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Abstract. We revisit the alternating moduli paradigm for constructing
symmetric key primitives with a focus on constructing highly efficient
protocols to evaluate them using secure multi-party computation (MPC).
The alternating moduli paradigm of Boneh et al. (TCC 2018) enables
the construction of various symmetric key primitives with the common
characteristic that the inputs are multiplied by two linear maps over
different moduli, first over F2 and then over F3.

The first contribution focuses on efficient two-party evaluation of al-
ternating moduli PRFs, effectively building an oblivious pseudorandom
function. We present a generalization of the PRF proposed by Boneh
et al. (TCC 18) along with methods to lower the communication and
computation. We then provide several variants of our protocols, with
different computation and communication tradeoffs, for evaluating the
PRF. Most are in the OT/VOLE hybrid model while one is based on
specialized garbling. Our most efficient protocol effectively is about 3×
faster and requires 1.3× less communication.

Our next contribution is the efficient evaluation of the OWF f(x) =
B·3(A·2x) proposed by Dinur et al. (CRYPTO 21) whereA ∈ Fm×n

2 ,B ∈
Ft×m
3 and ·p is multiplication mod p. This surprisingly simple OWF can

be evaluated within MPC by secret sharing JxK over F2, locally comput-
ing JvK = A ·2 JxK, performing a modulus switching protocol to F3 shares,
followed by locally computing the output shares JyK = B ·3JvK. We design
a bespoke MPC-in-the-Head (MPCitH) signature scheme that evaluates
the OWF, achieving state of art performance. The resulting signature
has a size ranging from 4.0-5.5 KB, achieving between 2-3× reduction
compared to Dinur et al. To the best of our knowledge, this is only ≈ 5%
larger than the smallest signature based on symmetric key primitives,
including the latest NIST PQC competition submissions. We addition-
ally show that our core techniques can be extended to build very small
post-quantum ring signatures for small-medium sized rings that are com-
petitive with state-of-the-art lattice based schemes. Our techniques are
in fact more generally applicable to set membership in MPCitH. 4

⋆ Part of this work was done while the second author was an intern at VISA Research.
4 The authors grant IACR a non-exclusive and irrevocable license to distribute the
article under the https://creativecommons.org/licenses/by-nc/3.0/.



1 Introduction

We revisit the line of work on building cryptographic primitives such as one-way
functions (OWFs) [Lev85], pseudorandom generators (PRGs) [BM82, Yao82],
and pseudorandom functions [GGM84] that can be evaluated efficiently in a
distributed setting. Traditionally, instantiations of these primitives have taken
two approaches as described in [ABG+14]. The first is the reductionist approach
where the security of the construction can be reduced to a “standard” set of well-
studied computational assumptions such as the hardness of factoring, discrete
logarithm, or learning with errors. The second is a direct construction approach
where the construction itself is considered to be the computational assumption.
Indeed, many of today’s most widely used primitives follow the direct approach
(e.g., AES, SHA).

The reductionist approach comes with several benefits—it improves our the-
oretical understanding of how various computational hard problems are related
and allows the cryptographic community to focus its cryptanalytic efforts on
a small set of assumptions. With the test of time, newer assumptions become
widely accepted and eventually considered standard by the community. Unfortu-
nately, the benefit of this approach often comes at a large cost to efficiency: often
resulting in orders of magnitude worse efficiency compared to the direct con-
struction approach (consider the efficiency gap between SHA-256 and discrete-
logarithm-based hash functions). Moreover, with the looming threat of quantum
computers, many of the existing standard assumptions are at risk of becom-
ing insecure which, in turn, motivates the investigation of new cryptographic
assumptions.

The security of the direct or new constructions, while often not reducible to
a standard assumption, are often based on a set of principles that are developed
and refined as the problem is studied. The canonical example of this is linear
and differential cryptanalysis of symmetric key cryptography. Other examples
include early lattice-based construction such as NTRU [HPS98]. In many cases,
these schemes first developed security principles which, in time, were refined into
a small set of underlying (standard) assumptions.

An additional benefit of direct constructions is that it allows for an added
degree of flexibility to conform to a changing set of requirements. This is partic-
ularly true in this work where we are focused on designing and using symmetric
key primitives that are extremely efficient to evaluate in the secure multi-party
setting. Indeed, it seems highly unlikely that assumptions and constructions de-
signed for a wildly different set of constraints would be ideal for this setting.
An added advantage of the direct approach is that this flexibility often allows
the construction to lack the algebraic structure that a quantum computer could
exploit. In some cases algebraic techniques such as Grobner bases can still ap-
ply. However, this still requires exploiting specific structure in the construction
which is not always present. This is contrasted by traditional assumptions such
as factoring or discrete logarithm which have a large amount of structure.

With the increased use of secure multi-party computation (MPC) and the
looming approach of quantum computers, there has been a need to consider
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a new set of assumptions that meet a new set of requirements. In particular,
primitives such as ring signatures [RST01], oblivious pseudorandom functions
(OPRFs) [NR97,FIPR05], verifiable random functions (VRFs) [MRV99], blind
signatures [Cha82], and more lack efficient constructions that meet one or more of
these requirements. This work is focused on using new symmetric key techniques
and novel protocol designs to implement these applications using secure multi-
party computation, or the zero-knowledge compiler known as MPC-in-the-head.

MPC-friendliness. There are two main categories of concretely efficient MPC
protocols—garbling-based (round optimal but large communication overhead)
and linear secret sharing-based (communication efficient but round complexity
grows with the depth of the circuit). Garbling-based approaches are typically
thought to have prohibitively high overheads making them impractical for most
applications as also noted in [DGH+21]. Ideally, we want to design primitives
that can be evaluated in just one round trip (the minimum required) using linear
secret sharing-based protocols.

There has been a long line of work in this direction, with a focus on modi-
fying existing symmetric key primitives to make them MPC-friendly [ARS+15,
GRR+16,DEG+18,AGP+19,DGGK21,GØSW23]. Despite making progress to-
wards MPC-friendliness, these constructions still suffer from a large round com-
plexity and/or large communication overhead (see [BIP+18] for a discussion).
To understand the reason behind the unsatisfactory progress in building MPC-
friendly symmetric key primitives, it helps to understand the high-level strategy
underlying the cryptanalysis of symmetric key primitives. A popular approach is
differential cryptanalysis [BS91] for block ciphers which analyses the effect that
a change in the input has on the output. By making sufficiently many queries,
one may be able to later distinguish the output from a uniformly random string.
The depth of the function is correlated with the difficulty of building a distin-
guisher and low-depth functions are expected to be less secure—conflicting with
the goal of MPC-friendliness.

Deep yet shallow. A key observation made by [BIP+18] is that the notions
of depth required by MPC and security against cryptanalysis are in fact very
different. Starting with this observation, they propose the alternating-moduli
paradigm which mixes linear functions over different moduli. One can build
concretely efficient MPC protocols to evaluate such functions, where the number
of rounds needed only depends on the number of piecewise linear functions. The
same function when expressed as a polynomial over a single modulus has a much
higher degree, making it resistant to cryptanalysis. This key observation allowed
them to build a depth-2 weak PRF which can be evaluated in just one round
trip, given a preprocessing phase. Their construction has mostly resisted initial
cryptanalysis, with some (easily fixable) attacks requiring a large number of
samples found in [CCKK21]. This work was followed by Dinur et al. [DGH+21]
who proposed a new OWF, PRG, and a weak PRF based on the same paradigm
and showed that one could construct efficient MPC protocols to evaluate them
leading to a very efficient round-optimal oblivious pseudorandom function. They
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also showed that the OWF could be used to build a post-quantum signature
scheme with good concrete efficiency albeit still larger than the state-of-the-art
using symmetric-key primitives.

Good but not Great. While prior work designed efficient protocols around the
OWF/wPRFs that were proposed, they still either fell short of beating the state-
of-the-art or suffered from other limitations. Despite being able to design cryp-
tographic primitives from the ground up, it is unsatisfactory that these protocols
are not “the best”. In particular, the signature scheme from [DGH+21] has a
much larger size than the state-of-the-art 4-7 KB. More advanced primitives
such as ring signatures and verifiable random functions have remained relatively
unexplored. Moreover, the 2PC protocols for evaluating these symmetric key
functions required significant time to generate the required correlated random-
ness while the main phase of these protocols have more communication than one
would hope for.

1.1 Our Contributions

We emphasize that the goal of this work is to revisit the alternating-moduli
paradigm and show that when protocols are carefully designed, such that they
exploit the structure of alternating-moduli primitives, they indeed achieve state-
of-the-art performance. In light of the limitations discussed above, we make the
following contributions:

– New candidate wPRF. We investigate bottlenecks in the (weak) PRF
candidates and propose a new candidate in Section 5. Our wPRF requires
less communication and effectively a third of the number of OTs when eval-
uated in MPC. While prior work [DGH+21] propose a protocol with good
performance for the main phase, they omit their relatively large cost of gener-
ating correlated randomness. The careful design of our new wPRF optimizes
the end-to-end cost of the protocols while at the same time achieving better
performance in the main phase. Our construction allows one to instantiate it
with O(λ) amortized evaluation time while prior works [BIP+18,DGH+21]
mandated O(λ2) time.
While previous work [BIP+18,DGH+21] has primarily focused on using lin-
ear secret sharing, and dismissed garbling-based approaches, we show that
using specialized garbling schemes leads to competitive protocols that offer
an interesting trade-off between the computation and communication.

– New cryptanalysis & generalized wPRF candidate. Section 5 contin-
ues where we present new cryptanalysis of our construction and the prior art.
We show that the hardness of this class of wPRFs is connected to the hard-
ness of solving sparse multivariate polynomials over F3 or, in its dual form,
the hardness of interpolating sparse multilinear polynomials. This analysis
suggests a generalized construction based on solving a system of sparse mul-
tilinear equations over a small finite field (or the dual) and might, with time,
form the basis of an underlying cryptographic assumption.
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– Fastest OPRF and wPRF protocols. In Section 6 we describe our wPRF
protocols and report their performance metrics in Section 12. When com-
pared to the prior alternating-moduli wPRF of [DGH+21], our implementa-
tion is an order of magnitude faster, due in part to the implementation itself
and the structure of the new wPRF. Compared to commonly used LowMC
construction, we observe that our protocols have far fewer rounds of interac-
tion (2 vs. 14 to 88) and are 3 to 20 times faster. Indeed, even compared to
DDH-based OPRF protocols, our protocols are an order of magnitude faster
and require only slightly more communication. Concretely, our fastest proto-
col requires just 2 rounds, 7.7 microseconds, and 100 bytes of communication
in the amortized setting.

– Small pq-signatures from symmetric-key assumptions.We begin Sec-
tion 8 by revisiting the digital signature scheme from [DGH+21] and build a
specialized MPC-in-the-Head (MPCitH) protocol targeting the same OWF,
giving us signature sizes ranging from 4.0-5.5 KB. To the best of our knowl-
edge, this gives the second smallest signature (only 5% larger than the small-
est) based on symmetric-key/MPCitH techniques.5 This also addresses an
implicit open question in [DGH+21] about whether a specialized proof sys-
tem for the AM-OWF can lead to better performance. In this process, we
also offer additional insights into the security of the AM-OWF, which serves
as a useful guideline when introducing additional structure in B.

– Smallest pq-ring signatures. In Section 9, we extend our digital signature
scheme to a ring signature scheme by introducing a simple yet powerful
technique to prove disjunctions of the same relation in MPCitH. Our ring
signature grows linearly in the size of the ring, but for small to medium-sized
rings, we are concretely smaller than the state-of-the-art. For larger rings,
most MPCitH-based signatures, including ours, can be combined with the
compiler by Goel et al. [GGHAK22] to build ring signatures whose size only
grows logarithmically in the ring size.

2 Overview

MPC-friendly wPRF. We propose a new weak PRF in the alternating-moduli
paradigm [BIP+18]. For n,m, t = O(λ), our construction is defined as

F (k, x) := B ·3 (A ·2 [k ⊙2 x])

where x, k ∈ Fn
2 are the input and key, A ∈ Fm×n

2 is a random matrix, B ∈ Ft×m
3

is a compressing random matrix, and ·p,⊙p are multiplication and component-
wise multiplication modulo p. This differs from the prior constructions [BIP+18]
which can be defined as F (A, x) := B(Ax) where the matrix A is interpreted
as the key.

5 Compared against submissions to the most recent NIST call for additional post-
quantum digital signature schemes. See Post-Quantum signatures zoo for easy com-
parison.
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We conjecture that the core hardness of these construction stems from three
components.

1. The input and key are non-linearly combined modulo two.
2. Modulo two summations of subsets are taken.
3. Modulus conversion is followed by a public compressing linear map B.

Observe that both our construction and the construction of [BIP+18] follow
these three phases. In particular, the matrix-vector multiplication of [BIP+18]
can be viewed as performing (1) component-wise multiplication with each row of
the matrix, followed by (2) summation. When viewed this way, observe that the
summations in (2) are over disjoint sets, i.e.,

∑
j(Ai⊙x)j . This is in contrast with

our construction where we take random summations over a common combined
input vector (k ⊙ x). In a sense our construction is reusing the hidden variable
of kixi many times while [BIP+18] uses it in a single term.

When interpreted in the MPC context, recall that linear operations are es-
sentially free while multiplications require communication.6 The number of mul-
tiplication terms of [BIP+18] is proportional to the size of A, i.e., O(λ2), and as
such, O(λ2) communication is required. [DGH+21] gave specialized protocols for
the wPRF of [BIP+18] which reduced the communication complexity to O(λ)
in the amortized setting. In particular, [DGH+21] proposed modifying the key
matrix A to be circulant, i.e., each row is a shift of the previous, which allows
one efficiently multiply K · x for many x with an amortized O(λ) communica-
tion overhead. However, we show that the process of generating the correlated
randomness for this multiplication still requires O(λ2) work with relatively high
constants.

In contrast, our construction only performs n = O(λ) multiplications in step
(1) and therefore can completely sidestep the need for this expensive correlated
randomness. Moreover, we show how the parties can use the fact that the key
is typically static to generate reuseable correlated randomness (i.e., n OTs) to
compute shares of (k⊙x) for an unbounded number of x. The main complexity of
our protocols is how shares ofA(k⊙x) are converted from modulo 2 to modulo 3.
We show that this can be done with m = O(λ) communication and m OTs which
can be generated with sublinear communication using pseudoradnom correlation
generators [BCG+19b,RRT23]. Compared to [DGH+21], our techniques require
less correlated randomness and therefore are more efficient. The final setup of
our protocol is for the parties to locally apply the F3 linear map B to their Fm

3

secret sharing of (A · (k ⊙ x)). To improve efficiency, we propose instantiating
A,B such that multiplication can be done in linear time while maintaining their
desired security properties.

We give two additional variants of this protocol. The first switches the order
of the moduli. That is, the wPRF is defined as F (k, x) = B ·2 (A ·3 [k ⊙3 x]).
The resulting protocol is conceptually similar. The primary advantage of this

6 That is, given a modulo p secret sharing of v ∈ Fn
p and public M ∈ Fm×n

p , the
parties can compute M ·p v without any communication. However, multiplication of
two secret shared scalers requires communication.
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protocol is for MPC applications where the output should be in binary secret
sharing format [MRR20,BDG+22]. Our second variant is based on a specialized
garbling scheme. The main advantage of this protocol is that it does not require
any OT correlations when performing modulus conversion. However, it comes at
the expense of requiring O(λ2) communication to compute (k ⊙ x). We believe
this construction is interesting when only a few evaluations are performed. For
details on our protocols we refer to Section 6.

We implement our MPC protocols and report their performance in Section 12.
Overall, we observe a 3 to 20 times reduction in running time compared to al-
ternatives such as [DGH+21,ARS+15] while substantially reducing the commu-
nication overhead. Indeed, compared to the DDH OPRF protocol [Mea86], our
construction is an order of magnitude faster with comparable communication.

Beyond proposing the new wPRF and the associated MPC protocols, we
adapt existing cryptanalysis techniques to determine parameters for the wPRF.
Compared to [BIP+18, DGH+21], we observe the the n,m, t parameters must
be increased a moderate amount. However, we give techniques to mitigate this
increased parameter size, and in some cases even allow for less communication
overhead. Our analysis suggests that the most relevant attack on the construction
is a reduction from subset sum[DGH+21]. In particular, given an input output
pair (x, y = F (k, x)), one can define the intermediate vector w := A(k ⊙ x).
Viewing A as a linear code and letting P be the associated parity check matrix,
the adversary has the constrains that Pw = 0 and Bw = y. One can solve for
w using subset sum solvers which have running time O(20.33m). For some of our
parameters regimes we show that the adversary must consider multiple samples
and present a new extension of subset sum to this setting. We refer to Section 5.4
for details.

Lastly, we show that the hardness of our construction along with the other
alternating-moduli constructions can be reduced to the hardness of solving sparse
multivariate polynomials. In particular, we show that our wPRF is equivalent

to F ′(k, x) =
∑m

i=1

∏m
j=1 k̄

Aijxj

j mod 3. Therefore, a key recovery attack for
the construction directly corresponds to solving a system of sparse multilinear
equations over F3. This leads us to a generalized framework for instantiating
alternating-moduli weak PRFs. In particular,

F (k,X) =

m∑
i=1

m∏
j=1

kj
xij mod p

where the distribution of X can be varied to capture the various constructions.

Signatures. Given that the alternating-moduli OWF (AM-OWF) was designed
with the efficient evaluation within MPC in mind, i.e., low non-linear depth but
high algebraic degree, it is natural to try to build a signature scheme using the
MPC-in-the-head paradigm. In particular, the AM-OWF of [DGH+21] is defined
as

F (x) := B ·3 (A ·2 x)
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for some n,m, t ∈ O(λ) where x ∈ Fn
2 are the input, A ∈ Ft×m

2 is an expanding
random matrix, B ∈ Fm×n

3 is a compressing random matrix, and ·p,⊙p are
multiplication and component-wise multiplication modulo p. The hardness of
inverting this function stems from the non-linearity of changing the modulus
between multiplying by A and B. One interpretation of this problem is Be is an
LPN instance with correlated noise vector e = Ax.

