Multiple Group Action Dlogs
with(out) Precomputation

* * ok

Alexander May®* and Massimo Ostuzzi

Ruhr-University Bochum, Bochum, Germany
alex.may@rub.de, massimo.ostuzzi@rub.de

Abstract. Let x : G X X — X be the action of a group G of size N = |G|
on aset X. Let y = gxx € X be a group action dlog instance, where our
goal is to compute the unknown group element g € G from the known
set elements z,y € X. The Galbraith-Hess-Smart (GHS) collision finding
algorithm solves the group action dlog in N 3 steps with polynomial
memory.

We show that group action dlogs are suitable for precomputation at-
tacks. More precisely, for any s,f our precomputation algorithm com-
putes within st steps a hint of space complexity s, which allows to solve
any group action dlog in an online phase within ¢ steps. A typical in-
stantiation is s =t = N %, which gives precomputation time N 3 and
space N%7 and online time only N3,

Moreover, we show that solving multiple group action dlog instances
Yi,-..,Ym allows for speedups. Namely, our collision finding algorithm
solves m group action dlogs in /mN 2 steps, instead of the straight-
forward mN2 steps required for running m times GHS. Our multiple
instance approach can be freely combined with our precomputations,
allowing for a variety of tradeoffs.

Technically, our precomputation and multiple instance group action dlog
attacks are adaptations of the techniques from the standard dlog setting
in abelian groups. While such an adaptation seems natural, it is per
se unclear which techniques transfer from the dlog to the more general
group action dlog setting, for which X does not offer a group structure.

Our algorithms have direct implications for all group action based cryp-
tosystems, such as CSIDH and its variants. We provide experimental
evidence that our techniques work well in the CSIDH setting.

Keywords: group actions - CSIDH - preprocessing - multi-instance dlogs
- random walks.

* Funded by DFG under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.

** M.O. is part of the Quantum-Safe Internet (QSI) ITN which received funding from
the European Union’s Horizon-Europe programme as Marie Sklodowska-Curie Ac-
tion (PROJECT 101072637 - HORIZON - MSCA-2021-DN-01)

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

2 Alexander May®| and Massimo Ostuzzi

1 Introduction

The invention of the discrete logarithm (dlog) based Diffie-Hellman (DH) key
exchange in 1976 marks the birth of modern public key cryptography. DH is
nowadays used ubiquitously in practice. As a consequence, the discovery of Shor’s
polynomial time quantum algorithm for computing discrete logarithms (dlogs)
in any abelian group [Sho94] came as a shock to the cryptographic community,
turning DH insecure in a quantum world.

While one would like to replace the group-based dlog problem by some quan-
tum resistant problem, it is also desirable to retain the benefits of DH key ex-
change, such as small public keys, efficient computations, and compatibility with
existing protocols.

The group action dlog problem evolved as a natural and elegant way to re-
place group-based dlogs, and group actions are the fruitful basis for a part of the
new research area called isogeny-based cryptography [BY91/Cou06/Stol0JJDF11]
[ACCT17IDFKSISICLM ™ 18/CD20)]. This gave birth to the key exchange proto-
col CSIDH |[CLM™18]|, which provides an efficient instantiation of group actions,
leading to a highly attractive, promising replacement of DH in a quantum world.
The hope is that group action dlogs preserve all benefits from group based dlogs,
while providing more security, especially against quantum computers.

Indeed, the group action dlog problem is a hidden shift problem [CJS14], for
which the best quantum algorithm by Kuperberg [Kup05] has subexponential
complexity. Nowadays, it is still an open question whether concrete instantia-
tions of Kuperberg’s algorithm [Pei20/BS20/CSCDJRH22] pose threats to cur-
rent group action dlog parameters.

Adaptation from Dlog Algorithms. Before considering a widespread replacement
of DH by some group action based scheme like CSIDH, it is crucial to understand
to which extent dlog attacks transfer to the group action dlog setting.

Using Pollard’s collision finding algorithm [Pol78], we can compute a sin-
gle dlog in any abelian group of size N in O(N %) steps. The counterpart for
group actions dlogs of instance size IV is the algorithm of Galbraith, Hess and
Smart [GHS02IGST3], likewise requiring O(N'2) steps.

Other dlog algorithms do not transfer naturally. One crucial example is again
Shor’s polynomial time dlog algorithms, for which its group action counterpart
Kuperberg’s algorithm requires subexponential time. A second example is the
Silver-Pohlig-Hellman algorithm [PHT7S|, that exploits smoothness of the group
order, for which currently no counterpart is believed to exist in the group action
dlog setting [CLM™18].

Therefore it is of great importance to understand which dlog algorithms can
be transferred into the group action setting at all.

Dlog Precomputation and Multi-Instances. The discrete log setting has the nice
feature that one can standardize groups that are believed to be especially ef-
ficient, and for which the dlog problem is considered hard. Examples are the
current elliptic curve standards, like NIST P-256. These standardized groups

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 3

provide an advantage over RSA based key exchange, for which users may gen-
erate insecure instances [HDWH12].

An analogous property holds for group action based schemes. For instance
CSIDH-512 provides an efficient systemwide instantiation of a group action that
all users are supposed to use securely. In fact, it seems that the group action
setting is even more restrictive, in the sense that it is harder to find suitable
instantiations that are both efficient and secure [CLM™18].

The drawback of systemwide instantiations is that they are attractive targets
for powerful adversaries. It appears plausible that a large scale adversary, such as
a national state agency, has the capabilities to perform a heavy precomputation.
For a cryptographic (group action) standard that is used by billions of devices,
such a precomputation may run over several years to produce some hint. The hint
in turn allows the large scale adversary in an online phase for significantly more
efficient (group action) dlog computations. In the dlog setting, precomputations
have been studied by [BLI2JCGKIS].

Moreover, large scale adversaries interested in mass surveillance of users not
only desire to compute a single (group action) dlog, but aim to amortize their
costs for recovering a plethora of cryptographic keys. In the dlog setting, it is
known that m dlogs can be computed in time \/%N% [KSOIFEIM14Yuni5],
instead of the naive mN2 by applying Pollard’s algorithm m times, thereby
amortizing the attack costs.

Our main contribution is to transfer both the precomputation and the multi-
instance attacks from the dlog to the group action dlog setting. To this end, let
us work out in the following the similarities (and limitations) of both settings in
a bit more detail.

Discrete Logarithms. Let us recap the discrete logarithm in a finite cyclic
group H generated by h € H, in which we denote the group operation as mul-
tiplication. We write H = (k) = {h,h? ..., ho*{M} with ord(h) = |H|. We
denote the integers modulo |H| by Z g := Z/|H|Z.
Let us consider the exponentiation map ¢y : Z — H,v — h". Notice that
A =ker(pp) = |H|Z is a 1-dimensional lattice in Z. Therefore, the following map
is a bijection
fniZ/N— H, v~ h".

Let y = h* = fr(v). The discrete logarithm (dlog) problem in H is to invert fj,
on y, namely to compute the unique v = fh_l(y) mod .

In group action terminology, for our discrete logarithm problem the group
G = Z/\ = Zyg| acts on the group H. The group structure of H itself is
exploited in many algorithms, such as Shor’s algorithm [Sho94] and Pollard’s
Rho algorithm [Pol7§].

