D), f, y, τ): Input the common reference string crs,
the commitment (C,D), a function f ∈ Fλ, a value y ∈ {0, 1}, and soft
opening τ , it outputs 0 or 1 to indicate whether τ is a valid soft opening.

– {C,D, aux} ← FCom(crs, tk): Input the common reference string crs and
trapdoor key tk, it outputs a fake commitment (C,D) and auxiliary infor-
mation aux.

– π ← EHOpen(crs, tk, f, y, aux): Input the common reference string crs and
the trapdoor key tk, a function f ∈ Fλ, a value y ∈ {0, 1}, and auxiliary
information aux, it outputs a hard equivocation π.

– τ ← ESOpen(crs, tk, f, y, aux): Input the common reference string crs and
the trapdoor key tk, a function f ∈ Fλ, a value y ∈ {0, 1}, and auxiliary
information aux, it outputs a soft equivocation τ .

Remark 3.2 (Proper Mercurial Commitment [15]). Generally, for all ex-
isting constructions, the soft opening of a hard commitment is a proper part of
the hard opening to the same message, so are SVerify and HVerify. Such mercurial
(functional) commitments are called proper mercurial (functional) commitments.

Correctness. The correctness of a trapdoor mercurial functional commitment
is as follows. Specifically, for all security parameters λ, all functions f ∈ Fλ, all
input x ∈ {0, 1}ℓ, and the common reference string crs ← Setup(1λ, 1ℓ, 1d), the
following conditions must hold with an overwhelming probability.

– For a hard commitment {(C,D), aux} ← HCom(crs,x), a hard opening π ←
HOpen(crs, f, aux) and a soft opening τ ← SOpen(crs,H, f, f(x), aux) to the
hard commitment, they must have HVerify(crs, (C,D), f, f(x), π) = 1 and
SVerify(crs, (C,D), f, f(x), τ) = 1.

– For a soft commitment {(C,D), aux} ← SCom(crs), a soft opening τ ←
SOpen(crs,S, f, y, aux) to the soft commitment, there must have SVerify (crs,
(C,D), f, y, τ) = 1.
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– For a fake commitment {(C,D), aux} ← FCom(crs, tk) where tk is the trap-
door key for the construction, a hard equivocation π ← EHOpen (crs, tk, f, y, aux)
and a soft equivocation τ ← ESOpen(crs, tk, f, y, aux) to the fake commit-
ment, there must have HVerify(crs, (C,D), f, y, π) = 1 and SVerify(crs, (C,D)
, f, y, τ) = 1.

Mercurial binding. A proper mercurial functional commitment satisfies mer-
curial target binding if given the common reference string crs, for any adver-
sary A outputs a hard commitment (C,D) which is honestly-generated from
HCom(crs,x) with some input x ∈ {0, 1}ℓ (possibly adversarially chosen), a
function f ∈ Fλ and a hard opening π (or soft opening τ) to the value 1− f(x),
the following probability should be negl(λ). 3

Pr

HVerify(crs, (C,D), f, 1− f(x), π) = 1

∣∣∣∣∣∣∣∣
crs← Setup(1λ, 1ℓ, 1d);

x← A(crs);
(C,D)← HCom(crs,x);
{f, π} ← A((C,D), crs)


Mercurial hiding. Given the common reference string crs, for any function f ∈
Fλ, any input x ∈ {0, 1}ℓ, no efficient adversary can distinguish between hard
commitment with its soft opening {x, (C,D)← HCom(crs,x), τ ← SOpen(crs,H,
f, f(x), aux)} and soft commitment with its soft opening {x, (C,D) ← SCom(
crs), τ ← SOpen(crs,S, f, f(x), aux)}. It uses an equivocation game to prove this.

Equivocation game. There are three sub-games composed of a pair of real sce-
nario and ideal scenario. Given the common reference string crs and the trapdoor
tk, no adversary A can distinguish between the two scenarios in each sub-game.

– HHEquivocation: A picks an input x ∈ {0, 1}ℓ and a function f ∈ Fλ. In
the real game, A will receive (C,D) ← HCom(crs,x), and π ← HOpen
(crs, f, aux). While in the ideal game, A will obtain (C,D)← FCom(crs, tk),
and π ← EHOpen(crs, tk, f, f(x), aux).