To build a signature in the MPC-in-the-head paradigm, the public key is
the output y = F (x) = B(Ax) on some uniformly random input x, and a
signature is simply a proof of knowledge of a pre-image x. Indeed, this was the
exact approach taken in prior work [DGH+21], where they used the KKW proof
system [KKW18] resulting in signatures with sizes ranging from 10.3-13.3KB,
which are still 2-3× larger than the best known signatures from symmetric-key
assumptions. The issue is that the KKW proof system has a generic way of
handling the pre-processing material needed for the MPC, that is oblivious to
the function being evaluated. These checks on pre-processed material account
for a significant chunk of the overall proof size.

The MPCitH protocol that we design is very close the KKW proof system,
except for the way in which we handle preprocessing checks. Instead of using
a cut-and-choose strategy, we use an idea from [CCJ23], that has the prover
first commit to the inputs, and (possibly maliciously generated) preprocessing
material. The verifier then permutes the preprocessing material and forces the
prover to use this ordering when executing the online phase of the MPC protocol.
We then show that for any choice of (incorrect) preprocessing material, a ma-
licious prover who does not know a valid pre-image, has a very low-probability
of producing an accepting proof. Although the high level ideas are borrowed
from prior work, the concrete hard problem that we consider is very different
and hence demands a completely separate, non-trivial analysis. Instead of using
a ball-and-bins analysis as done in [CCJ23], we view the problem through the
lens of Error Correcting Codes, which enables us to give much cleaner bounds
in comparison to prior work which relied on conjectures that were confirmed for
their parameters by explicitly computing them via python scripts (Section 7.2).

Ring Signatures. A ring signature allows a party to sign a message, while
remaining anonymous amongst a chosen set of ℓ (say) parties. Given a signature
scheme, there is a generic way to build ring signatures by providing a zero-
knowledge proof for the statement:

“I know a signature σ, on the message m that verifies under a public key
pki for some i ∈ [ℓ].”

The challenge, however, lies in minimizing the concrete overhead introduced
on top of a single signature, when trying to prove membership of the public
key pki ∈ {pk1, . . . , pkℓ}. The state-of-the-art in post-quantum ring signatures
are lattice-based schemes [LNS21,ESZ22], which build concretely efficient zero-
knowledge proofs for set-membership adapted to the lattice setting.
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The only competing alternative appears to be based on MPCitH [GGHAK22],
where the ring signature size grows as O(log ℓ) but they are concretely worse than
[LNS21,ESZ22]. This can be attributed to two main factors:

– First, they use Picnic [CDG+17] as the core signature scheme which is quite
large ≈ 42 KB when instantiated with NIST L5 parameters.7

– Second, although the signature size is only O(ℓ), the concrete constants are
still quite high for small-medium sized rings.

The former issue can be handled easily by replacing Picnic with either the sig-
nature scheme we propose or one of the other newer, smaller, MPCitH based
signature schemes (see Figure 7). This would yield concretely good signatures,
that are competitive with lattice-based schemes at large ring sizes. However,
we observe that in practice, small-medium sized rings are used. For instance, in
the ring signatures protocol used by Monero as part of RingCT, the number of
public keys used in the anonymity set was only very recently upgraded from 11
to 16.8 We close this gap in the literature for small-medium sized rings using a
simple yet powerful idea (Section 9). When combined with our signature scheme
described above, this yields competitive post-quantum ring signatures for rings
of size < 32.

At a high-level, our strategy is to interpolate a polynomial Y (X) such that
Y (i) = pki for i ∈ [ℓ] and have the prover show that the public key they know
(i, pki, Q(X)) satisfies Y (X)−pki = Q(X)(X−i) for some degree ℓ−2 polynomial
Q(X). The verifier then checks that this equation holds at a random point r in the
field. With overwhelming probability, we are then guaranteed that the claimed
polynomial and public key indeed satisfy the relation above. However, this is not
sufficient by itself, as the prover has to now show that i ∈ [ℓ]. We obtain this for
free when the public keys can be interpreted as field elements in GF(pt) for some
prime t. This is indeed the case for the AM-OWF and other MPCitH signatures
based on AES,LowMC,Rain4,AIM [AES01,ARS+15,DKR+22,KHS+23], etc. In-
stead of secret sharing i over GF(pt), the prover shares it over GF(ℓ), and if ℓ is
a power of p, the parties in the MPC, can locally embed their shares in GF(pt)
by appending 0s. Note that this immediately guarantees that i can be expressed
using logp ℓ digits and this also does not leak any information about i as the
verifier already knows that any honest prover uses an i ∈ GF(ℓ).

3 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. The computational and statistical
security parameter is denoted by λ, σ ∈ N. A function f : N → N is said to be
polynomial if there exists a constant c such that f(n) ≤ nc for all n ∈ N, and
we write poly(·) to denote such a function. A function f : N → [0, 1] is said to

7 https://microsoft.github.io/Picnic/
8 https://github.com/monero-project/research-lab/issues/79.
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be negligible if for every c ∈ N, there exists N ∈ N such that for all n > N ,
f(n) < n−c, and we write negl(·) to denote such a function. A probability is
noticeable if it is not negligible, and overwhelming if it is equal to 1 − negl(λ)
for some negligible function negl(λ). For a set S, we write s ← S to indicate
that s is sampled uniformly at random from S. For a random variable D, we
write d ← D to indicate that d is sampled according to D. An algorithm A
is PPT (probabilistic polynomial-time) if its running time is bounded by some
polynomial in the size of its input. We use ∆(X,Y ), to denote the statistical
distance between two random variables X and Y and ∆H(x, y) to denote the
hamming distance between two vectors x, y ∈ {0, 1}k. For two ensembles of
random variables {D0,λ}λ∈N, {D1,λ}λ∈N, we write D0 ≈c D1 to indicate that for
all PPT A, it holds that∣∣∣∣ Pr

d←D0,λ

[A(d) = 1]− Pr
d←D1,λ

[A(d) = 1]

∣∣∣∣ ≤ 1

2
+ negl(λ).

We use JxK to denote an additive sharing of x and overload this with arith-
metic operations such as multiplication and addition to show operations applied
on individual shares by the parties in the MPC. We will also write JxKi to denote
the share of the i-th party. When useful, we will explicitly state the field Fp that
is being secret shared over as JxKp. We use ⟨a, b⟩ to denote the inner product of
two vectors a, b ∈ Fn

p and ⊙ to denote the Hadamard product of two vectors.
We recall the definition of universal hash families and the Leftover Hash

Lemma. Let H∞(X) denote the min-entropy of a random variable X and Un

denote the uniform distribution over {0, 1}n.

Definition 1 (Strong Extractors). A function f : {0, 1}n×{0, 1}d → {0, 1}m
is said to be a strong (k, ε) extractor, with seed length d, if for all random vari-
ables X on {0, 1}n, independent of Ud, with H∞(X) ≥ k,

∆(f(X,Ud), Um) ≤ ε.

Definition 2 (Universal Hash Families). A family H of hash functions of
size 2d from {0, 1}n to {0, 1}m is said to be universal if, for every x, y ∈ {0, 1}n
with x ̸= y,

Pr
h∈H

[h(x) = h(y)] ≤ 2−m.

Definition 3 (Leftover Hash Lemma [HILL99]). Let X be a random vari-
able with H∞(X) ≥ k, and H : {0, 1}n → {0, 1}m be a universal hash family
of size 2d. If m = k − 2 log 1

2ε , then h(x) is a strong (k, ε) extractor, with seed
length d and output length m.

Definition 4 (q-ary entropy). For any integer q ≥ 2 and real x ∈ [0, 1], the
q-ary entropy function is defined as Hq(x) = x logq (q − 1) − x logq (x) − (1 −
x) logq (1− x)

Definition 5 (Volume of Hamming Ball [GRS12]). Let q ≥ 2 and 0 ≤
r/n ≤ 1 − 1/q. Then the volume of a Hamming ball of radius r in Fn

q is

qHq(r/n)n−o(n) ≤ Volq(r, n) ≤ qHq(r/n)n.
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We refer to Honest-Verifier Zero-Knowledge Argument of Knowledge as HVZKAoK
and define it below. Given a two-party interactive protocols between PPT al-
gorithms A with input a and B with input b where only B gets an output, we
introduce two random variables: ⟨A(a), B(b)⟩ denotes the output of the protocol,
and View(A(a), B(b)) denotes the transcript of the protocol.

Definition 6 (HVZKAoK). An HVZKAoK with soundness error ε for an NP
language L ⊂ {0, 1}∗ and corresponding relation RL ⊂ {0, 1}∗×{0, 1}∗ is a two-
party interactive protocol between a prover P and verifier V that satisfies the
following properties:

– Perfect Completeness. For every (x,w) ∈ RL, the verifier always accepts
the interaction with an honest prover Pr[⟨P (x,w), V (x)⟩ = 1] = 1.

– ε-Soundness. For every PPT algorithm P̃ such that Pr[⟨P̃ (x), V (x)⟩ = 1] =
ε̃ > ε, there exists an extractor algorithm Ext which, given rewindable black-
box access to P̃ , outputs a valid witness w′ for x in time poly(λ, 1/(ε̃− ε)).

– Honest-Verifier Zero-Knowledge. An argument of knowledge is (com-
putationally, statistically, perfectly) HVZK if there exists a PPT simulator
Sim such that for every (x,w) ∈ RL, Sim(x) ≡ View(P(x,w),V(x)), where
≡ denotes computational, statistical, or perfect indistinguishability between
the distributions.

Gap-HVZK. A gap honest-verifier zero-knowledge argument of knowledge [CKY09]
with gap L′, where L′ ⊆ L is an NP language with relation RL′ , is defined as a
honest-verifier zero-knowledge argument of knowledge, with the following relax-
ation of ε-soundness: the extractor Ext is only guaranteed to output a witness
w′ such that (x,w′) ∈ L′.
Weak Pseudorandom Function (wPRF). A function F : K × X → Y with
key space K, domain X and output space Y (implicitly parameterized by security
parameter λ) is said to be a Weak Pseudorandom Function if

{(xi, F (k, xi)}i∈[q] ≈c {(xi, yi)}i∈[q]

where k ← K, xi ← X and yi ← Y.
That is, when F is evaluated using a secret key, for random inputs the input-

output pairs look uniformly random. This differs from a [Strong] PRF in that
the adversary is not allowed to specify the inputs. In more detail.
[Strong] Pseudorandom Function (PRF). A function F : K × X → Y
with key space K, domain X and output space Y (implicitly parameterized by
security parameter λ) is said to be a [Strong] Pseudorandom Function if for all
polynomial time distinguishes A with oracle access to F (k, ·), it holds that∣∣∣∣ Pr

k←K
[AF (k,·)() = 1]− Pr

f←(X→Y)
[Af(·)() = 1]

∣∣∣∣ ≤ 1

2
+ negl(λ).

This definition differs from the weak variant is that the adversaryA is allowed
to adaptively query the the PRF at its chosen inputs (but without knowing the
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key). F is pseudorandom if it can not be distinguished from a truly random
function f .

Low-MC PRP. To date, one of the popular constructions has the Low-MC
block cipher [ARS+15] which follows a similar structure as standard block ciphers
such as AES. Unlike our constructions, Low-MC is a permutation and therefore
faces additional constraints that all operations must be invertible given the key.
In addition, Low-MC is a PRP which implies that it is a strong PRF and must be
secure for adaptively chosen x, not just random. For an input x ∈ Fn, Low-MC
f(k, x) is computed iterative using the round function si+1 := fi(ki, si) for i =
1, ..., r where s1 = x, f(k, x) = sr+1. Typically, r ∈ [14, 2λ]. The round function
fi(ki, si) can be computed in three phases. First, a non-linear and invertible F2

transformation is applied to the state. In particular, the current state si ∈ Fn
2

is reinterpreted as gi ∈ Gm where G = F3
2,m = n/3. Let P be the permutation

group over G→ G. A constant element c ∈ P is multiplied with each G element
in gi, i.e. g

′
i := c · gi. g′i is then reinterpreted as a Fn

2 vector s′i. Next, a linear
and invertible F2 transformation is applied, s′′i := Ai ·s′i for a public Ai ∈ Fn×n

2 .
Finally, the round key ki ∈ Fn

2 is added to the state which defines the output of
the round,i.e. si+1 := s′′i + ki. When implementing Low-MC, typically addition
by c ∈ P is implemented in MPC as a binary circuit over F3

2. The authors give
a specific value of c which can be implemented as (α, β, γ) → (α ⊕ βγ, α ⊕ β ⊕
αγ, α⊕ β ⊕ γ ⊕ αβ) using three parallel AND gates and six “free” XOR gates.

As with the hardness of alternating moduli paradigm, the security Low-MC
stems, in part, from the fact that the two operations that are each non-linear
with respect to the other, matrix multiplication · : Fn×n × Fn → Fn and the
permutation group action · : P × Gm → Gm. Unlike the alternating moduli
paradigm, only a single element c ∈ P is multiplied with the state as opposed to,
for example, a matrix B ∈ Pm×m. However, multiplying by such a B appears to
necessitate significant work in the MPC setting due it it not being linear over the
secret sharing group G. To mitigate the minimal use of operations in P, Low-MC
apply many iterations of the round function.

The primary short of Low-MC is the necessity of r ≈ 14 invocations of the
round function, each of which requires 2 rounds of communication, O(n) OT
correlations, and O(n2) work. Ideally, this could be reduced to effectively only
performing the round function once.

Akavia et al. weak PRF. Akavia et al. [ABG+14] proposed proposed the first
weak PRF that follows a similar structure as ours. Their construction defines the
key to be k = (b ∈ Fn,A ∈ Fn×n

2 ) and the input to be x ∈ Fn
2 . First the matrix-

vector product Ax is computed followed by computing a public DNF formula g
on the result, i.e. f(k, x) = g(Ax⊕b). A Disjunctive normal form (DNF) formula
can be computed as a layer of OR gates followed by AND gates, i.e. for some
public (t, e, c) s.t. t = poly(n), e, c ∈ {0, 1}t×n, the function can be expressed
as g(x) =

∧t
i=1

∨n
j=1 ei,j(xj ⊕ ci,j). Bogdanov and Rosen [BR17] showed that

any DNF formula g can be represented as a rational function of degree at most
O(log n) and that this implies that f can be distinguished in quasi-polynomial
time O(poly(tn2log(t) log(n))). While it may be possible to instantiate g to have
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a large enough t to have exponential security in practice, the concrete efficiency
is unlikely to be competitive with alternatives.

Boneh et al. Strong PRF. In addition to the weak PRF construction previ-
ously discussed, [BIP+18] propose an extension for upgrading the their conjec-
tured weak PRF to a strong/plain PRF. First they show that one can distinguish
their weak PRF in the strong/adaptive setting where the adversary can choose
the input x. In particular, their adaptive attacks leverage highly correlated in-
puts such as having small hamming distance. This suggest the use of an error
correcting code to ensure that all inputs have high minimum distance. The most
efficient solution would be to encode the input using the same modulus as the
input to the weak PRF, i.e.

f(A, x) = B ·3 (A ·2 [G ·2 x])

whereG is the generator matrix. This could be implemented in the MPC context
with no communication and very little overhead. Unfortunately this approach
does not work as this can be viewed as a transformation on only the key, i.e.

f(A′, x) = B ·3 (A′ ·2 x)

where A′ = A ·2 G. Therefore the same on their wPRF apply to this construc-
tion. [BIP+18] goes on to show that the adaptive attacks on their wPRF can
be extended to a relatively large class of multiplicative depth-2 circuits. This
suggests that significantly new techniques are required if it possible to construct
a depth-2 strong PRF.

Given this negative result, [BIP+18] turn their attention to depth-3 circuit.
They conjecture that performing the linear code over a different modulus does
result in strong security and propose

f(A, x) = B ·3 (A ·2 [G ·3 x])

where x ∈ Fn
3 and G ∈ Fs×n

3 .

4 Insecure Plus/XOR Construction

As a starting point we first introduce a candidate construction that is ultimately
determined to be insecure. The aim of this example is to demonstrate how sub-
tle changes to the construction can result in significant security ramifications.
Moreover, we believe it is instructive to know what does not work as well as
what does. For the ease of notation, we sometimes view key/input for a (weak)
PRF as vectors and we denote them by lowercase bold letters.

Given the advancements of f(x) = B ·3 (A · x) being a OWF, a natural
question to ask is whether it possible to use f to construct another, more efficient,
weak PRF. From the efficiency perspective, such an f can be evaluated in the
plain two party setting with linear communication due to the only nonlinear step
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consisting of O(n) modulus conversion gates since A is now public. Arguably
the simplest candidate would be

F (k, x) = B ·3 (A ·2 (k ⊕ x)),

where k and x are binary vectors and ⊕ denotes addition over F2. To attack the
candidate above, it is not hard to see that it suffices to provide an attack for the
following single-bit output variant where

F (k, x) = 1t ·3 (A ·2 (k ⊕ x))

We now show that this function is indeed learnable. It will be useful for us to
represent F3 as the set {−1, 0, 1} in the natural way. A simple observation is that
one can emulate addition over F2 using multiplication over F3 by relying on the
mapping ϕ(x) = x + 1 (arithmetic in F3), which maps 0 → 1 and 1 → −1. Let
y = F (k, x) be an input-output pair from the wPRF candidate above. It follows
by inspection that if we use the notation x̄j = ϕ(xj) and k̄j = ϕ(kj) for j ∈ [n],
we can write the following relation for (x, y)

y =

m∑
i=1

ϕ
( n∏

j=1

(k̄j x̄j)
aij

)
=

m∑
i=1

ϕ
(( n∏

j=1

k̄
aij

j

)
︸ ︷︷ ︸

Si

·
( n∏

j=1

x̄
aij

j

)
︸ ︷︷ ︸
Ti∈{−1,1}

)

where arithmetic operations are done over F3. Since input is known in the wPRF
game, by plugging in the input values we can compute each Ti. Moreover, each
Si is a monomial over k = (k̄1, . . . , k̄n), i.e., Si is simply a subset product of
components of k where the subset only depends on A (and is independent of x).
We can now recover the key in two steps. First, given that ϕ is a linear function,
after gathering enough samples we can use Gaussian elimination to recover each
Si ∈ {−1, 1} for i ∈ [m]. In the next step, we use Si to recover the key. To do
so, recall that each Si is a monomial of components of k. Because multiplication
over F3 (for the set {−1, 1}) is isomorphic to addition over F2, it follows that

A ·2 k =
(
ϕ−1(S1), . . . , ϕ

−1(Sm)
)
∈ {0, 1}m.