Pollard Rho uses the technique of collision finding. Let y = h” and define

fry:GxG—H, (z,z)— h%.

4 Alexander May®| and Massimo Ostuzzi

Moreover, suppose (z,z) # (z/,2') is a collision in fj ,, namely fj, ,(z,2) =
fry(x',2"). We have
fh,y(xaz) _ hmyz —_ hachvz7

and likewise o o

faga',) = Wy =
We conclude that the collision (z, z), (2, 2) directly yields the discrete logarithm
as v = =% mod A, provided that 2z’ — z is invertible modulo A. Notice that our
reasoning relies on H’s group structure.

z/—z

Group Action Dlogs. Let us now introduce the group action discrete logarithm
(GA-dlog) problem, and discuss its similarities and differences to the ordinary
discrete logarithm problem in a group H.

Let X be a set, without any group structure. Let x € X be a distinguished
element, called the origin, that plays the role of a generator of X'. Namely, we let
some finite abelian group G act on X’ with x via the origin x, such that {g % z |
g € G} = X. Notice that our definition of X" already implies N = |G| > |X|, but

we will furthermore require that |X| = |g|.
Let us assume that g = {g1, ..., g, } is a finite set of generators for G, denoted
G ={(g) = {(g1,...,9n). Moreover, for any integer vector v = (vy,...,v,) € Z"

we write g¥ =gy ... gun.

Let us consider the exponentiation map ¢g : Z" — G,v — g". Notice that
A =ker(pg) is an n-dimensional lattice in Z™. The following map is a bijection

fez 2"]A =X, vi>gY¥xz. (1)

Let y = g¥ 2 = fg (V). Then the GA-dlog problem in X is to invert fg . on y,
namely to compute the unique v = f 1(y) mod A, that in turn represents the
group element g¥ € G.

Notice that the missing group structure of X prevents a straight-forward
adaptation of Pollard’s collision finding technique, as well as an adaptation of
Shor’s quantum dlog algorithm.

Our Contributions. Let y = g¥*z be a GA-dlog problem for a group G = (g)
of size N = |G|. We define the two functions

fez Z"/A—= X, ve—g¥xa,
fey 1 Z" /A= X, v g¥xy,

Let (vi,v2) be a collision of fg 5, fg,y, namely fg.(vi) = fg,(v2). Then we
have

fex(v1) =g"" xz, and

v v v () vat+v
feu(v2) =gV vy =g" x (g¥ x2) = (") xx,

where (x) holds by a group action property called compatibility. By injectivity
of the map in Equation , we obtain the GA-dlog as v = v; — vo mod A.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 5

Precomputation. Observe that the function fg ., as opposed to fg 4, solely de-
pends on the group action defined via (g, z), but not on a GA-dlog instance y.
Therefore, we call fg , instance-independent, while fg , is called instance-dependent.
The instance-independence of fg , allows us to precompute via (g,) alone a hint
for the group action. On obtaining a concrete GA-dlog instance y, one can then
use the hint to compute more efficiently a collision via fg .

More concretely, for fg ., we precompute s instance-independent random
walks, each of them of length ¢. This requires time st and space s, by stor-
ing only their endpoints, which then serve as our hint. Let us look at a typical
parameter choice s =t =N 3. Then precomputation requires time st = N 3 and
space only s = N3,

We show that our precomputation already touches roughly st = N 3 points
in X. Thus, we expect that any instance-dependent walk with fg, of length
t = N3 collides with one of these points, thereby yielding a solution to the
GA-dlog problem.

Multiple Instances. Let y1, ..., ym be m GA-dlog instances. Solving all instances
via the Galbraith-Hess-Smart algorithm requires time mN 2. We show that one
can solve all instances in time only /mN %7 thereby saving a /m-factor and
1

solving a single instance in amortized (over all m instances) cost (X)2.
Precompution and Multiple Instances. The idea of precomputation allows for
a combination with the multi-instance setting. Namely, one first precomputes
an instance independent structure. On obtaining m instances ¥, ..., Ym, one
then lets m instance-dependent random walks fg ;. .., fgy,, collide into the
precomputed points.

This allows for various tradeoffs. For instance, one may precompute in time
mN3 astructure of size m2N %, which then in turn allows to solve all m instances
in time only Ns.

Precomputation includes Multi-Instance. Technically, we apply and transfer the
precomputation dlog framework by Corrigan-Gibbs and Kogan [CGKIS]|. This
framework was already successfully applied to transfer precomputation and multi-
instances from dlogs to the Legendre PRF setting [MZ22]. In fact, our analysis
closely follows the reasoning for the precomputation setting in [CGKI8IMZ22].

However, for the multi instance setting without precomputation we slightly
deviate from [MZ22]. Namely, we observe that the multi-instance setting (with-
out precomputation) is a special case of the multi-instance precomputation set-
ting. While we will see that our observation is somewhat straight-forward, to the
best of our knowledge it has been overlooked in the cryptographic literature so
far. Despite its triviality, our observation is also a bit counter-intuitive, probably
explaining why it slipped through. Indeed, why should an algorithm without pre-
computation drop out from a precomputation scenario, which is usually expected
to perform a heavy initial precomputation phase?

In fact, the trick is to perform only a light precomputation, balancing the
cost between precomputation and online phase. This implies that we do not

6 Alexander May®| and Massimo Ostuzzi

have to separate between precomputation and online phase any longer, thereby
omitting precomputation altogether.

As a consequence of our observation, we obtain for free an appealingly sim-
ple multi-instance algorithm with a clean and elegant analysis for GA-dlogs.
The same is true for ordinary dlogs, for which we explicitly provide a multi-
instance algorithm from its precomputation algorithm. As opposed to other
multi-instance dlog algorithms, our approach does not require the use of distin-
guished point techniques [KSOIJFJM14], or heavy graph theory analysis [E.JM14].
It is easy to see that our technique transfers to others settings as well, as e.g. to
multi-instance Legendre PRF [MZ22] or to multi-user Even-Mansour [FJMT4].

Lower Bounds and Optimality. Our algorithms are fully generic. Namely, they
work for any group action and only require equality testing of elements. Any
improvement on generic GA-dlog algorithms would immediately yield an im-
provement on generic algorithms for dlogs. However, this would contradict the
optimality of current generic dlog algorithms, as shown by the lower bounds
of Yun [Yunl5] and Corrigan-Gibbs, Kogan [CGK18|. We achieve upper bounds
matching the lower bounds in [YunI5|CGK18], showing optimality of our generic
algorithms.

The Role of the Lattice A. Notice that in an ordinary discrete log setting over a
group H, we assume the group order |H| to be known. This helps during random
walks to update all discrete logs modulo |H|, thereby controlling their sizes. In
elliptic curve groups the knowledge of |H| is a reasonable assumption, since it
can be computed via Schoof’s algorithm [Sch95] in polynomial time.

Just as we assume knowledge of |H| in the dlog setting, we assume in the
group action dlog setting knowledge of a basis of A as input to our algorithms.
Analogously, this allows us during random walks to update all GA-dlogs mod-
ulo A. In the CSIDH group action setting, a basis of A can be computed in
quantum polynomial time [Hal05]. Classically, we may compute such a basis in
subexponential time via the algorithm of [HMS89]. For instance, for CSIDH-512 a
basis has been computed in [BKV19]. Strictly speaking, our algorithms also work
without knowing A, but operating with the output GA-dlog without any reduc-
tion modulo A might take exponential time, depending on the specific group
action. For example, CSIDH group action evaluation takes exponential time in
the size of the coordinates of v € Z™.

