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Abstract. The MPC-in-the-Head (MPCitH) paradigm is widely used
for building post-quantum signature schemes, as it provides a versatile
way to design proofs of knowledge based on hard problems. Over the
years, the MPCitH landscape has changed significantly, with the most
recent improvements coming from VOLE-in-the-Head (VOLEitH) and
Threshold-Computation-in-the-Head (TCitH).
While a straightforward application of these frameworks already improve
the existing MPCitH-based signatures, we show in this work that we can
adapt the arithmetic constraints representing the underlying security as-
sumptions (here called the modeling) to achieve smaller sizes using these
new techniques. More precisely, we explore existing modelings for the
rank syndrome decoding (RSD) and MinRank problems and we intro-
duce a new modeling, named dual support decomposition, which achieves
better sizes with the VOLEitH and TCitH frameworks by minimizing
the size of the witnesses. While this modeling is naturally more efficient
than the other ones for a large set of parameters, we show that it is
possible to go even further and explore new areas of parameters. With
these new modeling and parameters, we obtain low-size witnesses which
drastically reduces the size of the “arithmetic part” of the signature.
We apply the TCitH and VOLEitH frameworks to our new modeling
for both RSD and MinRank and compare our results to the NIST can-
didates RYDE, MiRitH, and MIRA (MPCitH-based schemes from RSD
and MinRank). We also note that recent techniques optimizing the sizes
of GGM trees are applicable to our schemes and further reduce the sig-
nature sizes by a few hundred bytes. We obtain signature sizes below
3.5 kB for 128 bits of security with N = 256 parties (a.k.a. leaves in the
GGM trees) and going as low as ≈ 2.8 kB with N = 2048, for both RSD
and MinRank. This represents an improvement of more than 2 kB com-
pared to the original submissions to the 2023 NIST call for additional
signatures.

1 Introduction

The MPC-in-the-Head (MPCitH) paradigm is a popular framework to build
post-quantum signatures. After sharing the secret key, the signer emulates “in



his head” an MPC protocol and commits each party’s view independently. He
then reveals the views of a pseudo-random subset of parties, where this subset is
given by the hash digest of the commitments (in the setting of the Fiat-Shamir
heuristic). By the privacy of the MPC protocol, nothing is revealed about the
secret key, which implies the zero-knowledge property. On the other hand, a
malicious signer needs to cheat for at least one party, which shall be discovered
by the verifier with high probability, hence ensuring the unforgeability property.

In the new NIST call for additional post-quantum signatures [33], many sub-
missions rely on the MPCitH paradigm applied on a large range of security
assumptions. Three MPCitH candidates fall in the rank-based cryptography cat-
egory:

– RYDE [4], for which the security relies on the hardness of solving the rank
syndrome decoding problem;

– MIRA [5] and MiRitH [1], for which the security relies on the hardness of
solving the MinRank problem (MIRA and MiRitH rely on the same security
assumption, but use different modelings and MPC protocols).

Recently, new techniques of MPC-in-the-Head have been proposed:

– the VOLE-in-the-Head (VOLEitH) framework [12] released in Summer 2023;4
– the TC-in-the-Head (TCitH) framework [21] released in Autumn 2023.5

As shown in [21] a simple application of these frameworks leads to shorter and
faster signature schemes compared to those submitted to the NIST call (for
similar underlying security assumption).

For MPCitH-based schemes (including those based on VOLEitH and TCitH),
the signatures are composed of two parts, a “symmetric part” made of seeds and
hash digests and an “arithmetic part” composed of the open party views and
broadcast shares of the MPC protocol. While for a given security level the sym-
metric part is of rather fixed size (for the considered MPCitH framework), the
arithmetic part depends on the modeling of the used security assumption and
the associated MPC protocol. In the traditional broadcast-based MPCitH frame-
work (i.e. the MPCitH framework widely used before VOLEitH and TCitH), to
minimize the signature size, the designers had minimize the sum of the sizes of
the MPC input and of the broadcasted values while considering only linear mul-
tiparty computation. With the VOLEitH and TCitH frameworks, the game rules
have changed. These frameworks enable quadratic (or higher degree) multiparty
computation, which implies that minimizing the signature size is achieved by
minimizing the MPC protocol input (i.e., the witness of the modeling).

In rank-based cryptography, several modelings for the rank syndrome de-
coding problem and the MinRank problem have been proposed. The first one
4 While VOLEitH has not been introduced as an MPCitH technique, [21] showed that

it can be considered as such.
5 The original version of the TCitH framework was released in Autumn 2022 [22] (and

published at Asiacrypt 2023), we refer here to the improved version of the TCitH
framework [21].

2



is derived from [37] and consists in working with a permuted version and an
additively-masked version of the secret. The best scheme relying on it is pro-
posed in [15]. The second modeling is based on q-polynomials and is first used
in such a context in [19]. The last modeling consists in writing the low-rank
object as the product of two small matrices and is first used in such a context
in [2] and [19]. We sum up the different techniques to handle the rank metric in
Table 1.

Problem Permuted
Secret

q-Polynomial
Evaluation

(q-pol)

Matrix Rank
Decomposition

(MRD)

Kipnis
Shamir
(KS)

Dual Support
Decomposition

(DSD)

RSD BG23 [15] RYDE [4,19] Fen24 [19] - This work

MinRank - MIRA [5,19] Fen24 [19] MiRitH [1] This work

Table 1: Techniques used in MPCitH-based signatures for RSD and MinRank.

In this work, we explore modelings for the rank syndrome decoding problem
and the MinRank problems to identify the best option with the new VOLEitH
and TCitH techniques. We show that the shortest signatures with RSD and
MinRank are obtained thanks to the dual support decomposition modeling, which
consists in finding a basis (e1, . . . , er) and coefficients c1,1, . . . , cn,r such that

y = Hx and ∀i, xi =

r∑
j=1

ci,r · ej .

While this modeling is quite natural for the rank syndrome decoding problem, it
requires to work in a dual version of the MinRank problem: we need to consider
the syndrome decoding problem for matrix codes, while the MinRank problem
is the message decoding problem for such codes. Working in the dual has the
advantage to remove the encoded message from the witness of the code-based
problem, leading to a shorter witness. With the dual support decomposition
modeling, the witness size (and thus the signature size) is independent of the
code dimension. This enables us to optimize the parameters by taking codes of
larger dimensions.

We then apply the TCitH and VOLEitH frameworks on the optimal model-
ing, yielding new signature schemes with smaller sizes as summarized in Table 2.
We also put the signature sizes of the NIST candidates based on the same security
assumptions (namely RYDE, MIRA and MiRitH) in the column “MPCitH” and
their signature sizes when performing a straightforward application of VOLEitH
and TCitH. We observe that the difference in signature sizes between VOLEitH
and TCitH tends to disappear while increasing the parameter N , i.e., the num-
ber of leaves in GGM seed trees used for the commitment (a.k.a. the number
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of parties in standard MPCitH schemes). Since these two frameworks are faster
than previous MPCitH schemes, it becomes natural to consider larger values of
N . We obtain signature sizes down to 3.7 kB for TCitH with N = 256 leaves, and
down to 2.9 kB for VOLEitH and TCitH with N = 2048 leaves (more details are
given in Tables 13 and 16). The ranges of sizes reported in Table 2 correspond
to a parameter N ranging between 256 and 2048. Let us note that new generic
optimizations for MPCitH-based signatures have been proposed in [11] very re-
cently. We applied these optimisations to our new signature schemes, enabling
us to save an additional few hundred bytes. The obtained sizes are reported in
Table 2 with the label “optimized”.

Security
Assumption Scheme MPCitH VOLEitH TCitH

Rank SD
RYDE (q-pol) 5 956 B 4 133–4 720 B 4 274–5 281 B

Our scheme (DSD), optimized - 2 851–3 450 B 2 937–3 708 B

MinRank

MIRA (q-pol) 5 640 B 4 170–4 770 B 4 314–5 340 B

MiRitH-Ia (KS) 5 665 B 3 762–4 226 B 3 873–4 694 B

MiRitH-Ib (KS) 6 298 B 4 110–4 690 B 4 250–5 245 B

Our scheme (DSD), optimized - 2 813–3 396 B 2 896–3 640 B

Table 2: Comparison of our schemes based on dual support decomposition (DSD)
with the NIST candidates based on the same security assumptions. The sizes in
the column “MPCitH” are given when using seed trees with 256 leaves, while the
size range in columns “VOLEitH” and “TCitH” are given when using seed trees
with between 256 and 2048 leaves.

Paper organization. The paper is organized as follows: In Section 2, we intro-
duce the necessary background on the rank metric and sharing schemes. We
present the existing attacks against RSD and MinRank in Section 3. We explore
the possible modelings for rank-based cryptography in Section 4. We recall the
TCitH and VOLEitH frameworks in Section 5 and we apply these frameworks
to the dual support decomposition modeling to obtain new signature schemes in
Section 6.

2 Preliminaries

2.1 Notations

We denote by Fq the finite field of size q. The set of vectors with n coordinates
in Fq is referred as Fn

q , the set of matrices with m rows and n columns in
Fq is referred as Fm×n

q . We use lowercase bold letters to represent vectors and
uppercase bold letters for matrices (E ∈ Fm×n

q , x ∈ Fk
q , x ∈ Fq). The subset of
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integers from 1 to n is represented with [1, n]. If S is a set, we write x
$←− S the

uniform sampling of a random element x in S. We note the Fq-linear subspace of
Fqm generated by (x1, . . . , xn) ∈ Fn

qm as ⟨x1, . . . , xn⟩. Let us define the gaussian

coefficient
[
m
r

]
q

=
∏r−1

i=0
qm−qi

qr−qi ≈ qr(m−r), it corresponds to the number of

different dimension-r Fq-linear subspaces of Fqm .

2.2 Secret Sharing

A threshold secret sharing scheme is a method to share a value v into a sharing
JvK := (JvK1, . . . , JvKN ) such that v can be reconstructed from any ℓ+1 shares
while no information is revealed on the secret from the knowledge of ℓ shares.
We note by JxKi the ith share of JxK (i.e. the share of the ith party). We can also
note JxKI where I is a set of indices, to denote all the shares of the parties in
the set I.