SinceA is a random expanding matrix we can recover k by Gaussian elimination,
as desired.

Remark 1. We remark that one can rely on a similar argument to show that the
following candidate is secure, which is obtained by replacing the XOR operation
in the plus construction with concatenation (and appropriately modifying the
row dimension of the public matrix A).

F (k, x) = B ·3 (A ·2 (k∥x)),
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5 AM-Based Pseudorandom Functions

We now move on to the design, analysis, and implementation of our new weak
PRF and the associated MPC protocols. To better understand our new con-
struction we first review closely related MPC-Friendly (weak) PRFs [GGM84].

5.1 Prior Constructions & Their Shortcomings

Low-MC PRP. To date, one of the popular constructions has the Low-MC
block cipher [ARS+15] which follows a similar structure as standard block ciphers
such as AES. Unlike our constructions, Low-MC is a permutation and therefore
faces additional constraints that all operations must be invertible given the key.
In addition, Low-MC is a PRP which implies that it is a strong PRF and must be
secure for adaptively chosen x, not just random. For an input x ∈ Fn, Low-MC
f(k, x) is computed iterative using the round function si+1 := fi(ki, si) for i =
1, ..., r where s1 = x, f(k, x) = sr+1. Typically, r ∈ [14, 2λ]. The round function
fi(ki, si) can be computed in three phases. First, a non-linear and invertible F2

transformation is applied to the state. In particular, the current state si ∈ Fn
2

is reinterpreted as gi ∈ Gm where G = F3
2,m = n/3. Let P be the permutation

group over G→ G. A constant element c ∈ P is multiplied with each G element
in gi, i.e. g

′
i := c · gi. g′i is then reinterpreted as a Fn

2 vector s′i. Next, a linear
and invertible F2 transformation is applied, s′′i := Ai ·s′i for a public Ai ∈ Fn×n

2 .
Finally, the round key ki ∈ Fn

2 is added to the state which defines the output of
the round,i.e. si+1 := s′′i + ki. When implementing Low-MC, typically addition
by c ∈ P is implemented in MPC as a binary circuit over F3

2. The authors give
a specific value of c which can be implemented as (α, β, γ) → (α ⊕ βγ, α ⊕ β ⊕
αγ, α⊕ β ⊕ γ ⊕ αβ) using three parallel AND gates and six “free” XOR gates.

As with the hardness of alternating moduli paradigm, the security Low-MC
stems, in part, from the fact that the two operations that are each non-linear
with respect to the other, matrix multiplication · : Fn×n × Fn → Fn and the
permutation group action · : P × Gm → Gm. Unlike the alternating moduli
paradigm, only a single element c ∈ P is multiplied with the state as opposed to,
for example, a matrix B ∈ Pm×m. However, multiplying by such a B appears to
necessitate significant work in the MPC setting due it it not being linear over the
secret sharing group G. To mitigate the minimal use of operations in P, Low-MC
apply many iterations of the round function.

The primary short of Low-MC is the necessity of r ≈ 14 invocations of the
round function, each of which requires 2 rounds of communication, O(n) OT
correlations, and O(n2) work. Ideally, this could be reduced to effectively only
performing the round function once.
Akavia et al. weak PRF. Akavia et al. [ABG+14] proposed proposed the first
weak PRF that follows a similar structure as ours. Their construction defines the
key to be k = (b ∈ Fn,A ∈ Fn×n

2 ) and the input to be x ∈ Fn
2 . First the matrix-

vector product Ax is computed followed by computing a public DNF formula g
on the result, i.e. f(k, x) = g(Ax⊕b). A Disjunctive normal form (DNF) formula
can be computed as a layer of OR gates followed by AND gates, i.e. for some
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public (t, e, c) s.t. t = poly(n), e, c ∈ {0, 1}t×n, the function can be expressed
as g(x) =

∧t
i=1

∨n
j=1 ei,j(xj ⊕ ci,j). Bogdanov and Rosen [BR17] showed that

any DNF formula g can be represented as a rational function of degree at most
O(log n) and that this implies that f can be distinguished in quasi-polynomial
time O(poly(tn2log(t) log(n))). While it may be possible to instantiate g to have
a large enough t to have exponential security in practice, the concrete efficiency
is unlikely to be competitive with alternatives.
Boneh et al. Strong PRF. In addition to the weak PRF construction previ-
ously discussed, [BIP+18] propose an extension for upgrading the their conjec-
tured weak PRF to a strong/plain PRF. First they show that one can distinguish
their weak PRF in the strong/adaptive setting where the adversary can choose
the input x. In particular, their adaptive attacks leverage highly correlated in-
puts such as having small hamming distance. This suggest the use of an error
correcting code to ensure that all inputs have high minimum distance. The most
efficient solution would be to encode the input using the same modulus as the
input to the weak PRF, i.e.

f(A, x) = B ·3 (A ·2 [G ·2 x])

whereG is the generator matrix. This could be implemented in the MPC context
with no communication and very little overhead. Unfortunately this approach
does not work as this can be viewed as a transformation on only the key, i.e.

f(A′, x) = B ·3 (A′ ·2 x)

where A′ = A ·2 G. Therefore the same on their wPRF apply to this construc-
tion. [BIP+18] goes on to show that the adaptive attacks on their wPRF can
be extended to a relatively large class of multiplicative depth-2 circuits. This
suggests that significantly new techniques are required if it possible to construct
a depth-2 strong PRF.

Given this negative result, [BIP+18] turn their attention to depth-3 circuit.
They conjecture that performing the linear code over a different modulus does
result in strong security and propose

f(A, x) = B ·3 (A ·2 [G ·3 x])

where x ∈ Fn
3 and G ∈ Fs×n

3 .

Boneh et al. weak PRF. Boneh et al. [BIP+18] propose a weak PRF with ex-
ponential security that can be computed by depth 2 circuits with mixed moduli.
In particular, they consider the function f(K, x) = g(K·2x) where g(w) =

∑
i wi

mod 3 and the matrix K is viewed as the key. w := K·2x ∈ Fm
2 is a binary vector

that is embedded into Fm
3 component-wise in the natural way. As discussed later,

[BIP+18] proposes to restrict K to being a circulant (or toeplitz) matrix, that is,
each row is a shift of the previous. [BIP+18,DGH+21] show that various types
of learning algorithms provably cannot learn this function by showing that there
are no fixed function families of exponential size that is correlated with it. They
additionally show that it can not be approximated by any low-degree polynomial.
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This result follows from the result of Razborov-Smolensky [Raz87,Smo87] show-
ing that MODp can not be approximated by any low depth mod q circuit, where
p, q are distinct primes. [DGH+21] proceed to give several extensions to their
core construction. The first is support for multiple output bits. The function is
defined as f(K, x) := B ·3 (K ·2 x) where K is a square matrix and B is a com-
pressing matrix. In particular, one can view B as a generator matrix for a linear
code that has high minimum distance. The best-known attacks for this construc-
tion attempt to distinguish by detecting a linear bias in the output. However,
these attacks scale exponentially in the minimum distance of B [BIP+18]. We
note that the structure of this PRF is identical to the aforementioned OWF.
Indeed, [DGH+21] based the OWF on the PRF construction of [BIP+18] where
the key K is replaced with a public random matrix. [DGH+21] also conjectures
that the F2,F3 can be replaced by any distinct prime fields Fp,Fq. The core
hardness of the problem appears unaffected with all known attacks performing
equally poorly on larger moduli. However, F2,F3 and F3,F2 appear to be the
most efficient choice due to yielding more efficient modulus conversion protocols.

[BIP+18] suggests choosing the keyK ∈ Fm×n
p to be a square cirulant matrix,

i.e. choose K1 ∈ Fn
2 uniformly and define the remaining rows as a rotation by one

of the previous. Choosing K with this distribution allows one to express K in
O(λ) space and, as we will see below, enables efficient matrix vector products, i.e.
x·K, in the two party setting[DGH+21]. With some exception that we will discuss
later, choosing K with this distribution does not appear to degrade security for
the parameters used by [BIP+18,DGH+21], i.e. n = m = 2λ, t ≈ 0.6λ.

Previous works [DGH+21,BIP+18] on implementing this PRF in MPC have
considered two settings. Honest majority three-party and two-party semi-honest
setting with both follow a similar structure. First the F2 secret shared inputs
JKK2 and JxK2 are multiplied9 together to obtain JwK2 := JKK2JxK2. The exact
method used to compute this depends on the setting and is discussed below. Once
the sharing of w = K · x is computed, the parties perform a modulus switching
protocol where the shares JwK2 are converted into JwK3. [DGH+21] suggests that

one can preprocess a random double sharing JrK2, JrK3 for a uniform r ∈ F2 using

some protocol and to reveal w′ := JrK2 + JwK2. Using JrK3, it is then possible to

subtract off r from w′ to obtain JwK3. The final step of the protocol is to locally

compute Jf(K, x)K3 := B ·3 JwK3.
The outline above requires two missing steps, efficiently computing a sharing

of x ·K and generating random modulus conversion double sharings JrK2, JrK3.
Next we discuss how [DGH+21] suggests this be done.

Honest Majority Three Party Setting. In the honest majority setting, the inner
product between two vectors can be computed withO(1) communication [AFL+16]

which implies that JwK2 = JxK2 · JKK2 can be computed with linear communica-
tion overhead, i.e. O(n +m). Similarly, it is possible to have one of the parties

generate JrK2, JrK3 locally and then only reveal w′ to the other parties, i.e. O(m)
communication.

9 When the inputs are plaintext, more efficient multiplication can be used.
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Two Party Setting. The two party setting the situation is more complicated due
to not having a O(1) communication inner product protocol. However, when
evaluating the wPRF for a fixed key K for many inputs, one can amortize this
cost. In particular, for bits b1, ..., bq ∈ F2 and a fixed vector ∆ ∈ Fm

2 , one can
use correlated OT protocols, e.g. IKNP[IKNP03], SoftSpoken[Roy22] or Silent

OT[BCG+19a,RRT23], to generate the secret sharings Jbi∆K2. Moreover, Silent
OT can achieve this with an amortized cost of q bits of communication when q is
sufficiently large, alternatively, SoftSpoken achieves q λ

c communication for any
constant c, e.g. c = 4. Specially, this corresponds to a subfield VOLE protocol
with F2 as the subfield and F2m as the extension. When K is circulant, one

can set ∆ := K1 ∈ F2m and generate sharings of Jx(i)
j ·∆K and locally rotate

these to obtain Jx(i)
j ·KjK and sum them to compute JKx(i)K as desired. We

note that [DGH+21] only mentions the technique above in passing and does not
implement or report on its performance. Instead, they focus on the setting with
(free) preprocessed correlated randomness where JKxK can be computed using
other methods (which also leverage the fact that K is cirulant).

[DGH+21] does not explicitly state how to generate modulus conversion dou-

ble sharings and again assumes (free) preprocessing for JrK2, JrK3. A natural
choice would be using oblivious transfer or the more recent work of [IKNZ23].
Looking forward, we will offer improvements to these technique in Section 6.

5.2 Our PRF Constructions

An Alternative View of [BIP+18].We now move on to our main construction
defined in Definition 8. Leading up to this, let us reconsider the PRF of Boneh et
al. [BIP+18] f(K, x) := B ·3 (K ·2 x) where x ∈ Fn

2 is the input, K ∈ Fm×n
2 is the

key (typically square & circulant), and B ∈ Ft×m
3 is a public compressing matrix.

Observe that this function can be computed as f(K, x) := B ·3 [A ·2 (k ⊙2 x
′)]

where for n′ := nm, k′, x′ ∈ Fn′

2 are the appropriately unrolled version of K, x. In
particular, let k′im+j := Ki,j and x′ := xx...x be m copies of x. Computing the
component-wise product of these two vectors provides all of the terms required
to compute K ·2 x. All that remains is to perform the summations corresponding
to the rows of K. This can be achieved using an appropriately defined public
matrix A ∈ Fm×nm

2 . In particular, A will be the (compressing) repetition code,
or equivalently it will look like a staircase with consecutive runs of n ones in
each of the m rows.

We argue that this formulation more explicitly describes the construction as
it separates the additive and multiplicative steps. An additional benefit of the
explicit formulation is that the n′ = nm = O(λ2) scalar multiplications between
secret vectors k′, x′ are apparent.

Our Weak PRF. Instead of asking if we can reduce the overhead of the Boneh
et al. construction, it will be more instructive to ask if there are any meth-
ods for plausibly improving the hardness of the function. The most natural
option is to remove all structures from k′, x′,A. If A is the repetition code of
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[DGH+21, BIP+18], then wj is the sum
∑

i∈[n]+(j−1)m x′ik
′
i =

∑
i∈[n] xiK1,i+j .

As demonstrated by our insecure construction in Section 4, the alternating
modulus paradigm becomes insecure if each wj is not the combination of O(λ)
multiplications and additions for each wj . As such, choosing a circulant K with
dimension O(λ) in some sense appears to be the most succinct option while
remaining secure, i.e. each input bit xi for i ∈ [n] is multiplied by each (inde-
pendent) key bit K1,j , leading to nm = O(λ2) terms where the summations are
taken over disjoint sets where xi,K1,j each appear once.

However, we observe that this is by no means the only option. Let us remove
the constraints on x′, k′ ∈ Fn′

2 such that they are uniformly distributed and re-
place A ∈ Fm×n′

with a code with high minimum distance, e.g. A is uniform.
Observe that each wj is now a linear combination of the x′ik

′
i terms. In expec-

tation, each wj will be the summation of n′ = nm = O(λ2) terms. In light of
the known cryptanalysis, this construction appears overly conservative in that
the wj terms only need to be a sum of O(λ) terms while at the same time not
having small linear dependency. We have now defined our new (F2,F3)-wPRF
which is a generalization of the Boneh et al. PRF. In particular, we can write
the implicit construction above more formally as follows:

Definition 7. Let n,m, t ∈ N, our (F2,F3)-weak-PRF construction is

F (k, x) := B ·3 (A ·2 [k ⊙2 x])

where x, k ∈ Fn
2 and A ∈ Fm×n

2 ,B ∈ Ft×m
3 are uniformly distributed.

The weak PRF construction of Boneh et al. is then defined by requiring that
x, k,A have repetitive structure along with defining n = O(λ2). However, we will
argue that the problem for uniform x, k,A remains hard even when n = O(λ).

Indeed, one interpretation of our result is that prior works perform O(λ2)
multiplications followed by multiplication with a repetition code while our con-
struction more efficiently amortizes the multiplications by replacing the repeti-
tion code with a high minimum distance code. In this way our construction more
diligently uses the limited number of multiplications that are available.

As with Boneh et al. [BIP+18], one can similarly generalize our construction
to any prime fields. That is our (Fp,Fq)-wPRF is defined as

Definition 8 (Generalized Weak PRF). Let n,m, t ∈ N and distinct primes
p, q, our (Fp,Fq)-weak-PRF construction is

F (k, x) := B ·q (A ·p [k ⊙p x])

where x, k ∈ Fn
p and A ∈ Fm×n

p ,B ∈ Ft×m
q are uniformly distributed.

Following the same analysis as [BIP+18], we conjecture that our depth-2
weak PRF can be compiled into a strong PRF by first encoding the input using
an error correcting code with a different modulus than the key. In particular, we
conjecture that Definition 9 is a strong PRF for appropriately chosen n,m, t, d.
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Definition 9 (Generalized Strong PRF). Let n,m, t, d ∈ N and distinct
primes p, q, our (Fp,Fq)-strong-PRF construction is

F (k, x) := B ·q (A ·p [k ⊙p (G ·q (x||1))])

where x ∈ Fd
p, k ∈ Fn

p and G ∈ Fn×d+1
q ,A ∈ Fm×n

p ,B ∈ Ft×m
q are uniformly

distributed.

The core intuition behind this construction is that known attacks against
our weak PRF and the weak PRFs of [BIP+18] in the strong setting heavily
rely on PRF evaluations for highly correlated inputs, e.g. having small hamming
distance. [BIP+18] proposes a compiler that they define as encoded input. The
core idea is to restrict the adversary’s choice of inputs to the underlying weak
PRF so that highly correlated inputs are not allowed. A natural example of
such an encoding is encoding the input using a linear error correcting code,
i.e. G. The most efficient option for doing this is to perform the encoding in
Fp. However, [BIP+18] shows that this does not work as one can recast this
encoded input function as a new instance of the underlying weak PRF with a
different A matrix. This recasting crucially relies on the fact that A and G are
over the same modulus and therefore compose into a new matrix A′. Given this
observation [BIP+18], suggestions that G is uniformly sampled over a different
modulus, e.g. q, and performing an additional round of modulus conversion of
G ·q x from Fq to Fp before multiplying it with the key. We defer to [BIP+18] for
a more detailed analysis of relevant learning algorithms for alternating moduli
weak PRFs in the strong PRF setting. Furthermore, to ensure that the output
remains pseudorandom for x = 0, one is appended to x.

5.3 Optimizations

We consider two optimizations to our construction PRF with the aim of improved
efficiency when evaluated in the two party setting where the key k is fixed for
many inputs x(1), ..., x(q). Due to the generality of our construction, both can be
framed as changing the distribution of the key k or PRF input x.

Structured input x. For now, let us focus on the (F2,F3)-wPRF where x(i), k ∈
Fn
2 . We consider the general methods for computing x(i)⊙k, i.e. component-wise

multiplication.

Reusable Key OTs. Given that k is fixed, a natural protocol for computing
Jk · x(i)K is to preprocess a random OT for each bit k1, .., kn of the key. These
can then later be derandomized using standard technique to generate the shar-
ing Jk · x(i)K using only O(n) communication and minimal computation. The
advantage of this approach is that no per evaluation OTs are required. When
combined with our OT based modulus switching, we will show we need only
m = 2λ OTs per evaluation. Alternatively, when combined with our custom
garbled circuit modulus switching protocols, no per evaluation OTs are needed
at all. However, we will see that the disadvantage of this approach is that it
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requires n = 4λ bits of communication and as a result this approach will have
more communication (but few OTs) compared to the protocol of [DGH+21] with
n = 2λ bits of communication.