Provability. We prove correctness, complexity and success probability of our
algorithms without any heuristic assumptions, solely relying on a PRF realizing
a mapping X — Z" /A that we need for the analysis of our random walks. In our
experiments for CSIDH, we show that we can easily realize a random mapping
for CSIDH that works well in practice (although not being a PRF).

Notice that, by our mapping X — Z"/A, a single step in our random walks
does not coincide with moving to a random neighbor in the so-called isogeny
graph (as in other algorithms like [GST3IDG16]), but we rather randomly jump
in X. This has the advantage that we do not have to care about the isogeny

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 7

graph’s mixing properties. On the downside, a single step in our walks is compu-
tationally more expensive. In our approach, we prefer clarity of exposition and
provability over potential implementation practicality.

Implications for CSIDH-512. CSIDH-512 works with elliptic curves over [F), with
512-bit prime p, leading to N = |G| = |X| of 256 bit size. Therefore, CSIDH-512
offers 128 bit security against the Delfs-Galbraith algorithm. Using our precom-
putation algorithm with parameter choice s =t = N 3 would lead to 171 bit of
precomputations for a large scale adversary, resulting in a hint of size 85 bit.
Such a hint would allow to solve single GA-dlogs within only 85 bit. Since such a
large scale attacker seems unrealistic, our precomputation attack currently does
not directly affect the CSIDH-512 security level.

Organization of the paper. In Section [2| we define group action dlogs. Sec-
tion [3]is devoted to our GA-dlog algorithm for a single instance with precompu-
tation, which we generalize to multiple instances in Section [4] In Section [5| we
show that a multi-instance GA-dlog without precomputation follows as a spe-
cial case from the algorithm in Section [@ In Section [6] we provide as a further
application and, for completeness, the analogous multi-instance dlog algorithm.
In Section [7] we show that our precomputation GA-dlog algorithm works well
in practice for small-scale parameter sets of CSIDH.

Implementation. The code for our CSIDH experiments is available at https:
//github.com/maxostuzzi/precomputation_attack.

2 Preliminaries

Let us define a group action and the discrete logarithm problem for group actions.

Definition 1 (Group action). Let (G,-) be a multiplicative group, and let X
be a set. The map
*:GXX =X

is called a group action of G on X, denoted (G, X, *), if it satisfies the properties

1. Identity: 1 xx =z, for all x € X.
2. Compatibility: (g-h) xx =g* (hxz), for allgh € G and x € X.

For efficient computations, we require that we can compactly represent G and
X. To this end we assume that G is finite and generated by g = {g1,...,9n},
denoted as G = (g). Moreover, we let € X be a distinguished element called
origin, satisfying

X={grxx]gegG} and |X|=|G|:=N. (2)

In other words, the map G — X', g — g % x is a bijection. Group actions satisfy-
ing Equation are called regular in the literature.

https://github.com/maxostuzzi/precomputation_attack
https://github.com/maxostuzzi/precomputation_attack

8 Alexander May®| and Massimo Ostuzzi

Definition 2 (Representation). Letv = (vy,...,v,) € Z". We denote gV :=
g1t ... gim € G. For some group element g¥ € G, we call its exponent vector v
a representation.

Consider the exponentiation map ¢g: Z" — G,v — gV. It is a surjective map
and its kernel A := ker(¢g) is an n-dimensional lattice in Z™. Therefore, the map
Z"/A — G is an isomorphism, and every element in G has a representation that
is unique modulo A. To simplify the notation, we are going to write simply
v € 7"/ A for the equivalence class of the vector v € Z™.

Definition 3 (GA-dlog). Let (G, X,) be reqular group action with generators
g and origin x, namely

G=1(8)=(91,--,9n) =Z"/A, X ={gxx|geG} and |G]=]|X]

In the group action discrete logarithm (GA-dlog) problem, the goal is to find
on input (g,r,y) € G" x X? the unique representation v € Z"/A satisfying
y=g"v*xzx.

3 Solving GA-dlogs with Precomputation

High-Level Description. Let us first give a high-level description of our group
action dlog algorithm with precomputation, see also Figure

1(51) §2) [E,Ei) mgs—l) xgs) r

Fig. 1: Collision finding for GA-dlog instance y = g¥ * x with precomputation.

Our precomputation phase is instance-independent and solely relies on the
parameters (g, x) defining the group action. We start s instance-independent
random walks W) ... W) on X, and store only their endpoints in a list £.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 9

In the online phase, we receive a group action dlog instance y = g¥ x x. We
then start an instance-dependent random walk, and let it collide into one of the
walks W) .. W) The collision is identified via the stored endpoints. In the
following we show that a collision immediately yields the desired GA-dlog v.

Precomputation Phase. Let us describe a single random walk W) from
the precomputation phase. To this end, we choose a random W(()l) € Z™/ A that
defines a random starting point :c(R 'z e X.

Let h: X — Z"/A be a pseudorandom function (PRF), which allows us to
define our random walk as

o =g ha

(2

)*x§71 for j > 1. (3)

In Section [7, we show how to instantiate h for the group action in CSIDH, as
an example in a concrete setting. Moreover, let us define

Wi 1= h(e) +wl,

= h(@)+ (@) + Wl = = w +Zh forj>1. (4)

Notice that, by the definition of our random walk and by the Compatibility
property of Definition [I} we have

j—1
i (i) (i i i i i
xé’) = gh(zj—l)*(gh(xa‘—)ﬁ*. . .*(gh(mé))*(gwé>*m)))= (g“’é) | | gh(m(k>)>*x
k=0

Therefore, we conclude that x) has GA- dlog W , as defined in Eq. .
For each of the s random Walks W@ of length t7 we store only their endpoint

() together with its GA-dlog w(),
The resulting precomputation is detailed in PRECOMPUTE-G A (Algorithm.

Online Phase. Let y = g¥ xx be a GA-dlog instance. We start a random walk
W as defined in Equation from the starting point xg := y, see also Figure
As in the precomputation phase, we keep track of the GA-dlog. Namely, the
random walk point z; after j steps has GA-dlog

v+ 3 hla) = v+ ws. (5)
k=0

However, notice that v is the desired unknown GA-dlog of y, therefore we
only store the value w; = S7_1 h(zy).

Eventually, our walk W collides into one of the precomputed walks. Let T ()
be the colliding walk. Let us first show that once W collides into W both
walks subsequently visit the same points.

10 Alexander May®| and Massimo Ostuzzi

Algorithm 1: PRECOMPUTE-GA

Input: group action parameters (g, z) € G" x X, N := |G|, basis for A C Z",
PRF h: X — Z"/A

Output: hint list £ of endpoints/GA-dlogs (mi”,wﬁi)) €EXXZ"/A

1 Choose s,t € N s.t. 4st> < N // E.g. s,t:L%N%j
2 L+ 0

3 fori=1,...,s // Compute random walks w® o we),
4 do

5 Choose a random wi € Z"/A.

; ()
6 Let z{” := g"0 xz € X. // Randomized starting point.
7 for j=1,...,t // Each walk W® has length ¢.
8 do
) (1)))))

9 L Let xi-z) = gh(xﬂ'*l) *955'121 € X and wg-z) = h(a:;lll) + W;Z)l mod A.
10 L+ LU {(mgi),wgi))} // Store endpoint/GA-dlog in hint L.
11 Sort £ by first entry. // Allows for binary search in L.