Let us define Shamir’s secret sharing scheme [36], since the frameworks we
will consider rely on it. Let ℓ and N two integers such that 1 ≤ ℓ ≤ N . Let
e, ω1, . . . , ωN be N + 1 distinct elements of F ∪ {∞}. To share a value v ∈ F
using Shamir’s secret sharing scheme, one should

1. sample ℓ randoms values r1, . . . , rℓ of F;
2. compute the polynomial P by interpolation such that

P (e) = v and ∀i ∈ [1, ℓ], P (ωi) = ri;

3. build the N shares JvK1, . . . , JvKN as

∀i ∈ [1, N ], JvKi := P (ωi).

To recover the secret value from ℓ+ 1 shares, we re-compute the polynomial P
by interpolation and we just deduce P (e). Let us stress that P (∞) refers to the
leading coefficient of the polynomial P . The most classical choice is to set e to
zero but we may consider alternative choices depending on the context (and in
particular e =∞).

We define the degree of a Shamir’s secret sharing as the degree of the un-
derlying polynomial. A sharing generated using the above process is of degree ℓ.
The sum of a d1-degree sharing and a d2-degree sharing is of degree max(d1, d2),
while the multiplication is of degree d1 + d2.

2.3 Rank Metric and Hard Problems for Cryptography

We will first recall some background on the Rank Metric, and we will then define
hard problems we will use (RSD and MinRank).

Definition 1 (Rank Metric over Fn
qm). Let x = (x1, . . . , xn) ∈ Fn

qm , and
B = (b1, . . . , bm) ∈ Fm

qm an Fq-basis of Fqm . Each coordinate xj can be associated
with a vector (xj,1, . . . , xj,m) ∈ Fm

q such that xj =
∑m

i=1 xj,ibi. Let us define the
following notations:
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– Mx = (xi,j)(i,j)∈[1,m]×[1,n] is the matrix associated to the vector x;
– the rank weight is defined as: wR

(
x
)
= rank(Mx);

– the distance between two vectors x and y in Fn
qm is: d(x, y) = wR

(
x− y

)
;

– the support of a vector Supp(x) is the Fq-linear subspace of Fqm generated
by its coordinates: Supp(x) = ⟨x1, . . . , xn⟩.

Definition 2. A linear code C over Fqm of dimension k and length n is a linear
subspace of Fn

qm of dimension k. The elements of C are called codewords. The
code C can be represented in two ways:

– by a generator matrix G, where C = {mG,m ∈ Fk
qm}, or

– by a parity-check matrix H ∈ F(n−k)×n
qm where C = {x ∈ Fn

qm : Hx⊤ = 0⊤}

We now continue by formally recalling the definition of the rank syndrome
decoding (RSD) problem.

Definition 3 (RSD problem). Let q, m, n, k and r be positive integers. Let
H

$←− F(n−k)×n
qm and x

$←− Fn
qm such that wR

(
x
)
= r. Let y⊤ = Hx⊤. Given

(H,y), the computational RSD(q,m, n, k, r) problem asks to find a vector x̃ ∈
Fn
qm such that Hx̃⊤ = y⊤ and wR

(
x̃
)
= r.

We now introduce a variant of the above problem, the RSDs problem and
later argue that it is as hard as the standard RSD problem.

Definition 4 (RSDs problem). Let q, m, n, k and r be positive integers. Let
H

$←− F(n−k)×n
qm and x = (xi)

$←− Fn
qm such that wR

(
x
)
= r, x1 = 1 ∈ Fqm

and ⟨x1, . . . , xr⟩Fq = Supp(x). Let y⊤ = Hx⊤. Given (H,y), the computational
RSDs(q,m, n, k, r) problem asks to find a vector x̃ ∈ Fn

qm such that Hx̃⊤ = y⊤

and wR

(
x̃
)
= r.

The last problem we will rely on is the well-known MinRank problem:

Definition 5 (MinRank problem). Let q, m, n, k and r be positive integers.
Let M1, . . . ,Mk,E ∈ Fm×n

q and x := (x1, . . . , xk) ∈ Fk
q be uniformly sampled

such that

rank(E) ≤ r with M := E −
k∑

i=1

xiMi.

Given M ,M1 . . . ,Mk, the computational MinRank(q,m, n, k, r) problem asks to
retrieve the vector x.

The last notion to recall is the Gilbert-Varshamov bound for the rank metric
and for MinRank. This bound in rank metric has been introduced in [30]. It can
be seen as the probable minimum weight of a random code.
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Definition 6 (Rank Gilbert-Varshamov Bound). Let Sr be the number
of elements of the sphere in Fn

qm of radius r centered in 0, i.e, the number of
elements in Fn

qm of weight exactly r. We have S0 = 1, and for r ≥ 1,

Sr =

r−1∏
j=0

(qn − qj)(qm − qj)

qr − qj
.

Let Br :=
∑r

i=0 Sr be the number of elements of the ball in Fn
qm of radius r

centered in 0. The Rank Gilbert-Varshamov (RGV) bound for an [n, k] linear
code over Fqm is the smallest integer r such that

qm(n−k) ≤ Br

Using the approximation Br ≈ q(m+n−r)r, one can say the RGV bound is the
smallest r such that m(n − k) ≤ (m − r)r + nr. We call this value dRGV. The
same bound exists for matrix codes (i.e, for MinRank) as they are simply Fq-
linear codes. Courtois described this bound in [16, Section 24.2], and it can also
be derived from the one above easily (consider a [m × n, k] linear code over Fq

instead of [n, k] linear over Fqm). This bound is also mentioned in attacks on
MinRank ( [9], [8] for instance). Concretely, this states that, for an instance of
MinRank with parameters (q,m, n, k, r), we do not expect to obtain more than
one solution if r is chosen such that k + 1 ≤ (m− r)(n− r).

Complexity of attacks for parameters on the GV bound. For RSD, the parameter
r is taken as dRGV − 1, i.e, the highest r such that (m − r)r + nr < m(n − k).
With this parameter, if H and y were to be randomly sampled, one would
expect to have a solution with probability q(m+n−r)r−m(n−k). Since y is set so
there is a solution and since we are below RGV, it is not expected to have
an other solution. For MinRank, we take parameters on the RGV bound, with
k+1 = (m− r)(n− r). For k+1 matrices randomly sampled (M ,M1, . . . ,Mk),
the probability to have a solution to the MinRank instance is q(m+n−r)r−(mn−k).
Since M is set so that there is a solution and since we are on GV, it is not
expected to have an other solution for the instance. Let us now explain why in
addition to having only one solution, it is important to take parameters according
to these bounds. Since the combinatorial attacks from [34] for RSD and [26]
for MinRank, very few improvements have been made in the complexity. For
MinRank, the kernel attack is still the best combinatorial attack, and for RSD,
the exponential part of the complexities is still quadratic and has known almost
no improvement over 20 years (with the exception of [6], which slightly improved
the complexity). Regarding the algebraic attacks, introduced in [7] and improved
in [10] and [8], they managed to greatly reduce the complexity for the RQC and
LRPC schemes. However, this came from the fact that these parameters were
not on RGV. The attacked parameters were in O

(√
n− k

)
, which made them

easier to attack, whereas we will consider parameters around the RGV bound,
in O (n). In practice, for parameters taken at the RGV bound, or just below,
the algebraic attacks have roughly the same complexity as the combinatorial
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ones ( [8]). Overall, this means that, for parameters taken on the Rank Gilbert-
Varshamov bound, the attacks have known no significant amelioration since over
20 years.

3 Security and Parameters for RSDs and MinRank

We give here the well known reduction from RSD to RSDs, and then the attacks
considered against RSD and MinRank, which we will use in order to establish
parameters for the signature schemes. We will also use these attacks in order to
establish parameters to compare the different modelings in Section 4.

3.1 Security of the Rank Syndrome Decoding Problem

We deal here with the RSD problem, first by explaining the relation between
RSD and RSDs, and then the attacks on RSD.

Security Reduction The RSDs problem was most notably used in the RQC
scheme in order to optimize it [31]. In the following, we show that the RSDs
problem is as hard as the standard RSD problem. More precisely, we show that
any RSD instance can be solved by an RSDs solver. This is the same reduction
as in [34], [6], [7], and others, used to specialize some variables. We exhibit below
the reduction which has not formally been described in previous works (as part
of the folklore of rank-based cryptography).

Proposition 1. Let q, m, n, k, r be positive integers such that n > k. Let As
be an algorithm which solves a (q,m, n, k+1, r)-instance of the RSDs problem in
time t with success probability εs. Then there exists an algorithm A which solves
a (q,m, n, k, r)-instance of the RSD problem in time t with probability ε, where

ε ≥

(
r−1∏
i=0

qn − qn−r+i

qn − qi

)
· εs

under the assumption that the code C associated to the parity-check matrix H of
the RSD instance contains no words of weight r.

Proof. See Appendix A.

Remark 1. In practice, the loss factor in Proposition 1 tends to 1 when q grows.
For our considered parameters, with q = 2, its value is around 0.3. Moreover,
one can get the average number of codewords of C of weight r to justify our
assumption. Let Sr =

∏r−1
i=0

(qn−qi)(qm−qi)
qr−qi be the number of words in Fn

qm of
weight exactly r. Then, on average, there are Sr

qm(n−k) words of rank r in the code.
When below RGV, this makes the probability that a random code C contains no
codeword of weight r close to 1.

Remark 2. The best known attacks on RSD use the reduction to RSDs in order
to solve the instance ( [34], [6], [10], [8]), meaning that in practice we consider
the best attacks on RSD to evaluate the security of RSDs.
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3.2 Parameters choice for RSDs

Because of the space constraints, we recall the best attacks on RSD in Appendix
B. According to these attacks, we give in Table 3 the parameters which we will
use for our RSDs instances.

NIST Security level q m n k r

I 2 53 53 45 4

III 2 79 75 67 4

V 2 97 95 87 4

Table 3: Choice of parameters for RSDs

3.3 Parameters choice for MinRank

Because of the space constraints, we recall the attacks on MinRank in Appendix
C. According to these attacks, we give in Table 4 the parameters which we will
use for our MinRank instances.