– HSEquivocation: A picks an input x ∈ {0, 1}ℓ and a function f ∈ F . In
the real game, A will receive (C,D) ← HCom(crs,x), and τ ← SOpen
(crs,H, f, f(x), aux). While in the ideal game,A will obtain (C,D)← FCom(crs,
tk), and τ ← ESOpen(crs, tk, f, f(x), aux).

– SSEquivocation: In the real game, A will first get (C,D)← SCom (crs), then
choose a function f ∈ Fλ and a value y ∈ {0, 1}, and finally receive τ ←
SOpen(crs,S, f, y, aux). While in the ideal game, A first obtains (C,D) ←
FCom(crs, tk), then chooses a function f ∈ Fλ and a value y ∈ {0, 1}, and
finally receives τ ← ESOpen(crs, tk, f, y, aux).

3 There exists a stronger notion of mercurial binding where the commitment from
the adversary can be chosen arbitrarily, and there is no need to contain any input
message. However, like existing lattice-based functional commitments for circuits
that satisfy private opening [23] and pairing-based constructions in Algebraic Group
Model (AGM) [14,10], our constructions achieve the weak (target) binding.
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Succinctness. A mercurial functional commitment is succinct if there exists a
universal polynomial poly(·, ·, ·) such that for all λ ∈ N, the size of the com-
mitment has |(C,D)| = poly(λ, d, log ℓ), and the size of the opening has |π| =
poly(λ, d, log ℓ).

4 Our MFC Construction

In this section, we put forward the detailed constructions of succinct mercurial
functional commitments for Boolean circuits based on BASIS assumption. Then
we show the correctness, mercurial binding, mercurial hiding, and succinctness
of our constructions.

Construction 4.1 (MFC Based on BASIS). Let λ be a security parameter
and Fλ be a family of functions f where each function f : {0, 1}ℓ → {0, 1} is on
inputs of length ℓ = ℓ(λ) and can be computed by a Boolean circuit of depth at
most d = d(λ). Let n = n(λ), m = m(λ), q = q(λ) be lattice parameters. Let
m′ = n(⌈log q⌉ + 1), and β = β(λ) be the bound. Let s0 = s0(λ), s1 = s1(λ),
s2 = s2(λ) be Gaussian width parameters. Denote G as the gadget matrix. The
detailed construction is shown as follows:

– {crs, tk} ← Setup(1λ, 1ℓ): Input a security parameter λ and a input length ℓ ,
it first obtains (A,R)← TrapGen(1n, q,m). Then for each i ∈ [ℓ], it samples

an invertible matrix Wi
$← Zn×n

q and a random vector u
$← Zn

q . Next, it

completes Ri = RG−1(W−1
i G) ∈ Zm×m′

q for each i ∈ [ℓ] and constructs

Bℓ ∈ Znℓ×(ℓm+m′)
q and R̃ ∈ Z(ℓm+m′)×ℓm′

q as follows:

Bl =

W1A
. . .

WlA

∣∣∣∣∣∣∣
−G
...
−G

 , R̃ =

[
diag(R1, ...,Rl)

0m′×lm′

]
(4.1)

After that, it samples T← SampPre(Bℓ, R̃,Gnℓ, s0). It outputs the common
reference string crs = {A,W1, ...,Wℓ,T,u} and the trapdoor key tk = R
optionally.

– {(C,D), aux} ← HCom(crs,x): Input the common reference string crs =

{A,W1, ...,Wℓ,T,u} and a vector x ∈ {0, 1}l, it first samples R̂
$← {0, 1}m×m′

and computes D = AR̂ ∈ Zn×m′

q . Next, it constructs Bℓ as in Eq. 4.1 and

the target matrix Ux ∈ Znℓ×m′

q and then uses T to sample the preimage as
follows,

Ux =

−x1W1G
...

