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Abstract. A cryptographic accumulator is a compact data structure for representing a
set of elements coming from some domain. It allows for a compact proof of membership
and, in the case of a universal accumulator, non-membership of an element x in the
data structure. A dynamic accumulator, furthermore, allows elements to be added to and
deleted from the accumulator.

Previously known RSA-based dynamic accumulators were too slow in practice be-
cause they required that an element in the domain be represented as a prime number.
Accumulators based on settings other than RSA had other drawbacks such as requiring a
prohibitively large common reference string or a trapdoor, or not permitting deletions.

In this paper, we construct RSA-based dynamic accumulators that do not require
that the accumulated elements be represented as primes. We also show how to aggre-
gate membership and non-membership witnesses and batch additions and deletions. We
demonstrate that, for 112-bit, 128-bit, and 192-bit security, the efficiency gains compared
to previously known RSA-based accumulators are substantial, and, for the first time, make
cryptographic accumulators a viable candidate for a certificate revocation mechanism as
part of a WebPKI-type system. To achieve an efficient verification time for aggregated
witnesses, we introduce a variant of Wesolowski’s proof of exponentiation (Journal of
Cryptology 2020) that does not require hashing into primes.

1 Introduction

A cryptographic accumulator [BdM94] is a compact data structure for representing a set of
elements that allows for a compact proof of membership and, in the case of a universal accumu-
lator, non-membership. This makes it attractive for certificate issue and revocation, especially in
a distributed setting. The idea is that membership in a dynamically updated set S is determined
by a single value acc (called the accumulator value); in order to demonstrate that x ∈ S, one
additionally needs a witness wx, also of a small, fixed size. acc can be efficiently updated as
values are added to and deleted from S.

Benaloh and de Mare [BdM94] introduced cryptographic accumulators and gave the first
construction, which was based on RSA. In it, the accumulator’s public key is an RSA modulus
n = pq1; an initial value, acc∅ ← Z∗

n that corresponds to the empty set is also picked. The

value accS = acc
∏

x∈S x

∅ represents a set S; for now, let us think of elements of S as positive
integers. We say that accS is the accumulator for S. The witness wx that x ∈ S is the value

wx = acc
∏

x′∈S,x′ ̸=x x′

∅ ; to verify that x ∈ S using this witness, check that (wx)
x = accS . To

add y to the accumulator, Benaloh and de Mare let the value accS∪{y} = accyS become the
new accumulator value; publishing the value y makes it possible to update all the witnesses:
wx := (wx)

y. (The original proposal did not provide for efficient deletion of elements.)
It is easy to see that this original proposal for a cryptographic accumulator requires some

tweaking to achieve soundness, i.e., to ensure that no polynomial-time adversary could find a
witness wy for y /∈ S. For example, for a composite integer x ∈ S, x = x1x2 for x1 > x2 > 1,
(wx)

x1 will pass as the witness for x2. A natural fix would be to parameterize by ℓ and require
that S ⊆ {2ℓ, . . . , 2ℓ+1 − 1}. This would rule out the possibility that both x = x1x2 and x1 < x
can be in S. However, unfortunately, this restriction is not sufficient2. Aware of this, Benaloh

1 It is important that p and q be safe primes, i.e., p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are both
primes

2 Let x = x1x2 and y = y1y2 where x1, x2, y1, y2 are all distinct and relatively prime to each other,
and 2ℓ < x1y1 < 2ℓ+1. For z = x1y1, we can compute wz such that wz

z = accS from the values
x, y, wx, wy. This is done by using the extended Euclidean GCD algorithm to find a, b such that
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and de Mare argued that in their proposed applications, the value z for which the adversary
would wish to provide a phony witness, will not be under the control of the adversary, but in fact
will be chosen at random. They further argued (somewhat informally) that this would indeed
result in a sound accumulator, i.e., one in which the polynomial-time adversary cannot compute
wz if z /∈ S. Formalizing this argument is one of the contributions of our paper.

Barić and Pfitzmann [BP97] showed that, if the domain of the accumulator is restricted to
prime integers, then Benaloh and de Mare’s construction is sound under the strong RSA assump-
tion. Camenisch and Lysyanskaya [CL02] adapted this prime number accumulator construction
so that the accumulator value can be efficiently updated not just when an element is added to the
set, but also when one is deleted. Li, Li, and Xue [LLX07] further enhanced it to allow efficient
witnesses not just of membership in the set represented by acc, but also of non-membership.
Peng and Bao [PB10] proposed an attack on Li, Li, and Xue non-membership procedure that
relies on obtaining the value µ =

∏
s∈S s mod ϕ(n), where S is the accumulated set. However,

this attack is irrelevant to us since the value µ is never handed to an adversary.
However, in spite of the significant improvements in the functionality and security properties

of RSA-based accumulators these subsequent works provided, RSA-based accumulators were
considered impractical because of the requirement that S ⊂ PRIMES. In order to, for example,
use them to handle certificate revocation, it was necessary to first represent a cryptographic
certificate as a prime integer. In some limited applications this may not present a problem (for
example, in CL anonymous credentials [CL01,CL03,Lys02], there is always a component of the
credential that is already required to be a prime integer), but in general, one would need a hash
function that maps its input domain to PRIMES. That generally incurs an O(logN) overhead,
where N is the upper bound of the integer interval from which primes are sampled. (See Gennaro,
Halevi and Rabin [GHR99] for an analysis of how to efficiently hash to primes.)

Alternative constructions exist as well, but they have drawbacks, too. The bilinear-map-
based construction of Nguyen [Ngu05] and follow-up work [ATSM09] handles deletions extremely
efficiently, but requires either public parameters whose size is linear in the upper bound of the
number of elements that can be added to acc, or that a trusted participant in possession of a
trapdoor compute the accumulator value. Moreover, in the absence of a trusted party with the
trapdoor, adding new elements to the set is as costly as computing the accumulator value from
scratch. The Merkle-tree-based construction of Reyzin and Yakoubov [RY16] (and the earlier
one by Crosby and Wallach [CW09]) has logarithmic (rather than constant) in the size of S
witnesses, and also does not support deletions. These constructions can be combined to achieve
efficient add updates and support deletions at the same time [BCD+17, BKR24]; however, a
prohibitively large common reference string (or a trusted third party with the trapdoor) is still
needed to implement the combined construction.

Our contributions. We propose a random-oracle-based version of the RSA accumulator that
does not require hashing to primes, and is therefore much more efficient in practice than previous
RSA-based accumulators. As in prior work, the public key is an RSA modulus n, and the
initial accumulator value is acc∅ ← Z∗

n. The accumulator value corresponding to the set S is

accS = acc
∏

x∈S H(x)

∅ , where H is an appropriate hash function that we model as a random oracle
in the security analysis, where we prove security under the strong RSA assumption. We show
that this accumulator allows for dynamic additions (easy to see) and deletions (somewhat more
complicated), and adapt Li, Li and Xue’s techniques to show that, in addition to witnesses of
membership, this accumulator allows for witnesses of non-membership.

In addition, we propose a version of Wesolowski’s proof of exponentiation (PoE) [Wes20]
that does not require hashing to primes. Using our PoE, we show that witnesses can be securely
batched under the adaptive root assumption [Wes20] and the strong RSA assumption. In other
words, an aggregated witness wS′ for the subset S ′ ⊆ S is of size |wS′ | <

∑
x∈S′ |wx|; similarly,

we can batch witnesses of non-membership such that the non-membership witness w̄S∗ for the
set S∗ such that S∗ ∩ S = ∅ is of size |w̄S∗ | <

∑
x∈S∗ |w̄x|. Update information necessary for

updating witnesses can be batched as well.

ax + by = 1 and using the trick due to Shamir: first, let w = wb
xw

a
y . Note that wxy = (wb

xw
a
y)xy =

wxyb
x wxya

y = accybS accaxS = accax+by
S = accS . Thus wz = wx2y2 will pass as the witness for z = x1y1:

wz
z = (wx2y2)x1y1 = wxy = accS .
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Benefits to certificate revocation systems. Let us go over the promise that dynamic ac-
cumulators hold (but so far have not delivered on) when it comes to certificate revocation of a
system such as WebPKI, which is the PKI our browsers rely on for TLS.

For simplicity, suppose that the certification authority (CA) responsible for issuing certificates
is also responsible for revoking them; let us see how it would handle revocation using a dynamic
accumulator. Let acct correspond to the accumulator value at time t; this accumulator value
represents all of the current (unrevoked) certificates, and it is signed by the CA. In order to
convince a verifier that its certificate x is still valid (i.e. has not been revoked), a web server needs
a witness that its certificate is in the accumulator acct. This is a step that needs to be relatively
practical, but a server can be reasonably expected to have the corresponding connectivity and
computational resources.

Verification of the current validity of certificate x is the part conducted by a browser, on
a potentially limited device, both from the computational and communication point of view,
and therefore it is the part that needs to be optimized. If dynamic accumulators are to be used
in this scenario, then this step would involve just checking that acct is fresh (e.g., the CA’s
signature on it includes a relatively recent time stamp) and that the server has presented the
witness wx that x is in the set corresponding to acct; no communication-intensive steps such
as table lookups are needed for verification purposes. The fact that acct has a small size makes
it a very attractive option for disseminating revocation information that addresses a real need:
for example, in WebPKI, mobile browsers hardly even check for revocation information because
this information is so unwieldy [LTZ+15]; the current front-runner alternative, CRLite [LCL+17]
(put to use by the Mozilla family of browsers in 2020), still requires that a browser receive around
5Mb of data in order to be able to verify that a certificate has not been revoked.

A suitable cryptographic accumulator can potentially offer a significant improvement for
WebPKI. Let us see why our proposed construction is up to the task. First, consider the client’s
side of the transaction, i.e., the step where the browser verifies that the server’s certificate x has
not been revoked. In addition to verifying the CA’s signature on acct, the client in our construc-

tion needs to also verify that w
H(x)
x = acct. This involves one application of a standard hash

function and one modular exponentiation, which are both doable on browser-capable devices.
The fact that, in our construction, the hash function does not need to hash to primes makes

an incredible difference: as we discuss in more detail in Section 7, hashing a 4KB input to even a
small, 264-bit prime (which is a reasonable length needed to avoid collisions) takes about 13 ms of
CPU time on a modern laptop, which can contribute to a significant overhead for a CA that must
issue a very large number of certificates because it will have to hash each certificate into a prime.
Eliminating this costly step can make the RSA accumulator a practical, viable candidate for use
in this scenario. We show that we get the same level of security that one would get by hashing
into a 264-bit prime at the expense of letting the length of H(x) be 1704 bits. This necessitates
a more involved modular exponentiation, but in our experiment comparing running times of the
implementations of both approaches , i.e., hashing then performing modular exponentiation, it
was still about 3 times faster than hashing into a 264-bit prime (see Section 7 for more details).

Next, we need to make sure that the costs to the CA and server are also reasonable. Here,
we have two options: either the CA has a trapdoor to the accumulator (corresponding to an
increased amount of trust the system places on the CA, which might not be a desirable design
choice) or not. In the former case, a new element x can be added to the accumulator acct without
needing to update it to a different value acct+1 (see Section 5 for this flavor of the construction):
using the trapdoor, the CA will compute wx and communicate it to the server whose certificate
is x. To handle deletions in the former case, and both additions and deletions in the latter case,
the CA will have to update the accumulator from acct to acct+1, and publish some additional
information that would allow each server to update its witness. As we show in Section 6.2, this
information can be batched such that many certificates can be added (in the trapdoorless setting)
or revoked (i.e. deleted from the accumulator) on a single update. The information necessary
to update a server’s membership witness would just be the list of the revoked certificates (note
that each certificate can be represented just by a short hash) and a single element of the group
Z∗
n. Although this design would require that each server regularly download and process lists of

previously revoked certificates, this type of load is comparable to WebPKI, and therefore not
unrealistic in practice for a server, while offering clients vastly better efficiency, and requiring
that the CAs do a comparable amount of work as in current systems.
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Technical roadmap. Our first observation is that, if a set S consists of a polynomial number (in
the security parameter ℓ) of odd integers drawn uniformly at random from the set {2ℓ−1, 2ℓ− 1}
(i.e. they are random odd ℓ-bit integers whose most significant bit is 1; from now on, we will
denote this set Odds(2ℓ−1, 2ℓ − 1)), the probability that for some x ∈ S, x |

∏
x′∈S,x′ ̸=x x

′ (i.e.,

x divides the product of the rest of the elements of S) is negligible in ℓ. More precisely, if x
is chosen uniformly at random from Odds(2ℓ−1, 2ℓ − 1), then with overwhelming probability,
its largest prime factor’s bit length is at least k = Ω(ℓc) for a constant c; as we will see in

Section 2.1, c = 1/4 is possible, and it translates into overwhelming probability 1 − 2
4√
ℓ of the

largest prime factor of x having at least k bits. Since there are at least 2k−log k primes of length
at least k, and a random number is a multiple of p with probability 1/p, by the birthday bound,
a super-polynomial Ω(2(k−log k)/2) samples would have to be taken for the largest prime factor
to repeat.

This observation, formalized in Section 2.1, yields a proof of security in the random ora-

cle model for the following flavor of the RSA-based accumulator: accS = acc
∏

x∈S H(x)

∅ , where

H : {0, 1}∗ 7→ Odds(2ℓ−1, 2ℓ − 1) is a hash function that will be modeled as a random oracle in
the proof of security.

We give a reduction from an adversary that breaks the soundness of this accumulator in
the random-oracle model to solving the flexible RSA problem, contradicting the strong RSA
assumption. In a nutshell, if the adversary provides a phony witness wy for y /∈ S, then

d = gcd(H(y),
∏

x∈S H(x)) < H(y), by our observation. Since the witness verifies, w
H(y)/d
y =

acc
∏

x∈S H(x)/d

∅ ; at the same time, gcd(H(y)/d,
∏

x∈S H(x)/d) = 1. Thus, we can use Shamir’s

trick (Lemma 1) to efficiently compute u such that uH(y)/d = acc∅, which breaks the flexible
RSA problem where the challenge is (n, acc∅).

It is easy to see that dynamic additions to this accumulator are possible: just as in the

original Benaloh and de Mare construction, for accS = acc
∏

s∈S H(s)

∅ , accS∪{y} = acc
H(y)
S =

acc
H(y)

∏
s∈S H(s)

∅ , the value w′
x = w

H(y)
x is the witness that x ∈ S ∪ {y} if wx is the witness

for x ∈ S, since (w′
x)

H(x) = w
H(x)H(y)
x = acc

H(y)
S = accS∪{y}. However, deletions are not as

seamless: the Camenisch-Lysyanskaya observation that the Shamir trick can be used to update
the witness for x after deleting y would require that gcd(H(x), H(y)) = 1, which would be the
case if we hashed to primes, but is not necessarily the case when we hash to Odds(2ℓ−1, 2ℓ − 1).