Nonreusable Input OTs. To bring down the overall communication, we make the
observation that the input x can have an smaller “effective” size of just λ bits.
First we change the distribution of x such that for some x̂ ∈ Fλ, one can express
x as s copies of x̂, i.e. x = (x̂||x̂||...||x̂). We will then be able to efficiently
multiply each bit of x̂i with the s bits of the key that is corresponds to, i.e.
ki, ki+n/s, ..., using subfield VOLE. In particular, when using Silent VOLE in the
amortized setting, the communication complexity is essentially independent of s.
As a result, the total amortized communication for computing x⊙k with s = 4 is
just λ = n/s bits, a 4 to 2 times reduction depending on the protocol. However,
this change implies that n/s = λ additional VOLE correlations will be consumed
per evaluation. We note that for small s, these Silent VOLE correlations can
be packed together such that computing λ/s of them can be computed at the
effective computational cost of a single random OT.

Finally, we note that for [BIP+18,DGH+21], applying a similar optimizations
results in their schemes being insecure due to certain weaknesses associated with
the use of the circulant key K, see below for details.

Structured F3 key k. In the case of (F3,F2)-wPRF it will be advantageous
for us to consider a key to restrict the key k which would typically be in Fn

3 to
lay in the binary subset. The operations of multiplying A ·3 (k⊙3 x) will still be
performed modulo three. We conjecture that this variant is as secure given that
n is increased to compensate for the loss of entropy in the key. When combined
with the Reusable Key OTs optimization above, this enable x⊙k to be computed
with n log2(3) bit of communication as opposed to n log2(3).

Implementation. See Section 6 for a detailed description of our protocols and
Section 12 for the performance evaluation of them and a comparison to related
works.

5.4 Secuirty Analysis & Parameter Selection

In this part we show that the plausible security of our weak PRF is connected
to the hardness of solving sparse multivariate polynomials over F3. We then
proceed to details various combinatorics methods for breaking our construction,
with a focus on a reduction from subset sum.

Polynomial Representation. The security of our construction is closely re-
lated to solving the hardness of sparse multivariate polynomials. Indeed, in Sec-
tion 4 we present a weakened variant of our construction that can be broken
when viewed as a problem over polynomials. Recall that for t = 1 our construc-
tion is F (k, x) = bT ·3 (A ·2 [k ⊙2 x]). Observe that one can emulate addition
over F2 using multiplication over F3 by relying on the mapping ϕ(x) = x + 1

21



(arithmetic in F3), which maps 0 → 1 and 1 → −1 (we also use the notation
x̄j = ϕ(xj) and k̄j = ϕ(kj) for j ∈ [n]). Then, F (k, x) can be rewritten as

m∑
i=1

bi · ϕ−1
( m∏
j=1

k̄
aijxj

j

)
=

m∑
i=1

bi ·
( m∏
j=1

k̄
aijxj

j − 1
)
=

m∑
i=1

m∏
j=1

k̄
aijxj

j −
m∑
i=1

bi︸ ︷︷ ︸
P

.

The term P is public and hence can be computed by the adversary. Thus, the
hardness of our weak PRF construction boils down to the pseudorandomness of
the following: F ′(k, x) =

∑m
i=1

∏m
j=1 k̄

aijxj

j ,where operations are done over F3.
For any input x, the weak PRF output is simply a sparse multilinear polynomial
over F3 (where the polynomial is defined by the input and public parameters),
so a key recovery attack for the construction directly corresponds to solving a
system of sparse multilinear equations over F3.

A Generalized Construction. Building upon the idea above, we now describe
a simple framework to instantiate new weak PRFs based on the hardness of
solving a system of sparse multilinear equations over a finite field of (small)
size. First, we fix a finite field Fp and two dimensions m and n. Let F∗p

n be
the key space and let D be a distribution over m × n binary matrices. The
construction can be succinctly described as follows: F (k,X) =

∑m
i=1

∏m
j=1 kj

xij ,
where all operations are done over Fp. Note that m is the number of terms
in the polynomial and the ith term in the polynomial simply corresponds to a
subset product over the components of the key k according to the ith row of the
input X. For instance, the preceding construction (with public matrix A) is an
instantiation of the framework above with the field F3 and the distribution D is
obtained by sampling x← {0, 1}n and setting the ith row of X as Ai ⊙ x.

On the Duality of Polynomial Representation. We remark that in the
polynomial representation outlined above, one can alternatively put x̄j = ϕ(xj)
in the base and obtain the following representation of F ′ (a similar representation

can be found for F as well): F ′(k, x) =
∑m

i=1

∏m
j=1 x̄

aijkj

j . Note that in this
representation, a key recovery attack would correspond to interpolating sparse
multilinear polynomials. While the connection between AM-based symmetric
primitives and the hardness of interpolating sparse multilinear polynomials has
already been observed by [BIP+18], neither of [BIP+18] or [DGH+21] consider
the dual problem of solving a system of sparse multilinear polynomial equations
for their constructions.

We present several possible parameterizations of our wPRF. The most ef-
ficient known attacks [DGH+21] are based on a reduction from solving subset
sum [HJ10,BCJ11,BBSS20]. We will review the core reduction which focuses on
the AM-OWF. We then discuss how this applies to the wPRF where the key is
effectively the AM-OWF input.

Subset Sum Attack. At a high level, the main idea to attack the AM-OWF
can be described in two steps. In the first step, inverting the OWF is reduced to a
specialized subset-sum problem. In the second step, modern subset-sum solving
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algorithms such as [HJ10,BCJ11,BBSS20] are modified in a way that they enable
us to solve the resulting specialized subset-sum problem and invert the OWF.
We focus on the first step, as the modification can be done via standard algebraic
and combinatorial techniques.

Let y ∈ Ft
3 be an output of the OWF on an input x ∈ Fn

2 , and let w = A ·2 x
be the intermediary evaluation. Observe that there is an (m−n)×m parity check
matrixP such that w = A·2x iff w lies in the kernel ofP. So, for any intermediary
evaluation w we have P ·2 w = 0 and B ·3 w = y. We now aim to find w by a
reduction to subset sum. Denoting the i-th unit vector by ei, note that if we can
find a set of indices I ⊆ [m] such that

(∑
i∈I P ·2 ei,

∑
i∈I B ·3 ei

)
= (0, y), then

we can invert the OWF simply be solving A ·2 x =
∑

i∈I ei. Therefore, we have

a reduction to the subset problem with the target
(
0, y

)
∈ Fm−n

2 × Ft
3 and m

variables β1, . . . , βm, where we associate βi = 1 with
(
P ·2 ei,B ·3 ei

)
. We point

out that this problem can also be seen as a special case of generalized knapsack
problem for the additive group (Fm−n

2 × Ft
3,+), for which search-to-decision

reductions with different parameter setting have been proposed by [MM11].

As mentioned in [DGH+21], a slightly modified version of [HJ10] needs
20.337m time and 20.256m space (ignoring polynomial factors in m) to invert the
OWF. In addition, the algorithm of [BBSS20] (with slight modification) runs
in 20.283m time and space. Overall, to achieve s-bit security one needs to set
m ≥ 3.53s. Thus, a suggested choice of the parameters (n,m, t) in terms of λ
for the AM-OWF would be (λ, 3.53λ, λ/ log2 3).

10

One-to-One Parameters. We now present a conservative parameter set for
our wPRF constructions given the subset sum attack. One can rely on the OWF
attack described above to break our (F2,F3) wPRF. Consider fixing some input-
output pair (x, y = F (k, x)) and observe that this can be viewed as an instance
of the OWF applied to the key k. For each xi = 0, it is clear that ki does not have
any impact on the output of the wPRF. Thus, on average, one needs to double
the key/input size to prevent the subset-sum attacks attack from recovering k
given a single (x, y) sample.

We propose the following parameter setting for our (F2,F3)-wPRF to get λ
bits of security: n = 2λ,m = 7.06λ, t = 2λ/ log2 3, which is simply doubling
the parameters in OWF setting to thwart the subset-sum attacks. In particular,
both key and input will be 2λ-bit strings. For the (F3,F2)-wPRF we propose
n = 2λ/ log2(3),m = 7.06λ/ log2(3), t = 2λ.

Indeed, in the restricted single wPRF sample setting, it is not hard to show
that the hardness of the OWF implies the hardness of a key recovery attack.
Recall that the parameters of the OWF imply that it is approximately one-
to-one. As such, for any given x we should expect there to be one value for
x⊙k that is consistent with any given sample. Hence, we denote the parameters
above as one-to-one. When generalized beyond the artificial constrain of a single
sample, one can view each sample (x1, y1), ..., (xq, yq) as defining a related OWF
instance, where the OWF input k and parameter A are “subsetted” by xi.

10 More aggressive parameter have been proposed, e.g., (λ, 3.13λ, λ/ log2 3) [DGH+21].
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Many-to-One Parameters. Unlike the OWF, recall that given a sample (x, y),
non-invertability is not a requirement of a wPRF with respect to arbitrary key
k′. Building on this observation we propose to deviate from the OWF parame-
ter regime and consider the setting where there are many consistent x ⊙ k for
any given (x, y). Specifically, we define n = 4λ,m = 2λ, t = λ/ log2(3) for the
(F2,F3)-wPRF and n = 4λ/ log2(3),m = 2λ, t = λ for the (F3,F2)-wPRF. Fo-
cusing on the (F2,F3)-wPRF, observe that for any given sample (y, x), there is a
set Zy,x := {z | y = B ·(A ·z)∧z⊙x = z} representing the valid k⊙x preimages.
For the parameter regime above, it holds that |Z| = O(2λ). Indeed, consider the
A′, k′ where A′ consists of the columns of A indexed by i s.t. xi = 1 and k′ con-
sists of ki. For the average case of |x| = 2λ, we have A′ ∈ Fm×m

2 and therefore
the size of Z is precisely the size of W = {w | y = B ·3 w∧w ∈ Fm

2 }. That is, W
is defined by the binary codewords of a random t ×m linear codes (viewing B
as the parity check matrix) and therefore we would expect |W | ≈ (2/3)m3m−t >
2m−1.6t > 2λ. Therefore the adversary has no advantage in recovering k given a
single sample.

Consider q samples (x(1), y(1)), ..., (x(q), y(q)). Let w(i) := A · (k ⊙ x(i)) and
observe that given A,B, x(i), one can compute A′ ∈ Fqm×n

2 ,B′ ∈ Fqt×qm
3 such

that (w(1), ..., w(q)) = A′ · k and (y(1), ..., y(q)) = B′ · (w(1), ..., w(q)).

Therefore, assuming q is sufficiently large, one can defineP as the parity check
matrix ofA′ and solve the following subset sum problem (

∑
i∈I Pei,

∑
i∈I B

′ei) =
(0, y) to recover w =

∑
i∈I ei and therefore k. However, the running time of for

this problem with the best-known subset sum solver [BBSS20] is O(20.337qm).
Based on the discussion above, q must be at least 2 and therefore the running
time is at least O(20.337·2·2λ) = O(21.35λ).

Parameters for Optimizations. In Section 5.3 we propose two alterations
to the construction. The first proposes to restrict x to be s copies of x̂ ∈
Fλ, i.e. n = sλ. The main attack that this alteration impacts is the poten-
tial improved efficiency for sparse polynomial. As with the prior works, our
scheme can be framed as the problem of interpolating sparse polynomials, i.e.

F ′(k, x) =
∑m

i=1

∏n
j=1 x̄

Aijkj

j . The efficiency of these solvers require evaluating
the polynomial at specific values, e.g. roots of unity. Therefore, one must ensure
that sufficiently few of such points coincide with the random weak PRF inputs,
x(1), ..., x(q). Given that at most q = 240 queries are made, we conjecture that
such techniques remain exponential time. Indeed, [BIP+18] shows that if such
attacks are effective, then Learning with Rounding (LWR)[BPR12] for similar
parameters is broken. Should a large bound on q be desired, one can increase n
or decrease s accordingly to maintain the security margin between 2n/s and q.

We note that similar optimizations should not be applied to the protocol
of [DGH+21] with a circulant key. In particular, when the wPRF is defined as
F (K, x) = B·3(K·2x) and K is circulant, the scheme suffers from a vulnerability
when x is symmetric, i.e. x = (x̂||x̂). Due to the symmetry of both x and K,
the intermediate value w = K · x will also be symmetric, i.e. w = (ŵ||ŵ). Given
that B is close to a rate 0.5 matrix, i.e. m/2 ≈ t, the attacker can efficiently
solve for ŵ and thereby recover w, rendering the scheme insecure. To prevent
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this, [DGH+21] requires x to be uniform over n = 2λ which result in symmetric
x occurring with negligible probability, unlike the case of n = λ.

The second security relevant optimization we suggest is the restriction of the
key k ∈ Fn

3 for the (F3,F2)-wPRF to lie in the binary subset. As discussed, this
halves the communication complexity of computing x⊙k when implemented us-
ing Reuseable Key OTs technique. We are not away of any attacks that can take
advantage of this distribution change beyond relatively trivial attacks that par-
tially relay on brute force. To mitigate the impact of these, we suggest increasing
the key length by log2(3), i.e. n = 4λ.

Other Attacks. Another avenue of attack would be utilizing Gröbner basis to
solve a system of multilinear polynomial equations. However, in its plain for-
mat, the algorithmic cost of such an attack is quite high and it does not seem to
impact the security of our wPRF constructions. [BIP+18,DGH+21] both demon-
strated appropriately designed alternating moduli constructions can not be ap-
proximated by low degree polynomials. Moreover, they give conjectures that this
extends to relational functions as well. Assuming the equivalent conjecture for
our construction holds, it appears implausible that generic algebraic techniques
will be effective for our parameters. On the flip side, we are not aware of any
other algebraic attack that particularly exploits the extra structure/information
provided by the wPRF and hence we suggest setting parameters based on subset
sum.

Finally, we refer to the analysis in [BIP+18,DGH+21] for additional attacks
that leverage some common structure to all of our schemes. For example, one can
break the security if B has small minimum distance, if one is able to efficiently
enumerate all w for a fixed y, if one is able to detect bias in the output bits, if
one can use the parity of x, y to distinguish[DGH+21], along with attacks based
on LPN, and connections to learning theory[BIP+18]. However, these attacks are
not significantly impacted by our changes and are less efficient that the subset
sum attack.

6 Two Party wPRF Protocols

We focus our weak PRF on the semi-honest two party setting where the input
x and key k are each known to the two parties, respectively. The structure of
our weak PRF lends itself to particularly efficient implementation in the set-
ting. However, we note other setting such as where x, k are secret shared can
easily be implemented using similar technique. Malicious security can of course
be achieved but we leave an efficient specification of this to future work. Our
protocols will assume that the output should be secret shared. In the case of an
OPRF, it is straightforward to reveal the result to the party with x.

6.1 Review of Silent OT/VOLE/OLE

To fully appreciate the design decision of our protocols it is important to under-
stand how Silent OT and VOLE protocols work[RRT23,BCG+19a,BCG+19b].
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At the root of these protocols is the computational hard problem known as
syndrome decoding, aka learning parity with noise (LPN). For a secret ran-
dom sparse vector e ∈ Fν

2 , and a public error correcting code generator matrix
G ∈ Fn×ν

2 , the syndrome decoding assumption state that (G,G · e) is indis-
tinguishable from (G, r) for a uniform r. Note that n < ν, e.g. ν = 2n, and
therefore G · e compresses e. Security of this assumption typically holds if G has
high minimum distance[RRT23].

The Silent OT/VOLE is a two party protocol with a sender and receiver.
In its simplest formulation the goal is for the receiver to hold random vectors
a ∈ Fn

2 , B ∈ Fn
2λ and the sender to hold scaler ∆ ∈ F2λ and a vector C ∈ Fn

2λ

such that

B + C = a∆

One can view B,C as a secret sharing of a times the scaler ∆. The proceeds by
having the receiver samples a sparse vector â ∈ Fν

2 while the sender samples a
random ∆ ∈ F2λ . The parties generate a secret sharing of â ∈ Fν

2 times ∆ ∈ F2λ

using a technique known as a punctured PRF[BCG+19a]. Leveraging the sparsity
of â, this only requires O(λ log(n/λ)) communication, where typical parameters
have ν ≈ 220. Let Ĉ, B̂ ∈ Fν

2λ denote the shares of â∆, i.e. B̂+Ĉ = â∆. The idea

is to then compress these vectors to get a = G · â, B = G · B̂, C = G · Ĉ. Since
multiplication by G is linear, the correction B + C = a∆ still holds. However,
by the syndrome decoding assumption, a will be pseudorandom.

This protocol can more generally be referred to a (S,E)-subfield VOLE where
we have a subfield S and an extension field E = Sσ for some σ. The correlation
B = C + a∆ holds for a ∈ Sn and B,C ∈ En, ∆ ∈ E. The description above is
of course for S = F2 and σ = λ.

As eluded to before, one can efficiently multiply many scalers x(1), ..., x(q) ∈ S
by a vector k ∈ Sm using subfield VOLE. The parties first generate a (S,Sm)-
subfield VOLE correlation of size q where ∆ = k. The receiver can then send
the difference x − a and have the sender update their correlation such that
B + C = xk.

One can obtain random one-out-of-two OT from (F2,F2λ)-subfield VOLE.
Random OT refers to the correlation where the sender holds random strings
mi,0,mi,1 while the receiver holds a bit ai and the string mi,ai

. This can be
achieved by defining sender messages mi,0 = H(Ci),m1,1 = H(Ci + ∆) where
the receiver knows random choice bit ai and message mi,ai = H(Bi). This can
be generalized to one-out-of-p OTs by performing a (Fp,Fpσ )-subfield VOLE
and define mi,j = H(Ci + j∆). While possible to instantiate with any p, the
implementation will be most efficient when p is a power of two. In this case
GF (p) operations can efficiently be implemented.

Finally, one can obtain a random binary OLE correlation from a random OT
correlation, where the receiver holds x0, y0 ∈ F2 and the sender holds x1, y1 ∈ F2

such that x0+x1 = y0y1. From a single random OT (m0,m1), (a,ma), the parties
can define y0 = a, y1 = lsb(m0 +m1), x0 = lsb(ma), x1 = lsb(m0).
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6.2 Secret Sharing based F3 → F2 Modulus Conversion

We now describe how to perform modulus conversion from JwK3 ∈ Fm
3 to JvK3 ∈

F2, where v = w mod 2. For simplicity, let m = 1 and the inputs of the two
parties P0, P1 are shares (w0, w1) such that w = w0 +3 w1. The truth table T of
w mod 2 is described in Table 1. P0 with input w0 will use the w0-th row of T ,

w1

0 1 2

w0

0 0 1 0
1 0 0 1
2 1 0 0

Table 1. Truth table T of w0 ⊕ w1 where w0, w1 ∈ F3

denoted as T [w0, :], as the sender input in a 1-out-of-3 OT and P1 will pick up
T [w0, w1], using w1 as the receiver input. Looking ahead, we will actually want
the parties to obtain shares of T [w0, w1]. To achieve this, P0 can simply choose
a random r ∈ {0, 1} and uses T [w0, :]⊕ r as its input to the OT. By correctness,
P1 will receive T [w0, w1]⊕ r.

