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Abstract

In this article, we focus on deriving an easily implementable and efficient
method of constructing units of the group ring of dihedral group. We provide
a necessary and sufficient condition that relates the units in the group ring
of dihedral group with the units in the group ring of cyclic group. Using this
relation and the methods available for inversion in the group ring of the cyclic
group, we introduce an algorithm to construct units efficiently and check its
performance experimentally.
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1. Introduction

Group rings and their units receive attention from mathematicians for
their close relation to algebra, number theory, and representation theory.
For a detailed survey on units of group rings, one can refer to [1, 2]. The
applications of units of group rings are not restricted to mathematics. Arti-
cles like [3–6] provide various applications of group rings and their units in
cryptography.

One of the most famous examples where units are used to build a cryp-
tosystem is NTRU [7], a post-quantum scheme built over a quotient ring
of polynomials. Different NTRU-like variants can be built by changing the
underlying ring. However, the key generation process involves sampling el-
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ements from the ring such that one of them is a unit(i.e., an invertible el-
ement). Algorithm 1 outlines the key generation process for an NTRU-like
scheme.

Algorithm 1: NTRU-like scheme key generation

Input: A parameter set N, p, q defining the cryptosystem
Output: h the public key

1 f ← Sampler /* Sampling an element from the ring */

2 if f is not invertible then
3 go to step 1

4 g ← Sampler /* Sampling an element from the ring */

5 h = g/f mod q
6 return h

The most studied variants of NTRU are built over commutative rings of
quotient polynomials where algorithms to invert elements are well-studied
and optimized. Recently, Kim and Lee [8] demonstrated a polynomial-time
attack on a relaxed version of NTRU problem called NTRU learning problem,
which was considered to be as difficult as NTRU problem. A thorough anal-
ysis of their attack shows that the commutativity of the underlying structure
helps construct linear equations whose solution contains information about
the private key that can be recovered in polynomial time. Furthermore, when
Coppersmith and Shamir [9] introduced lattice attack against NTRU, they
suggested that considering a noncommutative group algebra could be another
direction to provide better security against their attack. Therefore, exploring
noncommutative variants of NTRU is an important direction of research.

Motivation: There are many noncommutative NTRU-like schemes in
literature like [10–15]. However, none of these schemes provide a way to
generate keys, which raises many questions about their practical implemen-
tation. Yasuda et al. [16] describe group ring NTRU (GR-NTRU) as a general
structure to build different variants of NTRU-like schemes. In GR-NTRU,
the group ring ZG corresponding to a finite group G is used to create an
NTRU-like variant, where the group G can be abelian or nonabelian. One
would need units to build GR-NTRU over dihedral group. Raya et al. [17]
show that dihedral group is a good option for developing GR-NTRU by ex-
perimentally checking that the keyspace size for different key generation cri-
teria is large enough. However, they have used the matrix inversion method
to generate keys that becomes time-consuming in higher dimensions. They
leave developing a fast inversion algorithm as future work. We put an end

2



to this task in this work.
Our Contribution: In this work, we focus on the construction of units in

the group ring of dihedral group. There are works on the characterization of
units in dihedral group rings [18] [19], [20]. However, all those classifications
rely on group representation theory and are not easily implementable to
serve the purpose of constructing units. Therefore, it becomes essential to
look for alternative ways to check for units. In this paper, we first give some
preliminary results on units in the group ring of the cyclic group. Then, as
the main result, we find a necessary and sufficient condition for an element to
be a unit in the group ring of dihedral group. We provide an explicit relation
between units in dihedral group ring and the units in the group ring of cyclic
group. Further, we check the efficiency of our approach experimentally.

2. Group ring of dihedral group

Consider a dihedral group DN of order 2N ,

DN =
〈
x, y : xN = y2 = 1, xy = yxN−1

〉
.

The group ring of diheral group over a commutative ring R is defined as:

RDN = {α01+α1x+· · ·+αN−1x
N−1+β0y+β1yx+· · ·+βN−1yx

N−1 : αi, βi ∈ R}.