In order to be able to efficiently update membership witnesses when a deletion has occurred,
we generalize the notion of what counts as a membership witness in a way that still preserves
soundness: Even though more values count as potential witnesses, the adversary will not be
able to find any of them for a false statement. A valid membership witness will now consist of
two components, wx = (w, s) such that s is a multiset/tuple of small factors of H(x) such that
wx = accS , where x = H(x)/

∏
s∈s s. By “small,” we mean that each s ∈ s has bit length less

than k. As we show in Section 4.2, generalizing witnesses this way does not detract from the
soundness of the construction, but it allows efficient updates of membership witnesses. Suppose
that gcd(H(x), H(y)) = s > 1. Note that, if wx = (w, s) is a valid witness for x, then so is
w′

x = (ws, s ∪ {s}). Since gcd(H(x)/s,H(y)/s) = 1, Shamir’s trick works. For non-membership
witnesses, notice that for an accumulated set S and x /∈ S, H(x) |

∏
x′∈S H(x′) with negligible

probability, which means that there exists r ∈ Z with a large prime factor of at least k-bit such
that r | H(x) and gcd(r,

∏
x′∈S H(x′)) = 1. Using r, we can apply Li, Li and Xue technique to

obtain a non-membership witness for x.

In Section 4, we present our universal dynamic accumulator that works over large odd integers
in the random oracle model. In Section 5 we focus on the positive dynamic accumulator with a
trapdoor, which allows the holder of the trapdoor to add elements to the accumulator without
updating acc. This is an important use case to consider in view of the application to certificate
revocation described above. In Section 6, we get to the question of batching witnesses. In this
section, we first recall the proof of exponentiation (PoE) protocol due to Wesolowski [Wes20]. In
this protocol, a prover capable of a long exponentiation convinces a verifier that ve = u where
e is an integer so large that a verifier cannot carry out the exponentiation himself, and u and
v are elements of a group of unknown order (such as Z∗

n). Previously [Wes20, BBF19] it was
known that this protocol can be made non-interactive in the random-oracle model by hashing
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into primes. In a contribution that is of independent interest, we show that this protocol can
be adapted to drop the hash-to-primes requirement. Armed with PoE as a tool, we show that
both membership and non-membership witnesses can be batched, and, moreover, accumulator
updates can be batched as well. Finally, in Section 7, we experimentally compare prior work
with our own.

2 Preliminaries

Notations. A function f : N → [0, 1] is negligible if f(x) = o(x−c) for all c ∈ N. We use
negl(·) to denote a negligible function. We denote the security parameter by λ. For n ∈ N,
we use [n] to denote the set {1, . . . , n}, and QRn to denote the group of quadractic residues
modulo n. For a finite set S, we use #S to denote its cardinality, U(S) to denote the uniform
distribution over S, and a ←$ S to denote that a is sampled uniformly at random from S. Let
Odds(a, b)

def
= {a ≤ n ≤ b : n ≡ 1 mod 2}. For two functions h, g : R→ R, we use h(x) ∼ g(x) to

denote that limx→∞ h(x)/g(x) = 1. Sometimes, we use bold character, z, to denote a tuple, and
for two tuples x = (x1, . . . , xn) and y = (y1, . . . , ym), we use x∥y to denote their concatenation,
i.e., x∥y = (x1, . . . , xn, y1, . . . , ym). We say that x ∈ x if there exists i ∈ [|x|] such that x[i] = x.

Definition 1 (Strong RSA assumption [BP97]). For all λ ∈ N and probabilistic poly-time
(ppt) adversary A, given n = pq, where p and q are poly(λ)-bit safe primes, and u ∈ Z∗

n,

Pr
[
ve ≡ u mod n ∧ e > 1

∣∣(v, e)← A(1λ, u, n)] ≤ negl(λ)

Remark 1. Barić and Pfitzmann [BP97] initially proposed a definition of the strong RSA as-
sumption where p and q are poly(λ)-bit primes and e is a prime. Clearly, their version is at least
as hard as ours.

Lemma 1 (Shamir’s trick [Sha81]). For all n, x, y ∈ N, v, u ∈ Z∗
n such that vx ≡ uy mod n

and gcd(x, y) = 1, there exists w ∈ Z∗
n such that wx ≡ u mod n.

Proof. Since gcd(x, y) = 1, there exists α, β ∈ Z such that αx+βy = 1. Let w = uαvβ . We have
wx ≡ uαxvβx ≡ uαxuβy ≡ u mod n. ⊓⊔

2.1 Number Theoretic Functions

Dickman-ρ function. Let ρ : R≥0 → R be the continuous solution to the differential equation
uρ′(u) + ρ(u − 1) = 0 for u > 1 subjected to the initial condition ρ(u) = 1 for 0 ≤ u ≤ 1. de
Bruijn [dB51] proved that for u > 1, we have

ρ(u) = exp

(
−u
(
log u+ log log u− 1 +O

(
log log u

log u

)))
Therefore, ρ(u) ∼ (u log u)−u as u→∞.

Smooth numbers counting function. A function that will be important for us is a function
that will allow us to count y-smooth numbers (numbers whose largest prime factor is less than
or equal to y) in an arithmetic progression (sequences of the form si = s1 + (i− 1)d) define over
an interval [x], where x ∈ N. To this end, let us consider the function

Ψa,q(x, y)
def
= #{n ∈ [x] : (P+(n) ≤ y) ∧ (n ≡ a mod q)}

where P+(·) is the function returning the largest prime factor of an integer. Based on the survey
of Hildebrand and Tenenbaum [HT93], it follows that for u = log x/ log y and a, q ∈ N such that
gcd(a, q) = 1, if u≪ (log2 x)

1−ϵ, with ϵ > 0, we have

Ψa,q(x, y) =
xρ(u)

q

(
1 +O

(
1√

u log y

))
Hence, Ψa,q(x, y) ∼ (xρ(u))/q as y →∞.
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Lemma 2. Given a sufficiently large ℓ ∈ N, let a←$ Odds(2ℓ−1, 2ℓ − 1). For every 1 ≤ c ≤ 4
√
ℓ,

Pr
[
P+(a) ≤ 2c

√
ℓ
]
≤

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ

Proof. Let 1 ≤ c ≤ 4
√
ℓ and suppose a←$ Odds(2ℓ−1, 2ℓ − 1). Let η be the number of integers in

Odds(2ℓ−1, 2ℓ − 1) whose largest prime factor is less or equal to 2c
√
ℓ. We have

η = Ψ1,2(2
ℓ − 1, 2c

√
ℓ)− Ψ1,2(2

ℓ−1, 2c
√
ℓ)

=
1

2

(2ℓ − 1)

(√
ℓ

c
log

(√
ℓ

c

))−
√
ℓ/c

− 2ℓ−1

(
ℓ− 1

c
√
ℓ
log

(
ℓ− 1

c
√
ℓ

))−(ℓ−1)/c
√
ℓ


≈ 2ℓ−2

(√
ℓ

c
log

(√
ℓ

c

))−
√
ℓ/c

(since for large ℓ,
2ℓ − 1

2ℓ
≈ 1 and

ℓ− 1

ℓ
≈ 1)

≤ 2ℓ−2

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ

(setting c =
4
√
ℓ)

Hence, Pr
[
P+(a) ≤ 2c

√
ℓ
]
= η

2ℓ−2 ≤
(

4√
ℓ

4 log ℓ
)− 4√

ℓ

⊓⊔

Corollary 1. Given a sufficiently large ℓ ∈ N, for every constant 1 ≤ c ≤ 4
√
ℓ, m ∈ N, and

a1, a2, . . . , am ∼ U
(
Odds(2ℓ−1, 2ℓ − 1)

)
, let E be the event that there exists i ∈ [m] such that

P+(ai) |
∏

j∈[m]\{i} aj. Then,

Pr[E] ≤ m2

 1

2ℓ3/4
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ


Proof. Let ℓ be a large integer, and suppose 1 ≤ c ≤ 4
√
ℓ,m ∈ N and a1, a2, . . . , am ∼ U

(
Odds(2ℓ−1, 2ℓ − 1)

)
.

Let Ei be the even that P+(ai) divides
∏

j∈[m]\{i} aj . Since P
+(ai) is a prime, it follows that Ei

is exactly the event that there exists j ∈ [m] \ {i} such that P+(ai) divides aj . We have

Pr[Ei] ≤
∑

j∈[m]\{i}

Pr
[
P+(ai) divides aj

]
≤

∑
j∈[m]\{i}

Pr
[
P+(ai) divides aj | P+(ai) > 2c

√
ℓ
]
+ Pr

[
P+(ai) ≤ 2c

√
ℓ
]

(1)

≤ (m− 1)

 1

2c
√
ℓ
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ


≤ (m− 1)

 1

2ℓ3/4
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ


Inequality (1) follows from the fact that we have #Odds(2ℓ−1, 2ℓ−1)/P+(ai) multiples of P+(ai)
in Odds(2ℓ−1, 2ℓ − 1). Since E = ∪mi=1Ei, it follows that

Pr[E] ≤
m∑
i=1

Pr[Ei] ≤ m2

 1

2ℓ3/4
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ


⊓⊔
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3 Cryptographic Accumulator

We recall the definition of universal and positive dynamic accumulators based on [RY16,BCD+17,
DHS15,BKR24]. Our definition of non-membership witness creation is borrowed from the work
of Baldimtsi, Karantaidou and Raghuraman [BKR24]. For a value a, we use â to say that a is
optional. We use t to denote a discrete time counter.

Definition 2 (Universal Dynamic Accumulator). A universal dynamic accumulator for a
domainM is a tuple of poly-time algorithms UAcc = (Gen,Add,Delete,NonMemWitCreate,
MemWitUp,NonMemWitUp,MemVer,NonMemVer) with the following properties:

– Gen(1λ, aux)→ (pp, ŝk, acc0): This probabilistic algorithm takes as input the security param-
eter 1λ and auxiliary information aux. It outputs the public parameter pp, the (optional)

secret parameter ŝk, and an initial accumulator acc0.

– Add(pp, ŝk, acct, x) → (acct+1, wx,t+1, upmsgt+1): This (probabilistic) algorithm takes as in-

put the parameters pp, ŝk, the accumulator acct, and an element x ∈ M. It adds x to acct,
producing a new accumulator acct+1, a membership witness wx,t+1 for x, and update infor-
mation upmsgt+1 that can be used to update the membership witnesses of other elements in
the accumulator.

– Delete(pp, ŝk, acct, x, ŵx,t) → (acct+1, upmsgt+1): This (probabilistic) algorithm takes as in-

put the parameters pp, ŝk, the accumulator acct, an element x that was previously added to
acct, and an optional membership witness ŵx,t for x with respect to acct. It deletes x from
acct, producing a new accumulator acct+1, and update information upmsgt+1 that can be
used to update the membership witnesses of other elements in the accumulator.

– NonMemWitCreate(pp, x, {upmsgi}ti=1)→ w̄x,t: This (probabilistic) algorithm takes as input
the parameter pp, an element x, a set of update information {upmsgi}ti=1. It returns a non-
membership witness w̄x,t for x.

– MemWitUp(pp, x, wx,t, upmsgt+1) → wx,t+1: This (probabilistic) algorithm takes as input
the parameter pp, an element x, a membership witness wx,t for x, and update information
upmsgt+1. It returns an updated membership witness wx,t+1 for x.

– NonMemWitUp(pp, x, w̄x,t, upmsgt+1)→ w̄x,t+1: This (probabilistic) algorithm takes as input
the parameter pp, an element x, a non-membership witness w̄x,t for x, and update informa-
tion upmsgt+1. It returns an updated non-membership witness w̄x,t+1 for x.

– MemVer(pp, acct, x, wx,t) → 0/1: This deterministic algorithm takes as input the parameter
pp, an accumulator acct, an element x, and a membership witness wx,t, and returns 1 if wx,t

is a witness for x’s membership in the set represented by acct, or 0 otherwise.
– NonMemVer(pp, acct, x, w̄x,t)→ 0/1: This deterministic algorithm takes as input the param-

eter pp, an accumulator acct, an element x, and a non-membership witness w̄x,t, and returns
1 if w̄x,t is a witness for x’s non-membership in the set represented by acct, or 0 otherwise.

Remark 2. For our universal accumulator definition, we omitted the algorithm MemWitCreate
that allows to create a membership witness for a previously accumulated element because we
require the algorithm Add to return a membership witness every time it is invoked. In addition, for
our universal accumulator construction (confer Section 4),MemWitCreate can easily be supported
by using the history of update messages {upmsgi}ti=1 to recover the accumulated set S an
compute the witness of any accumulated element.