NIST Security level q m n k r

I 2 43 43 1520 4

III 2 60 60 3135 4

V 2 75 75 5040 4

Table 4: Choice of parameters for MinRank

4 MPCitH Modeling for RSDs and MinRank

A zero-knowledge proof constructed using the MPCitH paradigm is composed
of two parts, a “symmetric part” made of GGM trees (or Merkle trees) and an
“arithmetic part” composed of the open party views and broadcast shares of the
MPC protocol. While for a given security level the symmetric part is of rather
fixed size (e.g., around 2kB for GGM trees and 4kB for Merkle trees at a 128-bit
security level), the arithmetic part depends on the modeling (i.e., the way the
problem instance is verified) and the associated MPC protocol. For the recent
TCitH and VOLEitH techniques, the arithmetic part is actually mainly impacted
by the size of the witness, which favors modelings with low-size witnesses.

In this section, we study different modelings for RSD and MinRank with re-
spect to the witness size criterion. For the RSD problem, we recall the permuted
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secret, q-polynomial and Kipnis-Shamir modelings. We propose an other mod-
eling, named dual support decomposition, which can be seen as an improvement
of the rank decomposition from [19]. We also slightly improve all the model-
ings by relying on the RSDs variant. For the MinRank problem, we recall the
q-polynomial and Kipnis-Shamir modelings and propose an adaptation of the
dual support decomposition modeling for MinRank.

4.1 Modelings for the RSDs Problem

Permuted Secret. We start by recalling the permuted secret technique, which
was used for RSD in [15]. The idea of this technique consists in revealing a
“permuted” and a “masked” versions of the secret: let us denote σ an isometry
in the rank metric (such a isometry consists of multiplying the secret matrix by
a invertible matrices on both sides) and u a vector of the left kernel of H, one
reveals v := σ(x) and x̃ := x + u and the goal is to find such values σ and u.
More precisely, the rank syndrome decoding problem consists, from two vectors
v, x̃ ∈ Fn

qm satisfying wR(v) = r and Hx̃⊤ = y⊤, in finding an isometry σ and
a vector u ∈ Fn

qm such that {
Hu⊤ = 0⊤,

σ(x̃) = v + σ(u).

Indeed, if we get both σ and u, we can easily restore the initial secret as x :=
x̃−u: we have Hx⊤ = y⊤ − 0⊤ and wR(x) = wR(σ(x)) = wR(σ(x̃)− σ(u)) =
wR(v) = r.

Unfortunately, this modeling is not compatible with the recent MPCitH tech-
niques as TCitH or VOLEitH. Such techniques requires at least additive sharings
over a commutative group (or for the more recent techniques, Shamir’s secret
sharing over a ring). However, the isometry σ lives in a non-commutative group,
so it requires to rely on a special form of MPCitH named the shared-permutation
framework [15,20].

q-Polynomial. The q-polynomial technique proposed in [19] to check the rank
metric constitutes an improvement compared to a number of previous methods.
Let us first recall the definition of a q-polynomial.

Definition 7 (q-polynomial). A q-polynomial of q-degree r is a polynomial in
Fqm [X] of the form:

P (X) = Xqr +

r−1∑
i=0

pi ·Xqi with pi ∈ Fqm .

The roots of a q-polynomial of q-degree r form a linear subspace of Fqm of
dimension at most r. Moreover, for each linear subspace of Fqm of dimension at
most r, there exists a unique monic q-polynomial of q-degree r annihilating all
the elements of the subspace. Let x = (x1, . . . , xn) ∈ Fn

qm of rank wR

(
x
)
= r
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and let Px(X) the monic q-polynomial annihilating Supp(x). In this modeling,
the rank syndrome decoding problem consists in finding a vector x ∈ Fn

qm and a
q-polynomial Px ∈ Fqm [X] of q-degree r such that

Hx⊤ = y⊤ and ∀i , Px(xi) = 0.

Concretely, the MPC protocol based on the q-polynomial technique takes as
input some shares of x and some shares of Px(X). The protocol then checks that
Px(xi) = 0 for all i ∈ [1, n]. Using the standard representation H =

(
In−k||H ′),

one can send only the right part of x of size k, denoted as xB . Furthermore, it
is possible to send one less coefficient of the polynomial Px, since 1 ∈ Supp(x)
(see [4] for the optimization) and as a result the size of witness is (in bits):

(k ·m︸ ︷︷ ︸
xB

+(r − 1) ·m︸ ︷︷ ︸
Px

) · log2(q)

We give in Table 5 the RSDs parameters that minimize the witness size of this
modeling.

q m n k r (km+ (r − 1)m) · log2(q)

2 31 33 15 10 96 B

Table 5: Optimized parameters for RSDs q-polynomials modeling.

This modeling based on q-polynomials currently leads to the shortest com-
munications for RSD when considering linear multiparty computation, but it is
not the best one when considering non-linear multiparty computation as in the
new MPCitH frameworks.

Kipnis-Shamir. Historically, the Kipnis-Shamir modeling was introduced in the
cryptanalysis of the MinRank problem [29]. We can use the same idea to have a
modeling of RSD. It consists in giving the right-kernel of the matrix of x. We
denote this matrix in Fm×n

q by Mx. If wR

(
x
)
= r, then the right-kernel of Mx

is of dimension n− r and can be represented by an r × (n− r) matrix.
In the RSDs case, the witness is composed of x and of the matrix A ∈

Fr×(n−r)
q . The MPC protocol takes in input K =

(
In−r

A

)
, and then checks that

MxK = 0. It is possible to send only xB , as previously with q-polynomials, and
since 1 is in the support, the size of the witness is:

(k ·m︸ ︷︷ ︸
xB

+(r − 1) · (n− r)︸ ︷︷ ︸
A

) · log2(q) .

Note that transmitting A costs (r − 1) · (n− r) only since we know that 1 is in
x. This approach is slightly better than the q-polynomial technique in terms of
witness size. We give in Table 6 the RSDs parameters that minimize the witness
size of this modeling.
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q m n k r ((r − 1)(n− r) + km) · log2(q)

2 31 33 15 10 86 B

Table 6: Optimized parameters for RSDs Matrix Rank Decomposition modeling

Dual Support Decomposition. Finally, we introduce an other modeling for RSDs,
using only the support and the coordinates. This can be seen as an improvement
of the rank decomposition from [19]. To that end, one has as inputs:

– The support of x, Supp(x) = ⟨1, x2, . . . , xr⟩;
– The coordinates of x in this basis, i.e, C ∈ Fr×(n−r)

q such that

(1, x2, . . . , xr) ·
(
Ir C

)
= (1, x2, . . . , xn) = x

More precisely, in this modeling, the RSDs problem consists in finding x2, . . . , xr ∈
Fqm and C ∈ Fr×(n−r)

q such that

Hx⊤ = y⊤ where x := (1, x2, . . . , xr) ·
(
Ir C

)
.

Concretely, after computing x = (x1, . . . , xr) ·
(
Ir C

)
, one verifies that HxT is

indeed equal to yT . Since 1 is in the support of x, it is possible to transmit only
r − 1 elements for Supp(x), and we can have a gain on the matrix C as well
since the r first coordinates are linearly independent. This results in an efficient
protocol, where the inputs are of size

((r − 1) ·m︸ ︷︷ ︸
Supp(x)

+ r · (n− r)︸ ︷︷ ︸
C

) · log2(q)

We see here that the input size does not depend on k anymore, allowing us to
take more efficient parameters. We give in Table 7 the RSDs parameters that
minimize the witness size of this modeling.

q m n k r ((r − 1)m+ r(n− r)) · log2(q)

2 53 53 45 4 45 B

Table 7: Optimized parameters for RSDs Support Decomposition modeling.

Global Comparison. Table 8 provides a global comparison of the different mod-
elings in terms of witness size for the RSD problem. For each of the described
modelings, we provide the size formula as well as the obtained concrete size for
optimized parameters reaching a 128-bit security according to the attacks in
Section 3.2.
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Modeling Witness size Size for λ = 128

q-polynomial [ km+ (r − 1)m ] · log2(q) 93 B

Kipnis-Shamir [ km+ (r − 1)(n− r) ] · log2(q) 86 B

Dual Support decomposition [ (r − 1)m+ r(n− r) ] · log2(q) 45 B

Table 8: Witness size for different MPCitH modelings for the RSDs problem.

4.2 Modelings for the MinRank Problem

The MinRank problem is closely related to the RSD problem. The two problems
indeed share a number of similarities as evidence of the algebraic attacks applying
to both problems (see, e.g., [8,10]). Quite naturally, most of the above modelings
for RSD can be adapted for MinRank.

q-Polynomial. The q-polynomial technique of [19] can be also applied to MinRank:
the witness is composed of the shares of x ∈ Fk

q and the coefficients β ∈ Fr
qm

of the q-polynomial associated to E. The MPC protocol computes E = M +∑k
i=1 xiMi and verifies that PE(X) :=

∑r−1
i=0 βiX

qi + Xqr is the annihilator
polynomial of E. This verification relies on the isomorphism between Fqm and
Fm
q , and associates each column of E, denoted as ei, to an element of Fqm , ei.

The protocol hence simply checks that PE(ei) = 0 for i ∈ [1, n].
With this modeling, the size of the witness size is (in bits):

( k︸︷︷︸
x

+ r ·m︸ ︷︷ ︸
PE

) · log2(q) .

q m n k r (rm+ k) · log2(q)

16 15 15 78 6 76 B

Table 9: Optimized parameters for MinRank q-polynomial modeling.

Kipnis-Shamir. This is the modeling used in MiRitH [1], which is an improve-
ment of MinRank-in-the-Head [2]. The goal of this modeling is to use the right

kernel of E in order to prove its rank. Let K =

[
I(n−r)

A

]
a matrix of rank

n − r representing the right kernel of E. The witness is composed of x and
A ∈ Fr×(n−r)

q . The protocol recomputes E = M +
∑k

i=1 xiMi and verifies that
E ·K = 0. If the verification succeeds, one deduces that E is indeed of rank r
since it has a kernel of rank n− r.