12 return £

Colliding walks stay together. Let x; = x,(f) be the first collision between W and
W® ., Then, by Equation , we have

(6)

M = Ljot1

) (L)
Tjiy1 =8 ;) *T; = gh(wk)*xj = gh(xk)*x,(f)

Inductively, we obtain z;4; = m,(fli for all ¢ > 0, which means that the walks
stay together, see also Figure[I] As a consequence, the online phase walk W will
eventually reach W©)’s stored endpoint x%z), together with its GA-dlog WEZ). It
remains to show that the tuple (x,(f),wg)) reveals the solution of the GA-dlog
instance y.

Endpoints solve GA-dlog. Let z; = 2{9 be the colliding endpoints of W and
W, By Equation and Equation , their GA-dlogs are

t—1
v+ w,, respectively Wge) = W(()Z) + Z h(argf)).
k=0
Since v + w; = wge) mod A, we obtain the desired GA-dlog of y as
()

v=w, —w; mod A
The resulting online phase is detailed in ONLINE-GA-DLOG (Algorithm .

Remark 1. Notice that ONLINE-GA-DLOG fails if we do not collide within 2¢
steps into one of the precomputed walks WM ... W) In practice, one may

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 11

Algorithm 2: ONLINE-GA-DLOG
Input: (g,z,y = g" xx) € G" x X2 N := |G|, basis for A C Z",
precomputed hint £ € (X x Z"/A)°, t, PRF h: X — Z" /A
Output: GA-dlog v € Z" /A or FAIL

1 Let wo = 0" and xo := y.

2 forj=1,...,2t // 2t-step walk W
3 do

4 Let zj := g"®i-1) xz;_y € X and w; := h(x;j—1) + w;_1 mod A.

5 if (xj,wge)) € L for some £ € {1,...,s} // Endpoint in L7
6 then

7 L return v := WEZ) —w; mod A

8 return FAIL

then restart only the online walk with a fresh re-randomized starting point
xg := gV x y, for some random wy € Z"/A. This amplifies the success prob-
ability arbitrarily close to 1, see also our experiments for CSIDH in Section [7}
In subsequent sections, we will use re-randomized starting points to allow for
success amplification.

Theorem 1. Let (G, X, *) be a regular group action with N = |G| = |X|. For
any choice of s,t € N with 4st> < N, PRECOMPUTE-GA-DLOG (Algorithm
precomputes within st step a hint L of size O(s) Using L, ONLINE-GA-DLOG
(Algorithm@) solves a GA-dlog instance within O(t) steps with success probability

o(7)

Proof. PRECOMPUTE-GA computes s random walks of length ¢ in a total of
st steps. Since we store only their endpoints/GA-dlogs in our hint list £, our
memory requirement is O(s). ONLINE-GA-DLOG performs at most 2t = O(t)
steps to find a collision. If ONLINE-GA-DLOG collides within its first ¢ steps into
some precomputed walk W) then it reaches within its subsequent ¢ steps an
endpoint in £. By the previous discussion, the endpoint yields the solution to
the GA-dlog instance y = g¥ * x.

It remains to show that ONLINE-GA-DLOG succeeds to collide within ¢ steps
into a precomputed walk with probability Q(%) To this end, we show that
PRECOMPUTE-GA touches with probability at least % within its st steps at
least st/2 different elements in X.

Let X; be a random variable for the number of elements in X newly visited
by walk W;. Let X = >"7 | X; < st. Using the randomness property of our PRF
h, Bernoulli’s inequality, and 4st?> < N, we show that each walk W) newly
visits the maximum number of X; =t new elements from X with probability at

12 Alexander May|/®’| and Massimo Ostuzzi

least

3t
Hence, we have on expectation E[X;] > i newly visited X-elements for each

precomputed walk and, by linearity of expectation,

® 3
E[X] = E_l E[X;] > ZSt'
Using Markov’s inequality, we obtain
st st st—E[X] 1
P X< <P|st—X2>_|<—F7—<Z 2.
2 2 5 2

Hence, with probability at least % PRECOMPUTE-GA visits within its st steps
at least X > st/2 distinct elements in X.

Let C; be the event that ONLINE-GA-DLOG collides within the first ¢ steps
with one of the precomputed X-elements, which is sufficient for ONLINE-GA-
DLOG to solve the GA-dlog problem.

Using 1l —x <e ®and 1 —e™® > /2 for x < 1, we obtain

t
ple, x> >1-(1-°) >1 g S
— — I, _ 2 -
X252 oN) = ¢ T TN

Hence, ONLINE-GA-DLOG succeeds with probability at least
plon(xs "\ zplxs] . ple x5 20 (). o
(X zg)| =P X g PGIX 2525w =2F)

4 Solving Multiple GA-Dlogs with Precomputation

If an attacker makes the effort of a heavy precomputation for some group action
instance (G, X, %), then the goal is usually not to online tackle just a single
GA-dlog instance, but rather to solve a large quantity of GA-dlog instances
simultaneously.

Let y1 =gVt xx,...,ym = g¥™ xx be m GA-dlog instances. Our goal is to
solve all instances. In a nutshell, a slightly heavier precomputation pays off in
amortizing the cost over all m instances. As an example, we show in the following
that a precomputation in time m2N 3 that produces a hint of size m2N 3 allows
to solve all m instances in total time only N 3. Various other tradeoffs between
precomputation time, hint size and online time are possible.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 13

2 @ 20 gD @

Fig. 2: Collision finding for multiple GA-dlogs with precomputation.

High-Level Idea. The multiple instance setting with precomputation is a nat-
ural generalization of the single instance setting from Section [3| Again, we pre-
compute s random walks W ... W) in X, and store only their endpoints,
together with their GA-dlogs. During the online phase we then let all m online

walks W(l), . ,W(m) collide into one of the precomputed walks. However, in
order to obtain constant success probability for solving all m GA-dlog instances,
we have to adjust the lengths of all walks during precomputation and online
phase accordingly. Details of this adjustment follow.

Generalization to the Multi-Instance Setting. We provide our algorithms
PRECOMPUTE-MULT-GA, ONLINE-MULT-GA-DLOG and ALL-GA-DLOG in Al-
gorithms 3] to[5] We advise the reader to compare the first two to PRECOMPUTE-
GA and ONLINE-GA-DLOG (Algorithms [If and [2]) from Section

Whereas in the single instance setting we obtained constant success prob-
ability by the parameter choice st> = @(N), in the multi instance setting the
time/memory /instance tradeoff is st> = ©(m?N). This requires slightly larger
s, t.

However, whereas in the single instance setting we needed walk lengths ¢
and 2t for precomputation and online walks respectively, in the multi instance
setting shorter walks of length ¢/m and 2t/m respectively are sufficient.