Next, we need to define what it means for an accumulator to be correct. Ghosh et al. [GOP+16]
provided a correctness definition for universal dynamic accumulators that omitted the witness
update algorithms. Reyzin and Yakoubov [RY16] provided a definition for additive accumu-
lators, i.e., those that support dynamic additions but not deletions. Baldimtsi, Canetti and
Yakoubov [BCY20] provided a definition for universal dynamic accumulators that includes wit-
ness update algorithms. However, their definition was non-adaptive (the sequence of operations
applied on an accumulator and the element for which the witness will be tested were selected
before the accumulator’s parameters were instantiated) and did not enforce a set structure on
the sequence of operations applied on an accumulator. Following these works, we provide a cor-
rectness definition for positive dynamic accumulators that is adaptive, includes witness update
algorithms, and enforces a set structure on the operations applied to an accumulator. The goal
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CorrectExpA(1λ) :

1 : pp, ŝk, acc0 ← Gen(1λ, aux)

// i and j represent the times at which x was added and w̄y was created, respectively

2 : x, y, i, j ← AOAdd,Delete(1λ, aux, pp, acc0)

3 : if x = y ∨ x ̸= v[i] ∨ y ∈ v : abort

4 : wx,t ←mwit[i]

5 : w̄y,j ← NonMemWitCreate(pp, y, {upmsgs[1], . . . ,upmsgs[j]})
6 : for k ∈ {j + 1, . . . , t} do :

7 : w̄y,k ← NonMemWitUp(pp, y, wy,k−1,upmsgs[k])

8 : return
(
MemVer(pp, acct, x, wx,t) = 0

)
∨
(
NonMemVer(pp, acct, y, w̄y,t) = 0

)
OAdd,Delete(op, v) :

1 : Initialize v← (),mwit← (),upmsgs← (), t← 0

2 : if v /∈M : abort

3 : if op = add :

4 : if v ∈ v : abort

5 : (acct+1, wv,t+1, upmsgt+1)← Add(pp, ŝk, acct, v)

6 : v← v∥(v),mwit←mwit∥(wv,t+1),upmsgs← upmsgs∥(upmsgt+1)

7 : for k1 ∈ [t] do : // update membership witnesses of previously added elements

8 : if v[k1] ̸= ⊥ : mwit[k1]← MemWitUp(pp,v[k1],mwit[k1], upmsgt+1)

9 : t← t + 1

10 : return acct+1, wv,t+1, upmsgt+1

11 : if op = del :

12 : if v /∈ v : abort

13 : for k2 ∈ [t] do : // delete v and its membership witness

14 : if v[k2] = v : (acct+1, upmsgt+1)← Delete(pp, ŝk, acct, v, ̂mwit[k2]),

15 : v[k2]← ⊥,mwit[k2]← ⊥
// append ⊥ to v and mwit to ensure that their lenght matches t + 1

16 : v← v∥(⊥),mwit←mwit∥(⊥),upmsgs← upmsgs∥(upmsgt+1)

17 : for k3 ∈ [t] do : // update membership witnesses of previously added elements

18 : if v[k3] ̸= ⊥ : mwit[k3]← MemWitUp(pp,v[k3],mwit[k3], upmsgt+1)

19 : t← t + 1

Fig. 1: Correctness Game for a universal dynamic accumulator

of a ppt adversary A that attacks the correctness of the system is to interact with the accumu-
lator (with access to an oracle OAdd,Delete) and produce a correctness error, i.e., a value x in the
accumulator whose membership witness fails to verify. More precisely, A will output elements
x and y in the domain of the accumulator with respective up-to-date membership witness wx,t

and non-membership witness w̄y,t such that given the most recent value of the accumulator acct,
either the pair (x,wx,t) fails membership verification or the pair (y, w̄y,t) fails non-membership
verification. The oracle OAdd,Delete is in charge of executing add and del queries. It has access to

the public and secret parameters (pk, ŝk) of the accumulator and is initialized with a discrete
time counter t and tuples v that stores elements added to the accumulator, mwit that stores
membership witnesses of elements in v, and upmsgs that stores all update information pro-
duced after the execution of add and del queries. After each add or del query, OAdd,Delete updates



RSA-Based Dynamic Accumulator without Hashing into Primes 9

the all out-of-date membership witnesses stored in mwit, and it keeps track of the most recent
value of the accumulator acct. We give the precise description of the correctness game in Fig. 1.

Definition 3 (Correctness). A universal dynamic accumulator UAcc for a domain M is
correct if for any x, y ∈M such that x was added in the accumulator and y was not, up-to-date
and well-formed membership witness wx,t and non-membership witness w̄y,t pass membership
and non-membership verification, respectively, with overwhelming probability. More specifically,
for all λ ∈ N, all ppt adversary A,

Pr
[
CorrectGameA(1λ) = 1

]
≤ negl(λ)

where CorrectGame is defined in Fig. 1.

Definition 4 (Compactness). A universal dynamic accumulator UAcc for a domain M is
compact if for all λ ∈ N and element x ∈ M, we have |acc| = poly(λ), and |wx| = |w̄x| =
poly(λ, |x|).

Remark 3. Although we require witnesses to have size poly(λ, |x|), which is the case of RSA-
based schemes such as [BP97,CL02,LLX07] and Bilinear pairing-based schemes such as [Ngu05,
CKS09,ATSM09], it should be noted that Merkle tree-based schemes such as [BLL02,CHKO12,
RY16] support witnesses with size poly(λ, log |S|), where S is the set of elements that have been
accumulated.

Definition 5 (Universal Dynamic Accumulator Security). A universal dynamic accumu-
lator UAcc for a domainM is secure if for all ppt adversary A with oracle access to OAdd,Delete,
there exists a negligible function negl(·) such that for all λ ∈ N,

Pr


pp, ŝk, acc0 ← Gen(1λ, aux);

x∗, wx∗,t, w̄x∗,t ← AOAdd,Delete(1λ, aux, pp, acc0) :

MemVer(pp, acct, x
∗, wx∗,t) = 1

∧ NonMemVer(pp, acct, x
∗, w̄x∗,t) = 1

 ≤ negl(λ)

where acct is output by OAdd,Delete. For this definition, OAdd,Delete is defined as in Fig. 1 except
for the following modifications: (1) OAdd,Delete need not keep track of when elements are added or
deleted, i.e., instead of storing the tuple v, it just keeps track of the current set S representing
the accumulated values; (2) it must receive a membership witness as part of a delete query.

Remark 4. Our security definition for a universal dynamic accumulator is stronger than that of
Li, Li and Xue (LLX) [LLX07]. In the LLX definition, the adversary takes as input (1λ, aux, pp, acc0)
(same input as in our definition) and succeeds if it outputs a set S, an element x, and witnesses
w and w̄ such that both MemVer(pp, acc, x∗, wx∗,t) = 1 and NonMemVer(pp, acc, x∗, w̄x∗,t) = 1;
the difference from our definition is that in LLX, acc is the accumulator value that results in
adding each element of S to the initial accumulator acc0, while in our definition it is the value
obtained via a series of queries to OAdd,Delete. Thus, an adversary breaking the LLX security
game will also break ours (and will only need the Add queries to the oracle), meaning that if our
security definition is satisfied, then so is LLX.

Here is an example of a universal accumulator that satisfies the LLX definition but does not
satisfy ours. Suppose we are given a universal accumulator that satisfies our definition of security.
We modify it as follows: to set it up, we generate acc0 using Gen, and output acc′0 = acc0∥0. To
add an element to the accumulator acc′t = acct∥b, run Add to update acct to acct+1, and output
acc′t+1 = acct+1∥b, i.e., addition does not change the bit b. But deletion does: the first time a
deletion is performed, it flips it from 0 to 1. I.e., to delete from acc′t = acct∥b, run Delete to
update acct to acct+1, and output acc′t+1 = acct+1∥1. Another modification is to NonMemVer: if
acc′ = acc∥1, it always accepts.

The adversary playing the LLX security game against this accumulator will not succeed,
because it is not allowed to perform deletions, thus the last bit of acc will never be 1, and
thus security follows from the security of the underlying universal accumulator. However, if the
adversary plays our security game, in which deletion queries are allowed, then it wins easily.
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Lipmaa’s definition [Lip12] addressed this subtle issue with the LLX definition. His “unde-
niable” security game allows the adversary to output his own value of the accumulator acc;
the adversary wins if he also outputs an element x and its membership witness w (accepted
by MemVer) as well as its non-membership witness w̄ (accepted by NonMemVer) for acc. Our
definition is weaker than Lipmaa’s: the adversary in our security game is not free to produce
any value for acc; instead, it must be obtained from acc0 via a series of additions and deletions.
Lipmaa’s definition is unnecessarily strong for the WebPKI and similar applications in which
the accumulator value is trusted to represent a set of valid certificates obtained via a sequence
of additions and deletions, and is not up to an adversary to decide. Hence, we formulated our
own definition.

Another reasonable formulation of the security game for the universal accumulator would be
to run the adversary as in our game (i.e. with access to OAdd,Delete), but to modify the winning
condition. We can declare the adversary successful if it produces either a valid membership
witness for an element x that he had either never added, or added but subsequently deleted;
or a valid non-membership witness for an element x that he has added to the accumulator and
never deleted. This approach is known in the literature as collision-freeness [Lip12,DHS15]. We
note that, for a universal accumulator satisfying our correctness definition, this formulation is
equivalent to the one we give.

Definition 6 (Positive Dynamic Accumulator). A positive dynamic accumulator for a do-
mainM is a tuple of poly-time algorithms PAcc = (Gen,Add,Delete,MemWitUp,MemVer) whose
properties are as elaborated in Definition 2.

Remark 5. For our positive accumulator definition, we omitted the algorithmMemWitCreate that
allows to create a membership witness for a previously accumulated element because we require
the algorithm Add to return a membership witness every time it is invoked. In addition, for our
positive accumulator construction (confer Section 5), MemWitCreate will amount to executing
the algorithm Add.

The definitions of correctness and compactness for a positive dynamic accumulator PAcc
are obtained from the definition of those notions for a universal dynamic accumulator (refer to
definitions 3 and 4) by removing the parts regarding non-membership witnesses.

Definition 7 (Positive Dynamic Accumulator Security). A positive dynamic accumulator
PAcc for a domainM is secure if for all ppt adversary A with oracle access to OAdd,Delete, there
exists a negligible function negl(·) such that for all λ ∈ N,

Pr

 pp, ŝk, acc0 ← Gen(1λ, aux);

x∗, wx∗,t ← AOAdd,Delete(1λ, aux, pp, acc0) :

x∗ /∈ S ∧MemVer(pp, acct, x
∗, wx∗,t) = 1

 ≤ negl(λ)

where acct is output by OAdd,Delete. For this definition, OAdd,Delete is defined as in Fig. 1 except
for the following modifications: (1) OAdd,Delete need not keep track of when elements are added or
deleted, i.e., instead of storing the tuple v, it just keeps track of the current set S representing
the accumulated values; (2) it must receive a membership witness as part of a delete query.

For the execution of a universal/positive dynamic accumulator, we consider three types of
actors:

– an accumulator manager: it is in charge of executing the algorithms Gen,Add and Delete.
– a user: it is in charge of managing witnesses by executing the algorithms NonMemWitCreate,

MemWitUp, and NonMemWitUp. It can also issue add and del requests to an accumulator
manager.

– a verifier: it executes the algorithms MemVer and NonMemVer. Note that since verification
algorithms do not take secret parameters as input, a user can be a verifier.

For the rest of the paper, we are going to forgo the discrete time counter t and denote a new
version of an accumulator acc with acc′ and a new version of a membership witness wx (resp.
non-membership witness w̄x) for an element x with w′

x (resp. w̄′
x).
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– Gen(1λ,⊥):
1. Select primes p, q, p′, q′ such that p = 2p′ + 1, q = 2q′ + 1, and p′, q′ have a length that

results in an RSA modulus with λ-bit security. As a result, log2 p
′ ≈ log2 q

′ ≫ λ.
2. Compute n← pq and u←$ QRn \ {1}.
3. Return pp = (n, u), sk = 4p′q′, acc = u.

– Add(pp, acc, x):
1. Parse pp as (n, u).
2. Compute acc′ ← accH(x) mod n.
3. Let s = (1), wx = (acc, s) and upmsg = (add, H(x), 1, acc, acc′).
4. Return acc′ , wx, and upmsg.

– Delete(pp, sk, acc, x, wx):
1. Parse pp as (n, u).
2. If wx = ⊥ or MemVer(pp, acc, x, wx) = 0, do:

(a) Compute γ ← 1/H(x) mod sk, and let δ = 1.
(b) Compute acc′ ← accγ mod n.

3. Else if MemVer(pp, acc, x, wx) = 1, do:

(a) Parse wx as (w, s), compute δ ←
∏|s|

i=1 s[i], and let acc′ = w.
4. Let upmsg = (del, H(x), δ, acc, acc′).
5. Return acc′, and upmsg.

Fig. 2: Accumulator Manager’s algorithms

4 Universal Dynamic Accumulator Construction

In this section, we present our universal dynamic accumulator in the random oracle model. Our
construction is based on [CL02,LLX07] with the exception that we work over large odd integers.

Let H : {0, 1}∗ → Odds(2ℓ−1, 2ℓ − 1) be a random oracle such that ℓ = poly(λ), and
√
ℓ ≤

τ ≤ ℓ3/4 be a value chosen such that for any x ∈ {0, 1}∗, P+(H(x)) > 2τ with overwhelming
probability.

Remark 6. The random oracle H can be instantiated by using a random oracle H ′ : {0, 1}∗ →
1∥{0, 1}ℓ−2∥1 such that for any x ∈ {0, 1}∗, H(x) = int(H ′(x)), where int(·) is the conventional
function that maps bits to integers.

Our construction is presented in three figures: the algorithms executed by an accumulator
manager are described in Fig. 2, those executed by users are described in Fig. 3, and finally,
those executed by verifiers are described in Fig. 4. Each element x ∈ {0, 1}∗ is first hashed into a
large odd integer using the random oracle H such that the large odd integer admits a large prime
factor with overwhelming probability. The presence of that large prime factor will help us ensure
that membership witnesses can only be forged with negligible probability and non-membership
witnesses do not exist with negligible probability.

Add an element to the accumulator. Let acc ∈ QRn be the current value of our accumulator.
To add an element x ∈ {0, 1}∗, we set acc′ = accH(x), w = acc, and let wx = (w, s), where s is
a tuple that will be used to store 2τ -smooth factors of H(x) and that is initialized to be the
singleton (1). By construction, w is a modular H(x) root of the new accumulator value acc′.
Note that we can initialized s to ⊥ or an empty tuple, but this will require checking whether s
is empty during verification.

Delete an element from the accumulator. To delete x from the accumulator, we compute
a modular H(x)-root acc′ of acc and let acc′ be the new accumulator value. However, if we have
access to a valid witness wx = (w, s) of x, we can set the new accumulator value to be w, which
is a modular r-root of acc, where r is a factor of H(x) such that P+(r) = P+(H(x)) > 2τ .
Using the witness during deletion allows us to save O(log2(poly(λ))) time since we do not have
to compute H(x)−1 mod sk using the Extended Euclidean algorithm.
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– NonMemWitCreate(pp, x, {upmsgi}mi=1):
1. Parse pp as (n, u).
2. Let S = ∅, and d = (1).
3. For each upmsg ∈ {upmsgi}mi=1 do:

(a) Parse upmsg as (op, v, δ, acc, acc′).
(b) If op = add, set S ← S ∪ {v}.
(c) Else if op = del, set S ← (S \ {v}) and d← d∥(δ).

4. Compute θ ←
∏

y∈S y ·
∏|d|

i=1 d[i].
5. Let x← H(x) and s← (1).
6. While gcd(θ, x) ̸= 1, set x← x/ gcd(θ, x), s← s∥(gcd(θ, x)).
7. Find a, b ∈ Z such that aθ + bx = 1.
8. Compute B← ub mod n.
9. Return w̄x = (a, B, s).