−xℓWℓG

 ,


V1

...
Vℓ

Ĉ

← SampPre (Bl,T,Ux, s1) (4.2)

Last, it computes C = GĈ ∈ Zn×m′

q . It outputs the hard commitment

(C,D) and the auxiliary information aux = {x,V1, ...,Vℓ, (C,D), R̂}.
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– π ← HOpen(crs, f, aux): Input the common reference string crs = {A,W1, ...,Wℓ,
T,u}, a function f : {0, 1}l → {0, 1}, and the auxiliary information aux =

{x,V1, ...,Vℓ, (C,D), R̂}. It first constructs C̃ = [W−1
1 C| · · · |W−1

l C] ∈
Zn×lm′

q , and computes C̃f ← EvalF(C̃, f) and Vf = [V1| · · · |Vℓ] · HC̃,f,x

where HC̃,f,x ← EvalFX(C̃, f,x). Then, it constructs the trapdoor Rf =

[−Vf |0m′×m′ |Im′ ]T to sample the preimage as follows,

vf ← SampPre([A|D|C̃f + (f(x)− 1) ·G],Rf ,u, s2)

where D actually equals AR̂. It outputs the hard opening π = {vf , R̂}.
– {0, 1} ← HVerify(crs, (C,D), f, y, π): Input the common reference string

crs = {A,W1, ...,Wℓ,T,u}, the hard commitment (C,D), the function
f : {0, 1}ℓ → {0, 1}, the value y ∈ {0, 1} and the hard opening π. It first
computes C̃ = [W−1

1 C| · · · |W−1
ℓ C] ∈ Zn×ℓm′

q and C̃f ← EvalF(C̃, f). Then,
it checks if the following conditions hold to verify the opening.

∥vf∥ ≤ β, u = [A|D|C̃f + (y − 1) ·G]vf (4.3)

∥R̂∥ ≤ 1, D = AR̂ (4.4)

If they all hold, it outputs 1; Otherwise, it outputs 0.
– {(C,D), aux} ← SCom(crs): Input the common reference string crs, it first

samples Ĉ ← DZm′×m′ ,s1
and R̂

$← {0, 1}m×m′
, then computes C = GĈ

and D = G−AR̂. It outputs the soft commitment (C,D) and the auxiliary

information aux = {(C,D), R̂}.
– τ ← SOpen(crs,F, f, y, aux): Input the common reference string crs = {A,W1,

...,Wℓ,T,u}, a flag F ∈ {H,S} which indicates that the soft opening τ is
for hard commitment or soft commitment, a function f : {0, 1}ℓ → {0, 1}, a
value y ∈ {0, 1}, and the auxiliary information aux.
If F = H and y equals f(x) where x is phased from aux, then it computes

{vf , R̂} ← HOpen(crs, f, aux) and outputs τ = vf ; If y ̸= f(x), it aborts
and outputs ⊥.
If F = S, it first computes C̃ = [W−1

1 C| · · · |W−1
ℓ C] ∈ Zn×lm′

q and C̃f ←
EvalF(C̃, f). Then, it constructs the trapdoor Rf = [R̂|Im′ |0m′×m′

]T to
sample the preimage as follows,

vf ← SampPre([A|D|C̃f + (y − 1) ·G],Rf ,u, s2)

where D is phased from aux and actually equals G − AR̂. It outputs the
soft opening τ = vf .

– {0, 1} ← SVerify(crs, (C,D), f, y, τ): Input the common reference string crs =
{A,W1, ...,Wℓ,T,u}, the commitment (C,D), the function f : {0, 1}ℓ →
{0, 1}, the value y ∈ {0, 1}, and soft opening τ . It first computes C̃ =
[W−1

1 C| · · · |W−1
ℓ C] ∈ Zn×ℓm′

q and C̃f ← EvalF(C̃, f), then check if Eq. 4.3
holds. If it holds, it outputs 1; Otherwise, it outputs 0.
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– {(C,D), aux} ← FCom(crs, tk): Input the common reference string crs and

trapdoor key tk. It first samples Ĉ← DZm′×m′ ,s1
, R̂

$← {0, 1}m×m′
and then

computes C = GĈ, D = AR̂. It generates the fake commitment (C,D) and

the auxiliary information aux = {(C,D), R̂}.
– π ← EHOpen(crs, tk, f, y, aux): Input the common reference string crs, trap-

door key tk = R, a function f : {0, 1}ℓ → {0, 1}, a value y ∈ {0, 1}, and
the auxiliary information aux. It first computes C̃ = [W−1

1 C| · · · |W−1
ℓ C] ∈

Zn×lm′

q and C̃f ← EvalF(C̃, f). Then, it constructs the trapdoor Rf =

[R|0m′×m′ |0m′×m′
]T to sample the preimage as follows,

vf ← SampPre([A|D|C̃f + (y − 1) ·G],Rf ,u, s2)

where D actually equals AR̂. It outputs the hard equivocation π = {vf , R̂}.
– τ ← ESOpen(crs, tk, f, y, aux): Input the common reference string crs and

trapdoor key tk, the function f : {0, 1}ℓ → {0, 1}, the value y ∈ {0, 1}, and
the auxiliary information aux, it computes vf ← EHOpen(crs, tk, f, y, aux).
It outputs the soft equivocation τ = vf .