Theorem 2. Let (G, X,*) be a regular group action with N = |G| = |X|, and
lety, =gvixzx, 1 <i<m be GA-dlog instances. For any choice of s,t € N with
4st> < m?N, PRECOMPUTE-MULT-GA (Algorithm@ precomputes within st/m
steps a hint L of size O(s). Using £, ONLINE-MULT-GA-DLOG (Algorithm

14 Alexander May|/®’| and Massimo Ostuzzi

Algorithm 3: PRECOMPUTE-MULT-GA

Input: group action parameters (g, z) € G" x X, N := |G|, number of
instances m, basis for A CZ", PRF h:G - Z"/A

Output: list £ of endpoints/GA-dlogs (m(i) w?) EXXZ/A

t/m’ " t/m

1 Choose s,t € N s.t. 4st> < m2N > E.g s=m2N3,t = %N%
2 L+ 0

3 fori=1,...,s // Compute random walks w® o we),
4 do

5 Choose a random wi € Z"/A.

; ()
6 Let z{” := g"0 xz € X. // Randomized starting point.
7 for j=1,...,t/m // Each walk W has length t/m.
8 do
i Q i i i i

9 L Let x§) = gh(xﬂ'*l) *mgzl € X and w§-)= h(a:;ll) + W;ll mod A.
0 | L+ LU {(mﬁ}%,wi}lﬂ)} // Store endpoint/GA-dlog in hint L.
11 Sort £ by first entry. // Allows for binary search in L.

12 return £

runs in a total of O(t) steps, and solves each GA-dlog y; instance with success
bability 2 | L
probability N

Proof. The proof will closely follow the one for Theorem|[]] PRECOMPUTE-MULT-
GA computes s walks with ¢/m steps each, with a total of st/m steps. Storing s
endpoints requires memory O(s). Moreover ONLINE-MULT-GA-DLOG performs
m walks W(l), e ,W(m) with 2¢/m steps, that is a total of O(t) steps. It remains
to show the success probability of ONLINE-MULT-GA-DLOG.

Let X; be a random variable counting the number of new elements in X
touched by the precomputed random walk W;, for ¢ € {1,...,s}. Let X =
Zle X;. As X; < %, we have that X < % Using Bernoulli’s inequality and
4st? < m2N , each walk touches the maximum number X; = t/m of new elements
with probability

N — st t/m st t/m st2 3
PIX; = t/m] > m —(1- = >1— > 2
[/m]—< N) < mN> = T AN T 1

Therefore, we have E[X;] > %% = f’% and E[X] > %' By Markov’s inequality,
we obtain
st st st st_E[X] 1
PIX<—|<P|—X>—| <™>— < -
2 m 2m ot 2

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 15

Algorithm 4: ONLINE-MULT-GA-DLOG

IHPUt. (g750>y1 = gV1 * Ty Ym! = gvm, *17) € g” X X”LI+17N = |g|7
basis B(A) of A C Z", hint £ € (X x Z"/A)*, m,t, PRE h: X — Z"/A
Output: GA-dlog vi,...,v, € Z"/A or FAIL

1 fori=1,...,m // Initially m’ =m, see also Algorithm .
2 do
3 Choose a random wq € Z"/A.
4 Let o :=g"° xy;. // Start walk W(l) for randomized instance y;.
5 for j=1,...,2t/m // 2t/m-step walk.
6 do
7 Let zj := g"®i-1) xz;_y € X and w; := h(x;—1) + w;_1 mod A.
8 if (xj,wi?m) € L for some ¢ € {1,...,s} // Endpoint in L7
9 then
10 L return v; ;= w'” — w; mod A
i = Wi J
11 | return FAIL

Let E® be the event that online walk W(i) collides with some precomputed

walk within the first ¢/m steps. In this case, W(i) reaches within the subsequent
t/m an endpoint in £, thereby solving the GA-dlog instance y; = gV * x.
Using 1 —x <e®and 1 — e ® > /2 for x < 1, we obtain

, t B ot 12
P{EWXz;t}zl(ls) e
m

2mN 4m2N’

Thus, the i-th instance y; can be solved with probability at least

20 A (x> st S st? 0 st? N
“2m) |~ 8m2N T\ 8m2N)’
Assume that we choose our parameters such that st> = 2(m?N). Then
Theorem [2 guarantees constant success probability of ONLINE-MULT-GA-DLOG

P

for each GA-dlog instance y; = g¥* x x using a single online walk W(i). In

other words, after running all online walks W(l), e ,W(m) once, we have already
solved a constant fraction of all GA-dlogs. We then iterate only with online walks
for unsolved instances, until we eventually solve all GA-dlogs.

The resulting algorithm ALL-GA-DLOGS is provided as Algorithm

Theorem 3. Let (G, X,x) be a regular group action with N = |G| = |X|, and
let y; = gvixx, 1 < i < m be GA-dlog instances. For any choice s,t € N
with 4st> < m2N and st?> = 2(m?N), PRECOMPUTE-MULT-GA (Algorithm@
precomputes within st/m steps a hint L of size O(s) Using L, ALL-GA-DLOGS
(Algorithm @ outputs all GA-dlogs v1,..., vy in an expected number of O(t)
steps.

16 Alexander May®| and Massimo Ostuzzi

Algorithm 5: ALL-GA-DLOGS
Input: (g,z,y1 = g1 %, ..., ym = g™ x2) € G" x X™ T N := |G|,
basis B(A) of A CZ", hint £ € (X xZ"/A)°, m,t, PREh: X - Z"/A
Output: all GA-dlog v1,...,vim € Z"/A
1 Let Y :={y1,...,Ym} // Set of unsolved instances.
2 while Y # () do

3 Y’ < ONLINE-MULT-GA-DroG(g, z,Y, N, B(A), L, m,t, h)
4 return Y. // Output solved instances.
5 Y:=Y\Y" // Remove solved instances.

Proof. Let T; be the total number of steps in all random walks in the j-th
application of ONLINE-MULT-GA-DLOG, and let T = 2j>1 T; denote the total
number of steps of ALL-GA-DLOGS.

By our parameter choice st? = 2(m?N) and Theorem in the first iteration
of the while-loop ONLINE-MULT-GA-DLOG solves each single GA-dlog instance
y; within T3 = O(t) steps with probability 2 (nfgj\,) = {2(1). Let X; be an
indicator random variable for the event that instance y; remains unsolved after
the first iteration of the while-loop of algorithm ALL-GA-DLOGS. Thus, there
exists a positive constant 0 < ¢ < 1, such that P[X; = 0] > c.

Let X = X7 + ...+ X, denote the amount of unsolved instances after the
first execution of the while-loop. Then, we have E[X]| < (1 — ¢)m. That is,
in the second iteration of the while-loop we expect at most a (1 — ¢)-fraction
of unsolved instances. Notice that during the second application of ONLINE-
MULT-GA-DLOG we start an expected E[|Y|] = E[X] < (1 — ¢)m random walks
of length (still) 2¢/m. Hence, the expected number of steps during the second
iteration is

E[l3] <E {ZX] = %E[X] - %(1 —m = 0((1 - c)).

In general, we obtain E[T}] = O((1 — ¢)~'t). Thus, the expected total number
of steps is

E[T]=) E[T}]=0(t-> (1-¢/|=0 (t> = O(t).