– MemWitUp(pp, x, wx, upmsg):
1. Parse pp as (n, u), wx as (w, s), and upmsg as (op, v, δ, acc, acc′).
2. If op = add, compute w′ ← wv mod n, and let w′

x = (w′, s).
3. Else if op = del, do:

(a) Compute x← H(x)/
∏|s|

i=1 s[i] and v← v/δ.
(b) Compute a, b ∈ Z such that ax + bv = gcd(v, x).
(c) Compute w′ ← (acc′)awb mod n.
(d) If gcd(v, x) ̸= 1, let s′ ← s∥(gcd(v, x)). Otherwise, let s′ ← s.
(e) Let w′

x = (w′, s′).
4. Return w′

x.

– NonMemWitUp(pp, x, w̄x, upmsg):
1. Parse pp as (n, u), w̄x as (a, B, s), and upmsg as (op, v, δ, acc, acc′).

2. Compute x← H(x)/
∏|s|

i=1 s[i], and v← v/δ.
3. If op = add, do:

(a) Let d← 1 and x′ ← x.
(b) While gcd(v, x′) ̸= 1, set x′ ← x′/ gcd(v, x′), and

d← d · gcd(v, x′).
(c) Find a, b ∈ Z such that av + bx′ = 1.
(d) Compute a′ ← aa mod x′.
(e) Compute z ← ⌊aa/x′⌋v + ab.
(f) Compute B′ ← acczBd mod n.
(g) If d ̸= 1, let s′ ← s∥(d). Otherwise, s′ ← s.
(h) Let w̄′

x = (a′, B′, s′).
4. Else if op = del, do:

(a) Compute a′ ← av mod x.
(b) Compute z ← ⌊av/x⌋.
(c) Compute B′ ← (acc′)zB mod n.
(d) Let w̄′

x = (a′, B′, s).
5. Return w̄′

x.

Fig. 3: User’s algorithms

Update membership witness. Let x ∈ {0, 1}∗ be an element whose membership witness
wx = (w, s) needs to be updated and acc′ be the new accumulator value. In the case acc′

was generated by adding an element y ∈ {0, 1}∗, we update wx by computing w′ = wH(y)

and setting w′
x = (w′, s). However, in the case acc′ was generated after removing an element

y′ ∈ {0, 1}∗, we need to be more ingenious. In Camenisch-Lysyanskaya [CL02], s = ⊥ and w is
updated to w′ ← (acc′)awb, where a, b ∈ Z such that aH(x) + bH(y′) = gcd(H(x), H(y′)) = d.
For them, since H is a random-oracle that returns prime numbers, this operation is correct
because d = 1 and (w′)H(x) = (acc′)d = acc′. However, for us, given that H returns large
odd numbers, d > 1 with non-negligible probability, but following Corollary 1, d is 2τ -smooth
with overwhelming probability. Therefore, to regain correctness, we add d to the tuple s, which
produces the new tuple s′ = s∥(d). Now, during verification, we check that all components
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of s′ are 2τ -smooth and that (w′)H(x)/
∏|s′|

i=1 s′[i] = acc′. For instance, if s′ = (1, d), we have

(w′)H(x)/
∏|s′|

i=1 s′[i] = (w′)H(x)/d = ((acc′)d)1/d = acc′.
We present a generalized version of this procedure in Fig. 3. Note that since all components

of s are 2τ -smooth factors of H(x) whose product divide H(x), we will need at most ℓ-bit to
store s.

Remark 7. For any x ∈ {0, 1}∗, a membership witness wx carries a tuple s that stores 2τ -smooth
factors of H(x), resulting from GCD computations, that are used to ensure correctness during
MemWitUp and Delete with wx as an argument. In addition, we require that each component
of s is less than or equal to 2τ to ensure that they are indeed 2τ -smooth, which is acceptable
since an integer greater than 2τ will divide H(x) with probability at most 2−τ . Furthermore, as
mentioned previously, we need at most ℓ-bit to store s, which is the same number of bits required
to store H(x). We argue that this is fine in practice since in some applications one needs to store
x and H(x) to ensure the integrity of x. Furthermore, for λ = 128, this amounts to storing 213
bytes (confer Section 7).

Before describing how we handle non-membership, we recall the key insights from Li, Li,
and Xue’s scheme [LLX07]. Li, Li, and Xue noted that if H returns prime numbers, then for
an accumulated set S and an element x /∈ S, it follows that there exists a, b ∈ Z such that
a
∏

x′∈S H(x′) + bH(x) = 1. This implies that ua
∏

x′∈S H(x′)+bH(x) = accaBH(x) = u, where

B = ub. Therefore, w̄x = (a, B) ∈ Z× Z∗
n is a non-membership witness of x. Li, Li, and Xue also

showed how w̄x can be efficiently updated. Suppose y ∈ {0, 1}∗ was added to the accumulator, i.e.,

acc′ = accH(y), and let a′, b′ ∈ Z such that a′H(y)+b′H(x) = 1. By letting B′ = accab
′
B, it follows

that w̄′
x = (aa′, B′) is a correct up-to-date non-membership witness since (acc′)aa

′
(B′)H(x) =

acca(a
′H(y)+b′H(x))BH(x) = u. Now, instead of y being added, suppose y′ ∈ {0, 1}∗ was removed

from the accumulator, i.e., (acc′)H(y′) = acc. Then, it follows that w̄′
x = (aH(y′), B) is a correct

up-to-date non-membership witness since (acc′)aH(y′)BH(x) = accaBH(x) = u. It is possible to
keep the first component of w̄x constant-size by representing it as an element of ZH(x).

Create non-membership witness. In our case, since H does not hash to primes, we cannot
directly apply the techniques developed by Li, Li, and Xue. However, from Corollary 1, it follows
that for a set S and an element x /∈ S,H(x) ∤

∏
x′∈S H(x′). Furthermore, given that P+(H(x)) >

2τ with overwhelming probability, we can factor H(x) = x · k such that P+(H(x)) = P+(x), k
is 2τ -smooth and gcd(x,

∏
x′∈S H(x′)) = 1. Now, we can apply Li, Li, and Xue technique with

respect to x and
∏

x′∈S H(x′) to find (a, B) ∈ Z×Z∗
n. By letting w̄x = (a, B, s), where s is a tuple

that stores factors of k less than or equal to 2τ , i.e.,
∏|s|

i=1 s[i] = k, it follows that w̄x is a correct

non-membership witness for x since accaBH(x)/
∏|s|

i=1 s[i] = u. We provide a full description of this
procedure in Fig. 3. Note that the total number of bits required to store s is upper bounded by
ℓ, the output length of H, like in the case of membership witnesses.

Update non-membership witness. By carefully adapting Li, Li, and Xue techniques, we can
efficiently update a non-membership witness w̄x = (a, B, s) of an element x.

Let x = H(x)/
∏|s|

i=1 s[i] and suppose y ∈ {0, 1}∗ was added to the accumulator. Given that
P+(x) > 2τ with overwhelming probability, it follows that x ∤ H(y). Therefore, we can factor
x = x′ · k′ such that P+(x) = P+(x′), k′ is 2τ -smooth, and there exitst a, b ∈ Z such that

aH(y) + bx′ = 1. By setting w̄′
x = (a′, B′, s′), where a′ = aa mod x′, B′ = acc⌊aa/x

′⌋abBk
′
and s′ is

a tuple obtained by concatenating factors of k′ less than 2τ to s, i.e.,
∏|s′|

i=1 s
′[i] = kk′, it follows

that (acc′)a
′
(B′)H(x)/

∏|s′|
i=1 s′[i] = acca(a

′H(y)+b′x′)Bk
′x′ = u. Hence, w̄x is a correct up-to-date

non-membership witness.
Now, suppose that instead of adding y, we removed y′ ∈ {0, 1}∗ from the accumulator. From

Section 5, after deletion of y′, acc′, the new accumulator value, is a modular r-root of acc, the
old accumulator value, where r | H(y′), P+(r) = P+(H(y′)), and it can be recovered from
upmsg. By letting w̄′

x = (a′, B′, s), where a′ = ar mod x and B′ = (acc′)⌊ar/x⌋B, it follows that

(acc′)a
′
(B′)H(x)/

∏|s|
i=1 s[i] = accaBx = u. We present a full description of this procedure in Fig. 3.
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– MemVer(pp, acc, x, wx):
1. Parse pp as (n, u), and wx as (w, s).
2. For i ∈ [|s|], if s[i] > 2τ , return 0.

3. Compute x← H(x)/
∏|s|

i=1 s[i].
4. If wx ≡ acc mod n return 1. Otherwise, return 0.

– NonMemVer(pp, acc, x, w̄x):
1. Parse pp as (n, u), and w̄x as (a, B, s).
2. For i ∈ [|s|], if s[i] > 2τ , return 0.

3. Compute x← H(x)/
∏|s|

i=1 s[i].
4. If accaBx ≡ u mod n return 1. Otherwise, return 0.

Fig. 4: Verifier’s algorithms

Remark 8. NonMemWitCreate has time complexity poly(m), where m is the size of the accum-
lated set, and that is inefficient in comparison to NonMemWitUp. Li, Li, and Xue [LLX07] pro-
posed a method to reduce NonMemWitCreate’s time complexity by computing µ =

∏
x∈S H(x) mod

ϕ(n), where S is the accumlated set. Although this provide some savings during the execution of
the Extended Euclidean algorithm, it still requires to go through all elements in S. Furthermore,
with that modification, only the accumulator manager is able to execute NonMemWitCreate since
it requires the use of the secret key sk. We emphasize that µ is never handed to users. Mashatan
and Vaudenay [MV13] proposed a technique that allows to create non-membership witnesses in
Li-Li-Xue construction in a way that is independent of the size of S, but it requires the use of an
additive accumulator in which elements can only be added by the accumulator manager. In brief,
suppose we have access to an additive accumulator Γ . To generate a non-membership witness
for a non-accumlated element x, we sample a ∈ ZH(x), B ∈ Z∗

n, and then, compute h = accaBH(x)

and add h to Γ , which generate a membership witness wh,Γ . The non-membership witness of x
is w̄x = (a, B, h, wh,Γ ). Clearly, both approaches can be applied to our construction to reduce the
time complexity of NonMemWitCreate. However, as we previously mentioned, they both require
a trusted accumulator manager to generate non-membership witnesses.

Batching addition. As in [CL02] and [LLX07], we note that the addition of multiple elements
can be batched by adding the product of their H evaluations to the accumulator. In addition,
after a batch addition, the (non-)membership witness for an element x ∈ {0, 1}∗ can be updated
by using the update information upmsg′ = (add, v′, δ′, acc, acc′) in conjunction with MemWitUp
or NonMemWitUp, where v′ represents the product ofH evaluations of added or deleted elements,
δ′ = 1, acc represents the last accumulator value for which the witness to be updated is valid
and acc′ represents the new accumulator’s value.

4.1 Correctness and Compactness

In this section, we analyze the correctness and compactness of our universal dynamic accumulator
construction.

Lemma 3. Let n be the RSA modulus produced by Gen(1λ), and suppose x ∈ {0, 1}∗. Then,
H(x)−1 mod ϕ(n) does not exist with probability at most 1/2λ−2.

Proof. Given that n is an output of Gen(1λ), it follows that ϕ(n) = 4p′q′, where log2 p
′ ≈

log2 q
′ ≫ λ. For x ∈ {0, 1}∗, we have H(x) ∼ U(Odds(2ℓ−1, 2ℓ − 1)). H(x)−1 mod ϕ(n) does not

exist when gcd(H(x), ϕ(n)) ̸= 1, which happens when p′ or q′ divides H(x). Since p′ > 2λ−1 and
q′ > 2λ−1, using the union bound we have Pr [(p′ | H(x)) ∨ (q′ | H(x))] ≤ 2

2λ−1 = 1
2λ−2 ⊓⊔

Corollary 2. Delete fails with probability at most 1/2λ−2.

Proof. This follows from Lemma 3. ⊓⊔
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Lemma 4. NonMemWitCreate fails to output correct a non-membership witness for an element
that has not been accumulated with probability at most

(q + 1)2

 1

2ℓ3/4
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ
+

1

2
√
ℓ

where q ∈ N represents the number of elements present in the accumulator.

Proof. Let acc be an accumulator produced by our construction and {upmsg}ni=1 the set of update
information produced after a series of Add and Delete operations that generated acc. Suppose
x ∈ {0, 1}∗ was not added to acc. From {upmsg}ni=1, we can recover a set S that contains H
evaluation of elements that are present in acc and a tuple d that contains products of 2τ -smooth
integers that divide previously deleted elements (in the description of NonMemWitCreate, confer

Fig. 3, those products are denoted by δ). Let θ =
∏

y∈S y
∏|d|

i=1 d[i]. Given that H(x) /∈ S
with overwhelming probability and from Corollary 1, H(x) ∤ θ with overwhelming probability,
it follows that there exists x, k ∈ Z such that H(x) = kx, k | θ, P+(x) = P+(H(x)), and
gcd(θ, x) = 1. Let a, b ∈ Z such that aθ + bx = 1, and B = ub mod n. Since uθ ≡ acc mod n, we
have acca(B)x ≡ u mod n.

Let s be a tuple that represents a factorization of k. Since x is computed in such a way that
k | θ and the probability that an integer c > 2τ , with

√
ℓ ≤ τ ≤ ℓ3/4, divides both H(x) and θ is

less than or equal to 2−
√
ℓ, it follows that each component of s is less than or equal to 2τ with

overwhelming probability.

Let Bad be the event that NonMemWitCreate fails, D the event that H(x) | θ, E the event
that there exists j ∈ [|s|] such that s[j] > 2τ , and q = #S. We have

Pr[Bad] = Pr[Bad|D] Pr[D] + Pr[Bad|D̄] Pr[D̄]
≤ Pr[D] + Pr[Bad|D̄,E] Pr[E|D̄] + Pr[Bad|D̄, Ē] Pr[Ē|D̄]
(1)

≤ Pr[D] + Pr[E]

≤ (q + 1)2

 1

2ℓ3/4
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ
+

1

2
√
ℓ

Inequality (1) follows from the fact that E and D are independent. Therefore, unless Bad happens,
w̄x = (a, B, s) is a valid non-membership witness for x. ⊓⊔

Lemma 5. MemWitUp fails to output a correct updated membership witness with probability at

most 2−
√
ℓ.