With this modeling, the witness is of size:

( k︸︷︷︸
x

+ r · (n− r)︸ ︷︷ ︸
A

) · log2(q) .
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As for RSDs, the witness is smaller with this modeling than with the q-polynomials
technique.

q m n k r (r(n− r) + k) · log2(q)

16 15 15 78 6 66 B

Table 10: Optimized parameters for MinRank Kipnis-Shamir modeling.

New Modeling for the MinRank Problem: Dual Support Decomposition. We intro-
duce hereafter a new MPCitH modeling for the MinRank problem which achieves
smaller witness sizes than the previous modelings.

By definition of the problem, we know that solving E = M +
∑k

i=1 xiMi

with unknowns xi is the same as solving the instance M = E +
∑k

i=1 x
′
iMi

where each x′
i = −xi. The goal is to try to get the notion of dual, in order to

apply the same idea of modeling as for RSDs. First, one can define the map

ρ : Fm×n
q → Fmn

qa1,1 . . . a1,n
...

...
am,1 . . . am,n

 7→
(
a1,1, . . . , a1,n, . . . , am,1, . . . , am,n

)

Let C = ⟨M1, . . . ,Mk⟩. Then, one can consider G ∈ Fk×mn
q where the i-th line

of G, Gi = ρ
(
Mi

)
for i from 1 to k. With such a construction, we see that G is

the generator matrix of C since

G =

ρ(M1)
...

ρ(Mk)

 .

This matrix G is a k ×mn matrix, generating an [mn, k] code. It follows that
we can easily build C⊥, a [mn,mn − k] code, using the usual inner product on
vectors, with a generator matrix H ∈ F(mn−k)×mn

q such that GHT = 0. Then,
it is easy to see that

ρ(E)HT = ρ(M)HT (1)

as (
k∑

i=1

xiρ (Mi)

)
·HT = 0

We thus obtain (
ρ(E)− ρ(M)

)
HT = 0 (2)
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Since we can compute ρ(M)HT easily, all that is left to do is to prove that we
know E of rank r verifying Equation (2).

As in the rank decomposition method from [19], one can view E as a product
of two matrices, E = SC, with S ∈ Fm×r

q and C ∈ Fr×n
q . Furthermore, one can

write without loss of generality S as
[
Ir
S′

]
for some matrix S′ ∈ F(m−r)×r

q (this

is always possible up to a permutation of the lines). Then, one can simply set

E =

[
Ir
S′

]
·C. Taking in inputs C and S, one must simply verify that E verifies

the equation above.

Overall, the inputs are of size

(r · (m− r)︸ ︷︷ ︸
S

+ r · n︸︷︷︸
C

) · log2(q)

considering we use the identity matrix in the support.
Exactly as for RSD, the size does not depend on k anymore, which allows a
better selection of parameters.

q m n k r (r(m− r) + rn) · log2(q)

2 43 43 1520 4 41 B

Table 11: Optimized parameters for MinRank Dual Support Decomposition mod-
eling for λ = 128.

Global comparison. Table 12 provides a global comparison of the different mod-
elings in terms of witness size for the MinRank problem. For each of the described
modelings, we provide the size formula as well as the obtained concrete size for
optimized parameters reaching a 128-bit security for the attacks described in
section 3.3.

Modeling Witness size Size for λ = 128

q-polynomial [ k + rm ] · log2(q) 76 B

Kipnis-Shamir [ k + r(n− r) ] · log2(q) 66 B

Dual support decomposition [ r(m− r) + rn ] · log2(q) 41 B

Table 12: Modeling for MinRank and resulting witness size in MPC protocols.

5 The TCitH and VOLEitH Frameworks

The MPCitH paradigm [27] is a versatile method introduced in 2007 to build
zero-knowledge proof systems using techniques from secure multi-party compu-
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tation (MPC). This paradigm has been drastically practically improved in recent
years (see, e.g., [3,18,22,28]) and is particularly efficient to build zero-knowledge
proofs for small circuits such as those involved in (post-quantum) signature
schemes. The MPCitH paradigm can be summarized as follows. The prover em-
ulates “in his head” an ℓ-private MPC protocol with N parties and commits each
party’s view independently. The verifier then challenges the prover to reveal the
views of a random subset of ℓ parties. By the privacy of the MPC protocol, noth-
ing is revealed about the plain input, which implies the zero-knowledge property.
On the other hand, a malicious prover needs to cheat for at least one party,
which shall be discovered by the verifier with high probability, hence ensuring
the soundness property.

In what follows, we describe two recently introduced MPCitH-based frame-
works, namely the VOLE-in-the-Head (VOLEitH) framework from [12] and the
Threshold-Computation-in-the-Head (TCitH) framework from [21, 22]. We then
present the recent optimisations proposed by [11].

5.1 Threshold-Computation-in-the-Head Framework

The TCitH framework has been recently introduced in [21] as an extension of
a previous work [22] published at Asiacrypt 2023. While almost all the former
MPCitH-based proof system relied on additive sharings, the TCitH framework
shows how using Shamir’s secret sharings (instead of additives sharings) lead to
faster schemes with shorter communication.

We refer the reader to [21, 22] for a detailed exposition of the TCitH frame-
work which is only briefly abstracted here. In a nutshell, the TCitH framework
relies on MPC protocols with broadcasting, randomness oracle and hint oracle
(as previous MPCitH schemes) but using Shamir’s secret sharing unlocks the
use of non-linear multiparty computation (whereas previous MPCitH schemes
are based on linear multiparty computation). More precisely, in the considered
MPC protocols, one can compute a sharing Ja · bK of a product a · b from the
sharings JaK and JbK of the operands by share-wise multiplication (for all i,
Ja · bKi ← JaKi · JbKi).

The TCitH framework comes with two variants depending on how one com-
mits the input shares: either relying on GGM trees [25] or on Merkle trees [32]. In
the present work, we focus on the GGM-tree variant which leads to shorter sig-
nature sizes for the considered statements. Moreover, we only consider 1-private
Shamir’s secret sharings, i.e. ℓ = 1, which gives the best results in our context.

Given some degree-d polynomials f1, . . . , fm from F[X1, . . . , X|w|], we want
a zero-knowledge proof of knowledge of a witness w satisfying

∀j ∈ [1,m], fj(w) = 0.

We shall use the proof system TCitH-Πpc described in [21, Section 5.2]. We
recall the underlying MPC protocol Πpc in Protocol 1. The sharing J0K used in
Step 4 of the MPC protocol is a publicly-known degree-1 sharing of zero (for
example, J0Ki = ωi when e = 0). This MPC protocol is ℓ-private and sound with
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false positive probability 1
|F| (see [21, Lemma 2]). In practice, the MPC protocol

is repeated ρ times in parallel to achieve a false positive probability of 1
|F|ρ . The

soundness error of TCitH-Πpc (when ℓ = 1) is

ϵ =
1

|F|ρ
+

(
1− 1

|F|ρ

)
· d
N

.

1. The parties receive a sharing JwK, with degJwK = 1.
2. The parties get a uniformly-random degree-(d − 1) sharing JvK of a random

value v ∈ F from OH .
3. The parties receive random values γ1, . . . , γm ∈ F from OR.
4. The parties locally compute

JαK = JvK · J0K +
m∑

j=1

γj · fj(JwK) .

5. The parties open JαK to publicly recompute α.
6. The parties output Accept if and only if α = 0.

Protocol 1: Πpc – Verification of polynomial constraints. OR is an oracle which
provides public trusted randomness to the parties: in a MPCitH setting, this
randomness is provided by the verifier. OH is an oracle which provides sharings of
untrusted values named hints: in a MPCitH setting, these sharings are provided
by the prover.

To obtain a signature scheme, we first transform the above MPC protocol
into a proof of knowledge (PoK) of soundness error ϵ by applying the TCitH
transform. We then perform τ parallel repetitions of this PoK and apply the
Fiat-Shamir transform [23]. To achieve a λ-bit security, we take the number ρ
of MPC repetitions such that 1

|F|ρ ≤ 2−λ and the number τ of PoK repetitions
such that

(
d
N

)τ ≤ 2−λ.
The proof transcript (i.e. the signature) includes:

– The opened shares JwKI of the witness w ∈ F|w|, for each of the τ PoK
repetitions. In practice, the sent values are the auxiliary values ∆w.

– The opened shares of JvKI : because v is uniformly-sampled, these shares are
communication-free since we rely on the TCitH-GGM variant.

– The degree-d sharing JαK, for each of the ρ MPC repetitions of the τ PoK
repetitions. Since JαKI can be recomputed by the verifier and since the α
should be zero, the prover just needs to send (d+1)−1−1 = (d−1) shares.

– The sibling paths in the GGM trees, together with the unopened seed com-
mitments.

Moreover, the signature includes a 2λ-bit salt and a 2λ-bit commitment di-
gest that correspond to the last verifier challenge (in the Fiat-Shamir heuristic).
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Therefore, the signature size when using the TCitH framework in the above
setting is (in bits):

SizeTCitH = 4λ+ τ ·

|w| · log2 |F|︸ ︷︷ ︸
JwKI

+(d− 1) · ρ · log2 |F|︸ ︷︷ ︸
JαK

+λ · log2 N︸ ︷︷ ︸
GGM tree

+2λ

 .