Theorem 4.2 (Correctness). For n = λ, m = O(n log q), s0 = O(ℓm2 log(ln)),
s1 = O(ℓ3/2m3/2 log(nℓ)·s0), s2 = s1·m5/2ℓ3/2·(n log q)O(d), and β =

√
m+ 2m′·

s2, then the Construction 4.1 is correct.

Proof. Take a security parameter λ, a function f ∈ Fλ and an input x ∈
{0, 1}ℓ. Let {crs, tk} ← Setup(1λ, 1ℓ) where crs = {A,W1, ...,Wl,T,u}. Let
{(C,D), aux} ← HCom(crs,x) and π ← HOpen(crs, f, aux). Let {(C,D), aux} ←
SCom(crs) and τ ← SOpen(crs,F, f, y, aux). Let {(C,D), aux} ← FCom(crs, tk),
π ← EHOpen(crs, tk, f, y, aux), and τ ← EHOpen(crs, tk, f, y, aux). Consider
HVerify(crs, (C,D), f, y, π) and SVerify(crs, (C,D), f, y, τ):

Following the same parameters and constructions of Bℓ and R̃ in BASIS [23],
we have ∥T∥ ≤

√
ℓm+m′·s0. By our construction and Theorem 2.1, we also have

∥R̂∥ = 1 and ∥R∥ = 1. We prove the correctness of our proposed construction
from the following aspects.

For hard commitment. Suppose s1 ≥
√
(ℓm+m′)ℓm′·∥T∥·ω(

√
log(nℓ)) =

O(l3/2m3/2 log(nℓ) · s0), by Theorem 2.1 and construction of (V1, ...,Vℓ,C) in
Eq. 4.2, for each i ∈ [ℓ], we have

WiAVi −C = −xiWiG

where C = GĈ. As well as AVi −W−1
i C = −xiG for each i ∈ [ℓ]. Let C̃ =

[W−1
1 C| · · · |W−1

ℓ C] and Ṽ = [V1| · · · |Vℓ]. We have

C̃− xT ⊗G = A · [V1| · · · |Vℓ] = A · Ṽ (4.5)

Let β0 =
√
ℓm+m′ ·s1 be the “initial” noise bound. So ∥Vi∥ ≤

√
ℓm+m′ ·s1 =

β0 (by Lemma 1 in [15]), and thus ∥Ṽ∥ ≤ β0.
By construction, we have HC̃,f,x ← EvalFX(C̃, f,x) and Vf = Ṽ · HC̃,f,x

where by Theorem 2.6, ∥HC̃,f,x∥ ≤ (n log q)O(d). By our notation of norm of
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matrix i.e. ∥X∥ := maxi,j |Xi,j |, so that we have ∥Vf∥ ≤ ℓm′ ·β0 · (n log q)O(d) ≤
ℓm′ ·

√
ℓm+m′ · s1 · (n log q)O(d). Thanks to Theorem 2.6 again and according

to Eq. 4.5, we have

AVf = AṼHC̃,f,x = (C̃− xT ⊗G) ·HC̃,f,x = C̃f − f(x) ·G (4.6)

where C̃f ← EvalF(C̃, f).

Let Df = [A|D|C̃f+(f(x)−1)·G] ∈ Zn×(m+2m′)
q where D = AR̂, and Rf =

[−Vf |0m′×m′ |Im′ ]T ∈ Z(m+2m′)×m′

q . Thus, ∥Rf∥ = ∥Vf∥ ≤ ℓm′ ·
√
ℓm+m′ · s1 ·

(n log q)O(d) and by Eq. 4.6, we have

DfRf = −AVf + C̃f + (f(x)− 1) ·G = (2f(x)− 1)G ∈ {−G,G}

Thus, Rf is a gadget trapdoor for Df (with tag In or −In, depending on the
value of f(x) ∈ {0, 1}). Suppose m ≥ m′ = O(n log q) and

s2 ≥
√
(m+ 2m′)m′ · ∥Rf∥ · ω(

√
log n) = s1 ·m5/2 · ℓ3/2 · (n log q)O(d)