Jj=21 Jj=0

5 Solving Multiple GA-dlogs (without Precomputation)

Interestingly, our multi instance GA-dlog algorithms PRECOMPUTE-MULT-GA (Al-
gorithm [3)), ONLINE-MULT-GA-DLOG (Algorithm [4]) and ALL-GA-pLOG (Algo-
rithm [5) also provide a solution to the multi instance GA-dlog problem without
precomputation.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 17

Let y1 = gVt *x,...,¥m = g¥™ xx be m GA-dlog instances. Now apply
Theorem [2| with the parameter choice s = m and ¢t = %\/ mN. We obtain the
following corollary.

Corollary 1. Let (G, X,x) be a regular group action with N = |G| = |X|, and
lety; =gvixax, 1 <i<m be GA-dlog instances. Then PRECOMPUTE-MULT-
GA (Algorithm @ precomputes within t = O(VmN) steps a hint L of size
O(s) = O(m). Using £, ONLINE-MULT-G A-DLOG (Algorz'thm runs in a total
of O(t) = O(VmN) steps, and solves each GA-dlog instance y; with constant
success probability.

Notice that our parameter choice balances the run times of the precom-
putation phase and the online phase. Thus, we can rewrite Corollary [l more
compactly as follows.

Corollary 2. Let (G, X,*) be a regular group action with N = |G| = |X|, and
let y; = gvixx, 1 < i < m be GA-dlog instances. Then one can solve each
GA-dlog y; with constant success probability within a total of O(vVmN) steps.

Using the technique of Algorithm [5|and Theorem [3] one obtains the following
result.

Corollary 3. Let (G, X,*) be a reqular group action with N = |G| = |X|, and
lety; =gVixx, 1 <i<m be GA-dlog instances. Then one can solve all GA-dlog
y; within an expected total of O(vVmN) steps.

Multiple GA-dlog Algorithm. Our algorithm behind Corollary [2| computes
in a first phase (previously: precomputation) m instance-independent walks
WO, . W), In a second phase (previously: online), we let all instance-

dependent walks W(Z), 1 < i < m collide into the walks W) ... W (™) thereby
solving all GA-dlog instances y;.

Intuition of the Achieved y/m Speedup. The GHS algorithm can be con-
sidered a special case of our aforementioned multiple GA-dlog algorithm with
m = 1. The GHS algorithm lets some instance-independent walk W) of length
VN collide with an instance-dependent walk of length v/N. Since both walks
have length /N we have (v/N)? pairs of elements in X' that can potentially
collide, resulting in constant success probability.

Moreover, our multiple GA-dlog algorithm can be considered as running m
copies of GHS simultaneously. So why do we actually achieve run time O(vVmN)?
And why do we achieve a /m speedup over the naive O(mv/N)?

Indeed, running m independent copies of GHS gives us run time O(m\/N).
Our speedup comes from the simultaneous instantiation. After the first phase, we
have m walks W) ... W™ each of length t/m, visiting a total of (roughly)

m- % = t elements. For any instance y;, it suffices that its walk W(l) with length

roughly t/m collides into any of these m walks. This happens with constant

18 Alexander May®| and Massimo Ostuzzi

probability if the product of visited elements in X in all instance-independent
walks with the instance-dependent walk length roughly equals N. More precisely,

we require
(m. t) Lo,

Solving for run time ¢ yields t = @(vmN).

6 Classical Multiple Dlogs (without Precomputation)

The algorithm underlying Corollary [2] also applies in the classical multi instance
dlog setting [CGKIE], as well as for other multi instance settings [FITMT4IMZ22].

We provide the multi instance dlog algorithm for completeness in Algorithm 6]
since this setting is of great importance in cryptography. The algorithm is ap-
pealingly simple and allows for a clean analysis.

Algorithm 6: MULT-DLOG

Input: (¢,y1 = ¢%%, ..., Ym = ¢°™) € G™' N := |G|, PRF h: G — Zn
Output: all dlogs v1,...,vm € ZN

1L+ 0

2 fori=1,...,m // Compute random walks wm e

3 do

4 Choose a random wél) € Zn.

i w(® . . .

5 Let xé) =g"0 €G. // Randomized starting point.

6 for j=1,...,t/m // Each walk W) has length t/m.

7 do

i 2V i i i i

8 L Let zi.) = g"i=) $§31 € G and w§)= h(:r§~,)1) + w;;)l mod N.

9 | L« LU {(:Uizwwi;)m)} // Store endpoint/dlog in L.
10 Sort L by first entry. // Allows for binary search in L.
11 fori=1,...,m do
12 while instance y; is unsolved do
13 Let wo €r Zn and xo := ¢g“° - y;. // Walk Wm for instance y;.
14 for j=1,...,2t/m // 2t/m-step walk
15 do
16 Let zj := g"®i-Y) . 2;_; € G and w; := h(zj_1) + w;—1 mod N.

17 if (1:]-, wgfzn) € L for some £ € {1,...m} // Endpoint in L7
18 then
19 t return v, == w'? —w; d N

¢ =W, ;,, — W; MO

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 19

Let (G, -) = (g) be a finite abelian group with N = |G|. Let y; = ¢**, ..., ym =
g'™ be m dlog instances with v; € Zy. Then MULT-DLOG (Algorithm @ de-
scribes an algorithm for solving all dlog instances.

Theorem 4. Let (G,-) = (g) be an abelian group with order N = |G|, and let
yi = g¥", 1 < i < m be dlog instances. Then MULT-DLOG (Algom'thm@ outputs
within an expected O(vmN) steps all dlogs v; € Z".

Proof. The proof is a special case of the proofs of Theorem [2] and Theorem
with the parameter choice s = m and t = %\/ mN. Theorem [2| guarantees for
this parameter choice for every dlog instance y; constant success probability
¢ = £2(1). Therefore, we solve every instance y; after an expected 1 = O(1)

re-randomized runs of W(i). O

7 Experimental Results for CSIDH

In this section, we instantiate our precomputation algorithm from Section [3] for
the prominent group action based post-quantum scheme CSIDH.

Recall that, by Definition [I} for a group G and a set X a group action is
given by a mapping * : G x X — X. Moreover, a group action is called regular
it ¥ ={gxx|ge€g}and |X|=|G|. In order to instantiate our algorithms, we
first need to define (G, X, x) for CSIDH.

The Group G in CSIDH. Let E be an elliptic curve defined over [F,,, for some
prime number p > 5, and let O denote the IF,-rational endomorphism ring of
E. We say that F is supersingular if it satisfies |E(F,)| = p + 1. We choose the
prime p such that p+1=4-T["_, ¢;, where {; < ... < {, are small odd primes
and ¢; = 3. This property ensures that the ideal ;O splits as the product of
two prime ideals [; and [;, namely ¢;0 = [;[;. Moreover, let us denote by C1(O)
the class group of O, and by [a] € C1(O) the equivalence class of a in C1(O), see
[Cox22] for details.

We now define the (sub)group G = (g) C Cl(O), where g = {[l1],..., [lL]}.
According to a heuristic from [Sie35], for a given prime p of this form, the size
of the group G is approximately N ~ p'/2.