5.2 VOLE-in-the-Head Framework

The VOLEitH framework has been introduced at Crypto 2023 [12]. This work
provides a way to compile any zero-knowledge protocol in the VOLE-hybrid
model into a publicly verifiable protocol. While it has not been introduced as a
MPCitH construction, it can yet be interpreted as such. Specifically, [21] shows
that the VOLEitH framework can be described in the TCitH syntax. Indeed,
this framework is similar to the TCitH framework with ℓ = 1 and GGM trees,
up to several details:

– The secret is stored at P (∞) when sharing, meaning that e =∞. As a result,
to share a value v, one samples a random value r and builds the Shamir’s
polynomial P as P (X) := vX + r. While multiplying two Shamir’s sharings
when e = ∞ is similar than when e ̸= ∞, the addition operation is slightly
different: to add two Shamir’s sharings JaK and JbK of degrees respectively
d1 and d2 (such that d1 ≤ d2) when e = ∞, the parties can compute the
following d2-degree sharing

∀i, Ja+ bKi ← JaKi · ωd2−d1
i + JbKi,

where ωi is the evaluation point of the ith party.
– The VOLEitH framework relies on a large field embedding : in the commit-

ment phase, the prover commits τ N -sharings JwK(1), . . . , JwK(τ) of the wit-
ness w. In the basic TCitH framework, the prover runs τ MPC protocols in
parallel, each of them on a different sharing JwK(j). In the VOLEitH frame-
work, these N sharings are merged to obtain a Nτ -sharing JwK(ϕ) living in a
large field extension K such that the extension degree [K : F] is ρ, then the
prover runs a unique MPC protocol which takes as input this Nτ -sharing.
More precisely, the ith share of JwK(ϕ) is computed as

JwK(ϕ)i ← ϕ
(
JwK(1)i1

, . . . , JwK(τ)iτ

)
where i1, . . . , iτ ∈ [1, N ] satisfy (i − 1) = (i1 − 1) + (i2 − 1) · N + . . . +
(iτ − 1) ·Nτ−1 and ϕ is an one-to-one ring homomorphism between Fτ and
K (ρ ≥ τ). If the sharings JwK(1), . . . , JwK(τ) encode the same witness w,
then we get that JwK(ϕ) is a valid Shamir’s secret sharing of w for which
the evaluation point of the ith party is ϕ(ωi1 , . . . , ωiτ ) (with ωi the ith party
evaluation point in the standard TCitH setting). The main advantage of
this large field embedding is that the resulting soundness error of the proof
system is d

Nτ instead of being
(

d
N

)τ
(up to the false positive probability).
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– The above optimisation requires that the prover ensures that the τ sharings
encode the same value (without revealing this value). To ensure this prop-
erty, the VOLEitH framework introduces an additional prover-verifier pair
of rounds. After committing the input shares (including the hint sharings),
• the prover commits τ additional uniformly-random sharings JuK(1),. . . ,

JuK(τ) of the same random value u ∈ Fρ+B , for B ≥ 0 an additional
parameter,

• the verifier sends a challenge (H1|H2) ∈ F(ρ+B)×(n+ρ),
• for all j ∈ [1, τ ], the prover reveals the digest sharing Jα′K(j) := H1JwK(j)+
H2JvK(j) + JuK(j), where α′ ∈ Fρ+B .

The idea behind this process is that the prover computes the digests of all
the plain values encoded in JwK(1), . . . , JwK(τ) (and in JvK(1), . . . , JvK(τ)) and
compares them. If (JwK(i), JvK(i)) and (JwK(j), JvK(j)) encode different values,
then their digests Jα′K(i) and Jα′K(j) will differ with high probability. In prac-
tice, the parameters ρ and B are chosen such that the probability that two
different plain values lead to the same digest is negligible. We further note
that taking (H1|H2) uniformly at random gives the smallest probability but
requires to perform matrix-vector multiplications. Other strategies are pos-
sible for (H1|H2) such as relying on a polynomial-based hash: this increases
a bit the collision probability (so one needs to increase B to compensate)
but lightens the computation. This strategy is used in the FAEST signature
scheme [13].

We use the VOLEitH framework with the same MPC protocol than with the
TCitH framework, namely the MPC protocol Πpc described in Protocol 1, which
is equivalent to the QuickSilver VOLE-based protocol [39] in the VOLE setting.
The publicly-known degree-1 sharing J0K in Protocol 1 when e =∞ can be built
as J0Ki = 1 for all i.

To achieve a PoK with λ-bit security (i.e. 2−λ soundness error), we take the
field extension K of degree ρ such that 1

|F|ρ ≤ 2−λ, the number τ of sharings JwK(j)

such that d
Nτ ≤ 2−λ and the additional parameter B such6 that B · log2 |F| ≥ 16

(the latter choice corresponds to the choice in the specification of FAEST [13]).
Then we obtain a signature scheme by applying the Fiat-Shamir transform [23]
as previously.

The proof transcript (i.e. the signature) includes:

– The opened shares JwKI of the witness w ∈ F|w|. In practice, one sends the
auxiliary values of the sub-sharings JwK(1), . . . , JwK(τ).

– The opened shares of JvKI . When v is uniformly-sampled, the shares are
usually communication-free. However, we need τ sub-sharings of the same

6 As explained previously, the parameter B aims to compensate the security loss due
to the use of a polynomial-based hash. Such a hash consists in evaluating in a large
domain the polynomial which has the hashed values as coefficients. Thanks to the
Schwartz-Zippel lemma, we get that the security loss is of a factor n + ρ (which is
the length of the hashed vector). By taking B · log2 |F| ≥ 16 as in the specification
of FAEST, we can securely hash vectors of length at most 216.
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(uniformly-random) value v. While the first sharing is communication-free,
the τ−1 others require an auxiliary value to ensure that all the sub-sharings
encode the same value.

– The degree-d sharing JαK, for the single MPC execution. Since JαKI can be
recomputed by the verifier and since the α should be zero, the prover just
needs to send (d+ 1)− 1− 1 = d− 1 shares.

– The sibling paths in the GGM trees, together with the unopened seed com-
mitments.

– The opened shares JuKI . As for JvKI , since all the τ sub-sharings must encode
the same random value u, only the first sharing is communication-free and
the τ − 1 others require an auxiliary value.

– The degree-1 sharings Jα′K(1), . . . , Jα′K(τ). Since the plaintext value α′ is the
same for all these sharings and since JαK(j)I can be recomputed by the verifier
for all j, sending all these sharings costs only (ρ+B) field elements.

Moreover, the signature includes a 2λ-bit salt and a 2λ-bit commitment di-
gest that correspond to the last verifier challenge (in the Fiat-Shamir heuristic).
Therefore, the signature size when using the VOLEitH framework is (in bits):

SizeVOLEitH = 4λ

+ τ ·

|w| · log2 |F|︸ ︷︷ ︸
JwKI

+λ · log2 N︸ ︷︷ ︸
GGM tree

+2λ

+ (d− 1)ρ · log2 |F|︸ ︷︷ ︸
JαK

+ (τ − 1) ·

ρ · log2 |F|︸ ︷︷ ︸
JvKI

+(ρ+B) log2 |F|︸ ︷︷ ︸
JuKI

+ (ρ+B) · log2 |F|︸ ︷︷ ︸
Jα′K

.

5.3 Additional MPCitH Optimisations

New generic optimizations for MPCitH-based schemes relying on GGM trees
have been proposed in a recent work [11]. The improvements are threefold:

1. Instead of considering τ independent GGM trees of N leaves in parallel, the
authors propose to rely on a unique large GGM tree of τ · N leaves where
the ith share of the eth PoK repetition is associated to the (e ·N+ i)th leaf of
the large GGM tree. As explained in [11], “opening all but τ leaves of the big
tree is more efficient than opening all but one leaf in each of the τ smaller
trees, because with high probability some of the active paths in the tree will
merge relatively close to the leaves, which reduces the number of internal
nodes that need to be revealed.”

2. The authors further propose to improve the previous approach using the
principle of grinding. When the last Fiat-Shamir challenge is such that the
number of revealed nodes in the revealed sibling paths exceed a threshold
Topen, the signer rejects the challenge and recompute the hash with an in-
cremented counter. This process is done until the number of revealed nodes
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is ≤ Topen. For example, if we consider N = 256 and τ = 16, the number
of revealed nodes is smaller than (or equal to) Topen := 110 with prob-
ability ≈ 0.2. The selected value of Topen induces a rejection probability
prej = 1−1/θ, for some θ ∈ (0,∞), and the signer hence needs to perform an
average of θ hash computations for the challenge (instead of 1). While this
strategy decreases the challenge space by a factor θ, it does not change the
average number of hashes that must be computed to succeed an attack (since
the latter is multiplied by θ). As noticed by the authors of [11], this strat-
egy can be thought of as loosing log2 θ bit of security (because of a smaller
challenge space) which are regained thanks to a proof-of-work (performing
an average of θ hash computations before getting a valid challenge).

3. Finally, [11] proposes to add another explicit proof-of-work to the Fiat-
Shamir hash computation of the last challenge. The signer must get a hash
digest for which the w last bits are zero, for w a parameter of the scheme.
The same counter as for the previous improvement is used as a nonce in
this hash and increased until the w-zeros property is satisfied. This strategy
increases the cost of hashing the last challenge by a factor 2w and hence
increases the security of w bits. This thus allows to take smaller parameters
(N, τ) for the large tree, namely parameters achieving λ−w bits of security
instead of λ.

While the authors of [11] focus on VOLEitH, the same optimisations also
apply to TCitH. In summary, for a given w, one picks parameters (N, τ) ensur-
ing λ − w bits of security. Then fixing Topen for these (N, τ) yields a rejection
probability prej = 1 − 1/θ. The gain in size comes from the smaller parameters
(N, τ) on the one hand, and the smaller sibling paths (of size ≤ Topen instead
of ≈ τ log2 N) on the other hand. This gain in size is traded for an increased
number of Fiat-Shamir hash attempts (θ · 2w on average instead of 1).