Proof. Let acc be an accumulator produced by our construction and acc′ its update. Let x ∈
{0, 1}∗ be an accumulated element, wx = (w, s) its valid membership witness with respect to
acc, and w′

x = (w′, s′) its membership witness with respect to acc′ generated by MemWitUp. We

show that w′
x is valid with probability at least 1 − 2−

√
ℓ. Let y ∈ {0, 1}∗, x = H(x)/

∏|s|
i=1 s[i],

and x′ = H(x)/
∏|s′|

i=1 s
′[i]. Without lost of generality, let us consider the following cases:

– Case 1: acc′ was produced by adding y to acc, i.e., acc′ = accH(y). After executingMemWitUp,
we have w′ = wH(y) and s′ = s, so x = x′. Hence, (w′)x

′
= (wx)H(y) = accH(y) = acc′. In

addition, since wx is valid, it follows that all components of s are less than 2τ , and this is
also the case for s′.

– Case 2: acc′ was produced by deleting y from acc. Let upmsg be the update message that was
generated after deleting y from acc. Then, upmsg = (del, H(y), δ, acc, acc′), where δ ≥ 1 is a
2τ -smooth integer that divides H(y). By setting v = H(y)/δ, it follows that acc = (acc′)v.
Let d = gcd(v, x). After executing MemWitUp, we have w′ = (acc′)awb, where a, b ∈ Z such
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that ax+ bv = d, and s′ = s∥(d) if d > 1, else s′ = s. Therefore, x′ = x/d, and

(w′)x
′
= ((acc′)awb)x/d

= ((acc′)awb)xv(1/v)(1/d) (this follows from Lemma 3)

=
(
((acc′)v)ax(wx)bv

)(1/v)(1/d)
= (accaxaccbv)(1/v)(1/d)

= acc1/v = acc′

Each component of s is less than or equal to 2τ since wx is valid, and if d = 1, it follows that
components of s′ are also less than or equal to 2τ . Otherwise, s′ = s∥(d), and given that d

divides both H(x) and H(y) and
√
ℓ ≤ τ ≤ ℓ3/4, it follows that d < 2τ with probability at

least 1−2−
√
ℓ. Therefore, each component of s′ is less than or equal to 2τ with overwhelming

probability.

Notice that w′
x will be incorrect if there exists an index j ∈ [|s′|] such that s′[j] > 2τ , and this

happens with probability at most 2−
√
ℓ. ⊓⊔

Lemma 6. NonMemWitUp fails to output a correct updated non-membership witness with prob-

ability at most
(

4√
ℓ

4 log ℓ
)− 4√

ℓ

+ 2−
√
ℓ.

Proof. Let acc be an accumulator produced by our construction and acc′ its update. Let x ∈
{0, 1}∗ be an element that was not added to the accumulator, w̄x = (a, B, s) its valid non-
membership witness with respect to acc, and w̄′

x = (a′, B′, s′) its non-membership witness with
respect to acc′ generated by NonMemWitUp. We show that w̄′

x is incorrect with probability at

most
(

4√
ℓ

4 log ℓ
)− 4√

ℓ

+ 2−
√
ℓ. Let y ∈ {0, 1}∗, x = H(x)/

∏|s|
i=1 s[i], and x′ = H(x)/

∏|s′|
i=1 s

′[i].

Without lost of generality, let us consider the following cases:

– Case 1: acc′ resulted from adding y to acc, i.e., acc′ = accH(y). From Lemma 2, P+(H(x)) >
2τ with overwhelming probability. Since w̄x is valid, it follows that P+(x) = P+(H(x)), so
x ∤ H(y) with overwhelming probability. As a result, there exists r, d ∈ Z such that x = dr,
d | H(y), P+(r) = P+(x) and gcd(H(y), r) = 1. After executing NonMemWitUp, x′ = r, and
s′ = s if d = 1, else s′ = s∥(d). In addition, we have a′ = aa mod x′ = aa − ⌊aa/x′⌋x′, and
B′ = accz1Bd, where z1 = ⌊aa/x′⌋H(y) + ab, and a, b ∈ Z such that aH(y) + bx′ = 1. Hence,

(acc′)a
′
(B′)x

′
= (accH(y))aa−⌊aa/x′⌋x′(acc⌊aa/x

′⌋H(y)+abBd)x
′

= acca(aH(y)+bx′)Bdx
′

= accaBx = u

In case d = 1, all components of s′ are less than or equal to 2τ since w̄x is valid. Otherwise,
s′ = s∥(d), and given that d divides both H(x) and H(y) and

√
ℓ ≤ τ ≤ ℓ3/4, it follows that

d < 2τ with overwhelming probability. Therefore, each component of s′ is less than or equal
to 2τ with overwhelming probability.
Since in this case w̄′

x is correct if P+(H(x)) > 2τ and there does not exist j ∈ [|s′|] such
that s′[j] > 2τ , it follows that failure probability of NonMemWitUp is upper bounded by(

4√
ℓ

4 log ℓ
)− 4√

ℓ

+ 2−
√
ℓ.

– Case 2: acc′ was produced by deleting y from acc. Let upmsg be the update message that was
generated after deleting y from acc. Then, upmsg = (del, H(y), δ, acc, acc′), where δ ≥ 1 is a
2τ -smooth integer that divides H(y), and acc = (acc′)v, with v = H(y)/δ. After executing
NonMemWitUp, we have s′ = s, so x′ = x. Also, a′ = av mod x = av − ⌊av/x⌋x, and
B′ = (acc′)z2B, where z2 = ⌊av/x⌋. Hence,

(acc′)a
′
(B′)x

′
= (acc′)av−⌊av/x⌋x((acc′)⌊av/x⌋B)x

= (acc′)avBx

= accaBx = u
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Since s′ = s and w̄x is valid, it follows that all components of s′ are less than or equal to 2τ .
Hence, in this case, w̄′

x is always correct.

Therefore, NonMemWitUp fails with probability at most
(

4√
ℓ

4 log ℓ
)− 4√

ℓ

+ 2−
√
ℓ. ⊓⊔

Theorem 1. Our construction is correct with a probability of at least 1− negl(λ).

Proof. This follows from Corollary 2, and lemmas 4, 5 and 6.

Theorem 2. Our construction is compact.

Proof. Let λ ∈ N be a security parameter used as input to Gen, ℓ = poly(λ) be the chosen

bit-length of H’s outputs, and
√
ℓ ≤ τ ≤ ℓ3/4 be a value chosen such that for any x ∈ {0, 1}∗,

P+(H(x)) > 2τ with overwhelming probability. From the description of our construction (confer
Figs. 2, 3, and 4), acc ∈ Z∗

n, where log2 n ≈ 2(λ + 1), so |acc| ≤ 2(λ + 2). For any x ∈ {0, 1}∗
with membership witness wx = (w, s), we have w ∈ Z∗

n and s, which is a tuple whose components
are 2τ -smooth integers that divide H(x) and their products also divide H(x). Since we need less
than ℓ bits to represent all components of s, we can conclude that |wx| < 2(λ+ 2) + ℓ. Finally,
for any y ∈ {0, 1}∗ with non-membership witness w̄y = (a, B, s′), we have a ∈ ZH(y), B ∈ Z∗

n, and
s′ that is defined as s. Hence, |w̄x| < 2(λ+ 2 + ℓ).

⊓⊔

4.2 Security

Theorem 3. Assume H is a random oracle. Under the strong RSA assumption, our construc-
tion is a secure universal dynamic accumulator.

Proof. We proceed by contraposition. Let A be a ppt adversary that, given (1λ,⊥, pp, acc0)
as input, outputs (x∗, wx∗ , w̄x∗) with non-negligible probability ε(λ) such that (x∗, wx∗) and
(x∗, w̄x∗) are both valid with respect to acc, where acc is the accumulator value generated after
A’s queries to OAdd,Delete. Using A, we construct a ppt adversary B that breaks the strong RSA
assumption as follows:

1. B receives (1λ, v, n) as input from the Strong RSA challenger. Then, it computes u = v2 mod
n and initialises an empty map T : {0, 1}∗ → Odds(2ℓ−1, 2ℓ − 1), a set S = ∅, and an integer
d = 1.

2. B sets pp = (n, u), acc = acc0 = u and sends (1λ, pp, acc0) to A.
3. B simulates answers to A’s oracle queries as follows:

– For H queries, when A sends x ∈ {0, 1}∗, B returns T[x] if T[x] ̸= ⊥. Else, B samples
r ←$ Odds(2ℓ−1, 2ℓ − 1), sets T[x]← r and returns r.

– For add queries, when A sends (add, x), B simulates H with x as input, but it does not
return the output to A. If T[x] ∈ S, B aborts. Otherwise, B updates S ← S ∪ {T[x]},
defines s ← (1) and wx ← (acc, s) and computes acc′ ← accT[x] mod n. Next, B returns
acc′, wx and upmsg = (add,T[x], 1, acc, acc′). Finally, B sets acc← acc′.

– For del queries, when A sends (del, x, wx), B simulates H with x as input, but it does
not return the output to A. If T[x] /∈ S, B aborts. Next, B sets S ← S \ {T[x]}, and if

wx ̸= ⊥ and MemVer(pp, acc, x, wx) = 1, B parses wx as (w, s), computes δ ←
∏|s|

i=1 s[i],

d← d · δ, and acc′ ← w. Otherwise, B sets δ ← 1 and computes acc′ ← ud
∏

y∈S y mod n.
After, B returns acc′ and upmsg = (del,T[x], δ, acc, acc′). Finally, B sets acc← acc′.

4. Once A outputs (x∗, wx∗ , w̄x∗), B does the following:
(a) If MemVer(pp, x∗, wx∗ , acc) ̸= 1 or NonMemVer(pp, x∗, w̄x∗ , acc) ̸= 1, abort.
(b) Parse wx∗ as (w, s), w̄x∗ as (a, B, s̄).

(c) Compute θ ← d
∏

y∈S y, x = T[x∗]/
∏|s|

i=1 s[i] and x̄ = T[x∗]/
∏|s̄|

i=1 s̄[i].

(d) If T[x∗] ∈ S, it follows that x̄ | θ, so gcd(1 − aθ, x̄) = 1. Furthermore, given that
x̄ is odd, gcd(2(1 − aθ), x̄) = 1. Since (acc)aBx̄ ≡ uaθBx̄ ≡ u ≡ v2 mod n, we have
Bx̄ ≡ v2(1−aθ) mod n. By applying Lemma 1 with respect to (B, x̄, v, 2(1− aθ)), compute
and output the x̄-root of v.
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(e) Otherwise, If T[x∗] /∈ S, from Corollary 1, it follows that T[x∗] ∤ θ with overwhelm-
ing probability, and since wx∗ is valid, we have P+(T[x]) = P+(x). Hence, x ∤ θ. Let
x̃ = x/ gcd(2θ, x) and θ̃ = 2θ/ gcd(2θ, x). Since wx ≡ acc ≡ uθ ≡ v2θ mod n and
from Lemma 3, gcd(2θ, x)−1 mod ϕ(n) exists with overwhelming probability, we have

wx̃ ≡ vθ̃ mod n and gcd(θ̃, x̃) = 1. By applying Lemma 1 with respect to (w, x̃, v, θ̃),
compute and output the x̃-root of v. Note that if gcd(2θ, x)−1 mod ϕ(n) does not exist,
then gcd(2θ, x) admits a prime p′ as a divisor such that 2p′+1 divides n, so B can factor
n and easily solve the strong RSA challenge.

Note that during the execution of del queries, if A sends a tuple (del, y, wy) such that T[y] ∈ S
and wy = (w, s) is valid, it follows that w ≡ acc1/y ≡ u(T[y]/y)

∏
z∈S\{T[y]} z ≡ uδ

∏
z∈S\{T[y]} z mod n,

with δ ←
∏|s|

i=1 s[i] and y← T[y]/δ.

In addition, as long as B properly simulates OAdd,Delete, if A issues a forgery (x∗, wx∗ , w̄x∗)
such that T[x∗] ∈ S, then B will solve the strong RSA challenge. Otherwise, as long T[x∗] ∤ θ
or gcd(2θ, x) does not exist, B will still be able to solve the strong RSA challenge. B will fail to
properly simulate OAdd,Delete if it aborts during the execution of an add query for an element that
was not accumulated or if it does not abort during the execution of a del query for an element
that was not accumulated, and those events will happen only if there is a collision among A’s
queries to the random oracle H. Therefore, B succeeds with probability

Pr[B wins] ≥ ε(λ)

(
1− q2H

2ℓ−1

)
(1− ν)

where qH represents the number of unique H’s queries performed by A and

ν = q2H

(
1

2ℓ
3/4 +

(
4√
ℓ

4 log ℓ
)− 4√

ℓ
)(

1− 1
2λ−2

)
.

⊓⊔

Division Intractable Hash (DIH) Function. A hash family H is said to be division in-
tractable if for any h ∈ H with input domain D and output domain R, where R is an Eu-
clidean domain, the probability that an adversary A outputs x1, . . . , xm, y ∈ D such that
h(y) |

∏m
i=1 h(xi) is negligible [GHR99]. Clearly, our random-oracle-based hash function H is an

instance of a DIH. Although Lipmaa [Lip12] showed how to construct a static accumulator using
a DIH, just assuming division intractability is not sufficient to obtain a dynamic accumulator.
We need a DIH whose outputs contain a large prime factor with overwhelming probability. For
instance, letH ′ be a DIH and suppose we can find a sequence x1, . . . , xm, y such that H ′(y) = 3k1

and
∏m

i=1 H
′(xi) = 3k2r, where k1 > k2 and 3 ∤ r, with non-negligible probability. Furthermore,

suppose we use our positive accumulator construction to accumulate x1, . . . , xm. Then, it will
be possible to forge a valid membership witness wy = (wy, sy) for y using membership witnesses

of x1, . . . , xm such that H ′(y)/
∏|sy|

i=1 s[i] = 3k2 and all components of sy are smooth.

5 Positive Dynamic Accumulator Construction

In this section, we present a positive dynamic accumulator that is based on the CL-RSA-B
construction of Baldimtsi et al. [BCD+17] and our universal accumulator presented in Section 4.

For this construction, we only present the algorithm Add in Fig. 5 because the algorithms Gen,
Delete, MemVer are exactly the same algorithms presented in Section 4, and for MemWitUp, only
step 2, regarding the update of membership witnesses after Add operations, is removed. However,
pp = n instead of (n, u), and acc, the old value of the accumulator, is removed from upmsg since it
is not needed to update membership witnesses. Note that in Fig. 5, it is not necessary to return
upmsg. However, we kept it for consistency. An advantage of this construction is its reduced
communication complexity. The values of the accumulator and membership witnesses are only
updated during the execution of Delete operations.
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– Add(pp, sk, acc, x):
1. Parse pp as n.
2. Compute γ ← 1/H(x) mod sk.
3. Compute w← accγ mod n.
4. Let s = (1), wx = (w, s) and upmsg = (add, H(x), 1,⊥).
5. Return acc , wx, and upmsg.

