
AE Robustness as Indistinguishable Decryption
Leakage amid Multiple Failure Conditions

Ganyuan Caoa

EPFL, Lausanne, Switzerland

Abstract. Robustness has emerged as a critical criterion for authenticated encryption,
alongside confidentiality and integrity. In this study, we revisit AEAD robustness by
focusing on descriptive errors when multiple failure conditions exist. We introduce
new notion, IND-CCLA and IND-sf-CCLA, that expands on classical security notions
defined for AEAD by incorporating the indistinguishability of decryption leakage
including text-based values and descriptive errors.

We highlight that simply outputting a single error message when decryption fails is
insufficient to guarantee robustness, as leakage can undermine this approach. We
examine error flags used when validating a ciphertext during the decryption pro-
cess, and investigate whether it is possible to merge multiple error flags into one to
mitigate this security risk. This helps to prevent the resulted leakage from giving
adversaries additional advantage in future attacks, particularly when parts of the
failure-checking mechanism have implementation flaws or disabled by an adversary
through implementation-level attacks.

We provide a concrete proof of the robustness of Encode-then-Encipher (EtE) paradigm
using our notions, demonstrating its capability to validate multiple failure conditions
using a single error flag. We briefly revisit generic compositions for AE to show
the practical relevance of our notions. We further present a transformation from
our notion to a simulatable one, supporting future research on composable security
regarding decryption leakage.
Keywords: AE Robustness · Decryption Leakage · IND-CCLA · Error Obfuscation
· Security Proof

Contents

1 Introduction 2
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 4
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Game-Based Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Robust Authenticated Encryption (RAE) . . . . . . . . . . . . . . . . . . 5

E-mail: ganyuan.cao@epfl.ch (Ganyuan Cao)
aThe author is jointly affiliated at EPFL and ETH Zürich

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2024-06-21.

https://orcid.org/0009-0000-0155-2921
mailto:ganyuan.cao@epfl.ch
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 AE Robustness under Multiple Failures

3 Security Notions 6
3.1 Scope of Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 IND-CCLA Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 IND-sf-CCLA Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Separation and Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Comparison with Existing Notions . . . . . . . . . . . . . . . . . . . . . . 14

4 Robustness of Encode-then-Encipher 17
4.1 EtE with Tweakable Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Proof of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Revisiting Generic Compositions 22

6 Transformation to Simulatability 23

7 Conclusion and Future Work 25

References 26

A Detailed Proofs 30
A.1 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.2 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.3 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1 Introduction

1.1 Background and Motivation
Robustness in authenticated encryption has been defined in various ways. The most
widely accepted definition is encapsulated in the term robust authenticated encryption
(RAE), first introduced in [HKR15]. In line with the principles of RAE, we assert that
an AEAD scheme is considered robust if it ensures both confidentiality and authenticity
even when a nonce is accidentally misused or when there is information leakage due to an
authenticity-check failure or other scheme-specific failures. Moreover, an AEAD scheme
qualifies as an RAE scheme when it allows users to freely choose any expansion factor τ ,
which determines the length of the ciphertext in relation to the plaintext, with the level of
authenticity dependent on the selected τ parameter.

The security of a robust authenticated encryption (RAE) scheme is initially formalized
as a pseudorandom injection (PRI) in [HKR15]. However, PRI addresses security in the
presence of decryption leakage in a very generalized manner. It does not extensively
explore scenarios where multiple conditions for decryption failures may be involved.

Descriptive error messages are frequently exploited in attacks, with the notable example
being the padding oracle attack introduced by Vaudenay [Vau02], which has been further
developed to target SSL/TLS [CHVV03, PRS11], IPsec [DP07, DP10], and other protocols.
While outputting a single error message for all types of decryption failures appears promising
as a countermeasure, it may prove ineffective due to the potential leakage of plaintext and
error flags that are used when validating a ciphertext during decryption.

Various channels provide leakage. Practical implementations of encryption schemes
may contain flaws in their failure-checking mechanisms, thereby inadvertently leaking
information to adversaries. Moreover, real-world attacks on cryptographic systems extend
beyond theoretical vulnerabilities to include side-channel attacks [AFP13, BB03], and
implementation-level exploiting such as buffer overflows. Information acquired through
these channels should also be treated as leakage.



Ganyuan Cao 3

In the context of “robustness”, a cryptographic scheme should maintain security despite
facing these challenges. Thus, in this paper, we explore whether it is feasible not only to
indicate a single error upon decryption failure but also to limit the use of only one error
flag when validating a ciphertext.

1.2 Related Work
The security of a RAE scheme was initially formalized as a pseudorandom injection (PRI),
characterized by indistinguishability from a random injection πN,A,τ . In this context,
the oracle returns a plaintext M if there is a corresponding ciphertext C such that
C = πN,A,τ (M). Otherwise, it returns a plaintext that fails the authenticity check, with
the help of a decryption simulator. This notion generalizes decryption leakage without
extensively addressing scenarios involving multiple failure conditions.

Several other works have introduced notions to formalize security under decryption
leakage, addressing leakage ranging from error messages to plaintext. In [BDPS14],
Boldyreva et al. examined scenarios where an encryption scheme may output multiple
errors, focusing on the impact of error messages rather than the leaked plaintext. They
introduced the notion of IND-CVA, which provides an IND-CPA adversary with an
additional oracle to verify the validity of queried ciphertexts. They also proposed the error
invariance (INV-ERR) notion, which ensures that no efficient adversary can generate more
than one of the possible error messages. Additionally, [BDPS14] extended their study to
capture stateful security.

In [ABL+14], Andreeva et al. presented the notion of release-of-unverified-plaintext
(RUP) and linked it to the ciphertext integrity (INT). Specifically, in IND-RUP, the
decryption algorithm always outputs a bitstring M . The adversary’s objective is to
trick the validation function into accepting a forged ciphertext, given access to both an
encryption oracle and a decryption oracle.

Barwell et al., in [BPS15], introduced the notion of subtle AE (SAE), which incorporates
the error indistinguishability (ERR-CCA) notion alongside IND-CPA and INT-CTXT.
The ERR-CCA notion involves a leakage function that reveals the actual leakage. The
security requirement is that an adversary should not be able to distinguish between leakage
under the same key and different keys. However, we believe that this notion may not
fully capture the indistinguishability of leakage itself, and there is some overlap with the
integrity notions.

1.3 Our Contribution
We introduce a novel notion, denoted as IND-CCLA, to formalize the robustness of
authenticated encryption. The IND-CCLA notion extends classical AE notions, such as
IND-CCA3 [Shr04], by incorporating a leakage characterization function inspired by subtle
AE [BPS15]. This augmentation captures leakage occurring when decryption fails. We
refine the definition of the leakage characterization function to better separate it from the
integrity notion, emphasizing the indistinguishability of the leakage itself.

Our model considers not only the plaintext but also any intermediate value used during
decryption as potential leakage, and we particularly focus on error flags used to verify
the validity of a ciphertext as leakage. We stipulate that an adversary should not be
able to distinguish the leaked text from a random bitstring of the minimum possible
leakage length. Building on this requirement, we introduce two sub-notions, IND-CCLA1
and IND-CCLA2, regarding the disclosure of error messages. In IND-CCLA1, following
[BDPS14], we require that an adversary should not be able to trigger any error other than
a predefined one within the error space.

IND-CCLA2 introduces a more stringent security requirement: the decryption function
must output a single error message, and only one error flag (or similarly, one condition



4 AE Robustness under Multiple Failures

predicate) is used to validate a ciphertext. We term this property error unicity. Using
this notion, we answer the question:

Is outputting a single error message upon decryption failures sufficient for robustness?

We demonstrate that this level of security ensures an adversary gains no meaningful
information as long as at least one failure condition is satisfied. Consequently, even if some
failure checks have implementation flaws or are disabled (whether through side channels
or implementation-level attacks), the resulted leakage does not provide the adversary with
additional advantages in future attacks.

We then extend this notion to a stronger version, IND-sf-CCLA, to formalize stateful
security in scenarios involving out-of-order ciphertext delivery for stateful AE schemes.
We use our notions to analyze the stateful security of the Encode-then-Encipher (EtE)
paradigm [BR00], the mainstream method for constructing robust AE, assuming the use
of a counter as a nonce. This analysis allows us to formally demonstrate the ability of
EtE to handle multiple failure conditions, highlighting EtE as a promising approach for
constructing robust AE. We further revisit the generic compositions [BN00], including
Encrypt-then-MAC and MAC-then-Encrypt, to provide motivating examples for our
notions.

Furthermore, we present a transformation from our notion of leakage indistinguishability
to leakage simulatability. As Maurer indicated in [Mau11], the composition property of
game-based notions is unclear. Moreover, existing frameworks for composable security,
such as Universal Composability (UC) [Can01] by Canetti and Constructive Cryptography
(CC) [Mau11] by Maurer, are generally based on simulation-based proof. Transforming to
simulatability allows us to facilitate future studies on security composability concerning
decryption leakage.

2 Preliminaries

2.1 Notation
We introduce the following notations that will be used throughout the paper. Let N =
{1, 2, . . .} denote the set of natural numbers. For each n ∈ N, we define the set [n] :=
{1, . . . , n}. Given a set S, we use the notation S≥n :=

⋃
i≥n S

i to denote the set of
all non-empty sequences of length at least n over S, and we define S+ := S≥1. Let
x = (x1, · · · , xℓ) ∈ S+ with ℓ ∈ N be a sequence. We denote the length of x by |x| := ℓ.
For y = (y1, . . . , yℓ′) ∈ S′ with ℓ′ ∈ N, we define the concatenation of x and y as
x||y = (x1, . . . , xℓ, y1, . . . , yℓ′). When S = {0, 1}, we refer to such sequences as bit strings.
Let i ∈ {0, 1, . . .}, we denote the ℓ-bit string representation of i as [i]ℓ. We let notation
S[a..b] represent the substring of S that includes indices ranging from a to b. We use ε to
denote empty string where |ε| = 0.

We model a look-up table T that maps key bit strings of length k to value bit strings
of length v as a function {0, 1}k → {0, 1}v ∪ {⊥}, where ⊥ is a special value not belonging
to {0, 1}v. To initialize T to an empty table, we use the notation T ← [ ]. To assign a
value V to a key K in T, we use the notation T[K]← V . If a value has previously been
assigned to K in T, it will be overwritten by V . To read a value associated with a key K
in T and assign it to V , we use the notation V ← T[K]. If there is no value associated
with K in T, V will be assigned the special value ⊥.

Let S be a finite set. We define the notation x ←$ S to represent the selection of a
value from the set S uniformly at random, which we then assign to the variable x. For
an algorithm A, we use the notation y ← AO1,O2,... to denote running A given access to
oracles O1,O2, . . ., and then assigning of the output of A to y.



Ganyuan Cao 5

2.2 Game-Based Proof
We follow the code-based game-playing framework of Bellare and Rogaway [BR06]. This
framework utilizes a game G that consists of an Initialization procedure (Init), a Fi-
nalization procedure (Finalize), and a set of oracle procedures, number of which varies
depending on the specific game. An adversary A interacts with the oracles, which return
responses to the queries made by the adversary via return statements specified in the
oracles’ codes.

A game G is initiated with the Init procedure, followed by the adversary’s interaction
with the oracle. After a number of oracle queries, the adversary halts and outputs an
adversary output. The procedure Finalize is then executed to generate a game output.
If a finalization procedure is not explicitly defined, we consider the adversary output as
the game output. We denote Pr[AInit,O1,O2,··· ⇒ b] as the probability that the adversary
A outputs a value b after the Init procedure and queries to the oracle O1,O2, · · · . We
denote Pr[G(A)⇒ b] as the probability that a game G outputs b when the adversary A
plays game G. For simplicity, we define Pr[G(A)] := Pr[G(A)⇒ 0]. For notion simplicity,
we interchangeably use the notation ∆A (OL; OR) and

∆A

(
OL

OR

)
:= Pr[AOL ⇒ 0]− Pr[AOR ⇒ 0]

to denote A’s advantage in distinguishing between the oracles OL and OR.
We let Advx

Π(Ax) denote adversary Ax’s advantage in breaking security notion X
of a scheme Π. We say security notion X implies security notion Y, denote X → Y, if
Advy

Π(Ay) ≤ c ·Advx
Π(Ax) for some constant c > 0.

2.3 Robust Authenticated Encryption (RAE)
We present the definition for RAE since our notions can be also applied to formalize the
security of RAE schemes. We extend the nonce-based definition in [HKR15] to a stateful
scheme to address potential states utilized during encryption and decryption. We present
two sets of definitions for nonce-based RAE (nRAE) in Definition 1 and stateful RAE
(sRAE) in Definition 2.