In particular, let us assume the parties hold a 1-out-of-3 random bit OT,
where P0 holds random message bits m0,m1,m2 ∈ F2 while P1 holds a random
choice c ∈ F3 and the corresponding message mc. These will be used to mask
the truth table T . That is, P0 will sample mask r and send t ∈ F3

3 where

t0 = m0 + T [w0, 0] + r,

t1 = m1 + T [w0, 1] + r,

t2 = m2 + T [w0, 2] + r.

P1 can therefore compute

z1 = tu1
+3 mw1

= T [w0, w1] +3 r = (w mod 2) +3 r

and P0 can compute
z0 = r

and therefore we have z0 ⊕ z1 = (w mod 2).

Reducing the communication. As an optimization, we don’t need to send t0. The
idea is that if the receiver want to learn T [u0, 0], then they can set their share
as m0. That is,

z1 = if (u1 = 0) then m0 else tu1
+3 mu1

=u1,0 ·3 tu1
+mu1

The sender now needs to define r appropriately. In particular,

r := m0 + T [w0, 0]
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In the case of w1 = 0, we have z1 = m0, z0 = r + T [w0, 0], and therefore we get
the right result. The other cases are the same with the randomness of the mask
r coming from m0.

Protocol. Figure 1 presents protocol in the 1-out-of-p OT hybrid, where we
assume p ≥ 3. Below, we present how to implement such OTs.

Πot-3→2-conv, F3 → F2 modulus conversion from 1-out-of-p OT

Setup: The parties generate a random 1-out-of-p bit OT with messages (m0, ...,mp−1) ∈
Fp
2 held by P0 and (c,mc) ∈ Fp × F2 held by P1.

Eval:

1. P0 inputs w0 ∈ F3 and P1 inputs w1 ∈ F3.
2. Let wj,0, wj,1 ∈ F2 be the bit decomposition of wj , i.e. wj = wj,0 + 2wj,1.
3. P1 sends d = w1 − c mod p to P0.
4. P0 computes

– v0 = w0,0 ⊕md.
– t0 = v0 ⊕md+1 ⊕ w0,0 ⊕ w0,1 ⊕ 1
– t1 = v0 ⊕md+2 ⊕ w0,1

and sends (t0, t1) to P1.
5. P1 compute v1 = (w1,0 · t0)⊕ (w1,1 · t1)⊕ x1,0 ⊕ x1,1

6. Pi outputs vi.

Fig. 1. Our protocol for F3 → F2 modulus conversion from 1-out-of-p OT correlations.

Theorem 1. Protocol Πot-3→2-conv securely realized the F3 → F2 modulus con-
version functionality in the binary OLE hybrid model.

Proof. The simulation is to send uniformly random values. The case of a corrupt
P0 is simple, y1 acts as a one time pad key. Consider a corrupt P1. Observe that
the t0, t1 values are masked by two unknown messages. Since these message
values are uniform in the view of P1, so are the t values.

We give two conceptual methods for constructing random 1-out-of-3 OTs for
single bit messages. The first is based on standard OT while the second is based
on subfield VOLE.

From 1-out-of-2 OT. The generic method for constructing 1-out-of-2k OTs
is to generate k 1-out-of-2 OTs. The random message corresponding to c ∈ F2k

will then be the hash of the messages indexed by the bit decomposition of c.
However, given that only three messages are used by Figure 1, we present an
optimized approach without the need for additional hashing.
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We can build a 1-out-of-3 OT for bit messages from binary OLE or equiva-
lently 1-out-of-2 OT. Each 1-out-of-3 OT consumes 2 binary OLE/OT’s. Recall
that a binary OLE correlation is defined as a pair of tuples (x0, y0) and (x1, y1),
held by P0 and P1 respectively, which satisfy x0 ⊕ x1 = y0 · y1. An OLE can be
obtained from standard random OT as discussed in Section 6.1.

It is possible to partially derandomize an OLE correlation by allowing P1 to
change their y1 to be a chosen value, y∗1 . The parties will now hold correlation
(x′0, y

′
0, x
′
1, y
∗
1) where x′0, x

′
1, y
′
0 are random and y∗1 is chosen by P1. A random

binary OLE correlation can be converted into a chosen one if P1 sends d =
(y1⊕y∗1), and the parties updates their share as x′0 = x0⊕y0 ·d, y′0 = y0, x

′
1 = x1.

We will derandomize two OLEs using P1’s u1 ∈ F3. This value is represented
using two bits (u1,0, u1,1) such that u1 = u1,0 +3 2 ·3 u1,1. Let us define the
resulting OLEs as (x0, x1, y0, u1,0), (x

′
0, x
′
1, y
′
0, u1,1). We will define the random

1-out-of-3 OT messages (in this case single bits) as

m0 = x0 ⊕ x′0

m1 = x0 ⊕ y0 ⊕ x′0

m2 = x0 ⊕ x′0 ⊕ y′0

From Subfield VOLE. We observe that it is possible to further optimize the
modulus conversion protocol by leveraging the capabilities of subfield VOLE.
The rational for using binary OLE is that one can efficiently generate this corre-
lation from highly optimized 1-out-of-2 silent OT protocols. However, such pro-
tocols can also directly generate 1-out-of-p OTs by first constructing a (Fp,Fpσ )
subfield VOLE and then hashing the extension field elements. For our use case,
the most natural choice would be to set p = 3 and σ s.t. 2λ ≈ pσ. This would in
turn allow the derandomization message of consist of a single F3 element instead
of as implied by the OLE based approach, resulting in a total of 3.58 bits of
communication instead of 4.

However, this comes at a high cost due to the requirement of using the Silent
VOLE protocol using a modulus that is not CPU friendly. One would optimize
subfield VOLE using bit decomposition techniques but the computation cost will
likely remain high, e.g. 5 times slower by our estimates. As such, we do not think
this communication optimization is worth the computation pessimization.

We suggest an alternatively that essentially halves the computational cost
of the already optimized OLE protocol while retaining the same communication
overhead of 4 bits. The idea is relatively simple, set p = 4 and σ = λ/2. Since F4

operations naturally map to CPU instructions (due to it being a power of two),
one can naturally implement a (F4,F2λ)-subfield VOLE with essentially the same
overhead as (F2,F2λ)-subfield VOLE used to generate the binary OLEs. By di-
rectly using subfield F4 to perform n modulus conversions, only n subfield VOLE
correlations are required instead of 2n OTs and therefore the preprocessing cost
is halved.
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Concurrent work. We would like to point out the concurrent work for con-
structing F3 to F2 conversion protocols[IKNZ23] in the OT hybrid model. Their
optimized construction showed that they can generate a modulus conversion
preprocessing pair (JrK2, JrK3) using an amortized 1.33 OLEs/OTs and 3.08 bits
of communication, or at the cost of 18 OLEs/OTs and 2.55 bits. This pair can

then be used to derandomized to convert JwK3 into JwK2 using an additional
1.58 = log2(3) bits of communication, totaling 4.66 or 4.13 bits per modulus
conversion. Our techniques on the other hand requires two OLEs/OTs or one F4

VOLE and only 4 bits of communication. Alternatively, one F3 VOLE and just
3.58 bits of communication.

Although their construction can allow for fewer OLEs, e.g. 1.33 vs. 2, the
surrounding protocol is more complicated and therefore it is not clear which
would be more efficient in practice. Moreover, our F4 approach is certainly more
efficient while sending less data. We leave determining the concrete cost of our
communication optimized F3 VOLE approach to future work.

6.3 Secret Sharing based (F3, F2)-wPRF Protocol

Given that we aim to have secret shared output and binary sharings are standard,
we choose to begin with our (F3,F2)-wPRF which outputs a vector over F2.
In addition, we will consider the optimized variant where the key is binary.
Following the analysis in Section 5.4, we increase the input dimension to n = 4λ.
In particular, we will evaluate

f(k, x) = B ·2 (A ·3 [k ⊙ x])

where k ∈ Fn
2 , x ∈ Fn

3 ,A ∈ Fm×n
3 ,B ∈ Fm×t

2 .
We consider two primitives for building these protocols, oblivious transfer

and garbled circuits. Our first protocol will only make use of the former while
the latter will use both. In all cases we choose to optimize the overall overhead of
the protocols in terms of computational, communication and round complexity.
Where it does not add additional overheads, we will make use of a prepossessing
phase. This primarily takes the form of generating oblivious transfer correlations
which can later be used in the main protocol.

Reusable Key Correlations. Our first technique use oblivious transfer to multiply
k⊙x. This can be achieved by having the party holding k act as the OT receiver
with ki as their choice bit

11. This choice allows us to perform these OTs ahead of
time, once k is fixed but before x is known, and later reuse them for each input
x. The OT sender will provide two messages, (si, si +3 xi), where si is sampled
uniformly at random. Therefore the sender will learn fi = si +3 (ki ·3 xi). Let

us interpret s, f as the individual shares of JuK3 where u = k ⊙3 x. Given this
Fn
3 sharing of k ⊙3 x, the parties can locally multiply with the public matrix

A ∈ Fm×n
3 , i.e. JwK3 := A ·3 JuK = A ·3 Jk ⊙3 xK.

11 If one does not employ the binary key optimization, this can be generalized to a
one-out-of-three OT as used later.
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OT based (F3,F2)-wPRF protocol with shared output.

Setup:

1. P0 inputs their key k ∈ Fn
2 .

2. The parties perform n random OTs where P0 is OT receiver with choice bit ki. P1

receives two random strings σi,0, σi,1 ∈ {0, 1}λ and P0 receives σi,ki
.

3. Let Gi,0, Gi,1 denote stateful PRNGs with F3 output held by P1 with seeds σi,0, σi,1

respectively.
4. Let G′

i denote a stateful PRNG with F3 output held by P0 with seed σi,ki
.

Eval:

1. P1 inputs x ∈ Fn
3 .

2. The parties run the setup for Πot-3→2-conv for m conversions.
3. P1 computes

(a) h0,i ← Gi,0 for i ∈ [n]
(b) h1,i ← Gi,1 for i ∈ [n]
(c) f := x−3 h0 −3 h1

(d) w1 := A ·3 h0
4. P0 computes

(a) ti ← G′
i for i ∈ [n]

(b) w0 := A ·3 ((k ⊙ f) +3 t)
5. P0, P1 invoke Πot-3→2-conv with wi as the input for Pi. Let vi be the output for Pi.
6. Pi outputs Bvi.

Fig. 2. Our (F3,F2)-wPRF protocol based on OLE with plaintext inputs and secret
sharing output.

Theorem 2. The protocol of Figure 2 securely evaluates the (F3,F2)-wPRF of
Definition 8 with two-party semi-honest security in the Πot-3→2-conv hybrid model
where P0 inputs the key k and P1 inputs x and they receive JF (k, x)K as output.

Proof. Consider a corrupt P0. Their view consists of the random OT strings
σi,ki ∈ {0, 1}λ, a, c ∈ F2×m

2 , f ∈ Fn
3 and their view of Πot-3→2-conv. The simulation

will send uniformly random strings for each of these.
Recall that P0 knows either si or hi while the other is uniformly distributed

due to σi,1⊕ki
being uniformly distributed. Therefore, over the random choices

of σi,1⊕ki
, f is uniformly distributed and independent of x. Finally, we invoke

the simulator for Πot-3→2-conv.
Now consider a corrupt P1. Their view consists of the OT strings σ, their

view of Πot-3→2-conv. Clearly σ and Πot-3→2-conv can be simulated. ⊓⊔

Overheads. The full protocol is described in Figure 2. Assuming the setup phase
is reused, the protocol consumes 2m random OT/OLE correlations. When gen-
erated using a silent OT protocol[RRT23,BCG+19a,BCG+19b], the amortized
cost of the OTs is O(λ) computation and less than one bit of communication. The
main phase of the protocol derandomizes the OLEs using two bits of communica-
tion and while sending t2, t3 two bits, totaling to a combined 2m+(2m+n) log2(3)
bits.

We also note the recent development of OT protocols with constant overhead
by Boyle et al. [BCG+23]. This result implies that our share conversion proto-
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col can be evaluated in constant amortized work, independent of the security
parameter λ. Moreover, if A,B are implemented using linear time encodable
codes, the overall running amortized time of our protocol is O(λ) work per PRF
evaluation.

6.4 OT based (F2, F3)-wPRF Protocol

We now present an OT-based protocol for our (F2,F3)-wPRF where the inputs
are known to the respective parties and the output is shared. Compared to the
previous, this protocol achieves better computational efficiency at the expense
of having a mod 3 output domain. However, for applications such as an OPRF
this has little impact. Conceptually, the protocol works in a similar way. First
shares of x · k are computed using (preprocessed) OTs based on the key. The
parties additionally generate m random OTs with strings in F3. These are used
to make the F2 to F3 modulus conversion. Since the inputs are already binary,
each mod gate requires only one OT as opposed to two OLEs in the previous
protocol.

In the amortized setting, this protocol requires m OTs, two rounds of inter-
action and 2.6m+n bits of communication per evaluation. To convert the secret
sharing output protocol to an OPRF, an additional 1.6t bits of communication
and zero additional rounds are required.

Theorem 3. The protocol of Figure 3 securely evaluates the (F3,F2)-wPRF of
Definition 8 with two-party semi-honest security in the random OLE/OT hybrid
model where P0 inputs the key k and P1 inputs x and they receive JF (k, x)K as
output.

Proof. The simulation of the protocol is to send uniformly random messages.
Consider a corrupt P0. Their view consists of f, δ. The former is uniformly

distributed given that either h0,i or h1,i is uniformly distributed. The latter is
uniformly distributed due to d being uniform.

Now consider a corrupt P1. Their view consists of t, which is uniformly dis-
tributed due to either s0,i or s1,i being uniformly distributed.

The simulations of the output distribution trivially follows from the correct-
ness of the protocol.

6.5 Specialized Garbling

We now describe a specialized garbling scheme[Yao86] for evaluating our wPRF.
We present this protocol only for the (F2,F3)-wPRF but note that this can be
generalized in a natural way. The core idea is that we can utilize free-xor with
specialized unary gates for performing the modulus conversion step. As before,
the parties will preprocess OTs using the key as the choice bit.

P1 will act as the garbler with ∆ ← {0, 1}λ being the global free-XOR
key [KS08]. Instead of garbling labels for x and k, P1 will generate garbled
labels Li ← {0, 1}λ where Li is the zero label for xi ·ki. In particular, the parties
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OT based (F2,F3)-wPRF protocol with shared output.

Setup:

1. P0 inputs their key k ∈ Fn
2 .

2. The parties perform n random OTs where P0 is OT receiver with choice bit ki. P1

receives two random strings σi,0, σi,1 ∈ {0, 1}λ and P0 receives σi,ki
.

3. Let Gi,0, Gi,1 denote stateful PRNGs with F2 output held by P1 with seeds σi,0, σi,1

respectively.
4. Let G′

i denote a stateful PRNG with F2 output held by P0 with seed σi,ki
.

Eval:

1. P1 inputs x ∈ Fn
2 .

2. The parties preprocess/generate m random OTs where P0 holds s ∈ F2×m
3 and P1

holds d ∈ Fm
2 , s′ = (sd1,1, ..., sdm,m).

3. P1 computes
(a) h0,i ← Gi,0 for i ∈ [n]
(b) h1,i ← Gi,1 for i ∈ [n]
(c) f := x⊕ h0 ⊕ h1

(d) u := A ·2 h0

(e) δ := u⊕ d.
and sends f, δ to P0.

4. P0 computes
(a) gi ← G′

i for i ∈ [n]
(b) v := A ·2 ((k ⊙ f)⊕ g)
(c) t := v −3 s0 −3 s1
(d) w := B ·3 (sδ1,1, ..., sδm,m)
and sends t to P1.

5. P1 computes q := B ·3 [s′ +3 (t⊙ d)].
6. P0 outputs w and P1 outputs q.

Fig. 3. Our (F2,F3)-wPRF protocol based on OLE with plaintext inputs and secret
sharing output.

will use the preprocessed OTs for k with messages (Li, Li ⊕ xi∆). P0 will learn
L′i = Li ⊕ (xiki)∆. P1, P0 can multiply these labels with A to obtain Ui, U

′
i

respectively.

P1 the garbles a unary gate that maps the zero label to a random ri ∈ F3

value while one label is mapped to ri+31. Unlike in traditional garbling, we desire
the output of the mod gate to be a single F3 element and as such the garbled
table can be much smaller. In particular, with the use of the point-and-permute
technique the garbled table can be a single F3 element.

In particular, we will restrict the free-XOR key ∆ to have a 1 in its least
significant bit. As such, the least significant bits of Ui, U

′
i for a secret sharing of

the underlying value, i.e.

ui = lsb(Ui)⊕ lsb(U ′i)

= lsb(Ui)⊕ lsb(Ui ⊕ ui∆)

= lsb(Ui)⊕ lsb(Ui)⊕ uilsb(∆)

= ui
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We wish to translate this secret sharing into an F3 sharing with the same un-
derlying value. For now, let us assume that P0 knows ui = 0. P1 can define
ri = −H(Ui). If P0 has U ′i = Ui, i.e. ui = 0, then they can also derive ri which
forms a secret sharing of zero. However, if P0 holds the one label U ′i = Ui ⊕∆,
then they will need assistance to compute ri+1. This is done by sending a garbled
table containing the difference between ri + 1 and H(U ′i). Lastly, it is impor-
tant that P0 does not know the underlying value. However, in the explanation
above we assume P0 can conditionally add the difference based on the under-
lying value. This can be circumvented using the point-and-permute technique.
The full protocol is given in Figure 4.

The overhead of this protocol is λn+log2(3)m bits and requires no OTs after
the initial set of OTs for the Key. Indeed, this makes conceptually sense due to
the garbler not needing OTs for their input, i.e. x.