Fig. 5: Description of the algorithm Add for the positive dynamic accumulator

Add an element to the accumulator. Let acc ∈ QRn be the initial value of our positive
dynamic accumulator. To keep the accumulator’s value unchanged during addition, we use the
secret key sk to compute the witness of a newly added element. More specifically, to add an
element x ∈ {0, 1}∗, we use sk to compute a modular H(x)-root w of acc and let wx = (w, s),
where s is defined as in Section 4.

5.1 Security

Theorem 4. Assume H is a random oracle. Under the strong RSA assumption, the above con-
struction is a secure positive dynamic accumulator.

Proof. We proceed by contraposition. Let A be a ppt adversary that, given (1λ,⊥, pp, acc0) as
input, after a total of qH unique queries toH and a total of qdel deletion queries toOAdd,Delete, out-
puts (x∗, wx∗) with non-negligible probability ε(λ) such that x∗ /∈ S andMemVer(pp, acc, x∗, wx∗) =
1, where S is the set and acc is the accumulator generated after A’s queries to OAdd,Delete. We
build a ppt adversary B that uses A to that break the strong RSA assumption as follows:

1. B receives (1λ, v, n) as input from the Strong RSA Challenger. Then, it computes u =
v2 mod n and initialises an empty map T : {0, 1}∗ → Odds(2ℓ−1, 2ℓ − 1) and a set S = ∅.

2. B samples α1, . . . , αqH ←$ Odds(2ℓ−1, 2ℓ − 1), j1 ←$ [qH ], and j2 ←$ {0} ∪ [qdel] such that
αc ̸= αe for c, e ∈ [qH ] and c ̸= e.

3. B computes θ ← αj2
j1

∏
i∈[qH ],i̸=j1

αqdel
i and acc = acc0 = uθ mod n. Then, B sets pp← n, and

initializes k ← 1.
4. B sends (1λ, pp, acc0) to A and simulates answers to A’s oracle queries as follows:

– For H queries, when A sends x ∈ {0, 1}∗, B returns T[x] if T[x] ̸= ⊥. Otherwise, B sets
T[x]← αk, k ← k + 1, and returns T[x].

– For add queries, when A sends (add, x), B simulates H with x as input, but it does not
return the output to A. If T[x] ∈ S, B aborts. Otherwise, B computes w← uθ/T[x] mod n,
initializes s← (1), and sets wx ← (w, s). Finally, B sets S ← S ∪{T[x]}, and returns acc,
wx, and upmsg = (add,T[x], 1,⊥).

– For del queries, when A sends (del, x, wx), B simulates H with x as input, but it does
not return the output to A. If T[x] /∈ S or if T[x] = αj1 and j2 = 0, B aborts. Next,
B sets S ← S \ {T[x]}, and if wx ̸= ⊥ and MemVer(pp, acc, x, wx) = 1, B parses wx as

(w, s), computes δ ←
∏|s|

i=1 s[i], θ ← θ/(T[x]/δ), and acc′ ← w. Otherwise, B sets δ ← 1,
computes θ ← θ/T[x], acc′ ← uθ mod n. In addition, if T[x] = αj1 , B sets j2 ← j2 − 1.
Finally, B returns acc′ and upmsg = (del,T[x], δ, acc′), and then sets acc← acc′.

5. Once A outputs (x∗, wx∗), B proceeds as follows:
(a) If T[x∗] ̸= αj1 or j2 ̸= 0 or MemVer(pp, x∗, wx∗ , acc) ̸= 1, B aborts.

(b) Parse wx∗ as (w, s), and compute x = T[x∗]/
∏[|s|]

i=1 s[i] = αj1/
∏[|s|]

i=1 s[i].
(c) Using a process similar to the one described in step 4e of the proof of Theorem 3, if

gcd(2θ, x)−1ϕ(n) exists, compute the x̃-root of v, where x̃ = x/ gcd(2θ, x). Otherwise,
use gcd(2θ, x) to factor n.

Note that during the execution of del queries, if A sends a tuple (del, y, wy) such that T[y] ∈ S
and wy = (w, s) is valid, it follows that w ≡ acc1/y ≡ uθ/y mod n, where y← T[y]/

∏|s|
i=1 s[i].
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Since α1, . . . , αqH are random and distinct from each other, if B correctly guessed j2, then it
will correctly simulateOAdd,Delete’s answers for add and del queries. In step 5, if B correctly guessed
j1, then as long as gcd(2θ, x)−1 mod ϕ(n) exists and αj1 does not divide θ or gcd(2θ, x)−1

mod ϕ(n) does not exists, B will be able to break the strong RSA assumption with probability

Pr[B wins] ≥ ε(λ)

qH(qdel + 1)

(
1− ν +

ν

2λ−2

)
where ν = q2H

(
1

2ℓ
3/4 +

(
4√
ℓ

4 log ℓ
)− 4√

ℓ
)
. ⊓⊔

6 PoE without Primes and Witness Aggregation

In this section, we introduce a variant of Wesolowski’s Proof of Exponentiation (PoE) [Wes20]
that does not necessitate hashing into primes. In addition, we show how the techniques presented
by Boneh, Bünz, and Fisch [BBF19] to aggregate (non-)membership witnesses for accumulators
defined over primes can be generalized to our setting and how to use the variant of Wesolowski’s
PoE to reduce the verification time of aggregated (non-)membership witnesses.

6.1 Proof of Exponentiation

Definition 8 (Hidden Order Group Sampler [BHR+21,BBF19]). A hidden order group
sampler is a ppt algorithm GGen that takes as input a security parameter 1λ and outputs an
abelian group G whose order is at most 2poly(λ) and a trapdoor sk that can be used to efficiently
compute the exact order of G. In addition, for all ppt adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N,

Pr

ge = 1G ∧ e ̸= 0

∣∣∣∣∣∣∣
(G, sk)← GGen(1λ)

g ←$ G
e← A(1λ,G, g)

 ≤ negl(λ)

Definition 9 (Adaptive Root assumption [Wes20]). A hidden order group sampler GGen
satisfies the adaptive root assumption with respect to a challenge space C ⊂ Z if for all ppt
adversary A = (A1,A2), there exists a negligible function negl(·) such that for all λ ∈ N,

Pr

vc = u ̸= 1G

∣∣∣∣∣∣∣∣∣
(G, sk)← GGen(1λ)

(u, state)← A1(1
λ,G)

c←$ C
v ← A2(u, state, c)

 ≤ negl(λ)

Remark 9. Special care must be taken when selecting the challenge space C. For instance, if
#C = poly(λ), then the adversary A can have A1 sample h ←$ G, compute and output u =
h
∏

i∈C i , which will guarantee that A always wins by having A2 compute and output v =
h
∏

i∈C,i ̸=c i for any challenge c ∈ C. One might think that picking C such that #C = 2poly(λ) might
be enough to ensure that A wins with at most negligible probability, but Boneh, Bünz, and
Fisch [BBF24] noted that if a←$ C is B-smooth with non-negligible probability and #PRIMES∩
[B] = poly(λ), then even though the challenge space is of size Θ(2poly(λ)), A can win with non-

negligible probability by having A1 compute and output u = (h′)
∏

p∈PRIMES∩[B] p
k

, where h′ ∈ G
and k is a large integer.

For a pair of interactive Turing machines M and N, let ⟨M,N⟩(x) denote N’s output after its
interaction with M on a common input x.

Definition 10 (Proof of Exponentiation [Wes20, BBF19]). For λ ∈ N, let (G, sk) ←
GGen(1λ), and consider the language LPoE,G = {(v, u, e) ∈ G2×Z : ve = u}. A proof of exponen-
tiation (PoE) for LPoE,G is an interactive protocol (argument) between a ppt prover P and a ppt
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Initialization:

1. Run (G, sk) ← GGen(1λ). Then, set ℓ = poly(λ) and
√
ℓ ≤ τ ≤ ℓ3/4 such that for a ←$

Odds(2ℓ−1, 2ℓ−1), P+(a) > 2τ with high probability. Finally, send (1λ,G, ℓ) to prover P and
verifier V.

2. Statement: (v, u, e) ∈ G2 × Z.

Interaction:

1. V samples c←$ Odds(2ℓ−1, 2ℓ − 1) and sends it to P.
2. P computes π ← v⌊e/c⌋ and sends it to V.
3. V computes r ← e mod c. Then, it outputs 1 if πcvr = u. Otherwise, it outputs 0.

Fig. 6: SimPoE: Wesolowski PoE without primes.

verifier V such that on a common input (v′, u′, e′) ∈ G2 × Z, V outputs 1 after its interaction
with P if it is convinced that (v′, u′, e′) ∈ LPoE,G. Otherwise, V outputs 0. In addition, a PoE
for LPoE,G must satisfy the following properties:

– Completeness: for all (v, u, e) ∈ LPoE,G,

Pr[⟨P,V⟩(v, u, e) = 1] = 1

– Soundness: for all (v, u, e) /∈ LPoE,G,

Pr[⟨P,V⟩(v, u, e) = 1] ≤ negl(λ)

Remark 10. For a PoE to be useful, a verifier V should perform less than O(log e) group opera-
tions for an input (v, u, e) ∈ G2×Z, especially if e is large, because it is always possible to check
if (v, u, e) ∈ LPoE,G using O(log e) group operations via repeated squaring.

Wesolowski [Wes20] constructed a PoE for LPoE,G where for a statement (v, u, e) ∈ G2×Z, e is
a power of 2. To prove that (v, u, e) ∈ LPoE,G, V samples a random prime c←$ PRIMES(2λ), where
PRIMES(2λ) represents the set of 22λ first positive primes, and sends c to P. Next, P computes
π ← v⌊e/c⌋ and sends it to V. Finally, V computes r ← e mod c and outputs 1 if πcvr = u.
Wesolowski proved that his PoE is sound under the adaptive root assumption with challenge
space C = PRIMES(2λ). In addition, since V’s message is completely random, Wesolowski PoE
can be converted into a non-interactive protocol via the Fiat-Shamir heuristic [FS87] in the
random-oracle model. However, in practice, converting Wesolowski PoE into a non-interactive
protocol incurs an O(λ) overhead because we will need to hash into primes in the set [N ], where
log2 N ≈ 2λ+log2 λ. Boneh, Bünz, and Fisch [BBF19] further generalized Wesolowski’s protocol
by allowing e to be any integer (rather than a power of 2 as in Wesolowski’s work).

In Fig. 6, we present a variant of Wesolowski PoE that does not require hashing to primes,
which we call SimPoE, because it is more simple. The message issued by V is sampled from
Odds(2ℓ−1, 2ℓ − 1), where ℓ = poly(λ) is selected such that for a←$ Odds(2ℓ−1, 2ℓ − 1), P+(a) >

2
√
ℓ with overwhelming probability (Lemma 2). Since an integer sampled uniformly at random

from Odds(2ℓ−1, 2ℓ−1) is not smooth with overwhelming probability and #Odds(2ℓ−1, 2ℓ−1) =
2ℓ−2, it follows that the adaptive root assumption with the challenge space C = Odds(2ℓ−1, 2ℓ−1)
should hold for a hidden order group G because it will be hard for a ppt adversary to execute
the strategies mentioned in Remark 9.

Theorem 5. Assume GGen is a hidden order group sampler, and for λ ∈ N, let (G, sk) ←
GGen(1λ). Let ℓ = poly(λ) and

√
ℓ ≤ τ ≤ ℓ3/4 such that for a ←$ Odds(2ℓ−1, 2ℓ − 1), P+(a) >

2τ with overwhelming probability 1 −
(

4√
ℓ

4 log ℓ
)− 4√

ℓ

. Under the adaptive root assumption with

challenge space C = Odds(2ℓ−1, 2ℓ − 1), SimPoE (Fig. 6) is sound.

Proof. We proceed by contraposition. Let P∗ be a ppt prover that, given (1λ,G, ℓ) as input,
makes a verifier V output 1 after executing SimPoE on a statement (u, v, e) /∈ LPoE,G with non-
negligible probability ε(λ). We use P∗ to build a ppt adversary B = (B1,B2) that breaks the
adaptive root assumption with challenge space C = Odds(2ℓ−1, 2ℓ − 1) as follows:
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– Setup(1λ):
1. Execute (G, sk)← GGen(1λ), and publish G.

– Prove(u, v, e):
1. Compute c← H(u, v, e), and then π ← v⌊e/c⌋.
2. Return π.

– Verify(u, v, e, π):
1. Compute c← H(u, v, e), and then r ← e mod c.
2. Return 1 if πcvr = u. Otherwise, return 0.

Fig. 7: NI-SimPoE.

1. After receiving the statement (u, v, e), B1 sends u/ve to the adaptive root challenger, which
replies with a challenge c ←$ Odds(2ℓ−1, 2ℓ − 1). Note that since (u, v, e) /∈ LPoE,G, we have
ve ̸= u, and so u/ve ∈ G \ {1}.

2. Next, B1 sends c to P∗ and (u/ve, c) to B2.
3. After receiving c, P∗ computes and sends π to B2. If πcve−⌊e/c⌋c ̸= u, B2 aborts. Otherwise,

it sends π/v⌊e/c⌋ to the adaptive root challenger.

If P∗’s message is correct, then (π/v⌊e/c⌋)c = u/ve. Therefore, Pr[B wins] = ε(λ). ⊓⊔

For completeness sake, in Fig. 7, we provide a description of a non-interactive version of
SimPoE, called NI-SimPoE, in the random oracle model. It uses a random oracle H : G2 ×
Z → Odds(2ℓ−1, 2ℓ − 1). Note that H can be instantiated via a random oracle H ′ : {0, 1}∗ →
Odds(2ℓ−1, 2ℓ − 1) such that for (u, v, e) ∈ G2 × Z, H(u, v, e) = H ′(bin(u, v, e)), where bin(·, ·, ·)
is a function that efficiently maps elements of G2 × Z to binary strings.

Candidate for GGen. As mentioned in [Wes20, BBF24, BHR+21], a candidate for GGen is
a ppt algorithm that samples a random RSA group where the modulus is a product of safe
primes, i.e., it takes as input 1λ and output n = p.q and sk = (p − 1)(q − 1), where p and q
are O(λ)-bit safe primes. However, Boneh, Bünz, and Fisch [BBF19] noted that over Z∗

n, the
soundness of Wesolowski PoE does not hold because with (v, u, e) ∈ LPoE,Z∗

n
we can generate a

valid interaction for (v,−u, e) by having P reply with π = −1 · v⌊e/c⌋ after receiving c from V.
Therefore, the subgroup QRn or the quotient group Z∗

n/{−1, 1} is preferred. In the case of QRn,
testing for membership is hard and that makes it an unpractical choice in general, but for our
application, QRn will be enough.