In this article, R is a commutative ring with unity. Suppose an element
a = α01+α1x+ · · ·+αN−1x

N−1+β0y+β1yx+ · · ·+βN−1yx
N−1 ∈ RDN . Let

α(x) = α01+α1x+ · · ·+αN−1x
N−1 and β(x) = β01+ β1x+ · · ·+ βN−1x

N−1.
Then, we can think of α(x), β(x) as elements of the group ring RCN , where
CN is the cyclic group of order N . In fact, RCN is the subring of RDN . By
abuse of notation, we may write a = α(x) + yβ(x). Thus, from now onwards

RDN = {α(x) + yβ(x) : α(x), β(x) ∈ RCN}. (1)

Consider the product

α(x)y = α0y + α1xy + α2x
2y · · ·+ αN−1x

N−1y

= α0y + α1y(x
N−1) + α2y(x

N−1)2 + · · ·+ αN−1y(x
N−1)N−1

= y(α0 + α1(x
N−1) + α2(x

N−1)2 + · · ·+ αN−1(x
N−1)N−1)

= yα(xN−1).
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Therefore the product of two elements w = u(x) + yv(x), a = α(x) +
yβ(x) ∈ RDN is given by

wa = (u(x) + yv(x))(α(x) + yβ(x))

= u(x)α(x) + yv(x)α(x) + u(x)yβ(x) + yv(x)yβ(x)

= u(x)α(x) + yv(x)α(x) + yu(xN−1)β(x) + v(xN−1)β(x)

= u(x)α(x) + v(xN−1)β(x) + y(v(x)α(x) + u(xN−1)β(x)).

In the following lemma, (uv)(xr) is an element in RCN obtained by mul-
tiplying u(x), v(x) and then replacing x with xr in the product. While
u(xr)v(xr) is obtained by first replacing x with xr in u(x), v(x) and then
multiplying them.

Lemma 1. Let u(x), v(x) ∈ RCN . Then (uv)(xr) = u(xr)v(xr), for all
r = 1, 2, . . . , N − 1.

Proof. Let u(x) =
∑N−1

i=0 uix
i and v(x) =

∑N−1
j=0 vjx

j. Then

u(xr) =
N−1∑
k1=0

( ∑
ir≡k1(modN)
i∈{0,1,...,N−1}

ai

)
xk1 and v(xr) =

N−1∑
k2=0

( ∑
jr≡k2(modN)
j∈{0,1,...,N−1}

bj

)
xk2 .

Now

u(xr)v(xr) =
N−1∑
k1=0

( ∑
ir≡k1(modN)
i∈{0,1,...,N−1}

ai

)
xk1

N−1∑
k2=0

( ∑
jr≡k2(modN)
j∈{0,1,...,N−1}

bj

)
xk2

=
N−1∑
k=0

[ ∑
k1+k2≡k(modN)

( ∑
ir≡k1(modN)
i∈{0,1,...,N−1}

ai

)( ∑
jr≡k2(modN)
j∈{0,1,...,N−1}

bj

)]
xk

=
N−1∑
k=0

[ ∑
k1+k2≡k(modN)

( ∑
ir,jr≡k1,k2(modN)
i,j∈{0,1,...,N−1}

aibj

)]
xk

=
N−1∑
k=0

( ∑
(i+j)r≡k(modN)
i,j∈{0,1,...,N−1}

aibj

)
xk = (uv)(xr).
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Corollary 1. If u(x) ∈ RCN is a unit with inverse v(x) then u(xr) is unit
with inverse v(xr), for all r ∈ {1, 2, . . . , N − 1}.

Proof. Suppose u(x) ∈ RCN is unit then there exists a v(x) ∈ RCN such
that (uv)(x) = u(x)v(x) = 1. Then, by Lemma 1, for any positive integer
r ∈ {1, 2, . . . , N − 1}, we have u(xr)v(xr) = (uv)(xr) = 1.

3. Constructing units in RDN from units in RCN

Corollary 2. Let u(x) be a unit in RCN with inverse v(x). Then u(xr) and
yu(xr) are units in RDN with inverses v(xr) and yv(x(N−1)r), respectively,
for all r = 1, 2, . . . , N − 1.

Proof. Since, u(x), v(x) are inverses of each other, therefore, (uv)(x) = 1.
Using Lemma 1, we get

(yu(xr))(yv(x(N−1)r)) = y2u(x(N−1)r)v(x(N−1)r) = (uv)(x(N−1)r) = 1.