We note that this protocol can easily be extended to the (F3,F2)-wPRF.
First the free-XOR can be generalized to work over the F3λ extension field as
opposed to F2λ , see [BMR16]. The unary gates can then consist of two 1-bit
values.

Garbling (F2,F3)-wPRF protocol with shared output.

Setup:

1. P0 inputs their key k ∈ Fn
2 .

2. The parties perform n random OTs where P0 is OT receiver with choice bit ki. P1

receives two random strings σi,0, σi,1 ∈ {0, 1}λ and P0 receives σi,ki
.

3. Let Gi,0, Gi,1 denote stateful PRNGs with F2λ output held by P1 with seeds σi,0, σi,1

respectively.
4. Let G′

i denote a stateful PRNG with F2λ output held by P0 with seed σi,ki
.

Eval:

1. P1 inputs x ∈ Fn
2 .

2. P1 computes
(a) ∆← {0, 1}λ−1||1
(b) h0,i ← Gi,0 for i ∈ [n]
(c) h1,i ← Gi,1 for i ∈ [n]
(d) f := x∆⊕ h0 ⊕ h1

(e) U := A ·2 h0

(f) ri := −H(Ui ⊕ lsb(Ui)∆) +3 lsb(ui) for i ∈ [n]

(g) δi := −ri + lsb(Ui)−3 H(Ui + lsb(Ui)∆) for i ∈ [n]
(h) q := B ·3 r
and sends f, δ to P0.

3. P0 computes
(a) gi ← G′

i for i ∈ [n]
(b) U ′ := A ·2 ((k ⊙ f)⊕ g)
(c) vi := H(U ′

i) +3 lsb(U ′
i)δi for i ∈ [n]

(d) w := B ·3 v
4. P0 outputs w and P1 outputs q.

Fig. 4. Our (F2,F3)-wPRF protocol based on garbling with plaintext inputs and secret
sharing output.
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Theorem 4. The protocol of Figure 4 securely evaluates the (F3,F2)-wPRF of
Definition 8 with two-party semi-honest security in the random oracle & random
OT hybrid model where P0 inputs the key k and P1 inputs x and they receive
JF (k, x)K as output. H : {0, 1}∗ → F3 is a random oracle.

Proof. The simulation of the protocol is to send uniformly random messages. The
simulation follows the the standard free-XOR garbling argument. Essentially, a
corrupt P0 can only distinguish if they query the random oracle at some input
U ′i⊕∆, i.e. the not active wire labels. If no such query is made, the the simulator
can replace all such queries with uniformly random values and then simulation
follows immediately. Assuming the adversary makes such a query, then they have
essentially guessed ∆. However, this can only happen with negligible probability.

7 Properties of the AM-OWF

We now turn our attention to constructing post-quantum secure signatures using
the MPC-in-the-head paradigm and AM-OWF of [DGH+21]. Recall that the
AM-OWF is defined as f(x) = B(Ax) where A ∈ Fm×n

2 and B ∈ Ft×m
3 are fixed

public matrices chosen uniformly at random, and Ax is interpreted as a binary
vector in Fm

3 . Before diving into our signature constructions, we first prove some
useful properties of the AM-OWF. Roughly speaking, our core lemma shows
that when the input size is made slightly larger than the output, the statistical
distance between the distribution of the output of the AM-OWF on a uniformly
random input and the uniform distribution is negligible. At the same time, we
show that a uniformly random value from Ft

3 lies in the image of the OWF with
overwhelming probability. We will then use this lemma to prove the hardness of
various problems closely related to the AM-OWF that will allow us to reduce
the size of our post-quantum signature scheme. All proofs in this section can be
found in Section 10 of [APRR24].

Lemma 1. Let H = {hA,B | A ∈ Fm×n
2 , B ∈ Ft×m

3 ; rank(A) = n} be a family
of hash functions such that hA,B : {0, 1}n → {0, 1}t log 3, then H is a universal
hash family.

By appealing to the Leftover Hash Lemma, we have the following corollary.
Intuitively, Corollary 1 shows that there is a if we swap the output of the AM-
OWF with a uniformly random string of the same size, even a computationally
unbounded adversary fails to distinguish them with some noticeable probability.

Corollary 1. Let hA,B ← H, as defined in Lemma 1 and n ≥ t log 3+ω(log λ),
then hA,B is a strong (n, negl(λ)) extractor with output length t log 3.

In addition to being close to the uniform distribution, we will now show that
the AM-OWF covers an overwhelming fraction of the output domain Ft

3.

Lemma 2. For any hA,B ← H, let OhA,B
= {hA,B(x)|x ∈ Fn

2} denote the
covering of hA,B. Then, with overwhelming probability over the choice of hA,B,
we have |OhA,B

|/3t ≥ 1− negl(λ).
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7.1 Variants of the AM-OWF

We next investigate three variants of the AM-OWF and reduce their hardness
to the hardness of inverting the AM-OWF. Recall that in the (OWF) game,
a challenger samples A ← Fm×n

2 , B ← Ft×m
3 , and x ← Fn

2 and computes an
instance (A,B, y = B(Ax)). The adversary is tasked with finding any x such
that B(Ax) = y. The advantage of an adversary in this game is the probability
with which it outputs such an x.
Systematic Form. To improve the efficiency of our protocols using the AM-
OWF, we wish to use the AM-OWF in systematic form i.e. the lowest m ×m
entries of B form an identity matrix. Formally, the systOWF game is identical
to the OWF game except that B is enforced to have a systematic form. The
adversary is given (A,B, x) where all entries are sampled uniformly at random
except for the bottom-most entries of A and the right-most m×m entries of B.
We now prove that this new game is just as hard the original OWF game.

Lemma 3. Given an adversary A that wins the systOWF game with noticeable
advantage, there exists an adversary A′ that wins the OWF game with noticeable
advantage.

Anti-Solution. Due to technical reasons in our protocols, we also need to argue
that it is difficult to find an anti solution. We define another game (antiOWF)
which is identical to the OWF game, except the adversary needs to output an x
such that B(1⊕ (Ax)) = y and now argue that this as hard as the OWF game.

Lemma 4. Given an adversary A that wins the antiOWF game with noticeable
advantage, there exists an adversary A′ that wins the OWF game with noticeable
advantage.

Approximate-Solution. We define a final game approxOWF(n,m, t), which is
identical to the OWF game but with a relaxed requirement on the solution where
the adversary is given (A,B, y), and must output (x, v, v′) such that v = Ax,
y = Bv′, and ∆H(v, v′) ≤ 1. In fact, our result holds for any ∆H(v, v′) ≤ O(1).

Lemma 5. Given an adversary A that wins the approxOWF(n,m + 1, t) game
with noticeable advantage, there exists an adversary A′ that wins the OWF game
with noticeable advantage, for a slightly smaller OWF(n,m, t) game.

7.2 Combinatorial Analysis

Similar to [CCJ23], we compute a bound on the success probability of a cheating
prover who is free to choose the correlations used in the MPCitH. Although the
high-level approach is the same, we use require very different techniques, relying
on the properties of error correcting codes.

Definition 10 (Combinatorial bound - informal). A real p ∈ (0, 1) is a
combinatorial bound, if for every incorrect witness x, and every pair (r, r′) ∈
Fm
2 × Fm

3 , the probability over a random permutation π that x satisfies the fol-
lowing equations:
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– v′ = z ⊙ (1− π(r′)) + (1− z)⊙ π(r′) with z = π(r)⊕ v, and v = Ax
– Bv′ = y

is upper-bounded by p.

We begin by making a few observations. As also noted in [CCJ23], for all possible
combinations of r, r′, the effect of the share conversion step can be mapped to
one of three different actions:

– Identity (copy): v′i = vi, whenever ri = r′i.
– Flip (flip): v′i = 1⊕ vi, whenever r

′
i ∈ {0, 1} ∧ ri ̸= r′i

– Constant 2 (const2): v′i = 2, whenever r′i = 2.

A malicious adversary who does not use a valid witness x will arrive at a v such
that Bv ̸= y. Therefore, the only way to satisfy Bv′ = y is to modify enough
positions of v, to make it a codeword. Since we permute the randomness used,
the actions chosen by the adversary are permuted before being used. Intuitively,
the larger the number of flips, the lower the probability that a permutation aligns
the flips with the positions that need to be modified.

We begin with the observation that B can be viewed as the parity-check
matrix of a random linear code where instead of checking whether the party is
0, we check that it is y. Therefore,Bv′ = y if and only if v′ a codeword. BecauseB
is a random linear code, it has good distance with high probability. Therefore, the
possible values of v′ are sufficiently spread out. Suppose the minimum number
of flip and const2 operations required to reach a particular word v′ from v are
δ1 and δ2 respectively. Then the number of permutations that map v to v′

is given by (m− δ1 − δ2)! δ1! δ2! ≤ (m − δ)! δ!, where δ = δ1 + δ2. Over the
choice of permutations, the probability that the adversary successfully lands on
a particular word is upper bounded by 1/

(
m
δ

)
. Thus, if we can upper bound the

number of codewords, at a distance δ from v, and take a union bound over all
of them, we obtain the adversary’s probability of successfully cheating using a
configuration with δ modifications.

Few flips (0 < δ < d/2). If the minimum distance of B is d, then within any
hamming ball of radius < d/2, there is at most one codeword. Thus, if the
adversary modifies fewer than d/2 positions, there is at most one codeword that
satisfies Bv′ = y.

Many flips (d/2 ≤ δ ≤ m). This case is more tricky because there are now
(potentially) many codewords on the hamming ball of radius δ. It is easy to
see that the total number of words on the hamming ball is

(
m
δ

)
. However, any

codeword is at least a distance d away from any other codeword. Therefore,
for every codeword that we try to fit on the hamming ball, there are some
number of words adjacent to this codeword that cannot also be a codeword.
Formally, this set of adjacent words can be described as Bδ = {c | ∆H(v′, c) ≤
d ∧ ∆H(v, c) = δ}. Without loss of generality, we can choose v to be the origin
{0}m and v′ = {0}m−δ∥{1}δ1∥{2}δ2 , where δ1 + δ2 = δ. The description of Bδ
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can be simplified as Bδ = {c |Wt(c) = δ ∧Wt(c−v′) ≤ d}. We can now compute
a lowerbound on |Bδ| and hence an upperbound on Cδ, the number of codewords
at a distance δ. Observe that we enumerate over words in Bδ by first choosing
an α ≤ min(d/2, δ,m− δ) subset of the 0 positions that will be flipped to either
1 or 2 and then restoring the weight to δ by zero-ing out an α sized subset of
the 1/2 positions. In addition, one can flip the 1/2 positions to 2/1, in each of
the above configurations.

|Bδ| ≥
min(d/2,δ,m−δ)∑

α=0

(
m− δ

α

)(
δ

α

)
2α

min(d−2α,δ−α)∑
β=1

(
δ − α

β

) , (1)

Therefore, Cδ = ⌈
(
m
δ

)
/|Bδ|⌉ is an upperbound on the number of codewords on

the hamming ball of radius δ. To finish the argument, we simply take a union
bound over all the codewords on the hamming ball to obtain an upperbound
on the probability of successfully landing on some codeword, p2 ≤ Cδ/

(
m
δ

)
. By

explicitly plotting the combinatorial bound for the parameters of the AM-OWF,
we can see that |Bδ| >

(
m
δ

)
, in the regime where δ < d/2 and δ > m − d/2.12

In otherwords, a single code word and it’s adjacent words are sufficient to cover
the entire hamming ball. This is illustrated in Figure 5.

Anti-Solution. Observe that if the adversary found an x such that B(1⊕Ax) =
y, then they could chose all operations to be flip,13 and succeed every single
time. However, from Lemma 4, we know that this is as hard as the OWF game
itself. Looking ahead, when we build a zero-knowledge proof of knowledge of
a pre-image of the AM-OWF, we actually only achieve a weakened notion of
knowledge soundness that extracts either a pre-image or an anti-solution. Since
we have show that both these problems are hard, it suffices to compile our
MPCitH protocol to a signature scheme. Similar to [CCJ23], if we further relax
the soundness notion to an appropriately defined approximate notion, where the
extractor is able to find an x such that B(Ax) = v, and there exists a v′ such
that Bv′ = y and ∆H(v, v′) ≤ f for an appropriately chosen f . By appealing to
Lemma 5, we know that for f = O(1), this problem is also hard, thus in each
parallel repetition of the MPCitH protocol, the chance of the adversary cheating
is smaller, thereby requiring fewer repetitions.

8 Post-Quantum Signature

We use the MPC-in-the-head framework [IKOS07] and instantiate it with the
alternating-moduli OWF proposed in [DGH+21], which is in turn based on
[BIP+18]. Instead of using a generic compiler such as [KKW18], we aim to com-
pute the same circuit but use a bespoke MPC protocol, tailored to the AM-OWF,
allowing us to shrink the size by 2-3×, when compared to [DGH+21].

12 In fact, there is only one codeword on a hamming ball at distance δ > m − d∗ for
some d∗ > d/2, as seen in Figure 5 .

13 The adversary could also choose all operations to be const2, but with overwhelming
probability {2}m is not in the code.
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Fig. 5. The blue line denotes Combinatorial bound for different values of δ for the
parameters (m, d) = (452, 35). The dotted orange line is 1/

(
m
δ

)
, the probability with

which an adversary succeeds lands on a particular codeword δ hamming distance away.
The gap between the two curves highlights the impact of a growing number of code-
words on the adversary’s chance of success. Importantly, the best strategy is for the
adversary to make as few flips as possible (or flip almost all but a few) to avoid detec-
tion.

Overview. Our MPC protocol is quite simple and proceeds as follows. The N
parties start with an additive sharing of x and can locally compute Ax. They
then engage in a share conversion procedure to convert shares of v = Ax to
shares of v′ ∈ Fm

3 . We do this by using pre-processed randomness of the form

(JrK2, JrK3), where r ∈ Fm
2 . To convert the shares, parties mask shares of x with

shares of r in F2, reconstruct x+r, and then compute Jv′K3 = v⊙ J1− rK3+(1−
v)⊙ JrK3. The parties finish the protocol by computing Bv′ and reconstructing
the output.

However, the main difficulty is in efficiently compiling this MPC protocol to a
publicly verifiable proof of knowledge of a pre-image of the AM-OWF. One can of
course use generic techniques such as the KKW [KKW18] or ZKB++ [CDG+17]
proof systems as done in [DGH+21], and although they produce competitive sig-
nature sizes, they are still larger than more recent post-quantum signatures based
on symmetric-key assumptions [FJR22,CCJ23,AGH+23,KZ22,BBdSG+22]. We
use a technique similar to [CCJ23], to handle the pre-processing for free and
design a bespoke MPCitH protocol for proving knowledge of the pre-image of
an AM-OWF.
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The high-level idea is as follows. We allow the prover to freely choose (po-

tentially malicious) correlations (JrK2, JrK3), but demand that the correlations
are permuted using a uniformly random permutation π that is chosen by the
verifier.14 This allows use to completely avoid any checks on the preprocessed
correlations, as we are able to bound the probability with which a prover can
cheat for the very specific circuit we are interested in. The rest of the protocol
proceeds as described above. The proof of security can be found in [APRR24].

The full zero-knowledge proof of knowledge protocol is specified in Figure 6. A
signature scheme can then be constructed by applying the Fiat-Shamir heuristic,
where the random coins provided by the verifier is replaced by a random oracle
hash of the protocol transcript and the message being signed.

Our security proof proceeds in a manner very similar to that of [CCJ23].
We first note that Kales and Zaverucha [KZ20] showed that there was an attack
on signature schemes using Fiat-Shamir heuristic on 5-round MPC-in-the-Head
protocol. The core observation is that a malicious prover can cleverly resample
verifier challenges in the second and fourth round such that the cost of finding
a forgery is reduced to

costforge := min
τ1,τ2:τ1+τ2=τ

1∑τ
i=τ1

(
τ
i

)
pi(1− p)τ−i +Nτ

2

(2)

where p is the combinatorial bound. We handle this by making the combinato-
rial bound very small, allowing us to use (approximately) the same number of
repetitions as if this attack did not exist. We now define an analogous f -strongly
invalid witness and combinatorial bound.

Definition 11 (f-strongly invalid witness). We say that x ∈ Fn
2 is an

f -weakly valid witness if there exists v′ ∈ Fm
3 such that Ax = v, Bv′ = y, and

either ∆H(v, v′) ≤ f or ∆H(1⊕ v, v′) ≤ f . If x is not an f -weakly valid witness,
then it is an f -strongly invalid witness.

Definition 12 (Combinatorial Bound). A combinatorial bound for the
zero-knowledge proof Figure 6 with parameters (n, t,m) is a real p = p(t,m, f) ∈
(0, 1) such that for any f -strongly invalid witness x ∈ Fn

2 , and for any pair of
vectors (r, r′) ∈ Fm

2 × Fm
3 ,

Pr
π←$Permm

[Bv′ = y | v = Ax, v′ = π(r′) + (x⊕ π(r))⊙ (1− 2π(r′))] ≤ p(t,m, f),

where Permm denotes the set of all permutations of {1, . . . ,m}.

We are now ready to state the main theorem of soundness for Figure 6, which
we prove in Section 11

Theorem 5. Let Commit be a non-interactive commitment scheme and H be
a collision resistant hash function. Let p be a combinatorial bound for the pro-
tocol in Figure 6. Then the protocol in Figure 6 is a gap honest-verifier zero-
knowledge argument of knowledge for the relation R such that ((A,B, y), x) ∈ R
14 This technique of using shuffled correlations was first observed in [CCJ23].

40



zkPoK of a Pre-Image of the AM-OWF

Inputs: The prover and the verifier have matrices A ∈ Fm×k
2 and B ∈ FK×m

3 and a

vector y ∈ FK
3 . B = [B̃|Ik] is in systematic form and the prover knows a vector x such

that B(Ax) = y.

Round 1. The prover emulates the pre-processing phase and commits to the inputs:

1. Sample a random seed seed∗

2. Using seed∗ as the root of a depth-logN GGM-PRF [GGM84], produce leaves
{(seedi, σi)}i∈[N ].

3. For i ∈ [N−1], expand seedi to obtain the i-th pseudorandom share of x ∈ Fk
2 , s ∈ Fm

2
and t ∈ Fm

3 . Set statei = seedi.
4. For the N -th party set:

– JsKN to be a pseudorandom share.