6 New Signatures Based on RSDs and MinRank

In this section, we propose new signature schemes based on the rank syn-
drome decoding problem and on the MinRank problem. To proceed, we rely on
the TCitH and VOLEitH frameworks to obtain non-interactive zero-knowledge
proofs of knowledge for these two problems using the new Dual Support De-
composition model described in Section 4 and we use the recent MPCitH op-
timisation presented in Section 5.3. Moreover, to have more granularity in the
choice of the parameters, we consider that the τ emulations of the MPC protocol
might not involve the same number of parties: there will be τ1 emulations with
N1 parties and τ2 := τ − τ1 emulations with N2 parties. The schemes are then
secure if

(
d
N1

)τ1
·
(

d
N2

)τ2
for TCitH and d

N
τ1
1 ·Nτ2

2

for VOLEitH are negligible

(instead of simply
(

d
N

)τ
and d

Nτ ).
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6.1 New Signatures Based on RSDs

The TCitH and VOLEitH frameworks enable us to prove the knowledge of a
witness that satisfies some polynomial constraints. In order to get a signature
scheme based on the rank syndrome decoding problem, one just needs to exhibit
the polynomial constraints which is satisfied by a rank syndrome decoding solu-
tion. As shown in Section 4.1, solving an RSDs instance for y and H is equivalent
to finding s = (x2, . . . , xr) where xi ∈ Fqm for i ∈ {2, . . . , r} and C ∈ Fr×(n−r)

q

such that
xHT − y = 0 with x :=

(
1 s
)
·
(
Ir C

)
∈ Fn

qm (3)

Equation 3 directly gives degree-2 polynomial constraints into the coefficients of
s and C. Let us assume that the H is in standard form, meaning it can be written
as H =

(
In−k H ′), where H ′ ∈ F(n−k)×k

qm . Given the inputs JsK and JCK, the
hint JvK with v ∈ Fρ

qm and the MPC randomness Γ = (γi,j)i,j ∈ F(n−k)×ρ
qm , the

emulated MPC protocol (repeated ρ times) described in Protocol 1 thus consists
of computing

JαK← JvK · J0K + (JxAK + JxBKH ′T − y)Γ

where JxAK and JxBK are built such as J
(
xA xB

)
K =

(
1 JsK

)
·
(
Ir JCK

)
.

Signature size. According to Section 5, the signature size using the TCitH frame-
work is (in bits):

SizeTCitH = 4λ+λ · Topen︸ ︷︷ ︸
GGM tree

+τ ·

|w| · log2 q︸ ︷︷ ︸
JsKI ,JCKI

+(d− 1) · ρ · log2 q︸ ︷︷ ︸
JαK

+2λ

 ,

while the signature size using the VOLEitH framework is (in bits):

SizeVOLEitH = 4λ+ λ · Topen︸ ︷︷ ︸
GGM tree

+τ ·

|w| · log2 q︸ ︷︷ ︸
JsKI ,JCKI

+2λ

+ (d− 1) · ρ · log2 q︸ ︷︷ ︸
JαK

+ (τ − 1) ·

ρ · log2 q︸ ︷︷ ︸
JvKI

+(ρ+B) log2 q︸ ︷︷ ︸
JuKI

+ (ρ+B) · log2 q︸ ︷︷ ︸
Jα′K

,

where |w| := (r − 1)m+ r(n− r).

Computational cost. The running time of the signing algorithm can be split in
three main parts:

1. The generation of the input shares using seed trees and their commitment.
The computational cost scales linearly with the number of input shares.
When there are τ1 MPC emulations with N1 parties and τ2 MPC emulations
with N2 parties, the total number of input shares is τ1 ·N1 + τ2 +N2.
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2. The MPC emulation. This step consists in computing the degree-2 broadcast
sharing JαK, knowing that α = 0. Let us estimate the cost of emulating
the MPC protocol. We only count multiplications which are predominant
(compared to additions) for the considered extension fields. We recall that
multiplying two degree-1 sharings costs 2 multiplications in the underlying
field, assuming we already know the plain value.
– With TCitH, the MPC emulation will be repeated τ := τ1 + τ2 times.

Each repetition includes 2 vector-matrix multiplications with a matrix
F(r−1)×(n−r)
qm to compute JxK := J

(
xA xB

)
K, 2 vector-matrix multiplica-

tions with a matrix of Fk×(n−k)
qm to compute JrK := JxAK+JxBKH ′T −y,

and 2 vector-matrix multiplications with matrix of F(n−k)×ρ
qm to compute

JαK.
– With VOLEitH, the MPC emulation is executed only once, but in a

larger extension field K where [K : Fqm ] = ρ. The emulation includes
2 vector-matrix multiplications with a matrix K(r−1)×(n−r) to compute
JxK := J

(
xA xB

)
K, 2ρ vector-matrix multiplications with a matrix of

Fk×(n−k)
qm to compute JrK := JxAK + JxBKH ′T − y, and 2 vector-matrix

multiplications with matrix of K(n−k)×1 to compute JαK.
3. The global proof-of-work, composed of the grinding process on the seed trees

and the explicit proof-of-work on the Fiat-Shamir hash computation. Its
average cost is θ · 2w Fiat-Shamir hash computations.

The running time of the other parts of the signing algorithm is negligible com-
pared to those three components. Regarding the running time of the verification
algorithm, since the verifier should also expand the seed trees and emulate some
parties, the verification time will be similar (a bit smaller) than the signing time.

Parameter selection. We select some parameter sets for our signature schemes.
To have a fair comparison between both frameworks (TCitH and VOLEitH),
we chose the parameters such that the cost of generating the input shares and
the cost of the proof-of-work are similar (namely, we chose parameters such that
τ2 ·N1 + τ2 · τ2 and θ · 2w are roughly equal). We present in Table 13 the sizes
obtained for the signature scheme.

While proposing optimized implementations of our signature scheme is left
for future work, we provide some (upper bound) estimates for its running time
in Table 14. The timings of the symmetric components (generation and com-
mitment of the input shares and proof of work) are estimated based on the
benchmarks from [11]. Since we rely on the same parameters for the symmetric
components (same τ1 ·N1+τ2 ·N2 and same log2 θ+w), we can use their timings
as upper bounds. For example, their scheme MandaRain-3-128s includes a gener-
ation and commitment of 22 528 input shares and has a total proof-of-work of 14
bits as our “short” instances. Since it runs in 2.8 ms on a 5 GHz CPU, we deduce
that the symmetric components cost is at most 14 Mcycles.7 Then, we derived
7 In making this consideration, we include the overhead of emulating their MPC pro-

tocol to our estimates of the symmetric part.
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and benchmarked a naive implementation of the MPC emulation, which gives
us an upper bound for the emulation cost. Despite this pessimistic estimation,
the results presented in Table 14 show that our scheme is competitive with the
NIST candidate RYDE. In particular, all our variants relying on VOLEitH are
faster than RYDE.

Security Trade-off Framework
Scheme Parameters Computational Cost

Signature
τ (τ1, N1) (τ2, N2) Topen #Leaves log2 θ w

NIST I

Short
TCitH 12 (10, 211) (2, 210) 111 22528 5.0 9 2 937 B

VOLEitH 11 (0, 212) (11, 211) 99 22528 7.2 7 2 851 B

Fast
TCitH 20 (4, 28) (16, 27) 113 3072 7.1 3 3 708 B

VOLEitH 16 (8, 28) (8, 27) 102 3072 2.9 8 3 450 B

NIST III

Short
TCitH 18 (2, 212) (16, 211) 174 40960 4.9 9 6 713 B

VOLEitH 16 (4, 212) (12, 211) 162 40960 2.7 12 6 566 B

Fast
TCitH 30 (10, 28) (20, 27) 178 5120 6.9 1 8 454 B

VOLEitH 24 (16, 28) (8, 27) 176 5120 0.0 8 8 207 B

NIST V

Short
TCitH 25 (5, 212) (20, 211) 245 61440 5.6 0 12 371 B

VOLEitH 22 (8, 212) (14, 211) 248 61440 0.0 6 12 682 B

Fast
TCitH 39 (17, 28) (22, 27) 247 7168 3.7 4 14 926 B

VOLEitH 32 (24, 28) (8, 27) 247 7168 0.0 8 14 768 B

Table 13: Parameters and resulting sizes for the new signature scheme based on
RSDs. The used parameters for the rank syndrome decoding problem are those
of Table 3.

Comparison. Table 15 summarizes the state of the art of signature schemes
based on RSD. We include in the comparison only short parameters, i.e, with
N = 256 for MPCitH-based signatures, and N = 32 for [15]. We include the
schemes of Stern [37] and Véron [38] applied to the rank metric. For 128 bits
of security, these two schemes have signature sizes of around 30 kB. These sizes
were roughly halved in [20] and [15]. Finally, [19] reduced it below 6 kB and our
work achieves sizes below 4 kB.

Resilience Property. One should note that our scheme is highly resilient to hy-
pothetical cryptanalytic progress on RSDs. Indeed, if we were to take the set of
parameters for RSDs corresponding to NIST III, applied to the proof of knowl-
edge for NIST I, i.e, a security of λ = 192 for RSDs and λ = 128 for the protocol,
we would get an increase of only 0.4 kB (for N = 512) or 0.3 kB (for N = 2048)
in the signature size. Namely, we can take a large margin of security for the
parameters of RSDs at a moderate cost.

6.2 New Signatures Based on MinRank

The TCitH and VOLEitH frameworks enable us to prove the knowledge of a
witness that satisfies some polynomial constraints. In order to get a signature
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Security Trade-off Framework
Symmetric Part MPC Emulation

Total RYDE
From [11] JxK JrK JαK

NIST I

Short
TCitH 14 0.38 1.42 0.19 16.0

23.4
VOLEitH 14 0.43 0.36 0.07 14.9

Fast
TCitH 1.8 0.62 2.36 0.24 5.0

5.4
VOLEitH 1.8 0.43 0.36 0.07 2.7

NIST III

Short
TCitH 37 3.9 12.8 0.6 54.3

49.6
VOLEitH 37 1.3 2.1 0.2 40.6

Fast
TCitH 4.4 6.5 21.3 1.1 33.3

12.2
VOLEitH 4.4 1.3 2.1 0.2 8.0

NIST V

Short
TCitH 45 9.5 24.4 0.9 79.8

94.9
VOLEitH 45 2.0 2.9 0.2 50.1

Fast
TCitH 6.8 14.8 37.8 1.4 60.8

22.7
VOLEitH 6.8 1.9 2.9 0.17 11.8

Table 14: Estimation of the signing times of the new signature scheme based on
RSDs (in mega-cycles).