Theorem 1. (Necessary and sufficient condition) Let w = u(x) + yv(x) ∈
RDN . Then, w is a unit in RDN if and only if the element v(x)v(xN−1) −
u(x)u(xN−1) is a unit in RCN . Moreover, if h(x) denotes the inverse of
v(x)v(xN−1)−u(x)u(xN−1) in RCN then inverse of w is given by a = α(x)+
yβ(x) where α(x) = −u(xN−1)h(x) and β(x) = v(x)h(x).

Proof. Suppose v(x)v(xN−1) − u(x)u(xN−1) is a unit in RCN with inverse
h(x) and α(x), β(x) be as in the statement of the theorem. Then

wa = u(x)α(x) + v(xN−1)β(x) + y(v(x)α(x) + u(xN−1)β(x))

= −u(x)u(xN−1)h(x) + v(xN−1)v(x)h(x)

+ y(−v(x)u(xN−1)h(x) + u(xN−1)v(x)h(x))

= h(x)(v(x)v(xN−1)− u(x)u(xN−1)) = 1.

Also, from Lemma 1, h(xN−1)(v(x)v(xN−1) − u(x)u(xN−1)) = 1. Therefore,
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by the uniqueness of the inverse, we get that h(x) = h(xN−1). Consider

aw = α(x)u(x) + β(xN−1)v(x) + y(β(x)u(x) + α(xN−1)v(x))

= −u(x)u(xN−1)h(x) + v(xN−1)v(x)h(xN−1)

+ y(v(x)u(x)h(x)− u(x)v(x)h(xN−1))

= h(x)(v(x)v(xN−1)− u(x)u(xN−1))

+ y(v(x)u(x)h(x)− u(x)v(x)h(x))

= h(x)(v(x)v(xN−1)− u(x)u(xN−1)) = 1.

Conversely, suppose w = u(x) + yv(x) is a unit in RDN with inverse a =
α(x) + yβ(x). Then we have

u(x)α(x) + v(xN−1)β(x) + y(v(x)α(x) + u(xN−1)β(x)) = 1 + y0.

Comparing both sides gives

u(x)α(x) + v(xN−1)β(x) = 1 and v(x)α(x) + u(xN−1)β(x) = 0.

Equivalently (
u(x) v(xN−1)
v(x) u(xN−1)

)(
α(x)
β(x)

)
=

(
1
0

)
.

The uniqueness of the inverse in a group ring guarantees that the matrix(
u(x) v(xN−1)
v(x) u(xN−1)

)
is invertible. Therefore, det

(
u(x) v(xN−1)
v(x) u(xN−1)

)
= u(x)u(xN−1)−

v(x)v(xN−1) is unit in RCN . Further,(
α(x)
β(x)

)
=

(
u(x) v(xN−1)
v(x) u(xN−1)

)−1(
1
0

)

=
1

u(x)u(xN−1)− v(x)v(xN−1)

(
u(xN−1) −v(xN−1)
−v(x) u(x)

)(
1
0

)
.

This gives that α(x) = −h(x)u(xN−1) and β(x) = h(x)v(x).

Corollary 3. If w = u(x)+yv(x) is a unit in RDN then w′ = v(x)+yu(x) is
also a unit in RDN with inverse a′ = α′(x)+yβ′(x) where α′ = v(xN−1)h(x),
β′(x) = −u(x)h(x) and h(x) is the inverse of v(x)v(xN−1)− u(x)u(xN−1) in
RCN .
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Proof. Suppose w = u(x) + yv(x) is a unit in RDN then from Theorem 1,
v(x)v(xN−1)−u(x)u(xN−1) is unit inRCN . Let α

′(x), β′(x) be as in statement
of corollary. Consider

w′a′ = v(x)α′(x) + u(xN−1)β′(x) + y(u(x)α′(x) + v(xN−1)β′(x))

= v(x)v(xN−1)h(x)− u(x)u(xN−1)h(x)

+ y(u(x)v(xN−1)h(x)− u(x)v(xN−1)h(x))

= h(x)(v(x)v(xN−1)− u(x)u(xN−1)) = 1.

And the other side a′w′ = 1 can be proved similarly.

Depending on the previous discussion, we provide Algorithm 2 to con-
struct units in RDN from units in RCN .