6.2 Aggregating Witnesses

We extend our universal dynamic accumulator construction presented in Section 4 to allow users
to aggregate (non-)membership witnesses. This allows a user with a collection of elements and
their respective (non-)membership witnesses to generate a witness that can be used to prove
membership or non-membership of all the elements in the collection.

First, we extend the definition of universal dynamic accumulator to account for witness
aggregation. Remember that we use t to denote a discrete time counter and â to denote that the
value a is optional.

Definition 11 (Accumulator with Witness Aggregation). A universal dynamic accumu-
lator UAcc for a domainM supports witness aggregation if it satisfies definitions 2, 3, 4, and 5
and supports the following ppt algorithms:

– MemWitAggr(pp, âcct, {(xi, wxi,t)}mi=1) → w(x1,...,xm),t: This (probabilistic) algorithm takes
as input the public parameter pp, an optional accumulator value âcct, a set of element and
membership witness pairs {(xi, wxi,t)}mi=1. It outputs a membership witness w(x1,...,xm),t that
can be used to attest the membership of {x1, . . . , xm}.
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– NonMemWitAggr(pp, âcct, {(xi, w̄xi,t)}mi=1)→ w̄(x1,...,xm),t: This (probabilistic) algorithm takes
as input the public parameter pp, an optional accumulator value âcct, and a set of element
and non-membership witness pairs {(xi, w̄xi,t)}mi=1. It outputs a non membership witness
w̄(x1,...,xm),t that can be used to attest the non-membership of {x1, . . . , xm}.

– MemAggrVer(pp, acct, {xi}mi=1, w(x1,...,xm),t) → 0/1: This deterministic algorithm takes as
input the public parameter pp, an accumulator acct, a set of elements {x1, . . . , xm} and the
aggregation of their membership witnesses w(x1,...,xm),t. It returns 1 if w(x1,...,xm),t certifies
that {x1, . . . , xm} is a subset of the set represented by acct. Otherwise, it returns 0.

– NonMemAggrVer(pp, acct, {xi}mi=1, w̄(x1,...,xm),t) → 0/1: This deterministic algorithm takes
as input the public parameter pp, an accumulator acct, a set of elements {x1, . . . , xn} and
the aggregation of their non-membership witnesses w̄(x1,...,xm),t. It returns 1 if w̄(x1,...,xm),t

certifies that {x1, . . . , xm} is disjointed from the set represented by acct. Otherwise, it returns
0.

Remark 11. Boneh, Bünz, and Fisch [BBF19] proposed a mechanism to aggregate (non-)membership
witnesses for RSA-based accumulators defined over primes. However, they did not provide a clear
syntax. Srinivasan et al. [SKBP22] proposed a definition for trapdoorless accumulators in the
batching setting, i.e., elements accumulated are sets. However, their proposed syntax includes
algorithms to aggregate (non-)membership witnesses of singletons.

We do not provide a formal definition of correctness as it can be obtained by modifying the
game presented in Definition 3 (confer Fig. 1) to allow a ppt adversary A to choose a set of
accumulated elements {x1, . . . , xm} and a point of time t1 at which the oracle OAdd,Delete should
aggregate the membership witnesses of those elements. In addition,A can choose a set of elements
{y1, . . . , ym′} not in the accumulator and a point of time t2 at which their non-membership
witnesses should be aggregated. A wins if ({x1, . . . , xm}, w(x1,...,xm),t1) fails MemAggrVer with
respect to acct1 or ({y1, . . . , ym′}, w̄(y1,...,ym′ ),t2) fails NonMemAggrVer with respect to acct2 . We
say that a universal dynamic accumulator with witness aggregation supports is correct if A wins
with negligible probability.

Note that aggregated witnesses should also satisfy the definition of compactness (Defini-
tion 4). More specifically, for a set {x1, . . . , xm}, it must be the case that |w(x1,...,xm),t| =
|w̄(x1,...,xm),t| = poly(λ, |x1|, . . . , |xm|).

Definition 12 (Witness Aggregation Security [BBF19]). A universal dynamic accumula-
tor UAcc, for a domainM, that supports witness aggregation is secure if for all ppt adversary A
with oracle access to OAdd,Delete, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr


pp, ŝk, acc0 ← Gen(1λ, aux);

X , wX ,t,Y, w̄Y,t ← AOAdd,Delete(1λ, aux, pp, acc0) :

MemAggrVer(pp, acct,X , wX ,t) = 1

∧ NonMemAggrVer(pp, acct,Y, w̄Y,t) = 1 ∧ X ∩ Y ≠ ∅

 ≤ negl(λ)

where acct is output by OAdd,Delete, which is defined as in Definition 5.

In Figs. 8 and 9, we present the algorithms needed to enable witness aggregation for our
universal dynamic accumulator construction. They are based on the work of Boneh, Bünz, and
Fisch [BBF19], except that (1) they apply to our accumulator rather than that of Li, Li and
Xue [LLX07]; and (2) the Wesolowski challenge c need not be prime. We use a random oracle
H : {0, 1}∗ → Odds(2ℓ−1, 2ℓ − 1) whose properties are defined as in Section 4. Without PoE, for
a set {y1, . . . , ym}, verifying its (non-)membership using an aggregated witness would require
O(mℓ) group operations in Z∗

n. However, by having users prepare PoE proofs using NI-SimPoE
(confer Fig. 7) and include those proofs in the aggregated witnesses, we are able to reduce the
number of group operations to O(ℓ), eliminating dependence on m. In addition, since PoE proofs
are performed with elements in QRn (witnesses contain components in QRn and the accumulator
value acc belongs to QRn), we do not suffer from the PoE soundness issue that arises by working
over Z∗

n as mentioned in Section 6.1.
Now, we give a description of Mem2Aggr and NonMem2Aggr, which are two helper algorithms

presented in Fig. 8 that are used to compute the aggregation of two membership and non-mem-
bership witnesses, respectively.



24 Victor Youdom Kemmoe and Anna Lysyanskaya

– Mem2Aggr(pp, acc, x, wx, y, wy, isDone):
1. Parse pp as (n, u), wx as (wx, sx), and wy as (wy, sy).

2. Compute x← H(x)/
∏|sx|

i=1 sx[i] and y← H(y)/
∏|sy|

i=1 sy[i].
3. Find a, b ∈ Z such that ax + by = gcd(x, y).
4. Compute wx,y ← wbxw

a
y, y′ ← y/ gcd(x, y), and set s′y ← sy∥(gcd(x, y)).

5. If isDone = 0, return wx,y = (wx,y, sx, s
′
y).

6. Else if isDone = 1:
(a) Compute πx,y ← NI-SimPoE.Prove(wx,y, acc, xy

′).
(b) Return wx,y = (wx,y, sx, s

′
y, πx,y).

– NonMem2Aggr(pp, acc, x, w̄x, y, w̄y, isDone):
1. Parse pp as (n, u), w̄x as (ax, Bx, sx), and w̄y as (ay, By, sy).

2. Compute x← H(x)/
∏|sx|

i=1 sx[i] and y← H(y)/
∏|sy|

i=1 sy[i].
3. Find a, b ∈ Z such that ax + by = gcd(x, y).
4. Let x′ = x/ gcd(x, y), y′ = y/ gcd(x, y), and set s′y ← sy∥(gcd(x, y)).
5. Compute γ ← axby

′ + ayax
′ and ax,y ← γ mod xy′.

6. Compute Bx,y ← acc⌊γ/xy
′⌋BbxB

a
y mod n.

7. If isDone = 0, retun w̄x,y = (ax,y, Bx,y, sx, sy).
8. Else if isDone = 1:

(a) Compute C← accax,y mod n and D← B
xy′
x,y mod n.

(b) Compute πC,(x,y) ← NI-SimPoE.Prove(acc, C, ax,y).
(c) Compute πD,(x,y) ← NI-SimPoE.Prove(Bx,y, D, xy

′).
(d) Return w̄x,y = (ax,y, Bx,y, sx, sy, πC,(x,y), πD,(x,y), C, D).

Fig. 8: Helper Algorithms for Witness Aggregation.

Aggregating two membership witnesses (Mem2Aggr). Let (x,wx) and (y, wy) be pairs
of element-membership witness with respect to an accumulator value acc. The objective is to
produce a membership witness wx,y of size less than |wx| + |wy| that can be used to prove
x and xy membership in a time that is asymptotically equal to the time it takes to verify the

membership of one element. Note that wx = (wx, sx) and wy = (wy, sy). Let x = H(x)/
∏|sx|

i=1 sx[i]

and y = H(y)/
∏|sy|

i=1 sy[i]. By tweaking Shamir’s trick(Lemma 1), we can compute wx,y such that
(wx,y)

xy = accd, where d = gcd(x, y) is 2τ -smooth with overwhelming probability since, following
Lemma 2, P+(x) > 2τ and P+(y) > 2τ with overwhelming probability. If gcd(x, y) = 1, then we
can use wx,y as one of the component of our aggregated membership witness. However, this is
not necessarily the case. To fix the issue, we append d to sy, generating s′y = sy∥(d). This insures
that we can recover y′ = y/d such that (wx,y)

xy′2 = acc. Checking that wx,y is indeed a modular
xy′-root of acc requires approximately 2ℓ group operations in Z∗

n, which is the same number of
group operations needed to check the membership of x and y separately. To make the number of
group operations equivalent to the number of group operations needed to prove the membership
of one element, we use NI-SimPoE to generate a proof πx,y for the statement (wx,y, acc, xy

′).
Finally, our aggregated membership witness is wx,y = (wx,y, sx, s

′
y, πx,y). In Fig. 8, Mem2Aggr

takes as argumement a boolean variable isDone, in addition to the tuple (x,wx, y, wy), that is
used to determine whether the NI-SimPoE proof πx,y should be computed and included in the
aggregated witness. isDone will necessary to generalize the aggregation of membership witnesses
for m ≥ 2 (confer Fig. 9).

Aggregating two non-membership witnesses (NonMem2Aggr). Let (x, w̄x) and (y, w̄y)
be pairs of element-non-membership witness with respect to an accumulator value acc, and let
u ∈ Z∗

n be the starting value of the accumulator. The objective is to produce w̄x,y with properties
similar to an aggregated membership witness. Note that w̄x = (ax, Bx, sx) and w̄y = (ay, By, sy).

Let x = H(x)/
∏|sx|

i=1 sx[i] and y = H(y)/
∏|sy|

i=1 sy[i]. Let a, b ∈ Z such that ax+ by = gcd(x, y) =
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– MemWitAggr(pp, acc, {(x1, wx1), . . . , (xm, wxm)}):
1. If m = 2, return Mem2Aggr(pp, acc, x1, wx1 , x2, wx2 , 1).
2. Else if m > 2 do:

(a) Compute wx1,x2 ← Mem2Aggr(pp, acc, x1, wx1 , x2, wx2 , 0).
(b) For i = 3 to m− 1, do:

wx1,...,xi ← Mem2Aggr(pp, acc, (xj)
i−1
j=1, wx1,...,xi−1 , xi, wi, 0).

(c) Return Mem2Aggr(pp, acc, (xj)
m−1
j=1 , wx1,...,xm−1 , xm, wm, 1).

– NonMemWitAggr(pp, acc, {(x1, w̄x1), . . . , (xm, w̄xm)}):
1. If m = 2, return NonMem2Aggr(pp, acc, x1, w̄x1 , x2, w̄x2 , 1).
2. Else if m > 2 do:

(a) Compute wx1,x2 ← NonMem2Aggr(pp, acc, x1, w̄x1 , x2, w̄x2 , 0).
(b) For i = 3 to m− 1, do:

wx1,...,xi ← NonMem2Aggr(pp, acc, (xj)
i−1
j=1, w̄x1,...,xi−1 , xi, w̄i, 0).

(c) Return NonMem2Aggr(pp, acc, (xj)
m−1
j=1 , w̄x1,...,xm−1 , xm, w̄m, 1).

– MemAggrVer(pp, acc, {xi}mi=1, wx1,...,xm):
1. Parse pp as (n, u), wx1,...,xm as (wx1,...,xm , sx1 , . . . , sxm , πx1,...,xm).
2. For i ∈ [m] do:

(a) For j ∈ [|sxi |], if sxi [j] > 2τ , return 0.

(b) Compute xi ← H(xi)/
∏|sxi

|
k=1 sxi [k].

3. Return NI-SimPoE.Verify(wx1,...,xm , acc,
∏n

i=1 xi, πx1,...,xm).

– NonMemAggrVer(pp, acc, {xi}mi=1, w̄x1,...,xm) :
1. Parse pp as (n, u), w̄x1,...,xm as (ax1,...,xm , Bx1,...,xm , sx1 , . . . , sxm ,

πC,(x1,...,xm), πD,(x1,...,xm), C, D).
2. For i ∈ [m] do:

(a) For j ∈ [|sxi |], if sxi [j] > 2τ , return 0.

(b) Compute xi ← H(xi)/
∏|sxi

|
k=1 sxi [k].

3. Return NI-SimPoE.Verify(acc, C, ax1,...,xm , πC,(x1,...,xm))
∧ NI-SimPoE.Verify(Bx1,...,xm , D,

∏n
i=1 xi, πD,(x1,...,xm)) ∧ CD ≡ u mod n.

Fig. 9: Witness Aggregation Algorithms.

d. Let x′ = x/d and y′ = y/d. Given that u = accaxBxx = accayByy, it follows that

u = uax′+by′ = (accaxBxx)
by′ (accayByy)ax′

= accaxby
′+ayax

′ (
BbxB

a
y

)xy′
= accγ mod xy′

(
acc⌊γ/(xy

′)⌋BbxB
a
y

)xy′
where γ = axby

′ + ayax
′.

Let ax,y = γ mod xy′, Bx,y = acc⌊γ/(xy
′)⌋BbxB

a
y, and s′y = sy∥(d). Clearly, w̄x,y = (ax,y, Bx,y, sx, s

′
y)

is an aggregated non-membership witness for x and y, but its verification requires approximately
the same number of group operations needed to check the non-membership of x and y separately.
To solve this issue, we use NI-SimPoE to compute the proofs πC,(x,y) and πD,(x,y) for the state-

ments (acc, C, γ) and (Bx,y, D, xy
′), respectively, with C = accγ and D = B

xy′

x,y. Finally, we let
w̄x,y = (ax,y, Bx,y, sx, s

′
y, πC,(x,y), πD,(x,y), C, D). In Fig. 8, NonMem2Aggr takes as argumement a

boolean variable isDone, in addition to the tuple (x, w̄x, y, w̄y), that is used to determine whether
the values C, D, and the NI-SimPoE proofs πC,(x,y), πD,(x,y) should be computed and included in
the aggregated witness. isDone will necessary to generalize the aggregation of non-membership
witnesses for m ≥ 2 (confer Fig. 9).