Definition 1 (Nonce-Based RAE (nRAE)). A nonce-based robust authenticated encryp-
tion (nRAE) scheme is a tuple Π = (E ,D) specifies two algorithms

E : K ×N ×AD × N×M→ C

and
D : K ×N ×AD × N× C →M∪ {⫠}

where K ⊆ {0, 1}∗ is the space of keys, N ⊆ {0, 1}∗ is the space of nonces, M⊆ {0, 1}∗ is
the space of plaintexts, C ⊆ {0, 1}∗ is the space of ciphertexts, AD ⊆ {0, 1}∗ is the space of
associated data. The encryption algorithm E takes a five-tuple (K,N,A, τ,M) ∈ K×N ×
AD×N×M, returns a ciphertext C ← Π.EN,A,τ

K (M) such that C ∈ C and |C| = |M |+ τ .
The decryption algorithm D takes a five-tuple (K,N,A, τ, C) ∈ K×N ×AD×N×C, and
returns a message M ← Π.DN,A,τ

K (C) such that M ∈ M ∪ {⫠}. If there is no M ∈ M
such that C = Π.EN,A,τ

K (M), then Π.DN,A,τ
K (C) =⫠.

Definition 2 (Stateful RAE (sRAE)). A stateful robust authenticated encryption (sRAE)
scheme is a tuple Π = (E ,D) specifies two stateful algorithms

E : K ×AD × N×M×ST E → C × ST E

and
D : K ×AD × N× C × ST D →M∪ {⫠} × ST D



6 AE Robustness under Multiple Failures

where K ⊆ {0, 1}∗ is the space of keys, M⊆ {0, 1}∗ is the space of plaintexts, C ⊆ {0, 1}∗

is the space of ciphertexts, AD ⊆ {0, 1}∗ is the space of associated data, ST E is the space
of encryption states, ST D is the space of decryption states. The encryption algorithm E
takes a five-tuple (K,A, τ,M ; stE) ∈ K ×AD × N×M×ST E , returns a ciphertext-state
pair (C; st′

E) ← Π.EA,τ ;stE
K (M), such that C ∈ C and |C| = |M | + τ . The decryption

algorithm D takes a five-tuple (K,A, τ, C; stD) ∈ K × AD × N × C × ST D, and returns
a message-state pair (M ; st′

D) ← Π.DA,τ ;stD
K (C) such that M ∈ M∪ {⫠}. If there is no

M ∈M such that C = Π.EA,τ ;stE
K (M), then Π.DA,τ ;stD

K (C) =⫠.

3 Security Notions
We introduce the notions IND-CCLA and IND-sf-CCLA to formalize the robustness
of nonce-based and stateful authenticated encryption (AE) schemes, respectively. Our
notions naturally extend common AE security notions, such as IND-CCA3 [Shr04] for
nonce-based schemes, and IND-sfCCA [BKN04] for stateful schemes. We incorporate the
expansion parameter τ , defined for robust AE (RAE) schemes, into our definitions. For
fixed-expansion schemes, the parameter τ can be omitted.

3.1 Scope of Leakage
We broadly categorize leakage into two types: text-based information and descriptive errors.
While some studies focus solely on plaintext as leakage, we highlight the importance of
considering intermediate decryption values, such as a reconstructed initialization vector
(IV), as leakage. However, in practical analysis, these forms of leakage may be overlooked.
To provide a clearer understanding of what constitutes leakage, we characterize the
implementation of a decryption scheme as a combination of a sequence of operations
and condition predicates. We then define the output of each operation to be the leaked
text-based information as in Definition 3.

Definition 3 (Text-based Leakage). Let a tuple (ϕ1, ϕ2, . . . , ϕn) be a sequence of operations
representing the implementation of a decryption function, such that ϕi is executed before
ϕj if i < j. We define (M1,M2, . . . ,Mn) as the text-based leakage values, where Mi ← ϕi(·)
for i ∈ [n] meaning that Mi is the output of the operation ϕi.

We consider two types of errors: implicit error flags and explicit error messages. In
Definitions 1 and 2, the decryption function D is defined to yield only one explicit error
message, denoted as ⫠. This explicit error message, ⫠, is deliberately disclosed to the
adversary. For example, ⫠ might correspond to the message ”decryption failed”, which
is visibly displayed as output.

Definition 4 (Implicit Error Flags). Let vi : {0, 1}∗ → {true, false} for i ≥ 1 be the
predicates for the failure conditions defined by the scheme, and let ⊥i = vi(·) for i ≥ 1 be
the implicit error flags.

In practice, each⊥i can be considered as a boolean variable, e.g. ⊥1 = "cond1 = false".
Although an adversary only sees ⫠ as decryption output, they can still find values of these
⊥i’s, for example, in memory. Notably, several side-channel attacks like Lucky13 [AFP13]
can also be used to infer which ⊥i has been triggered.

We omit discussing errors that the adversary can trivially determine without querying,
such as when a ciphertext is shorter than the minimum length supported by the scheme
or when a ciphertext is not a multiple of the block size. Such queries do not provide the
adversary with any additional advantage in distinguishing or forging since the result of
such queries is already known to them.



Ganyuan Cao 7

Leakage Characterization Function. Inspired by the SAE notion introduced by
Barwell et al. in [BPS15], we employ a Leakage Characterization Function L to capture
unintentional leakage. (The term “characterization” is used here to distinguish it from
the “simulator” discussed in Section 6). We define the leakage characterization function
L for an AEAD scheme Π as specified in Definition 5. We present the definition for a
nonce-based scheme, and the nonce space N can be substituted with the decryption state
space ST D for stateful schemes.
Definition 5. The leakage characterization function L for an AEAD scheme Π with key
space K, nonce space N , associated data space AD, and ciphertext space C, is a function

L : K ×N ×AD × N× C → ({0, 1}ℓ × (S⊥ ∪ {⫠})) ∪ {⊤} ∪ {⊔}
where S⊥ = {⊥i}i≥1 is the space for implicit error flags, and ⫠ ̸∈ S⊥ is the explicit error
message output by Π.D, such that the following conditions hold:

1. LN,A,τ
ΠK

(C) = ⊔ if there is no leaked text and |S⊥| = 1. This holds regardless of
whether Π.DN,A,τ

K (C) =⫠ or not for a queried ciphertext C.

2. LN,A,τ
ΠK

(C) = ⊤ if C is a valid ciphertext and LN,A,τ
Π;K (C) ̸= ⊔.

3. LN,A,τ
ΠK

(C) = (M,⫠) if there is a leaked bitstring M with |M | > 0 and |S⊥| = 1.

4. LN,A,τ
ΠK

(C) = (Mi,⊥i) ∈ {0, 1}ℓ × S⊥ where ℓ ≥ 0 and |S⊥| ≥ 2. We let Mi be the
last obtained bitstring before ⊥i. If there is no bitstring available before ⊥i, then
Mi is set to the empty string ε. It is assumed that Π.D halts upon encountering ⊥i.

5. The correctness is defined by: if Π.DN,A,τ
K (C) =⫠, then LN,A,τ

ΠK
(C) ̸= ⊤, and if

LN,A,τ
ΠK

(C) = ⊤, then Π.DN,A,τ
K (C) ̸=⫠.

Remark 1. In Definition 5, we let S⊥ represent the set of error flags used to verify the
validity of a ciphertext. To better syntactically separate the explicit error message ⫠ from
error flags, we let ⫠ ̸∈ S⊥. Note that when |S⊥| = 1, it yields the equivalence between the
only error flag ⊥1 and the explicit error message ⫠ since the adversary trivially knows
that the error ⫠ is caused by the failure indicated by ⊥1, which is the reason why we
define L to output (M,⫠) when |S⊥| = 1 in Bulletpoint 3.

For notation simplicity, we use M ∈ {0, 1}ℓ to represent all the bitstrings obtained
before an error ⊥i or when |S⊥| = 1. Essentially, for a set of bitstrings {M1, . . . ,Mn}, we
can rewrite as M = M1|| . . . ||Mn, and require the indistinguishability of M as a whole.

Furthermore, in Bulletpoint 4, we acknowledge that some schemes do not halt immedi-
ately upon detecting a failure. However, this does not impact our subsequent discussion,
as our security notion either mandates the existence of a single error flag or ensures the
negligibility of triggering an error beyond a predefined one, which is typically the first
error.
Example 1. We show two examples of the outputs of the leakage characterization function
as follows. Here we consider tag-based schemes and omit the expansion parameter τ .

1. Encrypt-then-MAC (EtM) [BN00]: The paradigm reveals no plaintext when decryp-
tion fails, since the tag is authenticated using the MAC scheme on the ciphertext,
and the ciphertext remains undecrypted when authentication fails. It is easy to see
that EtM has |S⊥| = 1, that is, due to authenticity-check failure. Thus LN,A

ΠK
(C) = ⊔.

2. Encode-then-Encrypt-then-MAC (EEM) [BKN04]: In this paradigm, the plaintext is
first encoded using, for instance, PKCS padding [Hou09]. Thus for a ciphertext C, we
have LN,A

ΠK
(C) ∈ {(ε,⊥1), (M,⊥2)}, where ⊥1 indicates a failure on the authenticity

check with tag, ⊥2 indicates an error in decoding, and M ∈ {0, 1}ℓ denotes the
plaintext in incorrect format.



8 AE Robustness under Multiple Failures

Error Obfuscation. If multiple error flags result from condition predicates applied
to the same leaked plaintext M , the scheme can “merge” these error flags into a single
error flag using logical operators without causing additional plaintext leakage. We present
this observation under the assumption that v(·) = true leads to successful decryption. The
observation similarly applies if v(·) = true leads to unsuccessful decryption by replacing ∧
with ∨.

Observation 1. Let ⊥i = vi(M) and ⊥j = vj(M) for i ̸= j, where vi and vj are
condition predicates evaluated on the plaintext M . There exists a combined error flag
⊥i,j = vi,j(M) such that vi,j(M) = vi(M) ∧ vj(M). Specifically, if all condition predicates
are evaluated on the same plaintext M , then we can define an error flag ⊥∗ = v∗(M) where
v∗(M) = v1(M) ∧ v2(M) ∧ . . . ∧ vn(M) for n = |S⊥|.

In this case, all predicates vi are evaluated concurrently, and if any vi(M) = false, then
v∗(M) = false. When observing ⊥∗ (for instance, in memory), an adversary A is unable
to ascertain the evaluation of each vi. On the contrary, while a single error ⫠ is adopted
as decryption output for all types of failures, A can still exploit side channels, such as
timing differences [AFP13], to deduce which predicate was not evaluated, thereby inferring
evaluation of vi.

Moreover, even if one of the checks has flaws, or if A attempts to disable it through
implementation-level attacks so that vi always returns true, A cannot verify this flaw or
confirm the success of disabling the check by examining ⊥i, because a corresponding ⊥i

for a specific predicate vi no longer exists. Notably, when vi(·) = true for all inputs where
i ∈ S ⊊ [n], by observing ⊥∗ =

∧
i∈[n] vi(M), the adversary A still cannot verify this as

long as there exists at least one i ∈ [n] \ S such that vi(·) = false, since the evaluation of
each vi remains oblivious when observing ⊥∗.

3.2 IND-CCLA Security
We introduce a new notion Indistinguishability under Chosen Ciphertext with Leakage
Attack, denoted as IND-CCLA, for (robust) AE, as illustrated in Figure 1. We introduce
an addition oracle Leak which implements L(·) to capture the information leaked during
a decryption failure. This notion is defined for a nonce-based scheme.

Definition 6 (IND-CCLAx).

AdvIND-CCLAx
Π (A) := Pr[GIND-CCLAx-0

Π (A)]− Pr[GIND-CCLAx-1
Π (A)]

for x ∈ {1, 2}.

Observation on the Notion. We adopt the real-or-ideal oracle for Leak. In the ideal
world, the oracle first checks if L(·) = ⊔ to indicate no leakage at all, or if L(·) = ⊤ to
indicate a valid ciphertext. In these cases, the adversary has zero advantage in distinguishing
by leakage, and we return the same result. Otherwise, the oracle samples a bitstring Mλ

uniformly at random with a length equal to the minimum plaintext leakage ℓ∗
λ, as defined

by the scheme with respect to the tuple (N,A, τ) and the ciphertext length |C| (or ε if
the length is 0). For instance, if L(·) ∈ {(M1,⊥1), (M2,⊥2)} with |M1| < |M2|, then the
minimum length ℓ∗

λ = |M1|. Alternatively, if L(·) = (M,⫠), then ℓ∗
λ = |M |. Also, we

stress that ℓ∗
λ can be customized for desired leakage length e.g. setting ℓ∗

λ = 0.

Error Invariance and Unicity. Based on x⊥ ∈ {⊥i,⫠}, we define two sub-notions
regarding the disclosure of error messages, named IND-CCLA1 and IND-CCLA2. For
simplicity, we use IND-CCLA to refer to both IND-CCLA1 and IND-CCLA2 when a result
applies to both notions.