For soft commitment. By our construction, Df = [A|D|C̃f + (f(x) −
1) · G] ∈ Zn×(m+2m′)

q where D = G − AR̂, and Rf = [R̂|Im′ |0m′×m′
]T ∈

Z(m+2m′)×m′

q . Then, we have ∥Rf∥ = 1 and DfRf = G. Thus, Rf is a gadget
trapdoor for Df . Suppose m ≥ m′ = O(n log q) and

s2 ≥
√
(m+ 2m′)m′ · ∥Rf∥ · ω(

√
log n) = O(m log n)

For fake commitment. By our construction, Df = [A|D|C̃f + (f(x) −
1) · G] ∈ Zn×(m+2m′)

q where D = AR̂, and Rf = [R|0m′×m′ |0m′×m′
]T ∈

Z(m+2m′)×m′

q . Then, we have ∥Rf∥ = 1 and DfRf = G. Thus, Rf is a gadget
trapdoor for Df . Suppose m ≥ m′ = O(n log q) and

s2 ≥
√
(m+ 2m′)m′ · ∥Rf∥ · ω(

√
log n) = O(m log n)

Overall, for each opening vf ← SampPre(Df ,Rf ,u, s2) from hard commit-
ment, soft commitment, and fake commitment, by Theorem 2.1, it must satisfy
Dfvf = u and ∥vf∥ ≤

√
m+ 2m′ · s2 ≤ β so that the verification algorithms

will accept with overwhelming probability. ⊓⊔

Theorem 4.3 (Mercurial Binding). For any polynomial ℓ = ℓ(λ), n = λ,
m = O(n log q), s0 = O(ℓm2 log(nl)), s1 = O(ℓ3/2m3/2 log(nℓ) · s0). Under the
BASIS assumption with parameters (n,m, q, β′, s0, ℓ) where β′ = s1 ·m5/2ℓ3/2 ·
β · (n log q)O(d), Construction 4.1 satisfies mercurial (target) binding.

Proof. Considering that our construction is a proper MFC where the hard open-
ing contains its corresponding soft opening as a proper subset. Thus, we only
focus on the hard-soft case. We now define a sequence of hybrid experiments:

– Hyb0: This is the real mercurial binding experiment:
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• The challenger starts by sampling (A,R)← TrapGen(1n, q,m) andWi
$←

Zn×n
q for each i ∈ [ℓ]. Then it constructs R̃ and Bl following the Eq. 4.1.

It samples T ← SampPre(Bℓ, R̃,Gnℓ, s0) and u
$← Zn

q . Last, the chal-
lenger sends the common reference string crs = {A,W1, ...,Wℓ,T,u} to
the adversary A.

• The adversary A chooses an input vector x ∈ {0, 1}ℓ.
• The challenger gives {(C,D), aux} ← HCom(crs,x) to A.
• The adversary A outputs a function f ∈ Fλ and an openings vf to the

value 1− f(x).
• The output of the experiments is 1 if it satisfies the following conditions:

∥vf∥ ≤ β, [A|D|C̃f − f(x) ·G]vf = u (4.7)

whereD = AR̂, ∥R̂∥ ≤ 1, C̃f ← EvalF(C̃, f), and C̃ = [W−1
1 C| · · · |W−1

l C];
Otherwise, the experiments output 0.

– Hyb1: Same as Hyb0 except the challenger samples T← (Bℓ)
−1
s0 (Gnℓ) with-

out using the trapdoor R̃ so the common reference string crs is sampled
independently of R.

– Hyb2: Same as Hyb1 except the challenger samples A
$← Zn×m

q .

– Hyb3: Same as Hyb2 except the challenger samples u ← Ar where r
$←

{0, 1}m.

For an adversary A, we write Hybi(A) to denote the output distribution of ex-
ecution of experiment Hybi with adversary A. We omit the proof of Hyb0(A) ≈
Hyb1(A) ≈ Hyb2(A) ≈ Hyb3(A) because they are given in [23] (Lemma 4.26∼4.28)
and same as ours. We now analyze the last step.