RSD Parameters Scheme N M τ η ρ Signature Size

q = 2

m = 31

n = 33

k = 15

r = 10

[37] - - 219 - - 33 886 B

[38] - - 219 - - 28 794 B

[20] 32 389 28 - - 14 792 B

[15] 32 389 28 - - 12 816 B

[19] RD 256 - 21 24 - 8 990 B

[19] LP and [4] (RSDs) 256 - 20 1 - 5 956 B

q = 2,m = 53, n = 53

k = 45, r = 4

Our scheme (TCitH) 256 - 20 - 3 3 708 B

Our scheme (VOLEitH) 256 - 16 - 128 3 450 B

Table 15: Comparison of the signatures relying on RSD, restricting to the schemes
using the Fiat-Shamir transform.

scheme based on MinRank, one just needs to exhibit the polynomial constraints
which that a MinRank solution should satisfy. As shown in Section 4.2, solving
a MinRank problem for matrices M ,M1, . . . ,Mk is equivalent in finding S′ ∈
F(m−r)×r
q and C ∈ Fr×n

q such that

[ρ(E)− ρ(M)] ·HT = 0 with E :=

(
Ir
S′

)
·C, (4)

where H is the parity-check matrix of the linear code defined by the generator
matrix ρ(M1)

...
ρ(Mk)

 .

Equation (4) directly gives degree-2 polynomial constraints into the coefficients
of S′ and C. Let us assume that the matrix H is in standard form, meaning
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it can be written as H =
(
In·m−k H ′), where H ′ ∈ F(n·m−k)×k

q . Given the
inputs JS′K and JCK, the hint JvK with v ∈ Fρ

q and the MPC randomness Γ =

(γi,j)i,j ∈ F(n−k)×ρ
q , the emulated MPC protocol (repeated ρ times) described

in Protocol 1 thus consists in computing

JαK← JvK · J0K + (JxAK + JxBKH ′T )Γ

where JxAK and JxBK are built such as J
(
xA xB

)
K = ρ

((
Ir

JS′K

)
· JCK−M

)
.

Signature size. According to Section 5, the signature size using the TCitH frame-
work is (in bits):

SizeTCitH = 4λ+λ · Topen︸ ︷︷ ︸
GGM tree

+τ ·

|w| · log2 q︸ ︷︷ ︸
JS′KI ,JCKI

+(d− 1) · ρ · log2 q︸ ︷︷ ︸
JαK

+2λ

 ,

while the signature size using the VOLEitH framework is (in bits):

SizeVOLEitH = 4λ+ λ · Topen︸ ︷︷ ︸
GGM tree

+τ ·

|w| · log2 q︸ ︷︷ ︸
JS′KI ,JCKI

+2λ

+ (d− 1) · ρ · log2 q︸ ︷︷ ︸
JαK

+ (τ − 1) ·

ρ · log2 q︸ ︷︷ ︸
JvKI

+(ρ+B) log2 q︸ ︷︷ ︸
JuKI

+ (ρ+B) · log2 q︸ ︷︷ ︸
Jα′K

,

where |w| := r(m− r) + rn.

Computational cost. As in the previous section, the running time of the signing
algorithm can be split in three main parts:

1. The generation of the input share using seed trees and their commitment.
The computational cost scales linearly with the number of input shares.
When there are τ1 MPC emulations with N1 parties and τ2 MPC emulations
with N2 parties, the total number of input shares is τ1 ·N1 + τ2 +N2.

2. The MPC emulation. This step consists in computing the degree-2 broadcast
sharing JαK, knowing that α = 0. Let us estimate the cost of emulating the
MPC protocol (while only counting multiplications as above).
– With TCitH, the MPC emulation will be repeated τ := τ1 + τ2 times.

Each repetition includes 2 multiplications between matrices of F(m−r)×r
N

and Fr×n
N to compute JxK, 2 · [FN : Fq] vector-matrix multiplications

with a matrix of Fk×(n·m−k)
q to compute JxAK + JxBKH ′T − y, and 2

vector-matrix multiplications with matrix of F(n·m−k)×ρ
N to compute JαK.
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– With VOLEitH, the MPC emulation is executed only once, but in a
larger extension field K where [K : FN ] = ρ. The emulation includes
2 matrix multiplications of K(m−r)×r and Kr×n to compute JxK, 2ρ ·
[FN : Fq] vector-matrix multiplications with a matrix of Fk×(n·m−k)

q to
compute JxAK+ JxBKH ′T −y, and 2 vector-matrix multiplications with
matrix of K(n·m−k)×1 to compute JαK.

3. The global proof-of-work, composed of the grinding process on the seed trees
and the explicit proof-of-work on the Fiat-Shamir hash computation. Its
average cost is θ · 2w Fiat-Shamir hash computations.

The running time of the other parts of the signing algorithm is negligible com-
pared to those three components. Regarding the running time of the verification
algorithm, since the verifier should also expand the seed trees and emulate some
parties, the verification time will be similar (a bit smaller) than the signing time.

Parameter selection. We select some parameter sets for our signature schemes.
To have a fair comparison between both frameworks (TCitH and VOLEitH),
we chose the parameters such that the cost of generating the input shares and
the cost of the proof-of-work are similar (namely, we chose parameters such that
τ2 ·N1 + τ2 · τ2 and θ · 2w are roughly equal). We present in Table 16 the sizes
obtained for the signature scheme.

As previously, we leave optimized implementations for future work and pro-
vide (upper bound) estimates of the running time in Table 17 based on the
benchmarks from [11] and a naive implementation of the MPC emulation of our
scheme. Despite this pessimistic estimation, the results of Table 17 show that
our scheme is competitive with the NIST sublmissions MIRA and MiRitH (both
applying MPC-in-the-Head to MinRank). In particular, all our variants relying
on TCitH are faster than MIRA and the short instances of MiRitH.

Security Trade-off Framework
Scheme Parameters Computational Cost

Signature
τ (τ1, N1) (τ2, N2) Topen #Leaves log2 θ w

NIST I

Short
TCitH 12 (10, 211) (2, 210) 111 22528 5.0 9 2 896 B

VOLEitH 11 (0, 212) (11, 211) 99 22528 7.0 7 2 813 B

Fast
TCitH 20 (4, 28) (16, 27) 113 3072 7.0 3 3 640 B

VOLEitH 16 (8, 28) (8, 27) 102 3072 2.8 8 3 396 B

NIST III

Short
TCitH 18 (2, 212) (16, 211) 174 40960 5.0 9 6 584 B

VOLEitH 16 (4, 212) (12, 211) 162 40960 2.7 12 6 452 B

Fast
TCitH 30 (10, 28) (20, 27) 178 5120 6.9 1 8 240 B

VOLEitH 24 (16, 28) (8, 27) 176 5120 0.0 8 8 036 B

NIST V

Short
TCitH 25 (5, 212) (20, 211) 245 61440 5.6 0 12 149 B

VOLEitH 22 (8, 212) (14, 211) 248 61440 0.0 6 12 486 B

Fast
TCitH 39 (17, 28) (22, 27) 247 7168 3.8 4 14 579 B

VOLEitH 32 (24, 28) (8, 27) 247 7168 0.0 8 14 484 B

Table 16: Parameters and resulting sizes for the new signature scheme based on
MinRank. The used parameters for the MinRank problem are those of Table 4.
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Security Trade-off Framework
Symmetric Part MPC Emulation

Total MIRA MiRitH
From [11] JxK JrK JαK

NIST I

Short
TCitH 14 12.6 4.6 4.5 35.7

46.8 76.5
VOLEitH 14 54.8 1.4 2.7 72.9

Fast
TCitH 1.8 3.7 5.1 1.9 12.5

37.4 8.7
VOLEitH 1.8 54.8 1.4 2.7 60.7

NIST III

Short
TCitH 37 37.6 22.0 14.4 111.0

119.7 192.9
VOLEitH 37 217.8 8.2 7.5 270.5

Fast
TCitH 4.4 9.8 23.4 5.2 42.8

107.2 22.5
VOLEitH 4.4 217.8 8.2 7.5 237.9

NIST V

Short
TCitH 45 82.4 60.2 33.3 220.9

337.7 308.6
VOLEitH 45 695.2 3.9 19.1 763.2

Fast
TCitH 6.8 15.2 61.7 9.7 93.4

322.3 36.4
VOLEitH 6.8 694.4 14.6 19.1 734.9

Table 17: Estimation of the running times of the new signature scheme based on
MinRank (in mega-cycles).

Comparison. Table 18 summarizes the state of the art of signature schemes
based on MinRank. We include in the comparison only short parameters, i.e, with
N = 256 for MPCitH-based signatures, and N = 32 for [15]. For the MinRank
parameters, we use q = 16,m = 16, n = 16, k = 142, r = 4. Historically, the first
schemes from [17], [35], and [14] obtained signature sizes no less than 26 kB for
128 bits of security. Then, the technique from [15] applied to MinRank achieved
∼10 kB, and [2] reduced it even below 7 kB. The recent work from [19] reduces
it below 6 kB, and the MIRA and MiRitH submissions to the NIST have sizes
below 6 kB as well. Finally, our work achieves sizes below 4 kB.

MinRank Parameters Scheme N M τ η ρ Signature Size

q = 16

m = 16

n = 16

k = 142

r = 4

[17] - - 219 - - 28 575 B

[35] - - 128 - - 28 128 B

[14] - 256 128 - - 26 405 B

[15] 32 389 28 - - 10 937 B

[2] 256 - 18 - - 7 422 B

[19] RD 256 - 19 9 - 7 122 B

q = 16,m = 16, n = 16

k = 120, r = 5
[19] LP and MIRA [5] 256 - 18 1 - 5 640 B

q = 16,m = 15, n = 15

k = 78, r = 6
MiRitH [1] 256 - 19 9 - 5 673 B

q = 2,m = 43, n = 43

k = 1520, r = 4

Our scheme (TCitH) 256 - 20 - 130 3 640 B

Our scheme (VOLEitH) 256 - 16 - 128 3 396 B

Table 18: Comparison of the signatures relying on MinRank, restricting to the
schemes using the Fiat-Shamir transform.
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Resilience Property. As for our scheme based on RSDs, our above scheme is
highly resilient to hypothetical cryptanalytic progress on MinRank. Indeed, if
we were to take the set of parameters for MinRank corresponding to NIST III,
applied to the proof of knowledge for NIST I, i.e, a security of λ = 192 for
MinRank and λ = 128 for the protocol, we would get an increase of only 0.4 kB
(for N = 512) or 0.3 kB (for N = 2048) in the signature size. Namely, we can
take a large margin of security for the parameters of MinRank at a moderate
cost.
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– Supplementary Material –

A Proof of Proposition 1

We detail here the proof of proposition 1.