Ganyuan Cao 9

GIND-CCLAx-0
Π GIND-CCLAx-1

Π

procedure Initalize
1 : K ←$ K
2 : Qm,Qe,Ql ← ∅

procedure Leak(N,A,C, τ)
1 : if (N,A,C, τ) ∈ Ql

2 : return  
3 : Ql ← Ql ∪ {(N,A,C, τ)}
4 : L← LN,A,τ

ΠK
(C)

5 : 1 : if L = ⊔ then
2 : return ⊔
3 : elseif L = ⊤ then
4 : return ⊤
5 : else

6 : Mλ ←$ {0, 1}ℓ∗
λ

7 : L← (Mλ, x⊥)
8 : // x⊥ ∈ {⊥i,⫠}

6 : return L

procedure Enc(N,A,M, τ)
1 : if (N,A,M, τ) ∈ Qm then
2 : return  

3 : C ← Π.EN,A,τ
K (M)

4 : C ←$ {0, 1}|M|+τ

5 : Qm ← Qm ∪ {(N,A,M, τ)}
6 : Qe ← Qe ∪ {(N,A,C, τ)}
7 : return C

procedure Dec(N,A,C, τ)
1 : if (N,A,C, τ) ∈ Qe then
2 : return  

3 : M ← Π.DN,A,τ
K (C)

4 : return ⫠

5 : return M

Figure 1: IND-CCLAx games for a nonce-based (robust) AE scheme Π. The dot-boxed
parts are exclusive to GIND-CCLAx-1

Π . We define ℓ∗
λ as the minimum achievable plaintext

leakage length concerning a tuple (N,A, τ) and the ciphertext length |C|. We let ℓ∗
λ ≥ 0 if

x⊥ = ⊥i where ⊥i ∈ S⊥, and ℓ∗
λ > 0 if x⊥ =⫠.

1. IND-CCLA1 (Error Invariance): The tuple (Mλ,⊥i) is returned in the ideal world
for a ⊥i ∈ S⊥. This sub-notion aims to ensure:

- The adversary cannot distinguish between the leaked text and a random bitstring
of the minimum leakage length defined by the scheme.

- The adversary cannot trigger any error flag other than ⊥i.

This notion can be seen as a variant of the error invariance (INV-ERR) notion in
[BDPS14], with the additional requirement of indistinguishable text disclosure.

2. IND-CCLA2 (Error Unicity): The tuple (Mλ,⫠) is returned in the ideal world. This
notion additionally requires L(·) to disclose only one error. With this notion, we
examine whether it is possible for a scheme to merge multiple condition predicates
into one using logic operators (as in Observation 1) without incurring distinguishable
text-based values, so that we can use a single error flag to validate all the failure
conditions. Some practical considerations with this notion include:

- An adversary cannot derive meaningful information (including text-based values
and descriptive errors) from leakage if any failure condition is met.

- If a scheme fails to verify some of failure conditions due to implementation
flaws, it remains undetectable to an adversary observing the leakage.



10 AE Robustness under Multiple Failures

- If an adversary attempts to disable some of checks (through some side channel),
it cannot confirm if it succeeds through the leakage.

At a high level, IND-CCLA2 strictly requires that only one error flag is allowed, even if
there are multiple failure conditions, meaning |S⊥| = 1. Conversely, IND-CCLA1 permits
the existence of multiple error flags, allowing |S⊥| ≥ 2.

If there is no leakage at all, i.e., L(·) = ⊔, it trivially satisfies both IND-CCLA1 and
IND-CCLA2 security. Additionally, when |S⊥| = 1, IND-CCLA1 converges to IND-CCLA2
since there is no other error flag to distinguish from the only error flag ⊥1 ∈ S⊥. To better
differentiate between these two sub-notions, we define L to output ⫠ when |S⊥| = 1, as
discussed in Remark 1. Furthermore, a scheme with |S⊥| ≥ 2 cannot be IND-CCLA2
because almost any query would result in ⊥1 being output, distinguishable from ⫠.

However, to incentivize the development of single-error schemes, in Proposition 1 we
demonstrate that IND-CCLA2 is strictly stronger than IND-CCLA1 when there are at
least two implicit error flags i.e. |S⊥| ≥ 2.

Proposition 1. IND-CCLA2 implies IND-CCLA1 for a scheme that includes at least two
implicit error flags i.e., |S⊥| ≥ 2.

Proof (Sketch). (IND-CCLA2 → IND-CCLA1). Suppose we have an adversary A that
breaks IND-CCLA1 security. Then A’s query to Leak yields (M,⊥j) with |M | ≥ |Mλ|
or ⊥j ̸= ⊥i to be distinguished from (Mλ,⊥i) where Mλ is the random bitstring of the
minimum leakage length. In all the cases, we can use A to distinguish from (Mλ,⫠).

(IND-CCA1 ̸→ IND-CCLA2). Consider an AE scheme that is IND-CCLA1 secure with
two error flags ⊥1 and ⊥2. It yields immediate distinguishing since ⊥1 will be output to
be distinguished from ⫠ for almost any query.

Extraction of IND-EPL. We can then extract a notion particular for security under
leakage from IND-CCLA. We name it as Indistinguishability of Errors and Plaintext as
Leakage, denoted by IND-EPL. The adversary is granted access to the honest execution
of encryption and decryption, allowing for an individual examination of the influence of
the leakage. Similarly, we can define IND-EPL1 and IND-EPL2 based on x⊥ ∈ {⊥i,⫠}
respectively. For simplicity, we slightly abuse the notations to let EK , DK and LK be Enc,
Dec and Leak in game GIND-CCLAx-0

Π in Figure 1 respectively, and we let $L be the Leak
oracle as in Figure GIND-CCLAx-1

Π in Figure 1. For notation simplicity, we use IND-EPL to
denote both IND-EPL1 and IND-EPL2 if a result applies to both notions.

Definition 7 (IND-EPLx).

AdvIND-EPLx
Π (A) := ∆A

(
EK ,DK ,LK

EK ,DK , $L

)
for key K ←$ K and x ∈ {1, 2}.

Corollary 1. IND-EPL2 implies IND-EPL1 for a scheme that includes at least two
implicit error flags i.e., |S⊥| ≥ 2.

Proof. The proof follows a similar proof to Proposition 1.

Prohibited & Pointless Queries. We specify the following generally prohibited
queries to prevent trivial wins, returning the invalid symbol  for such queries. For
IND-CCLA, the adversary is restricted from using the output of Enc to query Dec and
is also prohibited from repeating a query to Enc or Leak with the same tuple. For
IND-EPL, the only restriction is to avoid repeating queries to Leak with identical tuples.

It is pointless to query from Enc to Leak because the oracle Leak produces ⊤ for
a valid ciphertext in both the real and ideal worlds. Similarly, in IND-EPL, forwarding



Ganyuan Cao 11

queries from Enc to Dec serves no purpose since decryption is executed honestly in both
the real and ideal settings.

We do allow the adversary to repeat the nonce to capture security when a nonce might
be misused. Additionally, we allow the adversary to query with variable stretch parameters,
meaning the adversary can query with τ1 ≠ τ2 in different queries. While using a small
stretch parameter may allow the adversary to trivially win the INT-CTXT game, it still
captures the best achievable security with respect to the selected stretch parameter.

3.3 IND-sf-CCLA Security
We describe the game for IND-sf-CCLA notion for stateful (robust) AE as in Figure 2.
This notion captures the security in presence of out-of-order ciphertext delivery. We make
the extension from IND-sf-CCA notion introduce in [BKN04] by introducing the leakage
oracle. We then define IND-sf-CCLA advantage in Definition 8.

GIND-sf-CCLAx-0
Π GIND-sf-CCLAx-1

Π

procedure Initalize
1 : K ←$ K
2 : i← 0
3 : j ← 0
4 : sync← 1
5 : rep← ()
6 : C← [ ]
7 : stE , stD, stL ← Inital

procedure Dec(A,C, τ)
1 : j ← j + 1
2 : if j > i ∨ (A,C, τ) ̸= C[j] then
3 : sync← 0
4 : if sync = 1 then
5 : return  
6 : stL ← stD

7 : M ← Π.DstD ;A,τ
K (C)

8 : rep← ()

9 : return ⫠

10 : return M

procedure Enc(A,M, τ)
1 : i← i+ 1
2 : C ← Π.E stE ;A,τ

K (M)

3 : C ←$ {0, 1}|M|+τ

4 : C[i]← (A,C, τ)
5 : return C

procedure Leak(A,C, τ)
1 : if rep = (A,C, τ) then
2 : return  
3 : rep← (A,C, τ)
4 : L← LstL;A,τ

ΠK
(C)

5 : 1 : if L = ⊔ then
2 : return ⊔
3 : elseif L = ⊤ then
4 : return ⊤
5 : else

6 : Mλ ←$ {0, 1}ℓ∗
λ

7 : L← (Mλ, x⊥)
8 : // x⊥ ∈ {⊥i, ⫠}

6 : return L

Figure 2: IND-sf-CCLAx games for a stateful (robust) AE scheme Π. The boxed parts are
exclusively to game GIND-sf-CCLAx-1

Π . We define ℓ∗
λ as the minimum achievable plaintext

leakage length concerning a tuple (A, τ) and the ciphertext length |C|. We let ℓ∗
λ ≥ 0

if x⊥ = ⊥i where ⊥i ∈ S⊥, and ℓ∗
λ > 0 if x⊥ =⫠. We use Initial to denote the initial

state. In Line 6 of Dec, we copy the decryption state stD to the leakage state stL for
synchronization, and we still call D to update stD in ideal world and thus to update stL
in case LstL;A,τ

ΠK
(C) = ⊤. We use rep to ensure the adversary does not make prohibited

queries.



12 AE Robustness under Multiple Failures

Definition 8 (IND-sf-CCLAx).

AdvIND-sf-CCLAx
Π (A) := Pr[GIND-sf-CCLAx-0

Π (A)]− Pr[GIND-sf-CCLAx-1
Π (A)]

for x ∈ {1, 2}.

Proposition 2. IND-sf-CCLA2 implies IND-sf-CCLA1 for a scheme that includes at
least two implicit error flags i.e., |S⊥| ≥ 2.

Proof. The proof follows a similar proof to Proposition 1.

Extraction of IND-sf-EPL. We then similarly extract the IND-sf-EPL notion from
that of IND-sf-CCLA. Again, for simplicity, we slightly abuse the notations to let EK , DK

and LK denote the oracles Enc, Dec and Leak respectively in game GIND-sf-CCLAx-0
Π in

Figure 2. Additionally, we use $L to denote the oracle Leak in game GIND-sf-CCLAx-1
Π in

Figure 2. We define IND-sf-EPL as follows.

Definition 9 (IND-sf-EPLx).

AdvIND-sf-EPLx
Π (A) := ∆A

(
EK ,DK ,LK

EK ,DK , $L

)
for key K ←$ K and x ∈ {1, 2}.

Corollary 2. IND-sf-EPL2 implies IND-sf-EPL1 for a scheme that includes at least two
implicit error flags i.e., |S⊥| ≥ 2.

Proof. The proof follows a similar proof to Proposition 1.

Prohibited & Pointless Queries. In addition to prohibiting queries to Dec with
in-order ciphertexts from Enc, we also prohibit the adversary from making consecutive
repeated queries to the Leak oracle. This is because two queries to Leak with the same
tuple and the same state yield the same result, allowing the adversary to trivially win the
game. Therefore, we require that there must be one query to Dec between two successive
queries to Leak.

This restriction aligns with real-world scenarios, as leakage can only occur when the
decryption function is invoked. The underlying idea is that, following each update of states,
even when queried with the same tuple, the leakage should be indistinguishable. These
prohibited queries are defined for both the IND-sf-CCLA and IND-sf-EPL notions. We
let the oracles return the invalid symbol  for these prohibited queries.

Similarly, it is pointless to query in-order ciphertexts from Enc to Leak, as the oracle
yields ⊤ in both the real and ideal worlds.

3.4 Separation and Relations
Decomposition Theorems. We decompose IND-CCLA notion into IND-CPA plus
INT-CTXT plus IND-EPL, which captures the security goals of confidentiality, authenticity,
and security under decryption leakage respectively. We define IND-CPA as real-or-random
security i.e., indistinguishability from random bits as defined in [AR02] and [RBBK01].
We follow the definition of INT-CTXT as in [BN00].

Theorem 1. For x ∈ {1, 2}, for any IND-CCLAx adversary A, there exist an IND-CPA
adversary Acpa, an INT-CTXT adversary Aint and an IND-EPLx adversary Aepl such
that

AdvIND-CCLAx
Π (A) ≤ AdvIND-CPA

Π (Acpa) + AdvINT-CTXT
Π (Aint)

+ AdvIND-EPLx
Π (Aepl).



Ganyuan Cao 13

IND-sf-CCLAx

IND-CPA

INT-sf-CTXT IND-sf-EPLx
Thm.2

Thm.2

Thm.2

IND-CCLAx INT-CTXT IND-EPLx
Thm.1

Thm.1

Thm.1
Cor.1

Cor.2

Pro.1

Pro.2

Pro.3 Cor.3

Figure 3: An illustration of implications between notions. We use A→ B to denote that
notion A implies notion B. We use Ax 99K Bx to denote that Ax implies Bx only when x
is the same value for both Ax and Bx. We use Ax 7→ Ax to denote A2 imples A1.