Lemma 4.4. Suppose the conditions on n,m, s0, s1 in Theorem 4.3 hold and
m ≥ n log q + λ. Let β′ = s1 · m5/2ℓ3/2 · β · (n log q)O(d). Then, under the
BASIS assumption with parameters (n,m, q, β′, s0, ℓ), for all efficient adversary
A, Pr[Hyb3(A) = 1] = negl(λ).

Proof. Suppose there exists an adversary A where Pr[Hyb3(A) = 1] = ϵ for some
non-negligible ϵ. And an algorithm B will use A to break the BASIS assumption.

Algorithm B first receives the challenge A ∈ Zn×m
q , Bℓ ∈ Znl×(ℓm+m′)

q , T ∈
Z(ℓm+m′)×ℓm′

q and aux = (W1, ...,Wℓ), Then B samples r
$← {0, 1}m, computes

u = Ar, and sends the common reference string crs = {A,W1, ...,Wℓ,T,u} and
to A. The adversary A outputs a vector x ∈ {0, 1}ℓ to B. Algorithm B computes
{(C,D), aux} ← HCom(crs,x) and sends (C,D) and aux to A. The adversary A
can output a function f ∈ Fλ and an opening vf ∈ Zm+2m′

q satisfying Eq. 4.7.
By Eq. 4.6 and u = Ar, we have

u = Ar = [A|AR̂|C̃f − f(x) ·G]vf = [A|AR̂|AVf ]vf

Let z = [Im|R̂|Vf ]vf−r so that we have Az = 0. We now show 0 < ∥z∥ ≤ β′

in the following two aspects:
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– We show ∥z∥ ≤ β′. Since ∥R̂∥ = 1, ∥Vf∥ ≤ ℓm′ ·
√
ℓm+m′ ·s1 · (n log q)O(d),

∥vf∥ ≤ β, ∥r∥ = 1, and m > m′, we have that

∥z∥ ≤ ℓm′·
√
ℓm+m′·s1·(n log q)O(d)·β·(m+2m′)+1 ≤ s1·m5/2ℓ3/2·β·(n log q)O(d)

where s1 ·m5/2ℓ3/2 · β · (n log q)O(d) = β′.

– We show ∥z∥ ̸= 0, i.e. r ̸= [Im|R̂|Vf ]vf . Following the same entropy ar-

gument as in [11] (Theorem 3.1), by our construction, [Im|R̂|Vf ]vf is a
function of u ∈ Zn

q (and other quantities that are independent of r). By
construction, u contains at most n log q bits of information about r. It leads
that

H∞(r | [Im|R̂|Vf ]vf ) ≥ H∞(r | u) ≥ m− n log q ≥ λ

It means that Pr[r = [Im|R̂|Vf ]vf ] ≤ 2−λ.

Overall, z is a valid solution for B to break the BASIS assumption with non-
negligible probability ϵ− 2−λ. ⊓⊔

By lemmas in [23] and Lemma 4.4, we conclude that for all efficient adversaries
A, Pr[Hyb0(A) = 1] ≤ negl(λ). Therefore, mercurial (target) binding holds. ⊓⊔

Theorem 4.5 (Mercurial Hiding). For n = λ, m = O(n log q), q is prime,
s0 = O(ℓm2 log(ℓn)), s1 = O(ℓ3/2m3/2 log(nℓ)·s0), s2 = s1·m5/2ℓ3/2·(n log q)O(d),
then Construction 4.1 satisfies statistical HHEquivocation, HSEquivocation, and
SSEquivocation.

Proof. The Challenger first sets up the scheme and obtains the common reference
string crs = {A,W1, ...,Wℓ,T,u} via the real protocol, and tk = R is the
trapdoor. Then we prove the mercurial hiding of our proposed construction in
the equivocation games.

For HHEquivocation. Firstly, D and R are generated in the same way for
both fake and hard commitments. By Theorem 4.2 and Theorem 2.1, since s2 ≥√
(m+ 2m′)m′ · ∥Rf∥ ·ω(

√
log n) = s1 ·m5/2 · ℓ3/2 · (n log q)O(d) in hard opening

and s2 ≥
√
(m+ 2m′)m′ · ∥Rf∥ · ω(

√
log n) = O(m log n) in hard equivocation,

the distributions of vf ← SampPre(Df ,Rf ,u, s2) from both hard opening and
hard equivocation are statistically close to the distribution of vf ← (Df )

−1
s2 (u).