The Set X and the Action x in CSIDH. Up to isomorphism, every super-
singular elliptic curve over F), is defined by an equation

Y2=X34+AX?+ X,

where A € F,, is called Montgomery coefficient. As shown in [CLMT18]|, super-
singular elliptic curves can be uniquely represented (up to isomorphism) by their
Montgomery coefficient A. Let M C F,, be the set of all Montgomery coefficients
of supersingular curves over IF,. By our choice of the prime p, we have that the

20 Alexander May®| and Massimo Ostuzzi

curve with equation Y2 = X3 + X is supersingular with Montgomery coefficient
A =0€ M. We define x = 0 € M as the origin of X.

It is known that the class group C1(O) acts regularly on M, see [DG16JSil94].
Let us denote this action by * : Cl(O) x M — M, and let us define the set
X = {g*xz | g € G}. This implies regularity of the action x : G x X — X
restricted to G C Cl(O) and X C M CF,,.

We now have a well-defined regular group action (G, X, x) with origin z =0

and generators g = {[l1],...,[ln]}. As in Definition [2| we have representations
for the group G, namely for v = (v1,...,v,) € Z" we denote g¥ = []"_, [l;]".

Admissible Representations. Let v € Z" be a representation. The com-
plexity for evaluating the action of the group element gV scales proportionally
with ||v|]1, see [BDELS20/VEITI]. Therefore, only group elements with small 1-
norm representation can be efficiently computed via the action. For this reason,
CSIDH only uses representations within the set R = {—d, ..., d}"™, for some inte-
ger d € N, see [CLM™18|. We say that a representation v is admissible if v € R.
In practice, CSIDH parameters require the inequality (2d + 1)™ > N to ensure
that {—d,...,d}" properly covers a large portion of G. The smallest d satisfying

.. . . _ YVN—-1
this inequality is d = {T—‘ .

Algorithm 7: CSIDH h,

Input: Montgomery coefficient A € X CFp,a,b € Fp,p,d,n €N
Output: admissible CSIDH representation v € Z5,,

1 Let y :== aA + b mod p. // Re-randomize A.
2 Expand y in base (2d 4+ 1) as y = Zfzgl yi(2d +1)* with y; € Zoay1.

3 fori=0,...,n—1do

4 L Let v; := ¥; — Yi+n mod 2d + 1. // (2:1)-compression
5 return v = (v1,...,0n) € Ziy,,

Instantiating a Random Function for CSIDH. Let us identify {—d,...,d}
with Zaq41. For instantiating our algorithm from Section [3|in the CSIDH setting
we need a function i : X — Z3,, ,, where X C F, and pr ~ N =|X| < (2d+1)™.
It follows that p < (2d + 1)?", and thus our function is (2 : 1)-compressing,.

We provide our function hgp in Algorithm m for some a,b € F,, chosen uni-
formly at random. The purpose of a,b is to re-randomize elements from X in
F,. Clearly, our function is not a PRF in the cryptographic sense, but our ex-
periments indicate that its randomness properties are sufficient for practical
purposes.

Experiments. We implemented our GA-dlog algorithms PRECOMPUTE-GA
(Algorithm [1) and ONLINE-GA-DLOG (Algorithm [2)) from Section [3| together

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Multiple Group Action Dlogs with(out) Precomputation 21

with the function hq (Algorithm. Our code is available at https://github.
com/maxostuzzi/precomputation_attackl

In our implementation, we slightly deviate from the description of ONLINE-
GA-DLOG by restarting an online walk with a re-randomized starting point if it
fails to collide into an endpoint after 2¢ step, see also Remark [I]and Algorithm [6]
Our algorithms are instantiated with the parameter choice s,t = NV 3.

We applied our algorithm ONLINE-GA-DLOG on ten different primes p. For
each prime p, we ran ten GA-dlog instances y1, ..., y10, until all of them where
successfully solved. In Table[1} we list our CSIDH primes p with their respective
small odd primes ¢;, where p+ 1 = 4[], ¢;. For every prime p, we measured the
number of random walks of length 2¢ we had to perform for y1, ..., y10, and then
averaged the number over all 10 instances.

From Table [l we see that all averages are close to 1. In fact, out of our total
of 100 solved instances, 91 were solved by running a single 2¢-step random walk,
indicating a large success probability per random walk.

Our experiments also clearly show that our function h,; (Algorithm [7) pro-
vides sufficient randomness in practice.

Table 1: CSIDH instances and average number of random walk.

P ¢; small odd primes 7 of runs
1019 3,5,17 1.3
78539 3,5,7,11,17 1.0
1021019 3,5,7,11,13,17 1.2
19399379 3,5,7,11,13,17,19 1.0
1450388939 3,5,7,11,13,19, 31,41 1.0
53664390779 3,5,7,11,13,19,31, 37,41 1.0
8575569646643 3,7,11,13,17,19,31,37,41,47 1.1
154505101272131 3,7,11,13,17, 19, 31, 37, 41, 47, 53 1.2
26815806285055787 3,7,11,13,17, 19, 31, 37, 41, 47, 53, 59 11
138624083338000259 3,5,7,11,13,17,19,31,37,41,47,53, 61 1.1

Figure shows the logarithm of the number of steps (as a function of log N =
%log p) that ONLINE-GA-DLOG performed until it successfully recovered a GA-
dlog, including potential restarts of a walk. Again, for every p we averaged the
number of steps over all 10 solved instances.

Despite the re-randomization, which clearly increases the number of steps
in the online phase, the slope of the fitting line for our experiments is 0.33, as
expected.

Acknowledgements

The authors would like to thank Steven Galbraith for the useful and fruitful
comment on this work.

https://github.com/maxostuzzi/precomputation_attack
https://github.com/maxostuzzi/precomputation_attack

22 Alexander May|/®’| and Massimo Ostuzzi

10
||
B_
—
w
=
Q
2
w
H 6
=
P
3
S
| |
4 | |
24
: ‘ ‘ . . ‘
5 10 15 20 25 30

log N= ;—log P

Fig.3: Performance of ONLINE-GA-DLOG on CSIDH.
For every of our 10 choices for p, we average the number
of steps over 10 solved instances.

References

ACCT17.

BDFLS20.

BKV19.

BL12.

BS20.

BY91.

CD20.

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia,
Patrick Longa, et al. Supersingular isogeny key encapsulation. Submis-
sion to the NIST Post-Quantum Standardization project, 152:154—-155,
2017.

Daniel J Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith.
Faster computation of isogenies of large prime degree. Open Book Series,
4(1):39-55, 2020.

Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. Csi-fish:
efficient isogeny based signatures through class group computations. In
International Conference on the Theory and Application of Cryptology
and Information Security, pages 227—-247. Springer, 2019.

Daniel J Bernstein and Tanja Lange. Computing small discrete loga-
rithms faster. In Progress in Cryptology-INDOCRYPT 2012: 13th Inter-
national Conference on Cryptology in India, Kolkata, India, December
9-12, 2012. Proceedings 13, pages 317-338. Springer, 2012.

Xavier Bonnetain and André Schrottenloher. Quantum security analy-
sis of csidh. In Advances in Cryptology-EUROCRYPT 2020: 39th An-
nual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part II 30, pages 493-522. Springer, 2020.

Gilles Brassard and Moti Yung. One-way group actions. In Advances in
Cryptology-CRYPTO’90: Proceedings 10, pages 94—107. Springer, 1991.
Wouter Castryck and Thomas Decru. Csidh on the surface. In Inter-
national Conference on Post-Quantum Cryptography, pages 111-129.
Springer, 2020.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

CGK18.