Proof. We rewrite the advantage as

AdvIND-CCLAx
Π (A) = ∆A

(
EK ,DK ,LK

EK ,DK , $L

)
+ ∆A

(
EK ,DK , $L

$E , ⫠, $L

)
.

By definition, we have that

AdvIND-EPLx
Π (Aepl) = ∆Aepl

(
EK ,DK ,LK

EK ,DK , $L

)
.

for an IND-EPLx adversary Aepl.
Now given an adversary A1 with AdvΠ(A1) = ∆A1(EK ,DK , $L; $E ,⊥, $L), we can

then construct an IND-CCA3 adversary B from A1. If x = 1, we simulate the oracle $L

as follows. We let A1 simply return ⊔ if no leakage is defined by the scheme. Otherwise,
we first let A1 query DK to first check if a ciphertext C is valid. If valid, A1 returns ⊤.
Otherwise, we let A1 sample a bitstring Mλ of the minimum leakage length uniformly at
random and return the tuple (Mλ,⊥i) as response to A’s queries. Otherwise if x = 2, we
instead let A1 return the tuple (Mλ,⫠). We then have B return the same bit b returned
by A1. We can then bound the advantage of B as

∆A1(EK ,DK , $L; $E ,⫠, $L) ≤ AdvIND-CCA3
Π (B).

Now following [Shr04, Theorem 2], we can further decompose the advantage as

AdvIND-CCLAx
Π (A) ≤ AdvIND-CPA

Π (Acpa) + AdvINT-CTXT
Π (Aint)

+ AdvIND-EPLx
Π (Aepl).

Similarly, we can decompose IND-sf-CCLA notion into IND-CPA plus INT-sf-CTXT
plus IND-sf-EPL. We replace the left-or-right encryption oracle with a real-or-random
oracle in the definition of IND-sfCCA advantage in [BKN04] and we follow the definition
of INT-sf-CTXT as in [BKN04].
Theorem 2. For x ∈ {1, 2}, for any IND-sf-CCLAx adversary A, there exist an IND-CPA
adversary Acpa, an INT-sf-CTXT adversary Aint and an IND-sf-EPLx adversary Aepl

such that
AdvIND-sf-CCLAx

Π (A) ≤ AdvIND-CPA
Π (Acpa) + AdvINT-sf-CTXT

Π (Aint)
+ AdvIND-sf-EPLx

Π (Aepl).
Proof. The proof follows a similar proof of Theorem 1 by replacing IND-CCA3 with
IND-sfCCA.



14 AE Robustness under Multiple Failures

Implication between Notions. The following set of relationships is inherently obvious.
We present them here to provide completeness and we omit proofs since they are trivial.

Proposition 3. IND-sf-CCLAx implies IND-CCLAx for x ∈ {1, 2}.

Corollary 3. IND-sf-EPLx implies IND-EPLx for x ∈ {1, 2}.

Separation from AE Notions. In IND-EPL notions, we have the oracle return ⊤ both
in the real world and the ideal world for a valid ciphertext. This removes the overlap with
integrity notion. In Proposition 4, we separate IND-EPL from INT-CTXT and IND-CCA3
by showing that there is no implication between those notions.

Proposition 4. IND-EPL does not imply INT-CTXT and IND-CCA3 does not imply
IND-EPL.

Proof (Sketch). (IND-EPL ̸→ INT-CTXT). We consider an EtM scheme Π where C =
M ⊕KE and T = C⊕KM , with final output as C||T . From Example 1, we know L(·) = ⊔.
Thus both oracles will output ⊔ meaning that AdvIND-EPL

Π (A) = 0. Nevertheless, an
adversary can forge a valid ciphertext by querying the encryption oracle to obtain C||T
and returning C ⊕ 1n||T ⊕ 1n as forgery.

(IND-CCA3 ̸→ IND-EPL2). We consider the EtM paradigm in which the ciphertext is
first decrypted before verifying the tag during the decryption. EtM is IND-CCA3 secure
as established by combining the results from [BN00] and [Shr04]. We then have that
L(·) = (M,⫠) where M is the plaintext. The adversary can replace the tag of a ciphertext
from a previous encryption query to induce a decryption failure in the leakage oracle.
Consequently, the adversary can break the IND-EPL2 security by comparing the plaintext
used in that encryption query with the obtained leakage.

(IND-CCA3 ̸→ IND-EPL1). We consider EEM but also with the “decryption first”
configuration. Thus we have L(·) ∈ {(M,⊥1), (M,⊥2)}, where ⊥1 indicates the authen-
ticity failure, and ⊥2 indicates incorrect encoding. By also changing the tag for a valid
ciphertext from a previous encryption query, the adversary can distinguish M from a
random bitstring.

3.5 Comparison with Existing Notions
We make a brief comparison between our notion and established notions to underscore the
advantages of our notion, specifically RAE security from [HKR15], the error invariance
(INV-ERR) from [BDPS14], subtle AE from [BPS15], and plaintext awareness (PA) from
[ABL+14].

RAE Security. In the context of RAE security, the comparison is made with a random
injection holistically, whereas our notions emphasize the indistinguishability of the leakage
itself. RAE formalizes leakage in a generalized manner, assuming that plaintext is always
leaked upon decryption failure, and does not address scenarios involving multiple errors.

RAE claims to achieve the best-possible security concerning a queried tuple (N,A,M, τ)
(or (N,A,C, τ) respectively). Indeed, RAE makes sense even when the stretch parameter
τ is small. For example, when τ = 0, all ciphertexts are considered valid, thus comparing
the actual decryption DK(·) with the reverse of the injection π−1(·). The adversary may
not distinguish between these two worlds, yet it produces a valid ciphertext.

This fails to explicitly demonstrate which security goals, e.g. confidentiality, authenticity,
and indistinguishability of leakage, can be achieved concerning a specific stretch parameter
τ . This should be conveyed through proofs, providing guidance on the appropriate stretch
parameter for security. Our notions decompose these goals to capture each one individually,



Ganyuan Cao 15

enabling us to demonstrate what security can be achieved with a given stretch parameter,
as discussed in Remark 2.

Regarding plaintext leakage, a specific requirement of RAE is to ensure that the leaked
plaintext has a length |M | ≠ |C|−τ for a queried ciphertext C and an expansion parameter
τ . Our notions can also accommodate this requirement by additionally stipulating that
ℓ∗

λ ̸= |C| − τ .
Given the similarities between our notions and SAE, we can leverage the result of

the equivalence between RAE and SAE as demonstrated in [BPS15, Theorem 14]. To
eliminate the influence of multiple error flags, we restate the theorem under the condition
that |S⊥| = 1. A key difference between our notions and SAE is that SAE compares LK

and LK′ for a different key K ′. Thus they use LK′ as the leakage simulator for RAE in
the ideal world for the proof. To better align their result with our notions, we modify the
leakage simulator for RAE to the oracle $L, with no loss of security.

Proposition 5. RAE is equivalent to IND-CCLA2 when |S⊥| = 1. Specifically,∣∣∣AdvRAE
Π (A)−AdvIND-CCLA2

Π (A)
∣∣∣ ≤ q

2τ−1 + r2 + r

2τ+m+1

where r is the number misused nonce of A’s queries, q is the number of queries, and m is
the length of the shortest string in the message space.

Proof. We write the RAE advantage as

AdvRAE
Π (A) = ∆A

(
EK , DK , LK

π, π−1, $L

)
where π is a random injection. We let LK simulate the leakage. Thus we have that∣∣∣AdvRAE

Π (A)−AdvIND-CCLA2
Π (A)

∣∣∣ =
∣∣∣∣∆A

(
EK , DK , LK

π, π−1, $L

)
−∆A

(
EK ,DK ,LK

$E , ⫠, $L

)∣∣∣∣
≤ ∆A

(
$E , ⫠, $L

π, π−1, $L

)
(1)

Note that Equation 1 is essentially the difference between PRI and MRAE, which has be
characterized in [HKR15, Theorem 1].

Error Invariance. In [BDPS14], Boldyreva et al. explored the situation where a
decryption scheme generates multiple error messages and introduced the error invariance
(INV-ERR) notion such that an adversary should not see ⊥j ∈ S⊥ other than a predefined
error ⊥i ∈ S⊥. A scheme is considered INV-ERR secure if there exists a ⊥i ∈ S⊥ such
that AdvINV-ERR

Π,⊥i
(A) ≤ negl. However, the actual implementations of schemes can be

vulnerable to not only cryptographic attacks but also system or software attacks. Thus,
ensuring computational infeasibility with respect to a specific error may be insufficient, as
an adversary might exploit side channels to bypass the error check to see ⊥j . This reflects
the intuition of our notion of error unicity.

Since we assume a decryption scheme producing only a single error message ⫠, we
draw a parallel to our leakage characterization function, considering the set of implicit
error flags S⊥ as analogous to the error space in their notions.

In IND-EPL1, we stipulate that the adversary cannot induce an error flag ⊥j with
⊥i ̸= ⊥j , where ⊥i ∈ S⊥ represents the predefined error flag. This requirement resonates
with the error invariance, while also factoring in the leaked text. For IND-EPL2, we
essentially require that |S⊥| = 1, automatically achieving error invariance.

Proposition 6. IND-EPL implies INV-ERR.



16 AE Robustness under Multiple Failures

Proof (Sketch). We let A be an INV-ERR adversary against an AEAD scheme Π with
error space S⊥. We first assume |S⊥| ≥ 2. We can then construct an IND-EPL1 adversary
B as follows. For each of A’s decryption query, we let B forward it to its oracle Leak. We
let B response A’s query with the error flag from Leak. Note that A eventually queries
a ciphertext C yielding an error other than ⊥i. Then B can queries Leak with C to
distinguish from ⊥i. Thus we have AdvINV-ERR

Π (A) ≤ AdvIND-EPL1
Π (B).

Now if |S⊥| = 1, then AdvINV-ERR
Π (A) = 0 since there is no ⊥j ∈ S⊥ to be distinguished

from ⊥i. However, B may still distinguish by leaked plaintext M to break IND-EPL2.
Thus we have AdvINV-ERR

Π (A) ≤ AdvIND-EPL2
Π (B).

Subtle AE. In [BPS15], Barwell et al. introduced the concept of a leakage simulator
function. They define the leakage function Λ as Λ : K ×N ×AD × C → {⊤} ∪ Sλ where
Sλ represents the leakage space that accommodates various types of leakage including
multiple errors, candidate plaintexts, arbitrary string, or the classical case where nothing
is leaked. With the leakage simulator function, they define subtle AE (SAE) as

AdvSAE
Π (A) = ∆A

(
EK ,DK , ΛK

$E , ⫠, ΛK′

)
for K ←$ K and K ′ ←$ K with K ̸= K ′. Similarly, they extract the notion of error
simulatability (ERR-CCA) from their notion as

AdvERR-CCA
Π (A) = ∆A

(
EK ,DK , ΛK

EK ,DK ,ΛK′

)
.

We note that the definition provided by Barwell et al. is highly generalized, owing to the
extensive scope of Sλ. Barwell et al. claimed that they aimed to offer authors the flexibility
to define leakage according to their specific requirements. While a broader definition of
leakage, as suggested in their later work [BMOS17], can indeed provide adversaries with
a greater advantage, this flexibility may also lead to the inadvertent neglect of certain
vulnerabilities. For example, in the RIV scheme [AFL+16], Abed et al. defined leakage
solely as the plaintext M , neglecting the possibility of an adversary manipulating the
initialization vector (IV) through the tag T .

Moreover, comparing to ΛK′ with a different key K ′ does not sufficiently capture the
impact of the leakage itself, as it overlaps with integrity notions. For a valid ciphertext
C, ΛK(C) outputs ⊤, while ΛK′(C) is almost certain to produce an output other than
⊤, making it distinguishable. This necessitates considering an integrity adversary when
evaluating the advantage of a leakage adversary. This issue is particularly evident when
there is no leakage, as an adversary should have zero advantage in distinguishing based on
leakage in such cases, but we must still account for an integrity adversary. To address this,
we allow the oracles in both the real and ideal worlds to return ⊤ or ⊔ when the leakage
function produces such an output. In Proposition 7, we demonstrate that IND-EPL implies
ERR-CCA when all ciphertexts passed to Leak are invalid and leakage is possible.

Proposition 7. IND-EPL implies ERR-CCA when LN,A,τ
ΠK

(C) ̸∈ {⊤,⊔} for all tuples
(N,A,C, τ) queried by the adversary.

Proof. (ERR-CCA ̸→ IND-EPL1). We consider the example in [BPS15]. Suppose a scheme
that is ERR-CCA secure, then there is a simple variant that upon triggering an error
returns ⊥1 or ⊥2 depending on the first ciphertext bit. Then it is trivially not IND-EPL1.

