
A note on securing insertion-only Cuckoo filters

Fernando Virdia1 Mia Filić2,

1 NOVA LINCS & Universidade NOVA de Lisboa, Lisbon, Portugal
2 Applied Cryptography Group, ETH Zürich, ETH Zürich, Switzerland

Abstract. We describe a small tweak to Cuckoo filters that allows securing them under
insertions using the techniques from Filić et al. (ACM CCS 2022), without the need for an
outer PRF call.

In [FPUV22], Filić, Paterson, Unnikrishnan and Virdia define simulation-based security notions
that capture some privacy and correctness guarantees for Probabilistic Data Structures handling
Approximate Membership Queries (AMQ-PDS). They proceed to prove that Bloom filters [Blo70]
trivially achieve these guarantees when the hash functions used by the filter are replaced with
pseudorandom functions (PRF). They then attempt to prove the same for “insertion-only” Cuckoo
filters [FAKM14] (i.e., Cuckoo filters where only the insertion functionality is made available to
the adversary) but notice that simply replacing hash functions with PRFs is not sufficient in this
case. They address this issue by pre-processing inputs to the Cuckoo filter by first passing them
through a PRF.

In formal terms, the issue with Cuckoo filters (solved by adding an outer PRF call) is their lack
of function-decomposability (c.f. Definition 3.1 and Section 4.2 of [FPUV22]). Here, we propose a
different tweak to Cuckoo filters that provides them with function-decomposability without adding
an outer PRF call on top of the two original hash-function calls. In the following, we use the same
notation used by Filić et al. First, we recall the description of Cuckoo filters given by [FPUV22].

Definition 1 (Cuckoo filter). Let pp = (s, λI , λT , num) be a tuple of positive integers. We
define an (s, λI , λT , num)-Cuckoo filter to be the AMQ-PDS with algorithms defined in Figure 1,
making use of hash functions HT : D→{0, 1}λT and HI : D→{0, 1}λI .

In order to achieve function-decomposability without pre-processing inputs, we increase the
output length of HT by λI bits, such that HT : D→{0, 1}λT+λI . We then read from the output of
HT (rather than from the output of HI) the index i1 of the first candidate bucket used to “store”
x ∈ D, and use HI only to derive the index i2 of the second candidate bucket. This would mean
defining qryHT ,HI and upHT ,HI as shown in Figure 2.

Definition 2 (Function-decomposable Cuckoo filter). Let pp = (s, λI , λT , num) be a tuple
of positive integers. We define an (s, λI , λT , num)-function-decomposable Cuckoo filter to be the
AMQ-PDS with algorithms obtained by applying the changes in Figure 2 to Figure 1, making use
of hash functions HT : D→{0, 1}λT+λI and HI : D→{0, 1}λI .

Lemma 1. Function-decomposable Cuckoo filters from Definition 2 with oracle access to a random
function F are F -decomposable [FPUV22, Def. 3.1], reinsertion invariant [FPUV22, Def. 3.2], and
satisfy consistency rules of insertion-only AMQ-PDS [FPUV22, Def. 3.10].

Proof. Let F ←$ Funcs[D,R] where R = {0, 1}λT+λI ⊂ D. Replace HT with F in Definition 2.
Then, F -decomposability follows from observing that

upF,HI (x, σ) = upIdR,HI (F (x), σ) ∀x ∈ D, σ ∈ Σ,

qryF,HI (x, σ) = qryIdR,HI (F (x), σ) ∀x ∈ D, σ ∈ Σ,

where upIdR,HI and qryIdR,HI lack oracle access to F , which is truly random. Reinsertion invariance
and the other consistency properties follow from inspection of upF,HI and qryF,HI , in the same way
they hold for Cuckoo filters.

setup(pp)

1 s, λI , λT , num← pp

2 // Initialise 2λI buckets, s λT -bit slots

3 for i ∈ 2λI : σi ← ⊥s

4 σevic ← ⊥
5 return σ ← (σi)i, σevic

qryHT ,HI (x, σ)

1 tag ← HT (x)

2 i1 ← HI(x)

3 i2 ← i1 ⊕HI(tag)

4 a← [tag ∈ σi1 or tag ∈ σi2 or tag = σevic]

5 return a

upHT ,HI (x, σ)

1 tag ← HT (x)

2 i1 ← HI(x)

3 i2 ← i1 ⊕HI(tag)

4 // check if up was disabled, first

5 if σevic ̸= ⊥ : return ⊥, σ
6 // if tag is already in either bucket

7 if tag ∈ σi1 or tag ∈ σi2 : return ⊤, σ
8 // check if any bucket has empty slots

9 for i ∈ {i1, i2} // in that order

10 if load(σi) < s

11 σi ← σi ⋄ tag

12 return ⊤, σ
13 // if no empty slots, displace something

14 i←$ {i1, i2}
15 for g ∈ [num]

16 slot←$ [s]

17 elem← σi,slot // element to be evicted

18 // swap elem and tag

19 σi[slot]← tag; tag ← elem

20 i← i⊕HI(tag)

21 if load(σi) < s

22 σi ← σi ⋄ tag

23 return ⊤, σ
24 // could not store x without an eviction

25 σevic ← tag // last value of tag after loop

26 return ⊤, σ

Fig. 1: AMQ-PDS syntax instantiation for the Cuckoo filter.

qryHT ,HI (x)

1 tag||i1 ← HT (x)

2 i2 ← i1 ⊕HI(tag)

3 . . .

upHT ,HI (x)

1 tag||i1 ← HT (x)

2 i2 ← i1 ⊕HI(tag)

3 . . .

Fig. 2: Changes to apply to Figure 1 to obtain a function-decomposable Cuckoo filter variant. We
note that the call to HI on Line 20 of upHT ,HI in Figure 1 does not change.

Bibliography

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, jul 1970.

[FAKM14] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. Cuckoo
filter: Practically better than bloom. New York, NY, USA, 2014. Association for Com-
puting Machinery.

[FPUV22] Mia Filic, Kenneth G. Paterson, Anupama Unnikrishnan, and Fernando Virdia. Adver-
sarial correctness and privacy for probabilistic data structures. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 1037–1050. ACM
Press, November 2022.

	A note on securing insertion-only Cuckoo filters