Algorithm 2: Inversion in RDN

Input: w = u(x) + yv(x) ∈ RDN

Output: w′ = u′(x) + yv′(x) ∈ RDN an inverse to w, or a failure
1 mul1 ← u(x)u(xN−1) /* product in RCN */

2 mul2 ← v(x)v(xN−1) /* product in RCN */

3 c← mul2 −mul1 /* Coefficient-wise subtraction in R */

4 inv, found← find-inverse-in-RCN(c)

5 if not found then
6 return failure

7 u′(x)← −u(xN−1)inv /* product in RCN */

8 v′(x)← v(x)inv /* product in RCN */

9 return u′(x) + yv′(x)

Algorithm 2 relates the problem of finding the inverse of an element in
RDN into finding the inverse of an element in RCN (Algorithm 2: line 4).
In case R = Zqr for prime q and r ≥ 1, one can use an efficient algorithm to
find inverse for units in ZqrCN as in [21], and therefore constructing units in
ZqrDN efficiently.

4. Experimental Results

In this section, we set our experiment to compare the efficiency of our al-
gorithm (Algorithm 1) and the already existing approach to find inverses of
elements in ZqrDN . We randomly generate invertible elements and check the
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cost of finding the inverse using the conventional matrix-based method [20]
versus our method. In the majority of NTRU-like schemes, units are sampled
to be ternary, i.e., coefficients ∈ {0, 1,−1}, while some other schemes sample
units as non-ternary elements to increase the entropy and make searching
attacks on the key harder. Therefore, to notice the efficiency of the com-
putations, we sample 100 random elements with different properties corre-
sponding to different parameter sets as in Table 1. Table 1 and Figure 1
compare the average time to find the inverse of randomly sampled ternary,
non-ternary elements in Z2rDN for different values of N, r. The values of
N, r are selected to sample elements similar to those used in cryptographic
applications. The matrix approach involves building the matrix for group-
ring elements in ZqrDN and then finding the inverse of the corresponding
matrix. For a particular value of N , the matrix representing an element in
ZqrDN has a dimension of 2N × 2N ; therefore, finding the inverse of units
involves inverting a matrix of size 2N × 2N . To calculate the inverse effi-
ciently, we depend on the optimized implementation of SageMath 1 to invert
matrices and compare the average running time for the matrix approach with
our approach. Timed results have been executed on a system Linux (Ubuntu
22.04.2 LTS) with Intel(R) Xeon(R) CPU E3-1246 v3 @ 3.50GHz and 32
GB installed RAM. We can see from the results that finding the inverse ac-
cording to the matrix approach is costly when N increases. For instance,
inverting the matrices representing the non-ternary units for parameter sets
(N, r) = (677, 12), (821, 13) did not terminate in a reasonable time. Fur-
ther, the average time to compute the inverse of a unit for (N, r) = (509, 12)
is 173.275 and 898.381 seconds for ternary, and random units, respectively.
While using our approach takes, on average, just 1.395 and 14.511 seconds,
respectively, for the same parameter set.

5. Conclusion

Although there are several characterizations of units in the group ring of
dihedral group. However, we lack an efficient way to check and construct its
units. In this paper, we provide a relation between units of the group ring of
dihedral group and the group ring of the cyclic subgroup. This relation, to-
gether with existing work on finding units group ring of cyclic groups, proves

1https://www.sagemath.org/
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Table 1: Average time (seconds) to find inverse for units in Z2rDN

(a) Ternary units

(N, r)
Matrix
approach

Our
approach

(109, 10) 0.8201 0.0618

(239,11) 12.730 0.287

(349,12) 45.909 0.631

(509,12) 173.275 1.395

(677,12) 542.823 2.480

(821,13) 1297.047 3.683

(b) Non-ternary units

(N, r)
Matrix
approach

Our
approach

(109, 10) 2.738 0.0628

(239,11) 58.457 3.0302

(349,12) 242.920 6.554

(509,12) 898.381 14.511

(677,12) 25.879

(821,13) 38.741
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Figure 1: Average time (seconds) to find inverse for units in Z2rDN

of immense help for the efficient construction of units in the concerned group
ring. Our method provides a huge benefit in time consumption for generating
units and thus can be used in various cryptographic purposes.
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