(IND-EPL1 → ERR-CCA). Given an ERR-CCA adversary A, we can construct an
IND-EPL1 adversary B as follows. For each query to Leak made by A, we have B forward
to its oracle Leak. Note that a query from A eventually yields (M,⊥j) to be distinguished
from (M ′,⊥′

j) = ΛK′(·). Then B can use it to distinguish from (Mλ,⊥i).



Ganyuan Cao 17

(ERR-CCA ̸→ IND-EPL2). The result is trivial if |S⊥| ≥ 2 by Corollary 1. Now
suppose |S⊥| = 1 and Λ implements a permutation. An ERR-CCA adversary has 0
advantage in distinguish ΛK(·) and ΛK′(·). However, an IND-EPL adversary can observe
the repeated output from Leak to distinguish.

(IND-EPL2 → ERR-CCA). Suppose |S⊥| ≥ 2, then the result is trivial following
Corollary 1. Now suppose |S⊥| = 1. Similarly, a query from the ERR-CCA adversary A
eventually yields (M,⫠) to be distinguished from (M ′,⫠) = ΛK′(·). Then B can use it to
distinguish from (Mλ,⫠).

Plaintext Awareness. In [ABL+14], Andreeva et al. introduced plaintext awareness
to capture the indistinguishability of the plaintext where the ciphertext is always decrypted
and no check is not involved at all. Particularly, we consider the stronger version of PA2
security. In the original work, PA2 is defined by comparing the actual decryption function
and a decryption simulator. For our following discussion on EtE, we can essentially consider
the indistinguishability of plaintext as a random bitstring. We define it as in Definition 10.

Definition 10 (PA2). Let D̃ be the decryption function without any check for failure
such that D̃ always output a plaintext, then

AdvPA2
Π (A) := ∆A

(
EK , D̃K ; EK , $D̃

)
for key K ←$ K.

Intuitively, PA2 emphasizes the indistinguishability of plaintexts when no checks are
performed. In contrast, our IND-EPL2 notion focuses on the indistinguishability, or more
precisely, the uniqueness, of the error itself. Moreover, IND-EPL2 reveals whether a
ciphertext is valid and which error(s) it triggers if invalid, a detail not disclosed by PA2.
This feature aims to prevent the exploitation of descriptive error flags in further attacks
(with examples in Section 5). Additionally, even if the plaintext is indistinguishable,
descriptive errors may still disclose information following our discussion in Remark 3. In
Proposition 8, we separate our IND-EPL2 notion from PA2 security.

However, we recognize the importance of PA2 security in ensuring the robustness of
AE, as it guarantees the confidentiality of the plaintext when the only check for failure is
also disabled. Therefore, we conclude that an AE scheme should achieve both IND-EPL2
and PA2 to be considered robust.

Proposition 8. PA2 does not imply IND-EPL2, and IND-EPL2 does not imply PA2.

Proof. (IND-EPL2 ̸→ PA2). We consider an EtM scheme Π as in Example 1. We know
AdvIND-EPL2

Π (A) = 0 since L(·) = ⊔. However, it is trivial to break PA2 security by
changing the tag of a ciphertext obtained from a previous encryption query.

(PA2 ̸→ IND-EPL2). We consider the EtE paradigm with a tweakable cipher and
|S⊥| = 2 (with detailed discussion in Section 4). Then it is PA2 secure if the tweakable
cipher is secure as a tweakable PRP and no repeated tweak is queried. However, it is not
IND-EPL2 secure since for almost every query ⊥1 will be output to be distinguished from
⫠.

One may also observe that IND-EPL2 is strictly stronger than PA2 for EtE when
|S⊥| ≥ 2. In Remark 3, we further explain why |S⊥| matters in certain special cases.

4 Robustness of Encode-then-Encipher
Encode-then-Encipher (EtE) paradigm, initially proposed by Bellare and Rogaway in
[BR00], stands as the predominant approach for constructing robust AE. In [HKR15],



18 AE Robustness under Multiple Failures

Hoang et al. proved that EtE with a tweakable VIL cipher achieves the security as a PRI.
Despite this, there remains a dearth of study on the stateful security of EtE, particularly in
scenarios involving multiple errors. Notably, in [ST13], Shrimpton and Terashima briefly
touched upon the robustness of EtE, acknowledging its capacity to accommodate multiple
errors. Here we provide a formal treatment of this property through our notions.

In [BMM+15], Badertscher et al. showed the security of EtE from the view of composable
security with the Constructive Cryptography (CC) framework proposed by Maurer in
[Mau11], by constructing a random injection channel (RIC) from a uniform random
injection (which ideally models a VIL cipher) and an insecure channel. The RIC models
an ideal world in which a counter is used as nonce, and the adversary only has knowledge
of the message length. We then follow the idea of [BMM+15] by also using counter as
nonce and prove the robustness of EtE from a game-based perspective with our notion.

4.1 EtE with Tweakable Cipher

We consider a tweakable cipher Ẽ : K × T ×M → C as described in [LRW02]. Here we
set the tweak space T = N ×AD × N. We define a robust AE scheme Π = (E ,D) using
EtE as follows. Let C = Π.EN,A,τ

K (M) = ẼK;N,A,τ (M ||0τ ) and return C as ciphertext. Let
M ′ = Ẽ−1

K;N,A,τ (C). Then if M ′ ends with τ zeros, Π.DN,A,τ
K (C) returns M ′ excluding

ending τ zeros as plaintext. Otherwise, Π.DN,A,τ
K (C) returns ⫠.

The security of a tweakable block cipher is defined as (strong) indistinguishability from
tweakable random permutation ((±)P̃RP), which is a random permutation parameterized
by tweak T . To adapt this notion to a VIL cipher, we introduce an additional length
parameter. Let P̃ℓ represent the set of all tweakable permutations on {0, 1}ℓ. For each
pair (T, ℓ) ∈ T × N, we define π̃T (·) as a tweakable permutation sampled independently
and uniformly at random from P̃ℓ.

Lemma 1 (TRP/RND Switching Lemma). If each tweak T queried by an adversary A is
distinct, then

Pr[Aπ̃T (·) ⇒ 0]− Pr[A$(·) ⇒ 0] = 0

for every ℓ ≥ 0, where π̃T : {0, 1}ℓ → {0, 1}ℓ is a tweakable random permutation and $ is
an oracle that samples a bitstring uniformly at random of length ℓ.

Proof. Consider that with an oracle that samples and outputs a random bitstring, the
probability that a bitstring L ∈ {0, 1}ℓ is output to the adversary is 1

2ℓ at each query.
On the other hand, in an oracle that implements random tweakable permutations, if the
tweak does not repeat, it implies that a new tweakable random permutation is sampled
for each query based on the tweak T . Thus the probability that M is mapped to the
bitstring L ∈ {0, 1}ℓ is also 1

2ℓ at each query. Consequently, both oracles exhibit the same
distribution, meaning that the adversary has 0 advantage in distinguishing between these
two oracles.

4.2 Proof of Security

Following [BMM+15], we also use counter as nonce when analyzing the stateful security.
For simplicity we assume that |N | ≥ q where q is the number of queries made by A and one
can make the proof more rigorous by bounding the probability that a counter may repeat.
Also, we provide a generalized result assuming the tweakable cipher is a blackbox thus
omitting the possible intermediate values used in a specific construction e.g. a constructed
IV in PIV [ST13].



Ganyuan Cao 19

Theorem 3. For any IND-sf-CCLA2 adversary A against the EtE construction Π making
qd decryption queries, there is a ±̃PRP adversary Astprp against the tweakable VIL cipher
Ẽ such that

AdvIND-sf-CCLA2
Π (A) ≤ 3 ·Adv±̃PRP

Ẽ
(Astprp) + qd

2τ

where τ is the minimum expansion parameter queried by A.

Proof. The proof follows by combining Theorem 2 with Lemmas 2, 3 and 4.

Lemma 2. For any IND-CPA adversary A against the EtE construction Π making q

encryption queries, there is a P̃RP adversary Atprp against the tweakable VIL cipher Ẽ
such that

AdvIND-CPA
Π (A) = AdvP̃RP

Ẽ
(Atprp).

Proof (Sketch). We consider three games G0 – G2 where adversary’s queries are answered
with the tweakable VIL cipher Ẽ, a tweakable random permutation π̃, and a random
bitstring of length |M |+ τ respectively. We have that

AdvIND-CPA
Π (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)].

Then we can bound Pr[G0(A)]− Pr[G1(A)] by a P̃RP adversary Atprp. Following Lemma
1, we know that Pr[G1(A)]− Pr[G2(A)] = 0 since we assume counter does not repeat.

Lemma 3. For any INT-sf-CTXT adversary A against the EtE construction Π making q
decryption queries, there is a ±̃PRP adversary Astprp against the tweakable VIL cipher Ẽ
such that

AdvINT-sf-CTXT
Π (A) ≤ Adv±̃PRP

Ẽ
(Astprp) + q

2τ

where τ is the minimum expansion parameter queried by A.

Proof (Sketch). We consider two games G0 and G1 where the adversary’s encryption and
decryption queries are answered with Ẽ and Ẽ−1, and π̃ and π̃−1 respectively. We then
have that

AdvINT-sf-CTXT
Π (A) = Pr[A wins G0]− Pr[A wins G1] + Pr[A wins G1].

Similarly, we can bound Pr[A wins G0] − Pr[A wins G1] by a ±̃PRP adversary Astprp.
Since we assume the counter does not repeat and we have a fresh permutation for each
counter, the adversary wins G1 when its query yields a bitstring ending with τ zeros, which
is of probability at most q

2τ .

We first define the leakage characterization function L for the EtE paradigm. Consider
that during the decryption, M ′ = Ẽ−1

K;N,A,τ (C) is first deciphered. Depending if M ′ ends
with τ zeros, L outputs either ⊤ or M ′. Notably, there is only one error which is when
M ′ does not end with τ zeros. Thus LN,A,τ

ΠK
(C) = (M ′,⫠) for an invalid ciphertext C.

Lemma 4. For any IND-sf-EPL2 adversary A against the EtE construction Π making
q leakage queries, there is a ±̃PRP adversary Astprp against the tweakable VIL cipher Ẽ
such that

AdvIND-sf-EPL2
Π (A) = Adv±̃PRP

Ẽ
(Astprp).



20 AE Robustness under Multiple Failures

Proof (Sketch). We consider three games G0 – G2 for the proof. In G0, A’s queries are
answered with Ẽ and Ẽ−1 respectively. In G1, A’s queries are answered with π̃ and π̃−1

respectively. In game G2, a bitstring Mλ is sampled uniformly at random of length |M ′|
and the oracle Leak returns (Mλ,⫠) to A. We still answer A’s encryption and decryption
query with π̃ and π̃−1 respectively. We have that

AdvIND-sf-EPL2
Π (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)].

Similarly, we bound Pr[G0(A)]−Pr[G1(A)] by a ±̃PRP adversary Astprp. Since we assume
that the counter does not repeat, the tweak used to decipher a ciphertext C is always new
for a query made by the adversary. Following Lemma 1, G1 and G2 are identical, thus A
has 0 advantage in distinguishing between them.

Remark 2. From Lemma 2 – 4, we can observe that IND-CPA and IND-EPL security
are independent of the stretch parameter τ , and it only affects the level of authenticity
provided. In [HII+22], Hosoyamada et al. investigated the CCA security of EtE under
short stretch through an analysis of Rocca [SLN+21]. In [Kha24], Khairallah further
generalized this study to the CCA security of PRI. Our findings converge with theirs in
cases of unsuccessful decryption, underscoring the irrelevance of stretch parameter in our
results.

Notably, while the adversary can query with the stretch parameter, in practice, it
is typically predetermined by the communicating parties (but not an actual adversary).
Hence, opting for a larger stretch parameter is a natural choice to ensure authenticity.

Authenticity from Existing Redundancy. One key feature of EtE paradigm is its
ability to leverage existing redundancy in the plaintext. For example, if the plaintext has
been encoded prior to stretching or follows a specific format, such redundancy can be
utilized to enhance authenticity. We define the density of message space M to measure
how redundant the message space is as in Definition 11.

Definition 11 (δ-dense). Let vδ : {0, 1}ℓ → {true, false} be a predicate for ℓ ∈ N. We say
M⊆ {0, 1}ℓ is δ-dense with respect to the predicate v if

Pr[ ∀M ∈M : vδ(M) = true ] ≤ δ.

In that case, a valid forgery must pass two checks simultaneously, that is, satisfying
the predicate and ending with τ zeros. Thus we obtain a new bound for the integrity as in
Corollary 4.

Corollary 4. Assuming the message space M is δ-dense, then for any INT-sf-CTXT
adversary A against the EtE construction Π making q decryption queries, there is a ±̃PRP
adversary Astprp against the tweakable VIL cipher Ẽ such that

AdvINT-sf-CTXT
Π (A) ≤ Adv±̃PRP

Ẽ
(Astprp) + δq

2τ
.