– JxKN = x⊕N−1
i=1 JxKi.

– JtKN = s−
∑N−1

i=1 JtKi mod 3.
– statei = seedN ||JxKN ||JtKN .

5. Compute and send h = H(com1, . . . , comN ), where comi = Commit(seedi;σi).

Round 2. The verifier samples a permutation π of m elements and sends it to the verifier.

Round 3. The prover now emulates the execution of the MPC protocol and commits to
intermediate wire values.

1. Compute intermediate wire values:
– JvK = AJxK.
– JzK = JvK⊕ Jπ(s)K.
– z ← ⊕N

i=1zi.
– Jv′K = z + (1− 2z)⊙ Jπ(t)K mod 3.
– JyK = BJv′K mod 3.
– Set msgi = (JzKi, JyKi).

2. Compute h′ = H(msg1, . . . ,msgN ).

3. Send h′ and z(1) – the first (m−K) entries of z – to the verifier.

Round 4. The verifier chooses a position i∗ ∈ [N ] to not open and sends it to the prover.

Round 5. The prover sends (statei, σi)i̸=i∗ and comi∗ .

Verification. Verifier accepts if all of the below checks pass.

1. For i ∈ [N ] \ i∗, compute comi = Commit(statei, σi) and recover the i-th party’s
shares of x, s and t, using statei.

2. For all but the i∗-th share, compute
– JvK = AJxK.
– JzK = JvK⊕ Jπ(s)K.
– Jv′(1)K = z(1) + (1− 2z(1))⊙ Jπ(t)(1)K mod 3.

– Jv′(2)K = y − B̃Jv′(1)K mod 3.

– z(2) = Jv′(2)K− Jπ(t)(2)K.
– JyK = BJv′K mod 3.

3. Recompute msgi∗ = (z ⊕i ̸=i∗ JzKi, y −
∑

i ̸=i∗ JyKi mod 3).

Check if h = H(com1, . . . , comN ) and h′ = H(msg1, . . . ,msgN ).

Fig. 6. A 5 round zero-knowledge proof of knowledge of a pre-image of the AM-OWF.
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iff B(Ax) = y. The gap relation R′ is such that ((A,B, y), x) ∈ R′ if B(Ax) = y
and x is an f -weakly valid witness. The soundness error of the proof is at most
ε = p+ 1/N − p/N .

Proof Size. The prover sends the following to the verifier in the proof of knowl-
edge of the pre-image of the AM-OWF.

– Commitments h and h′ of size 2λ bits each.
– The co-path of i∗ of size λ logN bits.
– comi∗ of size 2λ bits.
– The N -th shares of x and t of size (n+m log 3) bits.
– z of size m− t bits.

where the h, h′ commitments across all τ parallel executions can be combined
into one commitment of size 2λ each.

Size = 4λ︸︷︷︸
h,h′

+τ
(
λ(logN)︸ ︷︷ ︸
PPRF key

+ 2λ︸︷︷︸
comi∗

+ n︸︷︷︸
xN

+ m− t︸ ︷︷ ︸
Compressed z

+m log 3︸ ︷︷ ︸
tN

)
In Figure 7, we report sizes of our signature scheme for the parameter sets listed
below. We expect performance similar to [CCJ23] during signing/verification.
We also note that because our MPC-in-the-Head is based on additive secret
sharing, the hypercube technique from [AGH+23] can be used to scale up to a
larger number of parties while remaining computationally efficient.

Parameters. In [DGH+21], the authors propose (n,m, t) = (λ, 3.53λ, λ/ log 3).
However, for the relaxed notion of soundness that our zero-knowledge proof
achieves, we actually require that it must be hard to find an f -weakly valid
witness for the AM-OWF (Definition 11). The parameter f is set such that the
combinatorial bound is made as low as possible in order to minimize the impact
of the attack from [KZ20] on the signature size. As well will show later, this
in turn determines the value of n,m, and t. During our search for parameters,
we also identified an important metric that must be paid attention to when
introducing any form of additional structure in B.

We target 128 bit security with the following parameters a) Fast: (18, 193),
b) Balanced: (13, 1723), and c) Short: (9, 65536) reported as (τ,N), where
N is the number of parties and τ is the number of parallel repetitions. Using
Equation 2, we set f = 11, and now determine n,m, t such that it is still hard to
find an f -weakly valid witness. To ensure that the covering lemma (Lemma 2)
still holds true we fix n = t log 3 + 10.

Choosing t and m. We choose t,m such that if we sample a uniformly random
value, it is not an f -weakly valid witness, with overwhelming probability. The
reason we use this strategy is because there does not seem to be a good way
to choose inputs such that the output of Ax lies close to the codewords of B.
Indeed if there existed a strategy that did better than simply trying at ran-
dom, then we can extend the approxOWF reduction (Lemma 5) to the setting
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Scheme Size (KB) Assumption

[HBD+22] (fast) 16.68
SHA-256

[HBD+22] (short) 7.67

[CCJ23] (fast) 12.5/11.3

RSD/f -almost-RSD over F2

[CCJ23] (medium-1) 9.7/8.8

[CCJ23] (medium-2) 9.1/8.3

[CCJ23] (short) 8.6/7.8

[AGH+23] (Fast) 14.4/9.7

SD over F2/F256

[AGH+23] (Short) 9.7/6.9

[AGH+23] (Shorter) 7.5/5.5

[AGH+23] (Shortest) 6.0/4.5

[BBdSG+22] (Fast) 6.2/5.6
AES/EM-AES

[BBdSG+22] (Short) 4.9/4.5

[KZ22] (Fast) 5.8
Rain4

[KZ22] (Short) 4.4

[ARZV+23] (Fast) 7.7

MinRank
[ARZV+23] (Short) 5.5

[ARZV+23] (Shorter) 4.9

[ARZV+23] (Shortest) 4.4

[KHS+23] (Fast) 5.8

AIM
[KHS+23] (Short) 4.8

[KHS+23] (Shorter) 4.1

[KHS+23] (Shortest) 3.8

This Work (Fast) 5.5

AM-OWFThis Work (Balanced) 4.6

This Work (Shortest) 4.0

Fig. 7. Comparison of signature sizes against state-of-the-art schemes based on
symmetric-key assumptions. For [ARZV+23], we report the Ia maximum signature
sizes of the hypercube variant. EM-AES refers to AES in Even-Mansour mode.
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where ∆H(v, v′) ≤ f and break the AM-OWF for the parameters proposed in
[DGH+21]. Thus, when introducing any additional structure in B, it must be
the case that the codewords must be sufficiently spread out, at least on average.

Coming back to the choice of t and m, a random linear code approaches
the GV bound. Therefore, the number of codewords of B is approximately
3m/qHq(d/m)m, where d is the minimum distance of B. The fraction of volume
occupied by all words within hamming distance f of codewords of B is therefore
given by qHq(f/m)m−Hq(d/m)m, which we set to be smaller than 2−128 as this is
also the probability with which a random word is withing hamming distance f
of a codeword. This gives us t = 135, m = 450 and n = 224.

9 Post-Quantum Ring Signatures

An efficient proof of knowledge of the pre image of the AM-OWF also serves as
a building block for Ring Signatures [RST01] and Ring CT [Noe15]. Prior work
introduced generic compilers to lift MPCitH proof for a single NP statement to
a disjunction of multiple NP statements [GGHAK22], where the additional cost
on top of a single MPCitH proof only grows logarithmically in the number of
statements. Although the compiler is asymptotically very good, we observe that
there is an initial startup cost resulting in a larger than necessary overhead when
there are a small number of statements. In this section, we provide concretely
more efficient protocols in the few statements regime.

Overview. The goal of a ring signature is to convince a verifier that a message
was signed by one party out of a set of ℓ parties. Recall that in the case of the
AM-OWF based signature scheme, the public keys lie in Ft

3. A signer needs to
produce a proof that they know xi such that yi = B(Axi) lies in some set of
public keys (y1, y2, . . . , yℓ). Our strategy is to extend the MPC protocol from
Section 8 as follows. Recall that at the end of the MPC protocol computing the
AM-OWF on input xi, all parties hold shares of yi. All that is left to do is prove
that parties hold a secret sharing of some yi ∈ (y1, . . . , yℓ).

First interpret the public keys (y1, y2, . . . , yℓ) as elements in the field GF(3t)
and interpolate a degree-(ℓ − 1) polynomial Y (X) such that Y (i) = yi. Y (X)
satisfies the following property for all i ∈ [ℓ],

Y (X) = (X − i)Q(X) + yi, (3)

where Q(X) is a polynomial of degree at most (ℓ − 2) and i is interpreted as
an element of GF(3t) in a natural sense of ternary decomposition. Observe that
Y (X) can be computed by the verifier, Q(X) can be computed by the prover and
secret shared with the parties in the first round, and the parties hold shares of
Y (i) = yi by the end of round 3.15 In round 4 of the MPC protocol Figure 6, we
have the verifier send a random point r ← GF(3t) and have the parties evaluate

15 Because we no longer have the public key in the clear, we cannot exploit the sys-
tematic form for compression.
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Equation 3 at this point. Note that the verifier can actually compute all powers
of r, and thus the Y (r) can be computed by the verifier. The parties can compute
shares of Q(r) and (r − i) through local operations on their shares in verifiable
manner. Finally, given access to one Beaver triple, the parties can multiply Q(r)
and (r−i) to obtain shares of the R.H.S. of Equation 3, which can be revealed to
ensure that the reconstructed value matches Y (r). We note that the probability
with which the verifier samples a bad r such that Y (X)− yi ̸= Q(X)(X− i) but
Y (r)− yi = Q(r)(r− i), is ≤ ℓ/|Ft

3| as a polynomial of degree ℓ− 1 has at most
ℓ− 1 roots.

An astute reader might have observed that we are not done yet, because
the prover could have used any i ∈ GF(3t) not restricted to i ∈ [ℓ]. In fact, a
prover could use an public key y∗ by choosing i∗ to be a root of the polynomial
Y (X) − y∗. An naive solution is to demand a range proof on i via the ternary
analogue of bit-decomposition where the prover shows that i can be represented
using log3 ℓ-F3 elements (b0, b1, . . . , blog

3
ℓ). The parties would be provided with

secret shares of bj in GF(3t) and they check that a) i =
∑log

3
ℓ

j=1 bj · 3j and
b) bj ∈ {0, 1, 2}, which requires two additional multiplications to verify that
bj(bj − 1)(bj − 2) = 0. Instead, we propose a way to carry out this range check
for free, as long as ℓ is a power of 3.16

Our main observation is that a verifier already knows that i ∈ [ℓ], therefore
instead of secret sharing i ∈ GF(3t), we can share it in GF(ℓ) without any loss
of privacy. Later, when evaluating Equation 3, the parties then locally embed
these shares in GF(3t) by simply appending (t − log3 ℓ)-zeros. Thereby, adding
just τ log ℓ bits to the final signature size.

Although the above construction is simple, it performs surprisingly well (See
Figure 8) and highlights the advantage of using a flexible framework such as
MPCitH. Note that we were forced to use powers of 3 due to the structure of
the public keys in the AM-OWF. Instead one could use a OWF with binary
output such as [KZ22], which has slightly larger signature sizes, but will still
have competitive signature sizes in addition to being able to support powers of
2.

9.1 Ring-Signature size

The above technique infact works generically for disjunctions of the same relation
in any MPCitH based proof system, by first interpreting the statement being
proved as a field element GF(pt) for some prime p. Below, we quantify the
overhead introduced on top of a single proof.

In the MPCitH proof, the prover now additionally needs to generate Beaver
triples as part of the pre-processing material. This can be done using the sac-
rifice-based technique from [DPSZ12,DKL+13,LN17]. The communication can
further be optimized by using PRG seeds to generate the shares of Beaver triples.
Let (JaK, JbK, JcK) be the Beaver triple such that a.b = c, then JaK, JbK of all N

16 The ring size can always (albeit wastefully) be padded to the next largest power of
by inserting random keys sampled as the output of a random oracle.
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Ring Size: 23 26 212 Assumption

[LLNW16] 52 MB 94 MB 179 MB SIS

[TKS+19] > 124 KB > 900 KB 61 MB Ring-SIS

[ESLL19] 41 KB 58 KB 256 KB M-LWE & M-SIS

[EZS+19] 29 KB 34 KB 148 KB M-LWE & M-SIS

[GGHAK22] 46 KB 50 KB 59 KB LowMC

[LNS21] < 16 KB < 18 KB < 19 KB Ex-M-LWE & M-SIS

Ring Size: 11 25 210 Assumption

[ESZ22] 9 KB 11 KB 18 KB M-LWE & M-SIS

Ring Size: 9 27 729 Assumption

This Work 6.2 KB 8.9 KB 113.0 KB AM-OWF

Fig. 8. Comparison of ring signature sizes for different ring sizes. The sizes of lat-
tice based ring signatures except for [ESZ22] were obtained from [ESLL19]. [ESZ22]
provides benchmarks for different ring sizes, we therefore compare against this work
separately. For our work, we use the short parameters (Section 8) and benchmark over
the closest powers of 3.

parties can be set to be the output of the PRG as the correlation should indeed
be uniformly random. Similarly, JcK can also be set to the output of the PRG, but

with the share of N -th party JcKN = c−
∑N−1

i=1 JcK, implying that the additional
communication in the MPCitH per beaver triple is just one field element.

In our protocol, we only need one Beaver triple per iteration of the MPC
proof. Using a sacrifice check for each iteration of the MPCitH requires 2τ Beaver
triples in total and therefore, the communication per iteration in the preprocess-
ing phase is two field elements during the check and two additional field elements
as the view of parties in the MPC. During the online phase, parties hold shares
of the coefficients of the ℓ − 1 coefficients of Q(X) from Equation 3, each of
which adds one field element to the communication per iteration of the MPCitH
proof. Finally, when parties multiply Q(r) and (r − i), they broadcast two field
elements. Thus, the communication overhead of the online phase of MPCitH is
(ℓ+ 1) field elements per iteration. The total proof size grows linearly in ℓ and
the incremental cost of adding a statement to the disjunction is ≈ τt log 3 bits.

Size = |ΠMPCitH|+ τ log 3(t(ℓ− 1︸ ︷︷ ︸
Q(X)

+ 6︸︷︷︸
Multiply

) + log3 ℓ︸ ︷︷ ︸
i

)

Compiling with [GGHAK22]. As expected, at small to medium sizes of the
ring, our protocol outperforms state-of-the-art ring signatures but the sizes can
get very big at larger ring sizes (See Figure 8). However, [GGHAK22] devised a
concretely efficient compiler to prove set-membership in various MPCitH proofs
which uses Merkle trees in a black-box manner to reduce computational and
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communication overhead. Their sizes are roughly 42+1.5× log ℓ KB for a ring of
size ℓ, but the 42 KB is is the size of a single signature using LowMC, with the
KKW proof system. Since then, there has been tremendous progress in building
signatures using MPCitH, bringing sizes down to ≈ 5 KB for a single signature.
We expect that using their compiler with any of the KKW-style proof systems
from Figure 7 would yield ring signatures that only grow logarithmically in the
ring size and are competitive with state-of-the-art lattice based ring signatures.

10 Missing proofs from Section 7

Lemma 1. Let H = {hA,B | A ∈ Fm×n
2 , B ∈ Ft×m

3 ; rank(A) = n} be a family
of hash functions such that hA,B : {0, 1}n → {0, 1}t log 3, then H is a universal
hash family.

Proof. Observe that rank(A) = n and hence A is an injective mapping. Define
the group G as G = (Ft

3,+) and observe that hA,B(x) is basically a subset sum
over m group elements g1, . . . , gm where gi denotes the ith column of B.

Let w = Ax and w′ = Ay. Since w ̸= w′ (because x ̸= y and A is an injective
mapping), there is at least one entry where one of them (say wi) is non-zero and
w′i is zero. Without loss of generality, let i = 1. Observe that

Pr[hA,B(x) = hA,B(y)] = Pr
[ t∑

i=1

wi · gi =
t∑

i=1

w′i · gi
]

= Pr
[
g1 =

t∑
i=2

wi · gi −
t∑

i=2

w′i · gi
]

= |G|−1 = 3−t,

where the last line follows from the fact that g1 is distributed uniformly and
independently from others, and the proof is complete. ⊓⊔

Lemma 2. For any hA,B ← H, let OhA,B
= {hA,B(x)|x ∈ Fn

2} denote the
covering of hA,B. Then, with overwhelming probability over the choice of hA,B,
we have |OhA,B

|/3t ≥ 1− negl(λ).

Proof. Suppose this was not true, then we would have ∆(hA,B(Uk), Ut log 3) ≥
1/poly(λ), hence contradicting Lemma 1. Thus, the output of the AM-OWF
must cover an overwhelming fraction of the output domain. ⊓⊔

10.1 Variants of the AM-OWF

Lemma 3. Given an adversary A that wins the systOWF game with noticeable
advantage, there exists an adversary A′ that wins the OWF game with noticeable
advantage.
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Proof. Given an instance from the OWF game (A,B, y), let M1,M2 be defined

as the matrices such that AM1 =
[
Ã
Ik

]
and M2B = [B̃|IK ]. A′ then provides

the adversary A with (AM1,M2B, ỹ = M2y). M1 and M2 are infact the in-
verses of the bottom-most square and right-most square of A and B respectively,
which exist with overwhelming probability as these matrices are full rank with
overwhelming probability and and is easy to compute using standard Gaussian
elimination. Thus, when A responds with x̃ such that M2B(AM1x̃) = ỹ, which
happens with non-negligible probability, A′ outputs x = M1x̃. ⊓⊔

Lemma 4. Given an adversary A that wins the antiOWF game with noticeable
advantage, there exists an adversary A′ that wins the OWF game with noticeable
advantage.

Proof. Given an instance from the OWF game (A,B, y), provide the adversary
A′ with (A,B, ỹ = B{1}m − y). With noticeable probability, the new instance
is indistinguishable from an honestly sampled instance with due to Corollary 1
and Lemma 2, as the distribution of the image is close to uniformly random and
the AM-OWF covers a noticeable fraction of Ft

3. Hence, A outputs x such that
B(1⊕Ax) = ỹ with probability at least εε′. A′ then outputs x as the solution to
OWF challenge (A,B, y). It is easy to see that if B(1⊕Ax) = ỹ, then B(Ax) = y
because the flip operation can be emulated in F3 as B(1 − (Ax) where Ax is
first embedded in F3. ⊓⊔

Lemma 5. Given an adversary A that wins the approxOWF(n,m + 1, t) game
with noticeable advantage, there exists an adversary A′ that wins the OWF game
with noticeable advantage, for a slightly smaller OWF(n,m, t) game.