Then, by Theorem 2.1, if s1 ≥
√
(ℓm+m′)ℓm′∥T∥·ω(

√
log(nℓ)) = O(ℓ3/2m3/2

log(nℓ) · s0), the distribution of of {V1, ...,Vℓ, Ĉ} ← SampPre(Bℓ, T,Ux, s1) in
hard commitment is statistically close to the distribution (Bℓ)

−1
s1 (Ux) where the

target vector Ux is the same as Eq. 4.2.
Let Ā = diag(W1A, ...,WℓA), then Bℓ = [Ā| − 1ℓ ⊗G].Since s1 ≥ log(ℓm),

by the distribution of discrete Gaussian preimages (Lemma 2.4 [21]), the distri-

bution of {V1, ...,Vℓ, Ĉ} ← (Bℓ)
−1
s1 (Ux) is statistically close to the distribution{

Ĉ← DZm′×m′ ,s1
, {V1, ...,Vℓ} ← Ā−1

s1

(
Ux + (1ℓ ⊗GĈ)

)}
where Ĉ is generated in the same way for fake commitment.
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Overall, these lead to fake commitments and hard equivocation having ex-
actly the same distribution as hard commitments and hard openings.

For HSEquivocation. Follow the same arguments as HHEquivocation.
For SSEquivocation. We note that Ĉ are generated in the same way for

both fake and soft commitments. By the well-known Leftover Hash Lemma [12],
the distributions of D in fake commitment and D′ in soft commitments are{

D = AR̂|R̂ $← {0, 1}m×m′
}
,

{
D′ = G−AR̂′|R̂′ $← {0, 1}m×m′

}
both statistically close to uniform over Zn×m′

q (Lemma 2.3 in [21]).
Thus, the adversary’s view remains statistically the same if we generate

D in fake commitments from SCom instead of FCom in the ideal experiment.
Moreover, by Theorem 2.1, since s2 ≥

√
(m+ 2m′)m′ · ∥Rf∥ · ω(

√
log n) =

O(m log n) in both soft commitment and fake commitment, the distribution of
vf ← SampPre ([A|D′|C̃f + (y − 1) ·G],Rf ,u, s2) in the soft opening and the

distribution of vf ← SampPre([A|D′|C̃f + (y − 1) · G],Rf ,u, s2) in the soft

equivocation are both statistically close to ([A|D′|C̃f +(y−1) ·G])−1
s2 (u). These

lead to fake commitments and soft equivocation having exactly the same distri-
bution as soft commitments and their corresponding soft openings. ⊓⊔

Remark 4.6 (Parameter Instantiation). Let λ be the security parameter
and Fλ be a family of functions f : {0, 1}ℓ → {0, 1} on inputs of length ℓ = ℓ(λ)
which can be computed by Boolean circuits of depth at most d = d(λ). We
provide the parameter instance of Construction 4.1.

– Let ϵ > 0 be a constant, the lattice dimension be n = d1/ϵ · poly(λ) and
m = O(n log q).

– Let the Gaussian parameters be s0 = O(ℓm2 log(nℓ)), s1 = O(ℓ3/2m3/2

log(nℓ) · s0) = O(ℓ5/2m7/2 log2(nℓ)), and s2 = s1 ·m5/2ℓ3/2 · (n log q)O(d) =
ℓ4 log2 ℓ · (n log q)O(d)

– Let the bound be β = s2 ·
√
m+ 2m′ = ℓ4 log2 ℓ · (n log q)O(d), β′ = s1 ·

m5/2ℓ3/2 ·β · (n log q)O(d) = 2Õ(d) = 2Õ(nϵ) where Õ(·) is denoted to suppress
polylogarithmic factors in λ, d, ℓ.

– Let the modulus be q = β′ ·poly(n) in the BASIS assumption with parameters
(n,m, q, β′, s0, ℓ). Then log q = poly(d, log λ, log ℓ). Note that the BASIS as-
sumption as well as SIS assumption relies on a sub-exponential noise bound.

Remark 4.7 (Succinctness). Following the parameter instance in Remark 4.6,
we show the succinctness of Construction 4.1.