Leakage with Multiple Errors. Suppose that M is δ-dense, the possible leakage
tuples are (M ′,⊥1) and (M ′,⊥2). Fixing ⊥1 as the error flag to be distinguished, for
IND-EPL1 security which requires that the adversary should not see the error flag ⊥2, we
can obtain a bound as in Corollary 5.

Corollary 5. Assuming the message space M is δ-dense, then for any IND-sf-EPL1
adversary A against the EtE construction Π making q leakage queries, there is a ±̃PRP
adversary Astprp against the tweakable VIL cipher Ẽ such that

AdvIND-sf-EPL1
Π (A) ≤ Adv±̃PRP

Ẽ
(Astprp) + q

2τ
(2)



Ganyuan Cao 21

if ⊥1 = “M ′[ℓ− τ, ℓ] ̸= 0τ ”, or

AdvIND-sf-EPL1
Π (A) ≤ Adv±̃PRP

Ẽ
(Astprp) + δ (3)

if ⊥1 = “vδ(M ′[0, ℓ− τ − 1]) = false”, where ℓ = |M ′|.

Leakage with Merged Error. The condition predicates both pertain to the same
leaked plaintext M ′. Based on Observation 1, we can merge them into a single leakage tuple
(M ′,⫠). Essentially, the stretching process can be viewed as a mapping ψ : M→M∗.
Consequently, we derive a new predicate vδ∗ :M∗ → {true, false} on the updated message
space M∗, where δ∗ = δ

2τ . This allows us to obtain a unified error ⊥∗ = vδ∗(M ′).
Indeed, if M ′ satisfies one of the condition predicates, it might display a specific

characteristic, such as ending with τ zeros. However, the probability that the oracle in
the ideal world produces such a bitstring is equivalent, providing the adversary with no
more advantage than a random guess. Consequently, the adversary has no advantage in
distinguishing based solely on the leaked plaintext.

Despite this, the adversary can break IND-sf-EPL1 security by identifying ⊥2 to
recognize the real world when one of the condition predicate is satisfied (since ⊥1 is always
output in the ideal world). After merging the two errors into one, ⫠ is output instead of
⊥2, preventing the adversary from distinguishing based on the error flag. This reduction
in the adversary’s advantage removes the term q

2τ from Equation 2, and δ from Equation
3, leading to the bound for IND-EPL2 advantage as stated in Corollary 6.

Corollary 6. Assuming the message space M is δ-dense, then for any IND-sf-EPL2
adversary A against the EtE construction Π with an merged error, there is a ±̃PRP
adversary Astprp against the tweakable VIL cipher Ẽ such that

AdvIND-sf-EPL2
Π (A) = Adv±̃PRP

Ẽ
(Astprp).

Remark 3. Following Lemma 4 and Corollary 6, the indistinguishability of leakage is
unaffected by the stretch parameter τ when |S⊥| = 1. However, Corollary 5 shows that
τ indeed plays a role in distinguishing when |S⊥| ≥ 2. Although the importance of |S⊥|
might seem abstract, it has practical implications, as discussed in Section 3.2.

We broaden the scope of “encoding” to encompass any values that needs to be verified
upon decryption. For instance, this can include verifying that decrypted social security
numbers match with the users. When |S⊥| ≥ 2, an adversary may infer these values by
observing the leaked plaintext and the absence of the corresponding ⊥i. On the other
hand, if |S⊥| = 1, the adversary remains oblivious to this, even if it partially satisfies the
success condition.

This also highlights our separation of PA2 from IND-EPL2 in Proposition 8. Even if the
plaintext appears indistinguishable from random bits, it might still “accidentially” satisfy
some of the success conditions, leading to descriptive errors that reveal some information
about those values to be verified (especially when these values are short).

Security under Nonce-Misuse. In Lemma 2 to Corollary 6, we actually assume an
nonce-respecting adversary. The security under nonce-misuse of EtE has been discussed in
many works including [HKR15, BR00, BMM+15]. Here we restate the security showing
that IND-CPA and IND-EPL2 security in presence of an nonce-misusing adversary are
still independent of the stretch parameter, but instead depend on the message length.

Lemma 5. For any nonce-misusing IND-CPA adversary A against the EtE construction
Π making q encryption queries, there is a P̃RP adversary Atprp against the tweakable VIL
cipher Ẽ such that

AdvIND-CPA
Π (A) = AdvP̃RP

Ẽ
(Atprp) + q2

2ℓ



22 AE Robustness under Multiple Failures

where ℓ = arg min(N,A,M,τ)∈Q{|C| : C = Π.EN,A,τ
K (M)} and Q is the set of encryption

queries made by A.
Proof. We consider the games G0 – G2 as in proof of Lemma 2. In this case, the adversary
can fix (N,A, τ) but query with different M . Thus we have a fixed tweak this time, which
means we have a fixed permutation. Thus the behaviors of G1 and G2 differ when G2

samples a repeated bitstring, which happens with probability at most q2−q
2ℓ ≤ q2

2ℓ .

Lemma 6. For any nonce-misusing IND-EPL2 adversary A against the EtE construction
Π making q leakage queries, there is a ±̃PRP adversary Astprp against the tweakable VIL
cipher Ẽ such that

AdvIND-EPL2
Π (A) = Adv±̃PRP

Ẽ
(Astprp) + q2

2ℓ

where ℓ = arg min(N,A,C,τ)∈Q{|M | : (M,⫠) = LN,A,τ
ΠK

(C), |M | > 0} where Q is the set of
leakage queries made by A.
Proof. The proof follows a similar proof to Lemma 5.

5 Revisiting Generic Compositions
We present a revisiting on the generic compositions, specifically Encrypt-then-MAC (EtM)
and MAC-then-Encrypt (MtE), as motivating examples for our IND-EPL2 notion. In these
examples, we assume that the plaintext has been encoded prior to encryption (or MAC).

Encode-then-Encrypt-then-MAC (EEM). We define two predicates v1 and v2 for
the success conditions where

v1(C||T ) = “MAC.V(C, T ) = true”

and
v2(M) = “Decode(M) ̸= inval”.

We first assume that LN,A
ΠK

(C||T ) ∈ {(ε,⊥1), (M,⊥2)} for an invalid ciphertext C,
where ⊥1 = v1(C||T ) and ⊥2 = v2(M). Following [BDPS14, Theorem 5], if the encryption
scheme is IND-CPA and the MAC scheme is SUF-CMA, then EEM achieves IND-CCLA1
security by setting ⊥i = ⊥1 in the definition.

Suppose v1(C||T ) = true for all (C, T ). This could occur due to a flaw in the authenticity-
check mechanism or for instance, if an adversary A manages to manipulate the return
value of the verification V to always be true by exploiting a memory overflow. To show
why |S⊥| matters, we only assume ⊥1 or ⊥2 is disclosed for now. By observing ⊥2, A can
infer that the only reason for failure is with incorrect encoding.

In this case, A can, for example, perform a padding oracle attack [Vau02] to recover
the plaintext. Additionally, given the leakage of M , A can further manipulate M to pass
other checks if the encryption scheme is malleable as discussed in [Rog11]. Note that A no
longer needs to worry about authenticity now, as it knows that the authenticity check has
flaws or has been successfully disabled by observing the appearance of ⊥2.

Now, let us assume a scheme that merges two errors to obtain a single error flag
⊥∗ = v1(C) ∧ v2(M). Note that A can obtain a ciphertext C that decrypts to M with
v2(M) = true from a previous encryption query. By modifying the tag of C to an obviously
invalid one, A can infer whether v1(C||T ) = true for all (C, T ) by observing for successful
decryption, since A can control when v2(M) = true. This renders such error merging
ineffective. In this case, we have LN,A

ΠK
= (M,⫠) (since we need to first obtain M for v2),

which is trivially distinguishable.
Proposition 9. EEM is not IND-CCLA2 secure.



Ganyuan Cao 23

Encode-then-MAC-then-Encrypt (EME). Notably, EEM falls in the scope of Encrypt-
with-Redundancy framework. Its authenticity has been discussed by An and Bellare in
[AB01]. We analyze the security from the perspective of decryption leakage. We consider
two condition predicates, v1 and v2, similar to the EEM example. However, we change v1
to v1(M,T ) = “MAC.V(M,T ) = true”.

By setting M ′ = M ||T , we allow both predicates to apply to M ′ (i.e. first part of
M ′ is checked for encoding). Indeed, according to Observation 1, we can merge the two
error flags into one ⊥∗ = v1(M ′) ∧ v2(M ′). However, this merging is also ineffective since
following a similar reason to EEM, that is, altering a portion of the ciphertext (with tag)
does not disrupt the correct encoding. Consequently, the adversary can control when v2
evaluates to true.

Proposition 10. EME is not IND-CCLA2 secure.

These examples highlight our intuition behind the combinatorial security of the indis-
tuingishability of the leaked text-values and the uniqueness of error flag. Even if error
flags are merged, the leaked text values might still aid in distinguishing them, rendering
the merging of error flags ineffective.

Discussion on Recent Construction. This may be a common problem for tag-
based AE schemes. RIV [AFL+16], inspired by SIV [RS06], employs a Feistel structure
[Fei73] and incorporates an additional tag in their scheme. Specifically, the extra tag
in RIV makes IV malleable thus allows predictable IV attacks [DR11]. RIV calculates
IV = F1(N,A,C) ⊕ T for decrypting C, where F is a PRF. The authenticity is later
verified by computing IV ′ = F2(N,A,M) and check if IV = IV ′. Let (N,A,C, T ) be the
output of a previous encryption query. Under CBC mode, the leaked plaintext reveals
M1⊕M ′

1 = T ⊕T ′ when the adversary queries Leak with (N,A,C, T ′) and T ̸= T ′, where
M1 and M ′

1 are the first blocks of C corresponding to T and T ′ respectively.
Unfortunately, RIV did not consider the IV as part of the leakage in their analysis.

According to our definition, we have LN,A
ΠK

(C||T ) = (IV ||M). It is trivial that the IV
is distinguishable from a random bitstring by querying with the same (N,A,C) but a
different tag T ′, highlighting such a vulnerability.

6 Transformation to Simulatability
We observe that transforming a game-based proof with real-or-ideal oracles into a simulation-
based proof is natural and straightforward. This is because security in a simulation-based
proof is essentially characterized by the advantage of a distinguisher D, which distinguishes
between an adversary A interacting with the real functionality RealF and a simulator S
interacting with an ideal functionality IdealF .

Notably, Degabriele and Fischlin, in [DF18], have shown the equivalence between
IND-CPA and encryption simulatability (ES), and they have also demonstrated that
decryption simulatability with integrity (DS-I) implies INT-CTXT. It remains for us to
show that we can transform IND-EPL into a simulatable one.

It is natural to ask: what should an adversary know when decryption fails? Ideally,
the adversary should learn nothing other than the length of the leaked content (since it is
defined by the scheme) and the fact that decryption has failed. Therefore, we should be
able to emulate the leakage without any knowledge of its contents except for its length. We
consider an emulator L for the leakage, as depicted in Figure 4. Note that the only input
provided to the emulator is the ciphertext length |C| (and possibly the stretch parameter
τ). With this information, the minimum leakage length ℓ∗

λ should be computable. We then
simulate the leakage content by sampling a random bitstring of that length and return
(Mλ,⫠) as the result. Note that we return ⫠ as an error since we are simulating the



24 AE Robustness under Multiple Failures

Emulator L
1 : Input : (|C|, τ)
2 : ℓ∗

λ ← ψ(|C|, τ)

3 : Mλ ← {0, 1}ℓ∗
λ

4 : return (Mλ,⫠)

Figure 4: An emulator L for the leakage. We let ψ be the function that evaluates the
leakage length with respect to |C| and τ .

behavior of a decryption function that outputs a single error for all types of failures, and
the descriptive error flags ⊥i ∈ S⊥ provide information beyond the fact that decryption
fails. This actually better explains our purpose behind proposing the IND-EPL2 notion.

Simulator SEnc,Dec,L

procedure Initalize
1 : T← empty FIFO queue

2 : Q← [ ]

procedure Simulate
1 : Input : (enc, N,A,M, τ)
2 : C ← Enc(N,A,M, τ)
3 : T.enqueue(C)

1 : Input : (dec, N,A,C, τ)
2 : M ← Dec(N,A,C, τ)
3 : T.enqueue(M)

1 : Input : (leak, N,A,C, τ)
2 : if Q[(N,A,C, τ)] ̸= ⊥ then
3 : (Mλ,⫠)← Q[(N,A,C, τ)]
4 : T.enqueue((Mλ,⫠))
5 : elseif Dec(N,A,C, τ) =⫠ then
6 : (Mλ,⫠)← L(|C|, τ)
7 : T.enqueue((Mλ,⫠))
8 : Q[(N,A,C, τ)]← (Mλ,⫠)
9 : else

10 : T.enqueue(⊤)

Figure 5: A simulator S for the adversary A. We let enc, dec and leak indicate A’s queries
to the oracles Enc,Dec and Leak respectively. We let the queue T be the transcript of
results. We use the lookup table Q to record the queries made, allowing us to manage
repeated leakage queries by outputting the same result.