CJS14.

CLJO06.

CLMt18.

Cou06.

Cox22.

CRSCS22.

CSCDJRH22.

DFJP14.

DFKS18.

DG16.

ER™60.

FIM14.

GHS02.

Multiple Group Action Dlogs with(out) Precomputation 23

Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm prob-
lem with preprocessing. In Advances in Cryptology-EUROCRYPT
2018: 37th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May
8, 2018 Proceedings, Part II 37, pages 415-447. Springer, 2018.
Andrew Childs, David Jao, and Vladimir Soukharev. Constructing el-
liptic curve isogenies in quantum subexponential time. Journal of Math-
ematical Cryptology, 8(1):1-29, 2014.

Henri Cohen and Hendrik W Lenstra Jr. Heuristics on class groups of
number fields. In Number Theory Noordwijkerhout 1983: Proceedings of
the Journées Arithmétiques held at Noordwijkerhout, The Netherlands
July 11-15, 1983, pages 33—62. Springer, 2006.

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. Csidh: an efficient post-quantum commutative group ac-
tion. In Advances in Cryptology—ASIACRYPT 2018: 2/th International
Conference on the Theory and Application of Cryptology and Informa-
tion Security, Brisbane, QLD, Australia, December 2—6, 2018, Proceed-
ings, Part III 24, pages 395—427. Springer, 2018.

Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint
Archive, 2006.

David A Cox. Primes of the Form x> + ny?: Fermat, Class Field The-
ory, and Complex Multiplication with Solutions, volume 387. American
Mathematical Soc., 2022.

Maria Corte-Real Santos, Craig Costello, and Jia Shi. Accelerating the
delfs—galbraith algorithm with fast subfield root detection. In Annual
International Cryptology Conference, pages 285-314. Springer, 2022.
Jorge Chévez-Saab, Jestus-Javier Chi-Dominguez, Samuel Jaques, and
Francisco Rodriguez-Henriquez. The sqale of csidh: sublinear vélu
quantum-resistant isogeny action with low exponents. Journal of Cryp-
tographic Engineering, 12(3):349-368, 2022.

Luca De Feo, David Jao, and Jérome Pluat. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. Journal of
Mathematical Cryptology, 8(3):209-247, 2014.

Luca De Feo, Jean Kieffer, and Benjamin Smith. Towards practical key
exchange from ordinary isogeny graphs. In Advances in Cryptology—
ASIACRYPT 2018: 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD,
Australia, December 2-6, 2018, Proceedings, Part III 2/, pages 365—
394. Springer, 2018.

Christina Delfs and Steven D Galbraith. Computing isogenies between
supersingular elliptic curves over F,,. Designs, Codes and Cryptography,
78:425-440, 2016.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs.
Publ. math. inst. hung. acad. sci, 5(1):17-60, 1960.

Pierre-Alain Fouque, Antoine Joux, and Chrysanthi Mavromati. Multi-
user collisions: Applications to discrete logarithm, even-mansour and
prince. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 420-438. Springer, 2014.
Steven D Galbraith, Florian Hess, and Nigel P Smart. Extending the ghs
weil descent attack. In Advances in Cryptology—FEUROCRYPT 2002:

24 Alexander May|/®’| and Massimo Ostuzzi

GS13.

Hal05.

HDWHI12.

HMS89.

JDF11.

Koh96.

KSO01.

Kup05.

MZ22.

Pei20.

PH7S.

Pol78.
Sch95.

Sho94.

Sie35.

Sil94.

International Conference on the Theory and Applications of Crypto-
graphic Techniques Amsterdam, The Netherlands, April 28—-May 2, 2002
Proceedings 21, pages 29—44. Springer, 2002.

Steven Galbraith and Anton Stolbunov. Improved algorithm for the
isogeny problem for ordinary elliptic curves. Applicable Algebra in En-
gineering, Communication and Computing, 24(2):107-131, 2013.

Sean Hallgren. Fast quantum algorithms for computing the unit group
and class group of a number field. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pages 468—474, 2005.
Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J Alex Halder-
man. Mining your ps and gs: Detection of widespread weak keys in
network devices. In 21st USENIX Security Symposium (USENIX Secu-
rity 12), pages 205-220, 2012.

James L Hafner and Kevin S McCurley. A rigorous subexponential
algorithm for computation of class groups. Journal of the American
mathematical society, 2(4):837-850, 1989.

David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In Post-Quantum Cryptog-
raphy: 4th International Workshop, PQCrypto 2011, Taipei, Taiwan,
November 29—December 2, 2011. Proceedings 4, pages 19-34. Springer,
2011.

David Russell Kohel. Endomorphism rings of elliptic curves over finite
fields. University of California, Berkeley, 1996.

Fabian Kuhn and René Struik. Random walks revisited: Extensions
of pollard’s rho algorithm for computing multiple discrete logarithms.
In International Workshop on Selected Areas in Cryptography, pages
212-229. Springer, 2001.

Greg Kuperberg. A subexponential-time quantum algorithm for the
dihedral hidden subgroup problem. SIAM Journal on Computing,
35(1):170-188, 2005.

Alexander May and Floyd Zweydinger. Legendre prf (multiple) key
attacks and the power of preprocessing. In 2022 IEEE 35th Computer
Security Foundations Symposium (CSF), pages 428-438. IEEE, 2022.
Chris Peikert. He gives c-sieves on the csidh. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, pages 463-492. Springer, 2020.

S Pohlig and M Hellman. An improved algorithm for computing loga-
rithms over gf (p) and its cryptographic significance (corresp.). IEEE
Transactions on Information Theory, 24(1):106-110, 1978.

John M Pollard. Monte carlo methods for index computation. Mathe-
matics of computation, 32(143):918-924, 1978.

René Schoof. Counting points on elliptic curves over finite fields. Journal
de théorie des nombres de Bordeauz, 7(1):219-254, 1995.

Peter W Shor. Algorithms for quantum computation: discrete loga-
rithms and factoring. In Proceedings 35th annual symposium on foun-
dations of computer science, pages 124—134. leee, 1994.

Carl Siegel. Uber die Classenzahl quadratischer Zahlkérper. Acta Arith-
metica, 1(1):83-86, 1935.

Joseph H Silverman. Advanced topics in the arithmetic of elliptic curves,
volume 151. Springer Science & Business Media, 1994.

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0009-0006-3843-9491

Sil09.

Stol0.

VEIT1.

VOW99.

Yunlb.

Multiple Group Action Dlogs with(out) Precomputation 25

Joseph H Silverman. The arithmetic of elliptic curves, volume 106.
Springer, 2009.

Anton Stolbunov. Constructing public-key cryptographic schemes based
on class group action on a set of isogenous elliptic curves. Adv. Math.
Commun., 4(2):215-235, 2010.

Jacques Vélu. Isogénies entre courbes elliptiques. Comptes-Rendus de
I’Académie des Sciences, 273:238-241, 1971.

Paul C Van Oorschot and Michael J Wiener. Parallel collision search
with cryptanalytic applications. Journal of cryptology, 12:1-28, 1999.
Aaram Yun. Generic hardness of the multiple discrete logarithm prob-
lem. In Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 817-836. Springer, 2015.

	Multiple Group Action Dlogs with(out) Precomputation