Proof. To prove the theorem, we build below an algorithm A to solve the RSD
problem of parameters (q,m, n, k, r) using an algorithm As which solves the
RSDs problem with parameters (q,m, n, k + 1, r), assuming that the code that
corresponds to the input instance does not contain words of weight r.

Algorithm A (on input an RSD instance (H,y)):

1. Sample an invertible matrix U ∈ Fn×n
q .

2. Compute Ĥ⊤ ∈ F(n−k)×n
qm as UH⊤.

3. Find z such that y = zĤ⊤.
4. Build Ĥ ′ ∈ F(n−k−1)×n

qm as the parity check matrix of C + ⟨z⟩,
where C is the linear code which has Ĥ as parity-check matrix.

5. Run As on input (Ĥ ′,0) to get x̂.
6. If x̂ = ⊥, return ⊥.
7. Compute α ∈ Fqm such that x̂Ĥ⊤ = α · y.
8. Compute ˆ̂x as α−1 · x̂ ·U .
9. Return ˆ̂x.

By definition, we know that the RSD instance (H,y) has a solution, meaning
that there exists a vector x such that y = xH⊤ and wR

(
x
)
= r. First, we define

x′ as xU−1. The probability that x′ has its r first coordinates which are full
rank (under the randomness of U) is

ε1 :=

∏r−1
i=0

(
qn − qn−r+i

)∏n
j=r(q

n − qj)

#{invertible matrices of Fn×n
q }

=

r−1∏
i=0

qn − qn−r+i

qn − qi
.

We now detail how we obtain this probability. Let Ker(x) be the right kernel of
x, i.e. Ker(x) := {v ∈ Fn

q : xv⊤ = 0}. It is a Fq-linear subspace of dimension
n− r of Fn

q . To obtain x′ where the first r coordinates are of rank r, U−1 must
be as follows (we write the i-th column of U−1 as ui):

– u1 /∈ Ker(x);
– u2 /∈ (Ker(x) + ⟨u1⟩);
– More generally, ui /∈ (Ker(x) + ⟨u1, . . . ,ui−1⟩).

Let us count the number of successful U−1: there are qn − qn−r choices for u1,
qn − qn−r+1 choices for u2, and more generally qn − qn−r+i choices for ui. In
total, there are

∏r−1
i=0

(
qn − qn−r+i

)
choices for the first r columns of U−1. The

n− r last ones need to be such that U−1 is of full rank. Because each additional
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column should not be included in the subspace spanned by the previous ones,
there are

∏n
j=r(q

n − qj) choices for them. By combining the two products, we
obtain the probability ε1.

We assume that the event in which the r first coordinates of x′ are full rank
occurs. Let us define c := x′ − z. We have that

cĤ⊤ = (x′ − z)Ĥ⊤ = xU−1UH⊤ − zĤ⊤ = xH⊤ − y = 0,

so c is a codeword of C. By defining x′′ := (x′
1)

−1 · x′ (x′
1 is not zero because

the r first coordinates of x′ are full rank by assumption), we have that x′′ =
(x′

1)
−1 · c + (x′

1)
−1 · z is a codeword of C + ⟨z⟩. Therefore x′′Ĥ ′ is equal to 0.

Moreover, the first coordinate of x′′ is equal to (x′
1)

−1 · x′
1 = 1 and the r first

coordinates of x′′ are full rank (because those of x′ are full rank). We thus have
that (Ĥ ′,0) is a RSDs instance with probability ε1.

Let us consider that As outputs x̂ such that x̂ ̸= ⊥. We have x̂Ĥ ′T = 0 and
wR

(
x̂
)
= r. Since x̂ belongs to C + ⟨z⟩ (because x̂Ĥ ′T = 0), x̂ can be written

as
x̂ := γ1 · c1 + . . .+ γk · ck + α · z

for some γ1, . . . , γk, α ∈ Fqm , where (c1, . . . , ck) is a basis of C. In that case, we
have that

x̂ĤT = γ1 · c1ĤT + . . .+ γk · ckĤT + α · zĤT

= 0+ . . .+ 0+ α · y

If α = 0, then there would be a codeword of weight r in the code C. Since we
assume this is not the case, we get that α ̸= 0 and so ˆ̂x is well-defined in Step
8. We thus obtain that

ˆ̂xH⊤ = α−1 · x̂UH⊤ = α−1 · x̂ĤT = y.

Moreover, since multiplying by an invertible matrix over Fq does not change the
support, we have Supp

(
ˆ̂x
)
= α−1 ·Supp(x̂), implying that wR

(
ˆ̂x
)
= wR

(
x̂
)
= r.

The algorithm A outputs a valid RSD solution or ⊥, and the probability that A
does not output ⊥ is lower bounded by

ε := Pr[A(H,y) ̸= ⊥] = Pr[As(Ĥ ′,0) ̸= ⊥]
≥ Pr[(Ĥ ′,0) is a RSDs instance ∩ As(Ĥ ′,0) ̸= ⊥]
= ε1 · Pr[As(Ĥ ′,0) ̸= ⊥ | (Ĥ ′,0) is a RSDs instance]
= ε1 · εs .

□

B Best Attacks on RSD

We recall here the best attacks on RSD.
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Ourivski-Johansson. The attack [34] first apply the reduction of Proposition 1,
and exhibits a system of quadratic equations. The aim of this attack is to linearize
the equations, which is done after fixing a number of values. This algorithm solves
the problem in

O
(
(rm)ωq(r−1)(k+1)

)
.

AGHT: improved GRS. The idea of the GRS attack [24] is to sample a subspace
E′ of dimension r′ ≥ r, and hope that it includes E = Supp(x). Then, one
solves a linear system, when r′ ≤ ⌊ (n−k)m

n ⌋. The improvement of [6] uses the
reduction of Proposition 1, where the success condition is if E′ contains αE for
any α ∈ F∗

qm . The resulting complexity is

O
(
(n− k)ωmωqr⌊

(k+1)m
n ⌋−m

)
.

Algebraic attacks. There are two main algebraic attacks for RSD. The first one
is the MaxMinors modeling [7]. It consists in solving the minors of size r of the
matrix CH⊤, where x = sC for s ∈ Fr

qm and C ∈ Fr×n
q . The system is then

solved, and yields a complexity of

O
(
qar
(
n− a− p

r

)ω)
where a is the parameter of the Hybrid method (see [8]), and p is the number of
positions punctured.

The second algebraic attack [9] [8] is the Support Minors. In this modeling,
one constructs a vector v = −mG + x where −mG ∈ C, and write it as a

product sC where s ∈ Fr
qm ,C ∈ Fr×n

q . The equations come from
(
ri
C

)
where

ri is the i-th row of x−mG. When applying this modeling, by computing

N =

k∑
i=1

(
n− a− i

r

)(
k − a+ b− 1− i

b− 1

)
−
(
n− k − 1

r

)(
k − a+ b− 1

b

)

− (m− 1)

b∑
i=1

(−1)i+1

(
k − a+ b− i− 1

b− i

)(
n− k − 1

r + i

)
and

M =

(
k − a+ b− 1

b

)((
n− a

r

)
−m

(
n− k − 1

r

))
,

as soon as N ≥M − 1, we obtain the complexity of

O
(
qarm2NMω−1

)
where, as before, a is the parameter of the hybrid attack, and the parameter b
minimizes the above quantities.
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C Best Attacks on MinRank

We now recall the attacks on MinRank. In this case, the Hybrid method works
well for both combinatorial and algebraic attacks. In particular, for a cost of
qar repetitions, it is possible to reduce a (q,m, n, k, r) MinRank instance into a
(q,m, n− a, k − am, r) one.

Kernel attack. The attack, introduced by Goubin and Courtois [26], consists
in sampling randomly a matrix vectors of Fn

q , and hoping they are in the right
kernel of the matrix E = M+

∑k
i=1 xiMi. Since the kernel is of dimension n−r,

the probability to sample a vector in the kernel is 1
qr . When sampling l vectors

and multiplying E by these vectors on the right, we obtain k unknowns and m · l
equations. We are able to solve it when l = ⌈ k

m⌉. The overall complexity is thus

O
(
kωqr⌈

k
m ⌉
)
.

Algebraic attacks. As for RSD, the first algebraic attack is MaxMinors [9]. The
modeling is simply to write E = M +

∑k
i=1 xiMi, and to compute its minors

of rank r + 1. The complexity of the attack depends on the Hilbert series

HS(t)

[
(1− t)(m−r)(n−r)−(k+1) det(A(t))

t(
r
2)

]
,

with A(t) =
(∑max(m−i,n−j)

ℓ=0

(
m−i
ℓ

)(
n−j
ℓ

)
tℓ
)
1≤i≤r,1≤j≤r

The total complexity is

O
((

k +D

D

)ω)
where D is the degree of regularity of the system.

The second modeling, the Support Minors modeling [9] [8], allows to obtain
equations by setting E = SC where S ∈ Fm×r

q ,C ∈ Fr×n
q , setting ri the i-th row

of M +
∑k

i=1, and computing the maximal minors of
(
ri
C

)
The final complexity

is
O
(
NMω−1

)
where

N =

b∑
i=1

(−1)i+1

(
n

r + i

)(
k + b− 1− i

b− i

)(
m+ i− 1

i

)
and

M =

(
k + b− 1

b

)(
n

r

)
,

with N ≥M − 1 and b ≤ min(q − 1, r + 1).
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When q = 2, the complexity is slightly different, with

N =

b∑
j=1

j∑
i=1

(−1)i+1

(
n

r + i

)(
k

j − i

)(
m+ i− 1

i

)
and

M =

b∑
j=1

(
k

j

)(
n

r

)
,

with b < r + 2.
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