– Commitment size: A commitment to a vector x ∈ {0, 1}ℓ is (C,D) ∈ Zn×m′

q ×
Zn×m′

q where

|C| = |D| = nm′ log q = O(n2 log2 q) = poly(λ, d, log ℓ)

– Opening size: A (hard) opening is (vf , R̂) ∈ Zm+2m′

q × Zm×m′

q where

|vf | = (m+ 2m′) log β = O(nd · log q · log ℓ · log λ) = poly(λ, d, log ℓ)

|R̂| = mm′ = O(n2 · log2 q) = poly(λ, d, log ℓ)
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– Common reference string size: The common reference string is crs = {A,W1,

...,Wℓ,T,u} where A ∈ Zn×m
q , Wi ∈ Zn×n

q , T ∈ Z(ℓm+m′)×ℓm′

q , and u ∈
Zn
q , where

|crs| = nm log q+ℓn2 log q+(ℓm+m′)(ℓm′) log q+n log q = ℓ2 ·poly(λ, d, log ℓ)

Therefore, Construction 4.1 is succinct.

5 Application: Lattice-Based ZK-FEDB

The main application of MCs is to build ZKS, ZK-EDB, and ZK-FEDB. ZKS
allows a set owner to prove the membership (and non-membership) of an el-
ement x for a set S and ZK-EDB extends the set to an elementary database
D containing key-value pairs (x, v) which others can query the key x. Different
from them, ZK-FEDB [24,25] allows the database owner to provide the proof to
the function value f(x, v) or non-membership after the users query the key x
with some function f to the elementary database. Due to the limitation of exist-
ing MFC, the ZK-FEDB [24] constructed by MFC only supports linear function
queries. The most general ZK-FEDB was first proposed by Zhang and Deng [25]
using an RSA accumulator and set-operation instead of MFC which allows the
user to query the key with Boolean circuits.

However, all existing constructions of ZK-FEDB cannot resist the quantum
computer attack. The current lattice-based constructions of MC and MVC [15,21]
can only be used to build the lattice-based ZKS and ZK-EDB and does not
suffice to construct the ZK-FEDB, i.e. allowing users to make function queries,
especially for Boolean circuit queries.

In this section, we illustrate how to use our construction to build the first
lattice-based ZK-FEDB in the generic framework [24] at a high level.

Normally, there are three phases in the ZK-FEDB: the committing phase,
the opening phase, and the verification phase: (1) In the committing phase,
the committer will build a binary (or N -ary) tree where the leaf nodes are
indexed by the keys in the elementary database and the root as the database’s
commitment. Thanks to the mercurial property, it can use a soft commitment to
prune (replace) the subtrees without any leaves (keys) in the database to enhance
efficiency. After that, only the subtrees with at least one leaf node in the database
are kept. For the leaf node whose level equals the height of the whole tree, and
if its index (key) is in the database, i.e. D(x) ̸= ⊥, the leaf node contains a hard
commitment of input (x,D(x)) ∈ {0, 1}ℓ generated by our MFC, otherwise it
contains a soft commitment produced by our MFC; for other leaf nodes, i.e. their
level is less than the height of the tree, they contain soft commitments generated
by the standard lattice-based MVC [21] or MC [15]. The remaining nodes in the
tree, i.e. internal node, will contain a hard commitment to their children nodes
generated by the same lattice-based MVC or MV as above. The commitment
in the root node is the final commitment to the database. (2) In the opening
phase, to prove that some key x is in the database and the output of a Boolean
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circuit f ∈ Fλ is f(x,D(x)), the committer generates a proof of membership,
including all the hard openings for the commitments in the internal nodes on
the path from the root to the leaf x and the hard opening for the commitment
in the leaf node x to the Boolean circuit f ; To prove the non-membership, i.e.
D(x) = ⊥ (we can treat ⊥ as 0 in this case), the committer first generates the
subtree which x lies and is pruned before. Then it generates the proof, including
all the soft openings for the commitment in the internal nodes on the path from
the root to the leaf x and the soft opening for the soft commitment in the leaf
node x to the function f and value f(x,⊥). (3) In the verification phase, the
users will check all the commitments and openings of internal nodes and the leaf
node on the path from the leaf x to the root.

Overall, our constructions of MFC can be used to build the first lattice-
based ZK-FEDB. Compared to the existing ZK-FEDBs, our construction not
only enables the database owner to commit the elementary database, generates
a convinced answer to the query of a Boolean circuit on some key, and allows
the users to verify the answer without leaking any knowledge except the query
result, but also can achieve the security at a post-quantum level.
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