In Fig. 9, we use Mem2Aggr in the description of MemWitAggr and NonMem2Aggr in the
description of NonMemWitAggr to show how we can aggregate the (non-)membership witnesses
of m > 2 elements by recursively aggregating the (non-)membership witnesses of two elements.
We present a graphical representation of the process in Fig. 10 for m = 3 membership witnesses.
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Fig. 10: A depiction of MemWitAggr’s calls to Mem2Aggr to aggregate m = 3 membership wit-
nesses. The process is similar for NonMemWitAggr and NonMem2Aggr.

Witness disaggregation. For a set {x1, . . . , xm} with either aggregated membership witness
wx1,...,xm or aggregated non-membership witness w̄x1,...,xm , it is possible to disaggregate the
aggregated witness and obtain a witness for each xi ∈ {x1, . . . , xm}:

– Disaggregating wx1,...,xm : From the description ofMemWitAggr in Fig. 9, we have wx1,...,xm =
(wx1,...,xm

, s1, . . . , sm, πx1,...,xm
). To recover a membership witness for xi ∈ {x1, . . . , xm},

compute

wxi
← w

∏m
j=1,j ̸=i

(
H(xj)/

∏|sxj
|

k=1 sxj
[k]

)
x1,...,xm

and set wxi = (wxi , sxi).
– Disaggregating w̄x1,...,xm : From the description of NonMemWitAggr in Fig. 9, w̄x1,...,xm =

(ax1,...,xm
, Bx1,...,xm

, s1, . . . , sm, πC,(x1,...,xm), πD,(x1,...,xm), C, D).

To recover a non-membership witness for xi ∈ {x1, . . . , xm}, first compute xi ← H(xi)/
∏|sxi

|
i=1 sxi

[i].
Then, compute axi ← ax1,...,xm mod xi and

Bxi
← acc⌊ax1,...,xm/xi⌋B

∏m
j=1,j ̸=i

(
H(xj)/

∏|sxj
|

k=1 sxj
[k]

)
x1,...,xm

Finally, set w̄xi
= (axi

, Bxi
, sxi

).

Batching deletion. Remember that to delete an element x ∈ {0, 1}∗ from our accumulator,
we need to provide x and its membership witness wx. Now, with the possibility to aggregate
membership witnesses, we can batch the deletion of multiple elements by providing the product
of their H evaluations and an aggregation of their membership witnesses. After a batch deletion
of elements {x1, . . . , xm}, the (non-)membership witness of an element x′ can be updated by
executing MemWitUp or NonMemWitUp with the update information upmsg′, where upmsg′ is
formed as follows:

– Compute v′ ←
∏m

i=1 H(xi).
– If the H evaluations of xi ∈ {x1, . . . , xm} was used during the batch deletion, set δ′ = 1.

Otherwise, if wx1,...,xm was used, compute δ′ ←
∏m

i=1

∏|sxi
|

j=1 sxi [j].

– Finally, set upmsg′ = (del, v′, δ′, acc, acc′), where acc is the old accumulator value for which
the witness to be updated is valid and acc′ is the new accumulator value.

Theorem 6. Our universal dynamic accumulator with support for witness aggregation is com-
pact.

Proof. For a set {x1, . . . , xm} with membership witness wx1,...,xm
, we have

|wx1,...,xm
| < 4(λ+2)+mℓ, and for a set {y1, . . . , ym′} with non-membership witness w̄y1,...,ym′ ,

we have |w̄y1,...,ym′ | < 10(λ+ 2) + 2m′ℓ. ⊓⊔
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λ HPrime

length
HPrime

time (ms)
# Primality

test
Primality test

time w/
composite input

(ms)

Primality test
time w/ prime

input (ms)

HOdd

length
HOdd time

(ms)

112 232 10.65 158.33 0.04 4.03 1440 0.48
128 264 13.62 177.37 0.04 4.95 1704 0.60
192 393 31.9 274.91 0.06 13.03 2896 1.07
256 521 52.31 345.69 0.08 22.21 4208 1.56

Table 1: HPrime versus HOdd. # Primality test represents the average number of primality
test performed during an evaluation of HPrime, Primality test time w/ composite input
represents the average time it takes to check if a number is a composite, and Primality test
time w/ prime input represents the average time it takes to check if a number is prime.
The time required to compute HPrime is dominated by the product of # Primality test and
Primality test time w/ composite input plus Primality test time w/ prime input since
we stop the execution once we find a prime.

λ Add(HPrime,sk)

time (ms)
Add(HOdd,sk)

time (ms)
AddHPrime

time (ms)
AddHOdd

time (ms)
112 12.83 2.73 11.06 1.96
128 20.37 7.38 14.27 3.98
192 99.48 68.84 35.34 25.10
256 456.10 402.71 65.97 110.6

Table 2: Comparison of different Add algorithms. Add(H,sk) represents the addition procedure
that uses the secret key sk and H as the underlying hash function, and AddH represents the
addition procedure that is performed without sk using H as the underlying hash function.

Theorem 7. Our universal dynamic accumulator with support for witness aggregation is correct.

Proof. This follows from Theorem 1 and by inspecting how aggregated (non-)membership wit-
nesses are computed. ⊓⊔

Theorem 8. Assume H is a random oracle. Under the strong RSA assumption and the adaptive
root assumption, our universal dynamic accumulator with support for witness aggregation is
secure.

Proof. We proceed by contraposition. Let A be a ppt adversary that, on input (1λ,⊥, pp, acc0),
where (pp, acc0) are output of Gen(1λ,⊥), can output (X , wX ,Y,
w̄Y) with probability ε(λ) such that wX and w̄Y are valid, X ∩Y ̸= ∅, and ε(λ) is non-negligible.
We use A to either break the strong RSA assumption or the adaptive root assumption as follows:

– If there exists x ∈ X ∩Y such that after extracting its membership witness wx from wX and
its non-membership w̄x from w̄Y , wx and w̄x are valid, then from Theorem 3, it follows that
we can use x,wx, w̄x to break the strong RSA assumption.

– If it is not the case, then either the PoE proof πX associated to wX or the PoE proofs πC,Y
and πD,Y associated to w̄Y are forgeries, and from Theorem 5, we can use them to break the
adaptive root assumption.

Hence, with probability at least ε(λ), we can either break the strong RSA assumption or the
adaptive root assumption in polynomial time. ⊓⊔

7 Experimentation

In this section, we compare the time it takes to hash to a prime integer with the time it takes
to hash to a large odd integer, and consequences for the efficiency of previous RSA-based accu-
mulator constructions compared to ours.
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λ Delete(HPrime,sk)

time (ms)
Delete(HOdd,sk)

time (ms)
MemVerHPrime

time (ms)
MemVerHOdd

time (ms)
112 6.22 2.19 4.44 1.97
128 12.71 6.81 6.01 4.02
192 82.76 68.44 17.18 25.19
256 424.45 403.27 36.47 109.73

Table 3: Comparison of Delete algorithms using the secret key sk, and MemVer algorithms. We
can delete an element without sk if we have a valid membership witness for it, and the time
required to execute Delete that way is dominated by the time it takes to execute MemVer.

λ Exponent
size (bit)

Modular exp
time (ms)

Exponent
size (bit)

Modular exp
time (ms)

112 232 0.26 1440 1.47
128 264 0.6 1704 3.67
192 393 3.74 2896 26.49
256 521 14.62 4208 111.70

Table 4: Modular exponentiation with an exponent sampled from HPrime’s output domain versus
modular exponentiation with an exponent sampled from HOdd’s output domain.

More specifically, let HPrime be a hash function that hashes to primes and HOdd be a hash
function that hashes to large odd integers.

First, we need to establish the range of HPrime and HOdd that would give us λ bits of security,
i.e. the same amount of security as a random function f with 2λ-bit outputs. (Why compare to
such a random function? By the birthday bound, it takes O(2λ) time to find a collision in f , giving
us λ bits of security.) Suppose the function HPrime used in previous accumulator constructions
returns a random prime integer in the set [2n]. In order to achieve the same level of security
(i.e. collision-resistance that the previous constructions require of HPrime) as f , we need to set
n = 2λ + log2(2λ). This is because, by the prime number theorem, there are asymptotically
exactly 22λ primes less than 2n. In other words, to get λ bits of security, HPrime must return
a random prime from the set [22λ+log2(2λ)]. In our experiments, we took the same approach to
computing HPrime as prior work [BP97,GHR99]: to compute HPrime(x), compute y = H(x), where
H is a hash function with n/2-bit outputs, and then for r ∈ {0, . . . , 2n/2− 1}, if z = 2n/2y+ r is
prime, stop and return (z, r). Note that, with this approach, given x and the witness w, to verify
that x is in the accumulator it is not necessary to redo the rejection sampling when we execute
HPrime: if r is appended to the witness w, then it is sufficient to check that (1) z′ = 2n/2H(x)+ r

is prime and (2) wz′
= acc; thus the penalty incurred from hashing to primes can be minimized.

Next, how should we set up the output length of our function HOdd to achieve λ bits of secu-
rity? First, note that, the security of our construction requires that it be hard for the adversary’s
to find two inputs x1 and x2 such that P+(HOdd(x1))|HOdd(x2). So to be comparable to the se-
curity of HPrime, we need log2(P

+(HOdd(x))) ≥ 2λ+ log2(2λ) for any input x with overwhelming
probability. From Lemma 2, if HOdd’s outputs are ℓ-bit long, then log2(P

+(HOdd(x))) > ℓ3/4

with overwhelming probability. So to have at least the same (λ-bit) security as HPrime, we need
ℓ3/4 ≥ 2λ+ log2(2λ), i.e., we set ℓ ≥ (2λ+ log2(2λ))

4/3.
We are now ready to present our performance results. Table 1 compares the time it takes to

compute HPrime with λ bits of security with the time it takes to compute HOdd with the same
security.

In Table 2, we compare the Add algorithms. Recall that, in prior accumulators, in order to
add an element x, one first needed to compute HPrime(x), and then either update the accumulator
A to AHPrime(x) mod n (in the event that the addition is performed without access to the secret
key, i.e. the factorization of n), or compute the witness wx = A1/HPrime(x) (in the event that the
addition is performed with access to the secret key). In our construction, instead of computing
HPrime(x), one needs to just compute HOdd(x); which, as we see from Table 1, is a much more
efficient operation. However, the drawback is that the output of HOdd is longer, meaning that the
cost of exponentiation is increased (as elaborated on in Table 4). As a result, our approach is



RSA-Based Dynamic Accumulator without Hashing into Primes 29

λ Mem wit size
HPrime (byte)

Mem wit size
HOdd (byte)

Non-mem wit
size HPrime (byte)

Non-mem wit
size HOdd (byte)

112 256 436 285 616
128 384 597 417 810
192 960 1322 1010 1684
256 1920 2448 1986 2972

Table 5: Comparison of witness sizes between an accumulator using HPrime and an accumulator
using HOdd.

λ PoE proveHPrime

time(s)
PoE proveHOdd

time(s)
PoE verifyHPrime

time(ms)
PoE verifyHOdd

time(ms)
112 1 0.98 4.92 3.02
128 2.24 2.15 6.55 7.27
192 9.34 9.29 21.15 52.97
256 27.45 27.34 51.30 224.80

Table 6: PoE using HPrime versus PoE using HOdd. We used an exponent of 128 KB.

significantly less costly for the values of λ used in practice, such as λ = 112 or λ = 128; however,
as λ increases, resulting in longer RSA moduli, our approach is not as beneficial. In Table 3, we
make a similar comparison for Delete and MemVer; here, we are more generous to the previous
schemes that use HPrime: when deleting an element x, we know that HPrime(x) has already been
computed, which would allow one to recompute it more efficiently than doing it from scratch
(as described above). In Table 5 we compare the witness sizes of the two approaches. Table 6
compares our PoE approach with prior work [Wes20].

We performed our experiments for four realistic values for the security parameter λ. The
lowest one, λ = 112, is the security level that, according to NIST [Bar20], corresponds to the
security of 2048-bit RSA, which is a popular parameter choice. We also consider setting λ to
128, 192 and 256, because those security levels are also NIST recommended.

We performed our experimentation on a laptop equipped with an Intel Core i7-11800H 2.30
GHz CPU and 16 GB of RAM running Ubuntu 22.04.03 LTS via Windows Subsytem for Linux.
We used SageMath version 9.5 to implement our prototype. To instantiate HPrime, we used
the construction of Barić and Pfitzmann [BP97] with Blake2b from the PyCryptodome library
version 3.19.03as the underlying collision resistant hash function with a digest of 224-bit for
λ = 112, 256-bit for λ = 128, 384-bit for λ = 192, and 512-bit digest for λ = 256. For primality
testing, we used Miller-Rabin primality test from PyCryptodome with an error probability of
10−30, which translates to 50 rounds of Miller-Rabin test’s execution per primality check. To
instantiate HOdd we concatenated multiple outputs of Blake2b with a digest of 224-bit for λ = 112,
256-bit for λ = 128, 384-bit for λ = 192, and 512-bit for λ = 256. Then, we flipped the most
and least significant bits to 1. All group operations were performed over an RSA modulus of
2048 bits for λ = 112, 3072 bits for λ = 128, 7680 bits for λ = 192, and 15360 bits for λ = 256
following NIST recommendations [Bar20].

For Tables 1 to 3, we used 4 KB inputs for both HPrime and HOdd. In addition, for Tables 1
to 4, the times and numbers of primality tests listed are averages from 500 trials. However, for
Table 6, due to resource constraints, we reduced the number of trials to 100.
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A Communication Lower Bound for Batch updates

Camacho and Hevia [CH10] showed that for a secure dynamic accumulator with determinis-
tic witness update procedures and deterministic witness verification procedures, after m ad-
ditions or deletions, the update information upmsg will need to be of size Ω(m). For our
batch update procedures (for addition and deletion) presented in Sections 2 and 6.2, we have
upmsg = (op, v, δ, acc, acc′) with v representing the product of the hash evaluation of the elements
that were added or removed. Therefore, after m additions or deletions, |upmsg| = Ω(m).
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