Next, we consider the simulator S for the adversary A, as described in Figure 5. We
fix the honest execution of EK(·) and DK(·), allowing the simulator S to determine when
there is a decryption failure. For each of A’s queries to Enc and Dec, S simply repeats
the query. For A’s queries to Leak, S first determines if the decryption fails. In such
cases, S forwards |C| and τ to the emulator L to obtain the simulated leakage. A queue T
is used to track the transcript of the query results.

When defining S and L, we omit the case when L(·) = ⊔. This is because the emulator
L and the simulator S should not have access to leakage function LΠK

(·) (though S can
infer the output of LΠK

(·) when decryption is successful through DK(·)). However, when
LΠK

(·) = ⊔, distinguishing via leakage is impossible since there is no leakage.
We can then similarly define leakge simulatability as the advantage of a distinguisher



Ganyuan Cao 25

D in distinguishing between the transcripts by A and S, as in Definition 12.

Definition 12 (Leakage Simultatability (LS)).

AdvLS
Π (D) := Pr[AEK ,DK ,LK ⇒ T]− Pr[SEK ,DK ,L ⇒ T]

for key K ←$ K.

Proposition 11. LS is equivalent to IND-EPL2.

Proof. We rewrite the advantages as∣∣∣AdvLS
Π (D)−AdvIND-EPL2

Π (A)
∣∣∣ =

∣∣∣∣∆D

(
EK ,DK ,LK

EK ,DK , L

)
−∆A

(
EK ,DK ,LK

EK ,DK , $L

)∣∣∣∣
≤ ∆

(
EK ,DK , L
EK ,DK , $L

)
Observe that the transcript TA of A and the transcript TS of S only differ by the result
of L and $L. Additionally, S only call L when decryption fails. Otherwise, ⊤ is enqueued.
In case of decryption failure, both L and $L sample a random bitstring of length ℓ∗

λ, which
yields 0 advantage in distinguishing.

Notably, in [DF18], Degabriele and Fischlin extended their study to capture stateful
security via simulatability, in the presence of multiple ciphertext fragments. It should
be of no complication to also extend our LS notion to capture stateful security. They
also explored the composability of their notions into a simulatable channel. Numerous
frameworks address security composability, including the renowned Universal Composability
(UC) framework by Canetti [Can01]. Additionally, Maurer introduced the Constructive
Cryptography (CC) framework [Mau11], which we believe may provide a better example
regarding channel composability.

As indicated in [Mau11], an AE scheme can essentially be considered as a composition of
a confidential channel CONF, where only message length is leaked but adversary injection
into the channel is allowed, and an authentic channel AUTH, where the adversary cannot
inject messages, but the message content is available. Our transformation to leakage
simulatability can be viewed as a simplified version of CC by replacing the simulator
for an adversary who can observe the communication or inject messages in an Alice-Bob
setting with an adversary making oracle queries. Thus, converting our results to the CC
framework should not be complicated. Specifically, a channel should be defined such that
every message injected by the adversary yields (Mλ,⫠) from the emulator L. We leave it
as future work to formalize such a channel and study the composable security concerning
leakage.

7 Conclusion and Future Work
In this work, we introduce a new notion, IND-CCLA, to formalize the robustness of
AEAD schemes. This notion extends commonly accepted notions such as IND-CCA3 by
incorporating an additional oracle to address security concerns arising from leakage due to
decryption failures.

We particularly consider the situation involving multiple failure conditions and introduce
the concept of error unicity, which requires that only a single error is disclosed, either
implicitly through leakage or explicitly through decryption, even in the presence of multiple
failure conditions. Our findings show that it is not enough to just output a single error upon
decryption failure; the system must also ensure that only one error can be leaked. This
approach guarantees robustness, even if the failure-checking mechanism has implementation



26 AE Robustness under Multiple Failures

flaws, or if adversaries use side-channel or implementation-level attacks to gain knowledge
of errors and disable failure checks.

We further extend this notion to IND-sf-CCLA, which captures stateful security when
adversaries query out-of-order ciphertexts. We demonstrate the robustness of the Encode-
then-Encipher (EtE) paradigm, a mainstream method for constructing robust AE, by
proving its capability to handle multiple failure conditions with a single error.

Future work includes developing a more rigorous notion beyond error unicity to
address security under multiple failures. While our current focus is on leakage related
to decryption, it is also essential to formalize security concerning encryption leakage to
ensure the indistinguishability of intermediate values used in encryption, as discussed in
[BMOS17]. This would further strengthen AE robustness. Additionally, we provide a brief
example of converting our game-based notion to a simulation-based notion. Future research
should include an in-depth study of leakage simulatability to advance the understanding of
composable security concerning decryption leakage and to model the discrepancy between
the decryption function’s behavior and the actual leakage incurred.

References
[AB01] Jee Hea An and Mihir Bellare. Does encryption with redundancy provide

authenticity? In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045
of LNCS, pages 512–528. Springer, Heidelberg, May 2001. doi:10.1007/
3-540-44987-6_31.

[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,
and Kan Yasuda. How to securely release unverified plaintext in authenticated
encryption. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 105–125. Springer, Heidelberg, December
2014. doi:10.1007/978-3-662-45611-8_6.

[AFL+16] Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel.
RIV for robust authenticated encryption. In Thomas Peyrin, editor, FSE 2016,
volume 9783 of LNCS, pages 23–42. Springer, Heidelberg, March 2016. doi:
10.1007/978-3-662-52993-5_2.

[AFP13] Nadhem J Al Fardan and Kenneth G Paterson. Lucky thirteen: Breaking
the tls and dtls record protocols. In 2013 IEEE symposium on security and
privacy, pages 526–540. IEEE, 2013.

[AR02] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptography
(the computational soundness of formal encryption). Journal of Cryptology,
15(2):103–127, March 2002. doi:10.1007/s00145-001-0014-7.

[BB03] David Brumley and Dan Boneh. Remote timing attacks are practical. In
USENIX Security 2003. USENIX Association, August 2003.

[BDPS14] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn
Stam. On symmetric encryption with distinguishable decryption failures. In
Shiho Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 367–390. Springer,
Heidelberg, March 2014. doi:10.1007/978-3-662-43933-3_19.

[BKN04] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking
and provably repairing the ssh authenticated encryption scheme: A case
study of the encode-then-encrypt-and-mac paradigm. ACM Transactions on
Information and System Security (TISSEC), 7(2):206–241, 2004.

https://doi.org/10.1007/3-540-44987-6_31
https://doi.org/10.1007/3-540-44987-6_31
https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-662-52993-5_2
https://doi.org/10.1007/978-3-662-52993-5_2
https://doi.org/10.1007/s00145-001-0014-7
https://doi.org/10.1007/978-3-662-43933-3_19


Ganyuan Cao 27

[BMM+15] Christian Badertscher, Christian Matt, Ueli Maurer, Phillip Rogaway, and
Björn Tackmann. Robust authenticated encryption and the limits of symmetric
cryptography. In Jens Groth, editor, 15th IMA International Conference on
Cryptography and Coding, volume 9496 of LNCS, pages 112–129. Springer,
Heidelberg, December 2015. doi:10.1007/978-3-319-27239-9_7.

[BMOS17] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Au-
thenticated encryption in the face of protocol and side channel leakage. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I,
volume 10624 of LNCS, pages 693–723. Springer, Heidelberg, December 2017.
doi:10.1007/978-3-319-70694-8_24.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Rela-
tions among notions and analysis of the generic composition paradigm. In Tat-
suaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 531–
545. Springer, Heidelberg, December 2000. doi:10.1007/3-540-44448-3_41.

[BPS15] Guy Barwell, Daniel Page, and Martijn Stam. Rogue decryption failures: Rec-
onciling AE robustness notions. In Jens Groth, editor, 15th IMA International
Conference on Cryptography and Coding, volume 9496 of LNCS, pages 94–111.
Springer, Heidelberg, December 2015. doi:10.1007/978-3-319-27239-9_6.

[BR00] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to
exploit nonces or redundancy in plaintexts for efficient cryptography. In Tat-
suaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 317–
330. Springer, Heidelberg, December 2000. doi:10.1007/3-540-44448-3_24.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg,
May / June 2006. doi:10.1007/11761679_25.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001. doi:10.1109/SFCS.2001.959888.

[CHVV03] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux. Pass-
word interception in a SSL/TLS channel. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 583–599. Springer, Heidelberg, August 2003.
doi:10.1007/978-3-540-45146-4_34.

[DF18] Jean Paul Degabriele and Marc Fischlin. Simulatable channels: Extended
security that is universally composable and easier to prove. In Thomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III, volume
11274 of LNCS, pages 519–550. Springer, Heidelberg, December 2018. doi:
10.1007/978-3-030-03332-3_19.

[DP07] Jean Paul Degabriele and Kenneth G. Paterson. Attacking the IPsec standards
in encryption-only configurations. In 2007 IEEE Symposium on Security
and Privacy, pages 335–349. IEEE Computer Society Press, May 2007. doi:
10.1109/SP.2007.8.

[DP10] Jean Paul Degabriele and Kenneth G. Paterson. On the (in)security of IPsec
in MAC-then-encrypt configurations. In Ehab Al-Shaer, Angelos D. Keromytis,
and Vitaly Shmatikov, editors, ACM CCS 2010, pages 493–504. ACM Press,
October 2010. doi:10.1145/1866307.1866363.

https://doi.org/10.1007/978-3-319-27239-9_7
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-319-27239-9_6
https://doi.org/10.1007/3-540-44448-3_24
https://doi.org/10.1007/11761679_25
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-45146-4_34
https://doi.org/10.1007/978-3-030-03332-3_19
https://doi.org/10.1007/978-3-030-03332-3_19
https://doi.org/10.1109/SP.2007.8
https://doi.org/10.1109/SP.2007.8
https://doi.org/10.1145/1866307.1866363


28 AE Robustness under Multiple Failures

[DR11] T Duong and J Rizzo. Beast: Surprising crypto attack against https. Blog,
September, 42:45–47, 2011.

[Fei73] Horst Feistel. Cryptography and computer privacy. Scientific american,
228(5):15–23, 1973.

[HII+22] Akinori Hosoyamada, Akiko Inoue, Ryoma Ito, Tetsu Iwata, Kazuhiko
Mimematsu, Ferdinand Sibleyras, and Yosuke Todo. Cryptanalysis of Rocca
and feasibility of its security claim. IACR Trans. Symm. Cryptol., 2022(3):123–
151, 2022. doi:10.46586/tosc.v2022.i3.123-151.

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-
encryption AEZ and the problem that it solves. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 15–
44. Springer, Heidelberg, April 2015. doi:10.1007/978-3-662-46800-5_2.

[Hou09] S. Housley. Cryptographic Message Syntax (CMS). RFC 5652, IETF, Septem-
ber 2009. https://datatracker.ietf.org/doc/html/rfc5652#section-6.
3.

[Kha24] Mustafa Khairallah. CCA security with short AEAD tags. IACR Communi-
cations in Cryptology, 1(1), 2024. doi:10.62056/aevua69p1.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 31–46.
Springer, Heidelberg, August 2002. doi:10.1007/3-540-45708-9_3.

[Mau11] Ueli Maurer. Constructive cryptography – a new paradigm for security defini-
tions and proofs. In S. Moedersheim and C. Palamidessi, editors, Theory of
Security and Applications (TOSCA 2011), volume 6993 of Lecture Notes in
Computer Science, pages 33–56. Springer-Verlag, 4 2011.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag
size does matter: Attacks and proofs for the TLS record protocol. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 372–389. Springer, Heidelberg, December 2011. doi:
10.1007/978-3-642-25385-0_20.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-
cipher mode of operation for efficient authenticated encryption. In Michael K.
Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages 196–205. ACM
Press, November 2001. doi:10.1145/501983.502011.

[Rog11] Phillip Rogaway. Evaluation of some blockcipher modes of operation. Cryptog-
raphy Research and Evaluation Committees (CRYPTREC) for the Government
of Japan, 630, 2011.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment
of the key-wrap problem. In Serge Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 373–390. Springer, Heidelberg, May / June 2006.
doi:10.1007/11761679_23.

[Shr04] Tom Shrimpton. A characterization of authenticated-encryption as a form of
chosen-ciphertext security. Cryptology ePrint Archive, Report 2004/272, 2004.
https://eprint.iacr.org/2004/272.

https://doi.org/10.46586/tosc.v2022.i3.123-151
https://doi.org/10.1007/978-3-662-46800-5_2
https://datatracker.ietf.org/doc/html/rfc5652#section-6.3
https://datatracker.ietf.org/doc/html/rfc5652#section-6.3
https://doi.org/10.62056/aevua69p1
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1145/501983.502011
https://doi.org/10.1007/11761679_23
https://eprint.iacr.org/2004/272


Ganyuan Cao 29

[SLN+21] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori
Isobe. Rocca: An efficient AES-based encryption scheme for beyond 5g. IACR
Trans. Symm. Cryptol., 2021(2):1–30, 2021. doi:10.46586/tosc.v2021.i2.
1-30.