Proof. Given a OWF challenge (A,B, y), A′ first guesses a random position
j ∈ [1,m + 1], hoping this is the position that A will cause an edit. A′ then
computes an approxOWF(n,m+ 1, t) instance by:

1. inserting a random row a← Fn
2 at the j-th position of A to get Ã

2. inserting a random column b← Ft
3 at the j-th position of B to get B̃

3. ỹ ← y + b.v′[j], where v′[j] is the j-th entry of v′ and sampled uniformly at
random from F3 as a guess for the modified entry.

Observe that this new instance always has a solution in the approxOWF(n,m+
1, t) game, and that the statistical distance from the uniform distribution over
Ft
3 is upperbounded by 1/poly(λ) for some polynomial poly(λ) (Corollary 1).

Thus A will continue to output a solution with non-negligible probability on
this new instance. Suppose A′’s guess was correct for the modified entry and
let A’s output be (x, v, v′) and ṽ be identical to v, except with the j-th entry
deleted. Then it is easy to see that (x, ṽ) is a solution to the OWF challenge
given to A′. ⊓⊔
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11 Proof of Security

Theorem 5. Let Commit be a non-interactive commitment scheme and H be
a collision resistant hash function. Let p be a combinatorial bound for the pro-
tocol in Figure 6. Then the protocol in Figure 6 is a gap honest-verifier zero-
knowledge argument of knowledge for the relation R such that ((A,B, y), x) ∈ R
iff B(Ax) = y. The gap relation R′ is such that ((A,B, y), x) ∈ R′ if B(Ax) = y
and x is an f -weakly valid witness. The soundness error of the proof is at most
ε = p+ 1/N − p/N .

Proof. We need to show that the interactive zero-knowledge proof is complete,
honest-verifier zero-knowledge, and that the soundness error is at most ε. Com-
pleteness is easy to see from the description of the protocol.

Honest-Verifier Zero-Knowledge. To prove that the protocol is honest-verifier
zero-knowledge we show that the MPC protocol described in Figure 6 is secure
against a semi-honest adversary corrupting up to n − 1 parties. The simulator
works as follows:

– Sample a uniformly random position i∗ ←$ [n] and a uniformly random
permutation π ←$ Permm.

– Carry out Round 1 of Figure 6 honestly, using a uniformly random value for
x.

– In Round 3, compute shares of z and y for all i ̸= i∗ as described. To
compute the message sent by the i∗-th party, first sample z ←$ Fm

2 , and
compute JzKi∗ = z ⊕i ̸=i∗ JzKi, and JyKi∗ = y −

∑
i̸=i∗ JyKi.

To see that this is a good simulator, note that the distribution of the r, r′ and
their shares is identical to that of a real execution. Given any N − 1 shares of v
and r, the distribution of z is uniformly random and hence the distribution of z
is also identical to a real execution. Next, the shares of y are fully determined
given z and the shares of r, r′, and x. Indeed, the i∗-th party’s share of y is
not consistent with this but the commitment to the i∗-th party’s state is never
opened. Also note that msgi∗ is indeed consistent with the views that are opened.
Finally, due to the hiding property of the commitment scheme, the simulation
is computationally indistinguishable from a real execution.

Soundness. Let P̃ be a malicious prover which manages to generate an accepting
proof with probability ε̃ > ε. Then there exists an extractor Ext, which when
given blackbox access to A with rewinding capabilities, can extract a witness x
such that it is a weakly valid witness (Definition 11). Let R denote the random-
ness used by P̃ to generate the first round commitment h and let r be a possible
realization of R. Let Succ denote the even that P̃ succeeds in convincing V. By
the hypothesis, we have

Pr[SuccP̃] = ε̃ > ε = p+
1

N
− p

N
.
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Fix an arbitrary value α ∈ {0, 1} such that (1−α)ε̃ > ε, which exists since ε̃ > ε.
We say that a realization r of the prover randomness is good if

Pr[SuccP̃ | R = r] ≥ (1− α)ε̃.

Furthermore, by the splitting lemma [PS00], we have Pr[R is good | SuccP̃] ≥ α.
Let T0 be the transcript of a successful execution of the zero-knowledge proof
with P̃, r denote the random coin used by P̃ in the first round and d0 denote the
fourth-round message of the verifier. If r is good, then

Pr[SuccP̃ | R = r] ≥ (1− α)ε̃ > ε >
1

N
,

which implies that there necessarily exists a second successful transcript T1, with
a different fourth round message d1 ̸= d0. As we will demonstrate afterwards,
given (T0, T1), it is possible to extract a triplet (x, r, r′) consistent with both
transcripts, where x is a weakly valid witness, and (r, r′) is the preprocessing
material used by the prover.

Let (π0, d0) and (π1, d1), with d0 ̸= d1 denote the verifier challenges used in
successful transcripts T0 and T1, respectively. Denote the fifth round messages
in these transcripts by ({statei, σi}i̸=d0

, comd0
) and ({state′i, σ′i}i ̸=d1

, comd1
). Sup-

pose ∃ i ∈ [N ] \ {d0, d1} such that (statei, σi) ̸= (state′i, σ
′
i). Then one of the

following must be true:

– The committed values are different:

comi = Commit(statei, σi) ̸= Commit(state′i, σ
′
i) = com′i,

but since both of these transcripts verify, this implies that the prover has
found a collision for H i.e. H(com1, . . . , comN ) = H(com′1, . . . , com

′
N ).

– The commitments are identical:

comi = Commit(statei, σi) = Commit(state′i, σ
′
i) = com′i,

but this violates the binding property of the commitment scheme.

Therefore, it must be the case that {statei, σi}i ̸=d0,d1
= {state′i, σ′i}i ̸=d0,d1

. Fur-
thermore, since d0 ̸= d1, they jointly define a unique tuple (statei, σi)i∈[N ], from
which we can extract the witness x and the preprocessing material (r, r′) used
by the prover.

Finally, we show that if x is a strongly invalid witness, then Pr[SuccP̃ | R =
r] ≤ ε, contradicting our assumption that r is good. Let us denote BadPerm the
event (defined over a random choice of permutation π, and for the fixed value of
(x, r, r′)) thatAx = v andBv′ = y, where v′ = π(r′)+(x⊕π(r))⊙(1−2π(r′)). By
definition of the combinatorial bound (Definition 12), we have Pr[BadPerm] ≤ p.
We can rewrite our desired inequality as

Pr[SuccP̃ | R = r] = Pr[SuccP̃ ∧ BadPerm | R = r]

+ Pr[SuccP̃ ∧ ¬BadPerm | R = r]

≤ p+ (1− p) · Pr[SuccP̃ | R = r ∧ ¬BadPerm].
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If we can show that Pr[SuccP̃ | R = r ∧ ¬BadPerm] ≤ 1/N , then we are done.
For the sake of contradiction, assume that Pr[SuccP̃ | R = r ∧ ¬BadPerm] >
1/N . Since Pr[SuccP̃ | R = r] ≥ ε, using the same argument as earlier, given

a successful transcript T̃0 with fourth round message d̃0, there must exist a
second successful transcript T̃1 with identical first three rounds but fourth round
message d̃1 ̸= d̃0. Moreover, T̃0 and T̃1 must be consistent and uniquely define
a tuple ( ˜statei, σ̃i)i∈[N ]. Since we condition on the same randomness R = r, the

h̃ in the second round corresponding to transcripts, (T̃0, T̃1) and (T0, T1) must
be identical and therefore, by the collision resistance of H, ( ˜statei, σ̃i)i∈[N ] =
(statei, σi)i∈[N ].

Now, using T̃0, we can reconstruct the messages sent by all parties using a
strategy similar to verifying the transcript to obtain {m̃sg0i }i∈[N ]. Similarly, using

T̃1, we obtain {m̃sg1i }i∈[N ]. Because T̃0 and T̃1, share the same first three rounds,

using a similar argument as above {m̃sg0i }i∈[N ]\{d̃0,d̃1} = {m̃sg0i }i∈[N ]\{d̃0,d̃1}.

Note that when we recovered m̃sg0
d̃0

, we set JyKd̃0
= y −

∑
i̸=d̃0

JyKi. Because
we started with the assumption that x is a strongly invalid witness and condi-
tioned on not using a bad permutation, it must be true that m̃sg0

d̃0

̸= m̃sg1
d̃0

as
otherwise we have actually found a valid witness. But this also means that we
have found two different inputs {m̃sg0i }i∈[N ] and {m̃sg1i }i∈[N ] that hash to the
same value, contradicting the collision resistance of H. Thus Pr[SuccP̃ | R =
r ∧ ¬BadPerm] ≤ 1/N and hence,

Pr[SuccP̃] ≤ p+ (1− p)
1

N
,

when x is a strongly invalid witness. The remaining proof and description of the
extractor is identical to that of [FJR22,CCJ23] and we omit it here. ⊓⊔

12 PRF Protocol Evaluation

We present our Two-party protocols in Section 6 of [APRR24] and summarize
them in Section 2. We build on [PR] and intend to open source the implementa-
tion. The protocols generate all correlated randomness via Silent OT techniques,
see Section 6.1.

We implement our wPRF protocols for the OPRF setting as well as plain-
text inputs and secret shared output. We compare their performance to the
alternating moduli protocol of [DGH+21] and our GMW-based implementation
of LowMC [ARS+15]. Our LowMC implemention employs various optimizations
such as transposed representation, vectorization, and precomputed key schedule.
LowMC offers a variety of parameters that give tradeoffs between computational
overhead, round complexity, and number of OTs/OLEs that are required. We
parameterize it as (n,m, k, d, r) ∈ {(256, 63, 128, 128, 14), (128, 3, 128, 128, 88)}.

Running times were obtained on a core i7 consumer-grade laptop with 16GB
RAM. Each party is executed on a separate thread with network communication
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being simulated, i.e., minimal communication overhead. Given that our proto-
col is 2 rounds, one can easily estimate the cost of network communication by
dividing the communication by the bandwidth plus network latency.

Protocols with the Key OT optimization perform a setup phase where OTs
for each bit of the key are performed. This reusable correlated randomness allows
the parties to compute shares of (k⊙x). Alternatively, our Input-OTs protocol for
multiplying (k ⊙ x) requires more OTs but less communication. We implement
two version of our modulus conversion protocol Πot-3→2-conv for the (F3,F2)-
wPRF protocol which usesm F4 VOLE correlations or 2mOT/OLE correlations.
We refer to each as F4-VOLE and F2-OLE respectively. The modulus conversion
for (F2,F3)-wPRF requires just m OT/OLE correlations. The final protocol uses
garbling techniques to implement modulus conversion and does not require any
additional OTs beyond the reusable OTs for the key.

OPRF. In Figure 9 we report the metrics for our protocol when used as an
OPRF in comparison related works. We consider the setting where a succinct
setup phase is performed. During this phase, the key is known but the evaluation
points, i.e., x, are not. For [DGH+21] and our protocols in Figure 9, we separate
the preprocessing p and online o metrics as p+ o.

Scheme Assumption r Comm. (bits) time (µs)

[ADDS21] R(LWE) & SIS 2 224 –

[SHB21] Legendre PRF +3 +224 –

[BKW20] CSIDH 3 221 –

[Bas23] SIDH 2 225 –

[HHM+23] CSIDH +2 +217.4 –

[ADDG23] AM-[BIP+18] 2 3, 821 151,000

[DGH+21] AM-[DGH+21] 2 65 + 1, 252 25.4+6.1

This OT - (F2,F3)-wPRF AM 2 38+ 916 7.0+0.4

This F2-OLE - (F3,F2)-wPRF AM 2 38 + 1, 173 14.6+0.4

This F4-VOLE - (F3,F2)-wPRF AM 2 38 + 1, 173 7.1+0.4

This Garble AM 3 215 0+4.0

[Mea86] DDH 2 512 121

Fig. 9. Comparison of our distributed wPRF protocols against other OPRF proto-
cols. We consider the setting where multiple (adaptive) evaluations for a fixed key are
performed. r denotes the round complexity and + denotes that additional rounds are
required to set up the protocols. Comm. reports the end-to-end amortized communi-
cation (including any preprocessing) per evaluation in bits.

The most efficient protocol is our OT base (F2,F3)-wPRF protocol (Figure 3)
with the Input-OTs optimization. It requires 7.0 microseconds per amortized
evaluation and a total of two rounds, including the preprocessing. Excluding the
succinct setup phase (7.0µs & 38 bits), the amortized communication cost is
916 = λ+m+ (m+ t) log2(3) bits and 0.4µs for (n,m, t) = (4λ, 2λ, λ/ log2(3))
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and λ = 128, see Section 5.4. This protocol requires λ+m OLE/OTs per evalu-
ation which form the dominant computational cost, 7.0µs compared to 0.4µs of
online time. The prior protocol [DGH+21] based on alternating moduli requires
an amortized total of 32.9µs and 1, 317 bits of communication, a 3.7× and 1.4×
improvement. Due to a lack of implementation, for their online time we use
their reported plaintext running time of 6.1µs [DGH+21], however, our imple-
mentation technique would likely lower this closer to our 0.4µs. Regardless, the
bulk of the running time improvement comes from our protocol requiring fewer
OTs. Moreover, our 128 input OTs are of 4 bit strings while [DGH+21] uses 256
OTs of 256 bit strings. When properly implemented, this results in an almost
256/4 = 64× faster OT generation due multiplying smaller vectors with the
syndrome decoding matrix.

The lowest communication OPRF protocol is based on DDH [Mea86]. It is
extremely communication-efficient, requiring just two curve elements to be sent.
However, DDH is insecure in the post-quantum setting and, unlike ours, does not
lend itself to secret shared output. Moreover, it requires an order of magnitude
more time which makes it less attractive when performing many evaluations.
However, for a single evaluation DDH [Mea86] remains the best option.

We also consider our (F3,F2)-wPRF but observe that the communication
overhead are worse than our (F2,F3)-wPRF while it remains competitive in
terms of computation when F4-VOLE is used. The communication overhead is
due to requiring disproportionately larger parameters and the mod operation
being less efficient. Finally, we consider the garbling based protocol of Figure 4.
This protocol has the interesting advantage that it only requires OT correlations
in the setup phase where the key is set. In particular, one OT per bit of the key
is performed. All subsequent evaluations of the protocol can be implemented
with only calls to the random oracle. The advantage of this is highlighted when
only a small number of evaluations are performed. In this regime the sublinear
OT protocols have relatively high computational/communication overhead due
to the hidden constants. The communication overhead of this protocol is 215 =
λn+ (m+ t) log2(3).

OPRF with Shared Output. We now turn our attention to a more detailed
analysis of our wPRFs and related work. For this analysis we will continue to
assume x is known to one party while k is known to the other. The parties
will receive a secret sharing of F (k, x). We report our findings in Figure 10. As
above, we divide the running time of the protocol into the time to generate the
OT correlations and the online time. As can be seen in Figure 10, the main cost
is OT generation, requiring between 15 to 30 times more time than the online
phase.

We present several variants of our protocols. As with the OPRF performance
numbers, we observe that our (F2,F3)-wPRF with the Input-OTs optimization
performs the best, requiring a total of 7.97µs and just 38 + 790 bits of online
communication, where the 38 bits of communication is for the OT generation.
The next most efficient protocol is also our (F2,F3)-wPRF but with the Key-
OT optimization which reduces the number of OTs required at the expense of

53



Scheme Optimization r
Comm. Online

#OTs
OT time

(bits) (µs) (µs)

LowMC [ARS+15]
– 14 10,584 7.5 5,292 151.4

– 88 3,168 12.6 1,584 45.0

[DGH+21] (F2,F3)-wPRF – 2 1,126 6.1 640 25.4

(F2,F3)-wPRF
Input-OTs 2 790 0.4 384∗ 7.3

Key-OTs 2 1,174 0.4 256 7.0

(F3,F2)-wPRF

Key-OTs, F2-OLE 2 1,151 0.4 512 14.6

Key-OTs, F4-VOLE 2 1,151 0.4 256 7.1

Key-OTs, Garble† 1 32,768 4.1 0 0

Fig. 10. Comparison of our distributed wPRF protocols with secret shared output
against LowMC [ARS+15] when performing q = 220 concurrent evaluations. r denotes
the round complexity excluding a reusable setup. Times reported are amortized per
evaluation. † denotes estimated running time.

more communication. However, despite requiring 50% fewer OTs, we observe a
minimal decrease in running time. This is because the Input-OT optimization
makes use of a VOLE correlation for short strings, i.e., 4 bits, while OT/OLE
requires generation of a VOLE correlation for 128 bit strings. When properly im-
plemented, this essentially translates to a 128/4 = 32× improvement in running
time for the matrix multiply step in the VOLE protocol, which is the main over-
head. As a result, we generally suggest only using the Input-OT optimization
for the (F2,F3)-wPRF.

However, a major drawback of the (F2,F3)-wPRF with secret shared output
is that the output shares and values are mod 3. This is highly non-standard
and if shared output is desired, more post processing would be required. A more
natural (and efficient) option is for the wPRF to naively output the desired
share format, e.g., (F3,F2)-wPRF. We only implement this protocol with the
Key-OT optimization. The protocol requires 0.4µs and between 7 to 14µs of
online and OT generation time, respectively. The protocol requires 1,151 bits of
online communication and 52 bits for OT generation. One could consider using
the Input-OT optimization to lower the communication overhead but this would
require implementing F3 Silent OT/VOLE which has higher computational cost,
approximately 5× by our estimates.

Compared to [DGH+21], our protocols perform better in communication,
running time, and the number of OTs used. When compared to LowMC [ARS+15],
our online phase is between 7 and 13 times faster. When profiling both imple-
mentations, we observe that almost all of the time is spent in the matrix-vector
multiplication routine. Given that [ARS+15] requires many more such multipli-
cations, it follows that their running time should be worse. Additionally, their
protocol requires substantially more OTs/OLEs, a factor between 20 and 3 times
depending on the parameters used.
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