[ST13] Thomas Shrimpton and R. Seth Terashima. A modular framework for building
variable-input-length tweakable ciphers. In Kazue Sako and Palash Sarkar,
editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 405–423.
Springer, Heidelberg, December 2013. doi:10.1007/978-3-642-42033-7_21.

[Vau02] Serge Vaudenay. Security flaws induced by CBC padding - applications to
SSL, IPSEC, WTLS... In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 534–546. Springer, Heidelberg, April / May 2002.
doi:10.1007/3-540-46035-7_35.

https://doi.org/10.46586/tosc.v2021.i2.1-30
https://doi.org/10.46586/tosc.v2021.i2.1-30
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/3-540-46035-7_35


30 AE Robustness under Multiple Failures

A Detailed Proofs

A.1 Proof of Lemma 2

G0 G1 G2

procedure Initalize

1 : K ←$ K
2 : i← 0

3 : 1 : for (T, ℓ) ∈ T × N do

2 : π̃N,A,τ ←$ P̃ℓ

procedure Enc(A,M, τ)
1 : i← i+ 1

2 : C ← ẼK;(i,A,τ)(M ||0τ )

3 : C ← π̃i,A,τ (M ||0τ )

4 : C ←$ {0, 1}|M|+τ

5 : return C

Adversary BEnc

procedure B
1 : i← 0

2 : b← AEnc∗
(·)

3 : return b

procedure Enc∗(A,M, τ)
1 : i← i+ 1
2 : C ← Enc((i, A, τ),M ||0τ )
3 : return C

Figure 6: Left: Games G0 – G2 for proof of Lemma 2. Dot-boxed code is exclusive to G1
and Frame-boxed code is exclusive to G2. Right: P̃RP adversary B for proof for proof of
Lemma 2. For notation simplicity, we let T = (N,A, τ) and we let T = N ×AD × N.

Proof. We consider three games G0 – G2 as in Figure 6 and we use a counter i as nonce. In
G0, the encryption is done with the tweakable VIL cipher Ẽ and the oracle first appends
τ zeros after M and returns ẼK;(i,A)(M ||0τ ) as output. In G1, the oracle samples a
tweakable random permutation π̃ and return π̃i,A(M ||0τ ) as output. In G2, the oracles
sample a bitstring uniformly at random from {0, 1}|M |+τ and returns it as output. Then
we have that

AdvIND-CPA
Π (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)].

We can then construct a P̃RP adversary B from A as in Figure 6. We construct the
simulated encryption oracle Enc∗ for A such that for each encryption query made by A,
we let B append τ zeros after it and forward it to B’s oracle Enc, then B forwards the
response from Enc to A. We then let B return the same b that A returns. We then have
that

AdvP̃RP
Ẽ

(B) = Pr[G0(A)]− Pr[G1(A)].
Since we use counter for the nonce and we assume that counter does not repeat, we

know that the tweak never repeats, following Lemma 1, we have that

Pr[G1(A)]− Pr[G2(A)] = 0.

Finally, we have that

AdvIND-CPA
Π (A) = AdvP̃RP

Ẽ
(B).



Ganyuan Cao 31

A.2 Proof of Lemma 3

G0 G1

procedure Initalize
1 : K ←$ K
2 : i← 0
3 : j ← 0

4 : 1 : for (T, ℓ) ∈ T × N do

2 : π̃N,A,τ ←$ P̃ℓ

5 : sync← 1
6 : win← 0
7 : C← [ ]

procedure Enc(A,M, τ)
1 : i← i+ 1

2 : C ← ẼK;(i,A,τ)(M ||0τ )

3 : C ← π̃i,A,τ (M ||0τ )

4 : C[i]← (A,C, τ)
5 : return C

procedure Dec(A,C, τ)
1 : j ← j + 1
2 : if j > i ∨ (A,C, τ) ̸= C[j] then
3 : sync← 0
4 : if sync = 1 then
5 : return  

6 : M ′ ← Ẽ−1
K;(j,A,τ)(C)

7 : M ′ ← π̃−1
j,A,τ (C)

8 : ℓ← |M ′|
9 : if M ′[ℓ− τ, ℓ] = 0τ then

10 : win← 1
11 : M ←M ′[0, ℓ− τ − 1]
12 : return M

13 : return ⫠

procedure Finalize
1 : return win

Figure 7: Games G0 – G1 for proof of Lemma 3. Dot-boxed code is exclusive to G1.

Proof. We consider two games G0 and G1 as in Figure 7 for the proof. In G0, A’s queries
are answered with Ẽ and Ẽ−1 respectively. In game G1, the oracle samples a tweakable
random permutation and answer A’s query with π̃ and π̃−1 respectively. We then have
that

AdvINT-sf-CTXT
Π (A) = Pr[G0(A)⇒ 1]− Pr[G1(A)⇒ 1]

+ Pr[G1(A)⇒ 1].

Note that we can then construct a ±̃PRP adversary B as described in Figure 8 against
the tweakable VIL cipher Ẽ with A as subroutine. We define the simulated oracle Enc∗ for
A such that for each A’s encryption query, B first appends the τ zeros after the message
then forwards it to its oracle Enc, and returns the result that B obtains from Enc to A.
Similarly, we define the simulated oracle Dec∗ for A such that for each A’s decryption
query, B returns  to A if it is in-order. Otherwise, B forwards the query to its oracle
Dec. With the response, B checks if it ends with τ zeros and return ⫠ or the plaintext
accordingly. If A makes a valid forgery, then B returns 0, otherwise returns 1. We have
that

Adv±̃PRP
Ẽ

(B) = Pr[G0(A)⇒ 1]− Pr[G1(A)⇒ 1].

Now we bound the probability that A wins in G1. We consider two cases of A’s queries.
In first case, A queries a tuple (A,C, τ) that is the output of the oracle Enc. In this case,
A has to make an out-of-order query, which means that the counter has been updated and
a new random permutation will be used to decipher. Note that A wins if the deciphered
bitstring ends with τ zeros, which is of probability q

2τ . In the other case, (A,C, τ) has



32 AE Robustness under Multiple Failures

Adversary BEnc,Dec

procedure B
1 : i← 0
2 : j ← 0
3 : sync← 1
4 : win← 0
5 : C← [ ]

6 : Run AEnc∗,Dec∗

7 : if win = 1 then
8 : return 0
9 : return 1

procedure Enc∗(A,M, τ)
1 : i← i+ 1
2 : C ← Enc((i, A, τ),M ||0τ )
3 : C[i]← (A,C, τ)
4 : return C

procedure Dec∗(A,C, τ)
1 : j ← j + 1
2 : if j > i ∨ (A,C, τ) ̸= C[j] then
3 : sync← 0
4 : if sync = 1 then
5 : return  
6 : M ′ ← Dec((j, A, τ), C)
7 : ℓ← |M ′|
8 : if M ′[ℓ− τ, ℓ] = 0τ then
9 : win← 1

10 : M ←M ′[0, ℓ− τ − 1]
11 : return M

12 : return ⫠

Figure 8: ±̃PRP adversary B for proof of Lemma 3.

never been an output from Enc, then C is valid only if C deciphers to a bitstring with τ
ending zeros with a random permutation, which is the same as the first case. Thus we
have that

Pr[G1(A)⇒ 1] ≤ q

2τ
.

Finally, we have that

AdvINT-sf-CTXT
Π (A) ≤ Adv±̃PRP

Ẽ
(B) + q

2τ
.

A.3 Proof of Lemma 4
Proof. We consider three games G0 – G2 as in Figure 9 for the proof. In G0, A’s queries
are answered with Ẽ and Ẽ−1 respectively. In G1, A’s queries are answered with π̃ and
π̃−1 respectively. In game G2, a bitstring Mλ is sampled uniformly at random of length
|M ′| and the oracle Leak returns (Mλ,⫠) to A. However, we still answer A’s encryption
and decryption query with π̃ and π̃−1 respectively. We have that

AdvIND-sf-EPL2
Π (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)].

Now we show that we can construct an ±̃PRP adversary B as in Figure 10. For A’s
encryption and decryption queries, we can construct simulated oracles Enc∗ and Dec∗ as
described in proofs of Lemma 2 and 3. For the leakage query, B forwards the ciphertext
queried by A to its oracle Dec. Then B returns ⊤ if it is a valid ciphertext, and otherwise



Ganyuan Cao 33

G0 G1 G2

procedure Initalize
1 : K ←$ K
2 : i← 0
3 : j ← 0

4 : 1 : for (T, ℓ) ∈ T × N do

2 : π̃N,A,τ ←$ P̃ℓ

5 : sync← 1
6 : rep← ()
7 : C← [ ]

procedure Leak(A,C, τ)
1 : if rep = (A,C, τ) then
2 : return  
3 : rep← (A,C, τ)
4 : M ′ ← Ẽ−1

K;(j,A,τ)(C)

5 : M ′ ← π̃−1
j,A,τ (C)

6 : if M ′[|M ′| − τ, |M ′|] = 0τ then
7 : return ⊤

8 : 1 : Mλ ←$ {0, 1}|M′|

2 : return (Mλ,⫠)

9 : return (M ′,⫠)

procedure Enc(A,M, τ)
1 : i← i+ 1

2 : C ← ẼK;(i,A,τ)(M ||0τ )

3 : C ←$ π̃i,A,τ (M ||0τ )

4 : C[i]← (A,C, τ)
5 : return C

procedure Dec(A,C, τ)
1 : j ← j + 1
2 : if j > i ∨ (A,C, τ) ̸= C[j] then
3 : sync← 0
4 : if sync = 1 then
5 : return  

6 : M ′ ← Ẽ−1
K;(j,A,τ)(C)

7 : M ′ ← π̃−1
j,A,τ (C)

8 : rep← ()
9 : if M ′[|M ′| − τ, |M ′|] = 0τ then

10 : M ←M ′[0, |M ′| − τ − 1]
11 : return M

12 : return ⫠

Figure 9: Game G0 – G2 for the proof of Lemma 4. Dot-boxed code is exclusive to G1.
Frame-boxed code is exclusive to G2. Doubly-boxed code is for both G1 and G2.

returns (M ′,⫠) to A where M ′ is the deciphered bitstring. We let B return the same bit
b that A returns. We then have that

Adv±̃PRP
E (B) = Pr[G0(A)]− Pr[G1(A)].

Notably, the behaviors of G1 and G2 are identical. Since we assume the counter does
not repeat, the tweak used in the oracle Leak to decipher a ciphertext C is always new for
a query made by A. Following Lemma 1, the adversary has 0 advantage in distinguishing
between the two worlds. On the other hand, even if the adversary’s query yields a valid
ciphertext, both G1 and G2 output ⊤. Thus the adversary still has 0 advantage in
distinguishing between G1 and G2. Thus we have

Pr[G1(A)]− Pr[G2(A)] = 0.

Finally, we have that

AdvIND-sf-EPL2
Π (A) = Adv±̃PRP

Ẽ
(B).



34 AE Robustness under Multiple Failures

Adversary BEnc,Dec

procedure B
1 : i← 0
2 : j ← 0
3 : sync← 1
4 : rep← ()
5 : C← [ ]

6 : b← AEnc∗,Dec∗,Leak∗
(·)

7 : return b

procedure Leak(A,C, τ)
1 : if rep = (A,C, τ) then
2 : return  
3 : rep← (A,C, τ)
4 : M ′ ← Dec((j, A), C)
5 : if M ′[|M ′| − τ, |M ′|] = 0τ then
6 : return ⊤
7 : return (M ′,⫠)

procedure Enc∗(A,M, τ)
1 : i← i+ 1
2 : C ← Enc((i, A),M ||0τ )
3 : C[i]← (A,C, τ)
4 : return C

procedure Dec∗(A,C, τ)
1 : j ← j + 1
2 : if j > i ∨ (A,C, τ) ̸= C[j] then
3 : sync← 0
4 : if sync = 1 then
5 : return  
6 : M ′ ← Dec((j, A), C)
7 : rep← ()
8 : if M ′[|M ′| − τ, |M ′|] = 0τ then
9 : M ←M ′[0, |M ′| − τ − 1]

10 : return M

11 : return ⫠

Figure 10: ±̃PRP adversary B for the proof of Lemma 4.


	Introduction
	Background and Motivation
	Related Work
	Our Contribution

	Preliminaries
	Notation
	Game-Based Proof
	Robust Authenticated Encryption (RAE)

	Security Notions
	Scope of Leakage
	IND-CCLA Security
	IND-sf-CCLA Security
	Separation and Relations
	Comparison with Existing Notions

	Robustness of Encode-then-Encipher
	EtE with Tweakable Cipher
	Proof of Security

	Revisiting Generic Compositions
	Transformation to Simulatability
	Conclusion and Future Work
	References
	Detailed Proofs
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4


